Supporting Information

Comparative genomic and metabolic analysis of *Streptomyces* sp. RB110 morphotypes illuminates genomic rearrangements and formation of a new 46-membered antimicrobial macrolide

Soohyun Um,^{a#} Huijuan Guo,^{a#} Sirinthra Thiengmag,^{b#} René Benndorf,^a Robert Murphy,^c Maja Rischer,^a Daniel Braga,^b Michael Poulsen,^c Z. Wilhelm de Beer,^d Gerald Lackner,^{b*} and Christine Beemelmanns^a*

a. Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany. E-mail: christine.beemelmanns@hki-jena.de

b. Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745 Jena, Germany. E-mail: gerald.lackner@hki-jena.de

c. Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen East, Denmark.

d. Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa

‡ contributed equally.

Corresponding Authors

*E-mail: Christine.Beemelmanns@hki-jena.de.

*E-mail: <u>Gerald.Lackner@hki-jena.de</u>.

Contents

<u>LIST</u>	OF FIGURES
<u>LIST</u>	OF TABLES
<u>1.</u>	GENERAL EXPERIMENTAL PROCEDURES 5
<u>2.</u>	FERMENTATION
<u>3.</u>	MORPHOTYPE ANALYSIS
<u>4.</u>	GENOME ANALYSIS AND PHYLOGENETIC PLACEMENT
<u>5.</u>	METABOLOMIC ANALYSIS OF MORPHOTYPES11
<u>6.</u>	ISOLATION AND STRUCTURE ELUCIDATION OF TERMIDOMYCIN A (1)
<u>7.</u>	IN SILICO ANALYSIS OF THE PKS CLUSTER TRM-1 AND TRM-2 CLUSTER
<u>8.</u>	BIOLOGICAL ACTIVITIES
<u>9.</u>	APPENDIX
<u>10.</u>	REFERENCES

List of Figures

Figure S1. Cultivation of RB110 on MS-agar plates for up to 14 days at 28 °C.
Figure S2. Cultivation of RB110-1 and RB110-2 on ISP media at 28 °C after 7 days
Figure S3. Synteny plot of the whole genomes of <i>Streptomyces</i> sp. RB110-1 versus RB110-2
Figure S4. Neighbour-joining tree based on almost complete 16S rRNA gene sequences
Figure S5. Scatter plot of crude extracts of RB110-1 and RB110-2 using Compound Discoverer 3.112
Figure S6. HMRS ² -based mass-spectral molecular network (GNPS) of culture extracts
Figure S7. LC-MS analysis of crude culture extracts14
Figure S8. HPLC chromatogram and UV-Vis spectrum of RB110-2 culture extract
Figure S9. HPLC-MS chromatogram of RB110-1 (A) and RB110-2 (B) culture extract (7 days) showing
termidomycin congeners under TIC mode16
Figure S10. HPLC-MS chromatogram of RB110-1 (A) and RB110-2 (B) culture extract (10 days) showing
termidomycin congeners under TIC mode17
Figure S11 . Proposed planar structure and key ¹ H and ¹³ C chemical shifts of termidomycin in pyridine- d_5 .
Figure S12. A) 2D UV-Vis spectrum of a LC-MS-UV-Vis measurement of crude culture extracts
Figure S13.A) Elemental composition search on mass 1294.8397 for termidomycin A (1); B) ESI-HRMS
spectra of termidomycin A (1)
Figure S14. Positive (upper) and negative (bottom) modes of LC-MS spectra for ¹³ C acetate feeding study
to increase ¹³ C carbon signal intensity of termidomycin A (1)
Figure S15. PKS-based biosynthetic assembly line of PKS encoded within <i>trm-1</i> and predicted absolute
structure of termidomycin (1) and congeners
Figure S16. PKS-based biosynthetic assembly line of PKS encoded within <i>trm-2</i> and predicted absolute
structure of termidomycin (1) and congeners
Figure S17. Phylogenetic analysis of CCR-domains using Neighbor-Joining method (Table S8)
Figure S18. Phylogenetic analysis of AT-domains using Neighbor-Joining method (see Table S11)
Figure S19. Phylogenetic analysis of TE-domains using Neighbor-Joining method (see Table S10)
Figure S20. Chemical structures of putative linear termidomycin congeners derived from <i>trm-1</i> 34
Figure S21. Chemical structures of putative cyclic termidomycin congeners derived from <i>trm-1</i> 35
Figure S22. Chemical structures of putative open-chain termidomycin congeners derived from trm-236
Figure S23. Chemical structures of putative cyclic termidomycin congeners. derived from trm-2
Figure S24. Antiproliferative effect and cytotoxicity of termidomycin A (1)
Figure S25. Cultivation of RB110-1 and RB110-2 on MS medium for up to 14 days
Figure S26. Cultivation of RB110-1 and RB110-2 on TSB medium for up to 14 days40
Figure S27. Cultivation of RB110-1 and RB110-2 on NBE medium for up to 14 days
Figure S28. ¹ H NMR spectrum of termidomycin A (1) in pyridine- <i>d</i> ₅ at 600 MHz
Figure S29. ¹³ C NMR spectrum of termidomycin A (1) in pyridine- d_5 at 150 MHz
Figure S30. Zoom-in ¹³ C NMR spectra of termidomycin A (1)
Figure S31. ¹ H- ¹ H COSY NMR spectrum of termidomycin A (1) in pyridine- d_5 at 600 MHz
Figure S32. HSQC NMR spectrum of termidomycin A (1) in pyridine- d_5 at 600 MHz
Figure S33. HMBC NMR spectrum of termidomycin A (1) in pyridine- <i>d</i> ₅ at 600 MHz52

List of Tables

Table S1. Media compositions used for isolation and growth assay.
Table S2. NMR Data (pyridine-d ₅ , at 300 K) for termidomycin A (1). ^a 24
Table S3. Sequence alignments of KR-domains by CLUSTAL multiple sequence alignment by MUSCLE
(3.8)
Table S4. Antimicrobial activity of crude extracts of RB 110-1 (alias RB1) and RB110-2 (alias RB2) 38
Table S5. Antimicrobial activity of termidomycin A (1) (1 mg/mL in DMSO), ciprofloxacin (cip.) and
amphotericin B (amp.) against Gram positive, negative bacterial and fungal strains. ^a
Table S6 . Antiproliferative and cytotoxicity activity of termidomycin A (1). 38
Table S7. Closest type strains of Streptomyces sp. RB110 (both morphotypes, RB110-1, RB110-2)
according to BLASTn searches against the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, last
visit 7.11.2018, 17:12 PM) using 16S rRNA gene. Both morphotypes have the same closest relative type
strains
Table S8. Annotation of biosynthetic proteins (Trm) based on sequence homology
Table S9 . List of reference protein sequences of the crotonyl reductase (CRR)-domain, the producing
organisms, corresponding natural products and identifier used in phylogenetic analysis44
Table S10 . List of reference protein sequences of KR domains, the producing organisms, corresponding
natural products and identifier used for alignment45
Table S11. List of proteins, their producing organisms and corresponding natural products used as
reference in the TE-domain phylogenetic analysis
Table S12. List of reference protein sequences of AT-domains, the producing organisms, corresponding
natural products and identifier used for phylogenetic analysis

1. General Experimental Procedures

Optical rotation was recorded using a P-1020 polarimeter (JASCO). IR spectrum was obtained on an FT/IR-4100 ATR spectrometer (JASCO). UV spectrum was acquired on a Shimadzu HPLC system. NMR experiments were carried out on a Bruker AVANCE III 600 MHz spectrometer, equipped with a Bruker Cryoplatform. The chemical shifts are reported in parts per million (ppm) relative to the solvent residual peak of pyridine- d_5 (¹H: 7.19, 7.55, 8.71 ppm; ¹³C: 123.5, 135.5, 149.5 ppm). Semi-preparative HPLC was performed on a Shimadzu HPLC system using a phenyl-hexyl column C18(2) 250 x 10 mm column (particle size 10 µm, pore diameter 100 Å). Low resolution LCMS measurements were performed on a Shimadzu LCMS-2020 system equipped with single quadrupole mass spectrometer using a Phenomenex Kinetex C18 column (50 x 2.1 mm, particle size 1.7 μm, pore diameter 100 Å). Column oven was set to 40 °C; scan range of MS was set to m/z 150 to 2,000 with a scan speed of 10,000 u/s and event time of 0.25s under positive and negative mode. UHPLC-HESI-HRMS measurement was performed on a Dionex Ultimate3000 system combined with a Q-Exactive Plus mass spectrometer (Thermo Scientific) with a heated electrospray ion source (HESI). Streptomyces extracts were chromatographed in a Luna Omega C18 column (100 x 2.1 mm, particle size 1.6 µm, pore diameter 100 Å, Phenomenex) assembled with a SecurityGuard[™] ULTRA guard cartridge (2 x 2.1 mm, Phenomenex). The column was held at 40 °C and with a flow rate of 300 µl/min. Chemicals: Methanol (VWR, Germany); water for analytical and preparative HPLC (Millipore, Germany); formic acid (Carl Roth, Germany); acetonitrile (VWR as LC-MS grade); media ingredients (Carl Roth, Germany). All the experiments were performed at Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.

2. Fermentation

Media preparation: Media was prepared as shown in Table S1. All media were prepared with distilled water with the exception of MS, which was prepared with tap water. For solid medium, 2.0% agar was added (20 g/L). The media were sterilized by autoclaving for 20 min at 121 °C. The pH was adjusted with 1 M HCl or 1 M NaOH.

Table S1. Media con	positions used	for isolation ar	d growth assay

Medium	Content per L
ISP1	3.0 g yeast extract, 5.0 g tryptone, pH 7.0-7.2
ISP2	4.0 g yeast extract, 10.0 g malt extract, 4.0 g glucose, pH 7.0-7.2
ISP2*M	4 g yeast extract, 10 g malt extract, 4 g dextrose, 2 g mannitol, pH 7.2
ISP3	20.0 g oat meal, 0.1 mg FeSO ₄ ·7H ₂ O, 0.1 mg MnCl ₂ ·4H ₂ O, 0.1 mg ZnSO ₄ ·7H ₂ O, pH 7.2
ISP4	10.0 g soluble starch, 1.0 g K ₂ HPO ₄ , 1.0 MgSO ₄ ·7H ₂ O, 1.0 g NaCl, 2.0 g (NH ₄) ₂ SO ₄ , 2.0 g CaCO ₃ ,
	0.1 mg FeSO ₄ ·7H ₂ O, 0.1 mg MnCl ₂ ·4H ₂ O, 0.1 mg ZnSO ₄ ·7H ₂ O, pH 7.0-7.4
ISP5	10.0 g glycerol, 1.0 g L-asparagine, 1.0 g K ₂ HPO ₄ , 0.1 mg FeSO ₄ ·7H ₂ O, 0.1 mg MnCl ₂ ·4H ₂ O, 0.1
	mg ZnSO ₄ ·7H ₂ O, pH 7.2-7.6
PD	26.5 g potato extract glucose (6.5 g potato extract, 20 g glucose), pH 7.0
MS	20.0 g mannitol, 20.0 g soy flour, pH 6.5
TSB	17.0 g pancreatic digested casein, 5.0 g NaCl, 3.0 g enzymatic digest soya bean, 2.5 g K ₂ HPO ₄ ,
	2.0 g glucose, pH 7.1-7.5
Cultivation of nonont	al straint. Strantomycas on PP110 was cultivated on solid madium (4 g of yeast extract 10 g of

Cultivation of parental strain: *Streptomyces* sp. RB110 was cultivated on solid medium (4 g of yeast extract, 10 g of malt extract, 4 g of glucose, and 18 g of agar per 1 L of sterilized water) at 25 °C. The bacterium was transferred to liquid 50 mL ISP2 broth in a 100-mL Erlenmeyer flask and cultivated at 30 °C at 180 rpm. After incubation for 7 days, 1 mL of the liquid culture was inoculated to each modified ISP medium 2 agar plate (150 x20 mm, 40 0ea). The culture was incubated at 30 °C under dark conditions to prevent compound degradation for 6 days. The entire culture was extracted twice with 20 L of EtOAc overnight at 4 °C and the organic phase was concentrated *in vacuo* to yield 33.9 g of dry extract.

Cultivation of morphotypes: *Streptomyces* sp. RB110-1 and RB110-2 were cultivated on TSB at 30 °C for seven days (preculture) and then incubated on ISP media (ISP1-ISP5 using a 6 well-plate assay) using 50 µl of preculture for 18 days. Time and media dependent analysis showed that there are indeed consistent differences between the two morphotypes, which differed in sporulation rate and colony morphology. For morphotype RB110-1 sporulation occurred after five days of incubation while no or only weak production of spores was observed for strain RB110-2 on ISP3, ISP4 and ISP5 even after five days (Figure S2). Colonies of RB110-1 had a violet-white color on ISP1, a light red color on ISP2 and a white color on ISP3-ISP5. Colonies of RB110-2 were of white color on ISP1 and revealed a red to violet pigment production on ISP2-ISP5.

3. Morphotype Analysis

Morphotype differentiation of *Streptomyces* **sp. RB110:** On MSA the "original isolate", referred to as *Streptomyces* **sp. RB110-1**, produced colonies of greenish-grey colour. A second colony type (*Streptomyces* **sp. RB110-2**), which seemed to originate from the young mycelium of the grey morphotype was of violet color and displayed delayed reduced sporulation (see Figure S25-Figure S27).

Figure S1. A) Cultivation of RB110 on MS-agar plates for up to 14 days at 28 °C. B) Zoom-in on colony showing violet-colored morphology at the edges of a large whitish-grey colony (middle). C) Cultuvation of whitish-grey morphotype RB110-1 and violet-colored morphotype RB110-2 on MS medium after 5 days of incubation at 28 °C.

Figure S2. A) Cultivation of RB110-1 (whitish-grey morphotype) and B) RB110-2 purple morphotype on ISP media at 28 °C after 7 days, C) TBS medium at 28 °C, D) MS medium at 28 °C from 1-5 days (back and front side).

4. Genome Analysis and Phylogenetic Placement

DNA extraction: *Streptomyces* sp. RB110-1 and RB110-2 were grown in nutrient-rich ISP2 broth for 3 to 5 days at 30 °C (180 rpm) and cells were harvested after incubation by centrifugation for 10 min at 8000 x g. Genomic DNA was first extracted using the GenJet Genomic DNA Purification Kit (Thermo Scientific, #K0721) following the manufacture instructions with two slight changes (lysozym incubation time 40 min, protein kinase K treatment 40 min). DNA was quantified photometrically using a Nanodrop Lite Spectrometer (Thermo Scientific) photometer. High molecular weight DNA for PACBIO based whole genome sequencing was extracted using NucleoBond HMW DNA kit (Macherey-Nagel). Genome sequencing, assembly and annotation was performed as reported by Murphey *et al.*¹ and genomes were deposted at NCBI under the accession numbers RB110-1: JAEKDS000000000.1 and RB110-2: JAEKDR000000000.1.

DNA-DNA hybridization (DDH): DNA-DNA hybridization was performed *in silico* at the GGDC web server with closest neighbour *Streptomyces californicus* NBRC12750.² Genome sequence of *Streptomyces californicus* NBRC12750 was downloaded from NCBI database (JNXW00000000.1).

Synteny plot: All genome contigs resulting from sequencing of the RB110-1 and RB110-2 morphotypes were used for a computation of syntenic regions (regions of conserved gene order) using Mummer 3.23.³ While RB110-1 contigs were used as reference sequence, the contigs originating from RB110-2 served as query sequence. Visualization of synteny was performed using Mummerplot and Gnuplot.

Figure S3. Synteny plot of the whole genomes of *Streptomyces* sp. RB110-1 versus RB110-2. Nucleotide coordinate (contig names are indicated) of the RB110-1 genome is plotted on the X-axis, nucleotides coordinate of the RB110-2 genome is plotted on the Y-axis. Maximum unique matches (MUMs) are plotted as colored dots, colors represent different levels of similarity (see legend). The genomes are nearly 100% identical and are syntenic over more than 99% of the genome as expected for two morphotypes of the same isolate. The transposition of a 106.8 kb region between the start of the RB110-1 genome and the end of the RB110-2, is marked in the plot. This is the only major rearrangement of the genome.

Phylogenetic placement of Streptomyces sp. RB110-1 and RB110-2: For phylogenetic studies, the 16S rRNA gene was amplified using the primer set 1492R/27F. Each amplification reaction was prepared in a 25 μ L final reaction volume containing 7.25 µL of distilled water, 5 µL of HF buffer, 5 µL of each primer (2.5 µM), 0.5 µL of dNTPs (10 μ M), 0.25 μ L of Phusion High-Fidelity DNA polymerase (New England Biolabs), and 2 μ L of extracted DNA (template). PCR was performed under the following conditions: 98 °C/38 s; 32 cycles of 98 °C/30 s, 52 °C/45 s, 72 °C/1 min 20 s; and a final extension of 72 °C/8 min. PCR products were visualized by agarose gel electrophoresis. PCR reactions were purified using a PCR purification kit (Thermo Scientific). DNA fragments were sequenced at GATC (Konstanz). Resulting sequences were used for a BLASTn search in GenBank using "refseq rna" database. Closest relatives of BLASTn search were used to calculate sequence similarities between closest neighbours (Annexe) and isolated bacteria strains. Pairwise sequence similarities were calculated using the method recommended by Meier-Kolthoff et al. for the 16S rRNA gene available at the GGDC web server (http://ggdc.dsmz.de/).⁴ SINA sequence alignment service was used to align 16S rRNA gene sequences.⁵ Phylogenetic analysis was done with 16S rRNA sequences of both morphotypes (RB110-1 and RB110-2) and closest relatives according to BLASTn search using the "refseq rna" database.⁶ For phylogenetic placement two different phylogenetic trees were reconstructed with maximum likelihood and neighbour joining algorithms⁷ using MEGA software version 7.0.26.⁸ The evolutionary distances were computed using the Tamura 3-parameter method⁹ with deletion of complete gaps and missing data. For both algorithms a gamma distribution was used to model rate variations among sites. For all constructed trees the confidence values of nodes were evaluated by bootstrap analysis based on 1000 re-samplings.¹⁰

Figure S4. Neighbour-joining tree based on almost complete 16S rRNA gene sequences showing relationship between both morphotypes of *Streptomyces* sp. RB110 (RB110-1 and RB110-2) and species of the genus *Streptomyces. Streptomyces melanosporofaciens* NRRL B-12234 was used as outgroup. A star denotes branches that were recovered in the maximum-likelihood tree. Only bootstrap values above 50% (percentages of 1000 replications) are shown. Scale bar corresponds to 0.001 substitutions per nucleotide position.

5. Metabolomic Analysis of Morphotypes

Cultivation and extraction for GNPS-based analysis: Bacterial strains were cultured in 20 mL ISP2 medium. After incubation at 30 °C (180 rpm) for 7 days, the cultures were used to inoculate ISP2*M agar plates (1 mL culture was used for 150 x 20 mm plates, 3 agar plates) and ISP2*M liquid culture (100 mL, 150 rpm), which were incubated at 30 °C for 7 days. The liquid culture was extracted with of ethyl acetate (2 x 100 mL) using a separation funnel. The organic phase was concentrated *in vacuo* and analyzed by LC-MS². The agar culture was extracted with ethyl acetate (200 mL) overnight, filtered and ethyl acetate extract was dried under vacuum. The crude extract was dissolved with methanol and centrifuged for 10 min. The culture in methanol was analyzed with LC-MS².

General procedures for liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS): LC-MS/MS was performed on a Dionex Ultimate3000 system combined with a Q-Exactive Plus mass spectrometer (Thermo Scientific) with a heated electrospray ion source (HESI). Metabolite separation was carried out using a Luna Omega C18 column (100 x 2.1 mm, particle size 1.6 µm, pore diameter 100 Å, Phenomenex) at 40 °C. The gas flow rates were set to 35 and 10 for the sheath and auxiliary gases, respectively. The capillary and the probe heater temperatures were 340 °C and 200 °C, respectively. The spray voltages were 4 kV and 3.3 kV for the positive and negative ionization modes, respectively. Resolving power was 17,500 FWHM at m/z 200, AGC target was 1e5, injection time was 50 ms, and an isolation window of 1.0 m/z. Fragmentations were performed with stepped NCEs (normalized collision energy) values of 20, 30, and 40.

Mass spectral molecular networking analysis: LC-MS/MS raw files were converted to mzXML format using MSConvert (bundled with the Proteowizard software package) and uploaded to the GNPS webserver (https://gnps.ucsd.edu).¹¹ Molecular networking was performed using a minimum requirement of four matched fragments and a cosine distance of 0.8 to establish connections of nodes. Networks were visualized in Cytoscape¹² according to instruction provided on the GNPS website. Compounds were computationally derived from raw data by using Compound Discoverer 3.1.0.305 (Thermo Scientific) by a targeted search with indicated parent compounds.

Figure S5. A) Scatter plot of crude extracts of RB110-1 and RB110-2 using Compound Discoverer 3.1. B) Top 20 molecular ion features detected from RB110-1culture extracts (left) and RB110-2 (right).

Figure S6. HMRS²-based mass-spectral molecular network (GNPS) of culture extracts obtained from *Streptomyces* sp. RB110-1 and RB110-2 solid cultures after 7 days (gold: RB110-1 and RB-110-2; blue: RB110-1; red: RB110-2, black: ISP2 medium control). Putatively assigned clusters: a) nonactins, b) termidomycins and c) griseorhodins. Connections between nodes indicate relatedness based on similarities in MS² spectra. The network was generated using 6 minimum matched ion fragments, a minimum cluster size of 2 and a cosine score of 0.8.

Figure S7. A) LC-MS analysis of crude culture extracts showing A) total ion chromatogram and extracted ion chromatogram (nonactin $[M+NH_4]^+ = 754.4736$, monactin $[M+NH_4]^+ = 768.4676$; dinactin $[M+NH_4]^+ = 782.4779$; trinactin $[M+NH_4]^+ = 796.5376$); B) HR-MS² spectrum of nonactin $[M+H]^+ = 754.4736$; C) LC-MS analysis of crude culture extracts showing extracted ion chromatogram (griseorhodin C $[M+H]^+ = 527.08$, griseorhodin A $[M+H]^+ = 509.07$; 8-methoxy-griseorhodin C $[M+H]^+ = 541.09$); D) HR-MS² spectrum of molecular ion feature at 4.46 min (griseorhodin A $[M+H]^+ = 509.0706$).

Figure S8. A) HPLC chromatogram and UV-Vis spectrum of RB110-2 culture extract showing termidomycins typical UV-Vis spectrum ($\lambda = 383$ nm, 26 min). B) ESI-HRMS spectra of termidomycin A (1) (calcd. for C₇₀H₁₂₀NO₂₀ 1294.8398 [M + H]⁺, obsd. 1294.8397). C) MS² spectrum of termidomycin A (1) indicating the presence of the sugar moiety (C₈H₁₆NO₂, cacld. [M + H]⁺ = 158.1176).

A)

Figure S9. HPLC-MS chromatogram of RB110-1 (**A**) and RB110-2 (**B**) culture extract (7 days) showing termidomycin congeners under TIC mode. Termidomycin A (**1**) ($[M + H]^+$, 1294.8398); termidomycin A* ($[M + H]^+$, 1312.8504, putative linear form); termidomycin B (**2**) ($[M + H]^+$, 1308.8554); termidomycin B* ($[M + H]^+$, 1326.8660, putative linear form); termidomycin C (**3**) ($[M + 2H]^{2+}$, 638.9161); termidomycin D (**4**) ($[M + 2H]^{2+}$, 645.9244); termidomycin E (**5**) ($[M + 2H]^{2+}$, 660.9312).

A)

Figure S10. HPLC-MS chromatogram of RB110-1 (**A**) and RB110-2 (**B**) culture extract (10 days) showing termidomycin congeners under TIC mode. Termidomycin A (**1**) ($[M + H]^+$, 1294.8398); termidomycin A* ($[M + H]^+$, 1312.8504, putative linear form); termidomycin B (**2**) ($[M + H]^+$, 1308.8554); termidomycin B* ($[M + H]^+$, 1326.8660, putative linear form); termidomycin C (**3**) ($[M + 2H]^{2+}$, 638.9161); termidomycin D (**4**) ($[M + 2H]^{2+}$, 645.9244); termidomycin E (**5**) ($[M + 2H]^{2+}$, 660.9312).

6. Isolation and Structure Elucidation of Termidomycin A (1)

Large scale fermentation and purification

Strain RB110-2 was cultured on ISP2 medium at 28 °C and used to inoculate 200 mL ISP2*M liquid medium. After five days of incubation (30 °C at 180 rpm), 1 mL of the culture was used to inoculate ISP2 agar medium (500 plates, 150 x 20 mm) containing 0.2 mg of 1^{-13} C sodium acetate per liter to maximize the carbon chemical signals for ¹³C NMR spectrum. After 7 days of cultivation at 30 °C in a dark incubator, plate cultures were cut into small pieces (50 x 50 mm) and extracted twice with 20 L of EtOAc overnight. The EtOAc layer was dried over Na₂SO₄ and concentrated *in vacuo* to yield 15.5 g of extract. To obtain pure termidomycin A (1), the dried substance was purified by semipreparative reversed-phase HPLC on a phenyl-hexyl column (10 μ m, 250 × 10 mm, a gradient solvent system; flow rate: 2 mL/min, detection: UV 383 nm, 20 to 50 % aqueous acetonitrile with 0.1 % F.A over 30 min) without an SPE fraction procedure to prevent from compound decomposition. Termidomycin A (1) eluted at 26 min. All the experiments were performed in the dark to avoid light-induced decomposition.

Physicochemical Data

Termidomycin A (1): yellow solid; $[\alpha]_{D}^{25}$ -42.0 (c 0.1 w/v%, MeOH); UV (MeOH) λ_{max} 348, 363, 387 nm; IR (ATR) v_{max} 3399, 2610, 2360, 1741, 1581, 1460, 1425, 1387, 1263, 1194, 1099, 1023, 956, 913, 862, 774; NMR spectral data, see Table1; ESI-HRMS [M + H]⁺ *m/z* 1294.8397 (calcd for C₇₀H₁₂₀N₁O₂₀, 1294.8398)

Structural Analysis

Termidomycin A (1) was purified as a yellow powder. The molecular formula of 1 was determined as $C_{70}H_{119}NO_{20}$ (*m*/*z* obsd. 1294.8397 [M + H]⁺, calcd. 1294.8398; Δ -0.10 mmu) by ESI-HRMS and ¹H and ¹³C NMR spectra indicating 12 degrees of unsaturation. Interpretation of the ¹H NMR spectrum of 1 revealed polyunsaturated proton signals and a UV-vis spectrophotometric band (λ_{max} 348, 363, and 387 nm) for a heptaene core moiety and polyhydroxylated proton signals were suggestive of a type I polyketide compound. Further combined analyses of 1D (¹H and ¹³C) and 2D (HSQC, COSY, and HMBC) NMR data in pyridine-*d*₅ led to the planar structure elucidation for termidomycin A (1). The first connectivity was deduced by HMBC correlations from methyl protons [H₃-3, δ_{H} 1.35] attached to methine carbon [C-2, δ_{C} 48.6] supported by ¹H-¹H correlation of the methyl group protons [H₃-3, δ_{H} 1.35] and methine proton [H-2, δ_{H} 2.95]. The COSY NMR spectrum showed a correlation between methine proton signal [H-2, δ_{H} 2.95] and oxymethine proton [H-4, δ_{H} 4.53] and HMBC correlations also indicated the connections from H-4 (δ_{H} 4.53] to C-2 and C-3 [δ_{C} 48.6 and 15.2]. A COSY correlation allowed the oxymethine proton H-4 was determined to be connected to an olefinic proton [H-5, δ_{H} 5.74] as well as HMBC correlations supported the connectivity from the

olefinic proton H-5 to C-4 [$\delta_{\rm C}$ 74.8]. Two unsaturated protons H-5 and H-6 [$\delta_{\rm H}$ 5.61] showed COSY correlations and further extension from C-6 to C-7 was deduced by COSY and HMBC correlations from H-6 to C-7 and C-8 [$\delta_{\rm C}$ 49.7 and 25.0]and from H-7 [$\delta_{\rm H}$ 2.45] to C-6 [$\delta_{\rm C}$ 133.9]. The ethyl group connected to the olefinic carbon C-6 was assigned from COSY correlations between H-7 [$\delta_{\rm H}$ 2.45]/H₂-8 [$\delta_{\rm H}$ 2.33 and 1.50] and H₂-8/H₃-9 [$\delta_{\rm H}$ 0.99] and HMBC correlations from methyl protons H₃-9 to C-7 and C-8 [$\delta_{\rm C}$ 49.7 and 25.0]. Methine proton H-7 at the ethyl group showed a COSY correlation with oxymethine proton H-10 [$\delta_{\rm H}$ 4.15].

Figure S11. Proposed planar structure and key 1 H and 13 C chemical shifts of termidomycin in pyridine- d_{5} .

The connectivity from C-11 [$\delta_{\rm C}$ 143.1] to C-25 [$\delta_{\rm C}$ 130.7] was deduced by the array of COSY couplings among the 13 olefinic protons. Also, HMBC correlations from H-13 [$\delta_{\rm H}$ 6.24] to C-11, 14, and 15 [$\delta_{\rm C}$ 143.1, 130.0, and 134.2], from H-14 [$\delta_{\rm H}$ 6.72] to C-11, 13, and 15 [$\delta_{\rm C}$ 143.1, 127.7, and 134.2], from H-24 [$\delta_{\rm H}$ 6.42] to C-23 and C-25 [$\delta_{\rm C}$ 133.5 and 130.7], and from H-25 [$\delta_{\rm H}$ 5.98] to C-23 and C-24 [$\delta_{\rm C}$ 133.5 and 134.2] confirmed the connectivity in the polyunsaturated carbon sequence. The polyene characteristic UV-Vis spectrum of 1 (λ_{max} 348, 363, and 387 nm) and an integration of ¹H NMR spectrum supported the presence of a heptaene moiety despite of the overlapped carbons at C-18–22 and protons at H-18–22 [δ_c 133.0-134.5; δ_H 6.63-6.45]. Further HMBC correlations from H-7, H-10, and H₃-12 [$\delta_{\rm H}$ 2.03] to C-11 [$\delta_{\rm C}$ 143.1] assigned the placement of quaternary carbon C-11 at the heptaene moiety. COSY and HMBC correlations allowed us to construct further connectivity to a six membered hemiketal ring [C-27, 28, 29, 30, and 31; δ_c 70.5, 41.4, 63.9, 45.2, and 100.5] from the heptaene moiety via the methylene bridge carbon C-26 [$\delta_{\rm C}$ 39.8]. The methylene protons H₂-26 [$\delta_{\rm H}$ 2.49, 2.32] showed correlations to C-24, 25, 27, and 28. HMBC correlations from the oxymethine proton H-27 [$\delta_{\rm H}$ 3.97] and methylene proton H₂-30 [$\delta_{\rm H}$ 2.39] in the ring to a tertiary alcohol substituted quaternary carbon C-31 support the hemiketal ring formation. COSY and HMBC correlations of 1 indicated a polyhydroxylated carbon sequence from C-32 [$\delta_{\rm C}$ 41.1] to C-60 [$\delta_{\rm C}$ 78.2] containing 12 hydroxylated carbons [C-33, 35, 37, 39, 41, 43, 45, 49, 52, 55, 58, and 60; $\delta_{\rm C}$ 77.4, 74.7, 70.8, 77.5, 72.3, 69.2, 74.3, 77.8, 71.5, 75.7, 67.3, and 78.2], 8 methylene linker carbons [C-32, 34, 36, 38, 40, 42, 44, and 59; 41.1, 45.4, 45.9, 40.4, 45.8, 48.9, 44.5, and 40.6], two ethyl substituted groups [C-46, 47, and 48; $\delta_{\rm C}$ 48.5, 21.8, and 12.3, C-61 and 62; $\delta_{\rm C}$ 28.0 and 10.4], and three methyl substituted groups [C-50 and 51; C-53 and 54; C56 and 57] showing a repeating 1,3pattern, a typical feature of type I polyketide synthase.

Aminoglycoside (3-hydroxy-forosamine) was determined by COSY couplings from H₃-70 [$\delta_{\rm H}$ 1.40] to H-63 [$\delta_{\rm H}$ 4.82] supported by HMBC correlations from H₃-70 to C-66 and C-69 [$\delta_{\rm C}$ 73.2 and 70.3], and from 2 N-methyl protons H₃-67, 68 [$\delta_{\rm H}$ 2.52] to C-66, from H-66 [$\delta_{\rm H}$ 2.29] to C-65, 69, and 70. Also HMBC correlations from H-65 [$\delta_{\rm H}$ 4.05] to C-64, C-65 showed further extension. The ring formation was deduced by HMBC correlation from methine proton H-69 [$\delta_{\rm H}$ 3.42] to oxymethine carbon C-63 [$\delta_{\rm C}$ 98.6]. The aminoglycoside moiety was elucidated as 3-hydroxy-forosamin, rare aminoglycoside, and additional HMBC correlations from H-63 to C-60 [$\delta_{\rm C}$ 78.2] and from H-60 [$\delta_{\rm H}$ 4.25] to C-63 exhibited the connection between the aminoglycoside moiety and the polyhydroxylated chain. Lastly, HMBC correlation from a broad proton H-55 [$\delta_{\rm H}$ 6.11] to C-1 [$\delta_{\rm C}$ 177.8] allowed the assignment for the planar structure of **1** forming as a 46 membered-ring macrolide.

Figure S12. A) 2D UV-Vis spectrum of a LC-MS-UV-Vis measurement of crude culture extracts indicating a specific termidomycin UV-Vis signals; B) 2D UV-Vis spectrum (LC-MS-UV-Vis measurement) of freshly prepared termidomycin-enriched culture extracts and C) after storage for one day in NMR tube.

m/z= 1289.84-1299.84								
m/z	Theo. Mass	Delta	RDB	Composition				
		(mmu)	equiv.					
1294.8397	1294.8398	-0.10	11.5	C ₇₀ H ₁₂₀ O ₂₀ N				
	1294.8425	-2.78	16.0	C73 H118 O17 N2				
	1294.8339	5.77	20.5	C77 H116 O15 N				
	1294.8465	-6.80	20.0	C78 H118 O15				
	1294.8313	8.45	16.0	C74 H118 O18				
	1294.8272	12.47	12.0	C ₆₉ H ₁₁₈ O ₂₀ N ₂				
	1294.8551	-15.36	15.5	C74 H120 O17 N				
	1294.8578	-18.04	20.0	C77 H118 O14 N2				
	1294.8187	21.03	16.5	C73 H116 O18 N				
	1294.8160	23.71	12.0	C70 H118 O21				

A

Figure S13.A) Elemental composition search on mass 1294.8397 for termidomycin A (1); B) ESI-HRMS spectra of termidomycin A (1)

R.Time:5,442(Scan#:1307) MassPeaks:2741 BasePeak:639(2937453) Spectrum Mode:Single 5,442(1307) BG Mode:None Polarity:Positive Segment 1 - Event 1

Figure S14. Positive (upper) and negative (bottom) modes of LC-MS spectra for ${}^{13}C$ acetate feeding study to increase ${}^{13}C$ carbon signal intensity of termidomycin A (1).

position	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	COSY	HMBC	remark
1	177.8, C				
2	48.6, CH	2.95, qd (15.0, 7.5)	3, 4	1, 3, 4, 5	
3	15.2, CH ₃	1.35. d (7.5)	4	1, 2, 4	
4	74.9, CH	4.53, dd (15.0, 7.0)	2, 5	1, 2, 3, 6	
5	133.0, CH	5.74, dd (15.0, 7.0)	4, 6	4, 6, 7	
6	133.9, CH	5.61, dd (15.0, 9.0)	5,7	5, 7, 8, 10	
7	49.7, CH	2.45, m	6, 8, 10	6, 8, 9, 10	
8	25.0, CH ₂	2.55, m	7,9	6,7,9	
9	12.2 CH.	1.50, III	8	0, 7, 9	+
10	80.8 CH	4 15 d (8 5)	7	7, 11, 13	
10	143.1 C	4.15, u (0.5)	/	7, 11, 15	1
12	13.3 CH ₂	2.03.8		10 11 13	1
13	127.7. CH	6.24, d (13.0)	14	10, 11, 12, 14	
14	130.0, CH	6.72, dd (15.0, 13.0)	13, 15	13, 15	
15	134.2, CH	6.40,	14, 16	14, 16	
16	133.6, CH	6.63, m	15, 17	15, 17	
17	133.3, CH	6.48, m	16, 18	16, 18	
18	134.5-133.0, CH	6.63-6.45, m	17, 19	17, 19	overlapped
19	134.5-133.0, CH	6.63-6.45, m	18, 20	18, 20	overlapped
20	134.5-133.0, CH	6.63-6.45, m	19, 21	19, 21	overlapped
21	134.5-133.0, CH	6.63-6.45, m	20, 22	20, 22	overlapped
22	134.5-133.0, CH	6.63-6.45, m	21, 23	21, 23	overlapped
23	133.5, CH	6.72, m	22, 24	22, 24	
24	134.2, CH	6.42, dd (13.5, 6.5)	23, 25	23, 25, 26	
25	130.7, CH	5.98, ddd (13.5, 6.5, 6.5)	24, 26	24, 26, 27	
26	39.8, CH ₂	2.49, m, 2.32, m	25, 27	24, 25, 27, 38	
27	70.5, CH	3.97, ddd (13.0, 7.0, 7.0)	26, 28	25, 26, 28, 31	+
28	41.4, CH ₂	1.49, dd (7.0, 3.0)	27, 29	24, 26, 27, 29	+
29	63.9, CH	4.53, m	28, 30	28, 30	
30	45.2, CH ₂	2.39, m, 2.08, m	29	28, 29, 31	
31	100.5, C	2.04 m	22	21 22	+
32	41.1, CH ₂	2.04, III	32 34	32 34 35	
34	45.4 CH	1 77 m	33 35	32, 34, 35	
35	74.7 CH	4 52 m	34 36	33 34 36 37	1
36	45.9 CH2	2 10 m	35 37	34 35 37 38	
37	70.8. CH	4 44 m	36.38	35, 36, 38, 39	
38	40.4, CH ₂	2.28, m	37, 39	36, 37, 39, 40	
39	77.5, CH	4.05, m	38, 40	37, 38, 40, 41	
40	45.8, CH ₂	2.03, m	39, 41	38, 39, 41, 42	
41	72.3, CH	4.48, m	40, 42	39, 40, 42, 43	
42	48.9, CH ₂	2.12, m	41, 43	40, 41, 43, 44	
43	69.2, CH	4.52, m	42, 44	41, 42, 44, 45	
44	44.5, CH ₂	1.96, m	43, 45	42, 43, 45, 46	
45	74.3, CH	4.63, m	44, 46	43, 44, 46, 47, 49	
46	48.5, CH	2.14, m	45, 47, 49	45, 47, 49	
47	21.8, CH ₂	1.80, m, 1.66, m	46, 48	45, 46, 49	
48	12.3, CH ₃	1.03, d (7.5, 2.0)	47	46, 47	+
49	77.8, CH	4.08, dd (12.0, 7.0)	46, 50	45, 46, 47, 50, 52	<u> </u>
50	36.8, CH	2.25, m	49, 51, 52	49, 51, 52	
52	71.5 C ^{II}	1.27, 0 (7.0)	50 52	47, 50, 52	ł
53	71.5, СП 38.5, СН	1.54 m	50, 55	52 54 55	<u> </u>
54	10.4 CH	1.07, III 1.09 d (6.5)	53	52, 53, 55	
55	75.7 CH	611 m	56	1 52 54 56 58	1
56	41.5. CH	2.13. m	55, 57, 58	55, 57, 58	†
57	10.3. CH ₂	1.16 d (6.5)	56	55, 56, 58	1
58	67.3. CH	4.31. dd (10.3. 3.0)	56. 59	55, 56, 57, 59, 60	
59	40.6, CH ₂	2.29, m	58,60	58, 60, 61	
60	78.2, CH	4.25, m	59, 61	59, 61, 62, 63	
61	28.0, CH ₂	1.97, m, 1.80, m	60, 62	59, 60, 62	
62	10.4, CH ₃	1.10, m	61	60, 61	
63	98.6, CH	4.82, m	64	60, 63	
64	42.5, CH ₂	2.59, m, 2.03, m	63, 65	63, 65	
65	67.0, CH	4.05, m	64, 66	63, 64, 66	ļ
66	73.2, CH	2.29, m	65, 69	65, 67, 68, 69, 70	
67	42.4, CH ₃	2.52, s		66	ļ
68	42.4, CH ₃	2.52, s	66.70	66	ļ
69	/0.3, CH	3.42, qd (10.5, 6.5)	66, 70	63, 65, 66, 70	+
/U 8600 MH- C	20.3, CH ₃	1.40, 0 (0.5) for ¹³ C NMD	09	00, 09	<u> </u>
OUU MHZ IC	n ii nivik and i su MHZ	IOI U INIVIR			

Table S2. NMR Data (pyridine- d_5 , at 300 K) for termidomycin A (1).^a

7. In silico analysis of the PKS cluster trm-1 and trm-2 cluster

RB110-1: JAEKDS00000000.1: tig0000002_np1212 (Location: 783,249 - 959,410 nt) (total: 176,162 nt) RB110-2: JAEKDR000000000.1: tig0000001_np1212 (Location: 88,477 - 262,099 nt) (total: 173,623 nt)

BGCs were first identified using antiSMASH 5.0.¹³ Then, Basic Local Alignment Search Tool for proteins (BLASTp) (NCBI) was used to determine potential false positives or additional gene clusters. The PKS gene cluster was analysed by the BLAST server from the UniProt website using the UniProtKB/Swiss-Prot database with default settings. The first three hits were used for comparison and function prediction. Furthermore, the best three hits of the Minimum Information about a Biosynthetic Gene cluster (MIBiG) database embedded in antiSMASH 5.0 were taken into account when performing phylogenetic studies on the catalytic domains and comparison with other BGCs. Sequence similarities are defined as amino acid similarities based on BLASTp. Sequences were compared using the BLAST algorithm. Partial sequences were manually compiled, assembled and trimmed using BioEdit Version 7.2.0.¹⁴ Initial tree(s) for the heuristic search were obtained automatically by applying Neighbour Joining method. The robustness of branches was assessed by bootstrap analysis with 1000 replicates. The trees are drawn to scale with branch lengths measured in the number of substitutions per site. Evolutionary analyses were conducted in MEGA7.8

Extender unit biosynthesis: The gene cluster encodes for the biosynthesis of additional PKS-extender units, such as the biosynthesis of ethyl malonate (EthMal). The biosynthesis of EthMal requires the action of CCR-homologues, which form phylogenetically distinct clades. The CCR encoded in the *trm* cluster form a clade within the typical ethylmalonyl incorporating CCR from other known natural product gene cluster and therefore the ethylmalonyl units incorporated in TrmI are provided by CCR.

AT Domains: Phylogenetic analysis of AT-domains suggests that ATs with the same substrate specify share a common evolutionary origin with malonyl- and methylmalonyl-speficifity clustering into distinct clades (Figure xx).^{15,16}ATs accepting ethyl and/or propyl malonate as their extender units form a clade distinct from other ATs.

Figure S15. PKS-based biosynthetic assembly line of PKS encoded within *trm-1* and predicted absolute structure of termidomycin congeners.

Figure S16. PKS-based biosynthetic assembly line of PKS encoded within *trm-2* and predicted absolute structure of termidomycin (1) and congeners.

Figure S17. Phylogenetic analysis of CCR-domains using Neighbor-Joining method (Table S9). The optimal tree with the sum of branch length = 3.50006271 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site. The analysis involved 34 amino acid sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 399 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.⁸

Figure S18. Phylogenetic analysis of AT-domains using Neighbor-Joining method (seeTable S12). The optimal tree with the sum of branch length = 18.80879066 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method and are depicted in units of the number of amino acid substitutions per site. The analysis involved 80 amino acid sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 232 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.⁸

o 			
R	Sm ACP		
W141	P144, N148	VV 141	LDD, P144, N148
	_		D2 turns
А-туре	B-type	ОН О ОН О ОН О	в 2-туре он о
		R ¹ Sm ACP R ¹ Sm ACP R ¹ Sm ACP	R ¹ Sm ACP
R ~ Sm ACF	R ~ Sm ACF	\overline{R}^2 R^2 R^2	R ²
(1)
Module	Loop	Catalytic Region	
Erv2 1	НААСТ.РООУАТ	SSCICUMCSIROCIVIINI	
Tyl6 Al	HTAGTPHSAEF	SSGAAVWGSANQGATAAANA SSGAAVWGSGGQTAYGAANA	
Pik5_A1	HTAGAPGGDPL	SSNAGV <mark>W</mark> GSGWQGVYAAANA	
Ole6_A1	HTAGVPDSRPL	SSNAGV <mark>W</mark> GSGGQAVYAAANA	
Meg6_A1	HAAGVPQSTPL	SSGAGV <mark>W</mark> GSANLGAYAAANA	
Sor6_A1	HAGGIEPHAPL	SSGAVV <mark>W</mark> GGGQQGGYAAANA	
TrmA_KR2	HAAGISDTGPL	SSGAGV <mark>W</mark> GSGGQGAYGAANA	
TrmA_KR3	HAAGTVQTAPV	SSGAGVWGSAGLAAYGPANA	
TTIMC_KRS	HAAGVAPSVPL	SSNAGVWGSGGQSAIAAANA	
TrmC_KR10	HAAGAGAATKEL HAAGAGOAAPI.	SSIAGVWGSGGOSVYAAANA	
TrmD_KR11	HAAGIGDAAPV	SSISGVWGSGGLAAYSAANA	
TrmD KR12	HAAGVSRDTLL	ASIAGV <mark>W</mark> GSGAGGAYSAANA	
TrmD KR13	HAAGVSRDTLL	ASIAGV <mark>W</mark> GSGAGGAYSAANA	
TrmD_KR14	HAAGVSRSNVL	SSIAGV <mark>W</mark> GSGGGGSYAAANA	
TrmE_KR15	HAAGASRSTLL	SSIAGV <mark>W</mark> GSGAGAAYSAANA	
TrmE_KR16	HTAGLYDPAPL	SSIAATWGSLELGAYAAANT	
TrmE_KR17	HTAGVPQTTAL	SSIAATWGSGNQAAYAAANA	
TrmH_KR25	HAAGIAPLVPL		
NYSI_AZ Dim7_A2	HTAVTIFIADI		
Can13 A2	HTAAVIELOST	SSTAGMWGSGRHAAYVAANA	
Amp1 A2	HTAAVIELAAL	SSTAGM <mark>W</mark> GSGV H AAYVAGNA	
Ela4 A2	HIAGAGVLVPL	SSISAV <mark>W</mark> GSGE <mark>H</mark> GAYAAANA	
Tyll_B1	HTAGI <mark>LDD</mark> AVI	SSAAATFGAPGQANYAAANA	
Avel_B1	HTAGI <mark>LDD</mark> ATL	SSVTGTWGNAGQGAYAAANA	
Ave7_B1	HAAGVLDDATI	SSAAGILGSAGQANYAAANA	
Ave9_Bl		SSAAG1LGSAGQGNYAAANA	
ASCO_BI		SSAAAVLGSPGQGNIAAANA	
TrmB KR4		SSAAGVLGSAGQGNIAVANA SSVACRI.SCVCOCSYTAANA	
TrmC_KR6	HAAVVIDDGVF	SSLAGTMGNAGOGNYAAANA	
TrmC KR7	HTAGVLDDGVL	SSTAGFFGSSGOGNYAAANA	
TrmC KR8	HTAGV <mark>LDD</mark> GVL	SSTAGFFGSSGQGNYAAANA	
TrmF_KR18	HTAGV <mark>LDD</mark> GVV	SSAASVFGNAGQASYSAANA	
TrmF_KR19	HTAGV <mark>LDD</mark> GVF	SSVAATFGGAGQGNYAAANA	
TrmG_KR20	HTAGV <mark>LDD</mark> GVV	SSAASVFGNAGQASYSAANA	
TrmG_KR21	HTAGVLDDGVL	SSAAGVFGNAGQANYSAANA	
TrmG_KR22		SSAAGVEGNAGQANYAAANS	
TING_KR23		SSAAGVEGNAGQGNIAAANA SSAAGVEGNAGQGNIAAANA	
TrmH_KR26	HTAGVIDDGVI	SSAAGTVGSPGOANYAAANA	
TrmH KR27	HIAGALDDGVI	SSAAGTFGGPGOGNYAAANA	
Lan1 B2	htaat <mark>ldd</mark> gtl	SSFASAFGAPGLGCYA <mark>P</mark> GNA	
Meg1_B2	hvaat <mark>ldd</mark> gtv	SSSTAAFGAPGLGGYV <mark>P</mark> GNA	
Ery1_B2	haaat <mark>ldd</mark> gtv	SSFASAFGAPGLGGYA <mark>P</mark> GNA	
Pik1_B2	HTAGA <mark>LDD</mark> GIV	SSVSSTLGIPGQGNYA <mark>P</mark> HNA	
Oli14_C1	HTAGVAGHGPL	SSGAAVWGSGSNGANAAAGG	
Meg3_C2	HAETLTNFAGV	SSVAGVWGGVGMAAYAAGSA	
Erys_C2	HAGTLINFGSI	SSVAGIWGGAGMAAIAAGSA	
Pik3 C2	HLPPTVDSEPI	SSVAA TWGGAGMAG LAAGSA SSVAA TWGGAGOGA YAAGTA	
Nid4 C2	HAPPLVPLAPL	SSVSGVWGGAAOGAYAAATA	
Tv14 C2	VAPPVAPPTPL	SSVAGVWGGAGOGGYAAGTA	

Table S3. Sequence alignments of KR-domains by CLUSTAL multiple sequence alignment by MUSCLE (3.8)

Table S1. Multiple sequence alignment of KR domains by CLUSTAL

TrmA KR2	GTVLVTGGTGALGGHLARWLA-AEGAERIVLVGRRGADAPGAAEL	44
TrmA KR3	GTVLITGGTGALGGRVARWLA-AEGAAHLVLTSRSGQAAPGADELAA	46
TrmB KR4	GTVLVTGASGGLGMALARHLATAHDVRGLVLAARRGDAYAPLAALAD	47
TrmC KR5	GTVLITGGTGALGGRVARRLA-AEGAEHLVLTSRRGPDAAGVTELAQ	46
TrmC KR6	GTVLVTGGTGTVGARVGRWLA-ANGAAHVVLASRSGMTAPGAAELAA	46
TrmC KR7	GTVLVTGGTGALGGHVARWLA-GAGAEHLVLAGRRGLEAPGAVELRE	46
TrmC KR8	GTVLVTGGTGALGGHVARWLA-GAGAEHLVLAGRRGLEAPGAVELRE	46
TrmC KR9	GTVLITGGTGALGLYVAHWLA-AAGAEHLVLASRSGGDAEALAL	41
TrmC KR10	GTVLVTGGTGALGSKVARWLI-EGGAEHVVLTSRRGADAPGAAEL	44
TrmD KR11	GTVLVTGGTGALGTAVTRWLL-ESGAEHVVLLSRSGAGAETPATSDRSTATE	51
TrmD_KR12	GTVLITGGTGALGVETARCLV-GAGAERVVLLSRSGVV	37
TrmD KR13	GTVLITGGTGALGVETARCLV-GAGAERVVLLSRSGVV	37
TrmD KR14	GTVLVTGGSGALGRVVTDWLV-AEGAERVVLVSRGGG	36
TrmE KR15	GTVLVTGGTGALGREVARWLV-DTGAERVVLLGRRAVGOGSGGHTGGSGTGDLAGTSDPG	59
TrmE KR16		0
TrmE KR17	GTVLVTGGTGAIGTHVARWLA-KSGAARLVLTSRRGAAAPGAEELRE	46
TrmF_KR18	GTVLVTGASGGLGGLVARHLVVVHGVRDLLLVSRRGTVADGLEA	44
TrmF_KR19	TLTTGASGTLGGLFARHLVNRYDARDLVLVSRRGDTAPGMAELVA	4.5
TrmG_KR20	GTVLVTGASGGLGGLVARHLVVVHGVRDLLLVSRRGTVADGLEA	44
TrmG_KR21	-TVLVTGASGGLGSLVAVHLAAVHGVRRLVLASRRGTVSAELTG	4.3
TrmG_KR22	-VVLITGANGALGGAVARHLFFVHGVRTLVLASRRGEADPVAAGLRT	46
TrmG_KR23	-TVLLTGATGALGALIAEHLVTAHGVRRLVLTSRRGLDAPGAVELRD	46
TrmG_KR24	GAVILITGASGALGGVVARHI.VAGHGVRHI.VI.ISRRGARADGMAELEE	47
TrmH_KR25	GTVL/UTGGVGGVGAHVARWLA-RRGADHL/ULTSRRGEDSPGAARLAA	46
TrmH_KR26	GTVLVTGATGALGKLVATRLVTAHGVRSLVLVGRRGPAAEGADELVA	47
TrmH_KR27	GTVLVTGATGALGRLVARRLVTEHGARRLVLASRRGPDADGAAELLA	47
		1,
TrmA_KR2	AAELGDVVSFAACDTTDRDQLAALLDGIE-DLGAVVHAAGISDTGP	89
TrmA_KR3	-DLRDLGADVTIEACDAADREALGALLEKLP-DLTAVFHAAGTVQTAP	92
TrmB_KR4	-ELRVLGVEVRVPACDVSDPLQTRQLIDGIA-ELTAIVHTAAV <mark>LDD</mark> SV	93
TrmC_KR5	-ELQESGVRVTVAACDLADRDSVAALLESLRGPDGL-DIDAVVHAAGVAPSVP	97
TrmC_KR6	-DIRELGAQVTVAACDITDRDALSGLLDGLEGGRE-GLTAVVHAAVV <mark>LDD</mark> GV	96
TrmC_KR7	-ELAGSGVRVSVVACDVADRDALAALLEEHPVDAVFHTAGVLDDGV	91
TrmC_KR8	-ELAGSGVRVSVVACDVADRDALAALLEEHPVDAVFHTAGVLDDGV	91
TrmC_KR9	AARLGTRVTVAVCDTADRDAMAGLLDALP-ELTAVVHAAGAAATRP	86
TrmC_KR10	LADLGPAATVAACDMADRDAVAALLDSLSATSGTPGASGLP-ALTAVVHAAGAGQAAP	101
TrmD_KR11	PHGTATDPRITALACDVADRDALAAALDGIT-GLTAVVHAAGIGDAAP	98
TrmD_KR12	SVADPRITAVAGDVTDRGFMAELVGSLP-ELTAVVHAAGVSRDTL	81
TrmD_KR13	SVADPRITAVAGDVTDRGFMAELVGSLP-ELTAVVHAAGVSRDTL	81
TrmD_KR14	-AVEGLGAGVESVACDVSDRQAVEELLGTLD-GLTAVVHAAGVSRSNV	82
TrmE_KR15	GHTPALGDRIVTIACDVTDRDALADVIASLP-DLTAVVHAAGASRSTL	106
TrmE_KR16	A-PVRSVIHTAGLYDPAP	32
TrmE_KR17	-ELTGLGADVLLEACDIADRASVAALLDRLEADGT-PVTSVFHTAGVPQTTA	96
TrmF_KR18	-ELAGLGARVRLAACDVADRGALAALLEGERLSGVVHTAGV <mark>LDD</mark> GV	89
TrmF KR19	-ELTGLGATVTVRACDIADRQSVAALLEELPPTAVLHTAGVLDDGV	90
TrmG KR20	-ELAGLGARVRLAACDVADRGALAALLEGERLSGVVHTAGV <mark>LDD</mark> GV	89
TrmG KR21	-ELSALGVEFEAVACDVADRDAMAELLDRVPFDSVVHTAGVLDDGV	88
TrmG KR22	-ELTEVGADVTVVACDVADRAVLATVLNDIE-GLTGIVHTAGV <mark>LDD</mark> GV	92
TrmG_KR23	-RLTALGADVRIPACDVSDRDAAAALLDSVP-DLTAVVHTAGV <mark>LDD</mark> GV	92
TrmG KR24	-ELTSLGAEVTVAACDVADREALAELVDSIGAPVTGVVHSAGV <mark>LDD</mark> GV	94
TrmH KR25	-ELRESGTEVTVAACDVADRAALAALVTSLAEAGT-PIRSVMHAAGIAPLVP	96
TrmH KR26	-QLRELGADVRIEACDASDRQALAALLDTVP-GLTGVVHTAGV <mark>LDD</mark> GV	93
TrmH KR27	-SLAELGAEATAVACDLADRDAAAALVAAHP-DLGAVVHIAGA <mark>LDD</mark> GV	93
—	: .:.* *	
		1 4 5
ITIIA_KKZ	LAGLIALKIDAVLAPKAKTAWDLHELTKDKDLSAFVMFSSGAGVWGSGGQGAYGAA	145 140
IIIIA_KKJ	VALIGPAULAAAAHGKVQGAVNLDELLADKELDAFVLFSSGAGV <mark>W</mark> GSAGLAAYGPA	140
ILINB_KK4		1 E O
ITHIC_KKS	LVUIIFAUFAAILAVKANGANNLHULLEGTELUAFVLFSSNAGV <mark>W</mark> GSGGQSAYAAA	150 150
ILINC_KKO		1 4 5
ITHIC KK/	LEALIPERFETVFKARVKSALNLHELVGDVSAFVLFSSLAGTMGNAGQGNYAAA	145 175
ITHIC KKQ	LEALIPERFETVFKARVKSALNLHELVGDVSAFVLFSSTAGFFGSSGQGNYAAA	140 140
TIMC_KK9	lausufullaavmaakvlgaahluellg====DRELDAFVLFSSIAGV <mark>w</mark> GSGGQSAYAAA	142

TrmC_KR10	LDGLTPDETASVLAAKVLGAAHLDELLG	DRELDAFVLFSSIAGV <mark>W</mark> GSGGQSVYAAA	157
TrmD KR11	VQDTDAAQAAAVFAAKVGGAAALHELLG	DRDLDAFVLFSSISGV <mark>W</mark> GSGGLAAYSAA	154
TrmD KR12	LVDLSAGELAEITAAKMVGAAVLDEVLG	DRELDAFVLYASIAGV <mark>W</mark> GSGAGGAYSAA	137
TrmD_KR13	LVDLSAGELAEITAAKMVGAAVLDEVLG	DRELDAFVLYASIAGV <mark>W</mark> GSGAGGAYSAA	137
TrmD_KR14	LVDVEPDELAQVMAGKAVGAALLDELLG	ERELDAFVVFSSIAGV <mark>W</mark> GSGGGGSYAAA	138
TrmE_KR15	LADLGPAELAEVMAAKVTGAAHLDELLG	DRDLDAFVLFSSIAGV <mark>W</mark> GSGAGAAYSAA	162
TrmE KR16	LTETTPERLAAVAAAKVAPLAALDALLD	EPLDAFVLFSSIAAT <mark>W</mark> GSLELGAYAAA	87
TrmE KR17	LAEMSPGEYAATLAAKAEGARHLHELLS	STGLDAFVLFSSIAAT <mark>W</mark> GSGNQAAYAAA	152
TrmF_KR18	VSSLTGERVGAVLRPKVDAAWHLHELTR	GHDLSAFVLFSSAASVFGNAGQASYSAA	145
TrmF_KR19	FTALTPERLDIVLRPKAEAATHLHELTR	GLDLTAFVLFSSVAATFGGAGQGNYAAA	146
TrmG_KR20	VSSLTGERVGAVLRPKVDAAWHLHELTR	GHDLSAFVLFSSAASVFGNAGQASYSAA	145
TrmG_KR21	LASLTPERISTVLRPKADAVWNLHELTA	DRALNRFVVFSSAAGVFGNAGQANYSAA	144
TrmG_KR22	LASLTPERISGVLRPKVDAAWHLHELTA	GLGLRHFVLFSSAAGVFGNAGQANYAAA	148
TrmG_KR23	ITSLTPERLDTVLRAKADAATHLHELTR	DRDLTAFVLFSSAAGVFGNAGQGNYAAA	148
TrmG_KR24	LSSLTPEKLDRVLRPKVHAAWNLHELTY	RHAPSAFVLFSSAAATFGRPGQGNYAAA	150
TrmH_KR25	LTETDAGVLADTLAAKVAGTAHLDALLDGA	APGAEPLDAFVLFSSGAGV <mark>W</mark> GGGGQGAYAAA	156
TrmH_KR26	LSSLTAGQLSAVLRPKVDAAWYLHELTR	DRDLTAFVLFSSAAGTVGSPGQANYAAA	149
TrmH_KR27	ISSLTPRKLDRVLRPKVDAAWNLHELTR	GLALTAFVLFSSAAGTFGGPGQGNYAAA	149
	• * *••	*:::* : * :	
TrmA KR2	NAVIDALAAHRRAAGLPATAVSWGAWOG	173	
TrmA KR3	NAHLEALALHRRARGLTATSVAWGTWD-	175	
TrmB KR4	NAAMEAVAAORRSEGLPGTALAWGLWSE	177	
TrmC KR5	NAHLDAFAAWRRAOGLRATSVAWGAWA-	180	
TrmC KR6	NAHLDALAEORRADGLPATSVAWGPWG-	179	
TrmC KR7	NAYLDALAOTRRAAGLPATSVAWGAWA-	172	
TrmC KR8	NAYLDALAOTRRAAGLPATSVAWGPWA-	172	
TrmC KR9	NAYLDGLAEQRRARGVTATSVAWGPWAE	170	
TrmC KR10	NAYLDALAQRRRTEGRPATAVAWGPWGE	185	
TrmD KR11	NAYLDGLAEHRRARGLAATSLSWGPWAE	182	
TrmD KR12	NAYLDGLAECRRARGLVATSIAWGPWA-	164	
TrmD KR13	NAYLDGLAECRRARGLVATSIAWGPWA-	164	
TrmD KR14	NAYVDGLVERRRARGLVGTSIAWGPWA-	165	
TrmE KR15	NAFLDGLAEQRRARGLKATAVAWGPWA-	189	
TrmE KR16	NTAAEAIVRNRRARGLNATSIAWAPWQ-	114	
TrmE KR17	NAYLDALAEHRRSRGLPATSVAWGAWA-	179	
TrmF KR18	NAFLDALARQRRAEGLPAHSLAWGLWE-	172	
TrmF KR19	NAHLDALAQRRRADGLPALSLAWGLWA-	173	
TrmG KR20	NAFLDALARQRRAEGLPAHSLAWGLWE-	172	
TrmG_KR21	NAFLDALILHRRSLGLPGQSLAWGLWD-	171	
TrmG_KR22	NSFLDALAEHRRAQGLPARSLAWGQWT-	175	
TrmG_KR23	NAFLDALAVHRRSLGLPGQSLAWGAWA-	175	
TrmG_KR24	NAFLDALAHHRRAAGLPAVAMAWGLWAE	178	
TrmH_KR25	NAYQDAFAELRRARGLPATSVAWGGWSD	184	
TrmH_KR26	NAFLDALAEQRAAEGLPATSLAWGMWE-	176	
TrmH_KR27	NAFLDALAQHRRALGLPAASLAWGLWEE	177	
	*: : * : * . :::*. *		

Table S2. Multiple sequence alignment of DH domains (CLUSTAL, MUSCLE (3.8))

TrmB DH4	HPLI <mark>G</mark> AAIA <mark>P</mark> ADSDGVVLTGRLLPSAQPWLAD <mark>H</mark> VVGGAALLPATALLDLALHAGAQVGCD
TrmF DH18	HPLL <mark>G</mark> AAIG <mark>R</mark> ADGEGSLLTGRLSLRTHPWLAE <mark>Y</mark> AVGGRVVLPGAAMVELAIRAGDQVGCD
TrmF DH19	HPLL <mark>G</mark> AAVP <mark>M</mark> ADGEGHLFTGRLSLRTHPWLAD <mark>H</mark> AVSDTVLLPGTAMLELALRAGEHLHCH
TrmG DH20	HPLL <mark>G</mark> AAVG <mark>L</mark> ADAEGSLLTGRLSLRTHPWLAD <mark>H</mark> TVGGRVVLPGAAMVELAIRAGDQVGCD
TrmG DH21	HPLL <mark>G</mark> AAVG <mark>L</mark> ADG-GVVFTGRLSLESHPWLVG <mark>H</mark> VVSGAVLLPGAAMVELAVRAGDQVGCD
TrmG DH22	HPLL <mark>G</mark> AAVG <mark>L</mark> ADG-GVVFTGRLSLESHPWLVG <mark>H</mark> VVSGAVLLPGAAMVELAVRAGDQVGCD
TrmG DH23	<mark>H</mark> PLL <mark>G</mark> AGVA <mark>T</mark> ADHDGYLFTGRLSVETHPWLAD <mark>H</mark> VVAGAVLVPGAALLELAVRAGDQVDCD
TrmG DH24	HPLL <mark>G</mark> AAVT <mark>L</mark> ADAQTTLLTGRVSLRTHPWLAD <mark>H</mark> AVADVILLPGAALLELAIRAGDQVGCG
TrmH DH26	HPLL <mark>G</mark> AAVF <mark>L</mark> AGERGLVLTGRLSLRTHPWLAD <mark>H</mark> TVAGVALLAGTAFVDLAVHAGDHIGRD
TrmH DH27	HPLL <mark>G</mark> AAVT <mark>L</mark> ADTEGALFTGRLSTESHPWLAD <mark>Y</mark> SVLDTALVPGTALVEIALHAGRSLDCD
—	***:**.: *. ::***: ::***.:* * . :::*:::*:********
TrmB DH4	LVEELTLESPLVLHEHSGVLIQVTVGAPDPSGSRPLAVYSRGDDDPDWVRRCGGT
TrmF DH18	AVEELTLEAPLVLPGAGAVVVQLAVGAADGAGRRTLNLYSRAEDAEDTWVRHATGV
TrmF DH19	RVEELTLEAPLVLPDQGGVAIQVTVGAA-VDGRRTLALHSRSDADRDEEWTRNAAGF
TrmG DH20	AVEELTLEAPLVLPGAGAVVVQLAVGAADGAGRRTLNLYSRAEDAEDTWVRHATGV
TrmG DH21	LVEELTLEAPLVLPERGGVAVQLTVSAAGADGRRGVELHSSVGEVWTRHASGV
TrmG DH22	LVEELTLEAPLVLPERGGVAVQLTVSAAGADGRRGVELHSSVGEVWTRHASGV
TrmG DH23	RVAELTIEAPLVLPERGGVAVQLWVSSADGTGARNLALYSRADGADSVWTRHAGGL
TrmG DH24	RVDELTLEAPLVVPETGSIALQVSVTAPDEEGRRALTVHSSGDEGRWTRHASGL
TrmH DH26	RLEELTIEAPLVVPERGGVLLQIAVDAPDGFGRCPVAVHSRAEDAAPDALWTRHATGY
TrmH DH27	LATELLLEAPLVLPAAGGVAVQVTVTAPDDTGLRTVTLHSRPDARPDGDDLPWVRHLTGT
—	** :*:**:: :*: * :. * : ::* *.* *
TrmB DH4	LAIGGPEPV-T-ELVVWPPSAAEPLSVDGLYDRLAAQGAEYGPAFQGL
TrmF DH18	LGTAVAGAG-E-GLAEWPPAGAQAVEVEGLYEGLAEA <mark>GLAHGPVF</mark> RGL
TrmF DH19	LTAGDPGVPFN-DIDTWPPAQAEAVDVAGLYPGLAAA <mark>GFGYGPVF</mark> QGL
TrmG DH20	LGTAVAGAG-E-GLAEWPPAGAEPVETEGYYEGLAEA <mark>GFDYGPAF</mark> RGL
TrmG DH21	LGSG-APVG-E-GLVEWPPAGAEAVDLAGFYEGLE <mark>YGPEF</mark> QGL
TrmG DH22	LGSG-APVG-E-GLVEWPPAGAETVDLAGFYEGLE <mark>YGPEF</mark> QGL
TrmG_DH23	LERTDGTDGTRGSA-A-DLSVWPPQDATETDVAALYDGLASA <mark>GLEYGTAF</mark> RGL
TrmG_DH24	LSVRADAAG-F-DLAQWPPSDAVRIDTDDLYDRLAVA <mark>GFQYGPLF</mark> QGL
TrmH_DH26	LGAAPAAPEVTPDSGPWPPQGATALPVEGLYEALGQH <mark>GFSYGPAF</mark> QGL
TrmH_DH27	LGASEASPS-G-ELSVWPPADAVEIPVDDLYSRLMAAGFAHGPAFQGV
_	* *** * * * * ** **

Figure S19. Phylogenetic analysis of TE-domains using Neighbor-Joining method (see **Table S11**). The optimal tree with the sum of branch length = 21.11922060 is shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site. The analysis involved 44 amino acid sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 173 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.⁸

Figure S20. Chemical structures of putative linear termidomycin congeners derived from trm-1.

Figure S21. Chemical structures of putative cyclic termidomycin congeners derived from *trm-1*.

Figure S22. Chemical structures of putative open-chain termidomycin congeners derived from trm-2.

Figure S23. Chemical structures of putative cyclic termidomycin congeners. derived from trm-2.

S37

8. Biological Activities

Antimicrobial activity: The activity assay was done by the broth dilution method according to National Committee for Clinical Laboratory Standards. Bacterial and fungal strains including *Bacillus subtilis* 6633, *Staphylococcus aureus* SG511, *Escherichia coli* SG458, *Pseudomonas aeruginosa* K799/61, *Mycobacterium vaccae* 10670, *Sporobolomyces salmonicolor* 549, *Candida albicans, Penicillium notatum* JP36 were used as indicator strains. Antimicrobial activity was determined by measuring the inhibition zone in mm (Table S5).¹⁷

Table S4. Antimicrobial activity of crude extracts of RB 110-1 (alias RB1) and RB110-2 (alias RB2) (grey areas represent not tested conditions).

	Inhibition zone (mm) (Mean ±SD)							
Crudo oxtracto		Bacteria			Fungi			
Ciude extracts	Gram p	ositive	Gram	negative	Acid-fast	Yeast-like molds	Yeasts	Molds
	B. subtilis	S. aureus	E. coli	P. aeruginosa	M. vaccae	Sporobolomyces salmonic	Candida albican	Penicillium notatum
Streptomyces sp. RB1	20,33 ±0,58	18,33 ±0,58	0	0	24,67 ±2,08	0	0	0
Streptomyces sp. RB2	21,33 ±0,58	24,33 ±1,53	0	0	30,33 ±3,79	0	12	14,33 ±0,58
MS media Ctrl.	11	10,67 ±0,58	0	0	17,67 ±1,52	0	0	0
MeOH	0	0	0	11	0	10	0	10
Ciprofloxacin (5 µg/ml)	29	18	33	36	22			
Amphotericin (10 μg/ml)						19	21	18

 Table S5. Antimicrobial activity of termidomycin A (1) (1 mg/mL in DMSO), ciprofloxacin (cip.) and amphotericin B (amp.) against Gram positive, negative bacterial and fungal strains.^a

compd.	B. subtilis 6633	S. aureus SG511	E.coli SG458	P. aeruginosa 137	VRSA E. faecalis	M.vaccae 10670	S. salmonic. 549	C. albicans	P. notatum JP36
1	12P	0	15P	13p/18P	11	10/20p	12p/20P	0	15p
cip.	28	18	24/31p	23	16F	22p			
amp.							20p	20	18p

^a: The value indicated the diameter of inhibition zone (in mm).

Anti-proliferative and cytotoxic activity: Termidomycin (1) was assayed by using human umbilical vein endothelial cells HUVEC (ATCC CRL-1730, human umbilical vein endothelial cell line), human chronic myeloid leukemia cells K-562 (DSM ACC-10, human immortalized myelogenous leukaemia line) for their anti-proliferative effects (GI_{50}) as well as using human cervix carcinoma cells HeLa (DSM ACC-57, human cervical cancer cell line) for their cytotoxic effects (CC_{50}).

Table S6. Antiproliferative and cytotoxicity activity of termidomycin A (1).

	antiprolife	rative effect	Cytotoxicity
compd.	GI ₅₀ [µ HUVEC	Ig/mL] K-562	CC50 [µg/mL] HeLa
termidomycin A (1)	> 5	> 5	> 5

Figure S24. Antiproliferative effect and cytotoxicity of termidomycin A (1).

9. Appendix

Figure S25. Cultivation of RB110-1 and RB110-2 on MS medium for up to 14 days.

Figure S26. Cultivation of RB110-1 and RB110-2 on TSB medium for up to 14 days.

Figure S27. Cultivation of RB110-1 and RB110-2 on NBE medium for up to 14 days.

Table S7. Closest type strains of *Streptomyces* sp. RB110 (both morphotypes, RB110-1, RB110-2) according to BLASTn searches against the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, last visit 7.11.2018, 17:12 PM) using 16S rRNA gene. Both morphotypes have the same closest relative type strains.

Closest type strain	Sequence Similarity ^a	Accession Number
Streptomyces californicus NBRC12750	100%	NR112257
Streptomyces puniceus NBRC12811	99.93%	AB184163
Streptomyces badius NRRLB-2567	99.87%	AY999783
Streptomyces pluricolorescens NRRLB-2121	99.86%	DQ442540
Streptomyces rubiginosohelvolus NBRC 2912	99.86%	AB184240.2
Streptomyces griseinus NBRC12869	99.80%	AB184205
Streptomyces fulvissimus DSM40593	99.80%	NR103947
Streptomyces caviscabies ATCC51928	99.80%	AF112160
Streptomyces globisporus NRRLB-2872	99.80%	EF178686
Streptomyces fimicarius CSSP537	99.80%	NR043351
Streptomyces anulatus NRRLB-2000	99.80%	DQ026637
Streptomyces microflavus NRRLB-2156	99.80%	DQ445795
Streptomyces parvus NRRLB-1455	99.80%	DQ442537
Streptomyces albovinaceus NBRC12739	99.80%	AB249958
Streptomyces luridiscabiei S63	99.74%	AF361784
Streptomyces flavofuscus NRRLB-2594	99.73%	EF178690
Streptomyces baarnensis NRRLB-1902	99.67%	EF178688
Streptomyces finlayi CSSP541	99.60%	NR043354
Streptomyces clavifer NRRLB-2557	99.40%	DQ026670

Fable S8. Annotation of biosynthetic	proteins (Trm)) based on seq	uence homology.
---	----------------	----------------	-----------------

protein name	Locus tag (RB110-1)	Locus tag (RB110-2)	size (aa)	annotation	closest homolog(s)	iden(%)/ cover(%)	access.Nr.
	GFOCLIGC	FOIKDEDA			-		
TrmU1	01320	00169	903	rifamycin-inactivating phosphotransferase Rph	putative phosphor- enolpyruvate synthase	73/82	ADX66475
TrmU2	01321	00168	147	Cyclase/dehydrase; putatively involved in polyketide (linear poly-beta- ketones)	Polyketide cyclase / dehydrase and lipid transport	35/95	CAQ71823
TrmU3	01322	00167	202	glyoxalase	glyoxalase	74/98 34/127	ABQ42336 ARD70887
TrmU4	01323	00166	165	Guanine deaminase	deaminase	29/89 33/57	AEA30246 KKZ73238
TrmU5	01324	00165	156	Cyanate hydratase	Cyanate hydratase	83/100	BAI70372
TrmU6	01325	00164	210	Carbonic anhydrase 1	Carbonic	98/91	WP_098008836
TrmR	01326	00163	302	HTH-type transcriptional regulator CynR	FunR2	34/69	AXI91536
TrmU7	01328	00161	285	hypothetical protein	FunA14	70/94	AXI91562
TrmK	01329	00160	224	4'-phosphopantetheinyl transferase Npt	scaPT	56/97	QBF51747
TrmS1	01330	00159	475	NDP-hexose-2,3- dehydratase	KedS2 LanS AurS8 SipS10	60/93 67/95 66/93 65/93	AFV52155 AAD13549 AWR88417 WP_107413708
TrmS2	01331	00158	326	NDP-hexose-3- ketoreductase	KedS3 KijD10 AurS14 SipS11	57/98 53/97 53/90 53/90	AFV52211 ACB46498 AWR88423 PSK68975
TrmS3	01332	00157	346	NAD-dependent epimerase/4,6-dehydratase	KedS5 SgcA AurS7 SipS6	28/45 63/94 76/91 76/91	AFV52185 AAL06671 AWR88416 WP_107413707
TrmL	01333	00156	255	Thioesterase PikA5	pteH scaT	64/98 58/97	BAC68117 OBF51790
TrmS4	01334	00155	260	N-Methyltransferase	KedS8 KedS9 SgcA5 AurS9 SipS8	43/90 41/91 39/81 82/92 81/92	AFV52159 AFV52160 AAL06660 AWR88418 WP_100562862
TrmS5	01335	00154	364	Adenylyl/thymidylyltransfer ase	AurS6 SipS7	69/97 69/97	AWR88415 WP 107413706
TrmF	01336	00153	3472	PKS6	cle6 cle5	59/104 58/104	AWC08660 AWC08659
TrmG	01337	00152	8441	PKS7	fscC nysC	53/107 51/112	AAQ82564 AAF71776
TrmH	01338	00151	5297	PKS8	cle5 cle6	53/97 51/101	AWC08659 AWC08660
TrmS6	01339	00150	395	Aminotransferase	KedS7 MdpA5 AurS15 SipS13	28/93 29/92 71/99 74/99	AFV52158 ABY66023 AWR88424 WP_107413714
TrmS7	01340	00149	422	Glycosyltransferase	KedS10 SgcA6 AurS13 SipS9	43/100 35/99 42/100 30/99	AFV52161 AAL06670 AWR88422 WP_107413709

TrmT1	01341	00148	276	Daunorubicin/doxorubicin resistance ABC transporter permease protein DrrB	cmiR4	48/94	BAO66522
TrmT2	01342	00147	336	Daunorubicin/doxorubicin resistance ATP-binding protein DrrA	cmiR3	61/93	BAO66521
TrmI	01343	00146	445/	Crotonyl-CoA reductase	lsd9	82/91	BAG85024
			441		1dmF	76/100	ACN69982
TrmJ	01344	00145	604	3-hydroxybutyryl-CoA	lsd10	47/93	BAG85025
				dehydrogenase	idmE	51/92	ACN69981
TrmU7	01345	00144	535	hypothetical protein	FunO2	41/92	AXI91555
TrmU8	01346	00143	183	hypothetical protein	FunO3	59/91	AXI91556
TrmA	01347	00142	3951	PKS1	scaP1	54/107	QBF51754
					aalA1	56/99	BBA66511
					gfsA	52/103	BAJ16467
TrmB	01348	00141	1812	PKS2	apoS7	55/97	AEP40934
TrmC	01349	00140	8985	PKS3	FunP1	52/104	AXI91552
					SgnS2	49/107	AQT01393
TrmD	01350	00139	5869/	PKS4	pteA4	55/106	BAC68126
			4441		cle1	53/111	AWC08655
TrmE	01351	00138	4529	PKS5	npmE	54/107	AUO16400
					pteA4	55/105	BAC68126
					cle1	53/110	AWC08655
TrmU9	01352	00137	200	hypothetical protein	DUF1707 and	100/100	WP_098012688
					DUF2154		
					domain-		
					containing		
					protein		
TrmM	01353	00136	312	D-3-phosphoglycerate	putative	48/100	AAX31571
				dehydrogenase	dehydrogenase		

Ked = kedarcidin BGC (*Streptoalloteichus* sp. ATCC 53650); *Lan* = landomycin BGC (*Streptomyces cyanogenus*); *Kij* = kijanimicin BGC (*Actinomadura kijaniata* ATCC 31588)¹⁸; *Aur* = auroramycin BGC (*S. roseosporus NRRL* 15998 ; *S. filamentosus*)¹⁹; *Sip* = sipanmycin BGC (*Streptomyces* sp. strain CS149)²⁰; *Sca*: = caniferolide BGC (*S. caniferus* CA-271066)²¹; *Aal* = actinoallolide A BGC (*Actinoallomurus fulvus*)²²; *Gfs* = FD-891 BGC (*S. graminofaciens*)²³; *Apo* = apoptolidin BGC (*Nocardiopsis* sp. *FU* 40)²⁴; *Fun* = funisamine BGC (*Streptosporangium sp.*)²⁵; *Sgn* = natamycin BGC (*S. gilvosporeus*)²⁶; *Pte* = filipin BGC (*S. avermitilis* MA-4680)²⁷; *Cle* = mediomiycin A BGC (*Kitasatospora mediocidica*)²⁸; *Npm* = niphimycins C-E BGC (*Streptomyces* sp. IMB7-145)²⁹; *Fsc* = levorin A3 BGC (*Streptomyces* sp. FR-008)³⁰; *Nys* = nystatin A1 BGC (*S. noursei* ATCC 11455)³¹; *Lsd* = lasalocid BGC (*S. lasaliensis*)³²; *Idm* = X-14547 BGC (*S. antibioticus*); *Cmi* = cremimycin BGC (*Streptomyces* sp. *MJ635-86F5*)³³

Protein	Organism	Product of BGC	Acc. No.
AllR	Streptomyces tsukubensis DSM 42081	FK506	D6MYN9
AnlE	Streptomyces sp. CNH189	Ansalactam A	K9UU55
Ccr	Streptomyces cinnamonensis ATCC 12308	n.d.	Q9RNU6
Ccr	Streptomyces neyagawaensis ATCC 27449	Concanamycin	Q3S876
Ccr	Streptomyces ambofaciens ATCC 23877	Spiramycin	A0A0K2B1Z9
Ccr	Micromonospora carbonacea ATCC 27114	Rosaramicin	A0A1C5ARD2
CcrA2	Streptomyces lividans TK24	n.d.	D6EI65
CcrA2	Streptomyces avermitilis ATCC 31267	Oligomycin	Q82LU9
CinF	Streptomyces cinnabarigriseus DSM 101724	Cinnabaramide	F0V3Z3
Crr	Streptomyces eurythermus ATCC 14975	Angolamycin	A8WDM9
Crr	Streptomyces eurythermus ATCC 14975	n.d.	A8WDM9
DivD	Streptomyces sp. HKI0576	Divergolide	G8YZD3
DivR	Streptomyces sp. HKI0576	Divergolide	G8YZD4
FkbS	Streptomyces hygroscopicus subsp. Ascomyceticus	FK520	Q9KID2
IdmF	Streptomyces antibioticus ATCC 23879	Idanomycin	C5HV08
KacH	Streptomyces kanamyceticus ATCC 12853	Kanamycin	Q65CB5
KirN	Streptomyces collinus DSM 40733	Kirromycin	S5VRZ1
Las5	Streptomyces lasaliensis ATCC 31180	Lasalocid	B5M9K6
Lsd9	Streptomyces lasaliensis ATCC 31180	Lasalocid	B6ZK62
MidJ	Streptomyces mycarofaciens ATCC 21454	Mycaminose	Q0PY14
PlmT7	Streptomyces sp. HK803	Phoslactomycin	Q6V1N5
Qor	Amycolatopsis mediterranei U-32	n.d.	A0A0H3CXM8
R3	Streptomyces sp. CK4412	Tautomycetin	A4KCE8
RimJ	-	Rimocidin	
RevT	Streptomyces sp. SN-593	Reveromycin	G1UDU0
SalG	Salinispora tropica ATCC BAA-916	Salinosporamide A	B0L7G3
SCO6473	Streptomyces coelicolor A3(2)	n.d.	Q9ZBK1
SfaR	Streptomyces flaveolus ATCC 19754	Sanglifehrin	D3U9Z8
SSGG_05510	Streptomyces filamentosus NRRL 15998	n.d.	D6AT66
TcsC	Streptomyces sp. KCTC 11604BP	FK506	E9KTG8
SSMG	-		D9VCM6
SSGG	-		D6AT66
TlmB	Salinispora pacifica DSM 45543	Thiolactomycin	A0A0P0FBH4

Table S9. List of reference protein sequences of the crotonyl reductase (CRR)-domain, the producing organisms, corresponding natural products and identifier used in phylogenetic analysis.

Protein	Organism	Product of BGC	Acc. No.
AmphB	Streptomyces nodosus ATCC 14899	Amphotericin	Q93NW7
AmphJ	Streptomyces nodosus ATCC 14899	Amphotericin	Q93NX8
AveA1	Streptomyces avermitilis ATCC 31267	Avermectin	Q9S0R8
AveA2	Streptomyces avermitilis ATCC 31267	Avermectin	Q9S0R7
BrnF	S. barnesii SES-3	Barnesin A	(Rischer et al., 2018)
EpoC	Sorangium cellulosum SMP44	Epothilone	Q9KIZ8
EpoD	Sorangium cellulosum SMP44	Epothilone	Q9KIZ7
EpoE	Sorangium cellulosum SMP44	Epothilone	Q9KIZ6
EryA1	Saccharopolyspora erythraea ATCC 11635	Erythromycin	Q03131
FkbA	Streptomyces sp. MA6548	FK506	Q9ZGA3
FkbB	Streptomyces sp. MA6548	FK506	Q9ZGA4
Irp1	Yersinia pestis ATCC 19428	Yersiniabactin	Q9Z373
MtaE	Stigmatella aurantiaca ATCC 25190	Myxohiazol	Q9RFK7
MteQ_STRM39_07778_1	Amycolatopsis sp. M39	Macrotermycin	(Beemelmanns et al., 2017)
MteR_STRM39_07779	Amycolatopsis sp. M39	Macrotermycin	(Beemelmanns et al., 2017)
MxaC	Stigmatella aurantiaca ATCC 25190	Myxalamid	Q93TW7
MxaD	Stigmatella aurantiaca ATCC 25190	Myxalamid	Q93TW8
MxaE	Stigmatella aurantiaca ATCC 25190	Myxalamid	Q93TW7
MxaF	Stigmatella aurantiaca ATCC 25190	Myxalamid	Q93TW6
NidA1	Streptomyces caelestis ATCC 14924	Niddamycin	O30764
NidA3	Streptomyces caelestis ATCC 14924	Niddamycin	O30766
NidA2	Streptomyces caelestis ATCC 14924	Niddamycin	O30765
NysB	Streptomyces noursei ATCC 11455	Nystatin	Q9L4W4
NysI	Streptomyces noursei ATCC 11455	Nystatin	Q9L4X3
OleA1	Streptomyces antibioticus JCM 4620	Deoxyoleandolide	Q9KIV4
PikA1	Streptomyces venezuelae ATCC 10712	Pikromycin	Q9ZGI5
PikA2	Streptomyces venezuelae ATCC 10712	Pikromycin	Q9ZGI4
RapB	Streptomyces hygroscopicus ATCC 27438	Rapamycin	Q54296
RifA	Amycolatopsis mediterranei ATCC 13685	Rifamycin	O54666
RifD	Amycolatopsis mediterranei ATCC 13685	Rifamycin	O54591
SorA	Sorangium cellulosum SMP44	Soraphen	Q9ADL6
SorB	Sorangium cellulosum SMP44	Soraphen	Q53840
TylG1	Streptomyces fradiae ATCC 10745	Tylosin	O33954

 Table S10. List of reference protein sequences of KR domains, the producing organisms, corresponding natural products and identifier used for alignment.

Protein	Organism	Product of BGC	Acc. No.
AmphK	Streptomyces nodosus ATCC 14899	Amphotericin	Q93NX7
AngT	Vibrio anguillarum ATCC 68554	Anguibactin	Q6W4T2
ArcE	Arcobacter nitrofigilis DSM 7299	n. d.	D5V0Q3
ArcF	Arcobacter nitrofigilis DSM 7299	n. d.	D5V0Q4
AurC	Streptomyces thioluteus ATCC 12310	Aureothin	Q70KH4
BarG	Lyngbya 46ajuscule CCAP 1446/4	Barbamide	Q8GAQ3
BrnF	S. barnesii SES-3	Barnesin A	(Rischer et al., 2018)
CndF	Chondromyces crocatus DSM 14714	Chondrochlorens	B9ZUK5
EnvF	Enterovibrio pacificus CAIM 1920	n. d.	A0A1C3EMC5
EnvG	Enterovibrio pacificus CAIM 1920	n. d.	A0A1C3EMD6
EryA3	Saccharopolyspora erythraea ATCC 11635	Erythromycin	Q03133
FosF	Streptomyces pulveraceus ATCC 13875	Fostriecin	F5AMZ2
GrsT	Aneurinibacillus migulanus ATCC 9999	Gramicidin	P14686
IgrE	Brevibacillus brevis 47	Planktothrix	C0ZDK6
Irp1	Yersinia pestis ATCC 19428	Yersiniabactin	Q9Z373
LglE	Legionella parisiensis ATCC 35299	Legioliulin	A0A097NYX4
LybB	Lysobacter sp. ATCC 53042	Lysobactin	F8TUI8
MassC	Pseudomonas fluorescens ATCC 13525	Massetolide	Q0PH94
MbtB	Mycobacterium tuberculosis ATCC 25618	Phenyloxazoline	P9WQ63
МсуТ	Planktothrix agardhii CCAP 1460/5	Mycrocystin	Q8G988
NidA5	Streptomyces caelestis ATCC 14924	Niddamycin	O30768
NorA	Streptomyces orinoci ATCC 23202	Neoaureothin	B4ER97
NrpT	Proteus mirabilis ATCC 29906	Proteobactin	Q9ZB59
NysK	Streptomyces noursei ATCC 11455	Nystatin	Q9L4X1
OrfB	Streptomyces antibioticus ATCC 23879	Oleandomycin	Q07017
PchC	Pseudomonas aeruginosa ATCC 15692	Pyochelin	Q9HWG2
PikAIV	Streptomyces venezuelae ATCC 10712	Pikromycin	Q9ZGI2
PikAV	Streptomyces venezuelae ATCC 10712	Pikromycin	Q9ZGI1
SrfAC	Bacillus subtilis 168	Surfactin A	Q08787
SrfAD	Bacillus subtilis 168	Surfactin	Q08788
SVEN_0517	Streptomyces venezuelae ATCC 10712	Pyochelin	F2R7B2
TaaE	Pseudomonas costantinii PS 3a	Tolaasin	W0U154
TycC	Brevibacillus parabrevis ATCC 10027	Tyrocidine	O30409
TylG7	Streptomyces fradiae (Streptomyces roseoflavus)	Tylosin	O33958
VabF	Vibrio anguillarum 96F	Anguibactin	Q0MYM1
ViscC	Pseudomonas fluorescens SBW25	Viscosin	C3K9G3
WP_022851249	Geovibrio sp. L21-Ace-BES	n. d.	(Rischer et al., 2018)
YbtT (irp4)	Yersinia pestis ATCC 19428	Yersiniabactin	Q56949

Table S11. List of proteins, their producing organisms and corresponding natural products used as reference in the TE-domain phylogenetic analysis.

Protein	Organism	Product of BGC	Acc. No.
AufD	Stigmatella aurantiaca ATCC 25190	Aurafuron	A8YP85
AveA1	Streptomyces avermitilis ATCC 31267	Avermectin	Q9S0R8
BryP	Bacterial symbiont from bryozoan Burgula neritina	Bryostatin	A2CLL7
CyrB	Aphanizomenon sp. 10E9	Cylindrospermopsin	D6MS41
CynA	Streptomyces cinnabarigriseus DSM 101724	n. d.	F0V3Y8
EpoD	Sorangium cellulosum Thaxter 1904	Epothilone	Q9KIZ7
EryA	Saccharopolyspora erythraea ATCC 11635	Erythromycin	Q03131
EryA	Saccharopolyspora erythraea ATCC 11635	Erythromycin	Q03131
FkbA	Streptomyces hygroscopicus var. ascomyceticus ATCC 14891	FK520	Q9KID7
FkbB	Streptomyces sp. KCTC 11604BP	FK506	E9KTI2
FkbC	Streptomyces sp. KCTC 11604BP	FK506	Q9KIE1
GdmAII	Streptomyces hygroscopicus ATCC 27438	Hygrocin	Q84G23
HbmAI	Streptomyces hygroscopicus ATCC 27438	Herbimycin	Q49BE1
HbmAII	Streptomyces hygroscopicus ATCC 27438	Herbimycin	Q49BE0
Irp1	Yersinia pestis ATCC 19428	Yersiniabactin	Q9Z373
KirAVI	Streptomyces collinus ATCC 19743	Kirromycin	B0B507
Lsd11	Streptomyces lasaliensis ATCC 31180	Lasalocid	B6ZK64
Lsd12	Streptomyces lasaliensis ATCC 31180	Lasalocid	B6ZK65
MlnA	Bacillus amyloliquefaciens ATCC 23350	Macrolactin	A0A2D1VLJ2
NidA1	Streptomyces caelestis ATCC 14924	Niddamycin	O30764
NidA3	Streptomyces caelestis ATCC 14924	Niddamycin	O30766
PedD	Symbiont bacterium of Paederus fuscipes	Pederin	Q6VT97
PikAI	Streptomyces venezuelae ATCC 10712	Narbonolide	Q9ZGI5
PikAII	Streptomyces venezuelae ATCC 10712	Narbonolide	Q9ZGI4
PpsD	Mycobacterium tuberculosis ATCC 25618	Phthiocerol	P9WQE3
PpsE	Mycobacterium tuberculosis ATCC 25618	Phthiocerol	P9WQE1
RapA	Streptomyces hygroscopicus ATCC 27438	Rapamycin	Q54297
RapB	Streptomyces hygroscopicus ATCC 27438	Rapamycin	Q54296
RevA	Streptomyces sp. SN-593	Reveromycin	G1UDV3
RifA	Amycolatopsis mediterranei ATCC 13685	Rifamycin	O54666
SfaI	Streptomyces flaveolus ATCC 19754	Sanglifehrin A	D3U9Y9
SwnK	Metarhizium robertsii ARSEF 23	Swainsonine	E9F8M3
SorA	Sorangium cellulosum SMP44	Soraphen	Q9ADL6
Sulba581	S. barnesii SES-3	Barnesin A	(Rischer et al., 2018)
TgaC	Sorangium cellulosum (Polyangium cellulosum)	Thuggacin	D7P5Z5
TylG3	Streptomyces fradiae ATCC 10745	Tylosin	O33956
WP_022851336	Geovibrio sp. L21-Ace-BES	n. d.	(Rischer et al., 2018)
ZmaA	Bacillus cereus UW85	Zwittermicin	C0JRE5
ZmaF	Bacillus cereus UW85	Zwittermicin	Q9XBU4

 Table S12. List of reference protein sequences of AT-domains, the producing organisms, corresponding natural products and identifier used for phylogenetic analysis.

Figure S28. ¹H NMR spectrum of termidomycin A (1) in pyridine-*d*₅ at 600 MHz.

Figure S29. ¹³C NMR spectrum of termidomycin A (1) in pyridine- d_5 at 150 MHz.

Figure S30. Zoom-in ¹³C NMR spectra of termidomycin A (1). A) olefin carbons $[d_C 140.0 - 124.0]$ and methine carbons $[d_C 83.0 - 60.0]$, **B**) methylene carbons $[d_C 50.0 - 35.0]$ and methyl carbons $[d_C 25.0 - 8.0]$.

Figure S31. ¹H-¹H COSY NMR spectrum of termidomycin A (1) in pyridine-*d*₅ at 600 MHz.

Figure S32. HSQC NMR spectrum of termidomycin A (1) in pyridine- d_5 at 600 MHz.

Figure S33. HMBC NMR spectrum of termidomycin A (1) in pyridine- d_5 at 600 MHz.

10. References

¹ Murphy, R., Benndorf, R., de Beer, Z. W., Vollmers, J., Kaster, A. K., Beemelmanns, C., and Poulsen, M. (2021) Comparative genomics reveals prophylactic and catabolic capabilities of *Actinobacteria* within the fungus-farming termite symbiosis, *mSphere 6*, e01233-20.

² Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P., and Goker, M. (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics 14*, 60.

³ Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S. L. (2004) Versatile and open software for comparing large genomes. *Genome Biol.* 5, R12.

⁴ Benndorf, R., Guo, H., Sommerwerk, E., Weigel, C., Garcia-Altares, M., Martin, K., Hu, H., Kuefner, M., de Beer, Z. W., Poulsen, M., and Beemelmanns, C. (2018) Natural products from Actinobacteria associated with fungus-growing termites, *Antibiotics 7*, E83.

⁵ Pruesse, E., Peplies, J., and Glöckner, F. O. (2012) SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics *28*, 1823-1829.

⁶ Felsenstein J. (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. *J. Mol. Evol.* 17, 368-376.

⁷ Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol. Biol. Evol. 4*, 406-425.

⁸ Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. *Brief Bioinform*. *5*, 150-163.

⁹ Tamura, K., and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Mol. Biol. Evol.* 10, 512-526. ¹⁰ Felsenstein J., (1985) Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* 39, 783-791

¹¹ Wang, M., Carver, J. J., Phelan, V. V., Sanchez, L. M., Garg, N., Peng, Y., Nguyen, D. D., Watrous, J., Kapono, C. A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. V., Meehan, M. J., Liu, W. T., Crüsemann, M., Boudreau, P. D., Esquenazi, E., Sandoval-Calderón, M., Kersten, R. D., Pace, L. A., Quinn, R. A., Duncan, K. R, Hsu, C. C., Floros, D. J., Gavilan, R. G., Kleigrewe, K., Northen, T., Dutton, R. J., Parrot, D., Carlson, E. E., Aigle, B., Michelsen, C. F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B. T., Gerwick, L., Liaw, C. C., Yang, Y. L., Humpf, H. U., Maansson, M., Keyzers, R. A., Sims, A. C., Johnson, A. R., Sidebottom, A. M., Sedio, B. E., Klitgaard, A., Larson, C. B., Boya P, C. A., Torres-Mendoza, D., Gonzalez, D. J., Silva, D. B., Marques, L. M., Demarque, D. P., Pociute, E., O'Neill, E. C., Briand, E., Helfrich, E. J. N., Granatosky, E. A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J. J., Zeng, Y., Vorholt, J. A., Kurita, K. L., Charusanti, P., McPhail, K. L., Nielsen, K. F., Vuong, L., Elfeki, M., Traxler, M. F., Engene, N., Koyama, N., Vining, O. B., Baric, R., Silva, R. R., Mascuch, S. J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P. G., Dai, J., Neupane, R., Gurr, J., Rodríguez, A. M. C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B. M., Almaliti, J., Allard, P. M., Phapale, P., Nothias, L. F., Alexandrov, T., Litaudon, M., Wolfender, J. L., Kyle, J. E., Metz, T. O., Peryea, T., Nguyen, D. T., VanLeer, D., Shinn, P., Jadhav, A., Müller, R., Waters, K. M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P. R., Palsson, B. O., Pogliano, K., Linington, R. G., Gutiérrez, M., Lopes, N. P., Gerwick, W. H., Moore, B. S., Dorrestein, P. C., and Bandeira, N. (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking, *Nat. Biotechnol. 34*, 828-837.

¹² Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks, *Genome Res.* 13, 2498-2504.

¹³ Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., and Weber, T. (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline, *Nucleic Acids Res.* 47, W81–W87.

¹⁴ Hall, T. A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, *Nucl. Acids Symp.* 41, 95-98.

¹⁵ Jenke-Kodama, H., Sandmann, A., Müller, R., and Dittmann, E. (2005) Evolutionary implications of bacterial polyketide synthases, *Mol Biol Evol.* 22, 2027-2039.

¹⁶ Wilson M. C., and Moore, B. S. (2012) Beyond ethylmalonyl-CoA: The functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity, *Nat. Prod. Rep. 29*, 72-86.

¹⁷ Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically,
 Approved Standard, 4th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, 2006; Vol.
 26.

¹⁸ Zhang, H., White-Phillip, J. A., Melançon, III C. E., Kwon, H.-j., Yu, W.-I., and Liu, H.-w., (2007) Elucidation of the Kijanimicin Gene Cluster: Insights into the Biosynthesis of Spirotetronate Antibiotics and Nitrosugars, *J. Am. Chem. Soc. 129*, 14670–14683. ¹⁹ Yeo, W. L., Heng, E., Tan, L. L., Lim, Y. W., Ching, K. C., Tsai, D. J., Jhang, Y. W., Lauderdale, T .L., Shia, K. S., Zhao, H., Ang, E. L., Zhang, M. M., Limm Y.H., and Wong, F.T. (2020) Biosynthetic engineering of the antifungal, anti-MRSA auroramycin, *Microb Cell Fact. 19*, 3.

²⁰ Malmierca, M. G., Pérez-Victoria, I. Martín, J., Reyes, F., Méndez, C., Olano, C., and Salas, J. A. (2018) Cooperative Involvement of Glycosyltransferases in the Transfer of Amino Sugars during the Biosynthesis of the Macrolactam Sipanmycin by *Streptomyces* sp. Strain CS149, *Appl. Env. Microbiol. 84*, e01462-18;

²¹ Pérez-Victoria, I., Oves-Costales, D., Lacret, R., Martín, J., Sánchez-Hidalgo, M., Díaz, C., Cautain, B., Vicente, F., Genilloud, O., and Reyes, F. (2019) Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived *Streptomyces caniferus* CA-271066, *Org. Biomol. Chem. 17*, 2954-2971.

²² Inahashi, Y., Shiraishi, T., Také, A., Matsumoto, A., Takahashi, Y., Ōmura, S., Kuzuyama, T., and Nakashima, T. (2018) Identification and heterologous expression of the actinoallolide biosynthetic gene cluster. *J Antibiot (Tokyo) 71*, 749-752.

²³ Kudo, F., Motegi, A., Mizoue, K., and Eguchi, T. (2010) Cloning and characterization of the biosynthetic gene cluster of 16-membered macrolide antibiotic FD-891: involvement of a dual functional cytochrome P450 monooxygenase catalyzing epoxidation and hydroxylation. *Chembiochem.* 11, 1574-82. Erratum in: *Chembiochem.* 11, 1798.

²⁴ Du, Y., Derewacz, D.K., Deguire, S.M., Teske, J., Ravel, J., Sulikowski, G.A., and Bachmann, B.O. (2011) Biosynthesis of the Apoptolidins in *Nocardiopsis* sp. FU 40. *Tetrahedron 67*, 6568-6575.

²⁵ Covington, B.C., Spraggins, J.M., Ynigez-Gutierrez, A.E., Hylton, Z.B., and Bachmann, B.O. (2018) Response of Secondary Metabolism of Hypogean Actinobacterial Genera to Chemical and Biological Stimuli. *Appl Environ Microbiol. 84*, e01125-18.

²⁶ Wang, Y., Tao, Z., Zheng, H., Zhang, F., Long, Q., Dengm Z., and Tao, M. (2016) Iteratively improving natamycin production in *Streptomyces gilvosporeus* by a large operon-reporter based strategy. *Metab Eng. 38*, 418-426.

²⁷ Ikeda, H., Kazuo, S.Y., and Omura, S. (2014) Genome mining of the *Streptomyces avermitilis* genome and development of genome-minimized hosts for heterologous expressionn of biosynthetic gene clusters, *J. Ind. Microbiol. Biotechnol. 41*, 233-250.

²⁸ Sun, F., Xu, S., Jiang, F., and Liu, W. (2018) Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A, *Appl. Microbiol. Biotechnol.* 102, 2225-2234.
 ²⁹ Hu, Y., Wang, M., Wu, C., Tan, Y., Li, J., Hao, X., Duan, Y., Guan, Y., Shang, X., Wang, Y., Xiao,

C., and Gan, M. (2018) Identification and Proposed Relative and Absolute Configurations of Niphimycins C-E from the Marine-Derived *Streptomyces* sp. IMB7-145 by Genomic Analysis, *J. Nat. Prod.* 81, 178-187

³⁰ Chen, S., Huang, X., Zhou, X., Bai, L., He, J., Jeong, K. J., Lee, S. Y., and Deng, Z. (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex, *Chem. Biol.* 10, 1065-1076.

³¹ Brautaset, T., Sekurova, O. N., Sletta, H., Ellingsen, T.E., StrŁm, A.R., Valla, S., and Zotchev, S.B. (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in *Streptomyces noursei* ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway, *Chem. Biol. 7*, 395-403.

³² Migita, A., Watanabe, M., Hirose, Y., Watanabe, K., Tokiwano, T., Kinashi, H., and Oikawa H., (2009) Identification of a gene cluster of polyether antibiotic lasalocid from *Streptomyces lasaliensis*, *Biosci. Biotechnol. Biochem.* 73, 169-176.

³³ Amagai, K., Takaku, R., Kudo, F., and Eguchi, T. A. (2013) A unique amino transfer mechanism for constructing the β -amino fatty acid starter unit in the biosynthesis of the macrolactam antibiotic cremimycin, *Chembiochem 14*, 1998-2006.