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ABSTRACT

This paper proposes a Bayesian mixed effects zero inflated discrete Weibull (ZIDW) regression
model for zero inflated and highly skewed longitudinal count data, as an alternative to mixed
effects regression models that are based on the negative binomial, zero inflated negative binomial
and conventional discrete Weibull (DW) distributions. The mixed effects ZIDW regression model
is an extension of a recently introduced model based on the DW distribution, and uses the log-
link function to specify the relationship between the linear predictors and the median counts. The
ZIDW approach offers a more robust characteristic of central tendency, compared to the mean
count, when there is skewness in the data. A matrix generalized half-t (MGH-t) prior distribution
is specified for the random effects covariance matrix as an alternative to the widely used Wishart
prior distribution. The methodology is applied to a longitudinal dataset from an epilepsy clinical
trial. In a data contamination simulation study we show that the mixed effects ZIDW regression
model is more robust than the competing mixed effects regression models when the data contain
excess zeros or outliers. The performance of the ZIDW regression model is also assessed in a
simulation study under the specification of respectively the MGH-t and Wishart prior distributions
for the random effects covariance matrix. It turns out that the highest posterior density intervals
under the MGH-t prior for the fixed effects maintain nominal coverage when the true variability
between random slopes over time is small, whereas those under the Wishart prior are generally
conservative.
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1 INTRODUCTION

Longitudinal count data in medical applications (for example substance abuse and microbiome
data1,2) are often modeled through generalized mixed effects regression models. Here the under-
lying distributions belong to the exponential family such as the Poisson and negative binomial
(NB) distributions,3,4 and their zero inflated extensions, namely the zero inflated Poisson and zero
inflated negative binomial (ZINB) distributions.5,6 Alternatives include mixed effects regression
models that are based on the generalized Poisson,7,8 Conway-Maxwell Poisson9 and Poisson-
inverse Gaussian distribution.10 These distributions, however, lack robustness when modeling re-
gression functions for longitudinal count data that exhibit high skewness. As an alternative, Luyts
et al. 11 recently introduced a flexible approach that uses the discrete Weibull (DW) distribution
in a mixed effects regression model in order to accommodate underdispersed, overdispersed and
highly skewed data using the SAS R© procedure NLMIXED.12

The mixed effects DW regression model is flexible in the sense that it allows one to model the
conditional median as an alternative to the conditional mean, which in turn offers a robust char-
acteristic of central tendency when the distribution of the data is skew.13 The mixed effects DW
regression model of Luyts et al. 11 is an extension of the fixed effects DW regression models of
Klakattawi et al. 13 and Haselimashhadi et al. 14 who respectively made use of maximum likeli-
hood and Bayesian inference techniques to estimate the model parameters.

Luyts et al. 11 argued that the DW distribution, according to the zero inflation index by Puig and
Valero 15 , is able to accommodate count data that are zero inflated and zero deflated, and therefore
suggested that the DW distribution can be fitted to count data “without the need for introducing
zero-inflated or hurdle components”. However, as shown in the supplementary material of this
paper, the zero inflation index by Puig and Valero 15 would also suggest that the conventional NB
distribution is able to accommodate zero inflated counts while it is well-known that this distribution
cannot handle all forms of excess zeros (e.g. structural zeros). These observations suggest that
the conventional DW distribution is not necessarily fully robust to excess zeros. In the present
paper we therefore consider a generalization of the conventional DW distribution which includes
an additional parameter in order to fully accommodate structural and random zeros in the data.
Thereby we investigate an extension of the mixed effects DW regression model by Luyts et al. 11

for hierarchically structured longitudinal count data. In particular, our regression model specifies
the zero inflated discrete Weibull (ZIDW) distribution for longitudinal count data from a Bayesian
perspective. The likelihood of the mixed effects ZIDW regression model is reparameterized to
assess the effect of the covariates on the median counts.16
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The ZIDW distribution has previously been applied in a regression context by Fortin and De-
Blois 17 , Kalktawi 16 and Peluso 18 . However, to the best of the authors’ knowledge, no literature
is available on ZIDW regression models with random effects, and the ZIDW model has not been
considered in either the longitudinal or Bayesian contexts. The contribution of the present paper is
therefore threefold: 1) The implementation of the ZIDW distribution in a mixed effects regression
modeling framework (which emanates from the DW distribution); 2) the robust modeling of me-
dian counts; and 3) the Bayesian implementation. The methodology is illustrated using an epilepsy
dataset, along with a simulation study.

In mixed effects regression modeling the choice of an appropriate prior distribution for random
effects covariance matrices remains challenging. The variability between random slopes over time
can be quite small (close to zero). It is known that inferences for close-to-zero variance components
can be sensitive to the specification of “too” vague prior distributions.19–22 Such prior misspecifi-
cation can produce variance component estimates that are biased upwards, and as a result, cause
the coverage of the confidence intervals of the corresponding fixed effects to be too high.23 We
therefore specify the matrix generalized half-t (MGH-t) prior distribution24 for the random effects
covariance matrix as an alternative to the widely used Wishart prior distribution.25

The paper is organized as follows: In Section 2 we present the motivation from a longitudinal
epilepsy clinical trial. Section 3 introduces four candidate Bayesian mixed effects regression mod-
els for longitudinal count data, namely the NB, ZINB, DW and ZIDW regression models. In
Section 4 we compare the competing models applied to the longitudinal seizure count dataset.
Section 5 presents simulation studies to investigate the robustness of the four mixed effects re-
gression models to excess zero counts and outliers (data contamination), as well as assessing the
performance of the ZIDW regression model. Section 6 presents a discussion of the results and
findings of the paper.

2 MOTIVATING DATA

The natural variation in seizure counts of patients with epilepsy may incorrectly classify patients
as positive or negative responders.26 Furthermore, the mean seizure count may greatly exceed the
median count when the distribution of the data is highly skewed and overdispersed, so that the
median count might be a more appropriate characteristic for the effectiveness of epilepsy drugs
than the mean. It is also well known that models for count data may yield incorrect statistical
inferences when zero inflation in the data is not appropriately taken care of.27 For this reason we
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investigate the ZIDW distribution for this type of data, given its robustness to overdispersion, high
skewness and zero inflation, as well as its ability to conveniently model the conditional median as
an alternative to the conditional mean. We apply the methods proposed in this paper in a reanalysis
of data collected from the two-period crossover trial of Leppik et al. 28 . In this trial, patients with
epilepsy were randomly assigned to receive either placebo or progabide. Here, only data collected
during the first period of the trial (that is, before crossover) are considered for the data analysis.
The dataset consists of the number of seizures experienced over bi-weekly intervals for each patient
at four post-randomization clinic visits, and baseline characteristics such as age and the number of
seizures experienced during the eight weeks before the start of treatment (that is, baseline seizure
count). Thall and Vail 29 and Booth et al. 3 analyzed the same dataset by respectively exploring
the fit of mixed effects Poisson and NB regression models to the seizure counts over time. For
our analysis we chose the same linear predictor as that of Thall and Vail 29 and Booth et al. 3 . We
therefore specify the linear predictor for the modeling of seizure count yi j for patient i at Visit j as
follows:

β0 +β1Trti +β2Visiti j +β3Agei +β4Basei +β5BaseiTrti +u0i +u1iVisiti j (1)

where i = 1, . . . ,59, j = 1, . . . ,4, Trti = 0 if patient i received progabide (31 patients), Trti = 1
if patient i received placebo (28 patients), and Visiti j = ( j−2.5)/5. Furthermore, Agei is the
logarithm of the age (in years) of patient i, and Basei is the logarithm of 1

4 the baseline seizure
count of patient i.

Figure 1 shows the observed seizure counts over time by treatment. A visual inspection of the
seizure count versus time profiles suggests that the distribution of the seizure counts may be skewed
due to the presence of a few large outliers. In a preliminary analysis we estimated the skewness
measure of the seizure counts by fitting the NB distribution to the data via the R package MASS.30

The sample and estimated skewness measure (see supplementary material) are presented in Table 1
by treatment and visit. We observe that the sample skewness of the data is larger than the estimated
skewness for all four visits under progabide treatment, and for two visits under placebo treatment.
This finding can motivate the fit of the DW regression model as an alternative to the fit of standard
count models (such as the NB and ZINB regression models).

In another preliminary analysis we fitted the NB and ZINB regression models to the seizure counts
using the SAS R© procedure COUNTREG.12 The regression models considered fixed effects only.
We used the log-link function to model the relationship between the linear predictor (Equation (1))
and the mean counts. Figure 2 presents the average predicted count probability for 0 to 10 seizure
counts under each regression model. Under the NB regression model, the predicted proportion of
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zero seizure counts is 8.25%, which slightly underestimates the observed proportion (9.75%). The
ZINB regression model more closely estimates the proportion of zeros (9.82%). This preliminary
investigation, therefore, does not suggest significant evidence of zero inflation. Nevertheless, in
this paper we use the epilepsy dataset 1) in order to illustrate the suggested robust modeling ap-
proach by fitting the mixed effects ZIDW regression model to the data and compare the results to
those obtained from mixed effects NB, ZINB and DW regression models, and 2) as the basis for a
data contamination simulation study (see Section 5.1), mimicking the data of the epilepsy trial, to
investigate the robustness of the ZIDW regression model to excess zero counts and outliers.

3 BAYESIAN MIXED EFFECTS REGRESSION MODELS

For the mixed effects regression models under consideration in this paper (namely regression mod-
els NB, ZINB, DW and ZIDW) we use the log-link function to model mean and median counts
over time.

Suppose that yi j is the count outcome for patient i = 1, . . . ,N at timepoint j = 1, . . . ,Ti. Further-
more, βββ & uuuiii are respectively vectors of fixed and patient-specific random effects, and xxxi j & zzzi j

are covariate vectors respectively containing baseline characteristics and measurement times. As-
sume the uuuiii follow multivariate normal distributions with mean 000 and d-dimensional unstructured
covariance matrix ΣΣΣ, such that uuuiii ∼ Nd (000,ΣΣΣ).

3.1 Negative binomial distributions

The probability mass function (PMF) of the ZINB regression model for a given count yi j over time
is written as:

f
(
yi j|βββ ,uuui,ρ,π

)
= πI

(
yi j = 0

)
+(1−π)

(yi j +ρ−1
yi j

)(
ρ

exxx
′
i jβββ+++zzz

′
i juuuiii +ρ

)ρ
 exxx

′
i jβββ+++zzz

′
i juuuiii

exxx
′
i jβββ+++zzz

′
i juuuiii +ρ

yi j


where I (a) denotes an indicator function taking the value 1 if a is true, and 0 otherwise. Here, ρ and
π are respectively the dispersion parameter and zero inflation probability of the ZINB distribution.
The mean of the yi j under the ZINB regression model is given by:

E
(
yi j
)
= (1−π)exxx

′
i jβββ+++zzz

′
i juuuiii

5



As a special case, the PMF of the ZINB regression model reduces to that of the NB regression
model when π = 0 with corresponding mean E

(
yi j
)
= exxx

′
i jβββ+++zzz

′
i juuuiii .

3.2 Discrete Weibull distributions

The appendix to this paper provides the key properties of the ZIDW distribution, and its reparam-
eterization in terms of its median.

The PMF of the ZIDW regression model for a given count yi j over time is written as:

f
(
yi j|βββ ,uuui,ρ,π

)
=πI

(
yi j = 0

)
+(1−π)×[

exp

(
− log(2)

[
yi j

exxx
′
i jβββ+++zzz

′
i juuuiii

]ρ)
− exp

(
− log(2)

[
yi j +1

exxx
′
i jβββ+++zzz

′
i juuuiii

]ρ)]

Here, ρ and π are respectively the shape parameter and zero inflation probability of the ZIDW
distribution.16 As per Equation (8) (see appendix), the median of the yi j under the ZIDW regression
model is given by:

M
(
yi j
)
+1 =

(
log
[ 0.5

1−π

]
log(0.5)

)1/ρ

exxx
′
i jβββ+++zzz

′
i juuuiii

As a special case, the PMF of the ZIDW regression model reduces to that of the DW regression
model when π = 0 with corresponding median M

(
yi j
)
+1 = exxx

′
i jβββ+++zzz

′
i juuuiii .16

3.3 Bayesian specification

The prior distributions are specified in such a way to assure vagueness with regard to prior belief
on the model parameters.

A normal prior distribution, namely N (0,10000), is specified for each component of βββ . The
dispersion and shape parameters are assigned a gamma prior distribution, namely G(0.5,0.5),
whereas the zero inflation probability is assigned a uniform prior distribution, namely U (0,1).

As Schuurman et al. 20 state, the Wishart distribution “tends to be informative when variances are
close to zero”. For this reason we specify the MGH-t prior distribution for the variance-covariance
matrix (i.e. ΣΣΣ) as a more appropriate alternative to the widely used Wishart prior distribution. The
MGH-t prior distribution of ΣΣΣ is expressed as a mixture representation of G

(
0.5,1/A2) for the
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diagonal entries of diagonal matrix ΩΩΩ = diag(ω1, . . . ,ωk, . . . ,ωd), and a Wishart distribution with
inverse scale matrix 2vΩΩΩ and degrees of freedom v+d−1, namely W (2vΩΩΩ,v+d−1), with corre-
sponding quantities A = 10000 and v = 2.24 This mixture representation results in the specification
of the half-t prior distribution, namely half-t (v,A), for the standard deviation terms in ΣΣΣ, and the
uniform prior distribution, namely U (−1,1), for the correlation terms in ΣΣΣ. The probability den-

sity function of ΣΣΣ is written as P(ΣΣΣ) ∝ |ΣΣΣ|−(v+2d)/2
d
∏

k=1

[
v
(
ΣΣΣ
−1)

kk +1/A2]−(v+d)/2
where ΣΣΣ > 000.

Here,
(
ΣΣΣ
−1)

kk denotes the kth diagonal entry of ΣΣΣ
−1.

Let yyyi denote Ti×1 vectors containing
(
yi1, . . . ,yi j, . . . ,yiTi

)′. The resulting joint posterior distribu-
tion of the model parameters can be written as:

P(βββ ,uuui,ρ,π,ΣΣΣ,ωk, i = 1, . . . ,N,k = 1, . . . ,d|yyy)

∝

[
N

∏
i=1

Ti

∏
j=1

f
(
yi j|βββ ,uuui,ρ,π

)]
P(βββ )

[
N

∏
i=1

P(uuui|ΣΣΣ)

]
P(ρ)P(π)P

(
ΣΣΣ
−1|ΩΩΩ

)[ d

∏
k=1

P(ωk)

]

where yyy denotes the ∑
N
i=1 Ti×1 vector containing yyyi for all i = 1, . . . ,N. The corresponding proba-

bility density functions are written as:

P(βββ ) ∝ exp
(
−0.00005βββ

′
βββ
)

P(uuui|ΣΣΣ) ∝ |Σ|−
1
2 exp

(
−1

2
uuu′iΣΣΣ
−1uuui

)
P(ρ) ∝ ρ

− 1
2 exp

(
−1

2
ρ

)
P(π) ∝ 1

P
(
ΣΣΣ
−1|ΩΩΩ

)
∝ exp

[
−2tr

(
ΩΩΩΣΣΣ
−1)] ; ΩΩΩ = diag(ω1, . . . ,ωk, . . . ,ωd)

P(ωk) ∝ ω
− 1

2
k exp

(
− 1

108 ωk

)
The MCMC Gibbs sampling algorithm can be used to draw samples from the joint posterior distri-
bution of the model parameters.31 The conditional posterior distributions of the model parameters
are derived from the joint posterior distribution by ignoring terms that do not include the relevant
model parameter.
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3.4 Model discrimination

The deviance information criterion (DIC) statistics32 conditional on the random effects of the
regression models, and compound Laplace-Metropolis marginal likelihoods (CLMMLs)33,34 were
calculated to discriminate between the candidate regression models.

3.4.1 Deviance information criterion statistic

The DIC is defined under Model M as follows:

DIC(M) = 2D(βββ ,uuui,ρ,π)−D
(

β̂ββ , ûuui, ρ̂, π̂
)

where D(βββ ,uuui,ρ,π) = −2log
(

∏
N
i=1 ∏

Ti
j=1 f

(
yi j|βββ ,uuui,ρ,π

))
is the deviance measure. Here, β̂ββ ,

ûuui, ρ̂ and π̂ are respectively the mean of the posterior distribution of βββ , uuui, ρ and π , and D(βββ ,uuui,ρ,π)

is the mean of the posterior distribution of D(βββ ,uuui,ρ,π). Models with small DICs are favored.

3.4.2 Compound Laplace-Metropolis marginal likelihood

The Laplace-Metropolis approximation of the marginal likelihoods of yyy (that is, the CLMML)
under Model M can be written as35:

log( f [yyy|M]) =
1
2

log(2π) p+
1
2

log
∣∣∣R(βββ ,ρ,π)

∣∣∣+ s(βββ ,ρ,π)+

N

∑
i=1

log

[∫
P
(

uuui|Σ̂ΣΣ
) Ti

∏
j=1

f
(

yi j|β̂ββ ,uuui, ρ̂, π̂
)

duuui

]
+

log
[
P
(

β̂ββ

)]
+ log [P(ρ̂)]+ log [P(π̂)]+ log

[
P
(

Σ̂ΣΣ

)]
where p is the number of parameters among βββ , ρ , π and ΣΣΣ. Here, β̂ββ , ρ̂ , π̂ and Σ̂ΣΣ are respectively
the mean of the posterior distribution of βββ , ρ , π and ΣΣΣ.

∣∣∣R(βββ ,ρ,π)

∣∣∣ and s(βββ ,ρ,π) respectively denote
the determinant of the correlation matrix and the sum of the logarithm of the standard deviations
of the posterior distributions of βββ , ρ and π . Models with large CLMMLs are favored.
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4 DATA ANALYSIS

4.1 Model implementation and computational issues

The above mixed effects regression models were implemented according to the model specifica-
tions discussed in Section 3. That is, the NB, ZINB, DW and ZIDW regression models were fitted
to the seizure counts over time.

The terms contained in the linear predictor xxx
′
i jβββ +++ zzz

′
i juuuiii are therefore defined as follows: xxxi j =(

1,Trti,Visiti j,Agei,Basei,BaseiTrti
)′ & zzzi j =

(
1,Visiti j

)′ are the applicable covariate vectors, and
βββ = (β0,β1, . . . ,β5)

′ & uuuiii = (u0i,u1i)
′ are respectively the applicable vectors of fixed and random

effects. Furthermore, ΣΣΣ =

[
σ2

1 σ12

σ12 σ2
2

]
is the unstructured covariance matrix of uuuiii.

We also investigated the influence of the alternative prior specifications of the random effects
covariance matrix on the inference about the regression model parameters. As an alternative to the
MGH-t prior distribution, ΣΣΣ

−1 was assigned the standard Wishart prior distribution with inverse
scale identity matrix III and degrees of freedom d, namely W (III,d).

The regression models were fitted using JAGS36 via the package runjags37 of the R project.38

Posterior samples were monitored and convergence was confirmed using iteration and autocorre-
lation plots, and Brooks-Gelman-Rubin statistics of parallel chains.39

The R code for the implementation of the ZIDW regression model is included in the supplementary
material of this paper.

The R project was called remotely from SAS R©,12 and accordingly, posterior samples were ex-
ported back to SAS R© for further computation. For each regression model, 7550000 samples were
simulated from the joint posterior distribution for 7 parallel chains. Among those 7550000 sam-
ples (per chain), the initial 50000 samples were discarded (burn-in). The thinning factor was set
to 50000 to reduce autocorrelation among the samples. The run time of the ZINB and ZIDW
regression models (in JAGS) was similar.

The multidimensional integration library cubature of the R project was used to approximate the
Laplace integrals (CLMMLs).40
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4.2 Regression fits

Figure 3 presents iteration plots of posterior samples of regression model ZIDW from seven parallel
chains.

The posterior estimates (PEs) and 95% highest posterior density (HPD) intervals of the model pa-
rameters are presented in Table 2. These are presented visually for the treatment effect (β1) in
Figure 4. The analyses suggest that the seizure counts are slightly zero inflated (3% and 6% re-
spectively under regression models ZINB and ZIDW). The results for regression models NB and
ZINB suggest that the treatment effect (based on the mean seizure count) is statistically significant,
seizure counts of patients on placebo being higher than those of patients on progabide, with PEs for
the treatment effect of 0.93 and 0.88, respectively. In contrast, under regression models DW and
ZIDW PEs for the treatment effect are somewhat lower, namely 0.72 and 0.66, respectively, and
of the respective treatment effects (based on the median seizure count) are no longer statistically
significant. Furthermore, the statistically significant covariate effects (in all models) suggest that
patients with higher counts at baseline tend to have higher seizure counts post-baseline. In contrast,
the model terms age, “time” and treatment & baseline interaction are not statistically significant.
The sensitivity analysis further suggests that the ZIDW regression model is sensitive to the choice
of prior distributions for ΣΣΣ. More specifically, under the specification of the Wishart prior distribu-
tion, the variance component estimate of the random slopes over time (i.e. σ2

2 ) is noticeably larger
than that of the MGH-t prior distribution, whereas the estimates of the fixed effects (under the two
prior specifications) are similar.

In an additional sensitivity analysis we investigated the influence of the prior specification of ρ and
π on the estimation of the model parameters. We specified the half-Cauchy (or half-t (1,1)) and
beta prior distributions for ρ and π , namely ρ ∼ half-t (1,1) and π ∼ Beta(0.5,0.5). The PEs and
95% HPD intervals are very similar under these prior specifications of ρ and π [data not shown].
We therefore conclude that the statistical inferences of the model parameters are not sensitive to
the two types of prior specifications of ρ and π .

4.3 Model comparison

Model comparison statistics for the fitted mixed effects regression models are provided in Table 2.
The DIC statistic selects the ZIDW regression model over the NB, ZINB and DW regression mod-
els, while it indicates no distinct preference between the NB, ZINB and DW regression models;
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the CLMMLs indicate no distinct preference between any of the regression models (though, under
the specification of the MGH-t prior distribution, the CLMMLs slightly favor the ZIDW regression
model over the competing regression models).

5 SIMULATION STUDIES

5.1 Data contamination

We performed a simulation study to investigate the robustness of the proposed regression models to
excess zero counts and outliers.41 Datasets were simulated from regression models NB, ZINB, DW
and ZIDW where model parameters were chosen to mimic the seizure count dataset in Section 4.
For simplicity, the covariates age and baseline seizure count were disregarded. The linear predictor
for the modeling of seizure count yi j for patient i at Visit j was specified as follows:

β0 +β1Trti +β2Visiti j +u0i +u1iVisiti j

The model parameter values for datasets simulated from regression models NB and ZINB were
chosen as β0 = 1.51, β1 = 0.30, β2 =−0.22, ρ = 8.77, σ2

1 = 0.90, σ2
2 = 0.05 and σ12 =−0.001,

whereas those simulated from regression models DW and ZIDW were chosen as β0 = 1.66, β1 =

0.28, β2 =−0.20, ρ = 2.85, σ2
1 = 0.72, σ2

2 = 0.05 and σ12 =−0.01. Furthermore, π = 0.05 was
chosen for datasets simulated from regression models ZINB and ZIDW. Each dataset consisted of
30 patient profiles per treatment.

The dataset was randomly contaminated by replacing yi j with 0 at a rate of 5%, or with 1.25 the
maximum yi j at a rate of 5% (hence an overall contamination rate of 10%). The candidate regres-
sion models were fitted to both the uncontaminated and contaminated versions of the simulated
datasets (hence a total of 8 datasets were fitted by each regression model), and the DIC statistic
was calculated for each fitted model. Figure 5 shows the simulated seizure counts over time of the
simulated datasets (uncontaminated and contaminated).

The DIC statistics for the mixed effects regression models fitted to the simulated datasets (uncon-
taminated and contaminated)41 are provided in Table 3. The results presented in Table 3 suggest
the following:

• If uncontaminated datasets are generated from:
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– Regression model NB: The fits of regression models ZINB, DW and ZIDW are similar to the
fit of regression model NB.

– Regression model ZINB: The fit of regression model ZINB is similar to the fit of regression
model ZIDW, and both fits are better than those of regression models NB and DW.

– Regression model DW: The fit of regression model ZIDW is similar to the fit of regression
model DW, and both fits are better than those of regression models NB and ZINB.

– Regression model ZIDW: The fit of regression model ZIDW is better than the fits of regression
models NB, ZINB and DW.

• If contaminated datasets are generated (either from regression models NB, ZINB, DW or ZIDW),
then the fit of regression model ZIDW is always better than the fits of regression models NB,
ZINB and DW.

In summary, based on the fits of the simulated datasets (uncontaminated and contaminated), re-
gression model ZIDW is always either competitive with or performs better than regression models
NB, ZINB and DW.

5.2 Model performance

We assessed the performance of the ZIDW regression model in a simulation study, under the spec-
ification of both the MGH-t and Wishart prior distributions for the random effects covariance ma-
trix. Datasets were simulated from the ZIDW regression model where the model parameter values
for β0, β1, β2, ρ , σ2

1 and σ12 were chosen as in Section 5.1. The parameter scenarios were investi-
gated for each combination of the following zero inflation probabilities and variance components:
π = 0.05, π = 0.10, σ2

2 = 0.05 and σ2
2 = 0.75 (hence, a total of 4 parameter scenarios). Parameter

values π = 0.05 and π = 0.10 respectively represent cases of low and moderate amounts of zero
inflation in the data, whereas σ2

2 = 0.05 and σ2
2 = 0.75 respectively represent cases of low and

high variability in the random slopes over time.

The accuracy and precision characteristics bias, standard error (SE), and root mean square error
(RMSE) of the posterior estimates of the regression models were calculated for each parameter
scenario, as was the empirical coverage probability of the associated 95% HPD intervals. The
candidate regression models were fitted to 1000 simulated datasets, each dataset consisting of 10
patient profiles per treatment. The autorun.jags function of the runjags package37 was
used to guarantee the successful convergence of the posterior samples for each fitted dataset.
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From Table 4 we observe that the bias of the fixed effects estimates is small under both the spec-
ification of the MGH-t and Wishart prior distributions for the random effects covariance matrix,
whereas the bias of the variance component estimates under the Wishart prior distribution is con-
siderably larger compared to the MGH-t prior distribution when σ2

2 is small. In general, the SE
and RMSE of the variance component estimates differ considerably between the two prior specifi-
cations. The coverage probabilities of the 95% HPD intervals of the fixed effects under the spec-
ification of the MGH-t prior distribution are close to the nominal value. However, the coverage
probabilities of β2 and σ2

2 under the specification of the Wishart prior distribution are respectively
quite conservative (close to 100%) and extremely small (close to 0%), whereas those of σ2

2 under
the MGH-t prior distribution are close to 100%.

6 DISCUSSION

This paper proposed a Bayesian mixed effects ZIDW regression model for longitudinal count data
as an alternative to mixed effects regression models that are based on the usual NB, ZINB and
conventional DW distribution. The mixed effects ZIDW regression model is an extension of the
method proposed by Luyts et al. 11 , and uses the log-link function to specify the relationship be-
tween the linear predictors and the median counts, therefore offering a robust characteristic of
central tendency, compared to the mean count, when the distribution of the data is skew.

An advantage of the Bayesian implementation of the mixed effects DW regression model is that
it does not involve asymptotic approximations, unlike the frequentist method by Luyts et al. 11

(i.e. the SAS R© procedure NLMIXED12), and therefore may be more suitable for small sample
problems. Moreover, the implementation of the ZIDW regression model (using JAGS) is user
friendly and competitive with the ZINB regression model in terms of computational speed and
model convergence.

The DIC statistics obtained from a reanalysis of the dataset of Leppik et al. 28 suggest that the
mixed effects ZIDW regression model is more suitable than the competing mixed effects regres-
sion models (that is, regression models NB, ZINB, and DW). The CLMMLs, however, indicate no
distinct preference between any of the mixed effects regression models. The results for the mixed
effects NB and ZINB regression models suggest that the treatment effect is statistically signifi-
cant in favor of progabide (lower seizure counts), whereas for the mixed effects DW and ZIDW
regression models the treatment effect is not statistically significant.
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In a data contamination simulation study we demonstrated that, when the data are contaminated
(excess zeros and outliers), the mixed effects ZIDW regression model provides better fits than
the competing mixed effects regression models; furthermore, the mixed effects ZIDW regression
model is competitive (gives similar fits to its competitors) when the data are uncontaminated. Even
though the estimated treatment effect of progabide under the zero inflated regression models (ZINB
and ZIDW) was similar to those under the non-zero inflated regression models (NB and DW), the
data contamination study points to the ZIDW regression model as the most suitable count model
for this type of data (compared to regression models NB, ZINB, and DW).

For our primary model (that is, the mixed effects ZIDW regression model) we carried out a sim-
ulation study to illustrate the impact of the choice of prior distributions for the random effects
covariance matrix on the estimation and inference of fixed effects and variance components. The
data were generated to mimic the seizure count dataset of Leppik et al. 28 . The MGH-t and Wishart
prior distribution were studied under four simulation scenarios. The simulation study suggests that
estimates of the fixed effects are not particularly sensitive to the choice of prior distributions for the
random effects covariance matrix. On the other hand, the variance component estimates differed
considerably between the two different prior specifications, especially when the true variability
between random slopes (over time) is small. In these cases the HPD intervals under the MGH-t
prior for the random slope variance component are extremely conservative, whereas those under
the Wishart prior have zero coverage. Although we found that the HPD intervals under the MGH-t
prior for the fixed effects were suitable, HPD intervals under the Wishart prior for the fixed effects
counterpart of near-zero variance components (that is, the fixed effects slope term) are inappro-
priate. No major concerns were therefore raised under the MGH-t prior (unlike the Wishart prior)
about the estimation and inference of the fixed effects. Evidently, care should be taken in the selec-
tion of prior distributions for the random effects covariance matrix, and sensitivity analyses should
be performed to confirm findings from the analysis of longitudinal count data. We further note that
the conditional conjugacy property associated with the mixture representation of the MGH-t prior
distribution reduces computational burden in JAGS, and is regarded as a routine implementation.

In conclusion, the proposed mixed effects ZIDW regression model for longitudinal or clustered
count data provides better fits than its competitors when the data are skewed (contain outliers) and
contain excess zeros. The model can conveniently be specified on the median scale; in contrast,
model specification in terms of the conditional mean is difficult given its infinite series expression.
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APPENDIX

Zero inflated discrete Weibull distribution

If Y follows a ZIDW distribution, then the probability mass function of Y is given by:

f (y) = πI (y = 0)+(1−π)
[
qyρ

−q(y+1)ρ
]

(2)

where y ∈ {0,1,2, . . .}. Here, 0 < q < 1 and ρ > 0 denote the shape parameters, and 0 < π < 1 the
zero inflation probability, of the ZIDW distribution. I (a) denotes an indicator function taking the
value 1 if a is true, and 0 otherwise.

The mean and variance of Y are written as:

E (Y ) =(1−π)
∞

∑
n=1

qnρ

Var (Y ) =(1−π)

(
2

∞

∑
n=1

nqnρ

−
∞

∑
n=1

qnρ

)
− (1−π)2

(
∞

∑
n=1

qnρ

)2

The cumulative distribution function (CDF) of Y is given by:

F (y) =
y

∑
x=0

f (x) = (π−1)q(y+1)ρ

+1

The τ-quantile function Q(τ) is obtained from the inverse CDF, i.e. F−1 (τ), as follows:

(π−1)q[Q(τ)+1]ρ +1 = τ (3)

Solving Q(τ) in Equation (3) gives:

Q(τ) =

(
log
(

τ−1
π−1

)
log(q)

) 1
ρ

−1

The median of Y can therefore written as:

M (Y ) = Q(0.5) =

(
log
( 0.5

1−π

)
log(q)

) 1
ρ

−1
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However, since limq→0 M (Y ) = −1, we consider the following expression for the median of Y as
an alternative:

M (Y )+1 =

(
log
( 0.5

1−π

)
log(q)

) 1
ρ

(4)

Conventional discrete Weibull distribution

Considering the conventional DW distribution (π = 0) the median in Equation (4) reduces to:

M (Y )+1 =

(
log(0.5)
log(q)

) 1
ρ

(5)

By solving q in Equation (5), we consider the reparameterization of the DW distribution in terms
of its median.16 That is:

q = exp
(
− log(2)
[M (Y )+1]ρ

)
(6)

Therefore, substituting Equation (6) in Equation (2):

f (y) = exp
(
− log(2)

[
y

M (Y )+1

]ρ)
− exp

(
− log(2)

[
y+1

M (Y )+1

]ρ)
This reparameterization therefore allows for the direct regression modeling of the median counts.
The log-link function is used to model the median counts as follows:

M (Y )+1 = exxx′ααα (7)

where xxx and ααα are respectively a set of covariates and regression coefficients.

Finally, substituting Equations (7) and (6) in Equation (4) results in the median of the ZIDW
distribution as follows:

M (Y )+1 =

(
log
[ 0.5

1−π

]
log(0.5)

)1/ρ

exxx′ααα (8)
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Figure 1: Epilepsy dataset: Observed seizure counts over time
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Figure 2: Epilepsy dataset: Average predicted probabilities of seizure counts
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Figure 3: Epilepsy dataset: Iteration plots of posterior samples of regression model ZIDW

0e+00 2e+06 4e+06 6e+06

−
4

−
2

0
2

4

Iteration

β 0

(a) β0

0e+00 2e+06 4e+06 6e+06

−
0.

5
0.

0
0.

5
1.

0
1.

5

Iteration

β 1

(b) β1

0e+00 2e+06 4e+06 6e+06

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

Iteration

β 2

(c) β2

0e+00 2e+06 4e+06 6e+06

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Iteration

β 3

(d) β3

0e+00 2e+06 4e+06 6e+06

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Iteration

β 4

(e) β4

0e+00 2e+06 4e+06 6e+06

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Iteration
β 5

(f) β5

0e+00 2e+06 4e+06 6e+06

2.
0

2.
2

2.
4

2.
6

2.
8

3.
0

3.
2

Iteration

ρ

(g) ρ

0e+00 2e+06 4e+06 6e+06

0.
00

0.
05

0.
10

0.
15

Iteration

π

(h) π

0e+00 2e+06 4e+06 6e+06

0.
1

0.
2

0.
3

0.
4

0.
5

Iteration

σ 12

(i) σ2
1

0e+00 2e+06 4e+06 6e+06

0.
0

0.
5

1.
0

1.
5

Iteration

σ 22

(j) σ2
2

0e+00 2e+06 4e+06 6e+06

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Iteration

σ 1
2

(k) σ12

ZIDW: Zero inflated discrete Weibull.

23



Figure 4: Epilepsy dataset: Posterior estimates and 95% HPD intervals of treatment effects
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Figure 5: Simulation study: Simulated seizure counts over time – uncontaminated and contami-
nated datasets
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Table 1: Epilepsy dataset: Sample and estimated skewness measure based on the NB distribution

Placebo Progabide
Visit Sample Estimate Sample Estimate

1 1.764 1.745 4.325 2.471
2 1.056 1.922 3.533 1.849
3 3.493 2.240 3.251 2.582
4 1.400 1.591 4.007 2.304

NB: Negative binomial.
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Table 3: Simulation study: Comparison of regression models fitted to uncontaminated and con-
taminated datasets

Regression Model: DIC Statistica

Uncontaminated Contaminated
Simulated Dataset NB ZINB DW ZIDW NB ZINB DW ZIDW

NB 1343.00 1344.81 1327.13 1341.02 1588.56 1571.74 1569.74 1542.96
ZINB 1431.46 1380.22 1423.24 1367.30 1564.89 1536.53 1558.61 1515.85
DW 1292.23 1295.35 1253.75 1258.52 1524.76 1494.88 1493.95 1447.91
ZIDW 1387.57 1315.65 1357.91 1280.01 1540.28 1483.50 1526.73 1440.09

NB: Negative binomial. ZINB: Zero inflated negative binomial. DW: Discrete Weibull.
ZIDW: Zero inflated discrete Weibull. DIC: Deviance information criterion. aModels with small
DIC statistics are favored.
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