
SACJ 32(2) December 2020
Viewpoint

Invited Lecture: Notions of ‘Theory’ and
their Practical Consequences in the
Discipline of Software ‘Engineering’
(including Information Systems Design)
Stefan Gruner

 sg@cs.up.ac.za

Department of Computer Science, University of Pretoria, South Africa

Preliminaries. In the context of the AISSAC seminar on information systems, to which this
invited lecture was given, it is presumed throughout the following considerations that:
• contemporary information systems are software systems, whereas traditional libraries of
printed books (which are indeed pre-electronic information systems) are not considered
here;
• design and development of information systems (from capturing the initial requirements
to implementation and deployment) are software engineering activities;
• it is therefore justified to speak about ‘software engineering’ (rather than about ‘inform-
ation systems’) throughout this lecture,
• whereby the notion of ‘information’ is assumed to be already ‘basically understood’ (and
is thus not subject to further science-philosophical definitions or critique in this contri-
bution).

Some background literature on these preliminaries is already available (Gruner, 2016; Gruner
& Kroeze, 2014). Moreover: a small ‘sub set’ of the considerations, which are elaborated in
much detail in the following sections, had already been briefly discussed on another occasion
(Gruner, 2019). My new insights and ‘lessons learned’ from that previous discussion, as well
as those ones from the most recent AISSAC seminar itself, are of course ‘integrated’ into this
contribution.
Gruner, S. (2020). Invited Lecture: Notions of ‘Theory’ and their Practical Consequences in the Discip-
line of Software ‘Engineering’ (including Information Systems Design) [Viewpoint]. South African Computer
Journal 32(2), 293–322. https://doi.org/10.18489/sacj.v32i2.898

Copyright © the author(s); published under a Creative Commons NonCommercial 4.0 License (CC BY-NC 4.0).
SACJ is a publication of the South African Institute of Computer Scientists and Information Technologists. ISSN
1015-7999 (print) ISSN 2313-7835 (online).

https://orcid.org/0000-0001-6008-6123
mailto:sg@cs.up.ac.za
https://doi.org/10.18489/sacj.v32i2.898
http://creativecommons.org/licenses/by-nc/4.0/

Gruner, S.: Invited Lecture 294

1 INTRODUCTION

In July 2014, the following message was publicly distributed via the ACM’s SEWORLD net-
work:

“While evidence-based software engineering (EBSE) has attracted considerable at-
tention from the research community, there is still a lack of interest and appreci-
ation for the role of theory in the software engineering field. In order to make sense
of all the empirical observations and evidence that researchers are gathering, we
need theory that allows the abstraction of these observations into ‘universal know-
ledge’ that is useful not only to other researchers but also to software engineering
practitioners. Specifically, what the SE field seems to be missing is a General The-
ory, such as can be found in many other academic disciplines. Examples of gen-
eral theories include the ‘big bang’ theory and evolution theory. These ‘general’
theories are able to explain (or predict) phenomena within a larger context of a
discipline. This is of particular interest to the empirical software engineering com-
munity, which is increasingly recognizing the importance of context of research.
However, few general theories of software engineering have been proposed, and
none have achieved significant recognition. In turn, software engineering remains
limited to problem solving by trial-and-error and rules-of-thumb and in most cases
only related to a limited area of relevance. The state of research in software engin-
eering cannot make significant advances as new trends are emerging quickly and a
systematic cumulative research tradition within software engineering has not yet
been achieved”.1

The announcement quoted above eventually lead to several publications (Johnson et al., 2015).
Topically related to the above-mentioned communication are a number of well-organized

activities (Johnson et al., 2015), which include (for example) the ‘GTSE’ workshop series on
‘General Theory of Software Engineering’. In the GTSE edition of the year 2015, for example,
‘principles of separability’ were strongly emphasized, but also in this case “one asks how to
appraise the generality of these theories? And in case they are specialized sub-theories, are they
amenable to combination into more general theories?” (Exman et al., 2016). In addition to such
a search for ‘generality’ (which is a classical, science-oriented approach to truth) it is also
typical in these kind of efforts that they rarely problematize their own notion of ‘theory’ from a
meta-theoretical point of view. It seems as if the meaning of the term ‘theory’ itself is simply
taken for granted by the participants of those discourses in which no definition of the term
‘theory’ is given. The ‘GTSE’ workshop of 2015 ended with notable sentiments of frustration
(Exman et al., 2016), which are at least in part also due to some intra-communal factional dif-
ferences between the ‘engineers’ and the ‘sociologists’ with their different epistemological and
meta-theoretical points of view (Johnson & Ekstedt, 2016, p. 182). However, nobody seems
1https://listserv.acm.org/scripts/wa-acmlpx.exe?A2=SEWORLD;6bdb5f2.1407 (10 July 2014).

https://doi.org/10.18489/sacj.v32i2.898

https://listserv.acm.org/scripts/wa-acmlpx.exe?A2=SEWORLD;6bdb5f2.1407
https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 295

to have asked whether such frustration was perhaps a necessary consequence of the impossib-
ility of an attempt to (proverbially) ‘square the circle’ (i.e.: to solve an inherently unsolvable
problem). Though, “based upon philosophy of science and software engineering practice”, the par-
ticipants of ‘GTSE 2015’ already had the correct insight “that engineering fundamentally differs
from scientific disciplines” (Exman et al., 2016), nobody seems to have consequently questioned
the ‘feasibility’ of a science-like ‘general theory’ for a ‘fundamentally different’ engineering dis-
cipline. Numerous interesting literature references on this topic are already known (Exman
et al., 2016), though not all of them can be recapitulated in this section.
A so-called ‘design theory’ for (not: ‘of’) software engineering was meant to be “a theory that

characterizes the elements of software problem solving in terms of the effect they have on the process
of design” (Hall & Rapanotti, 2017). Also in that publication the basic notion of ‘theory’ itself
was not precisely defined (and was thus more-or-less taken for granted), though a distinction
between ‘product’ theories (about the things made) and ‘production’ theories (about the work-
steps that lead to the things made) was taken into account (Hall & Rapanotti, 2017). Very
important was the assertion that “the community” was “also trying to come to terms with what
is meant by >>theory<<” (Hall & Rapanotti, 2017). Everywhere in in that publication we can
find references to a particular notion of ‘theory’ (Gregor, 2006), which, however, stems from
the sub-field of ‘information science’ (IS) and is thus (like the entire sub-field of IS) strongly
sociology-influenced and business-management-oriented. For specific historic reasons (Kline,
2006), the IS community does typically not maintain the self-view of a community of engineers
(Johnson & Ekstedt, 2016, p. 182; Gruner & Kroeze, 2014, p. 35). Also that publication’s list
of literature references (Hall & Rapanotti, 2017) contains many further interesting entries
which cannot all be recapitulated in this section. Noteworthy in particular is its formalization
of software-construction-related reasoning-steps in ‘Gentzen style’ (Hall & Rapanotti, 2017).
In the year 2016, a Special Section on General Theories of Software Engineering was published

by the Journal for Information and Software Technology (Stol et al., 2016). The most interesting
publication in that special section was a paper which emphasized a general theory of software
engineering (Johnson & Ekstedt, 2016), whilst the other papers of that special section discussed
specialized theories of smaller concepts and sub-concepts. In their editorial preface, which
also contains several further noteworthy literature references, the guest-editors pointed once
more to physics as the ‘reference discipline’ for general theories (Stol et al., 2016), which tacitly
implies that an engineering discipline (like software engineering) would (or should) ultimately
have to be(come) something like a ‘nature-scientific’ discipline. Such an attitude, however,
ignores the relative simplicity of the ‘things’ about which the science of physics can successfully
produce ‘general’ theories: as soon as matters get somewhat more complicated, such as (for
example) in meteorology, physics is also at loss as far as the production of substantial, non-
trivial ‘general’ theories is concerned. Moreover: the notion of ‘theory’, which is expressed
there (Stol et al., 2016), cannot be robustly defended science-philosophically at that point
where a ‘micro theory’ is defined merely as a small number of hypotheses concerning some
technical properties of one particularly given software system or software product (Stol et al.,
2016, p. 177). Such a device-specific notion of ‘micro theory’ is not consistent with the area-

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 296

specific notion of ‘micro theory’ in the established engineering disciplines. All in all the notion
of ‘theory’ in that contribution (Stol et al., 2016) remained as vague as it had always been in
the ‘GTSE’ community.
In the above-mentioned ‘general’ paper (Johnson & Ekstedt, 2016), which includes more

than 170 noteworthy literature references, it is interesting see a ‘theory’ without theorems in
which various ‘models’ (graphically depicted work-flow schemes, semantic concept hierarchy
graphs with notions and sub-notions, and the like) are presented as ‘theory’. This peculiar
willingness to meta-theoretically accept some simple (and rather incoherent) graph models as
‘theory’ seems to be a prominent (if not even the dominant) methodological attitude in relevant
communities of practitioners. Nonetheless we can find in that publication (Johnson & Ekstedt,
2016) also some more salient meta-theoretical remarks about what is ‘theory’. W.r.t. Popper
as well as w.r.t. to the Stanford Philosophical Encyclopedia the paper stated that

“a theory of software engineering is thus a collection of sentences, propositions,
statements or beliefs, etc., about software engineering, and their logical consequences.
We are aware that some definitions pose additional requirements on theories, such
as being internally consistent, well-substantiated by observation, clearly delimited,
formalized, falsifiable, sufficiently general, connected, or able to make sufficiently
accurate predictions. Many of these are in our view, however, quality criteria
rather than requirements, so that while, e.g., an internally inconsistent theory is
inferior to a consistent one, ceteris paribus, the inconsistent exemplar is still, in
our terminology, a theory” (Johnson & Ekstedt, 2016, pp. 182-183).

Thus: in a post-modernist spin of words, actual non-theories (which include more or less
arbitrary ‘beliefs’ about software engineering) have been elevated in to the noble status of
‘theories’ (Johnson & Ekstedt, 2016) simply by decree, namely the decree that the hitherto
indispensable criteria of theory-ness (Bunge, 1998a) shall henceforth be merely regarded as
some merely accidental ‘quality’ attributes. As a consequence of such a post-modernist meta-
theoretical attitude concerning the notion of ‘theory’, anybody can now come up with more
or less arbitrary ‘theories’ of software engineering’: this must ultimately lead, indeed, to the
intellectual frustration which the organizers of the above-mentioned GTSE 2015 workshop
have noticed (Exman et al., 2016). To be fair, it must also be appreciated that the above-
mentioned authors consider “the ability to make predictions about the empirical world” as a meta-
theoretical quality criterion “of particular importance” (Johnson & Ekstedt, 2016, p. 183).
Nonetheless the question remains un-answered: what exactly about software engineering (as
a whole) shall be ‘predicted’?
Therefore, in this lecture I raise and defend the conjecture that the above-mentioned call

for a ‘general theory’ of software engineering is ‘wrong’ in the sense that inappropriate notions
of ‘theory’ will mislead the discipline of software engineering into an intellectual cul-de-sac and will
potentially distract the software engineering practitioners from successfully applying the many
useful ‘micro theories’ (Stol et al., 2016) which are already available in several specialized
sub-areas of software engineering (including information systems design). I conjecture that

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 297

the recent quests for a ‘general theory’ in software engineering are so-to-say ‘mythical’ in their
desire and flawed particularly in all those instances in which the specific differences between
science and engineering are not seriously taken into account, whereby this critique includes
a number of papers in which merely some superficial ‘lip service’ is paid to this difference.
In this context we must also not forget the historic vulnerability of the software engineering
discipline as far as the lore and the lure of various ‘myths’ is concerned (Brooks, 1995). In
particular the ‘myths’ of software engineering’s ‘scientification’ have recently come under the
scrutiny of professional historians of technology (Hellige, 2008).
The practical consequence of those futile pursuits are not merely the already mentioned

intra-disciplinary ‘frustration’, but also an unfortunate distraction of precious ‘intellectual re-
sources’ from many noteworthy software engineering problems (both technical and philosoph-
ical) to which satisfactory and ‘systematic’ solutions have not yet been found. Thereby, the
‘highest level’ of ‘solution’ that can possibly be achieved in the realm of software engineering
is automation: a given problem in software engineering is considered ‘fully understood’ when
it can eventually be solved repeatedly by algorithmic means. All other problems in software
engineering can maximally be considered ‘partly understood’, (which is of course still much
better than not understood at all). Insight into the fundamental insolubility of some problems
by any means (for example the Halting Problem or the ‘Perpetuum Mobile’) belongs to the
realm of science: problems that are in principle (absolutely) unsolvable (and scientifically
confirmed as such) are therefore methodologically excluded from the domain of (solution-
producing) engineering. For illustration: if I had ‘fully’ understood how Requirements En-
gineering (within any SE project) ought to be done, then I should be able to implement a
Turing Machine that would be able to find industrial ‘employment’ as a Requirements Engin-
eer. This example shows immediately that Requirements Engineering, as a whole, is far away
from being ‘fully understood’ (in the above-mentioned technological sense of the term ‘full
understanding’), such that any ‘general theory’ of Requirements Engineering, which would
explain the blue-print and predict the run-time behavior of such a (fictive) Turing Machine, is
nowhere to be seen.
To compose the argument of my lecture as a whole,
• I recapitulate the basic notions of ‘theory’ from the standard literature in philosophy of
science;
• I recapitulate some of the most fundamental differences between science and engineering;
• I recapitulate the historic fact that the engineering disciplines are based on the successful
development and application of domain- and sub-domain-specific ‘micro theories’ which
are never general;
• I argue that applicable ‘micro theories’ already exist for several domains and sub-domains
in the discipline of software engineering which includes the sub-domain of information
systems; (their existence shall of course not prevent us from finding more and better
ones as time goes by).

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 298

Subsequently, what is neededmost (in addition to the continuing improvements of those ‘micro
theories’ themselves) is that a large majority of software practitioners will eventually pick up
and actually apply those ‘micro theories’, which are already available for practical use, instead
of ‘re-inventing the wheel’ ad-hoc for each and every new software development project.
As far as the frequently perceived ‘difficulty’ of such theories (from the perspective of non-

academic practitioners) is concerned, we will eventually have to find the professional courage
to declare together with Edsger Dijkstra (1975):

“Don’t blame me for the fact that competent programming, as I view it as an in-
tellectual possibility, will be too difficult for ‘the average programmer’: you must
not fall into the trap of rejecting a surgical technique because it is beyond the
capabilities of the barber in his shop around the corner”.

In fact Dijkstra was not the first one to have recognized some characteristic similarities in the
theoretical world-views of surgeons and engineers (Bamm, 1956, p. 154).
The envisaged practical applications of the already existing (albeit difficult) ‘micro theor-

ies’, however, can be successfully achieved only by further specialization of software ‘engineer-
ing’ into more and finer-structured sub-disciplines in the same manner in which any general
‘hardware engineering’ does not exist apart from its various sub-disciplines (such as railway en-
gineering, mechanical engineering, electrical engineering, chemical engineering, aeronautical
engineering, naval engineering, mining engineering, and so on). They all possess their own
domain-specific ‘micro theories’ which prevent them from the kind of pre-theoretical ‘craft-
ing’ by which much of software construction is still characterized to-date. For the topic of
‘pre-theoretical crafting versus science-based engineering’ another warning by Edsger Dijkstra
(2000) is relevant and will most likely remain relevant for many years to come:

“The required techniques of effective reasoning are pretty formal, but as long as
programming is done by people that don’t master them, the software crisis will
remain with us and will be considered an incurable disease. And you know what
incurable diseases do: they invite quacks and charlatans in, who, in this case, take
the form of software engineering gurus”.

2 WHAT IS ‘THEORY’?

In his several hundred pages strong book on a topic of social and political ethics, the philo-
sopher Margalit frankly admitted to have “no theory” on this matter (which is highly unusual
for public intellectuals and men of letters who typically identify themselves as ‘theorists’) and
continued to explicate meta-theoretically several notions of ‘theory’ by Hilbert, Gödel, Carnap,
and Reichenbach (Margalit, 1996). Accepting their definitions of the notion of ‘theory’, he con-
cluded that his own socio-political and philosophical elaborations were not ‘theoretical’ in the
strictest sense of the term (Margalit, 1996).

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 299

Also in our case of software engineering it is not adequate to demand the elaboration of a
‘theory’ or ‘theories’ without any meta-theoretical considerations concerning the notion of ‘the-
ory’ as such. However, the science-philosophical and meta-theoretical literature on the topic
of ‘theory’ is so vast and detailed that it cannot be adequately recapitulated in this section.
Only a few of its most important aspects will be cursorily summarized in the following para-
graphs. For a thorough introduction into the science-philosophical meta-theory of scientific
theories the reader is referred to the usual literature (Bunge, 1998a).
The original meaning of the classical Greek word ϑϵωϱια was ‘speculation’ or ‘contempla-

tion’, whereby a philosopher ‘gazed’ at the objects of interest with the ‘inner eye’ of the mind
in search for truth. This type of ‘gazing’ is still considered as ‘essential’ in Husserl’ian types
of ‘phenomenological’ philosophy. According to Aristotle the term ϑϵωϱια can also be un-
derstood as the ‘thinking about thinking’ (i.e.: the philosophical self-reflection of thought) in
opposition to ‘practice’ or ‘praxis’ (Hoffmeister, 1955).2 This notion of ‘theory’ was closely
related to the notion of ‘pure reason’ or ‘pure knowledge’ in its systematic order, regardless of
any utilization for specific purposes (Hoffmeister, 1955). From an etymological point of view,
the word ϑϵωϱια is also related to the Greek word ϑϵoς (God) and implies thus some connota-
tion of ‘divinity’ in the act of theoretical philosophical speculation (Hoffmeister, 1955). In
the newer philosophy, ‘theory’ is opposed to ‘experience’ (not to ‘praxis’).3 Theoretical know-
ledge is in this context the knowledge obtained through thinking, the scientific explanation
of particular phenomena on the basis of fundamental principles, the conglomeration of many
specific insights with the help of case-independent laws, and the like. Thereby a theory dis-
tinguishes itself from one individual ‘law’ or one individual ‘hypothesis’ (which also ‘captures’
a particular fact or phenomenon) by its far more comprehensive character. Therefore, every
science eventually aims at the development of a theory in this modern sense of the term which
is always understood as providing overview through description and insight through explanation
(Hoffmeister, 1955). Moreover, a scientific theory is not only more comprehensive than an
individual law: it must also be possible to logically deduce particular individual laws from the
totality of the theory with which these individual laws are associated (Bochenski, 1954, 1965).
An apparently paradoxical attitude was held by the philosophers of phenomenology: the

ideal of philosophical phenomenology, specifically Husserl’s, was pure beholding under exclu-
sion of all theory and all tradition (Bochenski, 1954, 1965). This philosophical programme
implies that the classical Greek notion of ϑϵωϱια, which had been identified with the act and
attitude of contemplative beholding, was no longer the phenomenologist philosophers’ notion
of ‘theory’ at the beginning of the 20th century:

“A peculiarity of 20th century science is that the most important scientific activity—
the deepest and most fertile—is centered around theories rather than around stray
questions, data, classifications, or stray conjectures. Problems are posed and data

2This conceptual difference does not prohibit thinking about the essence of doing, i.e.: ‘theory of praxis’.
3This conceptual difference does not prohibit thinking about the essence of experience, i.e.: ‘theory of exper-

ience’.

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 300

are gathered in the light of theories and with the hope of conceiving new hypo-
theses that may in turn be expanded or synthesized into theories; observations,
measurements and experiments are executed not only to collect information and
generate hypotheses but also to test theories and find their domain of truth; and ac-
tion itself, to the extent to which it is deliberate, relies more and more on theories—
for the better or for the worse. In short, an emphasis on system—on empirically
testable theory, of course—rather than on raw experience is what characterizes
contemporary science” (Bunge, 1998a).

Moreover, the notion of ‘theory’ must neither be defined so narrowly that only mathematics
and physics may be (exclusively) regarded as possessing genuine theories (which would be
the position of extreme ‘physicalism’) nor so widely that any arbitrary kind of opinion about
anything may be called a ‘theory’ (Charpa, 1996). Thus, theories can express scientific opinions
only if they fulfill particular requirements and functions with regard to data, principles, and
their own internal logical structure (Charpa, 1996). As far as the relations between theories
and data are concerned, three functions are of highest importance, namely: explanation, de-
scription, and prediction. Additionally also the generation as well as the justification of data
can belong to the functions of theories (Charpa, 1996). Moreover, theories can also appear as
concretizations of metaphysical systems or as application cases of methodological principles.
For example: the physical theories constructed by Kepler or Newton were embedded into far-
reaching nature-philosophical speculations which consider the ‘essence’ of ‘nature’ and which
include even theological thoughts about divine manifestations in the physical realm. Even in
the ‘secularized’ 20th century, Albert Einstein structured his physical theories according to his
own meta-theoretical maxims and meta-physical speculations (Charpa, 1996).
Such as the notion of ‘theory’ must neither be too narrowly nor to widely defined, also the

semantic extent of a theory must neither be too narrow nor too wide (Charpa, 1996). Overly
general theories would tell us (so-to-say) ‘nothing about everything’, whereas overly specific
theories would tell us (so-to-say) ‘everything about nothing’. Either way, theories can be
regarded as systems of propositions which can even be represented formally in an axiomatic
fashion (Charpa, 1996). The ‘theorems’ of such a system are of law-like type in such a man-
ner that formal-logical deductions (in the formalism of the theory) and material explanations
of observable phenomena (about which the theory speaks) are closely related to each other
(Charpa, 1996).
The above-mentioned notion of ‘theory’ is closely related to the notion held inmathematical

logic (Schöning, 1992), according to which a set of formulæ T = {F1, F2, . . . , Fn} is a ‘theory’ if
and only if ∀Fi ∈ T ∃F ⊆ (T \Fi): F |= Fi, as well as ∀F ⊆ T ∃F ∈ T : F |= F . Two sub-types
of these types of formalized theories, are the Hilbert-Carnap-Reichenbach type (HCR) as well as
the Gödel-Chomsky type (GC) (Margalit, 1996):
• In the HCR notion of ‘theory’ we assume to have intuitive and immediate access to a
domain D of ‘primitive’ entities or basic facts (a.k.a. axioms) on top of which the theor-
ems of a formalized theory are ‘formalistically’ constructed in such a manner that further

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 301

‘information’ can be ‘obtained’ via the formalized theory’s rules of deduction (Margalit,
1996).
• In the GC notion of ‘theory’, on the other hand, it is presumed a-priori that a domain and
a co-domain of entities already exist independently of each other (i.e.: the theorems of a
theory on the one hand, and all theory-independent ‘truths’ on the other hand), such that
‘theorizing’ becomes a matter of how to find suitable and consistent mappings (typically
partial ones) between the domain and the co-domain. This type of ‘theorizing’ can pos-
sibly be bi-directional, whereby not only the formal theory can be used to deduce and
reveal hitherto ‘hidden’ information, but also (vice versa) the ‘quality’ and ‘suitability’
of the theory can be judged on the basis of our intuitive insights into the pre-existing
‘truths’ which constitute the theory’s co-domain (Margalit, 1996).

For example: Gödel and Tarski have famously demonstrated that no formalized arithmetic
theory A can ‘detect’ all ‘truths’ within the same arithmetic system and that no formal lan-
guage L exists to consistently define the notion of ‘truth’ within the same language L (without
resorting to some higher-level meta-language). Both results are closely related with each other
from a semantic point of view.
However, more common than those purely formalistic notions of ‘theory’ are nowadays

the so-called ‘model-oriented’ notions of ‘theory’ (Charpa, 1996). According to the meta-theory
of model-oriented theories, their typical functions (w.r.t. data, etc.) are carried by ‘models’
or ‘structures’ rather than by linguistic-logical expressions. Thereby the underlying notion of
‘model’ can differ strongly from discipline to discipline. In pure logics (for example) a ‘model’
of a given formula F is a set of object-values which (by way of substitution or ‘interpreta-
tion’) can make F ‘true’. This notion of ‘model’ differs strongly from (for example) a globe
as a ‘model’ of planet Earth on the desk of a geographer (Freudenthal, 1961). Within this
model-oriented school of meta-theory, Suppe’s and van Fraassen’s semantic approach can be
distinguished from Sneed’s and Stegmüller’s structuralist approach. In these schools, ‘explan-
ations’ as well as ‘predictions’ are assertions about relations between the theoretical models
and those phenomena to which those models are ‘applicable’. In this science-philosophical
meta-theory of ‘modellism’, ‘corroboration’ and ‘refutation’ of hypotheses are no judgments
about the ‘goodness’ of a theory as such: rather they refer to a theory’s limits of applicability
as far as the permissible model-reality-relations are concerned (Charpa, 1996). Hence these
model-oriented meta-theories can be broadly classified as ‘instrumentalist’, ‘conventionalist’,
or ‘operationalist’ meta-theories: from these points of view, theories merely have to ‘work
well’ (or ‘be useful’) to some lesser or greater extent.
To understand the differences between ‘model-oriented’ theories and the above-mentioned

theories of type HCR it is important to remember that the leading members of the Circle of
Vienna presupposed the existence of basic sentences (Protokollsätze) along the lines of Wittgen-
stein’s Tractatus Logico-Philosophicus which were presumed to correspond immediately with
basic ‘facts’ of the objective physical reality. Model-oriented theories, by contrast, ‘speak’ dir-
ectly only about their models which occupy an intermediate position ‘between’ theory and the

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 302

external physical reality.
In any case, theories serve the purpose of summarizing, coordinating, reproducing, ex-

plaining and predicting phenomena (Götschl, 1980). Theories thus comprise entire classes of
phenomena in such a manner that they can be regarded as scientific knowledge or scientific
insight (Erkenntnis). In this sense theories are primarily conceptual auxiliary-means which
enable the separation of non-scientific from scientific knowledge and which bring the latter one
into an inter-subjectively objectified form. Thereby, theories are more than merely additive
agglomerations of data, observations, or empirical laws: from theories it is possible to deduce
predictions of future phenomena which had not been explicitly taken into account when the
theory had been constructed. Especially the theories of modern science allow not only for
the deduction of individual predictions or particular laws, but also for the deduction of entire
sub-theories (more special theories) from even ‘more general’ (super) theories. For the clas-
sification of scientific theories as ‘empirical’ it must be possible to check them by procedures
of experience (such as, for example, measurement). To be inter-subjectively acceptable, these
procedures must comply with well-defined norms and methods without which it would not
be possible to distinguish between scientific and non-scientific types of knowledge. Moreover:
theories may have different types and functions in different scientific disciplines, whereby also
their accepted empirical checking procedures may vary from discipline to discipline (Götschl,
1980, pp. 636-637):
• For mathematical theories only their intrinsic logical consistency is necessary, though
(according to Hilbert) a number of additional meta-theoretical requirements can be stip-
ulated such as (for example) completeness or the mutual logical independence of its
axioms.
• Consistent empirical theories must augment those formal-logical properties with exper-
iential ‘contents’. Only when its ‘semantically empty’ formal calculus is appropriately
interpreted, a ‘mathematically written’ theory can be understood as an ‘empirical’ the-
ory (Götschl, 1980, p. 637). Theoretical physics provides the best-known examples of
theories of this type.

Because a theory is ‘carried’ by concepts (notions) and their relations, it must be clarified
which types of notions are admissible for the construction of theories in such a manner that
the theories themselves can be used for deducing testable predictions of future phenomena.
Before theories are quantified (such as in physics) one can usually find qualitative theories for
which it is hardly possible to assess the ‘weight’ or the ‘relevance’ of their various constituting
elements. Nonetheless, also the theoretical notions and variables of qualitative theories must
meet some basic testability and explain-ability requirements, without which it would not be
possible to assert that a given theory is applicable to a particular domain (Götschl, 1980, p.
638). Because theories can only approximate ‘the truth’ partially (i.e.: never reach ‘the full
truth’ in its totality) it is an important meta-theoretical requirement that successively or con-
currently competing theories ought to be comparable to each other: the conceptual and logical

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 303

pre-conditions of comparability became thus a central meta-theoretical problem in modern
philosophy of science (Götschl, 1980, p. 642). In Sneed’s structuralist meta-theory of theories,
a scientific theory appears as an ordered pair T = (K, I) for ‘Kernel’ and ‘Intended domain
of application’ in such a manner that K must appear as invariant in all of T ’s applications.
Moreover, according to Sneed, K must be sufficiently general such that different (though not
completely independent) domains of application for T can be found. Only by applying a theor-
etical structureK to one of its intended domains (e.g.: particular physical systems) the theory’s
empirical assertions emerge. In other words: the scientific assertions (hypotheses) generated
with help of a theory must be strictly distinguished from their underlying theory itself. This
implies that the elements of I appear as ‘models’ of K in a formal-logical model-theoretical
sense: thus they constitute those realms of entities about which a given theory can truthfully
‘speak’ (Götschl, 1980, p. 644). On such a basis (as shown by Stegmüller) it also becomes pos-
sible to meaningfully compare two successively or concurrently competing theories against
each other (Götschl, 1980, pp. 645-646).
From a science-philosophical point of view there is thus a tight connection between various

notions of ‘theory’ and various notions of ‘model’, though these conceptual connections (as well
as the various notions of ‘model’ themselves) cannot be further discussed within the limited
scope of this section. A more comprehensive critique of Stegmüller’s meta-theory can be found
in the science-philosophical literature (Hübner, 1978, 1983).
From a somewhat less ‘subtle’ point of view, three contemporary notions of ‘theory’ can be

distinguished (Seiffert, 1992):
1. A very general notion of ‘theory’ comprises everything which is not immediate action
(or praxis) and which can also be applied to the non-scientific realm (for example when
a football team is ‘theoretically’ discussing the tactics before a tournament).

2. A slightly more specific notion of ‘theory’ refers to various kinds of intellectual or schol-
arly or academic doctrines in various disciplines, particularly in the humanities and social
sciences (for example a ‘theory of education’ in the pedagogical faculty, the ‘Critical The-
ory’ propagated by the socio-philosophical School of Frankfurt, or the ‘theory of science’
as synonym of ‘philosophy of science’).4

3. A very specific notion of ‘theory’, as it was propagated by the science-philosophical Circle
of Vienna, refers to scientifically solid knowledge as a result of a methodologically sound
combination of rational thought and empirical observations (for example the theory of
gravitation in classical Newton’ian physics).

Obviously the extension sets (E) of those three notions include each other: E(1) ⊃ E(2) ⊃ E(3).
As far as this lecture’s domain of interest (namely the techno-philosophy of software engin-

eering) is concerned, it seems that (2) is the notion which the senders of the above-mentioned
SEWORLD communication might possibly have had in mind when they called for a ‘general
4‘Intellectual’ theories especially of this type can get into the dangers of ideologization (Greeley, 1975).

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 304

theory’ of software engineering. This vague notion of ‘theory’ is typically found amongst pub-
lic intellectuals, political ideologists, literary essayists, men of letters, and the like, for whom
‘theory’ is by-and-large anything what they think or write about in their capacity as public
intellectuals (Greeley, 1975; Schlette, 1975). The above-mentioned counter-example notwith-
standing (Margalit, 1996), the popular Theory of Everything (Wilber, 2000) may be mentioned
as an illustrative example.
A similarly vague ideological notion of ‘theory’ can also be found in some ‘counter-cultural’

doctrines concerning the discipline of informatics, which includes software engineering, by-
and-large (Coy, 1992). As an informatician strongly influenced by the School of Frankfurt’s
‘Critical Theory’, Coy doubted the intra-disciplinary coherence of informatics. Thus he classi-
fied informatics as akin to the social sciences, and consequently demanded the elaboration
and production of a so-called theory of informatics in general (Coy, 1992). His computer-
philosophical work was explicitly aimed at separating the discipline of informatics (including
software engineering) from its formal-logical traditions (Coy, 1993) as well as at pushing this
discipline into the realms of some socio-culturalist postmodernism (Coy, 1992). According
to his call for a to-be-construed ‘theory of informatics’, individual and particular ad-hoc ap-
proaches to a ‘theory of design’ in the sub-fields software design and hardware design have
remained separate and disparate to-date (Coy, 1992). His ideas were thus quite consistent
with what the senders of the above-mentioned SEWORLD communication have stated in their
call for a ‘general theory’ of software engineering. From such ‘deficits’ (according to Coy)
‘follows’ the (alleged) ‘necessity’ to develop a ‘theory of informatics’, the purposes of which
ought to be:
• to describe the concepts, methods and potential applications of informatics by-and-large;
• to determine the discipline’s status in comparison to the other academic and technical
disciplines from a science-philosophical point of view (Coy, 1992).

Such a general ‘theory of informatics’ was also intended to reveal the social and political
implications of information-technical computer applications in the cultural realm (Coy, 1992).
The affinity of such a concept of ‘theory of informatics’ with the School of Frankfurt’s concept
of ‘Critical Theory’ is obvious. However, because of its practical fruitlessness, Coy’s ideology
eventually ‘fizzled out’ (Hellige, 2012): except of a few neo-marxists in some German faculties
of computing hardly anybody was interested in developing any such ‘theory’, and I predict the
same fate for similar political ‘theories of informatics’ from the English-speaking parts of the
world (Galloway, 2004).
For the sake of completeness I also briefly mention a very peculiar notion of ‘theory’ that

had been suggested in our discipline by the well-known informatician and software engineer
Peter Naur with his claim that the act of programming (or software construction) would be
‘theory-building’ (Heidelberger, 1993; Naur, 1985). This is, however, not the case. Whatever
it might be that is being ‘built’ by (or through) programming (or software construction): it
is certainly not a theory in any of the science-philosophically endorsed meanings of the term

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 305

‘theory’. Surely we can gain interesting insights and professional experience by way of soft-
ware construction (like a medical practitioner will gain additional insights and professional
experience every day in the clinic); however those personal insights must still be properly
‘objectified’ before they can be included into the ‘corpora’ of teach-able theories. To claim
that a piece of software would be a ‘theory’ (of what?) is merely a mis-use of the word
>>theory<<, though it is indeed possible to behold a piece of software as a model of some
real-world phenomenon which can be computer-simulated by ‘running’ such software on the
machine (Winsberg, 2010).
After the literature discussions of above it should have become clear that the various

‘general software engineering theories’, which were proposed by various members of the
GTSE community, are far away from meeting the above-mentioned meta-theoretical criteria of
theory-ness. Indeed, the central conjecture of this lecture is my claim that this gap will never be
closed (as a matter of principle) unless the underlying notion of ‘theory’ is post-modernistically
trivialized. By analogy: there also exists no ‘general theory of medicine’, though the academic
hospitals with all their various specialized clinics, departments and their area-specific ‘par-
tial’ theories of the human body are functioning very well in their daily practice (Silva et al.,
2018). More positively: if a philosopher like Margalit is not afraid of admitting to have “no
theory” of the modern society (1996), then also software engineers need not be afraid of the
absence of a ‘general theory’ of software engineering. Well-defined and area-specific ‘micro
theories’ in combination with our discipline’s many decades of professional experience will
suffice. In other words: what we need at this point in the history of software engineering is
not so much an over-arching meta ‘theory’ about the entire discipline of software engineering
as an abstractum. Instead, what we need is an array of ever better and finer object-theories
within the discipline (about concrete, well-defined and ‘manageable’ intra-disciplinary phe-
nomena and sub-phenomena) which can enable the practitioners of software development to
achieve their own transitions from technicians (artisans and craftsmen) to genuine engineers
(if they are only willing to apply those intra-disciplinary object-theories in their specific do-
mains and sub-domains of expertise). By analogy to older engineering disciplines, as well as
the science-based practical discipline of medicine (Silva et al., 2018), the elaboration of such
specialized, intra-disciplinary, small-scale software engineering micro theories is one of the
main purposes of informatics as a both empirical and formal science in communication with
the technical practice of engineering (Broy & Schmidt, 1999). Hence: any proposed ‘general
theory’ of software engineering can be
• neither of Seiffert’s general type 1 (which would be un- or anti-scientific);
• nor of Seiffert’s philosophical type 2 (which would be counter-productive as far as the
yet-to-be-achieved transformation of software ‘engineering’ into an array of genuine and
highly specialized engineering disciplines is concerned);
• nor of Seiffert’s scientific type 3 (because the entire business of software ‘engineering’, as
a whole, is not a sufficiently ‘simple’, well-defined and human-independent natural phe-

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 306

nomenon which could be objectively described with help of an axiomatized formal sys-
tem in such a manner that law-based Hempel-Oppenheim explanations (Bunge, 1998b)
could be provided about this phenomenon by-and-large).

As far as the sub-area of information systems (within the domain software engineering) is con-
cerned, similar science-philosophical considerations can be made about its currently dominant
meta-theories (Gregor, 2006; Oates, 2006, pp. 293-296).

3 SIMPLIFIED EXAMPLE: WHAT ENGINEERS ‘ADD’ TO SCIENCE

In the following paragraphs I methodologically distinguish between ‘scientist’ and ‘engineer’
as different roles (notwithstanding the possibility for one sufficiently competent expert to play
both roles in personal union, albeit not at the same point in time).
Imagine how a scientific chemist in the laboratory synthesizes some substance S in a small

laboratory glass on the heat of a Bunsen flame from a mixture of more basic substances,
S1, . . . , Sn. Having thus demonstrated the existence of S, the chemical scientist is now de-
termined to explain why S emerged from the basic ingredients S1, . . . , Sn under the influence
of heat. After some scientific explanation has been (hypothetically) found, the chemist’s intel-
lectual task (w.r.t. S) is by-and-larged accomplished (from a purely scientific point of view),
though the individual hypothesis concerning S will still have to be ‘integrated’ into a more
comprehensive scientific theory of chemistry.
Now assume that (somewhat later) an applied chemist has found out that the substance

S can be used for a number of interesting practical purposes. We could think (for example)
about chemicals which are applied in pharmacy, or chemicals which are applied to wash out
the the gold-containing ores in the mining industry. Thus there arises a social (commercial
and/or political) desire to have substance S available as a ‘commodity’ in sufficiently large
quantities. Like the ‘theoretical’ chemist, the ‘applied’ chemist is still interested in finding
scientific answers to ‘why’-questions, however with possible applications already in mind: for
example, the applied chemist might want to find out scientifically why (for what ‘deeper’
reasons) the new substance S ‘works’ so well for the purpose of washing out the ores in the
gold mine.
At this point the chemical engineer enters the scene (Auyang, 2003). Knowing already that

S can be synthesized in principle (as demonstrated by the chemical scientist) and that S can
be practically utilized (as shown by the applied chemist), the chemical engineer’s task is now
to find an innovative method for the industrial mass-fabricating of S, as cheaply (economic-
ally) as possible, in very large quantities. This problem is outside the scope of interest of the
purely scientific chemist in the laboratory, whereas the purely scientific question (why was it
possible to synthesize S from S1, . . . , Sn in the first place?) is outside the professional scope of
interest of the chemical engineer (Auyang, 2003). Whilst the scientific chemist in the laborat-
ory had it fairly ‘easy’ to produce a very small quantity of S with help of rather small tools at
hand, the ‘up-scale’ to the economically frugal mass-production of S confronts the chemical

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 307

engineer with a large number of additional technical problems which are all outside the scope
of chemistry as a pure natural science:
• Whereas S and S1, . . . , Sn may be quite harmless in their tiny laboratory-appropriate
quantities, large accumulations of S and S1, . . . , Sn are likely to be dangerous (Auyang,
2003), such that safety precautions must be considered.
• Whereas in the small laboratory glass on the intense heat of the Bunsen flame the chem-
ical reaction of S1, . . . , Sn to S happens quasi-immediately and quasi-everywhere (homo-
geneously) in the glass, this is not so in a large industrial vessel into which enormous
quantities of S1, . . . , Sn are pumped through pipelines: in such an ‘up-scaled’ setting the
chemical engineer must also think about

– how to bring the heat energy from the walls of the huge industrial vessel quickly
into the center of the vessel, such that the chemical reaction does not merely occur
in close proximity to the walls of the vessel (Auyang, 2003), and

– how to mechanically mix or stir the in-pouring currents of S1, . . . , Sn fast enough
such that the total size of the ‘reactive surface’ (or ‘interface’) between the chem-
ically reacting substances becomes as large as possible inside the vessel (Auyang,
2003).

• Whereas the small laboratory-quantities of S1, . . . , Sn as well as the gas for the Bunsen-
flame are rather cheap from a financial point of view, such that economic frugality is
not a genuine scientific concern, the day-to-day operation of a large chemical factory for
the mass-production of S is very expensive, such that frugality considerations are highly
important from the chemical engineer’s point of view (Auyang, 2003).

All this, which the purely scientific chemist in the laboratory has the luxury to ignore, must be
theoretically and empirically known by the chemical engineer. Table 1 (in which the ‘applied’
chemist ‘between’ the ‘pure’ chemist and the chemical engineer is not shown) summarizes
these epistemological differences to illustrate that no ‘general theory of chemical engineering’
could possibly cover all of those matters (including the scientific chemical laws of S1, . . . , Sn

and S, all the problems of mixing and stirring a chemical ‘soup’ in a large vessel, all the
problems of heat transport from the walls to the center of the vessel, all the necessary safety
considerations, all the economic frugality considerations, and so on): notice particularly the
difference between ‘effective synthesis’ and ‘efficient industrial fabrication’. In other words,
“engineering knowledge is so vast and diversified as to defy a strictly unified treatment in any event”
(Vincenti, 1990, p. 13).
In this scenario, moreover, an all-comprising ‘multi-theory’ of so many different and di-

vergent conceptual details could not honestly be called a coherent ‘general theory of chemical
engineering’, all the theorems of which would have to be strongly ‘connected’ with each other
(Bunge, 1998a). “Device-specific theories that depend on special approximations are a case in point”
(Vincenti, 1990, p. 14). To answer the ‘why-exists’ question about S, the scientific chemist

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 308

Table 1: Example: Different Professional Interests in Chemistry
Professional Knowledge-Interest Scientific Chemist Chemical Engineer
Which kind of S is impossible? √ —
Why can S at all exist? √ —
How can S be effectively synthesized? √ √

How can S be efficiently fabricated? — √

must resort to ontologically ‘deeper’ knowledge at the level of physics (molecules, atoms, pro-
tons, neutrons, electrons, mutually exclusive quantum-states, and so on) which the chemical
engineer does not need to have in order to be able to successfully carry out the required engin-
eering tasks. At the ontologically ‘deeper’ level of the ‘most basic’ natural entities the scientific
chemist (however not the chemical engineer) resorts to a ‘general theory’ which is relevant in
and for the chemist’s natural science.

4 META-THEORETICALLY RELEVANT DIFFERENCES BETWEEN SCIENCE AND
ENGINEERING

After the motivating example of above, the subsequent paragraphs recapitulate some meta-
theoretically salient differences between science and engineering from amore ‘philosophical’ point
of view. Relevant literature on this topic is widely available (Aravena-Reyes, 2018; Bristol,
2018; Pirtle et al., 2018; Schiaffonati, 2018; Wang & Li, 2018).
Hints at the ‘big bang’ theory (astrophysics) or the Darwinian theory of evolution (bio-

logy), as they were made by the SEWORLD communication quoted above, are inappropriate
and misleading in a context of software construction for mainly one reason: both astrophys-
ics and biology are natural sciences, whereas software ‘engineering’ is not. Whereas science
is concerned about what is, engineering is concerned about what ought to be (what shall be
done and how). However, a ‘general theory’ about what ought to be is nowhere to be seen.
Nonetheless, in our current historic era, science and engineering (or ‘technology’) are often
confused and conflated with each other (Bunge, 1998b, p. 406). For this reason it is import-
ant to remind ourselves of a number of crucial differences between science and engineering.
These differences are all relevant for the ‘possibility’-question concerning any ‘general theory’
of software engineering, too. First of all, ‘technology’ typically refers to
• material artifacts (objects, devices, processes), as well as the knowledge about them;
• and the activities aimed at the satisfaction of specific human or social needs through the
devising of appropriate artifacts, as well as the knowledge about how to conduct such
activities (Arageorgis & Baltas, 1989).

Whereas science aims at increasing and rationalizing knowledge by establishing better theor-
ies, technology aims at satisfying social needs (Arageorgis & Baltas, 1989, p. 212). Neverthe-

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 309

less there are a number of research-oriented disciplines (including informatics) in which both
scientific and technological concerns interfere. This observation implies that the difference
between science and technology cannot be merely a matter of different goals: epistemological
and methodological issues also play their roles in this constellation (Arageorgis & Baltas, 1989,
pp. 212-213). In contrast to traditional (pre-scientific) ‘craft technologies’, which still occur
within software engineering too, solutions of technical problems based on scientific theories
lead to ‘scientifically attested technologies’ (Arageorgis & Baltas, 1989, pp. 213-214). Therein,
theoretical models (which are based on relevant parts of the applicable sciences) bridge the gap
between what a scientific theory represents and the state of the world which a particular tech-
nical enterprise tries to produce. Nevertheless there are still many technical processes or entit-
ies which cannot be modeled in such a manner (Arageorgis & Baltas, 1989, p. 214; Vincenti,
1990). Thus, a peculiar mixture of pre-scientific crafts and scientifically attested techniques is
essential in all ‘technology’, as well as also in the practices of scientifically supported medical
healing (Bamm, 1956, chpt. 5), in spite of any epistemic progress in the underlying auxil-
iary sciences (Arageorgis & Baltas, 1989, p. 215): for comparison consider the well-known
notion of tacit knowledge (Polanyi, 2009) and those forms of engineering ‘intuition’ which stub-
bornly resist the ‘codification’ and formalization (Young, 2018) that would be needed for the
formulation of solid theories.
A formal-logical analysis of this gap reveals differences between nomological statements

(scientific), nomopragmatic statements (technological) and engineering rules (technical): their
logical implication relation is only uni-directional, not bi-directional (Bunge, 1998b, pp. 149-
150). A material (non-formal) reason for this difference can be provided as follows: The
technical production of complex artifacts involve ‘reality’ in a multitude of aspects. Not only
entities belonging to the domains of different sciences, but also considerations about desirable
properties like feasibility or reliability are always involved (Vincenti, 1990). Because each
science can deal with only the one particular aspect of reality, which is ‘idiosyncratic’ to it,
a technological problem resides outside the scope of any single science (Arageorgis & Baltas,
1989, p. 219) and, hence, outside the reach of any ‘general theory’ if ‘general theory’ shall be
understood as scientific theory.
Though the different aspects of the real phenomena involved in a technical problem are

‘incoherent’ in the sense that each one belongs to the topical domain of a different science,
the different sciences can well cooperate towards the solutions of technical problems in inter-
disciplinary relations (Arageorgis & Baltas, 1989, p. 221). These inter-scientific relations are
not formed ad-hoc for each and every particular technological problem at hand. Instead, the
resemblances and analogies, which characterize various technical problems, lead to suitable
allocations of such problems into larger ‘families’ and thus to the establishment of more or
less permanent groups of sciences around those families of technical problems (Arageorgis &
Baltas, 1989, p. 222). More recently those families of problems have been called ‘Mode-2
objects’, which are either devices or research goals that have the potential to ‘crystallize’ those
inter-disciplinary transactions (Nowotny et al., 2001, p. 144). In the realm of informatics,
for example, there are a number of technical development problems which require the joint

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 310

involvement of artificial intelligence, robotics, linguistics, psychology, etc.
The various specialties of engineering (chemical, electrical, and the like, however never:

unspecific ‘hardware engineering’) are thus inter-disciplinary branches which became insti-
tutionalized via such processes of problem-induced ‘hybridization’. In other words: one can
characterize the various engineering disciplines as problem-based specialties whereby the vari-
ous communities of engineers are primarily identified by their central concern in solving more
or less precisely defined types of technological problems (Arageorgis & Baltas, 1989, p. 222),
whereby types of ‘devices’ (like ships, cars, or bridges) correspond to those types of technolo-
gical problems (Vincenti, 1990). Thus the ‘curriculum’ of a ‘school’ of engineering accurately
reflects the heterogeneous basis of the engineering disciplines: Besides the genuinely scientific
courses and textbooks one can also find in such schools several courses which correspond to the
so-called theories of engineering which are, however, not ‘general’. They can be divided into
factual theories and operational theories (Arageorgis & Baltas, 1989, p. 222; Bunge, 1998b,
chpt. 11; Vincenti, 1990), or, in somewhat simpler terms: theories which provide ‘product
knowledge’ versus theories which provide ‘process knowledge’ (Auyang, 2003).
Thereby, factual theories of engineering deal with the various phenomena and effects in-

volved in the structure and the function of technical artifacts. They also include suitable meth-
ods for analyzing and controlling those phenomena and effects. All in all, the factual theories
of engineering are needed for understanding and explaining such phenomena and effects on
the basis of their underlying scientific theories as far as they are practically applicable. How-
ever, because of the high degree of complexity of the technical phenomena they deal with, the
factual theories of engineering must often remain at a rather superficial, phenomenologically
descriptive level (Arageorgis & Baltas, 1989, p. 222; Bunge, 1998b, chpt. 11; Vincenti, 1990).
Chemical engineering has been discussed as one plausible example to illustrate those abstract
science-philosophical considerations (Arageorgis & Baltas, 1989; Auyang, 2003).
More than the factual theories, which objectively describe properties of classes of devices,

the operational theories in the engineering disciplines are practice-oriented. Their purpose is
the formulation of rules for the optimal course of action in the processes of technical imple-
mentations (Bunge, 1998b, chpt. 11; Vincenti, 1990). In spite of their technical sophistication,
operational theories are entirely subject to the social determinations of their corresponding en-
gineering activities. In other words: they reflect the social ‘values’ in relation to a ‘techno-
logical ideal’ conceived by the agent who had initially posed the problem and requested its
solution (Arageorgis & Baltas, 1989, p. 223).
The factual and the operational theories of an engineering discipline, the appropriate meth-

ods and techniques as well as the practically relevant knowledge from the corresponding basic
sciences, are combined into a structured collection which constitutes a conceptual and meth-
odological framework which is specific to that engineering discipline (Arageorgis & Baltas,
1989, pp. 223-224). Consequently, the ‘solution’ of a technical problem is not determined by
purely intra-scientific factors the way the solution of a scientific problem is. Alternative choice
options, which appear at every coarser or finer level of technical design, often require import-
ant extra-scientific decisions in which social ‘values’ and costs of many kinds are taken into

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 311

account. The solution to a technical problem is thus ‘scientifically indeterminate’ inasmuch
the factual theories of engineering, which support scientific attestation, cannot select by them-
selves the desired solutions. All they can do is to delimit the domain of those solutions which
are scientifically possible (Arageorgis & Baltas, 1989, p. 226). In philosophical terms this
open situation is subject to the ‘hermeneutics of engineering’ (Poser, 1998), which means that
engineers are concerned with what is unique and specific more than with what is universal and
general. At this point the classical distinction between ‘nomothetic’ and ‘idiographic’ disciplines
(Windelband, 1900, 1998) becomes relevant again, though the engineering disciplines had
not been given much attention in this classification scheme from the late 19th century. Now
it turns out that the engineering disciplines are epistemologically characterized by a peculiar
‘mixture’ of both nomothetic and idiographic ‘elements’. In the realm of software construc-
tion, for example, all software systems are delimited scientifically by the undecidability of the
halting problem, the NP-hardness of the knapsack problem, the acceleration limits described
by Amdahl’s law, and the like; nonetheless there are still many possible and viable technical
solutions to many practical problems within these strict computer-scientific limits.
All in all the foregoing paragraphs speak strongly against any possibility of any seriously

acceptable ‘general theory’ (in a science-philosophically acceptable sense of the term ‘theory’)
for any software-related engineering discipline which truly deserves the title ‘engineering’;
(remember in this context that there exists no single ‘hardware engineering’ discipline for
everything that is made of tangible materials). As a consequence of the considerations outlined
above, such an (utopian) ‘general theory’ of software engineering would have to comprise
a multitude of operational sub-theories which are in themselves extra-scientific and highly
dependent on non-objective (hence: ever contestable) social factors. These factors distinguish
all engineering disciplines from the pure sciences (Gruner, 2010; Gruner & Kroeze, 2014) in
which ‘general’ theories can be formulated.
In other words: Because of the specific differences between science and engineering, the

utopian search for a science-equivalent ‘general theory’ (like the ‘big bang’ theory of cosmo-
logy, or the Darwinian evolution theory of biology) in and for the domain of software engin-
eering (which includes information systems design) does not make sense. Scientific theories
are always strictly dis-interested, descriptive and predictive, whereas engineering as a whole is
always motivated by varying vested interests (Bunge, 1998b, chpt. 11), and always comprises
freely chosen, normative and voluntary features, which stand outside the scope of purely de-
scriptive and predictive scientific theories. Such forms of knowledge have also been called
‘many-level theories’ which can only arise from ‘inter-disciplinary networks’ (Poser, 1998).
Moreover, as previously mentioned: ‘software’ as a subject is far too broad and varied to make
one genuine engineering discipline for it, (such as also no single one ‘hardware engineering’ dis-
cipline exists). As there are many different specialized ‘hardware engineering’ disciplines for
different types of ‘hardware’ devices (trains, ships, cars, etc.), there must first arise different
and diversified software engineering disciplines (in plural) for different types of software sys-
tems before the ‘craft’ of software construction can reach the envisaged status of ‘engineering’.
Only then we can hope to define salient, non-trivial and fruitful engineering theories for these

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 312

specialized sub-disciplines within the wide field of software construction. One positive ex-
ample in this context is the already highly specialized sub-discipline of compiler construction,
for which salient, computer-science-based, fruitful and highly applicable compiler construc-
tion ‘micro theories’ are already known since several decades.

5 THE MULTIPLICITY OF HIGHLY SPECIALIZED ‘MICRO THEORIES’ IN THE
ENGINEERING DISCIPLINES

In contrast to other notions of ‘micro theory’ (Stol et al., 2016), which are rather fruitless
notions, micro theories are not theories about one singular particular technical artifact in its
‘idiographic’ uniqueness. Rather, micro theories deal with classes of similar technical artifacts,
which are also known as ‘devices’ (Vincenti, 1990), of which a singular particular technical
artifact is only an instance. A well-known historic example of a ‘micro theory’ can be found
in the development of the theory of heat-power-transmission systems (which is nowadays in-
cluded in the physical sub-discipline of thermodynamics) during the era of the steammachines
in the ‘classical’ period of industrialization.
Already in the 1970s, philosophers of science from the Institute of Starnberg had postulated

that so-called finalized sciences, which receive their driving motivations extra-scientifically
from societal problems rather than intra-scientifically from the sciences’ own theoretical de-
siderata, tend to produce a flurry of highly specialized technological sub-theories on the basis
of general scientific theories (Böhme et al., 1973). Though this Starnberg’ian science-historical
meta-theory had been strongly criticized for its exaggeratedly ‘uniform’ treatment of all sci-
ences as if they were one (Dahrendorf, 1976; Pfetsch, 1979; Rasmussen, 1982; Restivo, 1984),
it is to a large extent acceptable as far as only the engineering sciences are concerned.
A ‘seminal’ introduction into the history, practice, and epistemology of engineering, which

was written on the basis of case studies and examples from the discipline of aeronautical en-
gineering (Vincenti, 1990), offered a noteworthy combination of factual experiences together
with science-philosophical and methodological reflections at a higher level of abstraction. As
far as software ‘engineering’ is concerned, especially the work of Jackson and Maibaum facilit-
ated a fruitful transfer of some of Vincenti’s most important insights into the field of software
construction. Their interpretations of Vincenti’s findings are by-and-large compatible with the
analyzes provided by other philosophers of science and technology (Arageorgis & Baltas, 1989;
Bunge, 1998b), as well as with analyzes provided by other engineering-oriented informaticians
(Broy & Schmidt, 1999).
In the various areas of software construction, ‘mainstream’ formal methods,5 which can

be regarded as ‘operational theories’ (Arageorgis & Baltas, 1989), are useful only for small
and narrowly defined classes of software development problems (Jackson, 1998). In such a
context, universal methods cannot be effective because they cannot sufficiently capture the
5The term ‘formal methods’ as such is already quite old (Beth, 1962). Only much later this term was adopted

in the same sense by the computing and software construction communities.

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 313

all-important particular details of the problems at hand. Especially, any ‘universal’ methods
must ‘abstract away’ all those aspects of a software development task the uniform-universal
treatment of which would be too difficult (Jackson, 1998, p. 192). Crucial in engineering
is a proper balance between what is general and what is particular. An engineering handbook,
for example, is not a compendium of abstract fundamental principles (Gruner et al., 2020):
on the contrary, the engineering handbook contains a corpus of rules and procedures in the
form of ‘nomopragmatic statements’ (Bunge, 1998b) through which those general abstract
principles can be most efficiently applied to the particular design tasks at hand (Jackson, 1998,
p. 193). In software development, too, the most useful application case for the precision which
formality (i.e.: ‘theoretical-ness’ in the classical scientific sense of the notion of ‘theory’) can
offer is the case of sharply focused ‘micro methods’ for very specific purposes. Thereby, which
is quite compatible with the Starnberg’ian philosophy of ‘finalization’ (Böhme et al., 1973),
each existing formal method may be expected to ‘give birth’ to several ‘micro methods’ in such
a manner that only parts of the entire formal apparatus of their common ‘parent method’ are
used. Those parts must be accompanied by explicit declarations about the specific contexts in
which they are expected to be successfully applied (Jackson, 1998, p. 193). A specific recent
example can be found in the Formal Methods for the Railway Domain (Gruner et al., 2013; Gruner
et al., 2016; Gruner et al., 2020). The use of such ‘micro methods’ characterizes an applied
(i.e.: not ‘pure’) scientific discipline (Bunge, 1998b, chpt. 11; Jackson, 1998, p. 193) in which
large overarching claims are merely absurd (Jackson, 1998, p. 194).
Thus, domain-specificity is ‘inherent’ in successful engineering disciplines (Maibaum, 2009).

As far as the above-mentioned transfer of insights from Vincenti is concerned, the ‘theoretical
tools’ category, which is one of several categories of engineering knowledge (Vincenti, 1990),
is most important for the topic of this lecture. Those ‘theoretical tools’ are needed by engin-
eers to ‘underpin’ their work. They include ‘intellectual concepts’ for thinking about design
as well as mathematical methods and ‘theories’ (in plural) for making design-related calcula-
tions. As far as the above-mentioned difference between science and engineering is concerned,
the engineer’s ‘theoretical tools’ may be devised specifically for use in particular contexts of
application and might thus possibly be of no intellectual value for a pure scientist or mathem-
atician (Maibaum, 2009, p. 9). As a questionable counter-example in software engineering we
may regard the notorious ‘capability maturity model’ (CMM) which does not directly address
the development of the needed methods of engineering and is thus too general to be of imme-
diate use to software engineers (Maibaum, 2009, p. 10). Accordingly, various ‘in-the-small
theories’ are particularly needed in software construction for the purpose of representing a
software system’s run-time behavior (because only at run-time can software become effect-
ive and potentially dangerous), as well as for the purpose of representing important ‘higher
level’ (or ‘emergent’) properties and qualities, which are difficult to quantify, such as safety,
reliability, maintainability, and the like (Maibaum, 2000, p. 169). However, because those
qualities (or, more precisely: our human perception thereof) will vary from application do-
main to application domain (for example: our ideas about what constitutes ‘high reliability’
might differ from each other when we compare aviation control software against software

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 314

for playing games), the development of those ‘in-the-small theories’ can only be application-
domain-specific. This observation will eventually lead to the systematic compilation of many
handbooks (bodies of knowledge) for the typical software application domains such as banking
and finance, tele-communication, industrial control, robotics, and the like (Maibaum, 2000,
p. 169). They ‘correspond’ to the many device-specific branches of ‘hardware engineering’
which are known since the early days of the industrial era. Last but not least it must also be
conceded that those application-domain-specific ‘in-the-small theories’ will most likely appear
initially merely as ‘guides’ to aid the organization of practical knowledge on the basis of a weaker
notion of ‘theory’ which is not yet the same as the strict notion of ‘theory’ in its fully form-
alized mathematical-scientific sense (Maibaum, 2000, p. 171). Such an initial informality,
however, might gradually ‘shrink’ with the growth of knowledge in the course of a discipline’s
historic development, during which the anti-formalist attitude of the so-called ‘practical men’ will
eventually disappear (Baber, 1997).6
In other words: whilst the notion of ‘theory’ underlying the concept of domain-specific mi-

cro theories might initially sit on the ‘vague’ side of Seiffert’s classification scheme, scientific-
ness and formality will increase as an engineering discipline makes epistemic and epistem-
ological progress during the course of its history (Baber, 1997). Never, however, are they
‘general’ in a ‘physicalist’ sense of ‘generality’ as envisaged by the leading members of the
above-mentioned GTSE community.

6 THE TWO DIMENSIONS OF MICRO THEORY DEVELOPMENT IN SOFTWARE
ENGINEERING

From the foregoing sections of this discussion the following intermediate conclusions may be
drawn:
• According to Dijkstra’s warning and relevant historical accounts of ‘classical’ engineering
disciplines (Baber, 1997), the number of scientifically supported micro theories and their
level of mathematical formalization must eventually increase (in spite of predictable
resistance from some of the so-called ‘practical men’) in all branches and sub-branches
of software ‘engineering’ (including: information systems) for our discipline to overcome
its pre-engineering ‘crafting’ era as well as to get rid of the pseudo-scientific ‘guru-ism’
by which this era is typically characterized.
• At the same time, however, because of the specific differences between science and tech-
nology (engineering), the above-mentioned growth of scientifically supported theoretical
formality cannot happen ‘in general’ (such as in the pure sciences), but must happen in
ever more specific and particular sub-theories and sub-domains of application (Jackson,

6In reply to a question from the audience at the AISSAC‘2020 an additional hint to Max Planck may suffice at
this point, according to whom new insights will not get established by ‘conversion’ of their opponents but rather
by the old-age-retirement of their opponents when a new generation of young researchers takes its place.

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 315

1998; Maibaum, 2000, 2009). For comparison: a general discipline of ‘hardware en-
gineering’ (including everything from nano-mechanics to giant ship yards) does not and
cannot exist either.
• Moreover: the technological theories, by which the engineering disciplines are character-
ized, are to a large extent operational theories which the facts-oriented and ‘disinterested’
pure sciences do not possess to such a large extent (Arageorgis & Baltas, 1989; Bunge,
1998b; Vincenti, 1990).

As a consequence of these three points the multiplicity of software engineering’s formalized
(or at least: to-be-formalized) micro theories can be systematically ordered in the following
two dimensions.
Operational: These micro theories are related to those methods and activities of software en-

gineering which re-occur in all (or most) software engineering projects and are thus
independent of their sub-domain of application. In this category we can find the (form-
alized) micro theories of mereological domain analysis, requirements engineering, pro-
gram verification, software testing, complexity analysis, software refactoring, and the
like. Systematic teach-and-study books for academics and students in each of those areas
of activity are already widely available.

Substantial: These micro theories are (or will be in the future) related to the domains and sub-
domains of application for and in which software is typically developed and deployed. In
this category we can (or will be able to) find the (formalized) micro theories of classical
areas such as compiler construction, database management systems, operating systems,
as well as yet-to-be-developed domain theories for other ‘typical’ classes of software such
as: medical information systems (Silva et al., 2018), finance and accounting software,
natural language processors, robot software, and many more. They correspond (by ana-
logy) to the above-mentioned device-class-specific branches of ‘hardware engineering’
(for which no ‘general theory of hardware engineering’ can possibly exist).

Because of the two-dimensionality of this methodological and meta-theoretical systematiza-
tion, micro-theoretical improvements and refinements can be obtained via pair-wise combina-
tions, such that it will eventually be possible to rely (for example) on specific micro theories for
‘testing of compilers’, ‘verification of operating systems’, ‘modular specification of robotic soft-
ware’, re-factoring of DBMS, requirements elicitation for accounting software, and the like,
which are all specific instances of the ‘divide-and-conquer’ strategy (meta-method) for the
‘simplification of structural complexities’. As far as the intended mathematical-logical formal-
ization of all those micro theories is concerned, good progress in the growth of knowledge has
already been made (for example) in the following areas:
• So-called ontologies (Kroeze, 2010), by means of which the ‘domains of discourse’ for
many typical software applications can be defined, are amenable to formalization by

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 316

description logics with known decidability results and logically correct inference rules
(Baader et al., 2007). Closely related to them are the logical techniques of mereology by
means of which part-whole-relations of systems can be formally described (Bjørner & Eir,
2010). These micro theories can also be applied to ‘information systems’ or ‘knowledge
systems’ such as expert systems or deductive data bases.
• Deontic logic, by means of which we can express formally what is ‘mandatory’, ‘allowed’,
or ‘forbidden’, has been made fruitful in requirements engineering especially for the
stipulation of service contracts (Prisacariu & Schneider, 2012).
• Complexity theory, one of the best-researched topics in theoretical informatics, enables
scientifically grounded performance predictions of almost any ‘typical’ algorithm in its
context of application which can lead directly to the formulation of empirically falsifiable
hypotheses for the purpose of experimental performance evaluations (Guéneau, 2019).7

• Empirically falsifiable hypotheses about the to-be-expected benefits of parallelization
can be obtained from considerations similar to Amdahl’s law (Amdahl, 1967), which is
part of a ‘micro theory’ in the computer engineering domain. Indeed Amdahl’s paralleliz-
ation law is of ‘phenomenological-descriptive’ type, which is quite typical for the laws of
engineering, similar to Kirchoff’s electrical circuit laws in electrical engineering which
are also ‘phenomenological-descriptive’.
• The mature status of theory-guided software testing as a ‘scientifically attested technology’
(Arageorgis & Baltas, 1989) was recently confirmed science-philosophically (Angius,
2013, 2014) with reference to relevant micro theories (Ammann & Offutt, 2008).
• The application of formal language theory and automata theory in the field of compiler
construction is already so well understood that many parts of a compiler software can
nowadays be produced fully automatically by means of commercially available meta-
compilers (lexer generators, parser generators, and the like). Thanks to those micro
theories, compilers (as special instances of software systems) have thus already reached
the status of what was elsewhere called ‘devices’ (Vincenti, 1990).
• Relational algebra is the micro theory behind the construction and operation of many
commercially available database management systems.

Further examples of formalized micro theories ought to be developed and provided for many
other more-or-less well-established sub-areas of software construction.
For the status and reputation of the software ‘engineering’ discipline it would indeed be

good if a larger proportion of all software constructing practitioners would actually and seri-
ously use those already available and applicable formalized or semi-formalized micro theories
7There are some ‘wicked’ algorithmic systems which exhibit ‘nasty’ worst-case performance for only very few

‘unlikely’ (though still legal) inputs: malicious users with knowledge thereof, however, could de-facto ‘knock out’
such systems by deliberately choosing those ‘unlikely’ inputs.

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 317

instead of continuing their profession as mere ‘crafting’ under the influence of ‘gurus’ while
waiting for the notorious ‘software crisis’ to be solved by a mythical-utopian ‘general theory’
in an indefinite future.
Last but not least: when we take the typical knowledge transfer time of approximately

twenty years from basic (foundational) research to standardized industrial practice into ac-
count, the entire software production industry of nowadays ‘should’ already have reached
in many of its sub-fields the ‘micro theoretical’ maturity of the year 2000, whereby some
pre-theoretical ‘crafty’ residuals must be tolerated as previously described and discussed (Ar-
ageorgis & Baltas, 1989).

7 SUMMARY AND OUTLOOK

Not every collection of knowledge is a proper theory. ‘General’ theories ‘of’ software engin-
eering (as a whole) cannot exist, such that any quest for them (such as pursued by the GTSE
community) is a futile waste of intellectual resources. Operational as well as substantial mi-
cro theories for the various branches and sub-branches of ‘software engineering’ (including
information systems) are still lacking and ought to be developed as a matter of urgency, for
the solidification of our still too ‘crafty’ discipline. With the typical turn-around-time of 20
years from research to practice, micro-theoretical innovations or improvements which we
make today might become ‘common practice’ not before the year 2040.

Acknowledgments and Dedications: Many thanks to Dines Bjørner, Michael Jackson, as well
as Tom Maibaum for several inspiring conversations related specifically to the topics of this
contribution. Thanks also to Manfred Nagl for a sequence of earlier conversations about the
essence of engineering and the deep hermeneutic connections between ‘understanding’ and
‘implementing’ in the discipline of software construction. Thanks to the editors of the Zeitschrift
für allgemeine Wissenschaftstheorie for their helpful provision of a highly relevant literature
reference (Arageorgis & Baltas, 1989). Another interesting literature reference (Oates, 2006)
was kindly sent to me by Jan Kroeze. Much inspiration I have also received from ongoing
conversations withMartin Olivier, whose informatics- and software-related discipline of digital
forensics is also still struggling with meta-theoretical questions concerning the discipline’s
theoretical-ness (or shortage thereof). He has, moreover, providedmuch-appreciated technical
help with a rapid internet connection to the ‘online meeting’ of AISSAC‘2020: without his
technical aid I would not have been able to participate in this event. Thanks to the members
of the ACM’s SEWORLD network for having provided the triggering motivation for my invited
lecture. Thanks also to the participants of the IACAP‘2019 and AISSAC‘2020 meetings for
their interesting questions and remarks which enabled me to develop my thoughts from earlier
considerations (Gruner, 2019) into the form of this full-length ‘invited lecture’ contribution.
Many thanks to Maureen Tanner for having invited me to speak at AISSAC‘2020, as well as
to the editors of SACJ (this journal) for their willingness to publish this full-length text of my

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 318

invited lecture in the form of a non-reviewed ‘opinion contribution’.
This contribution is dedicated to the memory of John Conway and Ken MacGregor, two

noteworthy mathematicians and informaticians, who have alas passed away in this year’s
(2020) global COVID19 pandemic. May they be remembered through many citations.

References

Amdahl, G. (1967). Validity of the single processor approach to achieving large scale comput-
ing capabilities. AFIPS Spring Joint Computer Conference. https://doi.org/10.1145/
1465482.1465560

Ammann, P. & Offutt, J. (2008). Introduction to software testing. Cambridge University Press.
Angius, N. (2013). Model-based abductive reasoning in automated software testing. Logic

Journal of the IGPL, 21(6), 931–942. https://doi.org/10.1093/jigpal/jzt006
Angius, N. (2014). The problem of justification of empirical hypotheses in software testing.

Philosophy and Technology, 27(3), 423–439. https://doi.org/10.1007/s13347-014-
0159-6

Arageorgis, A. & Baltas, A. (1989). Demarcating technology from science — Problems and
problem solving in technology. Zeitschrift für allgemeine Wissenschaftstheorie, 20(2), 212–
229.

Aravena-Reyes, J. (2018). Métis — Reconfiguring the philosophy of engineering. In A. Fritz-
sche & S. Oks (Eds.), The future of engineering— Philosophical foundations, ethical problems
and application cases (pp. 123–136). Springer.

Auyang, S. (2003, January 21). Why did chemical engineering emerge in America instead
of Germany? Lecture notes of a lecture presented at the Eidgenössische Technische
Hochschule Zürich. http://www.creatingtechnology.org/eng/chemE.pdf

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Patel-Schneider, P. (Eds.). (2007). The
description logic handbook (Second). Cambridge University Press.

Baber, R. (1997). Comparison of electrical ‘engineering’ of Heaviside’s times and software
‘engineering’ of our times. IEEE Annals of the History of Computing, 19(4), 5–16. https:
//doi.org/10.1109/85.627895

Bamm, P. (1956). Ex ovo — Essays über die Medizin. Deutsche Verlags-Anstalt.
Beth, E. (1962). Formal methods. Springer.
Bjørner, D. & Eir, A. (2010). Compositionality: Ontology and mereology of domains — Some

clarifying observations in the context of software engineering. LNCS, 5930, 22–59.
Bochenski, I. (1954). Die zeitgenössischen Denkmethoden. Francke.
Bochenski, I. (1965). The methods of contemporary thought. Reidel.
Böhme, G., van den Daele, W. & Krohn, W. (1973). Die Finalisierung der Wissenschaft. Zeit-

schrift für Soziologie, 2(2), 128–144. https://doi.org/10.1515/zfsoz-1973-0202
Bristol, T. (2018). The engineering knowledge research program. In A. Fritzsche & S. Oks (Eds.),

The future of engineering— Philosophical foundations, ethical problems and application cases
(pp. 69–88). Springer. https://doi.org/10.1007/978-3-319-91029-1_5

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1093/jigpal/jzt006
https://doi.org/10.1007/s13347-014-0159-6
https://doi.org/10.1007/s13347-014-0159-6
http://www.creatingtechnology.org/eng/chemE.pdf
https://doi.org/10.1109/85.627895
https://doi.org/10.1109/85.627895
https://doi.org/10.1515/zfsoz-1973-0202
https://doi.org/10.1007/978-3-319-91029-1_5
https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 319

Brooks, F. (1995). The mythical man-month — Essays on software engineering (Anniversary).
Addison Wesley.

Broy, M. & Schmidt, J. (1999). Informatik: Grundlagenwissenschaft oder Ingenieurdisziplin?
Informatik Spektrum, 22(3), 206–209. https://doi.org/10.1007/s002870050139

Bunge, M. (1998a). Philosophy of science (Revised, Vol. 1 — From Problem to Theory). Trans-
action.

Bunge, M. (1998b). Philosophy of science (Revised, Vol. 2 — From Explanation to Justification).
Transaction.

Charpa, U. (1996). Grundprobleme der Wissenschaftsphilosophie. Schöningh.
Coy, W. (1992). Für eine Theorie der Informatik. In W. Coy, F. Nake, J. Pflüger, D. Siefkes

& R. Stransfeld (Eds.), Sichtweisen der Informatik — Theorie der Informatik (pp. 17–32).
Vieweg. https://doi.org/10.1007/978-3-322-84926-7_3

Coy, W. (1993). Reduziertes Denken — Informatik in der Tradition des formalistischen For-
schungsprogramms. In P. Schefe, H. Hastedt, Y. Dittrich & G. Keil (Eds.), Informatik und
Philosophie (pp. 31–52). B·I· Wissenschaftsverlag.

Dahrendorf, R. (1976, May 21). Die Unabhängigkeit der Wissenschaft — Vorläufiges Schluß-
wort in einer wichtigen Debatte. Die Zeit 22.

Exman, I., Perry, D., Barn, B. & Ralph, P. (2016). Separability principles for a general theory
of software engineering — Report on the GTSE 2015 workshop. ACM SIGSOFT Software
Engineering Notes, 41(1), 25–27. https://doi.org/10.1145/2853073.2853093

Freudenthal, H. (Ed.). (1961). The concept and the role of the model in mathematics and natural
and social sciences — Proceedings of the colloquium sponsored by the Division of Philosophy
of Sciences of the International Union of History and Philosophy of Sciences organized at
Utrecht, January 1960. Springer. https://doi.org/10.5840/philstudies19631264

Galloway, A. (2004). Protocol — How control exists after decentralization. MIT Press.
Götschl, J. (1980). Theorie. In J. Speck (Ed.), Handbuch wissenschaftstheoretischer Begriffe

(pp. 636–646). Vandenhoeck & Ruprecht.
Greeley, A. (1975). Der Verrat des Intellektuellen. Concilium, 11(1), 30–36.
Gregor, S. (2006). The nature of theory in information systems.MIS Quarterly, 30(3), 611–642.

https://doi.org/10.2307/25148742
Gruner, S. (2010). Software engineering between technics and science — Recent discussions

about the foundations and the scientificness of a rising discipline. Zeitschrift für allge-
meine Wissenschaftstheorie, 41(1), 237–260. https://doi.org/10.1007/s10838-010-
9116-y

Gruner, S. (2016). Heinz Zemanek’s almost forgotten contributions to the early philosophy
of informatics. Paper #1. ACIS’16 Proceedings of the 27th Australasian Conference on
Information Systems.

Gruner, S. (2019). Inappropriate notions of ‘theory’ and their practical consequences in the dis-
cipline of software ‘engineering’ — Discussion abstract. University of Pretoria technical
report. https://repository.up.ac.za/handle/2263/70340

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.1007/s002870050139
https://doi.org/10.1007/978-3-322-84926-7_3
https://doi.org/10.1145/2853073.2853093
https://doi.org/10.5840/philstudies19631264
https://doi.org/10.2307/25148742
https://doi.org/10.1007/s10838-010-9116-y
https://doi.org/10.1007/s10838-010-9116-y
https://repository.up.ac.za/handle/2263/70340
https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 320

Gruner, S., Haxthausen, A., Maibaum, T. & Roggenbach, M. (2013). Towards a formal methods
body of knowledge for railway control and safety systems — FM-RAIL-BOK workshop
2013. DTU Denmark technical report 20.

Gruner, S. & Kroeze, J. (2014). On the shortage of engineering in recent information systems
research. ACIS’14 Proceedings of the 25th Australasian Conference on Information Systems.

Gruner, S., Kumar, A. & Maibaum, T. (2016). Towards a body of knowledge in formal methods
for the railway domain— Identification of settled knowledge. CCIS, 596, 87–102. https:
//doi.org/10.1007/978-3-319-29510-7_5

Gruner, S., Kumar, A., Maibaum, T. & Roggenbach, M. (2020). On the construction of engineering
handbooks — With an illustration from the railway safety domain. Springer. https://doi.
org/10.1007/978-3-030-44648-2

Guéneau, A. (2019). Mechanized verification of the correctness and asymptotic complexity of pro-
grams — Doctorat d’Informatique. “Diderot” Université de Paris 7.

Hall, J. & Rapanotti, L. (2017). A design theory for software engineering. Information and
Software Technology, 87(1), 46–61. https://doi.org/10.1016/j.infsof.2017.01.010

Heidelberger, M. (1993). Was erklärt uns die Informatik? Versuch einer wissenschaftstheo-
retischen Standortbestimmung. In P. Schefe, H. Hastedt, Y. Dittrich & G. Keil (Eds.),
Informatik und Philosophie (pp. 13–30). B·I· Wissenschaftsverlag.

Hellige, H. (2008). Wissenschaft vs. Design — Konstruktionslehren für den Maschinenbau, den
Computer und die Software im historischen Diskursvergleich. In M. Warnke & D. Weber-
Wulff (Eds.), Kontrolle durch Transparenz — Transparenz durch Kontrolle — Tagung des
Fachbereich Informatik und Gesellschaft der Gesellschaft für Informatik (pp. 113–125).

Hellige, H. (2012). Die Dialektik der informationellen Aufklärung — Ein Rückblick auf den
Theoriediskurs von ‘Informatik & Gesellschaft’. In C. Kühne, R. Rehak, A. Knaut, S.
Ullrich, C. Kurz & J. Pohle (Eds.), Per Anhalter durch die Turing-Galaxis (pp. 55–60).
Monsenstein und Vannerdat.

Hoffmeister, J. (Ed.). (1955). Wörterbuch der philosophischen Begriffe (Second). Felix Meiner.
Hübner, K. (1978). Kritik der wissenschaftlichen Vernunft. Karl Alber.
Hübner, K. (1983). Critique of scientific reason. University of Chicago Press.
Jackson, M. (1998). Formal methods and traditional engineering. Journal of Systems and Soft-

ware, 40, 191–194. https://doi.org/10.1016/S0164-1212(97)00165-9
Johnson, P. & Ekstedt, M. (2016). The tarpit — A general theory of software engineering.

Information and Software Technology, 70, 181–203. https://doi.org/10.1016/j.infsof.
2015.06.001

Johnson, P., Ekstedt, M., Goedicke, M. & Jacobson, I. (2015). Towards general theories of
software engineering [editorial]. Science of Computer Programming, 101, 1–5. https://
doi.org/10.1016/j.scico.2014.11.005

Kline, R. (2006). Cybernetics, management science, and technology policy — The emergence
of ‘information technology’ as a keyword 1948-1985. Technology and Culture, 47(3),
513–535.

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.1007/978-3-319-29510-7_5
https://doi.org/10.1007/978-3-319-29510-7_5
https://doi.org/10.1007/978-3-030-44648-2
https://doi.org/10.1007/978-3-030-44648-2
https://doi.org/10.1016/j.infsof.2017.01.010
https://doi.org/10.1016/S0164-1212(97)00165-9
https://doi.org/10.1016/j.infsof.2015.06.001
https://doi.org/10.1016/j.infsof.2015.06.001
https://doi.org/10.1016/j.scico.2014.11.005
https://doi.org/10.1016/j.scico.2014.11.005
https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 321

Kroeze, J. (2010). Ontology goes postmodern in ICT. Proceedings SAICSIT‘10, 153–159. https:
//doi.org/10.1145/1899503.1899520

Maibaum, T. (2000). Mathematical foundations of software engineering — A roadmap. Pro-
ceedings Future of Software Engineering, 161–172. https://doi.org/10.1145/336512.
336548

Maibaum, T. (2009). Formal methods versus engineering. Inroads SIGCSE Bulletin, 41(2), 6–11.
https://doi.org/10.1145/1595453.1595455

Margalit, A. (1996). The decent society. Harvard University Press.
Naur, P. (1985). Programming as theory-building. Microprocessing and Microprogramming,

15(5), 253–261. https://doi.org/10.1016/0165-6074(85)90032-8
Nowotny, H., Scott, P. & Gibbons, M. (2001). Re-thinking science — Knowledge and the public in

an age of uncertainty. Polity.
Oates, B. (2006). Researching information systems and computing. Sage.
Pfetsch, F. (1979). The ‘finalization’ debate in Germany — Some comments and explan-

ations. Social Studies of Science, 9(1), 115–124. https : / / doi . org / 10 . 1177 %
2F030631277900900107

Pirtle, Z., Odenbaugh, J. & Szajnfarber, Z. (2018). ‘The one, the few or the many?’ — Using
independence as a strategy in engineering development and modeling. In A. Fritzsche &
S. Oks (Eds.), The future of engineering — Philosophical foundations, ethical problems and
application cases (pp. 13–31). Springer. https://doi.org/10.1007/978-3-319-91029-
1_2

Polanyi, M. (2009). The tacit dimension (Revised). University of Chicago Press.
Poser, H. (1998). On structural differences between science and engineering. VirginiaTech Elec-

tronic Journals — Society for Philosophy and Technology, 4(2). https://doi.org/10.5840/
techne1998426

Prisacariu, C. & Schneider, G. (2012). A dynamic deontic logic for complex contracts. Journal
of Logic and Algebraic Programming, 81(4), 458–490. https://doi.org/10.1016%2Fj.
jlap.2012.03.003

Rasmussen, S. (1982). Finalization and completed theories. Zeitschrift für allgemeine Wissen-
schaftstheorie, 13(2), 359–369.

Restivo, S. (1984). Finalization — Cool radicalism versus the republic of science. 4S Review,
2(4), 14–20.

Schiaffonati, V. (2018). Philosophy of engineering and the quest for a novel notion of exper-
imentation. In A. Fritzsche & S. Oks (Eds.), The future of engineering — Philosophical
foundations, ethical problems and application cases (pp. 89–103). Springer. https://doi.
org/10.1007/978-3-319-91029-1_6

Schlette, H. (1975). Die Autorität des Intellektuellen. Concilium, 11(1), 24–30.
Schöning, U. (1992). Logik für Informatiker (Third). B·I· Wissenschaftsverlag.
Seiffert, H. (1992). Theorie. In H. Seiffert & G. Radnitzky (Eds.), Handlexikon zur Wissenschafts-

theorie (pp. 368–369). DTV.

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.1145/1899503.1899520
https://doi.org/10.1145/1899503.1899520
https://doi.org/10.1145/336512.336548
https://doi.org/10.1145/336512.336548
https://doi.org/10.1145/1595453.1595455
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1177%2F030631277900900107
https://doi.org/10.1177%2F030631277900900107
https://doi.org/10.1007/978-3-319-91029-1_2
https://doi.org/10.1007/978-3-319-91029-1_2
https://doi.org/10.5840/techne1998426
https://doi.org/10.5840/techne1998426
https://doi.org/10.1016%2Fj.jlap.2012.03.003
https://doi.org/10.1016%2Fj.jlap.2012.03.003
https://doi.org/10.1007/978-3-319-91029-1_6
https://doi.org/10.1007/978-3-319-91029-1_6
https://doi.org/10.18489/sacj.v32i2.898

Gruner, S.: Invited Lecture 322

Silva, E., Bartholo, R. & Proenca, D. (2018). Managing the state of the art of engineering —
Learning from medicine. In A. Fritzsche & S. Oks (Eds.), The future of engineering —
Philosophical foundations, ethical problems and application cases (pp. 217–227). Springer.
https://doi.org/10.1007/978-3-319-91029-1_15

Stol, K., Goedicke, M. & Jacobson, I. (2016). Introduction to the special section — General
theories of software engineering — New advances and implications for research. In-
formation and Software Technology, 70, 176–180. https://doi.org/10.1016/j. infsof.
2015.07.010

Vincenti, W. (1990). What engineers know and how they know it — Analytical studies from aero-
nautical history. John Hopkins University Press.

Wang, N. & Li, B. (2018). Three stages of technical artifacts’ life cycle — Based on a four
factors theory. In A. Fritzsche & S. Oks (Eds.), The future of engineering — Philosophical
foundations, ethical problems and application cases (pp. 113–122). Springer. https://doi.
org/10.1007/978-3-319-91029-1_8

Wilber, K. (2000). A theory of everything. Shambhala.
Windelband, W. (1900). Geschichte und Naturwissenschaft — Rede zum Antritt des Rectorats der

Kaiser-Wilhelms-Universität Strassburg, gehalten am 1. Mai 1894 (Second). J.H.E. Heitz &
Mündel.

Windelband, W. (1998). History and natural science. Theory and Psychology, 8(1), 5–22. https:
//doi.org/10.1177%2F0959354398081001

Winsberg, E. (2010). Science in the age of computer simulation. University of Chicago Press.
Young, M. (2018). Intuition and ineffability — Tacit knowledge and engineering design. In

A. Fritzsche & S. Oks (Eds.), The future of engineering — Philosophical foundations, ethical
problems and application cases (pp. 53–67). Springer. https://doi.org/10.1007/978-3-
319-91029-1_4

https://doi.org/10.18489/sacj.v32i2.898

https://doi.org/10.1007/978-3-319-91029-1_15
https://doi.org/10.1016/j.infsof.2015.07.010
https://doi.org/10.1016/j.infsof.2015.07.010
https://doi.org/10.1007/978-3-319-91029-1_8
https://doi.org/10.1007/978-3-319-91029-1_8
https://doi.org/10.1177%2F0959354398081001
https://doi.org/10.1177%2F0959354398081001
https://doi.org/10.1007/978-3-319-91029-1_4
https://doi.org/10.1007/978-3-319-91029-1_4
https://doi.org/10.18489/sacj.v32i2.898

	Introduction
	What is `Theory'?
	Simplified Example: What Engineers `add' to Science
	Meta-Theoretically Relevant Differences between Science and Engineering
	The Multiplicity of Highly Specialized `Micro Theories' in the Engineering Disciplines
	The Two Dimensions of Micro Theory Development in Software Engineering
	Summary and Outlook

