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ABSTRACT

Nonstationary data with concept drift occurring is usually made up of different under-

lying data generating processes. Therefore, if the knowledge of the existence of different

segments in the dataset is not taken into consideration, then the induced predictive

model is distorted by the past existing patterns. Thus, the challenge posed to a re-

gressor is to select an appropriate segment that depicts the current underlying data

generating process to be used in a model induction.

The proposed genetic programming approach for nonstationary data analytics (GPANDA)

provides a piecewise nonlinear regression model for nonstationary data. The GPANDA

consists of three components: dynamic differential evolution-based clustering algorithm

to split the parameter space into subspaces that resemble different data generating pro-

cesses present in the dataset; the dynamic particle swarm optimization-based model

induction technique to induce nonlinear models that describe each generated cluster;

and dynamic genetic programming that evolves model trees that define the boundaries

of nonlinear models which are expressed as terminal nodes.

If an environmental change is detected in a nonstationary dataset, a dynamic differential

evolution-based clustering algorithm clusters the data. For the clusters that change, the

dynamic particle swarm optimization-based model induction approach adapts nonlinear

models or induces new models to create an updated genetic programming terminal set

and then, purple the genetic programming evolves a piecewise predictive model to fit

the dataset.

To evaluate the effectiveness of GPANDA, experimental evaluations were conducted

on both artificial and real-world datasets. Two stock market datasets, GDP and CPI

were selected to benchmark the performance of the proposed model to the leading stud-

ies. GPANDA outperformed the genetic programming algorithms designed for dynamic

environments and was competitive to the state-of-art-techniques.
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Chapter 1

Introduction

Numerous data analytic approaches exist for stationary data where a static prediction

model is constructed once and used to [55]:

(a) predict for instances not used during training; and

(b) extract knowledge from the underlying data.

For example, predicting the price of an apartment given the features such as apartment

size, location and status. In this instance, the dataset is stationary. However, concepts

in real-world are nonstationary (or drifting or evolving), thus, they change with time.

Also, the underlying data distribution may change [1]. Such changes make a model built

on older historical data inconsistent with the recent historical data. As such, it becomes

necessary to regularly update the model. Also, if the target concept is stationary and

only data distribution changes, updating the current model to be suitable with the new

data distribution is still essential to reduce the variance of error [2].

Temporal data is a series of events over a period that may be time-stamped at regular

or irregular time intervals [2]. Examples of such concepts include weather prediction

rules that may change with seasons; patterns of customers’ buying preferences that may

vary with time (such as holidays, weekend or month-end) or availability of alternatives;

electricity load that may vary due features that affect demand and supply such as

climatic seasons or availability of alternatives such solar power; the inflation rate, among

many others [3]. Temporal data is usually made up of generating processes which change

over the time where order and time are usually the fundamental elements that are central

to the meaning of the data. Also, temporal data is characterized by a high amount
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of dependency among itself in which appropriate treatment of these dependencies or

relationships is essential.

Data streams are a continuous flow of data such as sensor data and network traffic

where order and time are unnecessarily the fundamental elements that are central to

the meaning of the data [4]. However, a data stream may consist of temporal data or

non-temporal data.

Learning in nonstationary environments can be considered as a framework in which

numerous problem domains and machine learning concepts can be listed [55]. Initially,

a learning modality such as supervised, unsupervised or semi-supervised is selected [201]

[202]. How data arrives, either online [205] or incremental is then considered [203] [204].

However, traditionally, these modalities are based on stationarity assumption.

Concept drift is a phenomenon where decision boundaries change due to changes in the

underlying patterns which lead to changes in the target concepts [4]. Concept drift

makes the task of learning a model very complicated due to the hidden cause of change

which is not known a priori. Therefore, special approaches are sought that treat the

most recent historical occurrences as equally significant contributors to the final concept.

Figure 1.1 graphically illustrates the mindmap of concept drift [55]. Also, Figure 1.1

illustrates connection between different areas within machine learning and concepts drift

including the applications that involve concept drifts.

Machine learning is a branch of artificial intelligence that applies algorithms to automati-

cally learn from historical data or past experience without explicitly programmed. Thus,

machine learning infers knowledge from data through empirical learning e.g. regression,

learning association, classification, prediction, image processing, medical diagnosis etc.

[5]. An empirical learning strategy is supervised if training examples have known targets

or labels. Supervised learning is tailored to solve classification and regression problems.

In classification problems, the supplied example labels are classes (categorical). In re-

gression problems, the supplied example labels are numeric. The focus of this thesis is

on regression problems.

2
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Figure 1.1: Mindmap of concept drift [55]

Static search problems are classic representatives of a static environment which happen

to have numerous parallels in the computer search problem domain. In a static envi-

ronment, the optima are fixed on their positions in the search space. The algorithm

typically provides feedback as a reflection on the relative merits of several solutions

found during the search.

Various studies have applied metaheuristics to induce a predictive model on the as-

sumption that the environment is static [35] [36]. However, real-world datasets such as

electric load and weather data exhibit dynamic characteristics, such as concept drift,

that are usually ignored by many metaheuristics.

The dynamic characteristics whose values usually change during the observation period

are described better by temporal properties. However, temporal properties increase the
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problem complexity, since every time temporal property changes, an existing solution

will have to be modified [37] [38]. Thus, the objective function tends to change, which

results in changes in the search space structure and the position of optima [39]. New

optima may appear whereas existing optima may disappear.

Also, the properties of temporal data may be subject to concept drift which may be

meant to be discovered by the learning system [47] [48] [49]. Thus, the learned model

should be continuously adapted. As such, algorithms that can evolve or adapt models

are ideal to track and monitor the underlying changes to adapt the model accordingly.

Adaptation algorithms use either a passive or an active approach to learning in the

concept drift occurring environment [50] [51]. A passive approach updates the model

whenever the new data is made available whereas an active approach needs to detect a

change in the data to adapt the model.

Numerous ways exist to address concept drift in regression problems. One of the ways is

to use a static model that is periodically updated with the data collected from the prior

period [6] [2]. A sliding window may be used to extract the most recent historical data

that captures a new relationship between inputs and outputs [6]. For some regression

problem domains, a weighted data approach is used. A higher weight is assigned to the

most recent data and a smaller weight to the older data [1] [7]. For domains that expect

abrupt changes, techniques that detect changes and select a specific prediction model

are more appropriate [6].

A sharp increase in the use of mobile devices, network sensors, internet-of-things tech-

nology and emerging of the 4th industrial revolution has led to an ever-increasing and

enormous amount of numerical data in various fields such as banking, stock pricing, and

electricity pricing and demand. The focus of this thesis is on the application of machine

learning to develop a solution to data analytics on nonstationary data where data points

are numerical. Data points depict a tuple in a dataset. The proposed algorithm can

adapt the induced model when concept drift occurs.

4

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



1.1 Motivation

Numerous predictive models are built based on statistics on the assumption of drawing

data (training and testing) from the same distribution, however, nonstationary data

is usually made up of generating processes which change over time. Therefore, if the

knowledge of the existence of different data segments within the dataset is not taken

into consideration, then, the induced predictive model is distorted by irrelevant data

segments to the current data generating process.

Nonlinear data can be modeled using linear models by performing a piecewise approxi-

mation of the problem space. A model tree provides a piecewise linear regression model

by building a decision tree hierarchy that fits several smaller data segments of the

dataset to yield an improved model that best fits the entire dataset. In most regression

applications, linear models generally provide satisfactory approximations.

Concepts in real-world are nonstationary. As such, non-adaptive models induced under

the false stationarity assumption usually become obsolete as changes occur in the data

and may fail terribly at worst or perform sub-optimally at best [1]. Therefore, the

learned model should be continuously adapted. Thus, special approaches are sought

that treat the most recent historical occurrences as equally significant contributors to

the final concept. As such, algorithms that can evolve or adapt models are ideal to track

and monitor the underlying changes to adapt the model accordingly.

Metaheuristic techniques, such as particle swarm optimization, differential evolution and

genetic programming, are adaptable by nature, require slight changes to their standard

algorithm structures, are capable to perform in noisy environments and different prob-

lem spaces. Also, genetic programming (GP) can induce decision trees from the given

datasets.

In this work, metaheuristic algorithms are hybridized to induce a predictive model on

nonstationary environments with concept drift occurring. The proposed GP approach

for nonstationary data analytics (GPANDA) implements a piecewise approach to pre-
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dict a target, nonlinear model and consists of three components: dynamic differential

evolution-based clustering algorithm to extract clusters that resemble different data gen-

erating processes present in the dataset; the dynamic particle swarm optimization-based

model induction technique to induce optimal nonlinear models that describe each clus-

ter which approximate mapping between inputs and the target variable; and a standard

GP that evolves model trees that define the boundaries of nonlinear models which are

expressed as terminal nodes.

The proposed approach dynamically adapts whenever an environmental change is de-

tected. As such, the knowledge of the past environment may prove useful in quickly

capturing the current environment or can improve the accuracy of a search. Existing

nonlinear models resemble knowledge acquired in the past and are exploited when a

change in an environment occurs to model the current environment.

1.2 Objectives

The main goal of this work is to develop a (hybrid) predictive approach for nonstation-

ary data with a numerical target that dynamically adapts when concept drift occurs

which can also be used to extract knowledge from historical data. The purpose of the

hybridization is to bring together the strengths of the different approaches to solve the

problem at hand. The justification for the selection of the given approaches is provided

in the following sections: dynamic clustering algorithm in Section 3.5.1, dynamic PSO

in Section 3.5.2 and GP in Section 3.5.3. To meet this goal, the following objectives

have been identified:

(a) To investigate the effectiveness of hybridizing dynamic PSO with a regression tech-

nique, either least-squares approximation or autoregressive, (DynPSO) to induce

optimal nonlinear regression models in nonstationary environments;

(b) To investigate the effectiveness of hybridizing a GP with a dynamic clustering algo-

rithm and nonlinear model induction technique (GPANDA) to perform regression
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on nonstationary data with concept drift occurring;

(c) To compare the performance of DynPSO to optimize the induced model in a non-

stationary environment, to dynamic PSO algorithms, namely multi-swarm, reini-

tialized, and charged PSOs;

(d) To compare the performance of GPANDA in terms of predictive accuracy and com-

putational time to the best performing dynamic GP algorithms and the state-of-

the-art techniques on nonstationary datasets that exhibit different characteristics of

concept drift such as progressive, recurrent, abrupt and random changes on varying

temporal and spatial severities.

In this work, predictive accuracy is measured by the adjusted coefficient of determina-

tion, R2
a, root mean square error (RMSE) or mean absolute percentage error (MAPE)

which indicates computational performance.

1.3 Contributions

The main contribution of this work is coming up with a GPANDA technique that evolves

model trees, with terminal nodes expressed as predictive models whereby the decision

structure and terminal nodes of the tree are dynamically modified to cope with changes

occurring in the nonstationary data due to concept drift. As such, GPANDA provides an

effective data analytics technique for nonstationary data. Other contributions include:

� Hybridization of dynamic PSO with a regression technique (DynPSO), either

least-squares approximation or autoregressive, has shown to be effective to in-

duce optimal nonlinear regression models in nonstationary environments and also,

performed competitively with the state-of-the-art techniques.

� Hybridization of dynamic clustering algorithm, DynPSO and GP (GPANDA) has

performed satisfactorily on regression problems for nonstationary data with con-

cept drift occurring. The obtained results suggest the capability of GPANDA to
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adapt the induced predictive model as the environment changes due to concept

shifts occurring to outperform the state-of-the-art techniques.

1.4 Thesis Outline

This thesis is structured as follows (also refer to Figure 1.2): Chapter 2 provides a syn-

opsis of machine. Two machine learning techniques: decision trees and data clustering

are discussed. A discussion of concept drift and optimization in dynamic environments

is provided.

Chapter 2
Machine Learning

Chapter 3
Metaheuristic
Optimization

Chapter 4 Research
Methodology

Genetic Programming

Differential Evolution

Particle Swarm
Optimization

Chapter 5
Dynamic PSO-based

Regression

Dynamic
Particle Swarm Optimization

Dynamic
Differential Evolution

Dynamic
DE Clustering

Algorithm
Model Trees

Chapter 6 GPANDA

Figure 1.2: Thesis Outline

A decision tree is used in this thesis to induce a predictive model from nonstationary

data. A discussion of decision tree induction techniques is provided and also, deci-
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sion tree variants: classification; regression; and model trees. A discussion of perfor-

mance measures applicable to data clustering is provided. The following temporal data

clustering algorithms are discussed: dynamic clustering PSO; and dynamic clustering

differential evolution.

Chapter 3 discusses metaheuristics. A discussion of the following metaheuristics is pro-

vided: particle swarm optimization; differential evolution; and GP. The following meta-

heuristics designed for dynamic environments were discussed: dynamic GP; dynamic

differential evolution and dynamic PSOs. A detailed critical analysis is provided.

Chapter 4 discusses the research methodology for the study presented in this thesis.

Also, the datasets to be used in this thesis are presented.

Chapter 5 discusses the proposed dynamic particle swarm optimization-based nonlin-

ear regression (DynPSO) to induce optimal nonlinear regression models. A detailed

description of each component of DynPSO is provided.

Chapter 6 discusses the proposed GPANDA to evolve predictive models for nonstation-

ary data. A detailed description of each component of GPANDA is provided.

Chapter 7 presents the obtained results and provides a discussion on the DynPSO and

GPANDA experiments.

Chapter 8 presents the conclusion of the study and recommends potential areas of future

research.
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Chapter 2

Machine Learning

2.1 Introduction

This chapter discusses machine learning concepts and approaches applicable to nonsta-

tionary data analytics.

In this section, concept drift is discussed in Section 2.2 whereas learning in a nonsta-

tionary environment is discussed in Section 2.3. Decision trees are discussed Section 2.4

whereas Section 2.5 discusses data clustering.

2.2 Concept Drift

Concept drift, in machine learning, is a phenomenon where statistical properties of the

concept (target variable), being predicted, changes unexpectedly as time passes due

to changes in underlying patterns [4]. As a result, the model’s prediction accuracy

deteriorates over time.

Changes in the search space are characterized by two major changes: spatial and tem-

poral severities [40]. Temporal severity refers to the frequency at which environmental

changes can occur on any time-scale. The environmental change can occur periodically,

at irregular time intervals or continuously spread over time [39].

Spatial severity refers to the magnitude of change. Change can be in the context of

location and/or the objective value of the position where the change occurred [41].

Spatial and temporal severities are indicators of the difficulty of a dynamic optimization
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problem.

Concept drift implies changes in the decision boundaries that separate patterns in a

dataset. New boundaries may appear as the environment changes and old boundaries

may become obsolete [4]. Temporal and spatial severities are indicators of the complexity

of the problem caused by concept drift. For temporal severity, the rate at which the

concept changes have an impact on the rate at which the decision boundaries change.

The severity of concept changes has an impact on the magnitude by which the decision

boundaries disappear, appear or shift [4]. For a more severe change, typically, it is

harder for the metaheuristic to recover from the change. Figure 2.1 illustrates the

different types of concepts drift.

Figure 2.1: Types of Concept Drifts [42]

As illustrated in Figure 2.1, sudden drift happens when there is a sudden switch between

the existing environment (class c1) and the new environment (class c2). As a result,

all cases from the instant of a switch emanate from the new environment [43]. As

such, prediction models induced from the past environment becomes irrelevant to the

current prevailing environment. Therefore, metaheuristic tends to lose the diversity that

is necessary to locate a new optimal causing the algorithm to be trapped in the local

minimum.
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In a gradual drift, the existing environment (c1) is replaced with a new environment

(c2). The replacement is not abrupt as in sudden drift, rather, the current environment

(c1) is discontinued gradually. Therefore, it becomes easier for the metaheuristic to

adapt to the changing environment.

Incremental drift is characterized by smaller incremental changes as the existing envi-

ronment, c1, is substituted by a new environment, c2. In recurring drift, environments

(classes) are substituted back and forth as illustrated in Figure 2.1. This recurrence

of environments may be periodic or non-periodic. Such a phenomenon is quite natural

whereby environments have a seasonal influence. As such, past information becomes

relevant when a change happens which implies that obtained optimal solutions from the

past environments become applicable to the current prevailing environment. Thus, an

algorithm that has a memory can capitalize on the existing past learned solutions.

Recurrent or cyclical variations happen to be a desirable and valuable quality sought in

adaptive algorithms to promote the retrieval of previously acquired knowledge, therefore,

enables transfer-learning. As illustrated in Figure 2.1, firstly, c1 is replaced with c2 and

then after a given time interval c2 is replaced with c1, the previous existing environment

(recurrent).

The data reduction technique, instance selection, is commonly used to handle concept

drift [44]. Instance selection reduces the training dataset to a manageable volume,

which results in the reduction of the computational resources required to perform the

prediction process [45]. The simplest instance selection technique, sliding window of

analysis, is defined by a fixed number of instances. The sliding window of analysis is

a forgetting technique that caters for outdated instances removal [46] by dismisses the

oldest instances as new ones arrive, thereby providing up-to-date data to the predictor

[3]. A sliding window of analysis technique enables the regressor to reflect and adapt

concept drifts in the temporal data.

12
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2.3 Learning in Nonstationary Environments

Commonly used techniques to learn in concept drift occurring environments are gener-

ally referred to as passive and active approaches [50]. Generally, the active approach

copes quite well in environments where the drift is abrupt whereas a passive approach

is ideal for gradual drifts and recurring concepts [50][51].

The following techniques are discussed in this section: transfer, active and passive learn-

ing.

(a) Transfer Learning

Transfer-learning is a technique that facilitates the transfer of learned knowledge

from the past to the most recent historical occurrences, assuming that there are

certain parts of the past learned knowledge which can still be relevant to the new

task [52]. Therefore, if transfer-learning is implemented in metaheuristics then it

is most likely to greatly improve its performance in terms of learning speed and

generalization capability [52][53].

(b) An Active Approach to Learning in Nonstationary Environments

An active approach to learning in a nonstationary environment with concept drift

occurring is based on a change detection concept. An adaptation technique is trig-

gered that aims to react to a detected change by adapting an existing model or

inducing a new one. As such, adaptive techniques are commonly referred to as

‘detect and react ’ approaches [54].

Considering P to be a data generating process that provides a sequence of tuples

(xt, yt) sampled from a joint probability distribution pt = (xt, yt) and pt to be

evidence distributions and pt (y | x) be prior probabilities, in each point in time, t

[55].

The goal of the change detector is to assert if there exists a change in the process P

through an inspection of features extracted [56]. Also, to monitor the stationarity of
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estimated pt, from the data-generating process and /or analyzing the prediction er-

ror to determine variations in the estimated pt (y | x) [56]. Thus, obsolete knowledge

is discarded and the regressor adapts to a new environment when an environmental

change is detected. However, the major challenge of this approach is to distinguish

effectively between up-to-date and obsolete patterns.

(c) A Passive Approach to Learning in Nonstationary Environments

Unlike an active approach, a passive approach continuously adapts the model pa-

rameters whenever new patterns arrive to cope with uncertainty in the presence of

change. Therefore, a passive approach maintains an updated model at all times and

avoids the common pitfall in an active approach which are either falsely detecting

non-existent change or failing to detect a change [1].

Passive approaches can be classified as those that adapt/remove/add members of an

ensemble-based system and those that adapt a single-regressor. An ensemble-based

approach has a higher computational cost than a single-regressor. However, the

ensemble-based approach provides a natural fit to learning in nonstationary envi-

ronments and offers distinct advantages which include: striking a delicate balance

along the stability-plasticity spectrum [57] [58]. Thus, it provides a flexible way

to incorporate new data, when it is available, into a regression model by simply

inserting new members into the ensemble and provide a natural technique to forget

irrelevant knowledge by removing irrelevant members from the ensemble.

Also, an ensemble approach tends to reduce the variance of error, therefore, become

more accurate than single regressor-based approaches. As such, ensemble systems

provide a good fit for learning in nonstationary environments, especially if the drift

impact some parts of the existing knowledge base leaving the other parts relevant.
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2.4 Decision trees

A decision tree is expressed as a directed tree that recursively partitions the dataset

based on a selected feature [4]. The recursive partitioning results in a tree structure

which once constructed can be used as a classifier or predictor.

Decision trees provide a fast and simple way to learning a function (f ) that maps data (x)

to output (y). Data (x) can be a numerical variable, categorical, or both numerical and

categorical. Output (y) can be numerical for regression or categorical for classification

[11] [12] [13].

Decision trees can be classified based on the type of target/dependent variable as [14]:

� Classification trees - the target is a discrete-valued variable (categorical);

� Regression trees - the target is a numeric (continuous) value; and

� Model trees - the target is a linear or non-linear model of the independent

variables/features.

Figure 2.2 depicts the classification of decision trees based on the target variable.

Figure 2.2: A Classification of Decision Trees[14]

Decision trees are automatically constructed from a given dataset by algorithms called

inducers. Top-down decision tree inducers build a decision tree in a divide and con-

quer approach based on the splitting metric at each decision node. Examples of greedy

top-down decision tree inducers include ID3 [8], C5.0 [15], CART [16]. CART uses
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Gini impurity as its splitting metric, ID3 and C5.0 use information gain [16] [9]. The

information gain is to be maximized whereas Gini impurity is to be minimized. Ge-

netic programming (discussed in Section 3.3.1) also evolves decision trees. Algorithm 1

summarizes a decision tree induction process.

Algorithm 1 Decision Tree Induction Process

1: BEGIN
2: Let D be the root node that comprises of all data points in a dataset S
3: Use attribute selection measure to find the best attribute in D
4: Divide D to come up with a set Ds that consists of subsets that contains all possible

values for the best attributes
5: Create a decision tree node that comprises of the best attribute
6: Using Ds created in line 4, recursively create new decision tree until no further

classification of the nodes
7: END

This section is outlined as follows: Section 2.4.1 presents classification trees. Regression

trees are discussed in Section 2.4.2 whereas model trees are discussed in Section 2.4.3.

2.4.1 Classification Trees

A classification tree splits a dataset into classes, based on the response variable [14] [17].

A response variable is a variable being measured. A response variable can be binary or

multi-class. A binary response variable usually has two classes, false or true (categorical

data) which may be numerically categorized as 0 or 1 respectively. Commonly used

classification trees include ID3 [8], CART [16] or C5.0 [15]. Figure 2.3 is an example of

a classification tree.

A standard classification tree splits the dataset based on data homogeneity. For example,

considering Fisher’s Iris data illustrated in Figure 2.3 [18], if the dataset has shown that

97 % of the flowers with a petal width of less than 0.8 are Setosa, a split is performed

and Setosa becomes a top node in the tree. Thus, the split has made the data ‘97 % ’

pure.
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Figure 2.3: An Example of a Classification Tree [18]

Classification trees quantify data homogeneity through the use of impurity which is

either a Gini index or entropy. The impurity is rigorously measured by the computing

proportion of the data that belong to a class.

2.4.2 Regression Trees

A regression tree is a decision tree having a independent variable(s) which are continuous

and are used to predict the value of that dependent variable [19]. As such, regression

trees apply to prediction problems.

A regression tree partitions a dataset and then fits a piecewise constant function. The

data is split at several split points for each independent variable whereby the sum of

squared errors (SSE) between the actual value and the predicted values at each split

point is calculated. Then, a comparison is performed and the split point with the lowest

SSE is selected to be the root node/split point.

The path of each continuous target value, starting from the root node to the terminal

node, corresponds to a regression rule. Two popular regression tree inducers are CART

[16] and ANN [20].

Consider, for example, an experimental dataset (x, y) ∈ X × Y , where X denotes the

instance space covered by n predictor variables, x (scalar variable) (both categorical

and numerical, the objective is to predict the continuous response (dependent), variable
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Y. As such, a regression tree makes use of a piecewise constant function to estimate a

function y = g(x) [21]. Thus, the splitting nodes partition the instance space, whereas

the regression nodes perform linear regression.

An example of a regression tree which predicts the mileage in kilometers per liter based

on cylinders and horsepower, a car will average is illustrated in Figure 2.4.

Figure 2.4: Regression Tree for Predicting Mileage based on Cylinders and Horsepower

2.4.3 Model Trees

The use of a piecewise constant function makes regression trees lose their ability to

handle highly non-linear parameters [22]. In such cases, model trees are preferable.

A model tree is a regression tree with its leaves expressed as multiple regression models

[23] [24]. A model tree makes use of a piecewise linear function to approximate a function

y = g(x). Thus, a model tree splits the parameter space into subspaces and then fits a

linear function for each subspace.

Figure 2.5 is a graphical illustration of a model tree indicative of a piecewise approach

splitting of a nonlinear dataset into subsets and then fitting a model for each subset.

Examples of model trees inducers include M5 [25], CART [16]. Also, regression and

model trees can be induced directly by GP (discussed in Section 3.3.1). In this respect,

the terminal set contains values in regression trees or models in model trees.
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Figure 2.5: An Example of a Model Tree

2.5 Data Clustering

A data clustering is an unsupervised learning process in which datasets are grouped

according to regions with high data point density. Nonstationary data (temporal data) is

usually dynamic, possessing data patterns that change with time, therefore, clustering is

required each time a change is detected. Since clustering process groups together similar

objects, commonly referred to as data patterns [106][107][108], therefore, a similarity

measure has to be established to determine the proximity of two data patterns to each

other [109]. The structure of the cluster is derived by optimizing the data partitions

using objective criteria so that data patterns among clusters are dissimilar and data

patterns within a cluster are more similar [110].

Clustering algorithms can be broadly categorized into hierarchical and partitional. Hi-

erarchical data clustering implements a tree-like structure that initially considers each

data pattern as a leaf node [111]. As the tree grows, most similar nodes are paired to

create the internal node. This process iterates until all the data patterns are merged

19

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



into one cluster, the root node. As such, a hierarchical tree poses different levels of

data clusters at each depth. Also, a hierarchical tree can start with the root node that

contains all data patterns, and then cascades down to the leaf nodes which consists of

a single data pattern.

Clustering algorithms recursively partition data to decrease similarities between data

patterns in different clusters and increase the similarities of data patterns within the

same cluster [112]. Therefore, the obtained set of clusters contains similar data patterns.

2.5.1 Clustering Performance Measures

In clustering, the quality of the obtained solution is ascertained by validity indices.

Numerous validity indices exist in the literature: Ray-Turi [113]; Davies-Bouldin [114];

Dunn validity index [115]; silhouette coefficient [116]; the CS measure [117]; and cluster

similarity [118].

In this section, Section 2.5.1 discusses intra-cluster distance and Section 2.5.2 discusses

inter-cluster distance. Silhouette coefficient is discussed in Section 2.5.3 and the fitness

measure in Section 2.5.4.

(a) Intra-cluster Distance

The intra-cluster distance ascertains cluster compactness by measuring the mean

distance between cluster centroid and the corresponding data patterns [119]. Thus,

the intra-cluster is the within-cluster distance. Therefore, the intra-cluster distance

is supposed to be minimal.

The intra-cluster distance measure is computed as:

Dintra =
K∑
i=1

∑
∀z∈Ci

d(z, ci) (2.1)

where Ci is the ith cluster and d is the Euclidean distance between the centroid, ci

and the data pattern, z, K is the total number of clusters.
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(b) Inter-cluster Distance

The separability among the cluster centroids is measured by the inter-cluster dis-

tance [119]. Therefore, the inter-cluster distance is supposed to be as large as possi-

ble. After computation of inter-cluster distance, the minimum value is considered.

The inter-cluster distance measure is computed as:

Dinter =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

d(ci, cj) (2.2)

where d is the Euclidean distance between cluster centroids ci and cj.

(c) Silhouette Coefficient

A silhouette coefficient quantifies the quality of the clustering solution by ascertain-

ing data patterns that fit well and those that are not fitting within a cluster [116].

The silhouette coefficient is expressed in the range [−1, 1]. A higher value of the

silhouette coefficient signifies a better clustering solution. A silhouette coefficient is

calculated as [120]:

s(zp) =
b(zp)− a(zp)

max{a(zp), b(zp)}
(2.3)

where a(zp) is a dissimilarity measure of data pattern, (zp), to its cluster and b(zp)

is the lowest mean dissimilarity of (zp) to other clusters. Dissimilarity measures the

degree to which two data patterns are different. A small value of a(zp) implies that

(zp) is well fit whereas a larger value of b(zp) means (zp) is poorly fit.

(d) Fitness Measure

Numerous fitness measures have been used in data clustering algorithms which

include squared error [121] and quantization error [122]. The squared error, for all

clusters, is a measure of total squared distance between the cluster centroid and the

data patterns in that cluster [121][123] and is computed as:

SE =
K∑
i=1

|Ci|∑
j=1

d(ci, zj)
2 (2.4)

21

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



The quantization error, for all clusters, is a measure of the average distances between

the cluster centroid and the data patterns in that cluster [122] and is computed as:

Qe =

∑K
i=1

∑
∀z∈Ci

d(z,ci)

|Ci|

K
(2.5)

The squared error is adopted in the dynamic clustering algorithm discussed in Sec-

tion 2.5.2, as the fitness measure to guide the clustering algorithm towards an opti-

mal solution. Also, intra-cluster measure, inter-cluster measure, and the silhouette

coefficient are used as conditions in the dynamic clustering algorithm discussed in

Section 2.5.2.

2.5.2 Clustering of Temporal Data

Temporal data is a series of events over a period that may be time-stamped at regular

or irregular time intervals such as weather or stock market data [35]. Usually, temporal

data consists of data patterns that change with time and characterized by a high amount

of dependency among itself in which appropriate treatment of these dependencies or

relationships is essential. Temporal data is encountered in many applications, including

budgetary [124], stock modeling analysis [125], classification [126] and clustering [127].

Clustering is usually performed once for a static dataset. However, temporal data usu-

ally possesses data patterns that change with time and therefore, clustering is required

each time a change is detected [109]. The changes that occur in data patterns may be of

position, composition, split or merge [128]. Consequently, these changes may cause new

clusters to appear or existing clusters to disappear. Also, data patterns may migrate

within clusters leading to an increase or decrease in cluster size.

Clustering temporal data using metaheuristics such as DE and PSO pose two problems,

discussed in Section 3.4.1, which are diversity loss and outdated memory of individuals in

the population. Therefore, metaheuristics designed for dynamic environments discussed

in Section 3.3 and Section 3.4 can be adapted to perform clustering in temporal data by
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tracking clusters through time. Also, maintaining a diverse population of individuals at

all times to facilitate a search for a new solution.

This section discusses dynamic clustering PSO, dynamic clustering DE and k-independent

dynamic clustering DE.

Dynamic Clustering Particle Swarm Optimization

A dynamic PSO (discussed in Section 3.4.1) can be modified to cluster temporal data.

Numerous applications of dynamic clustering PSO algorithms exist in the literature

[122][129][130][131]. A multiple swarm technique was implemented in [122] whereby a

particle represents a group of centroid positions, however, the entire dataset was used to

evaluate the fitness of each particle. A hierarchical approach was implemented in [130]

in which a temporary sub-swarm was created that was further refined by re-running the

algorithm. This technique was effective though computationally expensive.

Dynamic Differential Evolution Data Clustering

A dynamic DE (discussed in Section 3.3) can be modified to cluster temporal data by

implementing a multi-population approach [132][133]. An individual in a dynamic DE

clustering algorithm can be encoded as a vector that represents a group of centroids.

The resulting algorithm enables each sub-population to optimize all the data centroids

and yields a global best (gBest) as the final solution over all sub-populations.

To ensure that the population is always diverse, the following techniques are imple-

mented in dynamic DE. The gBest of each sub-population is assigned an exclusion

radius, rexcl, to create a sphere of influence. The sub-population with the weakest gBest

is re-initialized if two gBest are within rexcl of each other. Also, for each sub-population,

a percentage of weakest individuals are promoted to become Brownian individuals (dis-

cussed in Section 3.3).

The DE-based clustering outperformed both the PSO and the GA on partitional cluster-

ing problems [134]. Also, a dynamic clustering DE outperformed a dynamic clustering

PSO on dynamic problems in [135].
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K-independent Cooperative Data Clustering Dynamic Differential Evolution

An optimal number of clusters, K, in the real-world dataset is unknown a prior. There-

fore, it is ideal to automatically determine K. Two common techniques to determine K

automatically are the split and merge approach, and an iterative approach.

In a split and merge approach, as the algorithm progresses, the optimal value of K is

dynamically determined by splitting and merging clusters [136][137][130]. In an iterative

approach, the algorithm is run several times for different values of K and the value of

K that gives the best validity index is then selected [138][139]. An iterative approach

requires several runs to obtain an optimal value of K and therefore, not favorable.

The K-independent Cooperative Data Clustering Dynamic Differential Evolution (KCD-

CDynDE) is a dynamic clustering DE that dynamically determines the optimal number

of clusters, K using the split and merges approach [135]. As such, the algorithm groups

together similar data patterns in temporal data whenever a change in the dataset is

detected. Algorithm 2 depicts a KCDCDynDE algorithm [135].

The KCDCDynDE is a multi-population dynamic clustering DE algorithm in which

each dimension of the problem is optimized by a particular sub-population [140]. Thus,

for a population of K sub-population, each sub-population, sk optimizes one centroid

at a time. Then, the solution of the problem referred to as the context individual, is

the combined best positions from each sub-population [135].

An individual’s fitness from a sub-population, sk, is calculated by substituting the di-

mension, K, in the context individual with the solution of sk. Then, the resulting context

individual is evaluated to give the individual fitness [135]. Figure 2.6 is a graphical illus-

tration of fitness calculation in which the context individual is made up of x1, x2, x3, x4

and x5 centroids. The fitness of individual x2 is calculated by substituting the dimension

x2 in the context individual with its solution x6.
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Algorithm 2 KCDCDynDE [135]

1: BEGIN
2: Initialize a Pop, S with s, subPop where s ≥ 2
3: Assign: k → popIndex and Sk.ŷi → bestPosition for S
4: DO
5: Create a context individual, b(k, Sk.ŷi)
6: for each subPop, sk do
7: for each individual, Sk.xi do
8: b(k, Sk.xi → b(k, Sk.ŷi
9: for each data pattern, zp do
10: Compute d(zp, xi)
11: Compute cluster centroid sk.xikj of b(k, Sk.xi)
12: Assign pattern zp to centroid Sk.xikj such that
13: d(zp, Sk.xikj) = min∀kj=1...K{d(zp, Sk.xikj)}
14: end for
15: Calculate fitness f(xi(t))

16: end for
17: end for
18: Update gBest of each s
19: if d(gBest(si), gBest(sj)) ≤ rexcl then
20: Randomly remove half of each SubPop: si and sj
21: Merge the remaining halves of SubPop, si and sj

22: end if
23: if pop-converged then
24: Compute silhouette of the gBest position
25: Recompute the intra-cluster and inter-cluster distances
26: if silhouette < 0.71 AND conditions-for-adding-cluster ≥ 1 then
27: Add a randomly initialized cluster

28: end if
29: Update intra-cluster and inter-cluster

30: end if
31: for each s do
32: for each individual, xi ∈ S do
33: Calculate fitness f(xi)
34: Generate a trial vector and offspring using Eqn (3.2) and (3.3)
35: if f(x

′
i) is better than f(xi) then

36: Add x
′
i(t) to S(t+ 1)

37: else
38: Add xi(t) to S(t+ 1)

39: end if
40: end for
41: end for
42: Promote M% of the weakest individuals to be Brownian individuals
43: END
44: Return the best individual as the solution
45: END
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Figure 2.6: Cooperative Fitness Calculations

In KCDCDynDE, a predefined radius, rconv, is used to establish the convergence of

the population where the average distance between the best individual and the entire

population should be smaller than rconv. Distance measures: intra-cluster and inter-

cluster are computed after the population convergence. Obtained values are used for

comparison with previously calculated values.

The silhouette coefficient is used to measure the quality of the current solution to avoid

the addition of a new cluster if a good solution has been found. Therefore, a new cluster

is added if the silhouette value is lower than a given silhouette threshold. The silhouette

threshold value is user-defined.

Adding a new cluster favors exploration thereby improving the clustering solution. A

new cluster is added, with its individuals randomly initialized within the search space,

if:

(a) There is an increase in the intra-cluster and inter-cluster distance which entails more

separation among clusters.

(b) Distance measures have improved, thus an increase in the inter-cluster distance and

the decrease in the intra-cluster distance result in more compact and more separate

clusters. Adding a new population may improve the clustering solution further by

decreasing intra-cluster distance and increasing inter-cluster distance.

(c) Both distance measures have worsened. This could have been caused by a prior

merging of the population.
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The populations within rexcl (discussed in Section 3.3) of each other are merged. Con-

sequently, the specified numbers of population individuals from the merged populations

are randomly selected to maintain the population size and then re-initialized to random

positions in the search space [135].

2.6 Summary

This chapter discussed machine learning techniques: decision trees and data clustering.

A discussion of decision trees and their characteristics that are relevant to this thesis

was provided. Decision tree variants: classification trees, regression trees and model

trees were discussed. Illustrative examples of classification, regression and model trees

were presented. A general overview of the data clustering was presented. Clustering

performance measures relevant to the current work were presented and a discussion of

dynamic clustering differential evolution algorithms designed for dynamic environments

was provided.

Optimization is the challenging problem that triggers many machine learning algorithms.

As such, metaheuristics are becoming pivotal to optimization. The next chapter dis-

cusses metaheuristics designed for both static and dynamic environments.
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Chapter 3

Metaheuristics

3.1 Introduction

This chapter explores metaheuristics designed for both static and dynamic environments.

A metaheuristic is an iterative process that guides a given heuristic by integrating

different concepts for the exploration and exploitation of the search space, to come up

with near-optimal solutions [26]. Metaheuristics are problem-independent techniques

that can be applied to a broad range of problems [26].

In this chapter, Section 3.2 discusses metaheuristics in nonstationary environments. Sec-

tion 3.3 discusses evolutionary algorithms while particle swarm optimization is discussed

in Section 3.4. Section 3.5 present a critical analysis of the literature under review.

3.2 Metaheuristics in Nonstationary Environments

Metaheuristic algorithms usually imitate natural phenomena [27] such as human mem-

ory in tabu search [28], social behavior within a bird flock in particle swarm optimization

[29], physical annealing in simulated annealing [30] and evolution in evolutionary algo-

rithms [31] [32]. Numerous metaheuristics implement some form of stochastic optimiza-

tion; therefore, the obtained solution depends on the generated set of random variables

[33]. Thus, a globally optimal solution is not guaranteed in some classes of problems

[34]. Metaheuristic algorithms were successfully applied to dynamic environments in

[15] [16] [17].

In this thesis, optimization refers to an iterative process that refines provided candidate
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solutions toward an optimal solution [39]. In this regard, an optimization problem

refers to the problem of coming up with a suitable solution from the feasible space of

the search space [38]. A model tree induction can be regarded as a special case of a

function optimization problem, whereby the goal is to minimize the prediction error of

the induced model trees.

The main goal of implementing an algorithm to a dynamic optimization problem is

to come up with optimal solutions during the optimization process at all time steps

[37]. Therefore, a dynamic optimization algorithm should be able to detect temporal

properties changes and modify the existing solution (respond to the change), if necessary

[40].

In a nonstationary environment, the objective function changes, which results in changes

in the search space structure and the position of optima [39]. New optima may appear

whereas existing optima may disappear. Changes in the search space are characterized

by two major changes: spatial and temporal severity discussed in Section 2.2.

Spatial and temporal severity are indicators of the difficulty of a dynamic optimization

problem. Considering both spatial and temporal severity, dynamic environments can be

categorized mainly into [41], though some other possibilities may exist :

� Quasi-static, where environmental modifications are irrelevant in comparison to

the the scale of the problem.

� Progressive, where the environmental changes are smooth and progressive that is

characterized by small frequent alterations.

� Abrupt, where the changes are severe though rare that results in the relocation of

the optima to possibly distant locations in the search space and/or significantly

changing their fitness.

� Chaotic, where the temporal and spatial severity are high. The optimal is ran-

domly repositioned at every iteration in extreme cases.
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Figure 3.1 illustrates the behavioral classes of metaheuristics, considering spatial and

the temporal severities of the changes that an environment can experiences.

 

Figure 3.1: Behavioral Classes for Metaheuristics [41]

As illustrated in Figure 3.1, chaotic environment is the most difficult since its charac-

terized by both extreme spatial and temporal severities whereas quasi-static is the least

difficult since it closely resembles a static environment.

3.2.1 Performance Measure

In a nonstationary environment, the algorithm does much more than just finding an

optimum solution, rather it detects changes in the optimum solution, keeps track of

the optimum and comes up with better optima as they surface. Therefore, a dynamic

environment calls for a representative performance measure in which the algorithm

performance is reflected across the dynamic range of search space. A collective mean

fitness is considered in this work and computed as:

f̄(n) =

∑n
i=1 f(i)

n
(3.1)

where n is maximum iteration and f(i) is the fitness of the best individual at iteration

i.

The mean fitness performance measure provides a clue on the algorithm adaptive prop-

erties which depict the entire performance linking of the algorithm and is independent

of any extra knowledge about the search space such as global optimum location.
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The following performance metric will be implemented in the experiments: MAPE and

RMSE, defined as:

MAPE =
n∑
i=1

|(ȳi − yi)
yi

| × 100 (3.2)

RMSE =

√∑n
i=1 (ȳi − yi)2

n
(3.3)

where n is the number of data patterns in the testing dataset, yi is the ith actual value

and ȳi, is the ith predicted value.

3.3 Evolutionary Algorithms

Evolutionary algorithms (EA) implement computational models of evolution processes

which are based on natural selection, reproduction and survival of the fittest, as the

building blocks of the algorithms [31][59]. Examples of EA include genetic algorithms

[31], genetic programming (GP) [60] and differential evolution (DE) [41].

In this section, Section 3.3.1 discusses GP and Section 3.3.2 discusses DE.

3.3.1 Genetic Programming

Genetic programming is an algorithm that evolves a population of programs or algo-

rithms which start from randomly generated population (individuals) [60] [61]. As such,

the GP solves a problem at hand by evolving computer programs that explore a pro-

gram space. A GP generates each computer program using the building blocks that

are required to solve the given problem. Each generated program is then evaluated to

obtain its fitness. Algorithm 3 summarizes a GP.

Individuals are selected, based on their fitness’, to act as parents which are evolved by

applying genetic operators to produce new individuals (offspring) until the desired goal

is hopefully attained. Two commonly used selection techniques are fitness proportionate
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Algorithm 3 Genetic Programming [61]

1: BEGIN
2: Let t = 0
3: Randomly create individuals that constitute the Pop(0) using terminal and function

sets
4: Compute fitness for each individual
5: WHILE termination condition(s) not satisfied DO
6: Select individuals from Pop(t) to use in reproduction process
7: Perform crossover using selected individuals to create offspring
8: Perform mutation on the offspring
9: Compute fitness for each offspring

10: Select individuals to constitute a new population, Pop(t+ 1)
11: t = t+ 1
12: UNTIL termination condition satisfied
13: END

selection and tournament selection [62]. The fitness function, which is usually problem-

dependent, is used to measure the effectiveness of the generated individuals [61] [63].

Genetic operators are meant to reproduce new individuals with better features and

properties over their parents. Commonly used GP operators are reproduction, crossover

and mutation [62] [64]. Reproduction passes the selected individuals, usually the elite,

onto the next population. Crossover is considered as a local search operator that pro-

motes convergence through combining existing genetic material from two selected par-

ents whereas mutation introduces new genetic material to a selected individual [61] [62].

Mutation promotes population diversity, as such, mutation is considered as a global

search operator.

The parameter, mutation depth, controls the size of a subtree created by mutation to

conform to the given offspring depth. The population size of a GP is usually fixed. As

such, application rate parameters commonly referred to as crossover rate, mutation rate

and reproduction rate determines the total number of individuals to be reproduced by

crossover, mutation and reproduction respectively [61].

GP terminates if the given condition is satisfied. Either a problem-specific solution is

achieved or a user-defined maximum number of generations is reached [64]. Optimal

parameter values, such as a maximum number of generations, are usually obtained
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through parameter tuning.

Traditionally, GP programs were expressed as parse trees, however, other forms of rep-

resentation were introduced which includes graph-based GP [65] and linear GP [66]. A

parse tree is induced from variables and constants in question which constitutes the ter-

minal and function sets. The functional set usually consists of functional, mathematical,

logical or deterministic operators which are used to link variables [67] [61]. The arity

of the selected node from the function set determines the branching factor of that node

[67].

A GP-induced parse tree is constructed within the restriction of the maximum tree

depth by randomly selecting a root node from the function set. The parameter, tree

depth, is usually user-defined. Nodes thereafter are picked from either a terminal set or

a function set [39]. If a node is picked from the terminal set, it then, logically, becomes

a leaf node else an internal node. Figure 3.2 illustrates a parse tree indicative of the

root node as the top most node, internal nodes and terminal nodes as the leaves of the

tree.

+

+ cos

* *

*1.8

a b

0.5 *

2.7 a
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Figure 3.2: An Example of a GP Tree

Despite the promising problem-solving capabilities of a GP, this algorithm suffers from

scaling problems, especially to larger problems like data mining [68] [69]. Such problems

include the bloating of the solution with introns (extraneous code), and the complexity
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of the GP solution. Controlling the complexity of GP solutions (introns) is a challenging

task. Methods to deal with introns, such as individual parsing, alternative crossover and

selection are suggested in the literature [70].

Genetic Programming for Nonstationary Environments

GP modifies its population as it converge towards optimality. However, it becomes

difficult to re-diversify a converged population once an environment change has occurred.

As a result, the population lacks diversity necessary to locate a new optimum. Therefore,

a standard GP algorithm is ineffective in nonstationary environments.

Numerous techniques were proposed in the literature to make GP cope with dynamic en-

vironments. Instead of maintaining a fixed population size like in standard GP, dynamic

population size can be implemented [71]. Thus, when fitness is improving, the popula-

tion size is reduced to promote exploitation. If the fitness deteriorates, the population

size is increased by adding new randomly generated individuals to facilitate exploration.

This section reviews GP algorithms designed for nonstationary environments which are

classified as parametric and memory-based approaches.

(a) Parametric Approach

A dynamic GP (dynGP) that implements an adaptive parametric approach was

proposed in [72]. Adaptive control parameters enable the GP to dynamically adjust

as a change in environment is evident. When a change in an environment is evi-

dent, GP reacts to the change by triggering exploration through adaptive control

parameters to locate a new optimum. The following adaptive control parameters

were implemented in [72]:

� Elitist proportion

Whenever fitness deteriorated, the percentage of elitist individuals is reduced

by 0.1 with a lower bound of 0.1, to promote exploration. The decrease in

elitist proportion facilitates the addition of more newly generated material

into a population in the hope of locating a new optimum.
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� Crossover rate

If the fitness deteriorates, the crossover rate is linear increased, by 0.1 with

an upper bound of 1, to generate more offspring. However, when the fitness

improves, the crossover rate is reduced, to spare the computational effort of

generating more offspring to be mutated.

� Mutational rate

For gradual changes in the environment, a low mutation rate is required to

promote exploitation whereas abrupt changes require high mutation rates to

promote exploration. The mutation rates were set to be cyclic using the fol-

lowing probabilities: mutating each node of the tree, applying an operator and

mutating an individual. Whenever an environment change is evident, a ran-

dom number in the range [0,1] is added to the mutational probability. If the

rate exceeds the value of 1, then the value is scaled to the range [0,1].

� Culling

Culling facilitates exploration in a GP. A portion of the worst individuals in

a population are replaced by randomly generated individuals. A randomly

generated individual consists only of a terminal node as a root node that is

mutated before being added into the population.

The dynGP was compared to gradient descend-artificial neural network and stan-

dard GP and outperformed all other training algorithms in all severity of changes

of the environment modifications [72].

(b) Memory Approach

The dynamic forecasting GP (DyFor GP), aims at time series forecasting, automat-

ically adapts to a changing environment and retains knowledge (implicit memory)

from the past environments through introns [73]. The DyFor GP implemented a

sliding window of analysis to model a natural adaptation for a nonstationary envi-

ronment. Two sliding windows of different sizes are defined at the beginning of the
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historical data and slides after a given number of iterations (dynamic generation).

The process repeats until all the available data have been analyzed. During a dy-

namic generation, DyFor GP evolves a population of solutions in which the best

solution is selected as the predictive model for that analysis window.

For each dynamic generation, the prediction accuracy for each analysis window is

used to adjust the window size. The window that yields the best prediction accuracy

is maintained whereas the other window either shrink, if the best window is smaller,

else expand. Consequently, DyFor GP discovers optimal window as the algorithm

iterates.

The sliding window of analysis enables DyFor GP to analyze all historical data,

gleaning knowledge as the window slides. The gleaned knowledge is adapted as

GP subtrees either implicitly through the evolution process as the window slides or

explicitly through the use of ‘dormant’ solutions. Dormant solutions usually speed

up the convergence of the algorithm, therefore, when a change in the environment

is detected, dormants are injected into the population.

3.3.2 Differential Evolution

Differential evolution (DE) is a stochastic, population-based algorithm [74] [75]. The

population of a DE consists of vectors (individuals). Individuals are adapted through

mutation, crossover and selection. Unlike other evolutionary algorithms, the mutation

in DE is applied first to generate a trial vector which is then used in the crossover

to produce a single offspring. The search process is guided by direction and distance

information about individuals in the current population [76][74].

Individuals in DE are randomly initialized. The selection operation is used to select a

target individual that is mutated to produce a trial vector [77]. A trial vector, ui(t) is

generated as follows:

� Select a target individual, xi1(t) and two vectors xi2(t) and xi3(t) such that i 6=
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i1 6= i2 6= i3 and i2, i3 ∼ U(1, ns) where ns is the population size.

� Perturb the target individual xi1(t)), to calculate a trial vector using xi2(t) and

xi3(t):

ui(t) = xi1(t) + β(xi2(t)− xi3(t)) (3.4)

where the scale factor, β ∈ (0,∞) controls the differential variation amplification,

xi2(t)− xi3(t).

Then, a crossover process (binomial) is applied to the trial vector ui(t), to generate

a single offspring, x
′
(t) through the implementation of discrete recombination of the

parent vector, xi(t) and the trial vector, u(i,j)(t) as follows:

x
′

i,j(t) =

 u(i,j)(t) if j ∈ J

xi(t) otherwise
(3.5)

where xi,j(t) refers to the jth elements of the vector xi(t) and J is the set of element

indices that will undergo perturbation [39]. A crossover probability, pr, ensures that

one randomly selected dimension is forced to be within the set J . Alternative crossover

strategies exist in the literature [39] [80]. Other strategies for the mutation process

have been provided in the literature [78][39][79]. Algorithm 4 depicts a standard DE

algorithm.

The DE implements a replacement strategy when generating the population of the next

generation to ensure that there is no deterioration of the average fitness of the popula-

tion. Exploration is directly influenced by the population size. Thus, a population of

many individuals has several differential vectors, therefore, explores in many directions.

However, an increase in population size tends to increase computational complexity.

In addition to population size, ns, crossover probability, pr, and the scale factor, β, also

influence the performance of a DE. Smaller values of scaling factor, β, bring smaller

mutation step sizes which promote slower convergence. Larger values for scale factor,

β, facilitate exploration, though may result in overshooting good optima [39].
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Algorithm 4 Differential Evolution

1: BEGIN
2: Set t→ 0 be the generation counter
3: Initialize β and pr
4: Generate and initialize a population, Pop(0) with ns individuals
5:

6: WHILE termination condition(s) not satisfied DO
7:

8: for xi(t) ∈ Pop(t) do
9: Compute fitness, f(xi(t))

10: Select a target individual, xi and two different individuals
11: Generate u(i,t) using Equation (3.4) . generate a trial vector
12: Generate x

′
i(t) using Equation (3.5) . generate an offspring

13:

14: if f(x
′
i(t)) > f(xi(t)) then . if f(x

′
i(t)) is superior

15: x
′
i(t) ∪ Pop(t+ 1)

16: else
17: xi(t) ∪ Pop(t+ 1)

18: end if
19: end for
20: END

Larger values of crossover probability, pr, bring more deviation in the new population,

thus increasing exploration capabilities and increasing diversity. Therefore, decreasing pr

increases search robustness whereas an increasing, pr, often results in faster convergence

[81] [82].

The DE was successfully implemented in a static environment to solve different opti-

mization problems [83][84][85][86]. Like any other evolutionary algorithm, DE modifies

its population as it converges towards optimality. Therefore, DE in a changing environ-

ment is prune to diversity loss (discussed in Section 3.4.1) [87].

Differential Evolution for Dynamic Environments

The standard DE can be modified to adapt to the dynamic environment by introduc-

ing: the exclusion process and the Brownian individual. The modification makes the

standard DE a multi-population algorithm where the resulting sub-populations are then

used to search for a solution.

In an exclusion process, each individual’s fitness (lBest) is assigned an exclusion radius
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that creates an area of influence. A repulsion force exists for any lBest position within

the defined radius of each other. This repulsion force repels the worst of the two lBest.

Consequently, the sub-population of the repelled lBest is re-initialized randomly within

the search space.

The addition of the Brownian individual to the algorithm is based on the conception

of the individual’s position to the sub-population lBest position instead of the stan-

dard crossover and mutation operators. A pre-determined percentage of the weakest

individuals are chosen to be Brownian individuals in each generation. The Brownian

individuals are modified by adding gaussian noise to the individual’s (lBest) position

using:

ω(x, j) = yj +N(0, σ) (3.6)

where the standard deviation, σ, defines the Gaussian distribution width, yj is the

Brownian individual and ω(x, j) is its modification.

3.4 Particle Swarm Optimization

The PSO algorithm is a population-based metaheuristic. The particle swarm concept,

originally, was developed to simulate, graphically, the predictable and graceful chore-

ography of birds [29][39] to observe the pattern that governs the capability of birds to

fly all together and to abruptly change direction and then re-organize optimally [88].

It is from this initial intention that the particle swarm concept was developed into an

algorithm that is simple and efficient.

Each particle is assigned a position, x , velocity, v and retains its personal best posi-

tion (pBest). Particle position representation symbolizes a potential solution. Velocity

directs how a particle position is adjusted and portrays the exchanged particle’s neigh-

borhood information and the particle’s experiential knowledge. Thus, an optimization

process is driven by the velocity vector.
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Particles search through the multidimensional search space by adjusting their position

basing on their own experience and that of its neighbors, imitating the simple behavior

observed in bird flocking [39]. As such, a particle emulates its successes and the success

of its neighboring particles.

The two properties that determine the search process of each particle, i, are the particle

position, xi(t) at a discrete time, t and the velocity, vi(t), that is used to renew the

particle’s position. Considering xi(t) as the current position of the particle, i, in the

search space and adding velocity, vi(t), to xi(t), gives the particle a new position as [29]:

xi(t) = xi(t) + vi(t+ 1) (3.7)

where xi(t) v U(xmin, xmax).

Velocity update per dimension is calculated using Equation (3.8) which is indicative of

the particle’s social and cognitive components.

vij(t) = ωvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)] (3.8)

where ω is the inertia weight, j = 1, . . . , nx is the search space, vij(t)) represents a

velocity of particle, i, at a discrete time, t, xi(t)) refers to the particle’s current solution,

vi(t) is pBest, ŷij(t) is the swarm global best position (gBest) and the random coefficient,

r, in the range [0, 1].

The inertia weight, ω, determines the weight of the current velocity that contribute to

the next velocity. Variables, c1 and c2 determine the weight of the cognitive and social

components respectively [89]. Also, c1 and c2 controls the maximum value of random co-

efficients. Furthermore, r, enables a particle to explore new regions in hyperdimensional

space, as such, it diversifies the search. Algorithm 5 depicts a gBestPSO.

The connection that exists between particles determine the speed at which information

navigates through the population [90]. A well-connected swarm tends to converge faster

towards a good solution, nevertheless, this usually does not give the particles a chance to
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Algorithm 5 Particle Swarm Optimization

1: BEGIN
2: Generate and initialize nx �dimensional swarm
3:

4: DO
5:

6: for each particle xi, i = 1, . . . , ns do
7: Evaluate, f(xi)
8:

9: if f(xi) > f(yi) then . if f(xi)) is better than pBest
10: yi(t) = xi(t)

11: end if
12:

13: if f(yi) > f(ŷ) then . if f(yi)) is better than gBest
14: ŷ = yi(t)

15: end if
16: for each particle xi, i = 1, . . . , ns do
17: Use Eqn (3.7) to update the position
18: Use Eqn (3.8) to update the velocity

19: end for
20:

21: end for
22:

23: UNTIL termination condition satisfied
24: END
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explore all areas of the search space, therefore, exposing them to local minima. On the

contrary, the swarm with fewer connections tends to converge slowly since the particles

spend more time exploring the search space.

The performance of a PSO is influenced by parameters such as number of iterations

and swarm size [91][92]. Number of iterations is problem-dependent whereby too few

iterations may lead to premature termination and a very large number of iterations may

unnecessarily increase computational complexity given that the termination condition

is based on the number of iterations.

A large swarm size, ns, promotes swarm diversity per iteration that leads to fewer

iterations. A large number of particles increases the computational complexity, that

results in the degradation of the search to a parallel random search. Nevertheless, the

optimum swarm size, ns, is problem-dependent, though the literature gives a general

heuristic of ns ∈ [20, 30] [93][94].

The PSO has been extremely successful in static environments where it mainly optimized

functions with continuous-valued parameters [149][154]. Moreover, the algorithm was

widely applied in fields such as machine learning [95], function optimization [96], model

classification [97] and biological application [98].

3.4.1 Particle Swarm Optimization for Dynamic Environment

The PSO in a changing environment is prune to outdated memory problem and diversity

loss [87]. In essence, outdated memory occurs when the value of the pBest is no longer

relevant to the current prevailing environment due to the shift of the optimum solution.

As the swarm moves toward the desired goal, the degree of the particle’s dispersion

decreases. This is commonly referred to as diversity loss. Diversity loss occurs when

an algorithm converge towards the same solution as it approaches optimality. As such,

it becomes difficult to explore the new search space when a change in the environment

occurs which usually leads to a failure of the algorithm to adapt to new environments
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[87].

However, in a static environment, the diversity loss is not a problem because particles

cluster around the optimum, thereby facilitating exploitation towards the end of the

search. Consequently, it is difficult to re-diversify a converged swarm once an environ-

ment change is detected. As a result, the swarm lacks diversity necessary to locate a

new optimum. Therefore, standard PSO is ineffective in dynamic environments.

Outdated memory in PSO can be handled by re-evaluating all pBest positions when a

change is detected [87]. To detect a change, PSO tracks the fitness as the algorithm

progresses. If the fitness is improving or the same, then the environment is considered

static, otherwise, a change has taken place, therefore, the algorithm responds by re-

evaluating the pBest position. As such, detection and response strategy enables the

algorithm to toggle between exploitation and exploration. Thus, the algorithm focuses

on exploitation when the environment is static and exploration when the search space

changes [99].

The detection strategy, however, poses some challenges if some changes go undetected.

As such, a threshold value can be used to ensure the detection of rigorous changes or

to wait for a considerable change of the search space before a response is triggered [41].

Also, a threshold is set to ignore small changes, especially for environments with high

temporal severities since response in such an environment is triggered too often.

Diversity loss can be addressed by either implementing a repulsion technique among

particles or using multiple swarms [87]. In the repulsion technique, a particle is assigned

a radius to create a sphere of influence so that any particle within this space is repelled

to a new position [100].

A multiple swarm technique implements sub-swarms that are separated to each other by

a repulsive force to ensure that each sub-swarm converges around a different solution.

Also, a population can consist of both neutral and charged particles to maintain diversity

or can have quantum particles (discussed in Section 3.4.2).
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Another method is to make use of sentry points to store a copy of fitness value at a

random location [101]. As such, the environment is monitored by comparing sentry

points with new fitness at each iteration. Sentries can be evenly distributed across the

entire search space, or periodically relocated randomly to ensure good monitoring. Also,

depending on the computational cost, re-evaluation of sentries can be at the iteration

level (which results in a high cost) or periodically.

The following dynamic PSOs classified, based on the description provided in [102], as

memory scheme (re-initialized PSO); multi-population scheme (multiPSO); and diver-

sity maintenance scheme (chargedPSO) are discussed in the subsequent sections.

3.4.2 Diversity Maintenance Scheme - Charged PSO

A charged PSO, commonly referred to as quantum-inspired (QPSO), proposed by Black-

well and Branke, is a metaheuristic inspired by the principles and concepts of quantum

computing [103] [104] [100]. In QPSO, quantum swarm referred to as the quantum cloud,

consists of both neutral and charged particles. Neutral particles behave like standard

PSO particles that use velocity and position equations to improve the current solution.

Therefore, the quantum particles search for new solutions [103].

At each iteration, the quantum particles are randomly placed within the quantum cloud

which is a multidimensional spherical area, Bn, of radius, rcloud, centered on the gBest

as:

xi(t+ 1) =

 xi(t) + vi(t+ 1) if Ci = 0

Bn(rcloud) if Ci 6= 0
(3.9)

where Ci is the charge of the particle.

Randomizing at each iteration preserves the swarm diversity to discourage the quantum

cloud to completely converge on a small area. Additionally, a random positioning of

particles in a non-fully connected neighborhood topology facilitates easy information

exchange between inter-connected particles. Algorithm 6 depicts a quantum-inspired
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PSO.

Algorithm 6 Quantum-inspired Particle Swarm Optimization

1: BEGIN
2: Generate and initialize nx �dimensional swarm
3: Set n% of the swarm to be quantum particles and (100−n)% to be neutral particles
4: DO
5:

6: for each particle xi, i = 1, . . . , ns do
7: Evaluate, f(xi)
8:

9: if f(xi) > f(yi) then . if f(xi)) is better than pBest
10: yi(t) = xi(t)

11: end if
12:

13: if f(yi) > f(ŷ) then . if f(yi)) is better than gBest
14: ŷ = yi(t)

15: end if
16: for each particle xi, i = 1, . . . , ns do
17: Use Eqn (3.9) to update the position
18: Use Eqn (3.8) to update the velocity

19: end for
20:

21: end for
22:

23: UNTIL termination condition satisfied
24: END

3.4.3 Multi-population Scheme - Multi-swarm PSO

Multi-swarm PSO implements multiple populations, each optimizing a single solution

from the set of solutions [103]. Algorithm 7 depicts a multi-swarm PSO. The algorithm

keeps swarm diverse by using anti-convergence methods and repulsion. One sub-swarm,

usually the one with the worst fitness, is reinitialized if gBest values of the two sub-

swarms are within each other exclusion radius, rexcl. Sub-swarm’s best particle, p, is

commonly referred to as swarm attractor.
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Algorithm 7 Multi-swarm Particle Swarm Optimization

1: BEGIN
2: Generate and initialize C(nx) - dimensional swarm, S
3: DO
4:

5: if all swarms converged then
6: Reinitialize the worstSwarm
7: end if
8: for each swarm Sk do
9: Run a single iteration of Sk using Algorithm 5

10: for each swarm Sk 6= Sl do
11: if distance between pk and pl is ≤ rexcl then
12: if fitness (pk) is ≤ fitness (pl) then
13: reinitialize Sk
14: else
15: reinitialize Sl
16: end if
17: end if
18: end for
19: end for
20: UNTIL termination condition satisfied
21: END

3.4.4 Memory Scheme - Reinitializing PSO

In a reinitialized PSO, the swarm or part of it is randomly re-initialized within the search

space when a change in the environment occurs to enhance diversity [105]. Usually, the

best particles are maintained within their neighborhood to monitor the best-known

positions. The particle velocity is reset and the particle’s current position becomes

the pBest. As such, particles are discouraged to be attracted to their former position.

Algorithm 8 depicts a reinitializing PSO.

3.5 Critical Analysis

Data analytics is the art of analyzing raw data to find trends and answer questions.

Numerous data analytics processes and techniques have been automated into algorithms

and mechanical processes that work over raw data. Examples of such techniques include

predictive analytics which is used to answer questions about what will happen in the
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Algorithm 8 Reinitializing PSO

1: BEGIN
2: Generate and initialize nx - dimensional swarm
3:

4: DO
5: Run a single iteration of Algorithm 5
6: if a change is detected then
7: for each particle excluding gBest do
8: Randomly select a new position
9: vit(t) = 0

10: pBest = xi(t)

11: end for
12: end if
13:

14: UNTIL termination condition satisfied
15: END

future. Predictive analytics, which includes machine learning and statistical techniques

i.e. regression [141] and decision trees [14], make use of historical data to identify trends

and determine their likelihood to recur.

Metaheuristic algorithms discussed above are ideal for nonstationary environments since

the algorithms are adaptable by nature, require slight changes to their standard algo-

rithm structures, are capable to perform in noisy environments and different problem

spaces [142][143]. Metaheuristics were successfully applied to nonstationary environ-

ments in [144][103][145].

Nonstationary data is usually is made up of generating processes which change over

time. Therefore, if the knowledge of the existence of a different segment is not taken

into consideration, then, the induced predictive model is distorted by the past existing

patterns. Thus, the challenge posed to a regressor is to select an appropriate segment

that depicts the current underlying data generating process to be used in a model’s

construction.

In this work, metaheuristic algorithms will be hybridized to induce a predictive model

on nonstationary environments with concept drift occurring. Thus, it is hypothesized

that a metaheuristic hybridization is suitable for the induction of the predictive model
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on nonstationary data with a numerical target that tracks changes in a dataset due

to concept drift. The hypothesized metaheuristic predictive approach will implement

a piecewise approach to predict a target, nonlinear model and will consist of three

components: dynamic DE-based clustering algorithm to extract clusters that resemble

different data generating processes present in the dataset; the dynamic PSO-based model

induction approach to induce nonlinear models that describe each generated cluster

which approximate mapping between inputs and the target variable; and a dynamic

GP that evolves model trees that define the boundaries of nonlinear models which are

expressed as terminal nodes.

Figure 3.3 is an illustration of the hypothesized metaheuristic predictive approach in-

dicative of its three components. This hypothesis is based on a critical analysis of the

literature presented in the subsequent sections.

Figure 3.3: An Overview of Metaheuristic Predictive Approaches
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3.5.1 Nonstationary Data Analytics

Nonstationary (temporal) data is usually made up of generating processes which change

over time. By way of illustration, the temporal data represented in Figure 3.4, on

inspection, shows three different patterns.

Figure 3.4: Data Series Generated by Processes which Change Over Time

That being so, it is logical to use the current segment (401-600) to generate a predictive

model, since the first two segments (1-200 and 201-400) represent the patterns from

past environments. Consequently, the inclusion of a considerable amount of irrelevant

data and the trimming of a significant amount of data tends to reduce the quality of

the model that is being generated [73]. Predictive models generated by a dataset that

spans more than one underlying generating process are usually skewed. Therefore, it is

essential to enumerate an optimal sliding window of analysis for any successful predictive

model.

A model tree discussed in Section 2.4.3, can build a decision tree hierarchy in trying to

fit several smaller data segments (i.e. 1-200, 201-400 and 401-600 in Figure 3.4) of the

dataset to yield an improved model that best fits the entire training dataset. Therefore,

a model tree provides a piecewise linear regression model. Thus, a model tree splits the

parameter space into subspaces and then fit a linear regression model for each subspace.

Numerous methods exist such as artificial neural networks (ANN) [146] and support

vector machines (SVMs) [147][148] that do the same thing as decision trees. However,

decision trees possess favorable traits [14]. Decision trees are self-explanatory and may
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easily be understood by non-experts. Also, a decision tree is a non-parametric, which

means there are no assumptions about the tree structure.

Clustering, discussed in Section 2.5, can be harnessed to split the parameter space into

subspaces. Thus, clustering can group similar data patterns within a dataset so that

data patterns within a cluster are more similar and data patterns among clusters are

dissimilar [106][107][110]. However, an optimal number of clusters, k, in the real-world

dataset is unknown prior. Therefore, it is ideal to automatically determine k. As such,

the k-independent CDCDynDE (KCDCDynDE), discussed in Section 2.5.2, becomes

ideal to automatically determine the optimal number of clusters whenever a change in

an environment is evident [135].

3.5.2 Nonlinear Regression in Nonstationary Environments

Numerous techniques exist to solve least-squares problems such as normal equation,

singular value decomposition and QR decomposition technique. The normal equation

technique is very fast though the least precise, whereas singular value decomposition is

the most precise though the slowest [149]. The QR decomposition technique strikes the

delicate balance between precision and computational load [150].

Time-series data are usually associated with various exogenous factors such as economic

fluctuation, weather conditions and special conditions which entail high nonlinearity and

complicated patterns, making forecasting a difficult task [200]. An autoregressive (AR)

model is a classical forecasting technique commonly used in time-series modeling which

is most valuable in the presence of the vast amount of data that is highly aggregated

and when there is no need for explicit separation of seasonal indices. The advantages

of the AR model include strong expansion ability and is made up of simple features

though fails to forecast complicated series, particularly when concept shifts occur a lot.

Nonlinear regression-based prediction can be considered as an optimization problem

where the optimal parameters can be estimated by either classical or heuristic opti-
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mization techniques. However, classical techniques are usually trapped in local minima

[151]. As such, metaheuristics have been considered as an alternative [152][153].

Particle swarm optimization has been successfully applied to nonlinear regression prob-

lems, in static environments, with respect to accuracy [154][149]. Usually, real-world

nonlinear regression problems are dynamic. As such, the objective function in a dy-

namic environment tends to change, which results in changes in the structure of the

search space and the position of optima. Therefore, the performance of the prediction

model constructed using the past environment is bound to deteriorate. Thus, making a

continuous adaptation of the prediction model becomes a necessity. However, standard

PSO in a changing environment is prune to outdated memory problem and diversity

loss [87]. As such, numerous PSO variants that can adapt in dynamic environments

exists [102] such as reinitialized PSO; multi-population PSO, and charged PSO.

Therefore, hybridizing a classical technique (either QR decomposition or AR), to de-

termine the coefficients of the model, and a dynamic PSO, to induce an optimal model

structure that can adapt whenever a change in the environment occurs, is expected to

decrease the performance deterioration in nonlinear regression designed for nonstation-

ary environments that usually results from the environmental changes and consequently,

improves the algorithm’s performance.

3.5.3 Genetic Programming for Data Analytics

Genetic programming can induce nonlinear models directly from data and regression

analysis on variables that show nonlinear correlations [155] [156] [157]. Also, the GP

can directly induce model trees. As such, individuals in a GP can be generated using

grammars, commonly referred to as grammar-guided GP, which has been applied exten-

sively to data mining [158] [159]. A GP has been applied to induce predictive models

by several authors with favorable results [160] [161] [162] [163] [164] [165].

Numerous techniques were proposed in the literature to make GP cope with nonsta-

51

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



tionary environments such as implementing: a dynamic population size [71]; adaptive

parameters [72]; and the adaptive analysis window [73].

Based on the above discussion in which the knowledge of the existence of a different

segment in a dataset is paramount to the induction of a predictive model of improved

precision, the proposed GPANDA provides a piecewise nonlinear regression approach

for nonstationary data that will hybridize a dynamic DE-based clustering algorithm,

dynamic PSO-based model induction approach and dynamic GP.

3.6 Summary

In this chapter, a general overview of optimization was provided. Evolution-based meta-

heuristics: GP and DE were discussed. A swarm-based metaheuristic, PSO was also dis-

cussed. Also, evolution-based metaheuristics and swarm-based metaheuristic designed

for dynamic environments were discussed. The discussion of metaheuristics provided in

this chapter was confined to the concepts used in this thesis. A critical analysis of the

relevant literature was provided.

In the next chapter, methodology presents the methodology to be applied in this work

after considering the critical analysis of the relevant literature.
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Chapter 4

Methodology

4.1 Introduction

A detailed research methodology used in this work to realize the objectives outlined in

Section 1.2 is discussed in this chapter.

This chapter is outlined as follows: Section 4.2 discusses research methods applicable

to computer science. Section 4.3 discusses the proof by demonstration methodology,

whereas dataset to be used in this work is presented in Section 4.4. A comparative

analysis is outlined in Section 4.5, whereas experiments to be conducted in this work

are presented in Section 4.6. Technical specifications are outlined in Section 4.7.

4.2 Research Methodologies

The foundations of computer science are based on other fields such as engineering, sci-

ence, philosophy and mathematics [166]. As such, myriad research methodologies in the

field of computer science exist. Generally, these research methodologies can be catego-

rized as simulation-based, experimental and theoretical. The simulation-based research

methodology is more suitable when examining phenomena with great complexity which

can be realized by building computer models [167]. An experimental approach solves the

complex problem using software solutions (either existing or to develop from scratch).

The theoretical research methodology builds theories and derives rules to prove the

theories using Logic and Mathematics.

Examples of computer science research methodologies include design and creation, ac-
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tion research, hermeneutics, mathematical proof, empiricism, and proof by demonstra-

tion [168][169][170][171]. The design and creation methodology is most appropriate for

the development of new software artefacts whereas the action research is most appropri-

ate for the real-world computing problems [172][168][173]. Hermeneutics methodology

is most appropriate for the development of software that requires continual involvement

of users, therefore, the system is deployed and observed in a real-world environment

whereas the mathematical proof evaluates a given hypothesis using concepts of formal

mathematics [169][171].

The empiricism methodology is most appropriate for the evaluation of a certain hypothe-

sis which can be rejected or accepted using statistical tests. The proof by demonstration

methodology is analogous to methods implemented in engineering, which iteratively per-

form testing and refinement of a computer system until a satisfied condition is achieved

or no further improvements. The feedback is used at each iteration as a corrective

measure to make appropriate modifications of the system towards the expected goal

[170][171].

The main goal of this work is to develop a predictive model for nonstationary data. As

such, the research methodology - proof by demonstration becomes the most appropriate

for this work.

4.3 Proof by Demonstration

In this section, a detailed description of the proof by demonstration on how to realize

the first two objectives, Objective (a) and (b) outlined in Section 1.2, is proffered.

The following algorithms will be developed to achieve Objective (a) and (b), the dynamic

PSO-based nonlinear regression (DynPSO) and a GP approach for nonstationary data

analytics (GPANDA).

The proof by demonstration methodology requires the continual testing of the imple-

mented algorithm and use of feedback to refine the algorithm towards the desired out-
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come [171]. Therefore, the proof by demonstration methodology is a spiral process

that alternates between testing and refinement until no further improvements or the

termination conditions are satisfied.

In this section, Section 4.3.1 discusses the DynPSO algorithm whereas Section 4.3.2

discusses GPANDA algorithm.

4.3.1 The DynPSO

The DynPSO aims to develop a PSO-based nonlinear regression technique for nonsta-

tionary environments whereby the induced model dynamically adjusts when an envi-

ronmental change is detected. As such, this work hybridizes dynamic PSO discussed in

Section 3.4 with a classical technique (either QR decomposition or NARX), to induce

optimal nonlinear regression models in dynamic environments. A detailed discussion of

DynPSO is provided in Chapter 5.

The DynPSO will initially be configured using parameters provided in the literature

discussed in Section 5.5. The DynPSO will be tested and the feedback will be used to

refine the system until the desired outcome is realized. The steps to be taken using the

proof by demonstration methodology to developing DynPSO algorithm are as follows:

1. Create an initial algorithm

Based on the above critical analysis, the initial DynPSO that induces optimal non-

linear regression models in nonstationary environments will be created to realize

Objective (a) listed in Section 1.2.

2. Define the evaluation criterion and evaluation

The DynPSO will be evaluated by examining the effectiveness of the classical

technique (either QR decomposition or nonlinear autoregressive with exogenous

inputs model (NARX)) to determine the coefficients of the regression model and a

dynamic PSO to induce an optimal model that can adapt whenever a change in the
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environment occurs using the datasets discussed in Section 4.4 and performance

measure discussed in Section 3.2.1.

� The DynPSO is stochastic, therefore, several independent runs (= 30) will

be executed using different problem instances (discussed in Section 4.4) to

test the algorithm.

3. Development

The DynPSO will be designed, analyzed and implemented.

4. Refinement

If DynPSO fails to come up with the desired solution for at least one instance for

each problem tested then at least one of the following will be adjusted:

� The DynPSO parameters and features such as particle representation, swarm

initialization technique, fitness function and the number of iterations.

� The QR decomposition parameters such as the maximum number of terms

and the order of attribute.

5. Iteratively, execute Step 3 - 4 until the desired outcome is realized.

4.3.2 GPANDA

This work will develop a genetic programming-based predictive approach (GPANDA)

designed for nonstationary data with a numerical target that dynamically adapts when

concept drift occurs and can also be used to extract knowledge from historical data.

GPANDA will hybridize a dynamic clustering algorithm (KCDCDynDE), nonlinear re-

gression approach (DynPSO) and GP to perform regression on nonstationary data with

concept drift occurring. A detailed discussion of GPANDA is provided in Chapter 6.

GPANDA will initially be configured using parameters provided in the literature dis-

cussed in Section 6.6. GPANDA will be tested and the feedback will be used to refine
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the algorithm until the desired outcome is realized. The steps to be taken using the

proof by demonstration approach to developing GPANDA are as follows:

1. Create an Initial Algorithm Based on the above critical analysis, the initial GPANDA

that can perform regression on temporal data with concept drift occurring will be

created to realize Objective (b) listed in Section 1.2.

2. Define the evaluation criterion and evaluation GPANDA will be evaluated by

examining the effectiveness of the dynamic clustering algorithm, the nonlinear

regression approach and GP, to perform regression on nonstationary data with

concept drift occurring using the datasets discussed in Section 4.4 using the per-

formance measure discussed in Section 3.2.1.

� GPANDA is stochastic, therefore, several independent runs (= 30) will be

executed using different problem instances (discussed in Section 4.4) to test

the algorithm.

3. Development GPANDA will be designed, analyzed and implemented.

4. Refinement If GPANDA fails to come up with the desired solution for at least one

instance for each problem tested then at least one of the following will be adjusted:

� Parameters and features such as representation, initialization technique, tree-

depth, offspring-depth, fitness function, the total number of generations,

reproduction-operator-application-rates, and selection technique.

5. Iteratively, execute Step 3 - 4 until the desired outcome is realized.

4.4 Datasets

This section presents the problem instances to be used in the experiments. The real-

world time series dataset to be used in this work will be differenced. For each artificially
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generated dataset, 10% of randomly selected target output is modified by adding Gaus-

sian noise to the target output, yj, to increase the complexity of the problem using:

yj = yj +N(0, σ) (4.1)

where the standard deviation, σ, defines the Gaussian distribution width.

Real-world nonlinear regression datasets in dynamic environments enable performance

evaluation of the induced model in real-world conditions. However, the existence of a

real drift in the data is unknown, or if the drift exists, it may be unknown when exactly

it occurs. As such, it becomes difficult to have an in-depth analysis of the behavior of

the predictive models. Therefore, an artificially generated dataset with induced drifts

becomes favorable.

Several dynamic test problems were designed to evaluate the performance of evolu-

tionary algorithms in nonstationary environments such as the DF1 generator [186], the

'moving peaks' benchmark [187], the single and multi-objective dynamic test prob-

lem generator [188], the dynamic multi-knapsack problem and the traveling salesman

problem [189], and the generalized dynamic benchmark generator [190]. However, the

mentioned benchmarks are not favorable for the present study. This work aims to assess

the ability of GP to track and adapt dynamically, induced structurally optimal nonlin-

ear regression models as the environment changes. As such, a new set of benchmark

problems tailored to assess the GP’s ability to track and adapts dynamically the induced

structurally optimal nonlinear regression models in nonstationary environments will be

defined.

The parameter, wshift, introduces new decision boundaries in the sliding window as

illustrated in Figure 4.1, thereby increasing complexity to problem under study. As

illustrated in Figure 4.1, as the sliding window shift by wshift, the new analysis window

will consists of data points, (p13, p14, p15, p21, p25), from two different data generat-

ing processes. As such, the sliding window of analysis will be made up of generating

processes that change over time. Therefore, an algorithm/approach that is able to enu-
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merate changes in the underlying data generating processes will yield a prediction model

of higher precision.

Figure 4.1: Introducing new decision boundaries by window shifts

In this work, four artificially generated, and three real-world nonstationary test envi-

ronments will be used in the experiments. These test environments differ in the total

number of underlying data generating processes, the chance of having conflicting de-

cision boundaries within a data window, and the dimensionality of the problem. The

following test environments will be implemented in this section.

Progressive-Bennett5A Variation

Auto-generated datasets of 10 000 patterns with 100 time-steps will be used in the

experiments to be conducted in this work on different types of change period. Time-

step is an incremental change in time for which the concept drift is introduced. Simply

put, time-steps determine the total number of changes injected in the dataset. The

datasets will be generated using the benchmark nonlinear Bennett5 function computed

as [184]:

y = θ1 + (θ2 + x)
− 1
θ3 (4.2)

The starting values for Bennett5 function are provided in the literature [184]. An

environmental change will be simulated by adding drift to each parameter, θi = θi + δσ

where δ is the drift and σ is the probability of altering the direction of change. The

following equation will be used to simulate the drift:

δ = 0.6δ2 + 0.02δ + 0.01 (4.3)

The impact of the drifts will be smaller at the beginning and then improves along with

an increase in the parameter (h) defined in Section 4.6.1. The sliding window size (ws)
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will be set to 100 data points.

New South Wales Electricity Pricing

Electricity pricing is a real-world dataset built on the electricity market in the Australian

state of New South Wales (NSW) [185]. The electricity pricing dataset exhibits both

short-term irregular changes due to weather fluctuations and long-term regular changes

due to seasonal changes [185]. Parameters were recorded every half an hour, for the

period 7 May 1996 to 5 December 1998 to create a dataset of 27 552 data points.

For DynPSO experiments, the sliding window size (ws) will be set to 100 data points.

Each algorithm requires 275 slides to traverse the complete dataset. Given that 100

iterations will be executed before the sliding window slides, therefore, for the training

algorithm to traverse the complete dataset, 27 600 iterations will be executed.

For GPANDA experiments, an analysis window size of 2 500 data points and wshift of

125; 250; 500; 1 250 and 2 500 will be implemented in this dataset.

Australian Energy Market Operator Electric Load

The Australian Energy Market Operator (AEMO) electric load datasets consist of 15

electric load datasets of five states of Australia of the year 2013-2015, namely Victoria

(VIC), South Australia (SA), Queensland (QLD), Tasmania (TAS) and New South

Wales (NSW). Each day have 48 data points sampled every half an hour; therefore,

each dataset consists of 17 520 data points for each year [197]. Table 4.1 summarizes

the statistics of AEMO electric load datasets.

The following temperature data for each state will also be considered: Melbourne for

VIC, Adelaide for SA, Brisbane for QLD, Launceston airport and Hobart for TAS, and

Canberra and Sydney for NSW [198]. The min and max daily temperature data will be

considered as exogenous variables.

The entire training set is scaled and then split into training (first 9 months) and test
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Table 4.1: Summary of AEMO electric load dataset

Dataset Year Data points Max Min Mean std

VIC 2015 17520 8579.9 3369.1 5194.6 864.7

2014 17520 10240 3272.9 5324.4 921.4

2013 17520 9587.5 3551.6 5511.8 895.9

SA 2015 17520 2870.4 696.3 1398.5 306.0

2014 17520 3245.9 682.5 1403.3 312.8

2013 17520 2991.3 728.6 1426.6 301.7

TAS 2015 17520 1667.2 479.4 1138.2 145.3

2014 17520 1630.1 569.1 1109.7 139.0

2013 17520 1650.3 659.5 1129.3 142.3

NSW 2015 17520 12602 5337.4 7979.8 1232.7

2014 17520 11846 5138.1 7917.8 1170.1

2013 17520 13788 5113.0 7981.6 1190.9

QLD 2015 17520 8808.7 4281.4 6035.4 777.2

2014 17520 8445.3 4073.0 5745.7 794.0

2013 17520 8278.4 4148.7 5703.7 747.0

sets (remaining 3 months). Scaling is done using:

x̄i =
xu − xi
xu − xl

(4.4)

where x̄i is the scaled value, xi is the data point, xl is the minimum value and xu is the

maximum value in the dataset.

The AEMO dataset will serve the purpose of providing a comparison between the

DynPSO results and those of the leading studies [198].

Progressive-Bennett5B Variation

A gradual problem set will be generated using the nonlinear benchmark function, Ben-

nett5, to generate a dataset of 10 000 data points with 10 time-steps. The Bennett5

function is defined in Equation (4.2). The change period occurs at each time-step. A

sliding window of analysis of ws = 1000 data points slides from one time-step, which

consists of 1000 patterns, to the next using a wshift.
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Table 4.2 presents 20 different dynamic scenarios, denoted as A, B, C, and D, which will

be applied to a progressive problem set. Different combinations of spatial and temporal

severity presented in Table 4.2 simulates different dynamic environments from most

abrupt changes to gradual changes as Scenario A - Abrupt; Scenario B - Quasi-Abrupt;

Scenario C - Quasi-Progressive and Scenario D - Progressive. The set of values to be

considered for temporal (te) and spatial severity (wshift) are summarized in Table 4.2.

Recurrent Variation

Table 4.2: Severity Change Values for Progressive Dataset

wshift

te 50 100 250 500 1000

25 A1 A2 A3 A4 A5

50 B1 B2 B3 B4 B5

100 C1 C2 C3 C4 C5

250 D1 D2 D3 D4 D5

In the recurrent problem set, modification to the environment will be realized by al-

ternating two target functions. The target functions differ from each other in only one

operator. The dataset consists of 10 000 data points. Each target function generates 5

000 data points. The data points will be recorded in sequential order, alternating as a

block of 1000 patterns, into a single dataset, block by block. The target functions will

be generated using:

f1(x0, x1) = x50 − 5x30 + 4x0 + 5x51 − 5x31 + 4x1 with x0, x1 ∈ [−2, 2]

f2(x0, x1) = x50 − 5x30 + 4x0 − 5x51 − 5x31 + 4x1 with x0, x1 ∈ [−2, 2]

The size of the sliding window of analysis, ws, will be set equal to the size of the concept

block which is 1000 data points.

Abrupt Variation

The abrupt problem set consists of a dataset of 8 000 data points generated by four dif-

ferent target functions, each generating 2 000 data points. Data points will be recorded
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in a sequential order, block by block to form a dataset. A sliding window of analysis,

ws, will be set to 2 000 data points. The following artificially generated functions will

be used to simulate an abrupt problem set [191]:

f3(x0, x1, x2, x3) = x50 − 5x31 + 4x2 + 5x50 − 5x31 + 4x3 with x0, x1, x2, x3 ∈ [−2, 2]

f4(x0, x1, x2, x3) = exp(2x0 sin(πx3))− sin(x1x2) with x0, x1, x2, x3 ∈ [−1, 1]

f5(x0, x1, x2, x3) = x50 + 5x31 + 4x2 − 5x50 − 5x31 + 4x3 with x0, x1, x2, x3 ∈ [−2, 2]

f6(x0, x1, x2, x3) = exp(2x0 sin(πx3)) + sin(x1x2) with x0, x1, x2, x3 ∈ [−1, 1]

Random Variation

A random problem set will be generated using Equation (4.2) and consists of 10 000

patterns with 10 time-steps. There will be a 50% chance of modifying the data in the

current moment whereby each operator has an equal chance of being inverted. Thus, a

negative member becomes positive and vice-versa. As such, the dataset will be randomly

modified. A sliding window of analysis of ws = 1000 data points slides from one time-

step, which consists of 1000 patterns, to the next using a wshift of 250; 500 and 1

000.

Trend Variation

Trend variation is a regular long-term change in the level of data which can be linear

or non-linear. Trend variation tends to oscillate in a logically predictable pattern. A

real-world dataset, historical US Treasury bill contracts, for the period January 1984 to

March 1986 is selected to depict trend variation [192]. A sliding window of analysis of

ws = 111 data points and wshift of 20; 42 and 111 will implemented in this dataset.

Stock Market

Two real-world stock market datasets, the Gross Domestic Product (GDP)(US), and

the Consumer Price Index inflation rate (CPI)(US) will be implemented in the current

study. The GDP dataset is from January 1982 to March 2003 whereas CPI dataset

is from January 1950 to December 1983. The selected datasets will serve the purpose
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of providing a comparison between GPANDA results and those of the leading studies

[181][182][73].

A Table 4.3 summarizes the characteristics of the seven problem datasets discussed in

above indicating the dataset used to test a given algorithm(s)

Table 4.3: Summary of Datasets and Corresponding Algorithms Used

Test Environment Dataset Algorithm(s)

Progressively Changing
Bennett5A DynPSO

Bennett5B GPANDA

Chaotically Changing Random GPANDA

Cyclic Recurrent GPANDA

Abruptly Changing Abrupt GPANDA

Real-world

NSW Electricity Pricing DynPSO, GPANDA

AEMO Electric Load DynPSO, GPANDA

Trend GPANDA

CPI Inflation GPANDA

GDP (US) GPANDA

4.5 Comparative Analysis

To achieve Objective (c) and (d) outlined in Section 1.2, a comparative analysis will be

performed on the results obtained from the execution of the experiments discussed in

Section 4.6 using the datasets discussed in Section 4.4.

� DynPSO will be run and compared to dynamic PSOs, namely multiPSO, charged-

PSO and reinitialize-PSO discussed in Section 3.4;

� DynPSO will be run and compared to conventional Support Vector Regression

(SVR) [175][176] and standard Random Vector Functional Link network (RVFL)

with direct input-output connections that retain biases [177][178]; and

� GPANDA will be run and compared to DynGP and DyFor GP discussed in Section

3.3.
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Each state-of-the-art algorithm will be run until it converges before a sliding window of

analysis is applied to ensure fairness.

4.5.1 Statistical Tests

To ascertain the significance of the results obtained by the proposed algorithms discussed

above and the dynamic GPs and dynamic PSOs, statistical analysis will be implemented.

A direct comparison between the two best mean fitness values for algorithms that are

stochastic in most cases is misguiding. Several experiments are sensible to yield a mean-

ingful sample of values for best fitness. For each algorithm, a total of 30 independent

runs will be executed on each given dataset. A Kruskal-Wallis test will be performed

first to establish if there exists a statistically significant difference between the mean

fitness values of the algorithms for a given problem. If there exists a statistical difference

between the algorithm’s performances, a Mann-Whitney U test will be performed at a

significance level of 0.05. The obtained Mann-Whitney U-values determine the winning

and losing algorithm. The overall performances will be ranked based on the difference

between wins and losses of each algorithm.

A test will be performed for the algorithms’ mean fitness values, µ1 and µ2 , whereby

H0 : µ1 = µ2 and H1 : µ1 6= µ2. These tests will be performed for every combination of

algorithms and all problems.

4.6 Experiments

This section describes the experiments that will be conducted for DynPSO and GPANDA.

A brief description of each experiment is given in the subsequent sections.

The optimal values for each parameter of each algorithm implemented in the experiments

will be obtained using the F-race algorithm [174].
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4.6.1 Dynamic PSO-based Nonlinear Regression Approach

To achieve Objective (c), a comparative analysis to the dynamic PSOs, namely multi-

PSO, charged-PSO and reinitialize-PSO discussed in Section 3.4 will be used to bench-

mark the performance of DynPSO.

For Progressive-Bennett5A Variation and New South Wales Electricity Pricing datasets,

described in Section 4.4, a sliding window of ws = 100 data points slides from one time-

step, which consists of 100 data points, to the next. The environmental change occurs

at severities and frequencies (discussed in Section 2.2) of 1 to 5.

The severity of change determines the probability of altering the direction of change,

σ, where a value of 5 implies that the reverse direction of change will be certain at

each environmental change. To simulate a dynamic environment, drifts will be intro-

duced in the dataset at a given time-step. The time-step at which the change occurs

(changePoint) will be determined as:

changePoint =
h

10
× T (4.5)

where T is the total number of iterations and h ε {1 − 5} determines the time-step at

which change will be introduced in the dataset. A high value of h implies that fewer

changes will be occurring to the dataset, i.e., if h = 2, then change occurs after every

fifth of the total iteration whereas if h = 1, then change occurs after every tenth of the

total iteration.

For electric load dataset, the input features: month, day, hour and the load value x(t−48)

will be used to induce a multiple linear regression model. The induced regression model

will be used to predict xt for 48 steps horizon (one day).
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4.6.2 Genetic Programming Approach for Nonstationary Data Ana-

lytics

To achieve Objective (d), a comparative analysis to the dynamic GPs, namely DynGP

and DyFor GP (discussed in Section 3.3), will be performed on the obtained results of

applying GPANDA to the datasets described in Table 4.3.

Four artificially generated, and three real-world nonstationary problem sets will be used

in the experiments. These seven problem sets differ in the total number of underlying

data generating processes and the dimensionality of the problem.

Each problem set is characterized by two variables: wshift, to ascertain the degree of

spatial severity and the frequency of change, g (number of iterations), to ascertain the

degree of temporal severity. In each experiment, the frequencies (g) of 25; 50; 100; 250

iterations are implemented. The spatial severities (wshift) of 50; 100; 250; 500; 1000 to

simulate different dynamic environments from gradual changes to most abrupt will be

implemented on the artificially generated datasets. The effect of parameter values will

be expected to be stronger for smaller values, therefore, temporal and spatial severity

increases nonlinearly.

4.7 Technical Specification

All the experiments conducted in this work will be implemented in a MATLAB pro-

gramming environment [193] on an Intel Core i7 processor (3.1 GHz) with 16 GB of

memory on a Linux Centos 7 system. The statistical significance of the differences in

the algorithm’s performances will be calculated using the R statistical package.
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4.8 Summary

This chapter discussed the research methodology to be implemented to examine GPANDA

and DynPSO. The datasets and performance measure to be used in the experiments were

presented. Also, experiment to be executed were presented and statistical test to used

were discussed.

The next chapter discusses DynPSO presented in this chapter.
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Chapter 5

Dynamic PSO-based Nonlinear
Regression Approach

5.1 Introduction

This chapter presents the proposed dynamic PSO-based nonlinear regression approach

tailored for nonstationary environments. The proposed technique hybridizes a dynamic

PSO with a regression model (either linear regression - QR decomposition or autore-

gressive) to induce optimal nonlinear regression models.

This chapter is structured as follows: Section 5.2 discusses the proposed PSO-based

nonlinear regression approach. Section 5.3 discusses linear regression whereas Section

5.4 discusses autoregressive. Section 5.5 discusses parameter optimization.

5.2 Particle Swarm Optimization in Regression Analysis

A hybrid technique, dynamic PSO-based nonlinear regression approach (DynPSO), that

consists of dynamic PSO and a regression model (either QR decomposition or NARX)

is proposed. DynPSO fits a nonlinear relationship between the value of the independent

variable and corresponding dependent variable(s). The regression model: NARX or

QR decomposition, is used to estimate the parameters of the model whereas QPSO

selects the model structure based on the data characteristics. Thus, QPSO optimizes

the functional form of the multidimensional polynomial fit to experimental data. As

such, QPSO reduces the number of terms required in comparison to a least-square fit

using all possible terms. Also, DynPSO adapts whenever a change in the environment
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occurs. Algorithm 9 summarizes DynPSO.

Considering Algorithm 9, swarm particles are initialized in line 2. Line 4 calls a dynamic

PSO algorithm which is executed for the given number of iterations. Line 5 simulates a

dynamic environment. If an environmental change is detected, line 6 adapts the current

model to the prevailing data points. The algorithm terminates in line 8.

Algorithm 9 Dynamic PSO-based Regression Algorithm

1: BEGIN
2: Determine the coefficient of the regression model using either QR or NARX
3: Initialize swarm particles using Equation (5.4) or Equation (5.7) that consist of

unique, term-coefficient mappings from a set, ξ defined in (5.5)
4: DO
5: Slide a data window of analysis
6: Run n iterations of the dynamic PSO
7: if a change in the environment is detected then
8: Reduce b ≈ Aτ
9: Update the coefficients of term-coefficient mappings in each particle

10: UNTIL all data points are analyzed.
11: END

Three versions of DynPSO are created by implementing three dynamic PSO algorithms

(discussed in Section 3.4), namely multi-swarm, reinitialized, and charged PSOs. As

such, the training algorithms are categorized into QR-PSOs and nonQR-PSOs. The

QR-PSOs consist of dynamic PSOs namely, charged PSO (QPSO), multi-swarm PSO

(mPSO) and re-initialized PSO (rePSO) that are implemented in the proposed Algo-

rithm 9 in line 4 and therefore, referred to as QR-QPSO, QR-mPSO and QR-rePSO

respectively. Table 5.1 summarizes the mentioned six DynPSOs.

Table 5.1: Summary of DynPSOs Algorithms

nonQR-PSOs QR-PSOs

charged PSO (QPSO) QR-based charged PSO (QR-QPSO)

multi-swarm PSO (mPSO) QR-based multi-swarm PSO (QR-mPSO)

re-initialized PSO (rePSO) QR-based re-initialized (QR-rePSO)

To benchmark the performance of the proposed techniques, nonQR-PSOs (QPSO, mPSO

and rePSO) are implemented as discussed in Section 3.4. A total of six experiments
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(described in Section 4.6) are executed.

To model nonstationary time series, another version of DynPSO is created by replacing

the QR component in DynPSO discussed above by NARX model (discussed in Section

5.4).

The best performing dynamic PSO algorithm from the three dynamic PSO algorithms

mentioned above will be hybridized with NARX model. This hybridization aims to

evaluate the effectiveness of the regression models, namely QR decomposition and au-

toregressive, in DynPSO technique.

5.2.1 Fitness Function

The adjusted coefficient of determination, R2
a, is implemented in all algorithms men-

tioned above to measure the fitness of each particle and is defined as:

R2
a = 1−

∑n
i=1(yi − yj,i)2

(yi − ȳ)2
× n− 1

n− k
(5.1)

where the predicted output for jth particle for the ith data point is yj,i, yi is the target

output, n is number of samples, ȳ is the mean value of target output and k is the number

of coefficients. The R2
a penalizes a model that has a larger number of coefficients, k.

Thus, the objective of R2
a is to minimize the model’s architecture, whereas maximizing

the correlation between the dataset and the induced model.

5.2.2 Detecting Environmental Changes

In this work, a simple and efficient method to detect environment change used in [195]

is adopted that uses the personal Best position of each particle which is re-evaluated

before being updated. As such, fitness deterioration implies that an environmental

change had occurred. This environmental change detection technique is implemented

in all algorithms mentioned above.
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5.3 QR Decomposition

Considering the linear system:

Ax = b

where A is an m×n matrix, m ≥ n with linearly independent columns, thus A ∈ Cm×n
ρ ,

and the data b = Cn.

Equation Ax = b is simply the least squares problem that minimizes ‖Ax = b‖22 in which

a solution exists that is defined by:

xLS = { x ∈ Cn : ‖Ax = b‖22 is minimized }

and the minimizers are the affine set computed by:

xLS = A+b+ (In −A+A)y, y ∈ Cn

The goal is to come up with a solution with the smallest norm, thereby solving the

optimization problem:

minimize‖x‖

x ∈ <n

subject to Ax = b

Given that x is an input vector and y is the output, a regression model between x and

y is of the form:

y = f(x; β) + ε

where f can be linear or nonlinear function, β is the parameter vector and ε a random

error. The parameter vector is calculated using the least-squares method. Least-squares

approximation minimizes the least-squares error and is computed as:
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Ess =
∑p

i=1[yi − ŷi]2

where p is the number of data points, yi is the ith output and ŷi is the ith predicted

output. The predicted output can be expressed as:

ŷi = τ0 + τ1x1 + . . . + τn−1x
n−1
i + τnx

n
i

=
n∑
j=0

τjx
j
i (5.2)

where τj is the jth term coefficient, n is the number of terms. The determination of

coefficients τ0, . . . , τnxn is realized through solving the normal equation:

y = Xτ (5.3)

where τT = [τ0, τ1, . . . , τn−1, τn] and yT = [y0, y1, . . . , yn−1, yn].

A QR decomposition technique is used to solve least-squares problems [194]. The QR

decomposition, implemented in this work is computed using Gram-Schmidt technique.

Considering a QR decomposition technique, the predicted output, ŷi, in Equation (5.2),

when the dimensionality of the input space, d, is taken into consideration, is expressed

as [5]:

ŷi =
m∑

∑d
j=1 βj=0

(τ(β1,β2,...,βd)

d∏
q=1

xβdi,q) (5.4)

where m is the maximum polynomial order, τ(β1,β2,...,βd) is a real-valued coefficient and

βd is the natural-valued order. QR decomposition technique determines the value of the

coefficients, τ(β1,β2,...,βd). Therefore, the dynamic PSO is tasked to determine only the

structure of the model.

The structure of each particle in dynamic PSO is the structure of the nonlinear poly-

nomial in one variable. Thus, each particle is a representation of Equation (5.4) and
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consists of unique, term-coefficient (t) mappings from a set, S: [5]

S = {(t0 → τ0), ..., (tk → τk)} (5.5)

where τj, j ∈ {0, ..., k} is a real-valued coefficient and k is the maximum number of

terms. Each term, tj, consists of a set, T , of unique, variable-order mappings, e.g.

T = {(xi,1 → β1), ..., (xi,d → βd)}

where xi,j, j ∈ 1. . . q is an input variable-integer representation, q is the number of input

variables. The coefficients of term-coefficient mappings are determined by reducing

y = Xτ .

Each particle in a swarm is initialized by randomly selecting variable-order pairs, in

order to build a term, up to a maximum polynomial order e ∈ {0, ...,m}. This process

is repeated until the number of terms equals the maximum number of terms n. The

dynamic PSO is then tasked to optimize the form of a polynomial, i.e., reducing the

number of terms required in comparison to a least-squares fit using all possible terms

[200].

5.4 Autoregressive Model

Autoregressive models estimate future value using a weighted sum of past values. An

AR model can be expressed as:

yt = f(y(t−1), y(t−2), ..., y(t−l)) + εt (5.6)

where f is a nonlinear function, yt is the observed data at time period t, l is the number

of lags and εt is the forecasting error term at time period t.

A variant of autoregressive model tailored for nonlinear regression, nonlinear autore-

gressive with exogenous inputs model (NARX), is adopted in this study. NARX model
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estimates future value using both the weighted sum of past and current values and

external past inputs values that affect the target output.

The NARX model can be expressed as:

yt = f(y(t−1), y(t−2), . . . , y(t−l);χ(t−1), χ(t−2), . . . , χ(t−q)) + εt

where l ∈ {0, ..., N} and q are number of lags and χ is the exogenous variable.

Also, the NARX model can be expressed as:

[
yl+1 · · · yN

]
=

[
A1 · · ·Al B1 · · ·Bl

]



yl+1 · · · yN−1
...
. . .

...

y1 · · · yN−l

χl · · ·χN−1
...
. . .

...

χl−q · · ·χN−q


+

[
εl+t · · · εN

]
(5.7)

where matrix A describes the relationship between the inputs and matrix B describes

the relationship between each input and exogenous variables. The coefficients of the

matrix are predicted by applying the unconstraint least-squares approximation based

on the Granger causality which aims to minimize the error between data and model’s

outputs.

As such, NARX is used to enumerate the value of the coefficients and dynamic PSO is

then tasked to determine only the structure of the model. For a NARX-based DynPSO

approach, each particle in Algorithm 9 is a representation of Equation (5.7).

5.5 Parameter Tuning

The optimal values for each parameter of each algorithm implemented are obtained using

the F-race algorithm, only a single run is performed [174]. The parameter optimization
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is done across domains. The cross-domain technique aims to come up with a parameter

setting that produces favorable performance across several domains [196]. The swarm

of each PSO is initialized within the bounds of the dataset and the optimized parameter

values listed in Table 5.2 are implemented in the experiments. The quantumSize and

reInit (swarm to be reinitialized) are expressed as a percentage of swarmSize. For RVFL,

the number of hidden neurons is set to 100 and the regularization parameter: λ, is set

to be 2C where C is tuned over [-5, 14] [178].

Table 5.2: DynPSO Parameter Values

Algorithm Parameter Bounds Value

PSO c1 = c2 [0,3] 1.496

ω [0,1] 0.730

swarmSize [0,50] 30

iterations [0,∞] 100

QPSO rcloud [0,5] 2

quantumSize [0,100] 50%

mPSO rexcl [0,5] 1.3

rePSO reinit [0,100] 50%

QR numberOfTerms [1,20] 15

maxPower [1,25] 20

SVR ε [0,1] 0.2

5.6 Summary

In this chapter, the proposed DynPSO to induce nonlinear regression model in a non-

stationary environment was discussed. A discussion of DynPSO that consists of two

components: regression model (either - QR decomposition or NARX) to estimate pa-

rameter coefficients of the model and QPSO to extract and optimize the structure of the

model was provided. Three variants of DynPSO were presented namely: QR-QPSO,

QR-rePSO and QR-mPSO. To simulate a nonstationary environment, a sliding window

of analysis was adopted. An environmental change detection technique used in DynPSO

to adapt to nonstationary environments was discussed.
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In the next chapter, a GP-based approach for nonstationary data analytics discussed in

the methodology chapter is discussed.
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Chapter 6

Genetic Programming Approach for
Nonstationary Data Analytics

6.1 Introduction

This chapter presents the proposed GP approach for nonstationary data analytics (GPANDA).

Section 6.2 provides an overview of GPANDA and Section 6.3 discusses GPANDA’s in-

dividuals and initial population generation. Section 6.4 discusses the nonlinear models

in GPANDA which are expressed as GP terminal nodes. Section 6.5 discusses the en-

vironment change detection used in GPANDA whereas Section 6.6 discusses GPANDA

parameter tuning.

6.2 An Overview of Genetic Programming Approach for

Nonstationary Data Analytics

GPANDA implements a piecewise approach to predict a target, nonlinear model and

consists of three components: a clustering algorithm, nonlinear regression technique,

and GP algorithm. GP algorithm evolves model trees with terminal nodes expressed as

nonlinear regression models. Algorithm 10 summarizes GPANDA.

Considering Algorithm 10, the dataset is clustered to enumerate clusters that represent

data points from different data generating processes whereby a model is fit for each

cluster in line 4. Each induced nonlinear regression model forms part of GP terminal

set. An initial GP population is created and the fitness of each individual is calculated
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in line 5. In line 7, an updated sliding window of analysis that depict the current data is

presented to GPANDA. Line 8 handles environmental changes in the dataset. The GP

optimization cycle is entered in line 9, which terminates if the termination condition is

met in line 16.

Algorithm 10 GPANDA

1: BEGIN
2: Set the size of the sliding window of analysis to ws data points
3: Let t = 0
4: Create GP terminal set using Algorithm 11
5: Create individuals that constitute the Pop(0) using Algorithm 12
6: DO
7: Slide a sliding window of analysis
8: Perform Environmental change update process using Algorithm 13
9: WHILE termination condition(s) not satisfied DO
10: Select individuals from Pop(t) to use in reproduction process
11: Perform crossover using selected individuals to create offspring
12: Perform mutation on the offspring
13: Compute fitness for each offspring
14: Select individuals to constitute a new population, Pop(t+ 1)
15: t = t+ 1
16: UNTIL no further data to analyze
17: END
18: END

Selection in GP is performed using the tournament selection technique. The crossover

operator picks a crossover point (it disallows extreme points) from two selected model

trees and then swaps sub-trees to construct a new offspring. The crossover operator also

curtails offspring longer than the maximum allowed number of subtrees.

The detailed discussion of the main aspects of GPANDA is provided in the subsequent

sections.

6.3 Individuals and Initial Population

Each individual (model tree) in GP population represents a piecewise nonlinear predic-

tive model. Thus, GP evolves model trees with its terminal nodes expressed as nonlinear

models.
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An example of a GPANDA model tree is graphically illustrated in Figure 6.1. Consider-

ing Figure 6.1, nodes are recursively added within a maximum tree depth to a root node

(x2 < v2). As illustrated in Figure 6.1, yi is the ith nonlinear model from the terminal

set. Nonlinear models, yi, are picked randomly from the terminal set. The discrete or

continuous-valued attribute is represented as xi whereas vi is a possible value of xi and

the set of operators, Op ε {<,>,=, 6=}.

x2	<	v2

x2	=	v2

y2

x1	>	v1

y1 y3 x3	<	v3

y4 y2

Figure 6.1: An example of GP Model tree

It is ideal to initialize a small tree which is expected to grow during the evolutionary

process if an increased complexity is necessary. GP trees are evolved using the grow

method.

Considering Algorithm 11, data clustering is performed in line 2 to split the parameter

space into subspaces. Line 3-6 fits a nonlinear regression model, Ar, on each generated

cluster which then constitutes GP terminal set.

Each nonlinear regression model is assigned a lifetime which expires if it exceeds the

upper-bound to avoid the size of the terminal set becoming unnecessarily large which

will tend to make the search space larger. The lifetime (πω) is a user-defined parameter

which is initialized to zero and increments by a unit on each generation. However, the

parameter is reset whenever a model is deemed useful.
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Algorithm 11 GP Terminal Set Initialization Process

1: BEGIN
2: Perform data clustering using KCDCDynDE to obtain k clusters
3: for each cluster do
4: Perform nonlinear regression using DynPSO to obtain a model, Ar
5: Insert the induced model, Ar, into the terminal set

6: end for
7: END

Considering Algorithm 12, a model tree is created by recursively adding nodes within

the maximum tree depth set in line 3. In line 4, U(0, 1) is a uniformly distributed

random number and Op is a operator set. In line 5, there is an equal chance of picking

either a terminal node or an internal node. If an internal node is selected, line 6 - 10

picks the function from the internal set and an attribute value for the attribute, Aε, to

be used in tree building in line 11 - 14, else a terminal node, Ar, is picked from the

terminal set in line 18 - 21. Once the termination condition is satisfied, a Caller in line

23 returns the induced model tree.

The root mean square error, which is the square root of EMS, discussed in Section

3.2.1, calculated over the dataset on each generation is used to evaluate the fitness

of individuals. RMSE calculates the misfit of the regression estimate to its expected

output.

6.3.1 Mutation Operator

Different mutation operators used to introduce diversity into the population of programs

are adopted in this work [5]. A mutation point is not randomly chosen, instead, the

mean square error is calculated for each node (on the target individual), at the selected

depth and each terminal node. The mean squared error (defined in Section 3.2.1), EMS,

is used to determine the relative error of a subtree or terminal node, Ar. The following

mutation operators are implemented:

� Perturb-worst-non-terminal-node operator
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Algorithm 12 Evolving GP individual

1: BEGIN
2: Set CALLER (a calling node) to Nil
3: Set the depth to maxTreeDepth
4: if fitness U(0, 1) < 0.5) and depth < maxTreeDepth then
5: Select Aε from the attribute set
6: if Aε is a continuous-valued then
7: Op(ε) ∈ {<,>,=, 6=}
8: else
9: Op(ε) ∈ {=}

10: end if
11: For attribute, Aε, select an attribute value, a(ε,i) from a training pattern, ı, such

that vε = a(ε,i), i ∈ {1, . . . , |P |} where vε is a possible value of Aε
12: Create a node, Nγ with the antecedent, antγ = (Aε op(ε) vε), and consequent

conγ = Nil
13: Cover CALLER with the antγ (left node) and increment depth by 1
14: Cover CALLER with ¬antγ of Nγ (right node) and increment depth by 1
15: else
16: Select Ar
17: Build a node Nγ with the antecedent, antγ = Nil and consequent, conγ = Ar:
18: antγ ← Nil
19: ¬antγ ← Nil

20: end if
21: Assign CALLER := Nγ and return
22: END
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A nonterminal node in an individual, at the given depth, with a higher relative

error is perturbed. This operation enables an adjustment on the internal node

described by the worst nonterminal nodes. Figure 6.2 is a graphical illustration

of a perturb-worst-nonterminal-nodes operator where Nj is the worst nonterminal

node to be perturbed.

� Perturb-worst-terminal-node operator

A terminal node in a target model tree with a higher EMS is perturbed. This

operation enables the replacement of a terminal node with a randomly selected

nonlinear model, Ar, from the terminal set. Figure 6.3 is a graphical illustration

of the perturb-worst-terminal-node operator where Nx is the worst terminal node

to be perturbed.

6.4 Nonlinear Models

The nonlinear regression technique constructs optimal nonlinear models, which consti-

tutes the GP terminal set, which approximate mapping between inputs and the target

variable.

A2 < v2

A2 = v2

Ar2

A1 > v1

Ar1 Ar3 A3 < v3

Ar4 Ar2

Nj

Figure 6.2: An illustration of an model tree perturb-worst-nonterminal-node operator
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Figure 6.3: An illustration of a model tree perturb-worst-terminal-node operator

Thus, the nonlinear regression technique induces nonlinear models which approximate

mapping between inputs and the target variable. The nonlinear regression technique

consists of two steps: nonstationary data clustering using KCDCDynDE discussed in

Section 2.5.2, and nonlinear model induction using the dynamic PSO-based nonlinear

regression approach (DynPSO), discussed in Chapter 5.

A KCDCDynDE clusters data in a nonstationary environment, therefore, it is adopted

in this work to perform clustering on nonstationary data [135]. A change in the envi-

ronment may cause cluster centroids to move, data points to migrate between clusters

and the number of clusters to increase or decrease. Therefore, whenever a change in an

environment is evident, KCDCDynDE automatically determines the optimal number of

clusters. For each generated cluster, a model is fitted using DynPSO.

6.5 Environment Change Detection

The easiest way to detect an environmental change in a nonstationary environment is to

keep track of the best fitness found [72]. Considering an elitist individual in the current

GP population, the best fitness should never deteriorate as long as the environment is

static, with no new data that changes the underlying target distribution. A significant
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decrease (> ns%) in fitness implies an environmental change or new data that changes

the underlying target distribution is encountered. The parameter, ns, is a user-defined

parameter. Algorithm 13 summarizes the environmental change update process.

Considering Algorithm 13, if an environmental change is detected, in line 2, KCDC-

DynDE dynamically clusters the data in line 3. For the dataset that changes in line 4,

the DynPSO adapts nonlinear models or induces new models to create an updated GP

terminal set in line 5 - 6.

Algorithm 13 Environmental Change Update Process

1: BEGIN
2: if an environmental change is detected then
3: Perform data clustering using KCDCDynDE to obtain k clusters
4: if the clusters change then
5: Adapt the nonlinear model or induce new models using DynPSO
6: Insert new models into a terminal set
7: end if
8: end if
9: END

The GP population converge towards a promising solution. As a result, the population

lacks diversity necessary to locate a new optimum when a new data generating pro-

cess is encountered. Therefore, GPANDA implements a culling technique to enhance

population diversity. Thus, a portion of the worst population (individuals with higher

RMSE) are replaced by new individuals that are evolved using an updated GP terminal

set.

6.6 Parameter Tuning

The optimal values for each parameter of each algorithm implemented are obtained using

the F-race algorithm, only a single run is performed [174]. The parameter optimization

is done across domains, discussed in Section 5.5. The optimized parameter values listed

in Table 6.1 are used where culling, tournament, Brownian individual implemented in

KCDCDynDE and elitist are expressed as the percentage of the PopSize.
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For the DyFor GP experiments, the sizes of the two sliding windows are initialized to

20% and 80% of the sliding window size (ws), the minimum window size is set to 5% of

(ws) and a minimum difference of two sliding windows is set to 2% of (ws) (discussed

in Section 3.3.1). The quantum size is expressed as a percentage of swarmSize.

The function set, {+,−,÷,×,√, sin, cos, exp, ln} is used in both DynGP and DyFor

GP.

6.7 Summary

In this chapter, GPANDA designed to evolve a predictive model in nonstationary en-

vironments was presented. Three components that make up GPANDA: dynamic clus-

tering; nonlinear model induction approach and model tree induction were discussed.

An environmental change detection technique implemented in GPANDA to adapt to

nonstationary data was also discussed.

In the next chapter, results and discussion for the experiments done on the proposed

approaches are presented.
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Table 6.1: GPANDA Parameter Values

Algorithm Parameter Bounds Value

GP pc [0,1] 0.8

pm [0,1] 0.1

pr [0,1] 0.1

PopSize [10,500] 100

Elitist [0,100] 5%

Culling [0,100] 50%

Tournament [0,100] 20%

πω [0,500] 50

ns [0,100] 10%

QPSO c1 = c2 [0,3] 1.496

ω [0,1] 0.730

swarmSize [0,50] 30

rcloud [0,5] 2

iterations [0,∞] 100

KCDCDynDE PopSize [10,500] 80

pc [0,1] 0.5

Scale parameter [0,1] 0.5

rexcl [0,5] 3.5

Rconv [0,5] 2.0

Brownian [0,100] 10%

[βmin, βmax] [0,1] [0.1, 0.9]

iterations [0,∞] 80
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Chapter 7

Results and Discussion

7.1 Introduction

Experimental evaluations of the DynPSO discussed in Chapter 5 and GPANDA dis-

cussed in Chapter 6 were carried out. The results obtained are presented and discussed

in this chapter. Also, a comparative analysis was carried out on the obtained results

with the selected state-of-the-art techniques. In the subsequent tables, bold labelling

indicates the best performing approach.

The objectives outlined in Section 1.2 are listed below and the obtained results to meet

the objectives are presented in this chapter.

(a) To investigate the effectiveness of hybridizing dynamic PSO with a regression tech-

nique, either least-squares approximation or autoregressive, (DynPSO) to induce

optimal nonlinear regression models in nonstationary environments;

(b) To investigate the effectiveness of hybridizing a GP with a dynamic clustering algo-

rithm and nonlinear model induction technique (GPANDA) to perform regression

on nonstationary data with concept drift occurring;

(c) To compare the performance of DynPSO to optimize the induced model in a non-

stationary environment, to dynamic PSO algorithms, namely multi-swarm, reini-

tialized, and charged PSOs;

(d) To compare the performance of GPANDA in terms of predictive accuracy and com-

putational time to the best performing dynamic GP algorithms and the state-of-

the-art techniques on nonstationary datasets that exhibit different characteristics of
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concept drift such as progressive, recurrent, abrupt and random changes on varying

temporal and spatial severities.

In this chapter, Section 7.2 presents the results of applying the DynPSO defined in

Objective (a) to experiments outlined in Section 4.6.1 using the dataset presented in

Section 4.4 and a comparative analysis defined in Objective (c). Section 7.3 presents

the results of applying GPANDA proposed in Objective (b) to experiments defined in

Section 4.6.2 using the dataset presented in Section 4.4 and a comparative analysis

defined in Objective (d).

7.2 Dynamic PSO-based Nonlinear Regression Approach

In this section, the obtained mean squared errors (EMS) and adjusted coefficient of deter-

mination (R2
a) on training and generalization for different severities and frequencies are

reported. To ascertain the significance of the results obtained by DynPSO and the best

performing dynamic PSOs, statistical analysis was used. The p-values corresponding to

the comparison of the algorithms on EMST (training) and EMSG (generalization) for 30

independent runs are reported in Appendix 1 where p ≤ 0.0001 was recorded as 0.0001

for convenience. Table 7.1 presents four versions of DynPSO (QR-PSOs/NARX-PSO)

and three state-of-the-art dynamic PSO algorithms (nonQR-PSOs)were implemented in

this experiment.

Table 7.1: Summary of Dynamic PSO Algorithms

nonQR-PSOs QR-PSOs/NARX-PSO

charged PSO (QPSO) QR-based charged PSO (QR-QPSO)

multi-swarm PSO (mPSO) QR-based multi-swarm PSO (QR-mPSO)

re-initialized PSO (rePSO) QR-based re-initialized (QR-rePSO)

NARX-based charged PSO (NARX-QPSO)

This section is structured as follows: Section 7.2.1 presents the results and the com-

parative analysis for the Progressive-Bennett5A dataset. Section 7.2.2 presents the
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results and the comparative analysis for the NSW Electricity pricing dataset. Section

7.2.3 presents an evaluation of the hybrid regression approaches proposed in this work.

Section 7.2.4 presents the results and the comparative analysis of DynPSO to the state-

of-the-art techniques whereas Section 7.2.5 provides the discussion of the presented

results.

7.2.1 Results for Progressive-Bennett5A Dataset

Table 7.2 presents the average and standard deviation for R2
a and (EMS) on training

and generalization (testing) for each algorithm on the Progressive-Bennett5A dataset.

Table 7.2: Averages and Standard deviation for R2
a and EMS for Progressive-Bennett5A

Dataset

Algorithm Training Testing

R2
a EMS R2

a EMS

QR-QPSO 0.7075 ± 0.0731 0.3196± 0.0142 0.8236 ± 0.0598 0.2183 ± 0.0621

QPSO 0.4227± 0.1782 0.3103 ± 0.0097 0.7598± 0.0699 0.4504± 0.0954

QR-rePSO 0.6169± 0.0901 0.3113± 0.0099 0.8059± 0.0762 0.4043± 0.1150

rePSO 0.0769± 0.0110 0.3507± 0.0223 0.4237± 0.0452 0.4992± 0.0774

QR-mPSO 0.6407± 0.0583 0.3141± 0.0132 0.8121± 0.0649 0.4907± 0.0849

mPSO 0.0912± 0.0973 0.3328± 0.0192 0.4068± 0.0527 0.4271± 0.0326

The results presented in Table 7.2 shows that QR-QPSO obtains the best R2
a on both

training and generalization whereas mPSO obtains the worst performance for general-

ization and rePSO on training. The QPSO obtains the best EMS on training whereas

QR-QPSO for generalization.

As reported in Table 7.2, QR-PSOs outperforms nonQR-PSOs for both R2
a and EMS,

except for QPSO for R2
a. This performance improvement can be attributed to the

capability of the proposed technique to track and adapt the nonlinear regression model

as the environment changes. Also, the value of R2
a above 0.7 suggests structurally

optimal models generated by QR-PSOs. Considering QR-PSOs only, QR-QPSO exhibits

superior performance whereas QR-rePSO exhibits the worst performance.
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The averages forR2
a andEMS for generalization per frequency and severity for Progressive-

Bennett5A dataset are graphically illustrated in Figure 7.1. The frequencies and sever-

ities used in this experiment are defined in Section 4.4. As illustrated in Figure 7.1,

the performance of all algorithms improved as the frequency increased for both R2
a and

EMS. However, QR-PSOs exhibit superior performance evident with higher R2
a and

lower EMS. Also, QR-QPSO outperforms all other algorithms for both R2
a and EMS in

all frequencies and severities.

 
 

 Figure 7.1: R2
a and EMS for Generalization per Frequency and Severity on Progressive-

Bennett5A
The average ranks (discussed in Section 4.5.1) obtains on algorithms for R2

a and EMS for

both training and generalization for the given frequencies and severities are illustrated

in Figure 7.2.

As illustrated in Figure 7.2, rePSO and mPSO exhibits the worst performance for both

R2
a and EMS. For both training and generalization (testing), QR-QPSO outperforms

all other algorithms for both R2
a and EMS. Generally, as the frequency increases, the

performance of nonQR-PSOs (discussed in Section 5.2) deteriorate for both R2
a and EMS

especially for QPSO.

To ascertain the significance of the obtained results for Progressive-Bennett5A dataset,

statistical analysis was used and the obtained p-value ≤ 0.05 indicates that the perfor-

mance was statistically significant.
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Figure 7.2: Ranks of R2

a and EMS per frequency on the training and Generalization for
Bennett5A Dataset

7.2.2 Results for NSW Electricity Pricing Dataset

Table 7.3 presents the average and standard deviation (at the 95% confidence interval)

for R2
a and EMS on training and generalization for each algorithm for NSW Electricity

pricing dataset.

As observed in Table 7.2, similar traits are also observed in Table 7.3: the QR-QPSO

obtains the best R2
a for both training and generalization whereas rePSO obtains the

worst performance for both training and generalization. Also, the value of R2
a above

0.75 suggests structurally optimal models generated by QR-PSOs. Considering QR-

PSOs, the QR-QPSO exhibits superior performance and the QR-rePSO exhibits the

worst performance.
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Table 7.3: Averages and Standard deviation for R2
a and EMS for NSW Electricity Pricing

Algorithm Training Testing

R2
a EMS R2

a EMS

QR-QPSO 0.8874 ± 0.1794 0.0001± 0.0004 0.8097 ± 0.2979 0.0011± 0.0005

QPSO 0.8646± 0.1630 0.0001± 0.0004 0.7316± 0.3697 0.0010 ± 0.0954

QR-rePSO 0.8671± 0.1496 0.0001± 0.0004 0.7744± 0.3384 0.0032± 0.0011

rePSO 0.6670± 0.1931 0.0003± 0.0012 0.7259± 0.3234 0.0043± 0.0007

QR-mPSO 0.8694± 0.1712 0.0001 ± 0.0003 0.7837± 0.2649 0.0028± 0.0008

mPSO 0.7108± 0.1253 0.0002± 0.0009 0.7305± 0.3234 0.0042± 0.0009

The averages for R2
a and EMS for generalization per frequency and severity on NSW

Electricity dataset are graphically illustrated in Figure 7.3. As illustrated in Figure 7.3,

the performance of all algorithms improve as the frequency (discussed in Section 4.6.1)

increases. The QR-QPSO outperforms all other algorithms for both R2
a and EMS in all

frequencies and severities. Also, QR-PSOs exhibit superior performance outperforming

nonQR-PSOs.

The average ranks obtained on algorithms for R2
a and EMS for both training and gener-

alization for the given frequencies and severities are illustrated in Figure 7.4. As illus-

trated in Figure 7.4, QR-QPSO also outperforms all other algorithms whereas rePSO

and mPSO exhibit the worst performance.

  

 Figure 7.3: R2
a and EMS for Generalization per Frequency and Severity for NSW Elec-

tricity
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Figure 7.4: Ranks of R2

a and EMS per severity on training and testing for NSW Elec-
tricity

The performance of QR-mPSO improves as the severity increases outperforming QR-

rePSO for generalization for both R2
a and EMS. This performance improvement for

QR-mPSO suggests the improved adaptive traits of QR-mPSO under severe changing

environment. Also, QR-PSOs outperform nonQR-PSOs for both R2
a and EMS. As al-

ready explained, the outstanding performance can be attributed to the capability of the

proposed technique to track and adapt the nonlinear regression model as the environ-

ment changes.

To ascertain the significance of the results obtained by DynPSO and dynamic PSOs for

NSW Electricity pricing dataset, statistical analysis was used and the obtained p-value

≤ 0.05 indicates that the performance was statistically significant.
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7.2.3 An Evaluation of the Hybrid Regression Approaches

The section aims to evaluate the effectiveness of the regression models, namely QR

decomposition and autoregressive, NARX, to improve the predictive performance of

DynPSO to forecast nonstationary time series.

In this experiment, five algorithms are executed namely, QR-QPSO, NARX-QPSO, QR

decomposition, NARX, and QPSO. For the hybrid models and QPSO, the data points in

the testing dataset are presented incrementally (one at a time) to enable the techniques

to cope with concept shifts happening in the dataset. However, the models for NARX

and QR decomposition (QR) were fixed during the generalization.

Table 7.4 presents the obtained results for each algorithm for AEMO dataset for electric

load forecasting described in Section 4.4. There exist statistically significant differences

between the performance of each algorithm as suggested by the obtained p-values. The

results presented in Table 7.4 shows that NARX-QPSO obtains the best MAPE and

RMSE whereas QR decomposition obtains the worst performance. As presented in Table

7.4, hybrid models: NARX-QPSO and QR-QPSO significantly outperforms classical

techniques. The outstanding performance can be hypothesized to be the ability to

adapt the forecasting model as the environment changes due to concept shifts.

To ascertain the significance of the results obtained by DynPSO and individual algo-

rithms for AEMO dataset, statistical analysis was used and the obtained p-value ≤ 0.05

indicates that they exist statistically significant differences between the performance of

each algorithm as suggested by the obtained p-values.

Figure 7.5 is a graphical illustration of the average computational time of the mod-

els/approaches under study for electric load forecasting for the year 2015 for the five

states. The NARX obtains the least average computational time whereas the QPSO

obtains the highest average computational time. Consequently, NARX-QPSO obtains

a reasonable computational time due to the best average computational time of NARX.
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Table 7.4: Prediction Results for AEMO dataset

Dataset Year Metric QR QPSO NARX QR-QPSO NARX-QPSO

VIC 2015 MAPE(%) 12.0497 8.9638 10.2595 8.1672 7.3618

RMSE 724.5641 549.8639 637.5787 517.4586 481.9153

2014 MAPE(%) 10.9645 7.4861 9.8606 7.1062 6.4636

RMSE 610.8749 481.3562 602.7269 436.7005 401.2668

2013 MAPE(%) 10.5291 7.1846 10.8892 6.7139 6.5673

RMSE 613.1647 517.8379 593.7182 465.1925 439.7815

SA 2015 MAPE(%) 14.9372 12.5845 13.0364 12.2528 11.0629

RMSE 373.8404 221.7641 239.3121 219.1468 210.6389

2014 MAPE(%) 12.9952 10.5833 11.9697 9.9153 9.1486

RMSE 171.8473 163.3109 176.6305 159.8215 146.8107

2013 MAPE(%) 11.0995 9.8574 9.9451 9.6637 9.5538

RMSE 189.4768 167.1382 171.4686 157.6888 157.3617

TAS 2015 MAPE(%) 4.7624 4.2093 4.2693 4.1425 4.1805

RMSE 79.7361 68.6835 72.9453 60.9459 59.7324

2014 MAPE(%) 6.0527 5.7896 6.7442 4.9763 4.6135

RMSE 82.3723 76.8709 81.9906 61.2159 60.9814

2013 MAPE(%) 6.2641 5.21538 5.9443 4.8315 4.3618

RMSE 88.5911 70.5837 85.8395 66.8192 63.0092

NSW 2015 MAPE(%) 8.6217 6.1831 6.7942 5.8473 5.1674

RMSE 859.5385 609.3729 734.2208 558.7924 557.6981

2014 MAPE(%) 6.3401 5.2967 6.3758 4.5683 4.8183

RMSE 721.3416 544.8648 625.6111 512.0017 501.0148

2013 MAPE(%) 6.5826 5.5714 6.2171 5.2661 5.1826

RMSE 701.9968 569.2851 639.8593 523.6393 536.7814

QLD 2015 MAPE(%) 4.7964 3.7286 5.2568 3.2782 3.2485

RMSE 396.8471 334.2874 373.8961 317.4186 298.1975

2014 MAPE(%) 5.3157 4.2739 5.7194 4.0694 3.3047

RMSE 472.9735 348.3916 383.6083 319.8156 330.4635

2013 MAPE(%) 4.8893 3.5920 4.3709 3.3121 3.2967

RMSE 410.5834 307.5394 354.6884 296.8568 266.454
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Figure 7.5: Average Computational Time for Electric Load Forecasting

7.2.4 Comparison to the State-of-the-art Techniques

The best performing prediction techniques for nonstationary time series: conventional

Support Vector Regression (SVR) [175][176] and standard Random Vector Functional

Link network (RVFL) with direct input-output connections that retain biases [177][178],

are compared to DynPSO for the following datasets: Progressive-Bennett5A and NSW

Electricity pricing discussed in Section 4.4.

Table 7.5 presents the EMS for the DynPSO to the state-of-the-art techniques: SVR and

RVFL for generalization for the datasets: Progressive-Bennett5A and NSW Electricity

pricing.

Table 7.5: Average EMS for Progressive-Bennett5A and NSW Electricity Pricing
Datasets

Dataset QR-QPSO QR-rePSO QR-mPSO SVR RVFL

NSW Electricity 0.0011 0.0032 0.0028 0.0016 0.0056

Bennett5A 0.2183 0.4043 0.4907 0.6197 0.9005

As observed in the results presented in Table 7.6, the QR-PSOs outperforms both SVR

and RVFL for the Progressive-Bennett5A datasets. However, SVR outperforms both

QR-rePSO and QR-mPSO on Electricity dataset. The QR-QPSO outperforms all algo-

rithms for both datasets.
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To ascertain the significance of the results obtained by DynPSO, RVFL and SVR for

NSW Electricity datasets, statistical analysis was used and the obtained p-value ≤ 0.05

indicates that they exist statistically significant differences between the performance of

each algorithm as suggested by the obtains p-values.

In [179], the state-of-the-art techniques were applied to AEMO electric load datasets

for the New South Wales for the months: January, April, July and October of the

year 2015 to assess the effectiveness of the models/approaches when seasonality was

taken into consideration. In this work, the same simulations are applied to the DynPSO

to evaluate the effect of different seasons. Table 7.6 presents the obtained forecasting

results of the state-of-the-art techniques and the DynPSO for the AEMO, NSW 2015

electric load dataset.

The NARX-QPSO significantly outperforms all other techniques except DWT-EMD-

RVFL whereas QR-QPSO outperformed Persistence, RVFL and GLMLF-B. As already

explained, the performance improvement could have been attributed to the capability

of the proposed technique to optimize the induce forecasting model and adapt the fore-

casting model as the environment changes due to concept shifts. Considering the factors

of different seasons, the performance of the DynPSO is relatively stable, as suggested

by the results reported in Table 7.6.

Table 7.6: Prediction results for NSW, 2015

Dataset Metric GLMLF-B Persistence RVFL DWT-EMD-RVFL QR-QPSO NARX-QPSO

Jan MAPE (%) 5.60 7.39 3.87 1.86 1.99 1.93

RMSE 612.30 842.73 428.908 193.80 197.52 192.21

April MAPE (%) 5.26 6.80 3.94 2.03 2.01 1.99

RMSE 525.15 769.61 425.23 212.70 207.72 198.62

Jul MAPE (%) 6.14 9.83 5.09 2.96 3.21 3.16

RMSE 614.71 989.37 493.06 296.74 312.85 309.63

Oct MAPE (%) 9.40 14.89 8.86 5.93 6.07 5.99

RMSE 1091.05 1620.51 1004.39 659.41 613.28 599.37

The SVR, SVRARIMA and ARIMASVR algorithms were applied to the California

electricity market to perform next-week prices (short-term electricity prices) forecasting

in the California electricity market [180]. In this work, the same simulations are applied
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to the DynPSO to perform next-week prices forecasting [180].

Table 7.7 presents the forecasting results of the state-of-the-art techniques and the

DynPSO for the California electricity market dataset. The NARX-QPSO exhibits out-

standing performance outperforming all algorithms under consideration.

Table 7.7: Prediction Results for California Electricity Market, 2000

Metric SVR SVRARIMA ARIMASVR QR-QPSO NARX-QPSO

MAPE (%) 1st Week 758.69 348.81 2.04e03 331.86 296.73

RMSE 1st Week 1.44 0.75 3.98 0.85 0.63

MAPE (%) 2nd Week 969.37 514.29 597.78 498.73 482.81

RMSE 2nd Week 2.05 1.07 1.26 1.05 0.98

7.2.5 Discussion

The performance of nonQR-PSOs deteriorate as the severity increases whereas QR-PSOs

exhibit outstanding performance as the severity increases.

The obtained results suggest the capability of the proposed DynPSO to track and adapt

the induced model as the environment changes. As such, the DynPSO outperforms

both the dynamic PSOs and the state-of-the-art techniques, SVR and RVFL, on the

given datasets. The hybridization indeed decreased the performance deterioration of the

induced model that resulted from the environmental changes. The obtained values of

R2
a suggests that the DynPSO induced structurally optimal nonlinear regression models.

The QR-QPSO induces optimal model structure as suggested by the obtained R2
a val-

ues and also, performed competitively to NARX-QPSO in nonstationary time series

forecasting, therefore, is adapted in GPANDA as the dynamic QPSO (dynQPSO).

7.3 GPANDA Results and Discussion

In this section, a thorough scalability investigation was carried out on GPANDA dis-

cussed in Chapter 7 for the change in severities defined in each problem set. Experiments
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were carried out to find out if and how the change in severity affects the performance

of GPANDA. The obtained results for each problem set are presented.

Experiments were also carried out on the problem sets using DynGP and DyFor GP

(discussed in Section 3.4). The results obtained from GPANDA are compared to the

results from DynGP and DyFor GP to determine the effectiveness of the proposed

approach to the techniques already in existence. The p-values corresponding to the

comparison of the algorithms on EMST (training) and EMSG (generalization) for 30

independent runs, for scenarios that only included value of p > 0.05, are reported in

Appendix 1. Each dataset (sliding window of analysis) was split into training and

generalization subsets using a ratio 4:1 respectively.

7.3.1 Progressive Variation: Progressive-Bennett5B Dataset

The algorithms under study traverse the complete dataset for every scenario under

consideration.

Scenario A - Abrupt Variation

The frequency of change is the same for all cases in Scenario A which is 25 iterations.

Figure 7.6 - 7.7 are graphical illustrations as observed under Scenario A1 − A5 for the

progression of EMST and EMSG over time. As illustrated in Figure 7.6 - 7.7, adaptation

to change in the environment becomes less difficult as spatial severity increase from A1

to A5 and error peaks rise high after every change in the environment.

In Scenario A5, as the window slides, new data points replaced all contents of the sliding

window from the past data generating processes (discussed in Section 4.4), thereby

presenting only one concept in a sliding window and consequently, data points from

only a single data generating process. Therefore, the abrupt changes happening in

Scenario A5 make this scenario much easier to adapt.

As illustrated in Figure 7.6 - 7.7, DyFor GP outperforms DynGP in all cases in Scenario

A except A1 - training and A5 - generalization. The superior performance of DyFor
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GP suggests that the algorithm adapts the predictive model faster as the environment

changes rapidly.

 

  

  

 Figure 7.6: Training and Generalization EMS for Bennett5B, Scenario A1 − A3
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Figure 7.7: Training and Generalization EMS for Progressive, Scenario A4 − A5

GPANDA detect changes happening in the environment and then adapts the model.

As a result, GPANDA outperforms all other algorithms in all cases in Scenario A for

both training and generalization. For generalization, GPANDA consistently maintains

the obtained minimum compared to DynGP and DyFor GP after a change in the envi-

ronment is detected.

Table 7.8 presents the obtained results for algorithms under study on the Progressive

dataset, Scenario A. To ascertain the significance of the results obtained for Scenario A,

statistical analysis was performed and p-values, only for scenarios that included a value

of p > 0.05, are presented in Appendix 1. The following can be observed for the results

presented in Table 7.8:

� GPANDA outperforms all other algorithms in all cases in Scenario A for both

training and generalization.
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� DyFor GP outperforms DynGP for both training and generalization except A1

(training) and A5 (generalization).

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario A5.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.8: Results of Predictive Performance for Progressive Environment Scenario A

Model A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0390 6.2034 0.1306 6.3398 0.1031 5.7803 0.1117 4.3563 0.6240 2.7544 0.2016 5.0868

GPANDA 0.0061 0.0115 0.0025 2.65e-4 0.0011 8.50e-4 0.0034 0.0060 0.0059 2.23e-22 0.0038 0.0037

DyFor GP 0.0445 4.8204 0.0646 4.4663 0.0601 4.9481 0.0911 3.0471 0.0922 3.0535 0.0705 4.0670

The algorithms under study are classified according to training and generalization per-

formance. Table 7.9 presents the obtained ranks on EMST and EMSG for Scenario

A. GPANDA is ranked as the overall winner for both EMST and EMSG. Conversely,

DynGP is categorized as having the least effective performance for both training and

generalization.

Table 7.9: Algorithm Ranking for Progressive Dataset Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 2 3 3 3 3 3 3 3 3 2 2.8 2.8

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 3 2 2 2 2 2 2 2 2 3 2.2 2.2

Discussion

The performance exhibited by DynGP can be attributed to the failure to adapt to a

rapidly changing environment with concept drift occurring which suggests that DynGP

requires a sufficient number of iterations to converge. The performance of DyFor GP can

be attributed to the ability of the algorithm to optimize the sliding window of analysis

by eliminating irrelevant data points. As such, DyFor GP outperforms DynGP.
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GPANDA outperforms all other algorithms in all cases in Scenario A for generalization.

The outstanding performance of GPANDA suggests the capability of the algorithm to

adapt to a changing environment with concept drift occurring. The superior perfor-

mance of GPANDA can be attributed to a high precision predictive model induced by

the underlying dynQPSO.

The progressive changes happening in ScenarioA1−A4 (discussed in Section 4.4) increase

the complexity of the predictive task since the sliding window at any given instance is

made up of two different data generating processes. However, GPANDA detects an

environment change in such cases to yield superior performance.

The performance of all models improved in Scenario A5 due to abrupt change happening

to data points in the sliding window of analysis since the sliding window discards all

data points from past generating processes (discussed in Section 4.4), thus, generating

a predictive model using the current prevailing data generating process only.

Scenario B - Quasi-Abrupt

Scenario B simulates less frequent changes having a sliding window shifting of 50 itera-

tions instead of 25 iterations in Scenario A. Figure 7.8 - 7.9 are graphical illustrations as

observed in Scenario B for the progression of EMST and EMSG over time. As illustrated

in Figure 7.8 - 7.9, less frequent changes has a positive effect on DynGP whereby the

algorithm has sufficient iterations to converge to yield outstanding performance.

The performance of DynGP and DyFor GP is the same on training in Scenario B1 and

generalization in Scenario B4. In Scenario B2 − B4, the performance of DynGP on

training is reduced. Consequently, DynGP outperforms DyFor GP for both training

and generalization in Scenario B5.

However, DyFor GP outperforms DynGP for generalization in Scenario B1 −B3 where

the training dataset has more data points generated by the previous data generating

process compared to the current prevailing data generating process as illustrated in

Figure 7.8 - 7.9. As such, it becomes difficult for DynGP to quickly adapt the model to

fit the generalization dataset.
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The significant error peaks illustrated in generalization plots in Figure 7.8 - 7.9 signify

changes in the environment which result in reduced predictive performance in other

algorithms.

 

  

  
 

Figure 7.8: Training and Generalization EMS for Progressive, Scenario B1 −B3
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Figure 7.9: Training and Generalization EMS for Progressive, Scenario B4 −B5

However, GPANDA tracks those gradual changes to yield outstanding performance.

Table 7.10 presents the obtained results for the Progressive dataset, Scenario B. To

ascertain the significance of the results obtained for Scenario B, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1.

The following can be observed for the results presented in Table 7.11:

� GPANDA outperforms all other algorithms in all cases in Scenario B.

� DynGP outperforms DyFor GP in Scenario B4 and for generalization in Scenario

B5.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario B5.

� The result that GPANDA performs better than DyFor GP was found to be sta-
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tistically significant at the 5% level of significance.

Table 7.10: Results of Predictive Performance for Progressive Environment Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0164 6.7128 0.0195 8.4172 0.1225 4.8776 0.0239 2.4075 0.0487 0.0480 0.0462 4.2926

GPANDA 0.0103 0.4721 0.0029 0.0012 0.0022 9.51e-4 0.0049 0.0021 0.0094 0.0122 0.0059 0.0977

DyFor GP 0.0166 4.1172 0.0125 4.1620 0.0488 4.2950 0.0731 2.5101 0.0448 2.5231 0.0391 3.5214

The algorithms under study are classified according to training and generalization per-

formance. Table 7.11 presents the obtained ranks on EMST and EMSG for Scenario

B. GPANDA is ranked as the overall winner for both EMST and EMSG. Conversely,

DynGP is categorized as having the least effective performance for both training and

generalization.

Table 7.11: Algorithm Ranking for Progressive Dataset Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 1.5 3 3 3 3 3 2 2 3 2 2.5 2.6

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 1.5 2 2 2 2 2 3 3 2 3 2.1 2.4

Discussion

The poor generalization performance of the model produced by DynGP can be at-

tributed to conflicting decision boundaries present within the sliding window of analysis

(discussed in Section 4.4), whereby the training data points consists of more from the

past data generating processes which are no longer relevant to the current data gen-

erating process. The performance of DynGP greatly improved outperforming DyFor

GP in cases where the analysis window has sufficient data points from the current data

generating process.

As observed in Scenario A, GPANDA outperforms all other algorithms in all cases in

Scenario B for both training and generalization. The superior performance of GPANDA

suggests the capability of the algorithm to adapt to a changing environment with concept

drift occurring.
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Scenario C - Quasi-Progressive Variation

Scenario C simulates less frequent changes of 100 iterations before sliding an analysis

window. Figure 7.10 - 7.11 are graphical illustrations as observed under Scenario C1−C5

for the progression of EMST and EMSG over time.

The less frequent changes of 100 iterations availed sufficient iterations to all algorithms

which promote convergence before an analysis window slides.

  

     

  

 
Figure 7.10: Training and Generalization EMS for Progressive, Scenario C1 − C3
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Figure 7.11: Training and Generalization EMS for Progressive, Scenario C4 − C5

As illustrated in Figure 7.10 - 7.11, the performance of DyFor GP greatly deteriorates

in Scenario C2 for both training and generalization. However, DyFor GP outperforms

DynGP in Scenario C3 − C5 for both training and generalization. GPANDA detect

changes in the environment and adapts the model to yield outstanding performance. As

such, GPANDA outperforms all algorithms in all cases in Scenario C for both training

and generalization.

Table 7.12 presents the obtained results for the Progressive dataset, Scenario C. To

ascertain the significance of the results obtained for Scenario C, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1. The following can be observed for the results presented in

Table 7.12:

� As observed in Scenario B, GPANDA outperforms all algorithms in all cases in
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Scenario C.

� DyFor GP outperforms DynGP in all cases in Scenario C.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.12: Results of Predictive Performance for Progressive Environment Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0698 8.5283 0.0195 8.4040 0.0465 6.4442 0.1234 4.7274 0.0448 5.2541 0.0608 6.2716

GPANDA 0.0059 0.2317 0.0017 0.0154 2.67e-8 1.0366 0.0049 8.05e-4 0.0116 0.0095 0.0048 0.2588

DyFor GP 0.0141 4.4687 0.0105 3.8834 0.0193 4.2579 0.0811 2.4962 0.0135 2.4552 0.0277 3.5122

The algorithms under study are classified according to training and generalization per-

formance. Table 7.13 presents the obtained ranks on EMST and EMSG for Scenario C.

GPANDA is ranked as the overall winner for both EMST and EMSG whereas DynGP

is categorized as having the least effective performance for both training and general-

ization.

Table 7.13: Algorithm Ranking for Progressive Dataset Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 3 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2 2 2

Discussion

The performance of DyFor GP can be attributed to the ability of the algorithm to

optimize the sliding window of analysis. As such, the GP in DyFor GP is presented

with the data points from only a single data generating process. Thus, DyFor GP aptly

tracks the changing environment and exhibits outstanding performance.

GPANDA outperforms all other algorithms in all cases in Scenario C. As already men-

tioned, the superior performance of GPANDA suggests the ability of the algorithm to
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adapt to environments with concept drift occurring. Also, the superior performance

of GPANDA can be attributed to the algorithm’s adaptive nature and its ability to

fine-tune the predictive model using prevailing patterns.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms are given enough iterations to induce an optimal predictive model even in

abruptly changing environments before an environment change. Consequently, failure

to adapt or induce an optimal solution may not be attributed to the temporal severity

property of the problem set under consideration but the algorithm.

Figure 7.12 - 7.13 are graphical illustrations as observed in Scenario D for the progression

of EMST and EMSG over time. The algorithms under study show similar traits as ob-

served in Scenario C: DyFor GP outperforms DynGP in Scenario D for both training and

generalization. GPANDA exhibits superior performance, consequently, outperforming

all other algorithms in Scenario D for both training and generalization. The gener-

alization performance of DyFor GP is reduced in the least abrupt changes, Scenario

D4 −D5.

Table 7.14 presents the obtained results for the Progressive dataset, Scenario D. To

ascertain the significance of the results obtained for Scenario D, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1. As observed in Scenario C, the following are also observed in

Table 7.14:

� GPANDA outperforms all other algorithms in all cases in Scenario D.

� DyFor GP outperforms DynGP in all cases in Scenario D.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.
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Figure 7.12: Training and Generalization EMS for Progressive, Scenario D1 −D3
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Figure 7.13: Training and Generalization EMS for Progressive, Scenario D4 −D5

The algorithms under study are classified according to training and generalization per-

Table 7.14: Results of Predictive Performance for Progressive Environment Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0339 8.5067 0.0307 8.2164 0.0222 6.4235 0.0180 4.9665 0.0271 4.9884 0.0232 6.2758

GPANDA 0.0024 3.68e-4 0.0041 4.14e-4 0.0011 3.45e-4 0.0040 0.0014 0.0049 6.93e-24 0.0033 0.0005

DyFor GP 0.0138 4.1280 0.0129 4.2621 0.0171 4.3239 0.0646 2.3599 0.0142 2.3537 0.0239 3.4855

formance. Table 7.15 presents the obtained ranks on EMST and EMSG for Scenario D.

As observed in Scenario C, GPANDA is ranked as the overall winner for both EMST

and EMSG while DynGP is categorized as having the least effective performance for

both training and generalization.

Discussion

The Progressive dataset is generated from data generating processes which gradually

113

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Table 7.15: Algorithm Ranking for Progressive Dataset Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 3 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2 2 2

drifted, therefore, previously learned information is useful after an environment change.

GPANDA outperforms all other algorithms in all cases in Scenario D for both training

and generalization. The superior performance of GPANDA suggests the capability of

the algorithm to adapt to a changing environment with concept drift occurring. Also,

the superior performance of GPANDA can be attributed to the repetitive nature of the

dataset.

DyFor GP outperforms DynGP for both training and generalization. As already men-

tioned, the outstanding performance of DyFor GP can be attributed to the optimization

of the analysis window, thereby evolving the prediction model using the relevant data

points. DynGP has difficulties to adapt especially when the sliding window consists of

more data points from the previous data generating process.

The algorithms under study are classified according to generalization performance for all

cases in Scenario A-D. Table 7.16 presents the average EMSG and average computational

time (t̄) in minutes for Scenario A-D. DynGP obtains the least average computational

time in all scenarios under consideration in the Progressive dataset, whereas GPANDA

obtains the highest average computational time in all scenarios. Conversely, GPANDA

yields the best performance whereas DynGP has the least effective performance.

Table 7.16: Averages for t̄ (in mins) and EMSG for Progressive Dataset - Scenario A-D

A B C D Average

Algorithm EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄

DynGP 5.0868 0.007 4.2926 0.006 6.2716 0.012 6.2758 0.033 5.4817 0.0145

GPANDA 0.0037 0.726 0.0977 2.845 0.2588 4.963 0.0005 12.14 0.0901 5.1685

DyFor GP 4.0670 0.149 3.5214 0.531 3.5122 0.992 3.4855 2.428 3.6465 1.025

Table 7.17 presents the average ranks obtained on EMSG for Scenario A-D. GPANDA is
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ranked as the overall winner whereas DynGP is categorized as having the least effective

performance.

Table 7.17: Overall Algorithm Ranking for Progressive Dataset

Algorithm A B C D Average

DynGP 2.8 2.6 3 3 2.85

GPANDA 1 1 1 1 1

DyFor GP 2.2 2.4 2 2 2.15

DyFor GP optimizes the analysis window by discarding irrelevant data points to the

current data generating process whereas DynGP uses dynamic parameter tuning to

promote exploration to adapt to the changed optimal solution. However, GPANDA

implements a piecewise approach to enumerate the optimal solution for the prevailing

data points which proves to be more effective.

7.3.2 Recurrent Variation Dataset

The algorithms under study traverse the complete dataset for every scenario under

consideration.

Scenario A - Abrupt Variation

The frequency of change is the same for all cases in Scenario A which is 25 iterations.

Figure 7.14 - 7.15 are graphical illustrations as observed under Scenario A1−A5 for the

progression of EMST and EMSG over time.

DynGP outperforms DyFor GP in all cases on training. Conversely, the generalization

performance of DynGP deteriorates. DyFor GP outperforms DynGP in Scenario A2 - A3

for generalization. However, in Scenario A1, the generalization performance of DynGP

and DyFor GP is the same. Along with the iteration’s progression, the performance of

DynGP and GPANDA is the same in Scenario A1 − A2 on training.

GPANDA adapts the predictive model whenever an environmental change is detected.

As a result, GPANDA outperforms all other algorithms in all cases in Scenario A for
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both training and generalization.

 

  

  

 Figure 7.14: Training and Generalization EMS for Recurrent, Scenario A1 − A3
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Figure 7.15: Training and Generalization EMS for Recurrent, Scenario A4 − A5

GPANDA, for generalization, consistently maintains the obtained minimum after every

change in the environment compared to DynGP and DyFor GP.

Table 7.18 presents the obtained results for algorithms under study on the Recurrent

dataset, Scenario A. To ascertain the significance of the results obtained for Scenario A,

statistical analysis was performed and p-values, only for scenarios that included a value

of p > 0.05, are presented in Appendix 1. The following can be observed for the results

presented in Table 7.18:

� GPANDA outperforms all other algorithms in Scenario A for both training and

generalization.

� DyFor GP outperforms DynGP for generalization in all cases in Scenario A.

� The result that DyFor GP performs better than DynGP was found to be statisti-
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cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.19 presents the obtained ranks on EMST and EMSG for Scenario A.

GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is cate-

gorized as having the least effective performance for generalization. Conversely, DyFor

GP is categorized as having the least effective performance on training.

Table 7.18: Results of Predictive Performance for Recurrent Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0293 6.4601 0.0288 6.5379 0.1717 6.1618 0.0874 4.6017 0.1051 4.6880 0.0844 5.6899

GPANDA 0.0107 0.0040 0.0051 0.0047 0.0015 0.0032 0.0033 0.0103 0.0253 0.0198 0.0091 0.0084

DyFor GP 0.3539 5.9055 0.3537 4.4641 0.3534 4.3038 0.3538 2.0986 0.3537 3.1848 0.3537 3.9913

Table 7.19: Algorithm Ranking for Recurrent Dataset Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 2 3 2 3 2 3 2 3 2 3 2 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 3 2 3 2 3 2 3 2 3 2 3 2

Discussion

DyFor GP evolves predictive models of outstanding generalization performance in all

cases in Scenario A. The outstanding generalization performance of DyFor GP can be

attributed to the ability of the algorithm to induce the model using the data points

from the current data generating process.

GPANDA outperforms all other algorithms in all cases under consideration. The su-

perior performance of GPANDA suggests the capability of the algorithm to adapt to a

changing environment with concept drift occurring.

Scenario B - Quasi-Abrupt

Scenario B simulates less frequent changes having a sliding window shifting of 50 itera-
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tions. Figure 7.16 - 7.17 are graphical illustrations as observed under Scenario B1 −B5

for the progression of EMST and EMSG over time.

DyFor GP outperforms DynGP on training in Scenario B1 and generalization in Scenario

B3 − B4. Conversely, DynGP outperforms DyFor GP on training in Scenario B2 −

B5. The generalization performance of DyFor GP and DynGP is the same in Scenario

B2. GPANDA outperforms all other algorithms in Scenario B for both training and

generalization which suggests that the algorithm detects the environmental changes due

to concept drifts occurring and then adapts the predictive model to yield outstanding

performance.

Table 7.20 presents the obtained results for the Recurrent dataset, Scenario B. To as-

certain the significance of the results obtained for Scenario B, statistical analysis was

performed and p-values, only for scenarios that included a value of p > 0.05, are pre-

sented in Appendix 1. Similar traits, as observed in Scenario A, are also observed in

Table 7.20 except for Scenario B1:

� GPANDA outperforms all algorithms in Scenario B.

� DyFor GP outperforms DynGP in Scenario B except for Scenario B1.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.20: Results of Predictive Performance for Recurrent Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0618 5.8157 0.0248 8.2919 0.0885 6.9583 0.0405 4.3645 0.0599 5.1190 0.0539 6.1076

GPANDA 0.0055 0.0068 0.0042 4.60e-8 0.0019 0.0011 0.0015 0.0245 0.0182 0.4424 0.0032 0.0081

DyFor GP 0.0268 8.3844 0.3537 5.2725 0.3532 4.6026 0.3532 2.3048 0.3534 3.4516 0.2717 4.8910
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Figure 7.16: Training and Generalization EMS for Recurrent, Scenario B1 - B3
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Figure 7.17: Training and Generalization EMS for Recurrent, Scenario B4 - B5

The algorithms under study are classified according to EMST and EMSG. Table 7.21

presents the obtained ranks on EMST and EMSG in Scenario B. As observed in Scenario

A, GPANDA is ranked as the overall winner for both EMST and EMSG in Scenario B.

DynGP is categorized as having the least effective performance for generalization. Con-

versely, DyFor GP is categorized as having the least effective performance on training.

Table 7.21: Algorithm Ranking for Recurrent Dataset Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2 2 3 2 3 2 3 2 3 2.2 2.8

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 3 3 2 3 2 3 2 3 2 2.8 2.2

Discussion

The poor generalization performance of the model produced by DynGP can be at-
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tributed to conflicting decision boundaries present in the sliding window of analysis.

As observed in Scenario A, DyFor GP evolves predictive models of outstanding gener-

alization performance in all cases in Scenario B which can be attributed to the ability

of the algorithm to induce the model using only the data points from the current data

generating process.

GPANDA outperforms all algorithms in Scenario B for both training and generalization

which suggests the effectiveness of the piecewise regression approach of the algorithm

to adapt to a changing environment with concept drift occurring.

Scenario C - Quasi-Progressive Variation

Scenario C simulates less frequent changes of 100 iterations before a sliding window

shifting which availed sufficient iterations to all algorithms. Figure 7.18 - 7.19 are

graphical illustrations as observed under Scenario C1−C5 for the progression of EMST

and EMSG over time.

As observed in Scenario B, similar traits are also observed in Scenario C: DyFor GP

outperforms DynGP on training in Scenario C1 and generalization in Scenario C2 − C4

as graphically illustrated in Figure 7.18 - 7.19. Conversely, DynGP outperforms DyFor

GP on training in Scenario C2 − C5.

GPANDA outperforms all other algorithms in Scenario C for both training and gener-

alization.

Table 7.22 presents the obtained results for the Recurrent dataset, Scenario C. To as-

certain the significance of the results obtained for Scenario C, statistical analysis was

performed and p-values, only for scenarios that included a value of p > 0.05, are pre-

sented in Appendix 1. As observed in Scenario B, similar traits are also observed in

Table 7.22:

� GPANDA outperforms all algorithms in Scenario C for both training and gener-

alization.

� DyFor GP outperforms DynGP for generalization in Scenario C.
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� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

  

     

  

 Figure 7.18: Training and Generalization EMS for Recurrent, Scenario C1 − C3
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 Figure 7.19: Training and Generalization EMS for Recurrent, Scenario C4 − C5

Table 7.22: Results of Predictive Performance for Recurrent Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0310 8.7324 0.0232 8.5170 0.0723 6.8666 0.0840 5.1555 0.0840 5.1555 0.0589 6.4854

GPANDA 0.0035 0.0039 0.0039 0.0027 0.0025 0.0022 0.0166 0.0064 0.0166 0.0064 0.0086 0.0043

DyFor GP 0.0243 8.4486 0.3539 4.0830 0.3534 5.2485 0.3538 3.4459 0.3538 3.4459 0.2878 4.7343

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.23 presents the obtained ranks on EMST and EMSG in Scenario C.

As observed in Scenario B, GPANDA is ranked as the overall winner for both EMST and
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EMSG in Scenario C. DynGP is categorized as having the least effective performance

for generalization. Conversely, DyFor GP is categorized as having the least effective

performance on training.

Table 7.23: Algorithm Ranking for Recurrent Dataset Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 2 3 2 3 2 3 2 3 2.2 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 3 2 3 2 3 2 3 2 2.8 2

Discussion

The technique to optimize the sliding window of analysis in DyFor GP makes it easier

for the algorithm to distinguish between data points from the past and current data

generating processes, therefore, the algorithm aptly tracks the changing environment to

yield outstanding performance for generalization.

GPANDA outperforms all algorithms in all cases in Scenario C for both training and

generalization. As already mentioned, the superior performance of GPANDA can be

attributed to the effectiveness of the piecewise regression approach of the algorithm to

adapt to a changing environment with concept drift occurring.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms are given enough iterations to induce an optimal predictive model even in

abruptly changing environments before an environment change. Consequently, failure to

adapt or induce an optimal solution may not necessarily be attributed to the temporal

severity property of the problem set under consideration but may be of the algorithm.

Figure 7.20 - 7.21 are graphical illustrations as observed in Scenario D for the pro-

gression of EMST and EMSG over time. The algorithms under study show similar

traits as observed in Scenario A: DynGP outperforms DyFor GP in all cases on train-

ing. Conversely, the generalization performance of DynGP deteriorates and DyFor GP

outperforms DynGP in Scenario D for generalization. For some instances in Scenario
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D1 −D2, the performance of DynGP and GPANDA is the same.

 

  

  
 

Figure 7.20: Training and Generalization EMS for Recurrent, Scenario D1 −D3
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Figure 7.21: Training and Generalization EMS for Recurrent, Scenario D4 −D5

GPANDA outperforms all algorithms under study in all cases in Scenario D for both

training and generalization. GPANDA, for generalization, consistently maintains the

obtained minimum compared to DynGP and DyFor GP after every change in the envi-

ronment as graphically illustrated in Figure 7.20 - 7.21.

Table 7.24 presents the obtained results for all algorithms on the Recurrent dataset,

Scenario D. To ascertain the significance of the results obtained for Scenario D, statistical

analysis was performed and p-values, only for scenarios that included a value of p > 0.05,

are presented in Appendix 1. As observed in Scenario A, similar traits can be observed

in Table 7.24:

� GPANDA outperforms all algorithms in Scenario D for both training and gener-

alization.
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� DyFor GP outperforms DynGP for generalization in all cases in Scenario D.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.24: Results of Predictive Performance for Recurrent Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0221 8.2310 0.0242 8.2264 0.0241 8.0734 0.1171 4.9055 0.0340 5.3824 0.0443 6.7637

GPANDA 0.0040 0.0049 0.0042 0.0047 0.0019 0.0505 0.0278 0.0013 0.0036 1.33e-4 0.0083 0.0123

DyFor GP 0.3534 5.5553 0.3537 6.0061 0.3539 5.3096 0.3533 3.6301 0.3540 4.9052 0.3536 5.0812

The training algorithms under study are classified according to training and generaliza-

tion performance. Table 7.25 presents the obtained ranks on EMST and EMSG for Sce-

nario D. GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP

is categorized as having the least effective performance for generalization. Conversely,

DyFor GP is categorized as having the least effective performance on training.

Table 7.25: Algorithm Ranking for Recurrent Dataset Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 2 3 2 3 2 3 2 3 2 3 2 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 3 2 3 2 3 2 3 2 3 2 3 2

Discussion

GPANDA outperforms all algorithms in all cases under consideration for both training

and generalization. The superior performance of GPANDA suggests the ability of the

algorithm to adapt to a changing environment with concept drift occurring.

DyFor GP evolves predictive models of improved generalization performance in all cases

in Scenario D. The superior generalization performance of DyFor GP can be attributed

to the ability of the algorithm to induce the model using the data points from the current

data generating process.
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The algorithms under study are classified according to generalization performance for all

cases in Scenario A-D. Table 7.26 presents the average EMSG and average computational

time (t̄) in minutes for Scenario A-D. As observed in the Progressive dataset, DynGP

obtains the least average computational time in all scenarios under consideration in the

Recurrent dataset, whereas GPANDA obtains the highest average computational time

in all scenarios. Conversely, GPANDA yields the best performance whereas DynGP has

the least effective performance.

Table 7.26: Averages for t̄ (in mins) and EMSG for Recurrent Dataset - Scenario A-D

A B C D Average

Algorithm EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄

DynGP 5.6899 0.018 6.1076 0.063 6.4854 0.107 6.7637 0.276 6.2616 0.116

GPANDA 0.0084 2.376 0.0081 8.454 0.0043 20.13 0.0123 39.06 0.0082 18.255

DyFor GP 3.9913 1.32 4.8910 4.306 4.7343 12.35 5.0812 21.70 4.6744 9.919

Table 7.27 presents the obtained results for Scenario A-D. GPANDA is ranked as the

overall winner whereas DynGP is categorized as having the least effective performance.

Table 7.27: Overall Algorithm Ranking for Recurrent Dataset

Algorithm A B C D Average

DynGP 3 2.8 3 3 2.95

GPANDA 1 1 1 1 1

DyFor GP 2 2.2 2 2 2.05

7.3.3 Abrupt Variation Dataset

The algorithms under study traverse the complete data set for every scenario under

consideration.

Scenario A - Abrupt Variation

The frequency of change is the same for all cases in Scenario A which is 25 iterations.

Figure 7.22 - 7.23 are graphical illustrations as observed under Scenario A1 - A5 for the

progression of EMST and EMSG over algorithm’s iterations.
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The adaptation to change in the environment becomes less difficult as spatial severity

increase from A1 to A5 as illustrated in Figure 7.22 - 7.23.

 

 

 
 

 Figure 7.22: Training and Generalization EMS for Abrupt, Scenario A1 - A3
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Figure 7.23: Training and Generalization EMS for Abrupt, Scenario A4 - A5

The error profiles for generalization for all algorithms are generally higher in Scenario

A1 - A3 compared to other scenarios. Thus, the predictive model is evolved using

more of the previous data generating process data points, consequently, reduces the

generalization performance. Higher error peaks are attributed to abrupt changes that

tend to suddenly discard old historical data and replace it with the recent historical

data from the current data generating process at every change of the environment.

As graphically illustrated in Figure 7.22 - 7.23, the performance of DynGP and DyFor

GP is the same for generalization in Scenario A. However, DyFor GP outperforms

DynGP on training in all cases in Scenario A. GPANDA exhibits superior performance,

consequently, outperforms all algorithms by a greater margin in Scenario A for both

training and generalization.
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The significant error peaks are evident in GPANDA error profile for Scenario A3 -

A5 illustrated in Figure 7.22 - 7.23, which signified frequent environmental changes.

The performance of GPANDA deteriorates in Scenario A4. The reduced performance

of GPANDA can be attributed to the presence of different patterns within a sliding

window, especially with more of those from the past data generating process.

As already mentioned, the abrupt change happening in Scenario A5 made this scenario

much easier to adapt since the sliding window discards all patterns from the previous

data generating process.

Table 7.28 presents the obtained EMST and EMSG results for the Abrupt dataset Sce-

nario A. To ascertain the significance of the results obtained for Scenario A, statistical

analysis was performed and p-values, only for scenarios that included a value of p > 0.05,

are presented in Appendix 1. The following can be observed for the results presented

in Table 7.28:

� GPANDA outperforms all algorithms in all cases in Scenario A for both training

and generalization.

� DyFor GP outperforms DynGP.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario A5.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance except for Scenario A5 between

DyFor GP and DynGP.

Table 7.28: Results of Predictive Performance for Abrupt Environment Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.3170 0.7811 0.3227 0.9906 0.3345 0.7718 0.3338 0.7410 0.3343 0.6057 0.3284 0.7780

GPANDA 0.0965 0.1790 0.0933 0.2432 0.0331 0.0282 0.1918 0.2611 0.1494 0.0741 0.1128 0.1571

DyFor GP 0.2325 0.7539 0.2267 0.7511 0.2372 0.7360 0.2347 0.7188 0.2334 0.6046 0.2329 0.7128
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The algorithms under study are classified according to training and generalization per-

formance. Table 7.29 presents the obtained ranks on EMST and EMSG for Scenario

A. GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is

categorized as having the least effective performance on training.

Table 7.29: Algorithm Ranking for Abrupt Dataset Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 2.5 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2.5 2 2

Discussion

GPANDA outperforms all algorithms in all cases under consideration for both training

and generalization. The superior performance of GPANDA suggests the capability of

the algorithm to adapt to an abrupt changing environment with concept drift occurring.

As already mentioned, the superior performance of GPANDA is attributed to the algo-

rithm’s adaptive nature and its ability to fine-tune the predictive model using prevailing

patterns.

DyFor GP outperforms DynGP on training, however, the generalization performance of

DyFor GP is reduced to yield performance the same to DynGP.

The progressive changes happening in Scenario A1 - A4 brought new data points from a

different data generating process after an environmental change, thereby presenting two

concepts on each sliding window. However, GPANDA detects an environmental change

and adapts the underlying predictive model to yield superior performance in all cases

in Scenario A.

The abrupt change happening in Scenario A5 yields an increased performance for gener-

alization by all algorithms since the sliding window discards all patterns from the past

data generating process, thus, generating a predictive model using the recent historical

data points generated from current data generating process.

Scenario B - Quasi-Abrupt
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Scenario B simulates less frequent changes having a sliding window shift of 50 iterations.

Figure 7.24 - 7.25 are graphical illustrations as observed under Scenario B1 - B5 for the

progression of EMST and EMSG over time.

As observed in Scenario A, the same traits are also observed: DyFor GP outperforms

DynGP on training in Scenario B whereas for generalization the performance of DyFor

GP and DynGP is the same.

GPANDA detects an environmental change and thereby adapted the predictive model,

evident with obtained improved predictive performance as graphically illustrated in

Figure 7.24 - 7.25.

GPANDA outperforms all other algorithms in Scenario B for both training and general-

ization. However, the generalization performance of GPANDA deteriorates in Scenario

B3 − B4 . As also observed in Scenario A, the significant error peaks are evident in

GPANDA error profile for Scenario B2 −B4.

Table 7.30 presents the obtained results for the Abrupt dataset, Scenario B. To ascertain

the significance of the results obtained for Scenario B, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. As observed in Scenario A, similar traits are also observed in Scenario B

for the results presented in Table 7.30:

� DyFor GP outperforms DynGP for generalization in all cases in Scenario B except

for Scenario B5.

� GPANDA outperforms all algorithms in all cases in Scenario B for both training

and generalization.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario B5.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.
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Figure 7.24: Training and Generalization EMS for Abrupt, Scenario B1 - B3
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Figure 7.25: Training and Generalization EMS for Abrupt, Scenario B4 - B5

The algorithms under study are classified according to training and generalization per-

Table 7.30: Results of Predictive Performance for Abrupt Environment Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.3166 0.7988 0.3242 0.7985 0.3323 0.7712 0.3338 0.7409 0.3329 0.6068 0.3279 0.7432

GPANDA 0.1002 0.1889 0.0966 0.2811 0.1078 0.3218 0.0978 0.1192 0.1285 0.0330 0.1061 0.1888

DyFor GP 0.2358 0.7577 0.2300 0.7567 0.2315 0.7371 0.2274 0.7198 0.2330 0.6048 0.2315 0.7152

formance. Table 7.31 presents the obtained ranks on EMST and EMSG for Scenario B.

GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is catego-

rized as having the least effective performance for both EMST and EMSG. Discussion

GPANDA outperforms all algorithms in all cases in Scenario B for both training and

generalization. As already mentioned, the superior performance of GPANDA suggests

the capability of the algorithm to adapt to an abrupt changing environment with con-
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Table 7.31: Algorithm Ranking for Abrupt dataset Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 2.5 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2.5 2 2

cept drift occurring. The superior performance of GPANDA can be attributed to the

algorithm’s ability to detect an environmental change and adapts a predictive model

using the prevailing patterns even in increased temporal and spatial severities.

As observed in Scenario A, DyFor GP significantly outperforms DynGP on training,

however, the generalization performance of DyFor GP is reduced to yield performance

the same to DynGP.

As already explained, the abrupt change happening in Scenario B5 yields an increased

performance since the sliding window discards all patterns from the past data generating

process and presents data points from the current data generating process.

Scenario C - Quasi-Progressive Variation

Scenario C simulates less frequent changes having a sliding window shift of 100 iterations.

Figure 7.26 - 7.27 are graphical illustrations as observed under Scenario C1−C5 for the

progression of EMST and EMSG over time.

As observed in Scenario B, DyFor GP outperforms DynGP on training in Scenario C

whereas the performance of DyFor GP and DynGP for generalization is the same. As

illustrated in Figure 7.26 - 7.27, GPANDA exhibits superior performance, consequently,

outperforms all other algorithms in Scenario C for both training and generalization.

As also observed in Scenario B, the significant error peaks are evident in GPANDA

error profile for Scenario C3 − C4. The significant error peaks indicate changes in the

environment which entail the deteriorated predictive performance of other algorithms

under study.

Table 7.32 presents the obtained EMST and EMSG results for the Abrupt dataset, Sce-

nario C. To ascertain the significance of the results obtained for Scenario C, statistical
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analysis was performed and p-values, only for scenarios that included a value of p > 0.05,

are presented in Appendix 1.

  

           

  
 

Figure 7.26: Training and Generalization EMS for Abrupt, Scenario C1 - C3
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Figure 7.27: Training and Generalization EMS for Abrupt, Scenario C4 - C5

The following can be observed for the results presented in Table 7.32:

� GPANDA outperforms all algorithms in all cases in Scenario C for both training

and generalization.

� DyFor GP outperforms DynGP for generalization in all cases in Scenario C except

for Scenario C5.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario C5.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-
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formance. Table 7.33 presents the obtained ranks on EMST and EMSG for Scenario

C.

Table 7.32: Results of Predictive Performance for Abrupt Environment Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.3154 0.8009 0.3223 0.9348 0.3295 0.7872 0.3308 0.7482 0.3288 0.6079 0.3253 0.7758

GPANDA 0.1064 0.1689 0.0970 0.2425 0.0893 0.1558 0.0734 0.1649 0.1204 0.0359 0.0973 0.1536

DyFor GP 0.2307 0.7599 0.2327 0.7573 0.2310 0.7474 0.2313 0.7174 0.2321 0.6052 0.2315 0.7174

As observed in Scenario B, GPANDA is ranked as the overall winner for both EMST and

EMSG. DynGP is categorized as having the least effective performance for both training

and generalization. However, there is no statistically significant differences in perfor-

mance between DyFor GP and DynGP with regards to performance for generalization

in Scenario C5 .

Table 7.33: Algorithm Ranking for Abrupt Dataset Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 2.5 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2.5 2 2

Discussion

Since the Abrupt dataset is generated from different data generating processes, previ-

ously learned information may not be very useful after an environment change. Thus,

the usefulness of previously learned information is reduced in this problem set.

GPANDA outperforms all algorithms in all cases in Scenario C for both training and

generalization. This superior performance of GPANDA suggests the capability of the

algorithm to adapt to environments with abrupt concept drift occurring. As already

mentioned, the superior performance of GPANDA can be attributed to the algorithm’s

ability to detect a changing environment and adapts a predictive model accordingly.

DyFor GP outperforms DynGP on training, however, its generalization performance

deteriorates as the spatial severity increases.
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As already mentioned, low abrupt changes in Scenario C1 − C4, presents two concepts

on each sliding window. However, GPANDA exhibits adaptive traits to changes in the

environment with concept drift occurring to yield outstanding performance throughout

the entire algorithm’s progression, evident with results presented in Table 7.34.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms are given enough iterations to induce an optimal predictive model, even

in abruptly changing environments, before a change in the environment occurs. Conse-

quently, failure to adapt or induce an optimal predictive model may not be attributed

to the temporal severity property of the problem set under consideration but of the

algorithm.

Figure 7.28 - 7.29 are graphical illustrations as observed under Scenario D for the pro-

gression of EMST and EMSG over time.

As illustrated in Figure 7.28 - 7.29, all algorithms show similar traits as observed under

Scenario C: DyFor GP outperforms DynGP on training whereas the performance of

DyFor GP and DynGP for generalization is the same. For some instances along with the

iteration’s progression, DyFor GP outperforms GPANDA for generalization in Scenario

D3 .

GPANDA exhibits superior performance and outperforms all other algorithms for both

training and generalization. As illustrated in Figure 7.28 - 7.29, the significant error

peaks are evident in the GPANDA error profile for Scenario D4 − D5 . As already

mentioned, the significant error peaks indicate changes in the environment which result

in deterioration of the predictive performance of other algorithms under study.

Table 7.34 presents the obtained results for the Abrupt dataset, Scenario D. To ascertain

the significance of the results obtained for Scenario D, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. As observed in Scenario C, similar traits are also observed in the results

presented in Table 7.34:

141

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

 

 
 

Figure 7.28: Training and Generalization EMS for Abrupt, Scenario D1 −D3
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Figure 7.29: Training and Generalization EMS for Abrupt, Scenario D4 −D5

� GPANDA outperforms all algorithms in all cases in Scenario D for both training

and generalization.

� DyFor GP outperforms DynGP for generalization in all cases in Scenario D except

for Scenario D5.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario D5.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.35 presents the obtained ranks on EMST and EMSG for Scenario D.
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As observed in Scenario C, GPANDA is ranked as the overall winner for both EMST

and EMSG .

Table 7.34: Results of Predictive Performance for Abrupt Environment Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.3275 0.8764 0.3230 0.7925 0.3296 0.7801 0.3275 0.7658 0.3284 0.6071 0.3272 0.7643

GPANDA 0.0946 0.1173 0.0744 0.2745 0.1201 0.3900 0.1310 0.0395 0.1446 0.0060 0.1129 0.1654

DyFor GP 0.3111 0.7889 0.3108 0.7838 0.2052 0.7580 0.3091 0.7195 0.3116 0.6095 0.2895 0.7319

DynGP is categorized as having the least effective performance for both training and

generalization. However, there is no statistically significant differences in performance

between DyFor GP and DynGP with regards to performance on EMSG in Scenario D5

.

Table 7.35: Algorithm Ranking for Abrupt Dataset Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 2.5 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2.5 2 2

Discussion

GPANDA outperforms all algorithms in all cases in Scenario D for both training and

generalization. As already mentioned, the superior performance of GPANDA can be

attributed to the algorithm’s ability to detect and adapt a predictive model. The gen-

eralization performance of DyFor GP deteriorates as the spatial severity increases.

The algorithms under study are classified according to generalization performance for

all cases in Scenario A-D. Table 7.36 presents the average EMSG and average computa-

tional time (t̄) in minutes for Scenario A-D. As observed in Recurrent dataset, DynGP

obtains the least average computational time in all scenarios under consideration in the

Abrupt dataset, whereas GPANDA obtains the highest average computational time in

all scenarios. Conversely, GPANDA yields the best performance whereas DynGP has

the least effective performance.
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Table 7.36: Averages for t̄ (in mins) and EMSG for Abrupt Dataset - Scenario A-D

A B C D Average

Algorithm EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄

DynGP 0.7780 0.002 0.7432 0.007 0.7758 0.014 0.7643 0.037 0.7653 0.015

GPANDA 0.1571 0.701 0.1888 2.361 0.1536 4.977 0.1654 12.26 0.1662 5.074

DyFor GP 0.7128 0.147 0.7152 0.518 0.7174 0.994 0.7319 2.452 0.7193 1.027

Table 7.37 presents the obtained results for Scenario A - D. GPANDA is ranked as the

overall winner whereas DynGP is categorized as having the least effective performance.

Table 7.37: Overall Algorithm Ranking for Abrupt Dataset

Algorithm A B C D Average

DynGP 3 3 3 3 3

GPANDA 1 1 1 1 1

DyFor GP 2 2 2 2 2

7.3.4 Random Variation Dataset

The algorithms under study traverse the complete dataset for every scenario under

consideration.

Scenario A - Abrupt Variation

Figure 7.30 is a graphical illustration as observed under Scenario A1 − A3 for the pro-

gression of EMST and EMSG over time. As illustrated in Figure 7.30, adaptation to a

change in the environment becomes less difficult as spatial severity increase from A1 to

A3 .

As illustrated in Figure 7.30, the performance of DynGP and DyFor GP is the same for

generalization in Scenario A1 and A3. DyFor GP outperforms GPANDA in Scenario A1

on training. Along with the iteration’s progression, the performance of GPANDA on

training is reduced in Scenario A3 to yield the same performance to DyFor GP.

It is evident from Figure 7.30 that generalization error profiles for both DynGP and Dy-

For GP are generally higher compared to GPANDA. Higher error peaks can attributed
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to the changes that brought two or more decision boundaries into the sliding analysis

window at each analysis window slide.

  

  

  
 

Figure 7.30: Training and Generalization EMS for Random, Scenario A1 − A3

GPANDA detects a change in the environment and responds by adapting the predictive
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model, suggested by the lowering of the error profile after a change is detected as illus-

trated in Figure 7.30. As such, GPANDA exhibits superior performance, consequently,

outperforms all algorithms by a greater margin in Scenario A for generalization.

Table 7.38 presents the obtained results for the Random dataset. To ascertain the

significance of the results obtained for Scenario A, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. The following can be observed for the results presented in Table 7.38:

� GPANDA outperforms all algorithms in all cases in Scenario A for both training

and generalization

� DyFor GP outperforms DynGP for generalization in Scenario A except for Scenario

A1.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario A1.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.38: Results of Predictive Performance for Random Environment Scenario A

Algorithm A1 A2 A3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.9090 2.5164 0.8777 2.4615 0.8939 2.3885 0.8935 2.4554

GPANDA 0.0946 0.1811 0.0972 0.2488 0.1098 0.3531 0.1005 0.2610

DyFor GP 0.0782 2.5473 0.3300 2.3983 0.1908 2.3085 0.1996 2.4180

The algorithms under study are classified according to training and generalization per-

formance. Table 7.39 presents the obtained ranks on EMST and EMSG for Scenario A.

GPANDA is ranked as the overall winner for both EMST and EMSG whereas DynGP

exhibits the worst performance for both training and generalization.
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Table 7.39: Algorithm Ranking for Random Dataset Scenario A

Algorithm A1 A2 A3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2.5 3 3 3 3 3 2.8

GPANDA 1 1 1 1 1 1 1 1

DyFor GP 2 2.5 2 2 2 2 2 2.2

Discussion

The worst performance exhibited by DynGP can be attributed to the failure of the

algorithm to adapt to a changing environment with concept drift occurring.

GPANDA outperforms all algorithms in all cases in Scenario A. The superior perfor-

mance exhibited by GPANDA suggests the capability of the algorithm to adapt to a

randomly changing environment.

DyFor GP outperforms DynGP which suggests better adaptive traits of DyFor GP to

a randomly changing environment. However, the inferior performance of DyFor GP to

GPANDA suggests the reduced performance of the predictive model which entails that

the predictive model was evolved from a dataset with some irrelevant data points.

The progressive changes happening in Scenario A1 − A2 increase the complexity of the

predictive task since the sliding window at any given instance was made up of data

points from two different data generating processes.

As observed in Scenario A, similar traits are also observed in Scenario B, the performance

of DynGP and DyFor GP is the same for generalization. As illustrated in Figure 7.30,

the generalization error profiles for both DynGP and DyFor GP are generally higher

compared to GPANDA.

Scenario B - Quasi-Abrupt

Scenario B simulates less frequent changes, having a frequency of severity of 50 itera-

tions. Figure 7.31 is a graphical illustration as observed under Scenario B1−B3 for the

progression of EMST and EMSG over time.
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Figure 7.31: Training and Generalization EMS for Random, Scenario B1 - B3

GPANDA detects a change in the environment and responds by adapting the induced

model, which is evident by the lowering of the error profile after a change is detected.

Therefore, GPANDA exhibits superior performance, consequently, outperforms all al-
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gorithms by a greater margin in Scenario B for both training and generalization cases.

Table 7.40 presents the obtained results for the Random dataset, Scenario B. To as-

certain the significance of the results obtained for Scenario B, statistical analysis was

performed and p-values, only for scenarios that included a value of p > 0.05, are pre-

sented in Appendix 1. The following can be observed for the results presented in Table

7.40:

� GPANDA outperforms all algorithms in all cases in Scenario B for both training

and generalization.

� DyFor GP outperforms DynGP on EMSG in Scenario B except for Scenario B1

and B3.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario B1 and B3.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.40: Results of Predictive Performance for Random Environment Scenario B

Algorithm B1 B2 B3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.9087 2.5344 0.8846 2.4981 0.8680 2.4067 0.8871 2.4797

GPANDA 0.1021 0.1744 0.0978 0.2489 0.1130 0.3756 0.1043 0.2663

DyFor GP 0.1538 2.4506 1.3254 2.4030 1.3405 2.3245 0.9399 2.3927

The algorithms under study are classified according to training and generalization per-

formance. Table 7.41 presents the obtained ranks on EMST and EMSG for Scenario B.

GPANDA is ranked as the overall winner for both EMST and EMSG whereas DynGP

is ranked as having the least effective performance for generalization whereas DyFor on

training.

Discussion
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Table 7.41: Algorithm Ranking for Random Dataset Scenario B

Algorithm B1 B2 B3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2.5 2 3 2 2.5 2.3 2.7

GPANDA 1 1 1 1 1 1 1 1

DyFor GP 2 2.5 3 2 3 2.5 2.7 2.3

As observed in Scenario A, similar traits are also observed in Scenario B. The superior

performance of GPANDA suggests the capability of the algorithm to adapt to changes

in the environment with concept drift occurring.

As already explained, the inferior performance of DyFor GP to GPANDA for general-

ization implies that the predictive model induced by DyFor GP contains irrelevant data

points (data points from the past data generating processes).

Scenario C - Quasi-Progressive Variation

Scenario C simulates less frequent changes, having a frequency of severity of 100 itera-

tions. Figure 7.32 is a graphical illustration as observed under Scenario C1−C3 for the

progression of EMST and EMSG over time.

As observed in Scenario B, Scenario C exhibits similar traits: GPANDA outperforms

all other algorithms in Scenario C for both training and generalization. As illustrated

in Figure 7.32, DyFor GP outperforms DynGP in all cases in Scenario C on training.

However, its generalization is reduced to yield performance the same to DynGP in all

cases in Scenario C.

Table 7.42 presents the obtained results for the Random dataset, Scenario C. To as-

certain the significance of the results obtained for Scenario C, statistical analysis was

performed and p-values, only for scenarios that included a value of p > 0.05, are pre-

sented in Appendix 1. As observed in Scenario B, the following are also observed for

the results presented in Table 7.42:

� GPANDA outperforms all algorithms in all cases in Scenario C for both training
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and generalization.

  

  

  
 

Figure 7.32: Training and Generalization EMS for Random, Scenario C1 − C3
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� DyFor GP outperforms DynGP in Scenario C.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario C1 and C3.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.43 presents the obtained ranks on EMST and EMSG for Scenario C.

As observed under Scenario B, GPANDA is ranked as the overall winner for both EMST

and EMSG whereas DynGP is categorized as having the least effective performance for

both training and generalization.

Table 7.42: Results of Predictive Performance for Random Environment Scenario C

Algorithm C1 C2 C3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.9201 2.5519 0.8365 2.5105 0.8779 2.4034 0.8781 2.4886

GPANDA 0.0983 0.1788 0.0988 0.2451 0.1140 0.3538 0.1037 0.2592

DyFor GP 0.3279 2.4726 0.1971 2.4196 0.2489 2.3300 0.2579 2.4074

Table 7.43: Algorithm Ranking for Random Dataset Scenario C

Algorithm C1 C2 C3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2.5 3 3 3 2.5 3 2.7

GPANDA 1 1 1 1 1 1 1 1

DyFor GP 2 2.5 2 2 2 2.5 2 2.3

Discussion

As observed under Scenario B, similar traits are also observed in Scenario C: GPANDA

outperforms all algorithms in all cases in Scenario C. The superior performance of

GPANDA suggests the capability of the algorithm to adapt to environments with con-

cept drift occurring.
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The inferior performance of DyFor GP and DynGP for generalization to that of GPANDA

suggests that the models are evolved with some irrelevant data points from the past data

generating processes.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms under study are given enough iterations before an environment change

to evolve an optimal predictive model. Consequently, failure to adapt or to evolve an

optimal solution may not be attributed to the temporal severity property of the problem

set under consideration, but the algorithm.

Figure 7.33 is a graphical illustration as observed in Scenarios D1−D3 for the progression

of EMST and EMSG over time. All algorithms showed similar traits as observed in

Scenario C: the performance of DynGP and DyFor GP is the same for generalization.

As illustrated in Figure 7.33, GPANDA exhibits superior performance for generalization,

consequently, outperforms all algorithms in Scenario D for generalization.

However, the training performance of GPANDA is reduced in Scenario D1 − D2. The

performance of DyFor GP is consistent in all training cases and outperforms GPANDA

in Scenario D1 −D2 .

Table 7.44 presents the obtained results for the Random dataset, Scenario D. To as-

certain the significance of the results obtained for Scenario D, statistical analysis was

performed and p-values, only for scenarios that included a value of p > 0.05, are pre-

sented in Appendix 1. The following can be observed for the results presented in Table

7.44:

� GPANDA outperforms all algorithms in all cases in Scenario D for generalization.

� DyFor GP outperforms DynGP in Scenario D.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.
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Figure 7.33: Training and Generalization EMS for Random, Scenario D1 −D3

� The result that GPANDA performs better than DyFor GP was found to be sta-
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tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.45 presents the obtained ranks on EMST and EMSG in Scenario

D. DyFor GP is ranked as the overall winner on EMST whereas GPANDA is ranked

as the overall winner on EMSG . DynGP is categorized as having the least effective

performance for both training and generalization.

Table 7.44: Results of Predictive Performance for Random Environment Scenario D

Algorithm D1 D2 D3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.8334 2.2817 0.8602 2.5563 0.8509 2.4572 0.8481 2.4310

GPANDA 0.0934 0.1658 0.0957 1.34e-26 5.91e-25 1.59e-30 0.0630 0.0552

DyFor GP 0.0087 2.4843 0.0072 2.4395 0.1202 2.3434 0.0453 2.4224

Table 7.45: Algorithm Ranking for Random Dataset Scenario D

Algorithm D1 D2 D3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2 3 3 3 3 3 2.7

GPANDA 2 1 2 1 1 1 1.7 1

DyFor GP 1 3 1 2 2 2 1.3 2.3

Discussion

GPANDA outperforms all other algorithms in all cases in Scenario D for generaliza-

tion. The superior performance of GPANDA suggests the effectiveness of a piecewise

predictive approach to a changing environment with concept drift occurring.

The inferior performance of DyFor GP to GPANDA implies that the model is evolved

including some irrelevant data points that reduced the predictive performance of the

model. The reduced performance of DynGP algorithm can be attributed to conflicting

decision boundaries within the sliding window of analysis.

The algorithms under study are classified according to generalization performance for

all cases in Scenario A-D. Table 7.46 presents the average EMSG and average computa-
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tional time (t̄) in minutes for Scenario A-D. As observed in the Abrupt dataset, DynGP

obtains the least average computational time in all scenarios under consideration in the

Random dataset, whereas GPANDA obtains the highest average computational time in

all scenarios. Conversely, GPANDA yields the best performance whereas DynGP has

the least effective performance. Table 7.47 presents the obtained results for Scenario A

Table 7.46: Averages for t̄ (in mins) and EMSG for Random Dataset - Scenario A-D

A B C D Average

Algorithm EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄

DynGP 2.4554 0.021 2.4797 0.059 2.4886 0.127 2.4317 0.312 2.4638 0.1297

GPANDA 0.2610 3.467 0.2663 11.23 0.2592 20.81 0.0552 71.29 0.2104 26.6992

DyFor GP 2.4180 1.082 2.3927 3.51 2.4074 6.818 2.4224 22.28 2.4101 8.4225

- D. GPANDA is ranked as the overall winner while DynGP is categorized as having

the least effective performance.

Table 7.47: Overall Algorithm Ranking for Random Dataset

Algorithm A B C D Average

DynGP 2.8 2.7 2.7 2.7 2.7

GPANDA 1 1 1 1 1

DyFor GP 2.2 2.3 2.3 2.3 2.3

7.3.5 Trend Variation Dataset

The algorithms under study traverse the complete dataset for every scenario under

consideration.

Scenario A - Abrupt Variation

The frequency of change in Scenario A is very high which is 25 iterations. Figure 7.34

are graphical illustrations as observed under Scenario A1 − A4 for the progression of

EMST and EMSG over time.

GPANDA outperforms all other algorithms in all cases in Scenario A for both training

and generalization whereas DyFor GP outperforms DynGP.
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Figure 7.34: Training and Generalization EMS for Trend, Scenario A1 − A4
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As illustrated in Figure 7.34, the staircase/up-down patterns on DynGP error profile

for both training and generalization can be attributed to changes that tend to bring two

or more decision boundaries into the sliding window at each slide. Thus, the predictive

model is induced using more of the data points from the past data generating processes.

However, both GPANDA and DyFor GP maintain a steady performance throughout

the iteration’s progression. Thus, GPANDA and DyFor GP detect changes in the en-

vironment and respond by adapting the predictive model, suggested by lowering of the

error profiles.

Table 7.48 presents the obtained results for the Trend dataset, Scenario A. To ascertain

the significance of the results obtained for Scenario A, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. The following can be observed for the results presented in Table 7.48:

� GPANDA outperforms all algorithms in all cases in Scenario A for both training

and generalization.

� DyFor GP outperforms DynGP.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

item The result that GPANDA performs better than DyFor GP was found to be

statistically significant at the 5% level of significance.

Table 7.48: Results of Predictive Performance for Trend Environment Scenario A

Algorithm A1 A2 A3 A4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0681 0.0740 0.0691 0.0740 0.0694 0.0798 0.0715 0.0773 0.0695 0.0762

GPANDA 2.65e-5 1.33e-33 2.21e-5 1.01e-29 2.24e-5 1.01e-34 2.50e-28 1.73e-28 1.77e-05 4.57e-29

DyFor GP 0.0056 0.0069 0.0057 0.0069 0.0056 0.0074 0.0058 0.0072 0.0056 0.0071

Table 7.49 presents the obtained results for Scenario A. GPANDA is ranked as the

overall winner for both EMST and EMSG whereas DynGP is categorized as having the

least effective performance for both training and generalization.
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Table 7.49: Algorithm Ranking for Trend dataset Scenario A

Algorithm A1 A2 A3 A4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2

Discussion

As observed in the previous experiments, GPANDA outperforms all other algorithms in

all cases in Scenario A. As already mentioned, the outstanding performance of GPANDA

suggests the capability of the algorithm to adapt to changes happening to real-world,

historical US Treasury bill contracts.

As already mentioned, the performance gain exhibited by the DyFor GP can be at-

tributed to the ability of the algorithm to optimize the dataset presented to GP by

eliminating irrelevant data points present in the analysis window.

The worst performance exhibited by DyFor GP suggests the reduced effectiveness of

the dynamic parameter tuning technique to adapt to time series dataset with very few

independent variables.

The progressive changes happening in Scenario A1 - A4 increases the complexity of the

predictive task, however, GPANDA and DyFor GP exhibit slight to no performance

deterioration in all cases in Scenario A. This implies that the data generating process

follows a trend variation with gradual changes that makes easier for the algorithms

under study to evolve and adapt predictive models.

Scenario B - Quasi-Abrupt

Figure 7.35 are graphical illustrations as observed under Scenario B1 − B4 for the pro-

gression of EMST and EMSG over time.

As observed in Scenario A, similar traits are also observed in Scenario B, DyFor GP

outperforms DynGP in all cases in Scenario B.

160

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



  

           

 

 

Figure 7.35: Training and Generalization EMS for Trend, Scenario B1 −B4
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As illustrated in Figure 7.35, GPANDA detects the change in the environment with

concept drifts occurring and adapted the predictive model accordingly which is suggested

by better predictive performance. As such, GPANDA outperforms all other algorithms

in Scenario B for both training and generalization.

Table 7.50 presents the obtained results for the Trend dataset, Scenario B. To ascertain

the significance of the results obtained for Scenario A, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. Scenario B followed the similar traits of Scenario A:

� GPANDA outperforms all algorithms in all cases in Scenario A for both training

and generalization.

� DyFor GP outperforms DynGP.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.51 presents the obtained ranks on EMST and EMSG for Scenario B.

As observed in Scenario A, GPANDA is ranked as the overall winner for both EMST

and EMSG. DynGP is categorized as having the least effective performance for both

training and generalization.

Table 7.50: Results of Predictive Performance for Trend Environment Scenario B

Algorithm B1 B2 B3 B4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0682 0.0745 0.0690 0.0744 0.0694 0.0805 0.0716 0.0793 0.0695 0.0771

GPANDA 2.14e-5 9.03e-7 2.44e-5 2.86e-8 3.14e-5 2.85e-5 2.10e-5 5.37e-28 2.45e-5 8.35e-6

DyFor GP 0.0057 0.0069 0.0057 0.0069 0.0056 0.0074 0.0057 0.0072 0.0056 0.0071
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Table 7.51: Algorithm Ranking for Trend dataset Scenario B

Algorithm B1 B2 B3 B4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2

Discussion

As observed in Scenario A, similar traits are also observed in Scenario B: GPANDA out-

performs all algorithms in all cases. As already explained, the superior performance of

GPANDA can be attributed to adaptive traits of GPANDA to the changing environment

with concept drift occurring.

DyFor GP significantly outperforms DynGP. The outstanding performance exhibited

by DyFor GP suggests the capability of the algorithm to adapt a predictive model to a

dataset that exhibits trend variation.

As already mentioned, the inferior performance exhibited by DynGP can be attributed

to the dataset having few independent variables which made it difficult for DynGP

through dynamic parameter tuning to adapt a predictive model to yield a model of high

precision.

However, GPANDA using its underlying dynQPSO yields predictive models of a higher

precision that outperforms all other algorithms under study. Also, GPANDA and DyFor

GP are insensitive to change of spatial severity from Scenario B1−B4. This implies that

the data generating process follows a trend variation with gradual changes that makes it

easier for these algorithms to adapt a predictive model with outstanding performance.

Scenario C - Quasi-Progressive Variation

Figure 7.36 are graphical illustrations as observed in Scenario C for the progression of

EMST and EMSG over time. As observed in Scenario B, GPANDA detect changes in the

environment and adapts the predictive model yielding increased predictive performance

and consequently, outperforms all other algorithms in Scenario C.
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Figure 7.36: Training and Generalization EMS for Trend, Scenario C1 − C4
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As illustrated in Figure 7.36, DynGP exhibits poor adaptive traits compared to other

algorithms and consequently, yields the worst performance for both training and gener-

alization in all cases in Scenario C.

Table 7.52 presents the obtained results for the Trend dataset, Scenario C. To ascertain

the significance of the results obtained for Scenario C, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. Scenario C followed the similar traits of Scenario B:

� GPANDA outperforms all algorithms in all cases in Scenario A for both training

and generalization.

� DyFor GP outperforms DynGP.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.53 presents the obtained ranks on EMST and EMSG for Scenario C. As observed

in Scenario B, GPANDA is ranked as the overall winner for both EMST and EMSG.

DynGP is categorized as having the least effective performance for both training and

generalization.

Table 7.52: Results of Predictive Performance for Trend Environment Scenario C

Algorithm C1 C2 C3 C4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0684 0.0963 0.0690 0.0761 0.0692 0.0808 0.0713 0.0851 0.0694 0.0845

GPANDA 2.73e-5 1.96e-8 2.77e-5 4.53e-6 2.18e-5 4.53e-6 3.29e-5 2.97e-5 2.74e-5 9.69e-6

DyFor GP 0.0057 0.0069 0.0055 0.0069 0.0056 0.0074 0.0060 0.0072 0.0057 0.0071

Discussion

As observed in Scenario B, similar traits are also observed in Scenario C: GPANDA
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Table 7.53: Algorithm Ranking for Trend Dataset Scenario C

Algorithm C1 C2 C3 C4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2

outperforms all other algorithms in all cases. As already explained, the superior perfor-

mance of GPANDA can be attributed to adaptive traits of the algorithm to the changing

environment with concept drift occurring.

The outstanding performance exhibited by DyFor GP suggests the capability of the

algorithm to adapt a predictive model to a dataset that exhibits trend variation.

As already mentioned, the inferior performance exhibited by DynGP can be attributed

to the dataset having few independent variables which made it difficult to evolve a

predictive model of high precision. An increase in temporal severity did not yield any

performance gain on DynGP as expected, instead, the performance deteriorates espe-

cially in Scenario C4.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms are given enough iterations before an environment change to induce an

optimal predictive model even in abruptly changing environments. Consequently, failure

to adapt or induce optimal solutions may not be attributed to the temporal severity

property of the problem set under consideration but the algorithm.

Figure 7.37 are graphical illustrations as observed in Scenario D for the progression

of EMST and EMSG over time. As illustrated in Figure 7.37, algorithms under study

show similar traits as observed in Scenario C: GPANDA exhibits superior performance,

consequently, outperforms all algorithms in Scenario D for both training and general-

ization. DyFor GP outperforms DynGP in all cases in Scenario D for both training and

generalization.
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Figure 7.37: Training and Generalization EMS for Trend, Scenario D1 −D4
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To ascertain the significance of the results obtained for Scenario D, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1. As observed in Scenario C, similar traits are also observed for

the results presented in Table 7.54:

� GPANDA outperforms all algorithms in all cases in Scenario A for both training

and generalization.

� DyFor GP outperforms DynGP.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.54: Results of Predictive Performance for Trend Environment Scenario D

Algorithm D1 D2 D3 D4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0681 0.0881 0.0690 0.0742 0.0692 0.0836 0.0690 0.0742 0.0688 0.0800

GPANDA 2.10e-5 4.87e-8 2.10e-5 4.87e-8 1.97e-5 1.14e-7 2.52e-5 8.52e-8 2.17e-5 8.41e-8

DyFor GP 0.0058 0.0069 0.0058 0.0069 0.0057 0.0074 0.0712 0.0871 0.0221 0.0270

The algorithms under study are classified according to training and generalization per-

formance. Table 7.55 presents the obtained ranks on EMST and EMSG for Scenario D.

As observed in Scenario C, GPANDA is ranked as the overall winner for both EMST

and EMSG. DynGP is categorized as having the least effective performance for both

training and generalization.

Table 7.55: Algorithm Ranking for Trend Dataset Scenario D

Algorithm D1 D2 D3 D4 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 3 3 3 3 3

GPANDA 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 2 2 2 2 2
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Discussion

As observed in Scenario C, similar traits are also observed in Scenario D: GPANDA

outperforms all algorithms in all cases. The outstanding performance of GPANDA

suggests the capability of the algorithm to adapt to environments with trend variation.

As already mentioned, DyFor GP significantly outperforms DynGP. The increased per-

formance in DyFor GP can be attributed to the relevant data points presented to the

GP through an analysis window optimization technique.

The algorithms under study are classified according to generalization performance for all

cases in Scenario A-D. Table 7.56 presents the average EMSG and average computational

time (t̄) in minutes for Scenario A-D. As observed in the Random dataset, DynGP

obtains the least average computational time in all scenarios under consideration in the

Trend dataset, whereas GPANDA obtains the highest average computational time in all

scenarios. Conversely, GPANDA yields the best performance whereas DynGP has the

least effective performance.

Table 7.56: Averages for t̄ (in mins) and EMSG for Trend Dataset - Scenario A-D

A B C D Average

Algorithm EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄

DynGP 0.0762 0.013 0.0771 0.046 0.0845 0.084 0.0800 0.235 0.0794 0.0945

GPANDA 4.57e-29 1.077 8.35e-6 2.751 9.69e-6 5.531 8.41e-8 11.29 4.27e-6 5.1622

DyFor GP 0.0071 0.405 0.0071 1.365 0.0071 2.281 0.0270 5.375 0.0120 2.3565

Table 7.57 presents the average obtained ranks on EMSG for Scenario A - D. GPANDA is

ranked as the overall winner whereas DynGP is categorized as having the least effective

performance.

Table 7.57: Overall Algorithm Ranking for Trend Dataset

Algorithm A B C D Average

DynGP 3 3 3 3 3

GPANDA 1 1 1 1 1

DyFor GP 2 2 2 2 2
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7.3.6 New South Wales Electricity Pricing Dataset

The algorithms under study traverse the complete dataset for every scenario under

consideration.

Scenario A - Abrupt Variation

The frequency of change is the same for all cases in Scenario A which is 25 iterations.

Figure 7.38 are graphical illustrations as observed under Scenario A1 − A5 for the pro-

gression of EMST and EMSG over time.

As illustrated in Figure 7.38 - 7.39, the performance of DynGP and DyFor GP is the

same in all cases in Scenario A. GPANDA detect changes in the environment with

concept drifts occurring and adapts the predictive model which result in a steady error

profile.

DynGP and DyFor GP exhibit an improving performance as the iterations progress.

This performance improvement suggests the dataset follows either trend progression or

the underlying changes are happening in a progressive manner which makes it easier

for the algorithms to adapt the predictive model in the environment with concept drift

occurring. GPANDA consistently maintains the obtained minimum as compared to

other algorithms.

Table 7.58 presents the obtained results for the Electricity demand dataset, Scenario A.

To ascertain the significance of the results obtained for Scenario A, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1. The following can be observed for the results presented in

Table 7.58:

� GPANDA outperforms all algorithms in all cases in Scenario A.

� DyFor GP outperforms DynGP.

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario A1 − A4.
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� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

  

           

  

 Figure 7.38: Training and Generalization EMS for Electricity, Scenario A1 − A3
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Figure 7.39: Training and Generalization EMS for Electricity, Scenario A4 − A5

The algorithms under study are classified according to training and generalization per-

Table 7.58: Results of Predictive Performance for Electricity Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0145 0.0190 0.0147 0.0194 0.0149 0.0208 0.0154 0.0235 0.0166 0.0297 0.0152 0.0224

GPANDA 3.92e-4 2.17e-4 1.92e-4 1.94e-04 2.10e-4 2.02e-4 6.61e-4 5.62e-4 2.56e-4 2.14e-4 0.0003 0.0002

DyFor GP 0.0142 0.0196 0.0143 0.0195 0.0140 0.0202 0.0146 0.0237 0.0146 0.0282 0.0143 0.0498

formance. Table 7.59 presents the obtained ranks on EMST and EMSG for Scenario

A. GPANDA is ranked as the overall winner for both EMST and EMSG. DyFor GP

slightly outperforms DynGP for both training and generalization.

Discussion

GPANDA outperforms all algorithms in all cases in Scenario A. As already explained,

the superior performance of GPANDA suggests the capability of the algorithm to adapt
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Table 7.59: Algorithm Ranking for Electricity Scenario A

Algorithm A1 A2 A3 A4 A5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 3 2.6 2.6

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 2 2.4 2.4

to a changing environment. There is a slight performance difference between DyFor GP

and DynGP in Scenario A.

Scenario B - Quasi-Abrupt

Scenario B simulates less frequent changes having a frequency of severity of 50 iterations.

Figure 7.40 - 7.41 are graphical illustrations in Scenario B for the progression of EMST

and EMSG over time.

As observed in Scenario A, similar traits are also observed in Scenario B: the performance

of DyFor GP and DynGP is the same in all cases in Scenario B for both training and

generalization.

GPANDA detects an environment change and thereby adapts the predictive model,

evident with improved predictive performance. GPANDA outperforms all other algo-

rithms in Scenario B for both training and generalization. All cases in Scenario B shows

that GPANDA consistently maintains the obtained minimum throughout the iteration’s

progression.

Table 7.60 presents the obtained results for the Electricity dataset, Scenario B. To

ascertain the significance of the results obtained for Scenario B, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1. As observed in Scenario A, the following can also be observed

for the results in Table 7.60:

� GPANDA outperforms all algorithms.

� DyFor GP outperforms DynGP.
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Figure 7.40: Training and Generalization EMS for Electricity, Scenario B1 −B3
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Figure 7.41: Training and Generalization EMS for Electricity, Scenario B4 −B5

� The result that DyFor GP performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance except for Scenario B1 −B4.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.60: Results of Predictive Performance for Electricity Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0144 0.0193 0.0146 0.0196 0.0149 0.0210 0.0152 0.0237 0.0165 0.0302 0.0151 0.0227

GPANDA 2.38e-4 2.61e-4 2.39e-4 2.19e-4 1.97e-4 2.34e-4 1.72e-4 2.09e-4 2.04e-4 1.96e-4 0.0002 0.0002

DyFor GP 0.0141 0.0201 0.0143 0.0203 0.0139 0.0205 0.0144 0.0236 0.0147 0.0300 0.0142 0.0229

The algorithms under study are classified according to training and generalization per-

formance. Table 7.61 presents the obtained ranks on EMST and EMSG for Scenario
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B. GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is

categorized as having the least effective performance on training whereas DynGP and

DyFor GP are ranked on the same position for generalization.

Table 7.61: Algorithm Ranking for Electricity Scenario B

Algorithm B1 B2 B3 B4 B5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3 2.5 2.6 2.5

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 2.5 2.4 2.5

Discussion

As observed in Scenario A, GPANDA outperforms all algorithms in all cases in Scenario

B. As already explained, the superior performance of GPANDA suggests the capability

of the algorithm to adapt the predictive model as changes in the environment occurred.

The generalization performance of DyFor GP is the same to DynGP in all cases in

Scenario B.

Scenario C - Quasi-Progressive Variation

Scenario C simulates less frequent changes of 100 iterations before a sliding window

shift. Figure 7.42 - 7.43 are graphical illustrations as observed in Scenario C for the

progression of EMST and EMSG over time.

As observed in Scenario B, similar traits are also observed in Scenario C: the performance

of DyFor GP and DynGP is the same in all cases in Scenario C for both training and

generalization except in Scenario C1 on training.

GPANDA detects an environment change and thereby adapts the predictive model,

evident with improved predictive performance as illustrated in Figure 7.42 - 7.43. Con-

sequently, GPANDA outperforms all other algorithms in Scenario C for both training

and generalization.

Table 7.62 presents the obtained results for the Electricity dataset, Scenario C. To

ascertain the significance of the results obtained for Scenario C, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are
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presented in Appendix 1. As observed in Scenario B, the following are also observed for

the results presented in Table 7.62:

  

  

  

 
Figure 7.42: Training and Generalization EMS for Electricity, Scenario C1 − C3
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Figure 7.43: Training and Generalization EMS for Electricity, Scenario C4 − C5

� GPANDA outperforms all algorithms.

� DyFor GP outperforms DynGP.

� No statistically significant differences exist in performance between DyFor GP and

DynGP with regards to performance for generalization in Scenario C.

� The result that GPANDA performs better than both DyFor GP and DynGP was

found to be statistically significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.63 presents the obtained ranks on EMST and EMSG for Scenario
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C. GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is

categorized as having the least effective performance on training whereas DynGP and

DyFor GP are ranked on the same position for generalization.

Table 7.62: Results of Predictive Performance for Electricity Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0173 0.0177 0.0146 0.0198 0.0149 0.0210 0.0153 0.0243 0.0165 0.0300 0.0157 0.0225

GPANDA 1.91e-4 1.71e-4 1.88e-4 1.89e-4 2.37e-4 2.07e-4 2.51e-4 1.97e-4 2.15e-4 1.71e-4 0.0002 0.0001

DyFor GP 0.0130 0.0179 0.0131 0.0196 0.0138 0.0205 0.0144 0.0237 0.0147 0.0297 0.0138 0.0222

Table 7.63: Algorithm Ranking for Electricity Scenario C

Algorithm C1 C2 C3 C4 C5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2.5 3 2.5 3 2.5 3 2.5 3 2.5 3 2.5

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5 2 2.5

Discussion

As observed in Scenario B, GPANDA outperforms all algorithms in all cases in Scenario

C. As already explained, the superior performance of GPANDA suggests the capability

of the algorithm to adapt the predictive model as changes in the environment occurred.

The generalization performance of DyFor GP is the same to that of DynGP in all cases

in Scenario C.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms are given enough iterations to induce an optimal predictive model even in

abruptly changing environments before an environment change. Consequently, failure

to adapt or induce an optimal solution may not be attributed to the temporal severity

property of the problem set under consideration but of the algorithm.

Figure 7.44 - 7.45 are graphical illustrations as observed in Scenario D for the progression

of EMST and EMSG over time. As illustrated in Figure 7.44-7.45, DyFor GP slightly

outperforms DynGP on training in Scenario D1−D2 whereas in Scenario D3−D5 , the

performance of DyFor GP and DynGP is the same.
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Figure 7.44: Training and Generalization EMS for Electricity, Scenario D1 −D3
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Figure 7.45: Training and Generalization EMS for Electricity, Scenario D4 −D5

The performance of DyFor GP and DynGP for generalization is the same and for some

instances along with the iteration’s progression, DynGP outperforms DyFor GP for

generalization. GPANDA exhibits superior performance and outperforms all other al-

gorithms for both training and generalization.

Table 7.64 presents the obtained results for the Electricity demand dataset, Scenario D.

To ascertain the significance of the results obtained for Scenario D, statistical analysis

was performed and p-values, only for scenarios that included a value of p > 0.05, are

presented in Appendix 1. The following can be observed for the results presented in

Table 7.64:

� GPANDA consistently outperforms all algorithms in all cases in Scenario D for

both training and generalization.
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� No statistically significant differences exist in performance between DyFor GP

and DynGP with regards to performance for generalization in Scenario D4 and

Scenario D5.

� The result that DynGP performs better than DyFor GP was found to be statisti-

cally significant at the 5% level of significance for Scenario D3, conversely, DyFor

GP outperforms DynGP for Scenario D1 −D2.

� The result that GPANDA performs better than DyFor GP was found to be sta-

tistically significant at the 5% level of significance.

Table 7.64: Results of Predictive Performance for Electricity Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0272 0.0246 0.0219 0.0209 0.0169 0.0181 0.0151 0.0239 0.0164 0.0311 0.0195 0.0237

GPANDA 2.84e-4 2.81e-4 1.28e-4 1.85e-4 2.35e-04 2.33e-4 1.84e-4 2.28e-4 2.67e-4 1.75e-4 0.0002 0.0002

DyFor GP 0.0129 0.0184 0.0133 0.0197 0.0140 0.0204 0.0144 0.0241 0.0149 0.0305 0.0139 0.0226

The algorithms under study are classified according to training and generalization per-

formance. Table 7.65 presents the obtained ranks on EMST and EMSG for Scenario D.

GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is cate-

gorized as having the least effective performance for both training and generalization.

Discussion

As observed in Scenario C, similar traits are also observed in Scenario D: GPANDA

outperforms all algorithms in all cases in Scenario D.

Table 7.65: Algorithm Ranking for Electricity Scenario D

Algorithm D1 D2 D3 D4 D5 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 3 3 3 3 2 3 2.5 3 2.5 3 2.6

GPANDA 1 1 1 1 1 1 1 1 1 1 1 1

DyFor GP 2 2 2 2 2 3 2 2.5 2 2.5 2 2.4

Slight performance deterioration of DynGP can be attributed to the disruptive effects

of dynamic parameter tuning when there is an adequate number of iterations. Thus,
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dynamic parameter tuning tends to overshot the best-obtained solution if the number

of iterations increases.

Table 7.66: Averages for t̄ (in mins) and EMSG for Electricity Dataset - Scenario A-D

A B C D Average

Algorithm EMSG avgt̄ EMSG avgt̄ EMSG avgt̄ EMSG avgt̄ EMSG t̄

DynGP 0.0224 0.018 0.0227 0.043 0.0225 0.122 0.0237 0.306 0.0228 0.1222

GPANDA 0.0002 5.004 0.0002 18.08 0.0001 29.85 0.0002 85.21 0.0001 34.28

DyFor GP 0.0498 3.128 0.0229 10.63 0.0222 18.66 0.0226 53.26 0.0293 21.41

The algorithms under study are classified according to generalization performance for

all cases in Scenario A-D. Table 7.66 presents the average EMSG and average computa-

tional time (t̄) in minutes for Scenario A-D. As observed in the Trend dataset, DynGP

obtains the least average computational time in all scenarios under consideration in the

Electricity dataset, whereas GPANDA obtains the highest average computational time

in all scenarios. Conversely, GPANDA yields the best performance whereas DynGP has

the least effective performance.

Table 7.67 presents the obtained results for Scenario A - D. GPANDA is ranked as the

overall winner while DynGP is categorized as having the least effective performance.

Table 7.67: Overall Algorithm Ranking for Electricity Dataset

Algorithm A B C D Average

DynGP 2.6 2.5 2.5 2.6 2.6

GPANDA 1 1 1 1 1

DyFor GP 2.4 2.5 2.5 2.4 2.5

7.3.7 Gross Domestic Product Dataset

The algorithms under study traverse the complete dataset for every scenario under

consideration.

Scenario A - Abrupt Variation

The frequency of change is the same in Scenario A which is 25 iterations. Figure 7.46

is a graphical illustration as observed in all cases in Scenario A for the progression of

EMST and EMSG over time.
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Figure 7.46: Training and Generalization EMS for GDP, Scenario A1 − A3
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Figure 7.46 illustrates that the performance of GPANDA deteriorates. DyFor GP out-

performs GPANDA in Scenario A1 on training and then yields the same performance

to GPANDA in Scenario A2 − A3 on training.

As illustrated in Figure 7.46, for some instances along with the iteration’s progression,

DynGP outperforms GPANDA in Scenario A1 on training. DyFor GP outperforms

DynGP in all cases in Scenario A on training. However, the generalization performance

of DyFor GP deteriorates in all cases in Scenario A. DynGP outperforms DyFor GP for

generalization in all cases in Scenario A.

GPANDA outperforms both DyFor GP and DynGP for generalization though yield

results which are the same to both DyFor GP and DynGP for some instances along

with the iterations progression.

Table 7.68 presents the obtained results for the GDP dataset, Scenario A. To ascertain

the significance of the results obtained for Scenario A, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. The following can be observed for the results presented in Table 7.68:

� GPANDA outperforms all algorithms.

� DyFor GP outperforms DynGP.

� The result that DynGP performs better than DyFor GP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

The algorithms under study are classified according to training and generalization per-

formance. Table 7.69 presents the obtained ranks on EMST and EMSG for Scenario A.

Since there is no statistically significant differences between GPANDA and DyFor GP on

training, both algorithms are ranked the overall winner on training whereas GPANDA

185

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Table 7.68: Results of Predictive Performance for GDP Scenario A

Algorithm A1 A2 A3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0060 0.0474 0.0066 0.0505 0.0083 0.0737 0.0069 0.0572

GPANDA 9.18e-4 0.0036 1.97e-4 0.0364 1.53e-4 0.0027 0.0004 0.0142

DyFor GP 9.75e-4 0.0702 2.74e-4 0.0544 1.27e-4 0.0964 0.0004 0.0736

is ranked as the overall winner on EMSG. DyFor GP is categorized as having the least

effective performance for generalization whereas DynGP is on training.

Table 7.69: Algorithm Ranking for GDP Environment Scenario A

Algorithm A1 A2 A3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2 3 2 3 2 3 2

GPANDA 3 2 3 2 3 2 3 2

DyFor GP 1.5 3 1.5 3 1.5 3 1.5 3

Discussion

The predictive performance of GPANDA outperforms DynGP for generalization in all

cases in Scenario A. The superior performance of GPANDA suggests the induction of

predictive model with a higher generalization performance.

The progressive changes happening in Scenario A1 − A2 increase the complexity of the

predictive task since the sliding window at any given instance is made up of two or more

different data generating processes. Thus, as the window slides, new data points from

a new data generating process constitutes the generalization dataset whereby old data

points from the past generating process constitutes the training dataset. However, all

algorithms detect an environmental change in such scenarios, consequently, adapts the

generated predictive model.

Scenario B - Quasi-Abrupt

Scenario B simulates less frequent changes having a frequency of severity of 50 iterations.

Figure 7.47 is a graphical illustration as observed in Scenario B for the progression of

EMST and EMSG over time.

186

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



  

 

  
 

Figure 7.47: Training and Generalization EMS for GDP, Scenario B1 −B3

As observed in Scenario A, DynGP outperforms DyFor GP for generalization in all cases
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in Scenario B. Also, GPANDA outperforms all other algorithms for generalization in all

cases in Scenario B, though, for some instances along with the iteration’s progression in

Scenario B2 , all algorithms yield the same performance as illustrated in Figure 7.47.

GPANDA and DyFor GP yield the same performance in all cases in Scenario B on

training which can be attributed to many independent variable attributes that enable

the algorithms to induce predictive models of improved performance. Consequently,

DynGP exhibits the worst performance on training in all cases in Scenario B.

Table 7.70 presents the obtained results for the GDP dataset, Scenario B. To ascertain

the significance of the results obtained for Scenario B, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. The following can be observed for the results presented in Table 7.70:

� GPANDA outperforms all algorithms.

� DyFor GP outperforms DynGP.

� The result that DynGP performs better than DyFor GP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

Table 7.70: Results of Predictive Performance for GDP Scenario B

Algorithm B1 B2 B3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0052 0.0574 0.0057 0.0578 0.0066 0.0775 0.0058 0.0642

GPANDA 1.39e-6 4.45e-5 0.0022 4.07e-5 2.23e-5 9.12e-31 0.0007 2.84e-5

DyFor GP 3.82e-4 0.0779 4.01e-4 0.0618 9.69e-4 0.0843 0.0005 0.0746

Table 7.71 presents the obtained ranks on EMST and EMSG for Scenario B. GPANDA

is ranked the overall winner for both training and generalization whereas DynGP is

categorized as having the least effective performance on training and DyFor GP for

generalization.
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Table 7.71: Algorithm Ranking for GDP Environment Scenario B

Algorithm B1 B2 B3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2 3 2 3 2 3 2

GPANDA 1 1 2 1 1 1 1.3 1

DyFor GP 2 3 1 3 2 3 1.7 3

Discussion

The predictive performance of GPANDA outperforms both DynGP and DyFor GP

for generalization in all cases in Scenario B. Consequently, the predictive performance

of DynGP outperforms DyFor GP. As already mentioned, the superior performance

of GPANDA suggests the induction of predictive model with a higher generalization

performance.

Scenario C - Quasi-Progressive Variation

Scenario C simulates less frequent changes having a frequency of severity of 100 itera-

tions. Figure 7.48 is a graphical illustration as observed in Scenario C for the progression

of EMST and EMSG over time.

As illustrated in Figure 7.48, GPANDA exhibits the worst performance for the first

100 iterations, then the performance improved along with the iteration’s progression

yielding the same performance to DyFor GP on training in Scenario C1 − C2.

DyFor outperforms DynGP on training in all cases in Scenario C. As observed in Sce-

nario B, similar traits are also observed in Scenario C for generalization: DynGP out-

performs DyFor GP for generalization in Scenario C1 and Scenario C3. Also, GPANDA

outperforms all other algorithms in all cases in Scenario C for generalization, though,

for some instances along with the iteration’s progression, all algorithms yields the same

performance as illustrated in Figure 7.48.

Table 7.72 presents the obtained results for the GDP, Scenario C. To ascertain the

significance of the results obtained for Scenario C, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in
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Appendix 1.

  

  

  

 Figure 7.48: Training and Generalization EMS for GDP, Scenario C1 − C3
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The following can be observed for the results presented in Table 7.72:

� GPANDA outperforms all algorithms.

� DynGP outperforms DyFor GP.

� The result that DynGP performs better than DyFor GP was found to be statisti-

cally significant at the 5% level of significance.

� The result that GPANDA performs better than DynGP was found to be statisti-

cally significant at the 5% level of significance.

Table 7.72: Results of Predictive Performance for GDP Scenario C

Algorithm C1 C2 C3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0051 0.0632 0.0051 0.0680 0.0068 0.0776 0.0056 0.0696

GPANDA 0.0059 0.0351 0.0216 0.0042 1.79e-4 0.0122 0.0092 0.0171

DyFor GP 0.0042 0.1001 2.66e-4 0.0527 0.0010 0.1710 0.0018 0.1079

The algorithms under study are classified according to training and generalization per-

formance. Table 7.73 presents the obtained ranks on EMST and EMSG for Scenario C.

GPANDA is ranked the overall winner for generalization whereas DyFor GP is ranked

the overall winner on training. DynGP and GPANDA are categorized as having the

least effective performance on training whereas DyFor GP for generalization.

Table 7.73: Algorithm Ranking for GDP Environment Scenario C

Algorithm C1 C2 C3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 2 2 2 3 3 2 2.3 2.3

GPANDA 3 1 3 1 1 1 2.3 1

DyFor GP 1 3 1 2 2 3 1.3 2.7

Discussion

The predictive performance of GPANDA outperforms both DynGP and DyFor GP for
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generalization in all cases in Scenario C. The outstanding generalization performance of

GPANDA suggests the effectiveness of the piecewise regression approach that induced

predictive models with higher generalization performance.

Scenario D - Progressive Variation

Scenario D simulates environments of low temporal severity with 250 iterations. Thus,

all algorithms are given enough iterations to induce an optimal predictive model even in

abruptly changing environments before an environment change. Consequently, failure

to adapt or induce an optimal solution may not be attributed to the temporal severity

property of the problem set under consideration but of the algorithm.

Figure 7.49 is a graphical illustration as observed in Scenario D for the progression of

EMST and EMSG over time.

As illustrated in Figure 7.49, algorithms under study show similar traits to Scenario

C: DynGP outperforms DyFor GP for generalization in all cases in Scenario D. Also,

GPANDA outperforms all algorithms in all cases in Scenario D for both training and

generalization, though, for some instances along with the iteration’s progression, all

algorithms yield the same performance in Scenario D1 and D2.

Table 7.74 presents the obtained results for the GDP dataset for Scenario D. To ascertain

the significance of the results obtained for Scenario D, statistical analysis was performed

and p-values, only for scenarios that included a value of p > 0.05, are presented in

Appendix 1. The following can be observed for the results presented in Table 7.74:

� GPANDA outperforms all algorithms.

� DyFor GP outperforms DynGP.

� The result that DynGP performs better than DyFor GP was found to be statisti-

cally significant at the 5% level of significance.

item The result that GPANDA performs better than DynGP was found to be

statistically significant at the 5% level of significance.
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Figure 7.49: Training and Generalization EMS for GDP, Scenario D1 - D3

The algorithms under study are classified according to training and generalization per-
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Table 7.74: Results of Predictive Performance for GDP Scenario D

Algorithm D1 D2 D3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 0.0050 0.0780 0.0051 0.0823 0.0066 0.0892 0.0055 0.0831

GPANDA 2.57e-4 0.0187 0.0007 0.0348 9.09e-5 0.0011 0.0003 0.0182

DyFor GP 0.0014 0.1067 0.0011 0.1378 0.0025 0.1171 0.0016 0.1205

formance. Table 7.75 presents the obtained ranks on EMST and EMSG for Scenario

D. GPANDA is ranked as the overall winner for both EMST and EMSG. DynGP is

categorized as having the least effective performance on training whereas DyFor GP for

generalization.

Table 7.75: Algorithm Ranking for GDP Environment Scenario D

Algorithm D1 D2 D3 Average

EMST EMSG EMST EMSG EMST EMSG EMST EMSG

DynGP 3 2 3 2 3 2 3 2

GPANDA 1 1 1 1 1 1 1 1

DyFor GP 2 3 2 3 2 3 2 3

Discussion

The predictive performance of GPANDA outperforms both DynGP and DyFor GP

for generalization in all cases in Scenario D. As already mentioned, the outstanding

performance of GPANDA suggests the capability of the algorithm to induce predictive

models with improved generalization performance.

The algorithms under study are classified according to generalization performance for all

cases in Scenario A-D. Table 7.76 presents the average EMSG and average computational

time (t̄) in minutes for Scenario A-D. As observed in the Electricity dataset, DynGP

obtains the least average computational time in all scenarios under consideration in the

GDP dataset, whereas GPANDA obtains the highest average computational time in all

scenarios. Conversely, GPANDA yields the best performance whereas DynGP has the

least effective performance.

194

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Table 7.76: Averages for t̄ (in mins) and EMSG for GDP Dataset - Scenario A-D

A B C D Average

Algorithm EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄ EMSG t̄

DynGP 0.0572 0.013 0.0572 0.043 0.0696 0.114 0.0831 0.256 0.0667 0.1065

GPANDA 0.0142 0.567 0.0142 4.809 0.0171 8.317 0.0182 23.74 0.0159 9.3582

DyFor GP 0.0736 0.132 0.0736 1.03 0.1079 1.98 0.1205 5.233 0.0939 2.0937

Table 7.77 presents the average obtained ranks on EMSG for Scenario A - D. GPANDA

is ranked as the overall winner whereas DyFor GP is categorized as having the least

effective performance.

Table 7.77: Overall Algorithm Ranking for GDP Dataset

Algorithm A B C D Average

DynGP 2 2 2.3 2 2.1

GPANDA 1 1 1 1 1

DyFor GP 3 3 2.7 3 2.9

7.3.8 Overall Discussion

Table 7.78 presents the average results for spatial severities for each problem set on

EMSG and computation time (avgt̄) in mins, for each algorithm. The following can

be observed for the results presented in Table 7.78. As spatial severity increases: the

performance of GPANDA, for generalization, generally improved.

The performance of DynGP is reduced for generalization as spatial severity increases.

As observed for GPANDA, DyFor GP performance is consistent for generalization, the

performance generally improved as spatial severity increases. GPANDA obtains the

least values of EMSG in all scenarios under consideration whereas DynGP and DyFor

GP obtains competitive performance on EMSG for the following datasets: Progressive,

Abrupt, and Electricity.

DyFor GP outperforms DynGP on Random and Trend datasets whereas DynGP out-

performs DyFor GP on GDP dataset. DynGP obtains the least average computational
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Table 7.78: Average Spatial Severities for each Dataset

DynGP GPANDA DyFor

Features 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Prog EMSG 8.528 8.401 6.444 4.724 5.254 0.231 0.0154 1.036 8.1e-4 0.0095 4.468 3.883 4.257 2.496 2.455

avgt̄ 0.015 0.015 0.017 0.017 0.011 14.15 8.732 2.947 1.036 0.493 2.95 1.48 0.37 0.20 0.11

Abrp EMSG 0.801 0.934 0.787 0.748 0.607 0.1689 0.242 0.155 0.164 0.035 0.759 0.757 0.747 0.717 0.605

avgt̄ 0.019 0.016 0.013 0.014 0.013 14.83 8.287 1.841 1.092 0.542 2.932 1.517 0.383 0.202 0.103

Recur EMSG 8.732 8.517 6.866 5.044 5.155 0.003 0.002 0.002 0.006 0.006 8.448 4.809 5.257 3.460 3.460

avgt̄ 0.117 0.113 0.116 0.128 0.105 49.81 25.41 8.499 3.663 1.872 28.67 14.12 4.722 2.035 1.04

Elect EMSG 0.017 0.019 0.019 0.022 0.027 1.7e-4 1.8e-4 2.0e-4 1.9e-4 1.7e-4 0.017 0.019 0.021 0.023 0.029

avgt̄ 0.190 0.11 0.106 0.096 0.108 96.32 48.16 16.73 8.27 3.24 60.2 30.1 10.02 4.657 2.122

Tred EMSG 0.088 0.075 0.083 0.0742 4.87e-8 4.87e-6 1.14e-7 8.52e-8 0.006 0.007 0.007 0.008

avgt̄ 0.091 0.083 0.089 0.115 9.57 4.89 2.95 1.42 4.265 2.91 1.457 0.7125

Rand EMSG 2.551 2.510 2.403 0.178 0.225 0.353 2.472 2.419 2.419

avgt̄ 0.143 0.145 0.134 79.68 43.18 8.835 24.77 12.87 2.447

GDP EMSG 0.063 0.068 0.077 0.035 0.004 0.012 0.100 0.052 0.171

avgt̄ 0.099 0.131 0.090 15.859 8.361 2.795 3.687 1.945 0.65

time in all scenarios under consideration whereas GPANDA obtains the highest average

computational time in all scenarios.

The computational time of GPANDA is reduced for the following datasets: Recurrent,

Trend, and Electricity. The reduction in computational time can be attributed to the

recurrent or cyclical variations happening in these datasets which proves to be a desirable

and valuable quality that promoted the retrieval of previously acquired knowledge.

Table 7.79 presents the average results for temporal severities for each dataset for gener-

alization for each algorithm. The following can be observed for the results presented in

Table 7.79. As temporal severity increases: the performance of all algorithms improved.

GPANDA exhibits the greatest improvement outperforming all algorithms. DyFor GP

exhibits superior performance to DynGP. For GDP dataset, all algorithms exhibit a

competitive performance for generalization. DynGP obtains the least average computa-

tional time in all scenarios under consideration whereas GPANDA obtains the highest

average computational time in all scenarios.

Table 7.80 presents the overall averages for each dataset for generalization for each

algorithm. As reported in Table 7.80, GPANDA obtains the least values for EMSG for all

datasets under consideration whereas DynGP outperforms DyFor GP for generalization

on the following datasets: Progressive, Electricity and GDP.
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Table 7.79: Average Temporal Severities for each Dataset

DynGP GPANDA DyFor

Features 1 2 3 4 1 2 3 4 1 2 3 4

Prog EMSG 5.0868 4.2926 6.2716 6.2758 0.0037 0.0977 0.2588 0.0005 4.0670 3.5214 3.5122 3.4855

avgt̄ 0.007 0.006 0.012 0.033 0.726 2.845 4.963 12.14 0.149 0.531 0.992 2.428

Abrp EMSG 0.7780 0.7432 0.7758 0.7643 0.1571 0.1888 0.1536 0.1654 0.7128 0.7152 0.7174 0.7319

avgt̄ 0.002 0.007 0.014 0.037 0.701 2.361 4.977 12.26 0.147 0.518 0.994 2.452

Recur EMSG 5.6899 6.1076 6.4854 6.7637 0.0084 0.0081 0.0043 0.0123 3.9913 4.8910 4.7343 5.0812

avgt̄ 0.021 0.059 0.127 0.312 3.467 11.23 20.81 71.29 1.082 3.51 6.818 22.28

Elect EMSG 0.0224 0.0227 0.0225 0.0237 0.0002 0.0002 0.0001 0.0002 0.0498 0.0229 0.0222 0.0226

avgt̄ 0.018 0.043 0.122 0.306 5.004 18.08 29.85 85.21 3.128 10.63 18.66 53.26

Tred EMSG 0.0762 0.0771 0.0845 0.0800 4.57e-29 8.35e-6 9.69e-6 8.41e-8 0.0071 0.0071 0.0071 0.0270

avgt̄ 0.013 0.046 0.084 0.235 1.077 2.751 5.531 11.29 0.405 1.365 2.281 5.375

Rand EMSG 2.4554 2.4797 2.4886 2.4317 0.2610 0.2663 0.2592 0.0552 2.4180 2.3927 2.4074 2.4224

avgt̄ 0.021 0.059 0.127 0.312 3.467 11.23 20.81 71.29 1.082 3.51 6.818 22.28

GDP EMSG 0.0572 0.0572 0.0696 0.0831 0.0142 0.0142 0.0171 0.0182 0.0736 0.0736 0.1079 0.1205

avgt̄ 0.013 0.043 0.114 0.256 0.567 4.809 8.317 23.74 0.132 1.03 1.98 5.233

Table 7.80: Averages and Standard Deviation for each Dataset

Features DynGP GPANDA DyFor

Prog EMSG 5.4817±0.8403 0.0901±0.1048 3.6465±0.2431

avgt̄ 0.0145 5.1869 1.025

Abrp EMSG 0.7653±0.0137 0.1662±0.0137 0.7193±0.0074

avgt̄ 0.0155 5.4397 1.0278

Recur EMSG 6.2616±0.4039 0.0082±0.0028 4.6744±0.4131

avgt̄ 0.1164 18.8956 9.9195

Elect EMSG 0.0228±0.0005 0.0001±4.33e-05 0.0293±0.0117

avgt̄ 0.1223 34.2736 21.421

Tred EMSG 0.0794±0.0032 4.27e-6±4.51e-06 0.0120±0.0086

avgt̄ 0.0948 5.1622 2.336

Rand EMSG 2.4638±0.0221 0.2104±0.0896 2.4101±0.0114

avgt̄ 0.1299 26.1932 8.4225

GDP EMSG 0.0667±0.0106 0.0159±0.0017 0.0939±0.0207

avgt̄ 0.1065 9.3582 2.094
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The reported results suggest the capability of GPANDA to adapt a predictive model in

a changing environment with concept drift occurring to yield outstanding performance

though the process is computationally expensive. DyFor GP outperforms DynGP for

generalization on the following datasets: Abrupt, Random and Trend. The performance

of GPANDA is reduced for GDP dataset. The reduced performance of GPANDA can

be attributed to the reduced size of the analysis window which suggests that GPANDA

requires a sufficiently large size of data points to induce optimal models.

Figures 8.50 is a graphical illustration as observed under spatial severities for all datasets

for generalization. For Progressive dataset, GPANDA detects a change in the environ-

ment and adapts the model as spatial severity increases, evident with reduced EMSG.

As a result, GPANDA outperforms both DynGP and DyFor GP. Also, the performance

of both DynGP and DyFor GP greatly improved as spatial severity increases yielding

the same results for higher values of spatial severity.

The abrupt changes happening in the scenario, wshift = 5 made this scenario much

easier to adapt because the sliding window discards all data points from the past data

generating processes. Hence, all algorithms yield outstanding performance.

For Abrupt dataset, GPANDA outperforms both DynGP and DyFor GP. However,

GPANDA exhibits performance deterioration for wshift = 2 and wshift = 4. Generally,

the performance of DyFor GP is consistent as spatial severity increases. The perfor-

mance of DynGP and DyFor GP is consistent for all cases of spatial severity illustrated

in Figure 7.50 for the Random dataset. DynGP exhibits the worst performance whereas

GPANDA exhibits a superior performance. There is a slight performance deterioration

on wshift = 4 for GPANDA.

DynGP exhibits significant worst performance for all cases on Trend dataset whereas

DyFor GP and GPANDA exhibit consistent performance as spatial severity increases.

For both GDP and Electricity demand datasets, the performance of DynGP and DyFor

GP deteriorate as spatial severity increases. However, the performance of GPANDA

improved as spatial severity increases on GDP dataset and exhibits superior performance
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which is maintained as spatial severity increases.

 

 

 
 

 Figure 7.50: Averages for RMSE for Generalization per Spatial Severity

Figures 8.51 is a graphical illustration as observed under temporal severities for all
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datasets for generalization. For Progressive dataset, as temporal severity increases, the

performance of GPANDA is consistent which suggest the capability of GPANDA to

detect a change in the environment and adapts the model even for lower frequencies.

As a result, GPANDA outperforms both DynGP and DyFor GP.

The performance of both DynGP and DyFor GP increase as temporal severity increases

since there are sufficient iterations for each algorithm to converge toward the optimal

solution.

For both Abrupt and Random dataset, the performance of DynGP and DyFor GP

improved as temporal severity increases. GPANDA exhibits superior performance out-

performing all other algorithms as temporal severity increases whereas DyFor GP out-

performs DynGP.

As observed under spatial severity, DynGP exhibits significant worst performance for all

cases on Trend dataset whereas DyFor GP and GPANDA exhibit consistent performance

as temporal severity increases. The performance of GPANDA greatly deteriorates for

GDP dataset whereas DynGP increases.

For Electricity dataset, the performance of DyFor GP deteriorates as temporal severity

increases whereas DynGP increases outperforming DyFor GP for all cases. The perfor-

mance of GPANDA slightly improved as temporal severity increases to exhibit superior

performance which is maintained as temporal severity increases.

7.3.9 Comparing GPANDA to State-of-the-Art Techniques

To evaluate the effectiveness of the proposed approach to the existing techniques in the

literature, comparative experiments are conducted with the state-of-the-art techniques

on the given datasets. Each comparative experiment is discussed in the subsequent

sections.

Two stock market datasets, Gross Domestic Product (US), GDP and Consumer Price

Index inflation rate (US), CPI are selected to benchmark the performance of GPANDA
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to the leading studies [181][182][73]. The experiments for GPANDA are implemented

as described in [73].

  

  

 
 Figure 7.51: Averages for RMSE for Generalization per Temporal Severity
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Table 7.81 presents the results for GPANDA and the state-of-the-art techniques: autore-

gressive (AR), real-time forecasting system (RTFS), and DyFor GP on the real-world

dataset GDP reported in [197]. In this experiment, the GDP dataset is applied to

GPANDA to perform one-step-ahead, quarterly GDP forecast using the same simula-

tions used in [197].

As observed in the result presented in Table 7.81, GPANDA outperforms all other

techniques.

Table 7.81: RMSE on GDP Dataset for the State-of-art Techniques

Forecasting Model RMSE

AR 2.46

RTFS 1.85

DyFor GP 1.57

GPANDA 0.88

Table 7.82 presents the results for GPANDA on CPI inflation to the state-of-the-art

techniques: conventional Phillips Curve (CPC) and DyFor GP on the real-world dataset

CPI inflation reported in [197]. In this experiment, the CPI inflation dataset is applied

to GPANDA to perform 12-month horizon forecasts using the same simulations used in

[197].

Table 7.82: RMSE on CPI Inflation Dataset for the State-of-art Techniques

Forecasting Model RMSE

CPC 2.30

GPANDA 2.05

DyFor GP 2.40

As observed in the results presented in Table 7.82, GPANDA outperforms all other

techniques, though with a small margin compared to results presented in Table 7.81.

The predictive performance of GPANDA improves upon that of the state-of-the-art

techniques reported in Table 7.81 and Table 7.82. The outstanding performance of

202

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



GPANDA suggests the capability of the approach to capture non-linearities present in

the time series datasets: CPI inflation and GDP that are not captured by the competing

state-of-the-art techniques.

In [179], the Australian Energy Market Operator electric load datasets were applied

to the following approaches: General Linear Model-based Load Forecaster-Benchmark

(GLMLF-B), random vector functional link network (RVFL), Persistence technique and

ensemble incremental learning RVFL (DWT-EMD-RVFL) for the New South Wales

(NSW) for the months: January, April, July and October of the year 2015 to assess the

effectiveness of the approaches when seasonality was taken into consideration. In this

work, the same simulations are applied to GPANDA to evaluate the effect of different

seasons.

The SVR, SVRARIMA and ARIMASVR algorithms were applied to the California

electricity market to perform next-week prices (short-term electricity prices) forecasting

in the California electricity market [180]. The forecasting model was induced using the

information available for each of the considered weeks including the 7 days' hourly

historical price previous to the day of the week whose prices are to be predicted. In

this work, the same datasets are applied to the GPANDA to perform next-week prices

forecasting using the same simulations used in [180].

Table 7.83 and Table 7.84 presents the obtained results for the state-of-the-art techniques

and GPANDA for NSW load dataset for the year 2015 and the California electricity mar-

ket dataset. GPANDA exhibits outstanding performance outperforming all techniques

under consideration except for DWT-EMD-RVFL that yields the same performance.

7.4 Summary

This chapter presented the results and provided a discussion for the experiments con-

ducted. Two experiments were carried out: DynPSO, and GPANDA. The first ex-

periment revealed that the proposed DynPSO induced nonlinear predictive model of
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Table 7.83: Forecasting results of Electricity Data for the State-of-art Techniques

Dataset Metric RVFL DWT-EMD-RVFL GPANDA

Jan MAPE (%) 3.87 1.86 1.72

RMSE 428.908 193.80 189.07

April MAPE (%) 3.94 2.03 2.02

RMSE 425.23 212.70 197.43

Jul MAPE (%) 5.09 2.96 2.98

RMSE 493.06 296.74 299.57

Oct MAPE (%) 8.86 5.93 5.91

RMSE 1004.39 659.41 596.48

Table 7.84: Forecasting results of Electricity Data for the State-of-art Techniques

Dataset Metric SVR SVRARIMA GPANDA

1st Week MAPE (%) 758.69 348.81 258.72

RMSE 1.44 0.75 0.57

2nd Week MAPE (%) 969.37 514.29 460.46

RMSE 2.05 1.07 0.87

improved prediction performance on nonstationary regression problems.

In the second experiment, a thorough scalability investigation was carried out on the

proposed GPANDA to the change in severities defined in different datasets. It was

evident from the presented results that GPANDA successfully evolved predictive mod-

els with superior performance on nonstationary regression problems with concept drift

occurring.

The next chapter concludes this work.
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Chapter 8

Conclusion and Future Work

This chapter provides a conclusion to the work done in this thesis and discusses the

directions for related future research. Section 8.1 presents an overview of this thesis and

Section 8.2 discusses how the objectives have been met. Section 8.3 summarizes the

findings obtained from the experimental study. Section 8.4 discusses some directions for

related future research.

8.1 Summary of the Thesis

Nonstationary data is usually made up of generating processes which change over time.

Therefore, if the knowledge of the existence of different segments is not taken into con-

sideration, then, the induced predictive model is distorted by the past existing patterns.

Thus, the challenge posed to a regressor is to select an appropriate segment that depicts

the current underlying data generating process to be used in a model’s construction.

A decision tree is a predictive modeling approach used in machine learning which has

been applied to regression problems [8][9][10]. A model tree can build a decision tree

hierarchy in trying to fit several smaller data segments of the dataset to yield an im-

proved model that best fits the entire training dataset. Therefore, a model tree provides

a piecewise linear regression model. Thus, a model tree splits the parameter space into

subspaces and then fit a linear regression model for each subspace. As such, a model

tree became the basis of this study.

The proposed GPANDA provides a piecewise nonlinear regression model for nonsta-

tionary data. GPANDA consists of three components: dynamic DE-based clustering
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algorithm to split the parameter space into subspaces that resemble different data gen-

erating processes present in the dataset; the dynamic PSO-based model induction ap-

proach to induce nonlinear models that describe each generated cluster; and a dynamic

GP which evolves model trees that define the boundaries of nonlinear models expressed

as terminal nodes.

The dynamic DE-based clustering algorithm, KCDCDynDE, automatically determines

the number of clusters, K, in a dataset, therefore, becomes suitable to automatically de-

termines the optimal number of clusters in nonstationary data whenever a change in an

environment is evident [135]. Consequently, hybridizing a QR decomposition technique,

to determine the coefficients of the model, and a dynamic PSO, to induce an optimal

model that can adapt whenever a change in the environment occurs, to come up with

DynPSO, decreases the performance deterioration in nonlinear regression designed for

nonstationary environments that usually results from the environmental changes. Fur-

thermore, a GP directly induce model trees and preserves genetic information expressed

as subtree that models existing knowledge.

As such, if an environmental change is detected in a nonstationary dataset, KCDC-

DynDE dynamically clusters the data. For the clusters that change, the DynPSO adapts

nonlinear models or induce new models to create an updated GP terminal set and the

GP evolves a piecewise predictive model that model nonstationary data with concept

drift occurring.

To evaluate the effectiveness of GPANDA, two experimental evaluations were conducted.

Also, to ascertain the significance of the results obtained by GPANDA and the best

performing dynamic GPs, statistical analysis was used.

In Section 7.2, the performance of DynPSO was experimentally evaluated and the ob-

tained results revealed that DynPSO outperforms the dynamic PSOs under study and

the state-of-the-art techniques.

In Section 7.3, a thorough scalability investigation was carried out on the proposed

GPANDA with respect to the change in severities defined in different datasets. Experi-
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ments were carried out to find out if and how the change in severity affects the perfor-

mance of GPANDA. Two stock market datasets, GDP and CPI were selected to bench-

mark the performance of the proposed approach to the leading studies [198][199][197]. It

is evident from the presented results that GPANDA outperforms the selected dynamic

GPs and was competitive to the state-of-art techniques.

8.2 Objectives

The main goal of this work was to develop a predictive approach for nonstationary

data with a numerical target that dynamically adapts when concept drift occurs which

can also be used to extract knowledge from historical data. The objectives outlined in

Section 1.2 are listed below and the discussion on how they are met is provided.

(a) To improve the performance of dynamic PSO (DynPSO) by hybridizing it with a

regression technique (either least-squares approximation or autoregressive) to induce

optimal nonlinear regression models in nonstationary environments;

To achieve this objective, a dynamic PSO-based nonlinear regression (DynPSO) al-

gorithm that induced optimal nonlinear regression models in dynamic environments

was developed. The DynPSO hybridized a dynamic PSO with a regression model

(either QR decomposition or NARX). The regression model determines the coef-

ficients of the model and a dynamic PSO optimizes the induced model which can

adapt whenever a change in the environment occurs. Experiments were carried out

using given datasets and the obtained results suggest that this hybridization de-

creases the performance deterioration that usually results from the environmental

changes and consequently, improves the algorithm’s performance.

(b) To improve the performance of GP by hybridizing it with a dynamic clustering al-

gorithm and nonlinear model induction approach (GPANDA) to perform regression

on nonstationary data with concept drift occurring;
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To achieve this objective, a GPANDA algorithm to perform regression on nonsta-

tionary data with concept drift occurring was developed. GPANDA implemented a

piecewise approach to predict a target, nonlinear model and consists of three com-

ponents: dynamic DE-based clustering algorithm to extract clusters that resemble

different data generating processes present in the dataset; DynPSO to fit a nonlin-

ear regression model on each generated cluster; and GP to evolve model trees that

define the boundaries of nonlinear models which were expressed as terminal nodes.

When an environmental change occurs, GPANDA reacts to the change by clustering

the data and fitting a nonlinear regression model on each cluster. Nonlinear models

become terminal nodes of GP-based model trees. Then, GP evolves predictive model

trees that model nonstationary data with concept drift occurring.

Experiments were carried out using nonstationary datasets and the obtained results

show that GPANDA yields high adaptation rates and accuracy to several types of

concept drift.

(c) To compare the performance of DynPSO to optimize the induced model in a nonsta-

tionary environment, to dynamic PSO algorithms, namely multi-swarm, reinitial-

ized, and charged PSOs;

To achieve this objective, the DynPSO was evaluated experimentally and compared

with the dynamic PSOs, namely multi-swarm, reinitialized, and charged PSOs, to

optimize the induced model and the regression parameters in the dynamic environ-

ment. To ascertain the significance of the results obtained by DynPSO and the

dynamic PSOs, statistical analysis was used. The predictive accuracy of the regres-

sion model induced by DynPSO was compared to the predictive accuracy of the

regression model induced by the multi-swarm, reinitialized and charged PSOs. The

obtained results show that the DynPSO was adaptive to the changing environment,

consequently, outperforms the dynamic PSOs for the given datasets. The NARX-

based DynPSO outperforms QR decomposition-based DynPSO on nonstationary

time series forecasting.
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A comparative analysis of DynPSO with the state-of-the-art techniques was per-

formed on the obtained results of DynPSO for Electricity dataset. The DynPSO

yields competitive performance to the state-of-the-art techniques.

(d) To compare the performance of GPANDA in terms of predictive accuracy and com-

putational time to the best performing dynamic GP algorithms and the state-of-

the-art techniques on nonstationary datasets that exhibit different characteristics of

concept drift such as progressive, recurrent, abrupt and random changes on varying

temporal and spatial severities.

To achieve this objective, the proposed GPANDA was evaluated experimentally and

compared with the dynamic GPs, namely DyFor GP and adaptive GP (DynGP),

to evolve nonlinear predictive models in the dynamic environment with concept

drift occurring. The predictive accuracy and computational time of GPANDA were

compared to the predictive accuracy and computational time of DyFor GP and

DynGP. To ascertain the significance of the results obtained by GPANDA and the

best performing dynamic GPs, statistical analysis was used.

GPANDA obtained the best predictive accuracy for all datasets under consideration.

The reported results suggested the capability of GPANDA to adapt a predictive

model in a changing environment with concept drift occurring to yield improved

performance. The performance of DynGP was the same to that of GPANDA for

GDP dataset. The reduced performance of GPANDA for GDP dataset can be

attributed to the reduced size of the analysis window which suggests that GPANDA

requires a sufficiently large size of data points to induce optimal models.

DynGP obtained the least average computational time in all scenarios under con-

sideration whereas GPANDA obtained the highest average computational time in

all scenarios. The average computational time of GPANDA was reduced for the

following datasets: Recurrent, Trend, and Electricity. The reduction in computa-

tional time can be attributed to the recurrent or cyclical variations happening in

these datasets which proves to be a desirable and valuable quality that promoted
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the retrieval of previously acquired knowledge.

A comparative analysis of GPANDA with the state-of-the-art techniques: autore-

gressive, real-time forecasting system, conventional Phillips Curve and DyFor GP,

was performed on the obtained results of GPANDA for GDP and CPI inflation rate

datasets. GPANDA yields competitive performance to the state-of-the-art tech-

niques.

8.3 Conclusion

This research has established the feasibility of GPANDA to evolve predictive models

of improved performance on a nonstationary environment with concept drift occurring.

The obtained results suggest the capability of DynPSO to track and adapt the induced

model as the environment changes. The hybridization of the dynamic PSOs with a

regression model indeed decreased the performance deterioration of the induced model

that resulted from the environmental changes.

GPANDA exhibited outstanding performance in terms of predictive accuracy for all

dataset on different temporal and spatial severities. The superior performance of GPANDA

was attributed to the algorithm’s ability to detect an environmental change, track chang-

ing decision boundaries, and adapt a predictive model using the prevailing patterns even

in increased temporal and spatial severities. However, GPANDA suffers from computa-

tional load due to the embedded clustering and the nonlinear model induction approach.

Consequently, DynGP has the least precision with the best computational cost whereas

DyFor GP provides a balance between precision and computational cost.

The finding of this work highlights the potential of GPANDA as an adaptive technique

for real-world prediction application and suggests further investigation. The proposed

GPANDA is considered as an attractive prediction alternative because:

� In GPANDA, there is no need for extensive data pre-processing, only data differ-

encing is done for time series data, therefore, the technique can easily be applied
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to other problems besides those evaluated in this thesis.

� GPANDA induces a prediction model automatically, regardless of complexity, fit-

ting a nonlinear model without necessarily specifying the model structure.

� GPANDA is a self-adaptive technique that tracks and automatically adapts the

prevailing prediction model whenever an environmental change is detected to

achieve an outstanding prediction accuracy.

� GPANDA treats the most recent historical occurrences as equally significant con-

tributors to the final concept. As such, GPANDA adapts/evolves predictive mod-

els as underlying changes to data happens due to generating processes which

change over time.

� Knowledge of the past may prove useful in quickly capturing the current envi-

ronment or can improve the accuracy of a search. GPANDA takes advantage of

existing nonlinear models that resembles knowledge acquired in the past which

are exploited when a change in an environment occurs to model the current envi-

ronment.

� The unfavorable computational cost of GPANDA can be greatly improved by

increasing computational power since nowadays they is access to a computing

environment with greater power and speed.

In general, GPANDA is a viable option for real-world prediction application and prove

to stimulate new advances in the area of prediction.

8.4 Future Research

Future work could consider a scalability study of GPANDA. GPANDA splits the pa-

rameter space into subspaces that resemble different data generating process in which

a model is fitted to each subspace. It is ideal to consider some methods to combine
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the generated multiple induced models. As expected, a more sophisticated prediction

combination will result in performance improvements.

GPANDA consists of three components: dynamic DE-based clustering; dynamic PSO-

based model induction approach and a GP to induce model trees. An analysis of the

impact that each component has on the performance of GPANDA and the subsequent

adaptation necessary to improve the overall performance of this technique can be con-

sidered. Future work could consider adapting each component as follows:

(a) The QR decomposition in dynamic PSO-based model induction approach can be

replaced with NARX since QR decomposition proved to be computationally expen-

sive compared to NARX. Also, to consider combining NARX-QPSO with empirical

mode decomposition (EMD) to create an ensemble model that can capture the

inherent nonlinearity in temporal data.

(b) In dynamic DE-based clustering, a centroid population whose context individual is

assigned no data can be removed to eases the unnecessary computational effort.

(c) The individual’s mutation, crossover and fitness evaluation is recursively performed

in each GP generation and tends to severely affect the computational performance

of the algorithm. As such, to improve the computational performance of a GP, a

model tree can be expressed as an array which will then use indexing.

For many applications, especially those used in a dynamic environment, optimal param-

eter settings may vary throughout a run. More often than not, exploration is preferential

at the beginning of the search process to ensure population coverage and diversity, while

exploitation is best at the end of the search to ensure the convergence of the popula-

tion to the global optimization. Future research will investigate the effects of adaptive

parameters control during a GPANDA run.

The quality of the predictive model depends heavily on the fitness measure. However, it

may not be clear how to select a fitness measure for a particular problem. It may be that
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a single measure performs well under a certain condition, but badly in others. Future

work will use a multi-objective fitness function in GPANDA, which can be attributed

to further improve the performance of the generated model.
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[6] I. Ẑliobaitė, M. Pechenizkiy and, J. Gama,” An overview of concept drift applica-
tions,”In Big data analysis: new algorithms for a new society. Springer, Cham, pp.
91-114, 2016.
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[162] M. Kl’ùĉik, J. Juriova, and M. Kl’ùĉik, “Time Series Modeling with Genetic Pro-
gramming Relative to ARIMA Models,” In Conferences on New Techniques and
Technologies for Statistics, pp. 17-27, 2009.

[163] A. Hui, “Using genetic programming to perform time-series forecasting of stock
prices,” Genetic Algorithms and Genetic Programming at Stanford, pp. 83-90, 2003.

[164] M. Kaboudan, “Forecasting with computer-evolved model specifications: a genetic
programming application,” Computer and Operations Research, vol. 30, pp. 1661-81,
2003.

[165] N. Wagner, and Z. Michalewicz, “Genetic programming with efficient population
control for financial times series prediction,” Genetic and Evolutionary Computation
Conference Late Breaking Papers, San Francisco, CA., vol. 1, pp. 458-62, 2001.

[166] S. Demeyer, “Research Methods in Computer Science,” In ICSM, pp. 600, 2011.

[167] G. Dodig-Crnkovic, “Scientific methods in computer science,” In Proceedings of
the Conference for the Promotion of Research in IT at New Universities and at
University Colleges in Sweden, Skovde, Suecia, pp. 126-130, 2002.

[168] B.J. Oates, “Researching information systems and computing,” Sage, 2005.

[169] C. Johnson, “What is Research in Computing Science,” 2006a. [Online: 6 August
2020]. Available:
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html.

[170] C. Johnson, “What is research in computing science,” Computer Science Dept,
Glasgow University, 2006b. [Online: Accessed 6 August 2020]. Available:
http://www.dcs.gla.ac.uk/~johnson/teaching/research_skills/research.html.

[171] T. Nyathi, Automated Design of Genetic Programming Classification Algorithms,
PhD Thesis: University of Kwazulu-Natal, 2018.

[172] G. Susman, and R. Evered, “An assessment of the scientific merits of action re-
search,” Administrative science quarterly, pp. 582-603, 1978.

[173] R. Baskerville, and T. Wood-Harper, “A critical perspective on action research
as a method for information systems research,” Journal of Information Technology,
vol. 11, no. 3, pp. 235-246, 1996.
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Appendix 1. P-values

Table 8.1: P-values for DynPSO Experiments on Frequencies

R2
a1

R2
a2

R2
a3

R2
a4

R2
a5

EMS1 EMS2 EMS3 EMS4 EMS5

QR-QPSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0218 0.0857 0.0396 0.0284 0.0492

vs QPSO EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0131 0.0169 0.0411 0.0052 0.0394

QR-QPSO
EMST 0.0045 0.0492 0.0341 0.0056 0.0013 0.0449 0.0490 0.0093 0.0124 0.0311

vs QR-rPSO EMSG 0.0467 0.0112 0.0098 0.0007 0.0167 0.0001 0.0292 0.0058 0.0008 0.0139

QR-QPSO
EMST 0.0496 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0227 0.0437

vs rePSO EMSG 0.0001 0.0001 0.0474 0.0069 0.0009 0.0001 0.0015 0.0001 0.0011 0.0001

QR-QPSO
EMST 0.0404 0.0357 0.0001 0.0372 0.0265 0.0001 0.0001 0.0001 0.0009 0.0001

vs mPSO EMSG 0.0050 0.0001 0.0362 0.0038 0.0067 0.0001 0.0453 0.0084 0.0001 0.0380

QR-QPSO
EMST 0.0273 0.0173 0.0284 0.0418 0.0161 0.0952 0.0481 0.0098 0.8107 0.0311

vs QR-mPSO EMSG 0.0383 0.0398 0.0024 0.0105 0.0009 0.0001 0.0073 0.0308 0.0273 0.0414

QPSO vs
EMST 0.0001 0.0001 0.0394 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QR-rPSO EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QPSO vs
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

rePSO EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QPSO vs
EMST 0.0001 0.0374 0.0168 0.0001 0.0001 0.0012 0.0001 0.0818 0.0023 0.0011

QR-mPSO EMSG 0.0001 0.0260 0.0023 0.0006 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001

QPSO vs
EMST 0.0076 0.0374 0.0315 0.0005 0.0001 0.0045 0.0317 0.0066 0.0227 0.0038

mPSO EMSG 0.0001 0.0083 0.0061 0.0001 0.0001 0.0001 0.0358 0.0001 0.0062 0.0004

QR-rePSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

vs rePSO EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QR-rePSO vs
EMST 0.0101 0.0260 0.0438 0.0380 0.0001 0.0231 0.0208 0.0001 0.0004 0.0004

QR-mPSO EMSG 0.0001 0.0091 0.0071 0.0149 0.0001 0.0163 0.0058 0.0001 0.0519 0.0058

rePSO vs
EMST 0.0001 0.0001 0.0104 0.0001 0.0001 0.0047 0.0023 0.0001 0.0001 0.0001

QR-mPSO EMSG 0.0210 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.0001 0.0041

rePSO vs
EMST 0.0363 0.0304 0.0069 0.0326 0.0089 0.0036 0.0074 0.0785 0.0359 0.0001

mPSO EMSG 0.0112 0.0366 0.0147 0.0001 0.0001 0.0001 0.0884 0.0471 0.0001 0.0001

QR-mPSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

vs mPSO EMSG 0.0014 0.0001 0.0051 0.0056 0.0001 0.0001 0.0018 0.0211 0.0001 0.0037

QR-rPSO
EMST 0.0337 0.0001 0.0001 0.0456 0.0001 0.0005 0.0164 0.0001 0.0001 0.0001

vs mPSO EMSG 0.0046 0.0001 0.0001 0.0168 0.0001 0.0001 0.0049 0.0001 0.0001 0.0007
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Table 8.2: P-values for DynPSO Experiments on Severity

R2
a1

R2
a2

R2
a3

R2
a4

R2
a5

EMS1 EMS2 EMS3 EMS4 EMS5

QRP-QSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0218 0.0457 0.0396 0.9284 0.0492

vs QPSO EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0131 0.0169 0.0411 0.0052 0.0394

QR-QPSO
EMST 0.0045 0.0492 0.0341 0.0056 0.0013 0.0449 0.0490 0.0093 0.0124 0.0711

vs QR-rPSO EMSG 0.0467 0.0112 0.0098 0.0007 0.0167 0.0001 0.0292 0.0058 0.0008 0.0139

QR-QPSO
EMST 0.0496 0.0004 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0227 0.0437

vs rePSO EMSG 0.0001 0.0001 0.0474 0.0069 0.0009 0.0001 0.0015 0.0001 0.0011 0.0001

QR-QPSO
EMST 0.0404 0.0357 0.0001 0.0372 0.0265 0.0001 0.0001 0.0001 0.0009 0.0001

vs mPSO EMSG 0.0050 0.0001 0.0362 0.0038 0.0067 0.0001 0.0453 0.0084 0.0001 0.0380

QR-QPSO
EMST 0.0273 0.0173 0.0284 0.0418 0.0161 0.0452 0.0481 0.0098 0.0107 0.0311

vs QR-mPSO EMSG 0.0383 0.0398 0.0024 0.0105 0.0009 0.0001 0.0073 0.0308 0.0273 0.0414

QPSO vs
EMST 0.0001 0.0001 0.0394 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QR-rPSO EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QPSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

vs rePSO EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QPSO vs
EMST 0.0001 0.0374 0.0168 0.0001 0.0001 0.0012 0.0001 0.0818 0.0023 0.0011

QR-mPSO EMSG 0.0001 0.0060 0.0023 0.0006 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001

QPSO vs
EMST 0.0076 0.0374 0.0315 0.0005 0.0001 0.0045 0.0317 0.0066 0.0227 0.0038

mPSO EMSG 0.0001 0.0083 0.0061 0.0001 0.0001 0.0001 0.0358 0.0001 0.0062 0.0004

QR-rePSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

vs rePSO EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

QR-rePSO
EMST 0.0101 0.0960 0.0380 0.0638 0.0001 0.0231 0.0208 0.0001 0.6304 0.0004

vs QR-mPSO EMSG 0.0001 0.0071 0.0791 0.2749 0.0001 0.0163 0.0058 0.0001 0.0519 0.0042

rePSO vs
EMST 0.0001 0.0001 0.0104 0.0001 0.0001 0.0047 0.0023 0.0001 0.0001 0.0001

QR-mPSO EMSG 0.0210 0.0001 0.0106 0.0063 0.0001 0.0001 0.0001 0.0004 0.0001 0.0041

rePSO vs
EMST 0.0363 0.0304 0.0069 0.0704 0.0089 0.0036 0.0074 0.0185 0.0359 0.0008

mPSO EMSG 0.0112 0.0241 0.0647 0.0001 0.5628 0.0001 0.0884 0.0001 0.0971 0.0001

QR-mPSO
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

vs mPSO EMSG 0.0014 0.0001 0.0051 0.0056 0.0001 0.0001 0.0018 0.0211 0.0001 0.0037

QR-rPSO
EMST 0.0337 0.0001 0.0001 0.0456 0.0001 0.0005 0.0164 0.0001 0.0001 0.0001

vs mPSO EMSG 0.0046 0.0001 0.0001 0.0168 0.0001 0.0001 0.0049 0.0001 0.0001 0.0007

Table 8.3: P-values for Comparative Experiments of DynPSO with Benchmarks

QR-QPSO QR-QPSO QRrePSO QRrePSO QRmPSO QRmPSO SVR
vs SVR vs RVFL vs SVR vs RVFL vs SVR vs RVFL vs RVFL

RMSE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MAPE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

229

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Table 8.4: P-values for DynPSO Hybrid Experiments

RMSE MAPE

QR vs. NARX 0.0402 0.0316

QR vs. QR-QPSO 0.0001 0.0001

QR vs. NARX-QPSO 0.0001 0.0001

QR vs. QPSO 0.0194 0.0049

NARX vs. QR-QPSO 0.0001 0.0001

QPSO vs. QR-PSO 0.0001 0.0001

NARX vs. QPSO 0.0158 0.0261

NARX vs. NARX-QPSO 0.0001 0.0001

QPSO vs. NARX-QPSO 0.0001 0.0001

QR-QPSO vs. NARX-QPSO 0.0026 0.0175

Table 8.5: P-values for Comparative Experiments of GPANDA with Benchmarks

DynGP vs. DyFor GP (Progressive) DynGP vs. DyFor GP (Abrupt)

1 2 3 4 5 1 2 3 4 5

A
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0648

B
EMST 0.0001 0.2825 0.0038 0.0024 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

EMSG 0.0001 0.0105 0.0163 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0718

C
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.1068

D
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.2413

DynGP vs. DyFor GP (Random) DynGP vs. DyFor GP (Elect)

A
EMST 0.0001 0.0001 0.0001 0.0511 0.2175 0.1217 0.2458 0.0351

EMSG 0.0853 0.0047 0.0009 0.1094 0.3445 0.0762 0.0923 0.0014

B
EMST 0.0001 0.0001 0.0001 0.6284 0.9582 0.0812 0.0681 0.0007

EMSG 0.3610 0.7731 0.0218 0.6396 0.1264 0.0515 0.0893 0.0719

C
EMST 0.0001 0.0001 0.0001 0.0250 0.0374 0.0116 0.0317 0.0428

EMSG 0.0962 0.0453 0.2193 0.4475 0.2856 0.0886 0.1432 0.3822

D
EMST 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0379 0.0411

EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.3140 0.1247

GPANDA vs. DyFor GP (GDP) DynGP vs. GPANDA (GDP)

A
EMST 0.7848 0.0589 0.1738 0.0001 0.0001 0.0001

EMSG 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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