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Abstract: The assumption of symmetry is often incorrect in real-life statistical modeling due to
asymmetric behavior in the data. This implies a departure from the well-known assumption of
normality defined for innovations in time series processes. In this paper, the autoregressive (AR)
process of order p (i.e., the AR(p) process) is of particular interest using the skew generalized
normal (SGN ) distribution for the innovations, referred to hereafter as the ARSGN(p) process,
to accommodate asymmetric behavior. This behavior presents itself by investigating some properties
of the SGN distribution, which is a fundamental element for AR modeling of real data that exhibits
non-normal behavior. Simulation studies illustrate the asymmetry and statistical properties of the
conditional maximum likelihood (ML) parameters for the ARSGN(p) model. It is concluded that the
ARSGN(p) model accounts well for time series processes exhibiting asymmetry, kurtosis, and heavy
tails. Real time series datasets are analyzed, and the results of the ARSGN(p) model are compared
to previously proposed models. The findings here state the effectiveness and viability of relaxing
the normal assumption and the value added for considering the candidacy of the SGN for AR time
series processes.

Keywords: conditional maximum likelihood estimator; skew-t; generalized normal; heavy tails;
skewness

1. Introduction

The autoregressive (AR) model is one of the simplest and most popular models in the time series
context. The AR(p) time series process yt is expressed as a linear combination of p finite lagged
observations in the process with a random innovation structure for t = {1, 2, . . .} and is given by:

yt = ϕ0 + ϕ1yt−1 + · · ·+ ϕpyt−p + at , (1)

where ϕ1, ϕ2, . . . , ϕp are known as the p AR parameters. The process mean (i.e., mean of yt) for the
AR(p) process in (1) is given by µ∗ = ϕ0(1− ϕ1 − ϕ2 − · · · − ϕp)−1. Furthermore, if all roots of the
characteristic equation:

ϕ(x) = 1− ϕ1x− ϕ2x2 − · · · − ϕpxp = 0

are greater than one in absolute value, then the process is described as stationary (which is considered
for this paper). The innovation process at in (1) represents white noise with mean zero (since the
process mean is already built into the AR(p) process) and a constant variance, which can be seen as
independent “shocks” randomly selected from a particular distribution. In general, it is assumed that at

follows the normal distribution, in which case the time series process yt will be a Gaussian process [1].
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This assumption of normality is generally made due to the fact that natural phenomena often appear
to be normally distributed (examples include age and weights), and it tends to be appealing due to its
symmetry, infinite support, and computationally efficient characteristics. However, this assumption
is often violated in real-life statistical analyses, which may lead to serious implications such as bias
in estimates or inflated variances. Examples of time series data exhibiting asymmetry include (but
are not limited to) financial indices and returns, measurement errors, sound frequency measurements,
tourist arrivals, production in the mining sector, and sulphate measurements in water.

To address the natural limitations of normal-behavior, many studies have proposed AR models
characterized by asymmetric innovation processes that were fitted to real data illustrating their
practicality, particularly in the time series environment. The traditional approach for defining
non-normal AR models is to keep the linear model (1) and let the innovation process at follow a
non-normal process instead. Some early studies include the work of Pourahmadi [2], considering
various non-normal distributions for the innovation process in an AR(1) process such as the exponential,
mixed exponential, gamma, and geometric distributions. Tarami and Pourahmadi [3] investigated
multivariate AR processes with the t distribution, allowing for the modeling of volatile time series
data. Other models abandoning the normality assumption have been proposed in the literature
(see [4] and the references within). Bondon [5] and, more recently, Sharafi and Nematollahi [6] and
Ghasami et al. [7] considered AR models defined by the epsilon-skew-normal (ESN ), skew-normal
(SN ), and generalized hyperbolic (GH) innovation processes, respectively. Finally, AR models are not
only applied in the time series environment: Tuaç et al. [8] considered AR models for the error terms
in the regression context, allowing for asymmetry in the innovation structures.

This paper considers the innovation process at to be characterized by the skew generalized normal
(SGN ) distribution (introduced in Bekker et al. [9]). The main advantages gained from the SGN
distribution include the flexibility in modeling asymmetric characteristics (skewness and kurtosis,
in particular) and the infinite real support, which is of particular importance in modeling error
structures. In addition, the SGN distribution adapts better to skewed and heavy-tailed datasets than
the normal and SN counterparts, which is of particular value in the modeling of innovations for AR
processes [7].

The focus is firstly on the SGN distribution assumption for the innovation process at. Following
the skewing methodology suggested by Azzalini [10], the SGN distribution is defined as follows [9]:

Definition 1. Random variable X is characterized by the SGN distribution with location, scale, shape, and
skewing parameters µ, α, β, and λ, respectively, if it has probability density function (PDF):

fX(x; µ, α, β, λ) =
2
α

φ (z; β)Φ
(√

2λz
)

,

where z = (x− µ)/α ∈ R, µ, λ ∈ R, and α, β > 0. This is denoted by X ∼ SGN (µ, α, β, λ).

Referring to Definition 1, Φ(·) denotes the cumulative distribution function (CDF) for the standard
normal distribution, with 2Φ(

√
2λz) operating as a skewing mechanism [10]. The symmetric base PDF

to be skewed is given by φ, denoting the PDF of the generalized normal (GN ) distribution given by:

φ(x; µ, α, β) =
β

2αΓ
(

1
β

) exp(−|z|β) , (2)

where Γ(·) denotes the gamma function [11]. The standard case for the SGN distribution with µ = 0
and α = 1 in Definition 1 is denoted as X ∼ SGN (β, λ). Furthermore, the SGN distribution results in
the standard SN distribution in the case of µ = 0, α =

√
2 and β = 2, denoted as X ∼ SN (λ) [11].

In addition, the distribution of X collapses to that of the standard normal distribution if λ = 0 [10].
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Following the definition and properties of the SGN distribution, discussed in [11] and
summarized in Section 2 below, the AR(p) process in (1) with independent and identically distributed
innovations at ∼ SGN (0, α, β, λ) is presented with its maximum likelihood (ML) procedure in
Section 3. Section 4 evaluates the performance of the conditional ML estimator for the ARSGN(p)
model through simulation studies. Real financial, chemical, and population datasets are considered to
illustrate the relevance of the newly proposed model, which can accommodate both skewness and
heavy tails simultaneously. Simulation studies and real data applications illustrate the competitive
nature of this newly proposed model, specifically in comparison to the AR(p) process under the
normality assumption, as well as the ARSN(p) process proposed by Sharafi and Nematollahi [6];
this is an AR(p) process with the innovation process defined by the SN distribution such that
at ∼ SN (0, α, λ). In addition, this paper also considers the AR(p) process with the innovation
process defined by the skew-t (ST ) distribution [12] such that at ∼ ST (0, α, λ, ν), referred to as an
ARST(p) process. With a shorter run time, it is shown that the proposed ARSGN(p) model competes
well with the ARST(p) model, thus accounting well for processes exhibiting asymmetry and heavy
tails. Final remarks are summarized in Section 5.

2. Review on the Skew Generalized Normal Distribution

Consider a random variable X ∼ SGN (µ, α, β, λ) with PDF defined in Definition 1. The behavior
of the skewing mechanism 2Φ(

√
2λz) and the PDF of the SGN distribution is illustrated in

Figures 1 and 2, respectively (for specific parameter structures). From Definition 1, it is clear that β

does not affect the skewing mechanism, as opposed to λ. When λ = 0, the skewing mechanism yields
a value of one, and the SGN distribution simplifies to the symmetric GN distribution. Furthermore,
as the absolute value of λ increases, the range of x values over which the skewing mechanism is
applied decreases within the interval (0, 2). As a result, higher peaks are evident in the PDF of the
SGN distribution [11]. These properties are illustrated in Figures 1 and 2.
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Figure 1. Skewing mechanism 2Φ(
√

2λz) for the skew generalized normal (SGN ) distribution with
µ = 0, α =

√
2, β = 20, and various values of λ.

The main advantage of the SGN distribution is its flexibility by accommodating both skewness
and kurtosis (specifically, heavier tails than that of the SN distribution); the reader is referred to [11]
for more detail. Furthermore, a random variable from the binomial distribution with parameters n
and p can be approximated by a normal distribution with mean np and variance np(1− p) if n is
large or p ≈ 0.5 (that is, when the distribution is approximately symmetrical). However, if p 6= 0.5,
an asymmetric distribution is observed with considerable skewness for both large and small values of
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p. Bekker et al. [9] addressed this issue and showed that the SGN distribution outperforms both the
normal and SN distributions in approximating binomial distributions for both large and small values
of p with n ≤ 30.
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Figure 2. Probability density function (PDF) for the SGN distribution with µ = 0, α =
√

2 and various
values of β for (from left to right, top to bottom): (a) λ = 0; (b) λ = ±1; (c) λ = ±2; (d) λ = ±4.

In order to demonstrate some characteristics (in particular, the expected value, variance, kurtosis,
skewness, and moment generating function (MGF)) of the SGN distribution, the following theorem
from [11] can be used to approximate the kth moment.

Theorem 1. Suppose X ∼ SGN (β, λ) with the PDF defined in Definition 1 for µ = 0 and α = 1, then:

E[Xk] =


Γ
(

k+1
β

)/
Γ
(

1
β

)
for k even ,

Γ
(

k+1
β

){
2E
[

Φ
(√

2λA
1
β

)]
− 1
}/

Γ
(

1
β

)
for k odd ,

where A is a random variable distributed according to the gamma distribution with scale and shape parameters 1
and (k + 1)/β, respectively.

Proof. The reader is referred to [11] for the proof of Theorem 1.

Theorem 1 is shown to be the most stable and efficient for approximating the kth moment of
the distribution of X, although it is also important to note that the sample size n > 60,000 such
that significant estimates of these characteristics are obtained. Figure 3 illustrates the skewness
and kurtosis characteristics that were calculated using Theorem 1 for various values of β and λ.
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When evaluating these characteristics, it is seen that both kurtosis and skewness are affected by β and
λ jointly. In particular (referring to Figure 3):

• Skewness is a monotonically increasing function for β ≤ 2—that is, for λ < 0, the distribution is
negatively skewed, and vice versa.

• In contrast to the latter, skewness is a non-monotonic function for β > 2.
• Considering kurtosis, all real values of λ and decreasing values of β result in larger kurtosis,

yielding heavier tails than that of the normal distribution.
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Figure 3. Measures for X ∼ SGN (β, λ) for various values of β and λ (from top to bottom): (a) Skewness.
(b) Kurtosis.

In a more general sense for an arbitrary µ and α, Theorem 1 can be extended as follows:

Theorem 2. Suppose X ∼ SGN (β, λ) and Y = µ + αX such that Y ∼ SGN (µ, α, β, λ), then:

E[Yr] =
r

∑
k=0

(
n
r

)
µr−kαkE[Xk]
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with E[Xk] defined in Theorem 1.

Proof. The proof follows from Theorem 1 [11].

Theorem 3. Suppose X ∼ SGN (β, λ) with the PDF defined in Definition 1 for µ = 0 and α = 1, then the
MGF is given by:

MX(t) =
∞

∑
j=0

Γ
(

j+1
β

)
Γ
(

1
β

)
j!

[
tjE
[
Φ
(√

2λW
)]

+ (−t)jE
[
Φ
(
−
√

2λW
)]]

,

where W is a random variable distributed according to the generalized gamma distribution (refer to [11] for more
detail) with scale, shape, and generalizing parameters 1, j + 1, and β, respectively.

Proof. From Definition 1 and (2), it follows that:

MX(t) =
∫
R

β

Γ
(

1
β

) exp(−|x|β + xt)Φ
(√

2λx
)

dx

=
∫ ∞

0

β

Γ
(

1
β

) exp(−xβ + xt)Φ
(√

2λx
)

dx +
∫ ∞

0

β

Γ
(

1
β

) exp(−xβ − xt)Φ
(
−
√

2λx
)

dx

= I1 + I2

Furthermore, using the infinite series representation of the exponential function:

I1 =
∫ ∞

0

β

Γ
(

1
β

) exp(−xβ + xt)Φ
(√

2λx
)

dx

=
β

Γ
(

1
β

) ∞

∑
j=0

tj

j!

∫ ∞

0
Φ
(√

2λx
)

exp(−xβ)x(j+1)−1dx

=
β

Γ
(

1
β

) ∞

∑
j=0

tj

j!

Γ
(

j+1
β

)
β

∫ ∞

0
Φ
(√

2λx
) β

Γ
(

j+1
β

) exp(−xβ)x(j+1)−1dx

=
∞

∑
j=0

tj

j!

Γ
(

j+1
β

)
Γ
(

1
β

) E
[
Φ
(√

2λW
)]

,

where W is a random variable distributed according to the generalized gamma distribution with scale,
shape, and generalizing parameters 1, j + 1 > 0 and β > 0, respectively, and PDF:

f (w) =
β

Γ
(

j+1
β

) exp(−wβ)w(j+1)−1 .

when w > 0, and zero otherwise. Similarly, I2 can be written as:

I2 =
∞

∑
j=0

−tj

j!

Γ
(

j+1
β

)
Γ
(

1
β

) E
[
Φ
(
−
√

2λW
)]

.
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Thus, the MGF of X can be written as follows:

MX(t) =
∞

∑
j=0

Γ
(

j+1
β

)
Γ
(

1
β

)
j!

[
tjE
[
Φ
(√

2λW
)]

+ (−t)jE
[
Φ
(
−
√

2λW
)]]

The representation of the MGF (and by extension, the characteristic function) of the SGN
distribution, defined in Theorem 3 above, can be seen as an infinite series of weighted expected
values of generalized gamma random variables.

Remark 1. It is clear that β and λ jointly affect the shape of the SGN distribution. In order to distinguish
between the two parameters, this paper will refer to λ as the skewing parameter, since the skewing mechanism
depends on λ only. β will be referred to as the generalization parameter, as it accounts for flexibility in the tails
and generalizing the normal to the GN distribution of [13].

3. The ARSGN(p) Model and Its Estimation Procedure

This section focuses on the model definition and ML estimation procedure of the
ARSGN(p) model.

Definition 2. If Yt is defined by an AR(p) process with independent innovations at ∼ SGN (0, α, β, λ)

with PDF:
f (at; α, β, λ) =

2
α

φ
( at

α
; β
)

Φ
(√

2λ
at

α

)
,

then it is said that Yt is defined by an ARSGN(p) process for time t = {1, 2, . . .} and with process mean
µ∗ = ϕ0/(1− ϕ1 − ϕ2 − · · · − ϕp)−1.

Remark 2. The process mean for an AR(p) process keeps its basic definition, regardless of the underlying
distribution for the innovation process at.

With at representing the process of independent distributed innovations with the PDF defined in
Definition 2, the joint PDF for (ap+1, ap+2, . . . , an) is given as:

f (ap+1, ap+2, . . . , an) =

(
2
α

)n−p n

∏
t=p+1

φ
( at

α
; β
)

Φ
(√

2λ
at

α

)
, (3)

for n > p. Furthermore, from (1), the innovation process can be rewritten as:

at = yt − ϕ0 − ϕ1yt−1 − ϕ2yt−2 − · · · − ϕpyt−p. (4)

Since the distribution for (Y1, Y2, . . . , Yp) is intractable (being a linear combination of SGN variables),
the complete joint PDF of (Y1, Y2, . . . , Yn) is approximated by the conditional joint PDF of Yt,
for t = {p + 1, p + 2, . . .}, which defines the likelihood function l(Θ) for the ARSGN(p) model. Thus,
using (3) and (4), the joint PDF of Yt given (Y1, Y2, . . . , Yp) is given by:

f (yt|y1, y2, . . . , yp) =

(
2
α

)n−p n

∏
t=p+1

φ (z∗t ; β)Φ
(√

2λz∗t
)

, (5)

where z∗t = (yt − ϕ0 − ϕ1yt−1 − ϕ2yt−2 − · · · − ϕpyt−p)/α. The ML estimator Θ = (α, β, λ,ϕ) is based
on maximizing the conditional log-likelihood function, where ϕ = (ϕ0, ϕ1, ϕ2, . . . , ϕp). Evidently,
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the p + m parameters need to be estimated for an AR(p) model, where m represents the number of
parameters in the distribution considered for the innovation process.

Theorem 4. If Yt is characterized by an ARSGN(p) process, then the conditional log-likelihood function is
given as:

`n(Θ) =
n

∑
t=p+1

ln f (yt − ϕ0 − ϕ1yt−1 − ϕ2yt−2 − · · · − ϕpyt−p; α, β, λ) ,

for t = {p + 1, p + 2, . . .} and f (·) defined in Definition 2.

The conditional log-likelihood in Theorem 4 can be written as:

`n(Θ) = (n− p) ln

[
β

α2Γ
(

1
β

)√
2π

]
+ ln

n

∏
t=p+1

exp
(
−|z∗t |β

)[ √2λz∗t∫
−∞

exp
(
− x2

2

)
dx

]
,

where z∗t = at/α and at is defined in (4). The ML estimation process of the ARSGN(p) process is
summarized in Algorithm 1 below.

Algorithm 1:

1: Determine the sample mean ȳ, variance s2, and autocorrelations rj for j = 1, 2, . . . , p.
2: Define the p Yule–Walker equations [14] in terms of theoretical autocorrelations ρi for an

AR(p) process:
ρ1 = ϕ1ρ0 + ϕ2ρ1 + · · ·+ ϕpρp−1

ρ2 = ϕ1ρ1 + ϕ2ρ0 + · · ·+ ϕpρp−2

...

ρp = ϕ1ρp−1 + ϕ2ρp−2 + · · ·+ ϕpρ0

Set the theoretical autocorrelations ρi in the Yule–Walker equations equal to the sample

autocorrelations ri, and solve the method of moment estimates (MMEs) for the p AR parameters

simultaneously in terms of r1, r2, . . . , rp. Use these MMEs as the starting values for the AR

parameters ϕ = (ϕ1, ϕ2, . . . , ϕp)>.
3: Set starting values for the intercept ϕ0 and scale parameter α equal to the MMEs [14] such that:

ϕ0 = ȳ(1− ϕ1 − ϕ2 − · · · − ϕp)

and

α =
√

s2(1− ϕ1r1 − ϕ2r2 − · · · − ϕprp) .

4: Set the starting values for the shaping parameters β and λ equal to two and zero, respectively.
5: Use the optim( ) function in the R software to maximize the conditional log-likelihood function

iteratively and yield the most likely underlying distribution with its specified parameters.
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4. Application

In this section, the performance and robustness of the ML estimator Θ for the ARSGN(p)
time series model is illustrated through various simulation studies. The proposed model is also
applied to real data in order to illustrate its relevance, in comparison to previously proposed models.
All computations were carried out using R 3.5.0 in a Win 64 environment with a 2.30 GHz/Intel(R)
Core(TM) i5-6200U CPU Processor and 4.0 GB RAM, and run times are given in seconds. The R code is
available from the first author upon request.

4.1. Numerical Studies

The aim of this subsection is to illustrate the performance and robustness of the conditional
ML estimator Θ for the proposed model in Definition 2 using various simulation studies. Define the
hypothetical AR(5) time series model, which will (partly) be considered in the simulation studies below:

yt = 6 + 0.4yt−1 − 0.2yt−2 + 0.1yt−3 + 0.5yt−4 − 0.6yt−5 + at , (6)

where at and the sample size n will be defined differently for each simulation study. The simulation
studies are algorithmically described in Algorithm 2 below.

Algorithm 2:
1: Independent random variables U ∼ GN (β) with PDF φ(·; 0, 1, β) and U1 ∼ N (0, 1) are generated,

using the rgnorm( ) and rnorm( ) functions in R, respectively.
2: Following [9,15], the innovation process at is simulated for t = {1, 2, . . . , n} using:

at = α

U if U1 ≤
√

2λU

−U if U1 >
√

2λU
. (7)

3: The time series yt is determined using the arima.sim( ) function in R with the simulated

innovations at from (7) and theoretical parameters defined in (6), then adding the process mean

µ∗ to the time series yt.
4: Algorithm 1 is applied to estimate the parameters of the ARSGN(p) model, considering various

values of p.
5: A second simulation study is implemented for p = 2, repeating Steps 1 to 4 above 500 times in

order to analyze the sampling distributions for the parameters of the ARSGN(p) model.
6: A third simulation study investigates the performance of the ARSGN(p) model when the

innovation process at is described by an ST distribution instead, for p = 2 in (6).
7: A forth simulation study extends the latter when the innovation process at is described by an ST

distribution for various degrees of freedom, evaluating the performance of the ARSGN(p)

model for various levels in the tails of at.

4.1.1. Simulation Study 1

In order to evaluate the conditional ML estimation performance of the ARSGN(p) model, the time
series yt will be simulated and estimated for various orders of p = 1, 2, 3, 4, 5 and sample sizes
n = 100, 500, 1000, 5000. Assuming at ∼ SGN (0, 4, 3,−10) for the hypothetical model defined in (6),
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the innovation process at is simulated and the time series yt is estimated with an ARSGN(p) model,
as described in Algorithm 2.

Table 1 summarizes the parameter estimates and standard errors obtained from the ARSGN(p)
model for all p = 1, 2, 3, 4, 5 and n = 100, 500, 1000, 5000. In general, it is clear that the model fits the
simulated innovation processes (and time series) relatively well, except for λ, which tends to be more
volatile with larger standard errors, although these standard errors decrease for larger sample sizes.
It is also noted that there are occasional trade-offs in the estimation of β and λ for p = 4 and p = 5,
which decreases the standard error for one parameter, but increases the standard error of the other.
These occasional instances of “incorrect” estimations, which consequently have an influence on the
estimation of ϕ0 as well, may be explained by the fact that β and λ are jointly affecting the asymmetric
behavior in the SGN distribution. In addition to Table 1, Figure 4 illustrates the estimated ARSGN(3)
model with the distribution of the residuals, where the residual at time t is defined as:

ât = Yt − Ŷt ,

and Ŷt representing the estimated value at time t. The asymmetric behavior of the SGN distribution is
especially seen from the fitted model in Figure 4.

Table 1. The autoregressive (AR) process of order p using the skew generalized normal (ARSGN(p))
maximum likelihood (ML) parameter estimates and standard errors (in parentheses) for various sample
sizes n and values of p.

Parameter Sample Size n

100 500 1000 5000

p = 1

α (= 4) 3.374 (0.668) 3.591 (0.197) 4.054 (0.1367) 4.011 (0.067)
β (= 3) 2.021 (0.553) 2.509 (0.272) 3.186 (0.263) 3.042 (0.122)
λ (=−10) −9.188 (7.078) −14.7189 (3.226) −11.395 (1.848) −11.807 (0.916)
ϕ0 (= 6) 6.199 (0.421) 6.023 (0.156) 5.980 (0.136) 6.018 (0.062)
ϕ1 (= 0.4) 0.356 (0.064) 0.395 (0.022) 0.412 (0.019) 0.400 (0.009)

p = 2

α (= 4) 3.277 (0.638) 3.596 (0.197) 4.050 (0.137) 4.009 (0.067)
β (= 3) 1.982 (0.544) 2.513 (0.273) 3.180 (0.264) 3.038 (0.122)
λ (=−10) −7.899 (4.560) −14.8478 (3.286) −11.377 (1.856) −11.786 (0.910)
ϕ0 (= 6) 5.739 (0.430) 6.068 (0.131) 5.958 (0.126) 6.028 (0.056)
ϕ1 (= 0.4) 0.330 (0.078) 0.392 (0.028) 0.414 (0.022) 0.408 (0.009)
ϕ2 (=−0.2) −0.107 (0.061) −0.208 (0.023) −0.194 (0.021) −0.210 (0.009)

p = 3

α (= 4) 3.104 (0.635) 3.602 (0.196) 4.043 (0.138) 4.010 (0.066)
β (= 3) 1.834 (0.497) 2.520 (0.273) 3.166 (0.263) 3.039 (0.122)
λ (=−10) −7.381 (3.565) −15.297 (3.433) −11.304 (1.843) −11.825 (0.913)
ϕ0 (= 6) 6.234 (0.596) 5.931 (0.177) 5.984 (0.165) 6.090 (0.074)
ϕ1 (= 0.4) 0.339 (0.076) 0.398 (0.027) 0.409 (0.022) 0.405 (0.009)
ϕ2 (=−0.2) −0.116 (0.056) −0.216 (0.023) −0.193 (0.022) −0.208 (0.010)
ϕ3 (= 0.1) 0.001 (0.076) 0.128 (0.022) 0.096 (0.022) 0.090 (0.009)

p = 4

α (= 4) 3.484 (0.180) 3.855 (0.072) 4.048 (0.137) 4.007 (0.066)
β (= 3) 30.733 (40.892) 31.009 (9.872) 3.180 (0.264) 3.034 (0.121)
λ (=−10) 1.541 (0.305) 2.271 (0.191) −11.496 (1.879) −11.915 (0.916)
ϕ0 (= 6) 5.215 (1.265) 1.965 (0.456) 6.160 (0.425) 6.527 (0.194)
ϕ1 (= 0.4) 0.296 (0.058) 0.402 (0.024) 0.414 (0.019) 0.399 (0.008)
ϕ2 (=−0.2) −0.185 (0.058) −0.209 (0.023) −0.205 (0.021) −0.214 (0.009)
ϕ3 (= 0.1) 0.012 (0.081) 0.086 (0.026) 0.112 (0.022) 0.093 (0.009)
ϕ4 (= 0.5) 0.550 (0.074) 0.536 (0.027) 0.475 (0.019) 0.497 (0.008)
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Table 1. Cont.

Parameter Sample Size n

100 500 1000 5000

p = 5

α (= 4) 1.273 (0.582) 3.840 (0.070) 3.797 (0.131) 3.686 (0.064)
β (= 3) 0.928 (0.255) 35.158 (15.083) 15.671 (2.697) 14.487 (1.129)
λ (=−10) −1.190 (0.646) 2.251 (0.189) 2.177 (0.218) 1.962 (0.094)
ϕ0 (= 6) 5.986 (0.029) 2.103 (0.207) 2.415 (0.175) 2.572 (0.081)
ϕ1 (= 0.4) 0.352 (0.015) 0.385 (0.024) 0.412 (0.017) 0.406 (0.007)
ϕ2 (=−0.2) −0.138 (0.019) −0.192 (0.017) −0.200 (0.016) −0.204 (0.007)
ϕ3 (= 0.1) −0.012 (0.033) 0.096 (0.018) 0.109 (0.015) 0.092 (0.007)
ϕ4 (= 0.5) 0.499 (0.019) 0.517 (0.019) 0.480 (0.016) 0.489 (0.007)
ϕ5 (=−0.6) −0.634 (0.024) −0.570 (0.019) −0.607 (0.016) −0.610 (0.007)
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Figure 4. Histogram of the residuals with the fitted ARSGN(3) model overlaid for sample size n = 5000.

4.1.2. Simulation Study 2

Sampling distributions for the parameters can be used to evaluate the robustness of the estimator
for the proposed model. In order to construct the sampling distributions for the parameters in Table 1,
a Monte Carlo simulation study is applied by repeating the simulation for at and the estimation
procedure 500 times, considering p = 2 and n = 5000 for the hypothetical model defined in (6) with
at ∼ SGN (0, 4, 3,−10).

The sampling distributions obtained for the conditional ML parameter estimates are illustrated
in Figure 5, all centered around their theoretical values. The occasional trade-offs between β and λ

(noted in Simulation Study 1) are evident from these distributions. Furthermore, Table 2 summarizes
the 5th, 50th (thus, the median), and 95th percentiles obtained from these sampling distributions,
of which the 5th and 95th percentiles can be used for approximating the 95% confidence intervals.
It is evident that the theoretical values for all parameters fall within their respective 95% confidence
intervals and exclude zero, suggesting that all parameter estimates are significant. It is concluded that
the conditional ML estimation of the proposed model is robust since all 50th percentiles are virtually
identical to each of the theoretical values, confirming what is depicted in Figure 5.
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Figure 5. Sampling distributions for the ARSGN(2) ML parameter estimates obtained from a Monte
Carlo simulation study (from left to right, top to bottom): (a) Sampling distribution for α. (b) Sampling
distribution for β. (c) Sampling distribution for λ. (d) Sampling distribution for ϕ0. (e) Sampling
distribution for ϕ1. (f) Sampling distribution for ϕ2.

Table 2. Percentiles for the ARSGN(2) ML parameter estimates obtained from a Monte Carlo
simulation study.

Parameter

α β λ ϕ0 ϕ1 ϕ2

P5 3.869 2.804 −11.510 5.895 0.383 −0.215
P50 4.000 3.009 −10.042 5.998 0.401 −0.200
P95 4.116 3.236 −8.880 6.096 0.415 −0.182

4.1.3. Simulation Study 3

For comparison and completeness’ sake, consider the hypothetical time series model defined
in (6), for up to p = 2 only. This time, the innovation process is simulated from an ST distribution
such that at ∼ ST (0, 2, 15, 5) [12], and thus, the simulated time series yt is referred to as an ARST(2)
process. The aim of this simulation study is to evaluate the fit of the ARSGN(2) model in comparison
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to the AR(2), ARSN(2), and ARST(2) models each, even though the true innovation process follows an
ST distribution.

Considering a sample size of n = 5000, the innovation process at was simulated using the rst( )
function in R. The AR(2), ARSN(2), ARSGN(2), and ARST(2) models are each fitted to the time series
yt by maximizing the respective conditional log-likelihood functions. Starting values were chosen
similar for all models as discussed in Algorithm 1, except for λ, being set equal to the sample skewness
for both the ARSN(2) and ARST(2) models and the degrees of freedom ν being initialized at one for
the latter. It should be noted that the starting value for λ in the ARSGN(p) model was not set to the
sample skewness, since it was noted in Section 2 that λ and β jointly affect the skewness and shape of
the distribution.

Table 3 summarizes the conditional ML parameter estimates with the standard errors given in
parentheses, as well as the log-likelihood, Akaike information criterion (AIC), and run times for the
various AR models, where AIC is defined as:

AIC = −2`n(Θ̂) + 2M ,

with `n(Θ̂) representing the maximized value of the log-likelihood function defined in Theorem 4
and M denoting the number of parameters in the model [16]. From the log-likelihood and AIC values
obtained for the different models, it can be seen that the ARSGN(2) model competes well with the
ARST(2) model (see Figure 6). In particular, the run time for the estimation of the ARSGN(2) model
is shorter than that of the ARST(2) model, with all parameters being significant at a 95% confidence
level. Thus, it can be concluded that the ARSGN(2) model is a valid contender in comparison to
other popular models accounting for asymmetry, kurtosis, and heavy tails and performs competitively
considering the computational time.

Table 3. AR(2) ML parameter estimates with standard errors (in parentheses), log-likelihood `n(Θ̂),
Akaike information criterion (AIC), and run times for sample size n = 5000 and at ∼ ST (0, 2, 15, 5).
ST, skew-t.

Model

AR(2) ARSN(2) ARSGN(2) ARST(2)

Parameter

α
1.732 2.620 2.420 2.068

(0.017) (0.027) (0.093) (0.038)

β – – 1.237 –(0.038)

λ – 20.140 9.654 16.301
(1.431) (0.973) (1.429)

ν – – – 5.574
(0.424)

ϕ0
7.813 5.973 6.041 6.020

(0.162) (0.062) (0.074) (0.059)

ϕ1
0.387 0.395 0.394 0.394

(0.014) (0.005) (0.005) (0.005)

ϕ2
−0.176 −0.197 −0.194 −0.196
(0.014) (0.006) (0.006) (0.006)

`n(Θ̂) −9839.2 −8612.9 −8456.5 −8426.4
AIC 19,686.5 17,235.8 16,925.1 16,904.0
Run time (s) 3.47583 2.11189 3.88825 5.07767
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Figure 6. Histogram of simulated innovation process at ∼ ST (0, 2, 15, 5) with fitted AR(2) models
overlaid for sample size n = 5000.

4.1.4. Simulation Study 4

The purpose of this simulation study is to evaluate the estimation performance and adaptability
of the proposed ARSGN(p) model (in comparison to some of its competitors) on processes with various
tail weights simulated from the ST distribution. Thus, consider the hypothetical time series model
defined in (6), for up to p = 2 only and with at ∼ ST (0, 2, 15, ν) where ν represents the different
degrees of freedom ν = 5, 6, . . . , 35 under which yt will be simulated. For a sample size of n = 10,000,
the AR(2) model is estimated assuming various distributions for the innovation process at.

Figures 7 and 8 illustrate the standard errors of the estimates of the parameters of interest and AIC
values obtained from the various AR models fitted to the simulated ARST(2) process for degrees of freedom
ν = 5, 6, . . . , 35. Figure 7 illustrates that the skewing parameter λ for the ARSGN(2) model is more volatile
compared to the other parameters, although it performs with less volatility than λ in the ARSN(2) model
for lower degrees of freedom. Observing the AIC values in Figure 8, it is clear that the AR(2) model (under
the assumption of normality) performs the worst for all degrees of freedom, whereas the ARSN(2) model
performs similar to that of the ARST(2) for degrees of freedom ν > 15. In contrast, the proposed ARSGN(2)
model performs almost equivalently to the ARST(2) model for all degrees of freedom indicating that the
proposed model adapts well to various levels of skewness and kurtosis.

4.2. Real-World Time Series Analysis

This subsection illustrates the relevance of the ARSGN(p) model in areas such as chemistry,
population studies, and economics, in comparison to previously proposed AR models. Descriptive
statistics for all time series considered below are summarized in Table 4.

Table 4. Descriptive statistics of real time series data considered below, where * refers to the stationary
time series data.

Series Sample Statistic

n ȳ s γ κ Min Max

Viscosity 310 9.133 0.603 −0.465 −0.583 7.4 10.4
Australian population * 87 −0.331 11.469 −0.332 2.590 −37.6 41
Insolvencies in South Africa * 238 −0.567 39.609 0.902 9.792 −162 268
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Figure 7. Standard errors of the parameter estimates obtained from AR(2) models fitted to an ARST(2)
process simulated with at ∼ ST (0, 2, 15, ν) for different degrees of freedom ν. From left to right,
top to bottom: (a) AR(2) model fitted assuming at ∼ N (0, α). (b) AR(2) model fitted assuming
at ∼ SN (0, α, λ). (c) AR(2) model fitted assuming at ∼ SGN (0, α, β, λ). (d) AR(2) model fitted
assuming at ∼ ST (0, α, λ, ν).
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Figure 8. AIC values obtained from AR(2) models fitted (assuming various distributions for at) to an
ARST(2) process simulated with at ∼ ST (0, 2, 15, ν) for different degrees of freedom ν.

4.2.1. Viscosity during a Chemical Process

In order to compare the ARSGN(p) model, defined in Definition 2, to previously proposed models
(i.e., AR models assuming the normal and SN distributions for the innovation process at, respectively),
consider the time series data Series D in [17]. This dataset consists of n = 310 hourly measurements
of viscosity during a chemical process, represented in Figure 9. The Shapiro–Wilk test applied to the
time series data suggests that the data are not normally distributed with a p-value < 0.001; this is
also confirmed by the histogram in Figure 9. From the autocorrelation function (ACF) and partial
autocorrelation function (PACF), it is evident that an AR(1) model is a suitable choice for fitting a time
series model.
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Figure 9. Viscosity measured hourly during a chemical process [17]. From left to right, top to
bottom: (a) Time plot. (b) Histogram. (c) Autocorrelation function (ACF). (d) Partial autocorrelation
function (PACF).

Previously, Box and Jenkins [17] fit an AR(1) model to this time series, assuming that the
innovations are normally distributed. Sharafi and Nematollahi [6] relaxed this normality assumption
and allowed for asymmetry by fitting an ARSN(1) model. Table 5 summarizes the conditional ML
parameter estimates (with the standard errors given in parentheses) for both of these models, together
with those obtained for the newly proposed ARSGN(1) model and the ARST(1) model. In addition,
the maximized log-likelihood, AIC values, Kolmogorov–Smirnov (KS) test statistics, and run times are
also represented for the various models, where the KS test statistic is defined as:

KS = max
at
|F(ât)− F(at)| ,

where F(ât) and F(at) represent the empirical and estimated distribution functions for the residuals
and innovation process, respectively [18]. From the log-likelihood, AIC values, and KS test statistics
calculated for the four models, it can be concluded that the ARSGN(1) model fits this time series
the best, with a competitive estimation run time. Take note that from the estimated intercept ϕ̂0,
the process mean is estimated as µ̂∗ = 9.492, which is evident from the time plot in Figure 9.

Evaluating the standard errors for the parameter estimates obtained for the ARSGN(1) model, it is
observed that all parameters differ significantly from zero at a 95% confidence level, except for the
skewing parameter λ, suggesting that the innovation process does not contain significant skewness.
This is confirmed by Figure 10, from which it is clear that only slight skewness is present when
observing the distribution for the residuals obtained for all four models. In this case, it is also clear to
see that the SGN distribution captures the kurtosis well. Finally, Figure 11 illustrates the CDFs for
the various estimated models together with the empirical CDFs for the residuals obtained from the
ARSGN(1) model, suggesting that the ARSGN(1) model fits the innovation process best.
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Table 5. ML parameter estimates with standard errors (in parentheses), log-likelihood `n(Θ̂), AIC,
Kolmogorov–Smirnov (KS) test statistics, and run times for the hourly viscosity measurements during
a chemical process [17].

Model

AR(1) ARSN(1) ARSGN(1) ARST(1)

Parameter

α
0.300 0.386 0.134 0.228

(0.012) (0.030) (0.038) (0.025)

β – – 0.771 –(0.103)

λ – −1.324 −0.033 −0.186
(0.313) (0.027) (0.340)

ν – – – 4.177
(1.409)

ϕ0
1.197 1.515 0.598 0.871

(0.258) (0.263) (0.005) (0.283)

ϕ1
0.869 0.861 0.937 0.910

(0.028) (0.028) (0.001) (0.028)

`n(Θ̂) −67.8 −62.7 −43.3 −55.7
AIC 141.5 133.4 96.6 121.5
KS test statistic 0.233 0.223 0.181 0.230
Run time (s) 0.15462 0.37018 0.52313 0.69936
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Figure 10. Residuals and estimated models obtained from AR(1) models fitted to the viscosity time
series [17]. From left to right, top to bottom: (a) AR(1) model fitted assuming at ∼ N (0, α). (b) AR(1)
model fitted assuming at ∼ SN (0, α, λ). (c) AR(1) model fitted assuming at ∼ SGN (0, α, β, λ).
(d) AR(1) model fitted assuming at ∼ ST (0, α, λ, ν).
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Figure 11. Cumulative distribution function (CDF) for the estimated AR(1) models under various
distributions assumed for the innovation process at, with the empirical CDF for the residuals obtained
from the estimated ARSGN(1) model for the viscosity time series [17].

4.2.2. Estimated Resident Population for Australia

In order to illustrate the relevance of the proposed model for higher orders of p, consider the
quarterly estimated Australian resident population data (in thousands), which consists of n = 89
observations from June 1971 to June 1993. Figure 12 shows the time plot and ACF for the original time
series from which it is clear that nonstationarity is present since the process mean and autocorrelations
depend on time. This is also confirmed by the augmented Dickey–Fuller (ADF) test, which yields a
p-value = 0.3493, suggesting that the time series exhibits a unit root [19].
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Figure 12. Australian resident population on a quarterly basis from June 1971 to June 1993 (estimated
in thousands). From left to right: (a) Time plot. (b) ACF.

Transforming the original time series by differencing the time series twice yields a stationary time
series with a p-value < 0.01 for the ADF test (suggesting no unit roots). This stationary time series and
its distribution are illustrated in Figure 13, with the ACF and PACF suggesting that an AR(3) model is
the appropriate choice for fitting a time series model. Previously, Brockwell and Davis [20] fitted an
AR(3) model to the differenced (i.e., stationary) time series, assuming that the innovations are normally
distributed. However, both the histogram and Shapiro–Wilk test (with p-value < 0.001) applied to this
stationary time series suggest that the innovation process at is not normally distributed. Instead, SGN
is considered as a distribution for the innovation process—that is, at ∼ SGN (0, α, β, λ).

Table 6 summarizes the estimation results for AR models under the SGN distribution in
comparison to the normal, SN , and ST distributions. From the maximized log-likelihood, AIC values,
and KS test statistics calculated for the four models, it can be concluded that the ARSGN(3) model
fits the best, with an estimated process mean µ̂∗ = 0.339 (also evident from Figure 13). Furthermore,
evaluating the standard errors of the parameters obtained for the ARSGN(3) model, it is evident that all
parameters differ significantly from zero at a 95% confidence level, except for the skewing parameter
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λ, suggesting that the innovation process does not exhibit significant skewness. Figure 14 illustrates
these estimated models, confirming that the proposed ARSGN(3) model adapts well to various levels
of asymmetry.
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Figure 13. Differenced (i.e., stationary) Australian resident population on a quarterly basis from
June 1971 to June 1993 (estimated in thousands). From left to right, top to bottom: (a) Time plot.
(b) Histogram. (c) ACF. (d) PACF.

Table 6. ML parameter estimates with standard errors (in parentheses), log-likelihood `n(Θ̂), AIC, KS
test statistics, and run times for the differenced time series of estimated Australian resident population
on a quarterly basis from June 1971 to June 1993.

Model

AR(3) ARSN(3) ARSGN(3) ARST(3)

Parameter

α
9.648 9.821 5.150 8.835

(0.731) (0.796) (2.436) (3.804)

β – – 0.834 –(0.205)

λ – 0.027 −0.040 −0.899
(1.451) (0.055) (1.154)

ν – – – 5.158
(4.154)

ϕ0
−0.362 −0.573 0.497 5.347
(1.054) (11.414) (0.029) (5.410)

ϕ1
−0.544 −0.544 −0.545 −0.545
(0.105) (0.107) (0.011) (0.153)

ϕ2
−0.458 −0.458 −0.378 −0.420
(0.108) (0.110) (0.010) (0.111)

ϕ3
−0.262 −0.262 −0.327 −0.239
(0.105) (0.107) (0.008) (0.101)

`n(Θ̂) −320.7 −311.1 −304.0 −305.8
AIC 651.3 634.2 622.0 625.7
KS test statistic 0.286 0.274 0.226 0.262
Run time (s) 0.88435 0.74169 2.40199 2.48347
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Figure 14. Residuals and estimated models obtained from AR(3) models fitted to the differenced time
series of the estimated Australian resident population on a quarterly basis (from June 1971 to June
1993). From left to right, top to bottom: (a) AR(3) model fitted assuming at ∼ N (0, α). (b) AR(3) model
fitted assuming at ∼ SN (0, α, λ). (c) AR(3) model fitted assuming at ∼ SGN (0, α, β, λ). (d) AR(3)
model fitted assuming at ∼ ST (0, α, λ, ν).

4.2.3. Insolvencies in South Africa

As a final application, consider the monthly (seasonally adjusted) number of insolvencies in South
Africa for January 2000 to November 2019 (retrieved from Stats SA [21]). The time plot and ACF for
the time series in Figure 15 suggests that the time series is nonstationary (which is also confirmed by
the ADF test with p-value = 0.5807). A stationary time series is obtained by differencing the original
time series once. This stationary time series and its distribution is illustrated in Figure 16, with the
ACF and PACF suggesting that an AR(2) model is the appropriate choice for fitting a time series model.
Although the Shapiro–Wilk test yields a p-value < 0.001 (suggesting non-normality), the AR(2) model
is fitted assuming each of the normal, SN , SGN , and ST distributions for the innovation process at,
respectively; Table 7 and Figure 17 show the results obtained.
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Figure 15. Number of insolvencies per month in South Africa from January 2000 to November 2019 [21].
From left to right: (a) Time plot. (b) ACF.

Referring to Table 7, it appears as if the ARST(2) model fits the best, with the proposed ARSGN(2)
model as the runner-up (by comparing the maximized log-likelihood and AIC values). However,
when comparing the standard errors for the parameter estimates, it is suggested that the estimates for
the ARSGN(2) model generally exhibit less volatility compared to its competitors, with all parameters
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being significant at a 95% confidence level. Figure 17 confirms that the SGN distribution adapts well
to various levels of skewness and kurtosis.
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Figure 16. Differenced (i.e., stationary) number of insolvencies per month in South Africa from January
2000 to November 2019 [21]. From left to right, top to bottom: (a) Time plot. (b) Histogram. (c) ACF.
(d) PACF.

Table 7. ML parameter estimates with standard errors (in parentheses), log-likelihood `n(Θ̂),
AIC, KS test statistics, and run times for the differenced time series of number of insolvencies per
month in South Africa from January 2000 to November 2019 [21].

Model

AR(2) ARSN(2) ARSGN(2) ARST(2)

Parameter

α
35.370 35.531 24.448 25.258
(1.621) (1.661) (4.386) (3.067)

β – – 0.987 –(0.113)

λ – −0.009 0.119 0.472
(1.395) (0.048) (0.360)

ν – – – 3.590
(0.909)

ϕ0
−0.870 −0.606 −7.399 −12.058
(2.304) (39.502) (0.205) (6.827)

ϕ1
−0.463 −0.463 −0.421 −0.418
(0.063) (0.063) (0.031) (0.059)

ϕ2
−0.219 −0.458 −0.210 −0.169
(0.063) (0.063) (0.031) (0.061)

`n(Θ̂) −1186.4 −1177.4 −1154.3 −1153.3
AIC 2380.8 2364.8 2320.6 2318.6
KS test statistic 0.356 0.356 0.305 0.331
Run time (s) 0.42257 0.29679 1.32080 0.87772
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Figure 17. Residuals and estimated models obtained from AR(2) models fitted to the differenced time
series of number of insolvencies per month in South Africa (from January 2000 to November 2019) [21].
From left to right, top to bottom: (a) AR(2) model fitted assuming at ∼ N (0, α). (b) AR(2) model fitted
assuming at ∼ SN (0, α, λ). (c) AR(2) model fitted assuming at ∼ SGN (0, α, β, λ). (d) AR(2) model
fitted assuming at ∼ ST (0, α, λ, ν).

5. Conclusions

In this paper, the AR(p) time series model with skewed generalized normal (SGN ) innovations
was proposed, i.e., ARSGN(p). The main advantage of the SGN distribution is its flexibility
by accommodating asymmetry, kurtosis, as well as heavier tails than the normal distribution.
The conditional ML estimator for the parameters of the ARSGN(p) model was derived and the behavior
was investigated through various simulation studies, in comparison to previously proposed models.
Finally, real-time series datasets were fitted using the ARSGN(p) model, of which the usefulness was
illustrated by comparing the estimation results for the proposed model to some of its competitors.
In conclusion, the ARSGN(p) is a meaningful contender in the AR(p) environment compared to other
often-considered models. A stepping-stone for future research includes the extension of the ARSGN(p)
model for the multivariate case. Furthermore, an alternative method for defining the non-normal AR
model by discarding the linearity assumption may be explored; see, for example, the work done on
non-linear time series models in [22,23].
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