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ABSTRACT

Copulas allow a joint probability distribution to be decomposed such that the marginals in-

form us about how the data were generated, separately from the copula which fully captures the

dependency structure between the variables. This is particularly useful when working with ran-

dom variables which are both non-normal and possibly non-linearly correlated. However, when

in addition, the dependence between these variables change in accordance with some underlying

covariate, the model becomes significantly more complex.

This research proposes using a Gaussian process conditional copula for this dependence mod-

elling, focusing on time as the underlying covariate. Utilising a Bayesian non-parametric frame-

work allows the simplifying assumptions often applied in conditional dependency computation to

be relaxed, giving rise to a more flexible model.

The importance of improving the accuracy of dependency modelling in applications such as

finance, econometrics, insurance and meteorology is self-evident, considering the potential risks

involved in erroneous estimation and prediction results. Including the underlying (conditional)

variable reduces the chances of spurious dependence modelling.

For our application, we include a textbook example on a simulated dataset, an analysis of the

modelling performance of the different methods on four currency pairs from foreign exchange

time series and lastly we investigate using copulas as a way to quantify the coupling efficiency

between the solar wind and magnetosphere for the three known phases of geomagnetic storms.

We find that the Student’s t Gaussian process conditional copula outperforms static copulas

in terms of log-likelihood, and performs particularly well in capturing lower tail dependence. It

further gives additional information about the temporal movement of the coupling between the

two main variables, and shows potential for more accurate data imputation.
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CvM Cramèr-von-Mises

GP Gaussian process

GPCC Gaussian process conditional copula

EP expectation propagation

FITC fully independent training conditional approximation

CDO collaterised debt obligation

x



Chapter 1

Introduction

Copulas are useful for modelling dependence patterns in multivariate data, as well as prediction

in regression analysis [2]. For this reason copula-based models are often applied in econometrics,

finance, insurance [23, 25, 34, 49, 50] and meteorology [55].

In 2007 and 2008, underestimation of correlations and risks and the misuse of dependence

models, such as the Gaussian copula, lead to the financial crisis [40]. This case study highlights

the need to improve dependence modelling through both the correlation parameter and choice

of model used. Uncertainty from volatilities, heteroskedasticity, extreme values and missing ob-

servations all contribute to the difficulty of dependency estimation and prediction. In addition,

the assumptions of parametric or Gaussian distributions and linear correlation structures regularly

applied in statistical analysis are often violated in practical applications. Much work has been

done on relaxing the normal assumptions of the Gaussian copula, to deal with the uncertainties

described above [19, 46].

Fully understanding the advantages (and limitations) of copula models helps to avoid model

mismatching and broadens the field of possible applications. Before we embark on this research

journey, we first give a simple, intuitive overview of copulas as a refresher to the reader.

1.1 Copulas in simple terms

Suppose we have two variables with different distributions. It is known that a dependency exists

between these two variables, but a mathematical formulation for a joint distribution does not exist.

The copula can represent the dependency between these variables, independently of the marginal

1



1.1. COPULAS IN SIMPLE TERMS INTRODUCTION

distributions, allowing the joint distribution to be constructed.

The main tool used in the construction of copulas is the probability integral transform (PIT).

1.1.1 Probability integral transform

Starting by generating uniform random variables (RVs) Ui ∼ U[0,1], these variables, also known

as grades, can be transformed to an arbitrary (univariate) probability distribution

Xi = F−1(Ui) ∼ fXi

by feeding the grades into the inverse CDF (Figure 1.1) of the desired distribution.

Figure 1.1: Inverse CDF of U[0,1] to N (0, 1) transformation

The opposite of this process can also be applied, by generating random variables from an

arbitrary distribution Xi ∼ fXi and feeding them into their own marginal CDFs to transform them

to a uniform distribution (Figure 1.2)

Ui = F (Xi) ∼ U[0,1].

These uniform random variables can now again be fed into the inverse of a desired CDF to

obtain random variables with this new distribution [27].

The method of transforming from an arbitrary distribution to uniform and back is known as

the probability integral transform (PIT).

2



1.1. COPULAS IN SIMPLE TERMS INTRODUCTION

Figure 1.2: CDF of N (0, 1) to U[0,1] transformation

1.1.2 Constructing correlation between distributions

The PIT provides us with a tool to switch easily between the uniform and other distributions.

Now we can specify a copula which acts as a custom joint probability distribution. We start

by simulating RVs from a multivariate distribution and thereby specify the correlation structure

between variables.

An example of a correlated multivariate Gaussian distribution with µ = [0, 0] and ρ = 0.3 is

given in Figure 1.3a. These random variables are then transformed to uniform (Figure 1.3b) and

then to the desired (possibly different) probability distributions (Figure 1.4).

(a) Correlated multivariate Gaussian (b) Uniform marginals

Figure 1.3: Joint plot of 1000 simulated correlated Gaussian random variables and their uniform
transformations

3



1.1. COPULAS IN SIMPLE TERMS INTRODUCTION

Figure 1.4: Joint distribution with correlation

1.1.3 Why copulas?

As an example, suppose the variables flood peak and flood volume need to be considered for a

flood frequency analysis. (This example is discussed in detail in Chapter 3.) Intuitively, it makes

sense that a joint distribution between these two variables exists. Given two completely different

marginal distributions, we need to define a custom joint distribution between the two variables.

Figure 1.5 illustrates how the joint density under independence differs from that using a Gaussian

copula. In the left panel, it is clear how ignoring the underlying dependence between the two

variables (red) underestimates the joint density, as opposed to including it using the Gaussian

copula (blue).

In this research, we investigate non-parametric copulas, such as the Gaussian process condi-

tional copula (GPCC). Without going into detail (which we do in Chapter 4) the GPCC goes even

further to consider the possibility of an additional underlying variable having an effect on the de-

pendence structure between the two main variables. Using time as the conditioning variable, the

GPCC in effect becomes a dynamic model. Simply put, the GPCC allows for the contour plot in

the right bottom panel of Figure 1.5 to have a different shape at each time point.

Figure 1.6 compares the (conditional) distributions of flood peak obtained from the different

methods (independence, Gaussian copula and GPCC) for given values of flood volume.

Keeping the flood volume constant at its median (0.0589) and maximum (0.2125) values,

the quantiles from the distribution of possible corresponding flood peak values are summarised

in Table 1.1. While, say the 90% confidence interval, will stay constant when the variables are

4



1.1. COPULAS IN SIMPLE TERMS INTRODUCTION

Figure 1.5: 3D joint density (left) of flood peak and volume under independence (red) and using
the Gaussian copula (blue) and the corresponding contour plots (right) illustrating the difference
in dependence structure.

Figure 1.6: CDF of flood peak (y1) under independence (blue) and conditional on a given value
of flood volume using the Gaussian copula (red) and the GPCC (orange).

assumed to be independent, using a copula and its conditional distribution allows the confidence

intervals to shift and change in size. Comparing the three methods, it is seen that, although the

results do not differ significantly given the median flood volume (left pane of Figure 1.6), ignoring

the underlying dependence in more extreme cases (maximum value of flood volume) may lead to

underestimation of the corresponding flood peak value (right pane of Figure 1.6). Using time as the

conditioning variable, the GPCC further allows for the copula parameters to change dynamically.
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Independent Observed X1 q0.1 q0.5 q0.9 q0.95 q0.99

X2 = 0.0589 1.4300 1.2462 2.0278 3.2995 3.7877 4.9078
X2 = 0.2125 2.1600 1.2462 2.0278 3.2995 3.7877 4.9078

Gaussian copula Observed X1 q0.1 q0.5 q0.9 q0.95 q0.99

X2 = 0.0589 1.4300 1.3155 2.0280 3.1263 3.5342 4.4495
X2 = 0.2125 2.1600 2.0547 3.1673 4.8825 5.5203 6.9497

GPCC Observed X1 q0.1 q0.5 q0.9 q0.95 q0.99

X2 = 0.0589 1.4300 1.3007 2.0278 3.1615 3.5857 4.5422
X2 = 0.2125 2.1600 1.7937 2.8380 4.4860 5.1070 6.5133

Table 1.1: Quantiles of flood peak (X1) for given values of flood volume (X2) obtained from the
conditional CDF under independence, a Gaussian copula and the GPCC.

This allows for the possibility of the dependency between the two variables being different, for

example during a flood due to a natural disaster compared to a rainy season, even if the flood

volume has the same value.

Table 1.1 serves as a motivation for this study: The 99th quantile might be underestimated

when ignoring underlying dependencies. Although not evident in this dataset, even the Gaussian

copula may lead to underestimations with datasets containing non-linear and extreme values such

as the data of the 2007 financial crisis case study. The motivation of this study is to investigate

copulas which relax parametric and linear assumptions on datasets which pose these challenges.

1.2 Aims and objectives

The aim or this study is to improve dependence modelling with copulas by relaxing parametric

and linear assumptions. In more detail, this study has the following objectives:

Tail Dependencies

The two main approaches to handling outliers or missing data are to either remove them, or replace

them with some other appropriate value [15], but there are instances, such as in risk-management,

where these anomalous observations are of key importance and cannot be eliminated. In these

cases, appropriate methods are needed to model tail dependencies.

How well copulas perform in capturing tail (extreme) dependencies as well as dealing with

missing observations will be evaluated, as well as whether enhancing the model from a copula to

a dynamic copula will increase the accuracy of predictions and estimations.
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Non-parametric, non-Gaussian and non-linear

Most traditional methods for dealing with complex dependency structures assume a Gaussian

distribution and linear correlation structure, but these assumptions are often violated in practical

applications [55, 19].

Furthermore, non-parametric procedures do not require the form of the distribution to be spec-

ified in advance, making it more flexible than parametric models when the underlying distribution

is difficult or uncertain, but they are more difficult to interpret and estimate, especially for large

datasets [29].

A Bayesian approach will be applied for model improvement when the underlying distribution

of the data is non-parametric or non-Gaussian and the dependency structure non-linear.

Underlying Covariates

While ignoring underlying covariates might yield reasonably accurate models in some instances,

time has been found to have an influence on copula parameters when modelling financial data, and

bringing this into account therefore leads to improved prediction and estimation [17].

Traditional copulas can be improved with the conditional copula process to take underlying

(temporal) covariates that have a potential influence on the correlation structure between variables

into account. Introducing a Bayesian framework to the copula also improves the model for the

multi-dimensional case.

Model Complexity

The first problem in high-dimensional dependence structure models is that the computational cost

of approximation and parameter estimation increases as the dimension increases [37], making

traditional bivariate copula methods, such as MLE [54] and MCMC [45] practically infeasible.

A Bayesian approach can be used to addressed this problem without dimensionality reduction.

1.3 Contributions

The contributions of this study can be summarised as follows:
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• Theoretical overview of copulas, serving as a concise “cheat sheet” of the most commonly

used copulas.

• Description and motivation of dynamic copulas. More specifically the Student’s t Gaussian

process conditional copula, using time as the conditioning variable.

• Two applications:

Comparison of the different methods for modelling exchange rate time series dependence;

Novel application of copulas to capture the coupling in geomagnetic storms.

• A Student’s t Gaussian process conditional copula toolbox for MATLAB on GitHub1.

1.4 Outline

Chapter 1: Introduction

We start with a simple, intuitive overview of copulas. The motivation, aims and objectives, as well

as the contributions of this research are also given.

Chapter 2: Literature review

This chapter summarises the most common techniques used and some advantages and disadvan-

tages of the different models discussed in the research.

Chapter 3: Copulas

A comprehensive introduction to copulas, including theory on basic concepts and some common

copula families, measures of dependence, goodness of fit and estimation. We conclude the chapter

with an example application.

Chapter 4: Gaussian process conditional copulas

A short discussion on the need of dynamic copulas is given, following theory on conditional cop-

ulas, measures of dependence, goodness of fit and estimation. The Gaussian process conditional
1GPCC Toolbox:

https://github.com/ColetteLR/GPCC.git
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copula is discussed in detail and continuation of the example in Chapter 3 is given.

Chapter 5: Application

The first application is a comparison of the static and dynamic copulas on foreign exchange time

series data. The second is a novel application of copulas as a way to quantify the coupling effi-

ciency between the solar wind and magnetosphere of geomagnetic storms.

Chapter 6: Conclusion

We discuss the main results, contributions and limitations of the research, as well as some possible

considerations for future work.
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Chapter 2

Literature Review

2.1 Copulas

In 1940 and 1941, Hoeffding derived many of the basic results for copula functions, and in 1951

Fréchet independently derived many of the same results. It was not however until 1959 that Abe

Sklar introduced the name copula [43], derived from the Latin word copulare, meaning to link or

join, to describe these functions. In rediscoveries by other authors, they have been referred to as

uniform representations [20] and dependence functions [27].

Value Proposition

The main advantage of copulas by design, is to model the dependency structure of a multivari-

ate probability distribution independently of its univariate, uniform marginal distributions. This

simplifies the calculation of the multivariate joint distribution when the marginals come from dif-

ferent families of distributions or when the RVs are of mixed types [20, 43], making it a very

flexible model [2]. Copulas are therefore of interest to statisticians as a way of studying scale-free

measures of dependence and a starting point for constructing families of bivariate distributions

[43].

Another advantage is the wide variety of available bivariate copula families, which gives rise to

a more accurate and reliable measure of dependence for each data situation. One such parametric

family is the elliptical family, comprising the Gaussian and Student’s t copula, which are ideal

for modelling symmetric dependency structures in high dimensions. These copulas make use
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2.2. GAUSSIAN PROCESSES LITERATURE REVIEW

of marginal distributions and correlation measures, such as Spearman’s rank and Kendall’s tau

[43]. The Pearson product moment correlation coefficient estimates the linear relationship between

marginal distributions, but is inaccurate for non-linear data, in which case the aforementioned

two measures are a better alternative [49]. Another family is the Archimedean family, including

the Gumbel, Frank, Joe, Clayton and Independent copulas [25], which capture asymmetric tail

dependence [49]. These copulas can however not model dependence structures with more than

two dimensions [50], and most of them have few parameters, making them less flexible.

The disadvantage that comes with these advantages is that the number of multivariate dis-

tributions that have the same underlying copula is not limited, since the dependence structures

described by the copula are independent of the marginal distributions. Although the marginals can

easily be found from standard univariate methods, the wide variety of dependence patterns that

need to be represented by the models makes it less straightforward to know when which copula

should be applied [23].

While maximum likelihood is the most efficient estimation method in the fully parametric case

[54], a semiparametric copula-based model uses the copula decomposition of the joint distribution

to employ a non-parametric model for the marginal distributions and a parametric model for the

copula [43].

The most common goodness of fit tests for copula models are the Kolmogorov-Smirnov (KS)

and Cramèr-von Mises (CvM) tests [25, 43]. Other alternatives for copula selection include the

Akaike information criterion (AIC) [2, 50], Bayesian information criterion (BIC) [54], cross-

validation [37] and other Bayesian methods [15].

In the next section, we introduce Gaussian Processes (GPs). GPs combined with copula mod-

els can lead to better dependency modelling, specifically in the tail regions of the distributions.

2.2 Gaussian Processes

Gaussian processes (GPs) are non-parametric, non-linear regression and classification tools often

applied in machine learning, fitting distributions over all possible functions that are consistent

with observed data. GPs can be defined by a mean function and covariance matrix consisting of

positive definite kernel functions [29] of which one common kernel function used as a measure of

similarity is the Radial Basis Function (Gaussian or Squared Exponential kernel function).
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The advantage of GPs is that it uses the closure marginalisation and conditioning property

of Gaussian RVs for efficient learning and inference [19], and a Bayesian framework for model

selection and handling of missing data [17].

Approximation methods include the Dirichlet process prior [45], Laplace’s approximation

[51], Gibbs sampling [45], FITC approximation [23], Markov chain Monte Carlo (MCMC) ap-

proximation [37, 51] and expectation propagation (EP), which can be employed for approximate

Bayesian inference [17, 23].

Due to the aforementioned closure property, a GP leads to severe under-estimations in risk-

management for non-Gaussian applications [19], such as modelling financial data, wind-speeds

and temperatures, and damage from natural disasters. This problem can be addressed with a

copula process.

2.3 Copula Processes

A copula process (CP) can be used to describe the correlation structure between an arbitrary (finite)

set of uniform RVs by fitting a distribution over each data point. Combining a GP with a copula

function through a CP, behaviour of the marginals can be separated from the structure of depen-

dence while keeping the non-parametric benefits of the GP, even when working with non-Gaussian

distributions. Methods applied in literature to achieve this include the kernel-based copula process

(KCP) [19], and the Bayesian Gaussian regression copula framework with discrete, continuous or

mixed outcomes [46].

The Gaussian copula process can model the correlations between volatilities at different points

in time, include other covariates (such as interest rates for financial data) and handle missing data

without difficulty. Another advantage of CPs is that random samples, with arbitrary sizes and

marginal distributions, can be generated with desired dependency structures [52]. An example is

using Gaussian RVs and transforming them to uniform RVs with an underlying GP dependency

structure, specified by a covariance function. These uniform RVs can then again be fed into

the inverse CDF of another distribution to obtain RVs from this new distribution, but with the

underlying dependency structure still being that of the GP.

Different data collection methods are used with different research situations. Often underlying

covariates, such as the spatial or temporal intervals at which the data is collected has an influence
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on the observed dependence between the main variables.

While ignoring these covariates might yield reasonably accurate results in some instances [23],

it has been found that time has an influence on copula parameters when modelling financial data

(and therefore potentially in other data as well), and bringing this into account therefore leads to

improved prediction and estimation [17].

While the CP allows additional covariates to be included in the model, the conditional copula

allows us to condition on these covariates. This enables the modelling of the change in the depen-

dence structure between the main variables in line with changes in the underlying covariate, thus

modelling of the effect of underlying covariates.

2.4 Conditional Copulas

The conditional copula is a natural extension of a copula, linking joint conditional and marginal

conditional distributions [37], and is extremely useful in modelling high-dimensional data.

Since an n-dimensional copula is simply a CDF with uniform marginals [41], the copula

(which is assumed to be parametric) can be used to estimate a conditional CDF, while the GP

is used to specify the parameters of the copula by approximating the non-linear functions of the

conditioning variables.

GPs only allow for copulas with one parameter when used to model conditional copulas, but

methods have been applied to extend the work to accommodate for copulas with multiple param-

eters [17], such as the Student’s t Gaussian process conditional copula (GPCC-T).

The complexity of estimating the functional relationship between the copula parameter and

covariates in many parametric copula family applications lead to the need for more flexible models,

such as semiparametric and non-parametric inferential tools [37].

Combining the advantages of a conditional copula approach with the modelling flexibility of

Bayesian non-parametrics has been proposed [17], allowing the density of any bivariate condi-

tional copula with continuous or mixed outcomes to be estimated [46].

Many families of parametric copulas are available for different bivariate data situations. How-

ever, the choice of parametric modelling families when working with multivariate copulas are

much more limited, which is why vine copulas, or pair copula constructions are investigated [23].

Although vine copulas are not discussed in this work, we mention it briefly for reference in
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future work.

2.5 Vine Copulas

Traditional multivariate copulas are limited to cumbersome and inefficient optimisation proce-

dures, and Harry Joe proposed vine copulas, also known as pair copula constructions, to address

this issue in 1996 [55].

A vine copula is a hierarchical factorisation of a high-dimensional copula into the product

of bivariate copula densities. The pair copulas can have conditional or unconditional distribution

functions and be selected from any parametric or non-parametric family, making it a very flex-

ible model [23, 45, 55]. This flexibility makes vine copulas preferable to elliptical copulas for

describing complex dependence structures, especially ones with different (asymmetrical) tail de-

pendencies [50]. Vine copulas perform well in describing highly non-linear dependencies [55] and

have an advantage over its opponents in dealing with missing and abnormal observations [50].

Examples of vine copulas include the canonical vines (C-vines), drawable vines (D-vines) and

regular vines (R-vines), which are a generalisation of all other types [23, 54]. The structure of an

R-vine consists of a chain of nested trees with nodes and edges [54].

Complications with higher dimensions

Maximum likelihood estimation (MLE) is typically used for parameter estimation, but the large

number of parameters and complexity of the function for the high-dimensional case makes it

difficult to solve with the traditional partial derivative. A common solution to this problem is

applying the Nelder-Mead method [54].

The second problem is that stochastic processes form the basis for approximation and sampling

methods used in copulas and GPs, among which the most common is MCMC [35]. However, this

algorithm becomes practically infeasible, as the data dimensions required for computations are

exponential per sampling step [45]. Since the number of variables to be conditioned on increases

as one moves deeper into the vine hierarchy, calculating the conditional bivariate copula densities

becomes very complex [23].

A maximum spanning tree (MST) algorithm can be employed to select the R-vine which mod-

els the variables with higher dependencies (and thus greater influence on the model fit) in the first
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several trees using a sequential method. As the transformed conditional variables in later trees get

closer to being independent, the difference among bivariate copula families become negligible.

Although this can still be accepted as a reasonable model, there is no guarantee that the resulting

model will be a global optimum, since the trees in the R-vines are modelled separately [50].

The model accuracy and efficiency can be improved and the computational burden lightened

by using the truncation method (using independent copulas for higher trees) [45] or simplification

method (using Gaussian copulas for higher trees) [50].

Dimensionality reduction methods such as principle component analysis (PCA) and indepen-

dent component analysis (ICA) assume that variables are linearly correlated and have a Gaussian

distribution, but this is often not the case in practical applications. Although many improved meth-

ods have been proposed to deal with these constraints, dimensionality reduction may unavoidably

lead to loss of information.

In addition, the truncation method enables vine models to be constructed from standard un-

conditional parametric bivariate copulas, but may cause some of the conditional dependencies in

the data to be ignored, leading to an overly simplistic estimation in some data situations [23].

2.6 Summary

This chapter provided a literature review of copulas, starting with static copulas and then progress-

ing to dynamic copulas and high dimensional copulas. We highlighted the main contributions,

advantages and disadvantages of each approach. In the next chapter, we discuss the basic theory

of copulas.

15



Chapter 3

Copulas

In this chapter, we introduce copulas as a method of measuring dependence. Understanding the

basics of copulas is crucial before one can move on to more complicated models, including extend-

ing the theory to dynamic (time-varying) data. The concepts defined here, are the basic building

blocks required for the rest of this dissertation. Figure 3.1 provides an outline of the chapter

contents.

3.1 Introduction

A natural part of everyday life is trying to minimise uncertainty and understand the risks involved

in decisions. The need to control these risks is prevalent in areas such as finance, insurance, econo-

metrics, meteorology, and many more, where underestimation can lead to large scale catastrophes.

While this decision making problem is still simple enough when only one variable is being

considered, it becomes more complex when a combination of variables need to be taken into

account in the process [5]. It is therefore desirable to understand how these variables co-vary, i.e.

how a change in one variable affects the other.

3.1.1 Dependency modelling

Dependencies arise when one factor affects more than one variable [9]. Examples of these are

• business cycles, such as the effect of change in season on all wine farms, also leading to

seasonal employment.
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Figure 3.1: Schematic illustration of Chapter 3

• concentration of risks in a given sector, say how an investor is affected by the corona virus

if he invested in different clothing brands, compared to if he had diversified his risks by

investing in different types of business, including food stores and pharmacies.

• extreme events, for example, how a hurricane affects businesses of all kinds.

Note that in all three cases, the individual variables (different farms, clothing brands and com-

panies respectively) may be considered unrelated under normal conditions, but the random factors,

such as cycles and extreme events, creates a dependency between them.

Why do we do dependency modelling?

In a Financial Risk Management setting, risks are measured and managed across a diverse range of

activities [3]. From the previous example of concentration of risks, investing in a variety of brands
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might seem ’safe’ in general (if one brand fails, others might still thrive), but it is the dependencies

that arise, or become visible under extreme events where all of these brands are negatively affected

at the same time that are of critical importance in order to reduce exposure to the risk of potential

losses.

Estimation of these dependencies under (normal) non-volatile conditions may be affected by

both the quality and quantity of data available, as well as the complexity of the dependence struc-

ture. Understanding dependency structures between different variable pairs are further compli-

cated when the structures are built up from several factors or when dependencies occur at different

levels.

An example is how students are clustered within classes under teachers, and these teachers

are again clustered within a school. Due to the multilevel (nested) data structure, students within

the same class may achieve marks that are more alike than they are to that of students in different

classes (i.e. different teachers). Similarly, teachers in the same school may be more similar to each

other than the teachers in other schools. Ignoring these relationships within and between groups

(classes or teachers and schools) could lead to misleading results.

Why is correlation important?

Classical methods estimate dependencies in terms of a covariance matrix induced from the data

[17]. These covariances are however sensitive to the measuring units of the variables and are

not bounded, making it difficult to compare different values. Correlation provides a unitless,

bounded measure of the strength and direction of the linear dependence between a variable pair

[3]. Similarly to dependencies, correlated data may arise from

• longitudinal studies (multiple measurements on the same variable at different points in time)

• clustering (measurements on variables sharing a common category or characteristic)

Although the variables are independent, the observations are correlated due to the nested data

structure. Ignoring correlation and analysing data as if independent may lead to incorrect infer-

ences and inefficient estimation.
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Correlation as dependency modelling technique

The Pearson’s correlation coefficient (defined in Section 3.3) is a scalar measure of the strength of

the linear association between two variables and is only appropriate when working with normal,

or more generally, elliptical distributions [9]. It is bounded on the interval [−1, 1] (whith ρ = −1

and ρ = 1 corresponding to perfect negative and perfect negative dependence respectively). It is

important to note that although independence implies uncorrelated (ρ = 0), the converse is not

true:

• independent: no relationship

• uncorrelated: no linear relationship

Another important fact to bear in mind is that correlation does not imply causation. It is possible

to obtain a significant value for correlation while two variables are absolutely uncorrelated. Take

for example an increase in ice cream sales accompanied by an increase in drownings at a beach.

Eating ice cream is certainly not a cause of drowning, but ice cream sales and swimming are both

influenced by sunny weather. Weather results in two uncorrelated events.

Why/when does correlation not work?

Often in practice the individual variables (marginals) are not well approximated by a normal dis-

tribution, but rather a skewed distribution. Furthermore, assuming a joint normal distribution

restricts the form of the dependence structure between marginal variables.

Correlation is calculated based on the marginal distributions of the variables which also leads

to some pitfalls [3]:

• Not all values on the interval [−1, 1] are attainable. This includes the possibility of having

perfect dependence, but a correlation other than −1 or 1.

• Correlation is not invariant under strictly (monotone) increasing transformations of the vari-

ables.

• The correlation is restricted to have finite variances, which is not the case for heavy-tailed

distributions.
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When working with non-elliptical distributions, the correlation coefficient is no longer a satis-

factory measure. In this case the marginal distributions and correlations are not enough to deter-

mine the joint multivariate distribution, since additional information about the dependence struc-

ture is required [3]. This is where the copula comes in handy.

Consider two variables X1 and X2. For these two RVs independent, the joint distribution is

simply the product of the two marginal distributions:

fX1,X2(x1, x2) = fX1(x1)fX2(x2).

If they are dependent with normal marginals, there exists a closed form equation for the correlation

known:

fX1,X2(x1, x2, ρ12)

If they are dependent with known marginal distributions, the joint distribution is obtained as

fX1,X2(x1, x2) = fX1(x1)fX2(x2)C,

where the copula C only contains information about the dependence between X1 and X2 (no

information about the marginal distributions). This can easily be extended to the multivariate case

for X1, X2, ..., Xn.

3.1.2 Copulas as a technique to model dependencies

Why it works better than correlation

For independent random variables, the joint distribution can be described by the marginal proba-

bility distributions, but when there is a dependency between the variables, some additional infor-

mation is needed to describe the joint probability distribution in full. Although a multidimensional

CDF can be used to represent the joint distribution, this leads to information duplication, since the

joint CDF can be used to reconstruct the marginals [21]. This duplication makes the process less

time efficient, and a duplication-free method is desirable.

The number of multivariate distributions that have the same underlying copula is unlimited

and the marginals can therefore not be obtained based on the copula. A copula is an efficient
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(duplication-free) method of representing the additional information about the multidimensional

distribution with known marginals.

As mentioned before, copulas model the dependency structure of a multivariate probability

distribution independently of its univariate, uniform marginal distributions. This simplifies the

calculation of the multivariate joint distribution when the marginals come from different families

of distributions or when the RVs are of mixed types [20, 43], making it a very flexible model [2].

Copulas are therefore of interest to statisticians as a method of studying scale-free measures of

dependence and a starting point for constructing families of bivariate distributions [11, 32, 31].

When not to use copulas?

It is important not to apply copula methods blindly in a ’black-box’ fashion. The flexibility of the

copula approach can be both a virtue and a potential pitfall [56]. If the model is misspecified, it

can lead to underestimations in dependencies which can make the difference between landing on

Mars and missing the planet entirely.

Another problem is instances where some underlying covariate significantly influences the ac-

tual dependencies, for example, dependencies varying over time or being affected by observations

of other variables or factors. Since standard copula methods are static and not capable of dealing

with conditional dependencies, using a copula to estimate dependencies may be inaccurate under

these situations [17].

3.2 Theory

In this section, basic copula concepts and theory are introduced. Note that the dependence and

goodness of fit measures, as well as estimation methods are defined in terms of copula theory,

where applicable.

3.2.1 Basic copula concepts

Sklar’s theorem states that for every multivariate (p-dimensional) cumulative distribution function

H with marginal distributions (F1, ..., Fp) there exists a copula C with uniform marginals such

21



3.2. THEORY COPULAS

that [32, 36, 48]

H(x1, ..., xp) = P(X1 ≤ x1, ..., Xp ≤ xp) = C(F1(x1), ..., Fp(xp)). (3.1)

For all marginal distributions continuous, the copula

C(u1, ..., up) = H(F−1
1 (u1), ..., F−1

p (up)), (3.2)

where ui = Fi(xi) and i = 1, ..., p, will be unique.

For H p-times differentiable, the joint density is obtained as

h(x) =
∂p

∂x1∂x2...∂xp
H(x) =

p∏
i=1

fi(xi)c(F1(x1), ..., Fp(xp)) (3.3)

with corresponding copula density [41, 48]

c(u1, ..., up) =
h(F−1

1 (u1), ..., F−1
p (up))∏p

i=1 fi(F
−1
i (ui))

. (3.4)

The copula analysis process separates the joint distribution into the copula and marginal dis-

tribution:

(X1, . . . , XN )T ∼ fX 7→

 fX1 , . . . , fXN

(U1, . . . , UN )T ∼ fU

Copula synthesis on the other hand, is the process of combining the copula with the marginals

to obtain the joint distribution:

fX1 , . . . , fXN

(U1, . . . , UN )T ∼ fU

 7→ (X1, . . . , XN )T ∼ fX

The survival copula, Ĉ, is defined as

H̄(x1, ..., xp) = P(X1 > x1, ..., Xp > xp) = Ĉ(F̄1(x1), ..., F̄p(xp)),

where H̄ is the joint survival function with marginal survival functions F̄i, i = 1, ..., p [31]. The

analysis of survival probabilities are of particular interest in credit risk violations [9].
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For p uniform RVs defined on [0, 1] with joint distribution function the copula C, the joint

survival function is C̄(u1, ..., up) = Ĉ(1−u1, ..., 1−up). From this property, a copula has radial

symmetry if C(u1, ..., up) = Ĉ(1− u1, ..., 1− up) [10].

Conditional probabilities

For some threshold value q, the conditional probabilities can be calculated as follows:

P(x1 < q|x2 < q) =
c(F1(q), F2(q); θ)

F2(q)

P(x1 > q|x2 > q) =
1− F1(q)− F2(q) + c(F1(q), F2(q); θ)

1− F2(q)

Values of q in the upper and lower tails are of particular importance [56].

Conditional distributions

Let C be the joint distribution of U1 and U2 with U1 observed, and U2 to be predicted or estimated.

The conditional distribution of the copula [41, 18] is then obtained as

P(U2 ≤ u2|U1 = u1) = lim
δ→0

P(U2 ≤ u2|U1 ∈ (u1 − δ, u1 + δ])

P(U1 ∈ (u1 − δ, u1 + δ])

= lim
δ→0

C(u1 + δ, u2)− C(u1 − δ, u2)

2δ

=
∂

∂u1
C(u1, u2).

For an n-copula C, let Ck(u1, ..., uk) = C(u1, ..., uk, 1, ..., 1) for k = 2, ..., n − 1. (Note

that C(1, ..., 1, ui, 1, ..., 1) = ui, since the marginal distributions are uniform.) Then for

U1, ..., Un with joint distribution function C, the conditional distribution of Uk, given the values

of U1, ..., Uk−1 is given by

Ck(uk|u1, ..., uk−1) = P(Uk ≤ uk|U1 = u1, ..., Uk−1 = uk−1)

=
∂k−1

∂u1, ..., ∂uk−1
Ck(u1, ..., uk)/

∂k−1

∂u1, ..., ∂uk−1
Ck−1(u1, ..., uk−1).

These conditional distribution concepts can be applied to generate a random variate (u1, ..., un)T

from C [10].
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3.2. THEORY COPULAS

Empirical copulas

An empirical copula is a non-parametric estimator of a copula:

Cn(u) = Hn(F−1
n1 (u1), ..., F−1

np (up)),

with Hn(x) = 1
n

∑n
i=1 I(Xi ≤ x) and Fnj(xj) = 1

n

∑n
i=1 I(Xij ≤ xj) for j = 1, ..., p the joint

and marginal empirical distribution functions respectively [7].

Invariance under monotonic transformations

Since a copula is independent of the marginal probability distributions, the dependence structure

does not change for any strictly increasing transformations of the random variables [41, 18].

Stated formally, for RVsX1, ..., Xp with dependence structure defined by the copula C, define

Ti : R 7→ R, i = 1, ..., p as a strictly increasing function. Then the dependence structure of the

RVs T1(X1), ..., Tp(Xp) is given by the same copula C.

This copula therefore captures the non-parametric, scale-invariant nature of the dependence

between the Xi’s.

Fréchet-Hoeffding Bounds

All copulas are contained within bounds corresponding to the cases of extreme dependence (illus-

trated in Figure 3.2). Consider the copula C(u) = C(u1, ..., up). Then

max{
p∑
i=1

ui + 1− p} ≤ C(u) ≤ min{u1, ..., up}

defines the Fréchet and Hoeffding bounds [41, 18, 32].

From the upper bound, the comonotonic copula, corresponding to perfect positive dependence

(U2 = U1 in the bivariate case), is given by

M(u) := min{u1, ..., up}.

This copula exists when Xi = Ti(X1) for i = 2, ..., p and Ti a strictly increasing transformation.

From the lower bound with p = 2, the countermonotonic copula, corresponding to perfect
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3.2. THEORY COPULAS

negative dependence (U2 = 1− U1 in the bivariate case), is defined as

W (u1, u2) = max{u1 + u2 − 1, 0}.

In contrast to these two copulas, the independence (product) copula satisfies

Π(u) =

p∏
i=1

ui.

Figure 3.2: Fréchet-Hoeffding bounds. The bottom surface and back side is the lower bound
C(u, v) = max{u + v − 1, 0}, while the front side is the upper bound, C(u, v) = min{u, v}
[41].

3.2.2 Some parametric copula families

In this section, some general theory about the different copulas are given, followed by a short

summary of important features.

Elliptical copulas

Let X be a p-dimensional random vector with µ ∈ Rp and Σ a p× p symmetric, positive definite

matrix. The characteristic function of X− µ is a function of the quadratic form tTΣt:

ϕX−µ(t) = φ(tTΣt)

For X elliptically distributed with parameters µ, Σ and φ, denote X ∼ Ep(µ,Σ, φ) [10].
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3.2. THEORY COPULAS

Some properties of elliptical distributions [10, 41]:

• The density of X is of the form |Σ|−
1
2 g((X− µ)TΣ(X− µ)) for some positive function g.

• p = 1 produces one-dimensional symmetric distributions with characteristic generator φ.

• If Σ is a diagonal matrix, X has uncorrelated components (0 < V ar(Xi) <∞).

• If X has independent components, then X ∼ Np(µ,Σ).

• A linear combination of independent elliptically distributed random vectors with the same

Σ (up to a constant c > 0) remains elliptical.

• The conditional distribution of X1 given X2 is also elliptical.

• For random vectors with a joint nonsingular (Σii > 0 for all i) elliptical distribution, the

linear correlation matrix is denoted by R, with Rij =
Σij√
ΣiiΣjj

.

• Since an elliptical distribution is uniquely determined by µ, Σ and φ, the copula of a non-

singular elliptically distributed random vector is uniquely determined by R and φ.

Although all margins of a multivariate elliptical distribution need to be of the same type,

an elliptical copula with different (not necessarily elliptical) types of margins can be chosen to

construct a realistic multivariate distribution.

In this case, the copula parameter R can no longer be estimated directly from the data, but its

relation to Kendall’s tau (3.6) can be used to obtain a more robust non-parametric estimator of the

linear correlation (sin(πτ̂2 )), which can again be estimated directly from the data.

Gaussian copula

CΣ(u) = ΦΣ(Φ−1(u1), ...,Φ−1(up))

The tractable properties of multivariate normal distributions enable multivariate extremes and

other non-normal dependency structures to be modelled. The multivariate normal distribution is

also the only elliptical distribution for which uncorrelated implies independence.

The Gaussian copula is asymptotically independent in both tails and has the linear correlation

coefficient as dependence parameter.
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3.2. THEORY COPULAS

It is a comprehensive copula [41], since it interpolates between the fundamental structures of

countermonotonicity, independence and comonotonicity via only one parameter (ρ = −1, 0 and 1

respectively, illustrated in Figure 3.3).

Figure 3.3: Simulated Gaussian copula with various levels of ρ

Student’s t copula

Cν,Σ(u) = tν,Σ(t−1
ν (u1), ..., t−1

ν (up))

The t-copula exhibits symmetric tail dependence. In contrast to the Gaussian copula, the t-copula

will exhibit dependence even for zero correlation, since some dependence is introduced by the

chi-square variables.

While elliptical copulas are derived from distributions, Archimedean copulas are given ex-

plicitly. Although simulation from elliptical copulas are easy, they do not have a closed form

expression and are restricted to have radial symmetry, such that asymmetries cannot be modelled.

Archimedean copulas are an ideal alternative in the case of asymmetries and a closed form expres-

sion for the copula can be obtained.

27



3.3. MEASURES OF DEPENDENCE COPULAS

Archimedean copulas

Let ϕ : [0, 1]→ [0,∞] be a continuous, strictly decreasing and convex function, such that ϕ(1) =

0. The pseudo-inverse, ϕ[−1] : [0,∞]→ [0, 1], is defined as

ϕ[−1](t) =

 ϕ−1(t) 0 ≤ t < ϕ(0)

0 ϕ(0) ≤ t <∞

For C a function from [0, 1]2 to [0, 1], an Archimedean copula is characterised by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)), (3.5)

where ϕ is referred to as the generator of C [7].

If ϕ(0) = ∞, then ϕ[−1] = ϕ−1 and ϕ is called a strict generator. In this case C(u, v) =

ϕ−1(ϕ(u)+ϕ(v)) will be a strict Archimedean copula [10] and C(u, v) > 0 for all (u, v) in (0, 1]

[31].

The main characteristics of the Clayton, Gumbel and Frank copulas are summarised in Table

A.1.

In general, with n ≥ 3, the multivariate Archimedean copula [10] becomes

Cn(u) = ϕ[−1](ϕ(u1) + ...+ ϕ(un))

= C(Cn−1(u1, ..., un−1), un)

3.3 Measures of dependence

Due to different copula functions having specific dependence structures, the values of depen-

dence parameters are not directly comparable across copulas. For this reason, these parameter

values need to be converted to some measure of concordance as the basis for testing the agree-

ment between the different methods. In this sub-section we introduce a few important measures

of dependence.
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3.3. MEASURES OF DEPENDENCE COPULAS

Figure 3.4: Different copula densities with the same dependence parameter value

3.3.1 Linear (Pearson) correlation

For RVs X and Y with nonzero finite variances, the linear correlation is given by

ρ(X,Y ) =
Cov(X,Y )√

V ar(X)
√
V ar(Y )

.

Under perfect linear dependence, i.e. Y = aX + b with a ∈ R\{0} and b ∈ R, it is almost certain

that |ρ(X,Y )| = 1, otherwise −1 < ρ(X,Y ) < 1.

From the property

ρ(αX + β, γY + δ) = sign(αγ)ρ(XY ),

α, γ ∈ R\{0} and β, δ ∈ R, the linear correlation is invariant under strictly increasing linear

transformations.

Since the Pearson correlation coefficient only measures the strength of the linear dependence

between variables, it is a useful measure of dependence in elliptical distributions [10, 18, 41]. It

is not a copula-based measure of dependence, and for any RVs which are not jointly elliptically

distributed, uncorrelated in this case does not imply no relationship (independence), since some

other dependence structure may still be present.
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3.3. MEASURES OF DEPENDENCE COPULAS

3.3.2 Rank correlation

Rank correlation is a non-parametric correlation estimator which is invariant under strictly increas-

ing transformations. Under continuous marginals, this correlation only depends on the unique

copula, and not on the marginals of the joint distribution.

For Spearman’s rank, the correlation of the ranks can be obtained by taking the linear correla-

tion of the probability-transformed RVs. In the multivariate case, the positive-definite correlation

matrix is obtained as

ρS(X) := Corr(F1(X1), ..., Fd(Xd))

with pairwise Spearman’s rho correlations ρS(X)ij = Corr(Fi(Xi), Fj(Xj)).

In the bivariate case of RVs X1 and X2 with continuous marginals, the corresponding copula

C can be used to derive the correlation directly [31] as

ρS(X1, X2) = 12

∫ 1

0

∫ 1

0
(C(u1, u2)− u1u2)du1du2 = 12

∫ 1

0

∫ 1

0
u1u2dC(u1, u2)− 3.

For a bivariate Gaussian copula, Spearman’s rho can be calculated using the Pearson correla-

tion coefficient,

ρS(X1, X2) =
6

π
arcsin

ρ

2
.

For RVs X1 and X2 independent of RVs X̃1 and X̃2, but with the same joint distribution,

Kendall’s tau can be calculated as

τ(X1, X2) : = E[sign((X1 − X̃1)(X2 − X̃2))]

= P ((X1 − X̃1)(X2 − X̃2) > 0)− P ((X1 − X̃1)(X2 − X̃2) < 0).

This is simply the difference between the probability of concordance and disconcordance of

(X1, X2) and (X̃1, X̃2) [31].

For X1 and X2 with continuous marginals and C the copula describing their dependence

structure,

τ(X1, X2) = 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1,

31



3.3. MEASURES OF DEPENDENCE COPULAS

and for the bivariate Gaussian copula,

τ(X1, X2) =
2

π
arcsinρ, (3.6)

which gives a much more robust estimate of the correlation compared to the Pearson estimator

[41, 18].

In both cases, the parameter values are bounded on [−1, 1], and a value of −1, 0 and 1 results

in the countermonotonic - , independent - and comonotonic copula respectively.

3.3.3 Tail dependence

Whereas correlation measures overall dependence, tail dependence considers the dependence be-

tween extreme values, i.e. probability of an extreme event occurring in one variable, given that

an extreme event occurs in another variable. Furthermore, for the continuous RVs, the tail depen-

dence is a function of the copula (dependence structure), and is therefore invariant under strictly

increasing transformations of the variables [10, 41, 56, 18, 42, 5].

Let some threshold value q represent an extreme event. Then, for RVs X1 and X2 with CDFs

F1 and F2, the coefficient of lower tail dependence is defined as:

λl := lim
q↘0

P (X2 ≤ F←2 (q)|X1 ≤ F←1 (q)) = lim
q↘0

P (X1 ≤ F←1 (q)|X2 ≤ F←2 (q)),

provided that the limit exists. For continuous CDFs, using Bayes’ rule,

λl := lim
q↘0

P (X1 ≤ F←1 (q), X2 ≤ F←2 (q))

P (X1 ≤ F←1 (q))
= lim

q↘0

C(q, q)

q
.

Similarly the coefficient of upper tail dependence is

λu := lim
q↗1

P (X2 > F←2 (q)|X1 > F←1 (q)) = lim
q↗1

P (X1 > F←1 (q)|X2 > F←2 (q)),

and for continuous CDFs,

λu = lim
q↗1

1− 2q + C(q, q)

1− q
.

For both coefficients, λi > 0 (where i = l, u) indicates tail dependence, while λi = 0 indicates

that X1 and X2 are asymptotically independent in the relevant tail. For symmetric copulas, λl and
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3.4. GOODNESS OF FIT MEASURES COPULAS

λu will be identical.

3.4 Goodness of fit measures

The goodness of fit measures are applied to evaluate the performance of different models and

accordingly select the model which leads to minimal loss of information from the true unknown

distribution [15]. The KS test evaluates the goodness of fit of a distribution function in the non-

parametric case, and scoring functions, such as AIC and BIC, are applied to compare models.

Discrepancy estimators can be used as scoring functions, where the trade-off in the models will be

to find a balance between a good fit and parsimony, or alternatively, between bias and variance.

3.4.1 Kolmogorov-Smirnov (KS)

The KS distance is used to test whether a RV X has a particular underlying distribution F .

This distribution can be estimated using the empirical distribution function, denoted by S(x) =

1
n

∑
I{xi ≤ x}, i.e. the propostion of sample observations less or equal to any point x [15].

Denoting the theoretical distribution under the hypothesis by F ∗(x), the hypothesis is defined as:

H0 :F (x) = F ∗(x)

H1 :F (x) 6= F ∗(x)

The KS statistic can then be calculated as

T1 = sup
−∞<x<∞

|S(x)− F ∗(x)|.

This statistic is simply the supremum of the (uniform) vertical distance between the two functions.

3.4.2 AIC & BIC

Although a higher model complexity yields greater model flexibility, and thus a better fit to the

observed data, it may also lead to overconditioning of the model [39]. The AIC and BIC scoring

functions overcome overconditioning by penalising model complexity, i.e. models with additional

parameters [15, 56]. Since these criteria do not have a threshold, their measurement scales are
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difficult to interpret, but in both cases, the model with the smallest value is preferable.

Akaike information criterion (AIC) takes the model complexity into account by adding a

penalty term based on the number of parameters in the model, thereby providing a more robust

measure of the quality of model prediction:

AIC = −2L(ξ̂; x) + 2d,

with L(ξ̂; x) the log likelihood function and ξ̂ the corresponding maximum likelihood parameter

estimates. AIC assumes that the number of parameters d stays constant as the sample size n

increases and does therefore not provide a consistent estimate for the dimension of an unknown

model.

Bayesian information criterion (BIC) solves the consistency problem of the AIC by taking the

sample size into account:

BIC = −2L(ξ̂; x) + dlog(n)

As n increases, BIC favours simpler models compared to AIC [15], and is therefore the preferred

evaluation method for the performance of different copula models.

3.5 Estimation

Once the appropriate marginal distributions and copula have been specified, the corresponding

parameters need to be estimated. Methods using the likelihood function and Markov chain Monte

Carlo are briefly discussed in this section.

3.5.1 Maximum likelihood estimation (MLE)

Maximum likelihood provides the best fit to the observed data by identifying the parameter set

which minimises the residuals of the model simulations and observations [39]. Using the joint

density in (3.3) with parametric marginal CDFs and an i.i.d. sample X1:n = (X1, ..., Xn), the

copula parameters are estimated by optimising the log-likelihood function

L(ξ; x) =
n∑
i=1

 p∑
j=1

log(fj(xi,j ;φj))) + log(c(F1(xi,1), ..., c(Fp(xi,p)); θ)

 (3.7)
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with respect to the parameters, where ξ = (φ, θ) with φ the marginal parameters and θ the copula

parameters [48].

The problem with MLE is that the number of parameters to estimate increases in line with the

number of variables, p, increasing the difficulty of the optimisation problem. In addition, misspec-

ification of any of the marginals can introduce biases in the estimation of both the marginals and

the copula [18]. These problems can be resolved by applying pseudo-MLE, which uses a two-step

approach for estimation.

3.5.2 Pseudo-Maximum likelihood estimation

Decomposing (3.7) into the marginal - and copula log-likelihood, the equation can be rewritten as

L(ξ; x) = mL(φ; x) + cL(θ; u, φ). (3.8)

In the first step, the marginal log-likelihoods (mL) are optimised independently of each other, and

in the second step the copula log-likelihood (cL) is optimised conditional on the results from the

first step [48].

Pseudo-MLE can follow either a parametric - or a semi-parametric approach [18]. While MLE

for both the marginals and copula is the most efficient estimation method in the fully parametric

case, a semiparametric copula-based model provides computational tractability, utilising the cop-

ula decomposition of the joint distribution to apply a non-parametric model for the marginals and

a parametric model for the copula. Estimation is then done via empirical CDFs for the marginals

and MLE for the copula [34].

For large values of d, the last term in (3.8) may still be difficult to maximise, in which case an

additional structure can be imposed on its parameters θ, or ideal starting values for the optimisation

can be obtained using a moment-matching approach [18].

3.5.3 Markov chain Monte Carlo (MCMC)

Monte Carlo is a method for sampling independent identically distributed (i.i.d.) random num-

bers from a desired (“target”) distribution p(x), using methods such as the inverse transform (or

probability integral transform) method and acceptance-rejection method (when the distribution is

unknown). If we want to estimate the expected value of some function f(.), we can adjust the
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accuracy of our estimated statistic by increasing the sample size n in the corresponding formula,

E[f(X)] =
1

n

n∑
i=1

f(Xi),

where X is our matrix of random numbers Xi for i = 1, ..., n and p(x) = 1
n since the random

numbers are i.i.d..

The Markov chain simulates a sequence of dependent random numbers, each dependent on

the previous number in the sequence, with limiting distribution p(x). Naturally, each value in the

Markov chain is dependent on the starting value. The first part of the sample in which the sequence

stabilises, called the “burn-in” period, can be discarded so that each Xi approaches a stationary

distribution, say p∗(.). Let i = 1, ...,M represent the “burn-in” period, the ergodic expected value

can be estimated as
1

n−M

n∑
i=M+1

f(Xi). (3.9)

By the ergodic theorem of stochastic processes, this will approach the expected value of f(X)

calculated with respect to p∗(.) as n→∞ for any fixed M , provided that the correlation between

the last observation f(Xn) and the sample mean calculated in (3.9) decreases as n increases.

The Markov chain Monte Carlo method is used to design ergodic Markov chains with p∗(.)

equal to p(x). Plotting these random numbers generated by the respective distributions in sequence

produces a random walk process. An advantage of the MCMC method is that the integral in the

Bayesian applications with posterior distribution as target distribution need not be calculated [44],

but can be approximated.

In this case the Bayesian approximation then makes use of the prior distribution and likelihood

function to obtain the posterior distribution through the relation posterior = prior × likelihood

or

p(θ | x) = p(θ)× p(x | θ).

The posterior distribution can be viewed as the posterior belief about the data after updating the

prior belief with new evidence (observed data). If no information about the data is available prior

to the estimation, a uniform distribution can be used, which will be referred to as an uninformative

prior. In this case the posterior distribution will be equal to the likelihood function and the accuracy

of the estimated posterior distribution can be improved by increasing the sample size. The opposite
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(decreasing the sample size) can be applied when information, and thus an informative prior, is

available. Here the posterior distribution will be similar to the prior distribution. When the prior

and posterior distribution belong to the same family of distributions, the prior is referred to as a

conjugate prior.

3.6 Example

The following example includes some of the basic copula concepts mentioned above. We use the

MATLAB multivariate copula analysis toolbox (MvCAT) with associated dataset ‘data2.txt’ to

repeat the frequency analysis example from [39].

3.6.1 Data description

In order to perform a multivariate frequency analysis on flood return periods at the Saguenay

River, annual flood peak [Q(m3/s)] and volume [V (m3)] data pairs were collected from daily

streamflow data. The dataset includes a total of 97 data pairs.

From the joint distribution plot in Figure 3.5 and the summary statistics in Table 3.2, both

variables have a leptokurtic, positively skewed distribution. Furthermore, the joint distribution

seems more concentrated in the bottom left corner, corresponding to a low flood peak and low

flood volume. We therefore expect some positive dependency between the two variables.

Figure 3.5: Joint distribution of flood peak [Q(m3/s)] and volume [V (m3)].
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flood peak [Q(m3/s)] flood volume [V (m3)]

Mean 2.1818 0.0670
Std. Dev. 0.8875 0.0380
Skewness 1.2713 1.2959
Kurtosis 4.6539 4.9516

Minimum 0.6900 0.0059
Q0.25 1.5625 0.0379

Median 1.9800 0.0589
Q0.75 2.5725 0.0823

Maximum 5.5000 0.2125

Table 3.2: Summary statistics

3.6.2 Dependence measures

The inter-dependency between the two flood variables is measured with different correlation co-

efficients and is summarised is Table 5.5.

Correlation type Correlation Coefficient p value Significant at 5%?
Kendall rank 0.2769 0.0001 Yes

Spearman’s rank-order 0.3994 0.0001 Yes
Pearson correlation

coefficient
0.2991 0.0029 Yes

Table 3.3: Evaluate dependence between the two input variables.

All of these measures indicate a significant dependence between the the two variables. We will

therefore consider both flood peak and volume, as well as their inter-dependency in our frequency

analysis model.

3.6.3 Estimation

The marginal distribution of each variable is estimated empirically. The best distribution function

fit is then selected based on the BIC goodness of fit metric. The parameters are estimated using

maximum likelihood, such that the distance between the empirical and modelled probability value

is minimised.

For the estimation of the copula parameters, we can either apply a local optimisation algorithm

or an MCMC simulation within a Bayesian framework. While local optimisation methods are

likely to get trapped in local optima, MCMC provides a more robust estimate of the global optima.

The latter also allows prediction uncertainty for the parameters to be measured by approximating
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the posterior distribution of the copula families [38, 39]. These posterior distributions of the

parameters are given in Figure 3.6.

The almost uniform marginal distribution for the second parameter of the t copula indicates

that the information in the observed data is not sufficient to constrain the parameters. This is also

visible in that the local optimisation and MCMC copula parameters do not coincide, but rather

diverge from each other. The parameters of the Clayton and Gumbel copulas converges to the

parameter bounds. This means that the optimisation algorithm is trying to improve the fit by going

outside the bounds, which is not permitted. These copulas are thus not appropriate for the data

[39].

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Posterior distribution of (a) Gaussian, (b-c) Student’s t, (d) Clayton, (e) Gumbel and
(f) Frank copulas derived by a MCMC simulation within a Bayesian framework. The copula value
derived by the local optimisation approach (red asterisk), theoretical value (green circle) and the
MCMC maximum likelihood parameter (blue cross) are also indicated on the graphs.

3.6.4 Goodness of fit

The chi-square goodness of fit test is applied to test whether the data is in fact sampled from the

fitted distribution at a 5% level of significance. The fitted marginal distributions and corresponding

estimated parameter values are summarised in Table 3.4. For a visual inspection, the CDF and
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QQ-plot of the two variables are given in Figure 3.7, and confirms that the fitted distributions are

acceptable.

Fitted distribution Par 1 Par 2 Chi-square test
Flood peak Log-Normal µ = 0.7070 σ = 0.3798 accepted

Flood volume Gamma α = 3.3792 β = 0.0198 accepted

Table 3.4: Evaluate fit of marginal distributions to flood peak and volume data.

(a) (b) (c) (d)

Figure 3.7: Visual comparison of the fitted distribution (red line) and the empirical distribution
(blue dots). The cumulative distribution function and corresponding quantile-quantile plot for the
flood peak are given in figures (a) and (b) respectively, and that of the flood volume are given in
figures (c) and (d).

In terms of the copula goodness of fit, maximum likelihood, Akaike information criterion

(AIC), Bayesian information criterion (BIC), Nash-Sutcliffe efficiency (NSE), and root mean

squared error (RMSE) are used as metrics, and are summarised in Table 3.5. Note that an NSE

value of 1 and an RMSE value of 0 are considered to be a perfect fit respectively.

Copula ML AIC BIC NSE RMSE
Gaussian 421.5835 -841.1670 -838.5923 0.9971 0.1276

Student’s t 421.6730 -839.3460 -834.1966 0.9971 0.1275
Clayton 410.4603 -818.9206 -816.3459 0.9964 0.1431
Gumbel 416.3809 -830.7618 -828.1871 0.9968 0.1346
Frank 400.6776 -799.3553 -796.7806 0.9955 0.1583

Independence 298.1974 -596.3947 -596.3947 0.9631 0.4553

Table 3.5: Goodness of fit criteria of the fitted copulas: Maximum Likelihood (ML), Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion (BIC), Nash-Sutcliffe Efficiency (NSE),
and Root Mean Squared Error (RMSE).

While likelihood, NSE and RMSE only focus on minimizing the residuals between observa-

tions and model simulations, the AIC and BIC take additional criteria, such as model complexity
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and number of observations, into consideration. Although the former three metrics all suggest a

Student’s t copula as the best fit, the estimated degrees of freedom is large enough (> 25) that we

can switch to the Gaussian copula instead, corresponding to the AIC and BIC suggestion.

The dependency structure between flood peak and flood volume as estimated by the different

copula models are plotted in Figure 3.8. It is clear how different copula families can return dif-

ferent dependence structures, even though they are all modelling the same dependence structures.

This emphasises the significance of the choice of copula and quantifying the underlying copula

model uncertainties [39].

The parameter estimates for the different copulas, along with their 95% uncertainty range as

derived by the MCMC simulation, are summarised in Table 3.6. From this it is also seen that the

uncertainty is minimised for the Gaussian copula.

Copula Par 1
Local

Par 2
Local

Par 1
MCMC

95% Par 1
Uncertainty

Range

Par 2
MCMC

95% Par 2
Uncertainty

Range
Gaussian 0.4055 NaN 0.4576 [0.4317, 0.4838] NaN NaN

Student’s t 0.4320 18.7059 0.4574 [0.4260, 0.4841] 26.2503 [5.7991, 34.3748]
Clayton 0.7549 NaN 0.8257 [0.7434, 0.9024] NaN NaN
Gumbel 1.3350 NaN 2.8202 [2.6299, 3.0367] NaN NaN
Frank 2.6168 NaN 1.4243 [1.3802, 1.4693] NaN NaN

Independence NaN NaN NaN NaN NaN NaN

Table 3.6: Estimated copula parameters.

Choosing the Gaussian copula as the best fit, the joint probability isolines for the copula data

space, along with its corresponding return period levels and survival copula data space are given

in Figure 3.9. The joint return period (RP) is estimated as

RP =
1

P (Q ≥ qp, V ≥ vp)
=

1

1− C(u, v)

such that either flood peak (Q) or flood volume (V), or both exceed a pre-specified threshold value

(qp, vp) [39]. Note that this is simply the inverse of the survival copula for the specified threshold

values. For a return period of 25 years, the design values of flood peak and volume, based on the

most likely design scenario, is 4.382m3/s and 0.1583m3 respectively. The design values derived

through univariate analysis are 3.945m3/s for flood peak and 0.1424m3 for volume. From these

results it is clear that ignoring the interactions between these variables can lead to underestimation
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Dependence structure of flood peak (x-axis) and flood volume (y-axis) presented in
probability space. The (a) Gaussian, (b) Student’s t, (c) Independence, (d) Clayton, (e) Gumbel
and (f) Frank copulas are used to illustrate the bivariate dependence. The observed data is given
by blue dots, and the copula joint probability isolines are colour coded according to joint density
levels. Blue indicates lower densities, and red higher densities.

of the hazard [38].

3.7 Summary

Copulas are the basic building blocks of this report. Although ample other copulas exist, only a

few basic ones are mentioned here. These other copulas range from copulas with unique character-

istics, such as the Marshall-Olkin copulas incorporating Poisson processes, to mixtures of existing

copulas to overcome limitations of the individual families. Due to these individual characteristics,

misspecification of models and parameters can lead to under- or overestimation of dependence

structures, which could have detrimental effects on interpretation and application of these results.
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(a) Copula data space (b) Survival copula data space

(c) Return period

Figure 3.9: Joint probability isolines (a) derived from the Gaussian copula and the corresponding
survival copula (b) with the marginal cumulative distributions of flood peak and flood volume. The
associated return period isolines and univariate return periods are given in (c). The observed data
is depicted by blue dots, and the joint probability and multivariate return period isolines are colour
coded according to joint density levels. Blue indicates lower densities, and red higher densities.

The flexibility or generality of copulas compared to other dependency measures can therefore

serve both as an advantage and a risky downfall. Understanding the underlying basics of copu-

las is therefore crucial before starting with applications. In this chapter the focus was on static
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copulas. Extending these to model dynamic dependence will be investigated in the next chapter.
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Chapter 4

Gaussian process conditional copula

4.1 Introduction

Economic and financial time series are known to exhibit time-varying conditional standard devia-

tions (volatility) and correlations [53]. These time series are typically characterised by a leverage

effect and volatility clustering. The former refers to the tendency of negative returns to increase

correlation more than positive returns of the same magnitude, thus having an asymmetric depen-

dence [33]. Volatility clustering is simply periods of low and high volatility, which do not usually

present any systematic patterns.

A similar problem is observed in geomagnetic storms, where the relationship between the

shocked solar wind and the geomagnetic field can be viewed as a highly non-linear, non-stationary

transfer function [24]. Fully understanding and quantifying the coupling between the solar wind

and the magnetosphere for the known phases of storms is an important task for space physicists

striving to provide accurate predictions of geomagnetic storms (see Section 5.2).

4.1.1 Why dynamic copulas?

Considering two exchange rates, a bivariate Student’s t distribution may be a natural starting point

for modelling the joint distribution, since the Student’s t distribution provides a reasonable fit to

the conditional univariate distribution, but it is restricted by the property that both marginals must

have the same degrees of freedom parameter and imposes a symmetric dependence structure [33].

Furthermore, there is no obvious choice of bivariate density when the two variables of interest have
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very dissimilar marginal distributions. The tendency of co-evolving risks and varying correlation

between returns complicates risk management and gives rise to the need for a more flexible model,

such as the copula.

Extending the theory of copulas from unconditional to conditional allows its use in the analysis

of time-varying conditional dependence. Given the conditional joint distribution, the conditional

moments and other dependence measures of interest can be obtained [33].

In this chapter, we consider the relaxation of a parametric copula by introducing the Gaussian

process conditional copula, combining the advantages of a conditional copula approach with the

modelling flexibility of Bayesian non-parametrics.

The structure of this chapter follows a similar ‘flow’ to that of Chapter 3: We start with an

introduction to the basic theoretical concepts of conditional copulas. Measures of dependence,

goodness of fit and estimation methods are discussed in the Section 4.3 to 4.5 before going into

more detail about the Gaussian process conditional copula (GPCC) in Section 4.6, which is the

main focus of this research study. Again we end the chapter with an example application in of the

concepts discussed. This example is a continuation of that at the end of Chapter 3.

4.2 Theory

4.2.1 Conditional copulas

The conditional copula is introduced when the dependence structure between two variables

changes with the value taken by some covariate [14]. A conditional copula links joint conditional

and marginal conditional distributions. If X ∈ Rp is a covariate vector, then

HX(y1, ..., yk|X) = C(F1|X(y1), ..., Fk|X(yk)|X),

with all (y1, ..., yk) ∈ Rk and marginal distribution functions Fi|X(yi) = P(Yi ≤ yi|X = x) for

i = 1, ..., k [37]. If these marginals are continuous in y, there exists a copula CX, such that

CX(u1, ..., uk) = HX(F−1
1|X(u1), ..., F−1

k|X(uk)),

46



4.2. THEORY GAUSSIAN PROCESS CONDITIONAL COPULA

where F−1
i|X(u) = inf{y : Fi|X(y) ≥ u} is the conditional quantile function of Yi given X = x.

The conditional dependence structure of (Y1, ..., Yk)
T given X = x is fully described by the

conditional copula CX [47].

For HX p-times differentiable, the joint density is obtained as

hx(y1, ..., yk|X) =
∂p

∂y1∂y2...∂yp
HX(y1, ..., yk|X) =

p∏
i=1

fi|X(yi)c(F1|X(y1), ..., Fp|X(xp)|x).

(4.1)

Although the conditional joint distribution (Y1, Y2)|X can be computed from the unconditional

joint distribution of (Y1, Y2, X), assuming X is one-dimensional:

F12|X(y1, y2|x) = fx(x)−1∂F12X(y1, y2, x)

∂x
for x ∈ X ,

for fx(x) and X the unconditional density and support of X respectively, the conditional copula

of (Y1, Y2)|X cannot be computed from the unconditional copula of (Y1, Y2, X).

The conditional copula of (Y1, Y2)|X = x, where Y1|X = x ∼ F1|X(.|x) and Y2|X =

x ∼ F2|X(.|x), is defined as the conditional joint distribution function of U = F1|X(Y1|x) and

V = F2|X(Y2|x) givenX = x. U and V are the probability integral transforms of Y1 and Y2 given

X . Here X must be the same for both the marginals and the copula to ensure that the resulting

function is a multivariate conditional joint distribution [33, 34].

Copula-based time series models

For multivariate time series applications, consider some information set Ft−1. For t ∈ {1, ..., T},

let Yt|Ft−1 ∼ F (.|Ft−1), and Yit|Ft−1 ∼ Fi(.|Ft−1). Then, using an extension of Sklar’s

theorem for conditional joint distributions [33]

H(y|Ft−1) = C(F1(y1|Ft−1), ..., Fk(yk|Ft−1)|Ft−1).

When the conditional distribution Fit is modelled parametrically (ex. Normal, standardised Stu-

dent’s t, etc.), it may be modelled as time-varying, but when estimated non-parametrically (using

the empirical distribution function), it is assumed constant, such that Fit = Fi for all t [34].
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Gaussian process conditional copula

The Gaussian process conditional copula (GPCC) is an extension of the conditional copula model,

such that the approximate inference allows for copulas with multiple parameters, instead of just

one. Estimation of the conditional copula is done using a general Bayesian non-parametric frame-

work based on Gaussian processes (GPs). For this framework, the copula parameters are unknown

non-linear functions of arbitrary conditioning variables. The GPCC is the main focus of this study,

and is discussed in more detail in Section 4.6.

Empirical conditional copula

An empirical estimator for Hx(y1, y2) is

Hxh(y1, y2) =

n∑
i=1

ωni(x, hn)I{Y1i ≤ y1, Y2i ≤ y2},

where {ωni(x, hn)} is a sequence of weights that smooth over the covariance space and hn > 0 is

the bandwidth, which tends to 0 as the sample size increases [14, 47].

From this we obtain the empirical estimator of the conditional copula Cx(u1, u2):

Cxh(u1, ..., up) = Hxh(F−1
1xh(u1), ..., F−1

pxh(up)).

4.3 Measures of dependence

Suppose we observe (Y1, Y2, X)T , but are interested in the relationship of (Y1, Y2)T . Ignoring the

confounding factor X may distort the true relationship of (Y1, Y2)T . Partial correlation coefficient

of (Y1, Y2)T given X , such as Pearson’s or ranked based methods, are used to adjust for the

influence of X . The remaining question is whether the relationship is the same for “small” (lower

quantile) and “large” (upper quantile) values of X , which is where we incorporate the conditional

copula [14].

The measures of dependence for the conditional copula are calculated similarly to the case with

non-conditional copula models, however, the conditional association measures are now functions

in the covariate.
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Simply substituting the copula with a conditional copula, the population conditional Spear-

man’s rho is

ρS(x) = 12

∫ ∫
Cx(u1, u2)du1du2 − 3.

Similarly, the population conditional Kendall’s tau of (Y1, Y2)T given X = x is given by

τ(x) = 4

∫ ∫
Cx(u1, u2)du1du2 − 1

= 2P((Y1 − Ỹ1)(Y2 − Ỹ2) > 0|X = X̃ = x)− 1

where (Ỹ1, Ỹ2, X̃)T is an independent copy of random vector (Y1, Y2, X)T .

4.4 Goodness of fit

4.4.1 KS & CvM

Once again, the Kolmogorov-Smirnov (KS) and Cramér-von-Mises (CvM) tests are used, com-

paring the fitted copula CDF to the empirical copula. These tests rely on the assumption that the

true conditional copula is constant. An alternative is using the Rosenblatt transform, which can be

used to test both static and time-varying copula models [34]. This simply involves transforming

the data to uniform using the PIT method and then applying the appropriate goodness of fit test to

the transformed data.

4.4.2 Quantile dependence

Comparing the quantile dependence implied by different copulas to the sample quantile depen-

dence gives a visual indication for improvement of the model, compared to the KS and CvM tests

which provide no further information if the null of correct model specification is rejected [34]. For

quantiles q ∈ [0.025, 0.975], the lower and upper quantile dependence are given by

λqL = P (U1≤q,U2≤q)
q 0 < q ≤ 0.5

λqU = P (U1>q,U2>q)
(1−q) 0.5 < q < 1.

These coefficients measure the strength of dependence between two rvs in the joint upper and

lower tails of the support of the distribution [13]. We observe lower (upper) tail dependence if λqL
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(λqU ) is greater than zero. For either λqL = 0 or λqU = 0, the corresponding tail is asymptotically

independent, and λqL = λqU indicates radial symmetry.

Taking the difference between the corresponding tail quantiles gives a clear indication of asym-

metry in the dependence structure. Using a bootstrap confidence interval for the difference, the

null hypothesis H0 : λq = λ1−q is not rejected if the confidence interval includes the zero line

[13].

4.5 Estimation

4.5.1 Maximum likelihood estimation

In the fully parametric case, maximum likelihood is the most efficient estimation method. The

drawback is the computational burden from the number of parameters to be estimated. This prob-

lem can be simplified by estimating the model in stages. This multi-stage maximum likelihood

(MSML) estimation is less efficient than one-stage (full) MLE.

For a semiparametric approach, canonical maximum likelihood, or pseudo maximum likeli-

hood makes use of the copula decomposition of a joint distribution, allowing the marginals and

copula to be estimated with different methods (using a non-parametric and and parametric model

respectively) [34].

4.5.2 Generalised FITC approximation

A Gaussian process is a flexible non-parametric modelling approach, with its Bayesian foundation

providing good predictive power, as well as an estimate of the variance (i.e. an error bar for pre-

diction). It is, however very time costly, because of the covariance matrix, which is the same size

as the number of observations. The fully independent training conditional (FITC) approximation,

which is a generalization of the sparse pseudo-input Gaussian process (SPGP) model, serves as a

sparse approximation to full GPs to accelerate training and prediction times.

The FITC approximation makes use of all data, yielding a closer approximation to the posterior

distribution. By fitting a stable posterior at each iteration, it provides more accurate marginal

likelihood estimates and derivatives thereof, allowing for more reliable model selection.

Its ability to locate inducing inputs independently of the training data is a further advantage in
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finding the sparsest solutions [30].

4.5.3 Expectation propagation

Expectation propagation (EP) combines assumed-density filtering (ADF) and loopy belief prop-

agation for a deterministic approximation technique in Bayesian networks. It is a fixed point

algorithm, iteratively updating parameters until they stabilise. Since the order of these iterations

are not important, the information from later observations can be used to refine the approximations

made earlier, so that only the most important information is retained [28].

Given a joint distribution p(x,D) with observable variables, D, and latent variables, x, from

an exponential family F , we want to learn the posterior over x, p(x|D), as well as the model

evidence, p(D).

Here we explain EP step by step:

I. Write the posterior as a product

For independent data points with prior p(x) and likelihood p(D|x) =
∏n
i=1 gi(x), the target

distribution

π(x) = p(x|D) ∝ p(x)
n∏
i=1

gi(x)

can be written as a product of factors (or sites), π(x) ∝
∏n
i=0 gi(x), where g0(x) is the prior.

II. Approximate as a product of approximate factors

Usually, the posterior is intractable, and we use an approximate distribution q(x) ∈ F . For F the

exponential family, we then have

q(x) = q(x|θ) = exp(θ′φ(x)− Φ(θ)), θ ∈ Θ,

where we refer to θ as the natural parameters, Θ the natural parameter space, φ(x) the sufficient

statistics and Φ(θ) the log partition function. From this, the moment parameters can be calculated

as η = Eθ[φ(x)] (the expectation of the sufficient statistics with respect to p(x|θ)).

EP first approximates gi with some g̃i and then uses an exact posterior with g̃i. Define this

51



4.5. ESTIMATION GAUSSIAN PROCESS CONDITIONAL COPULA

approximate term as the ratio of the new posterior to the old posterior multiplied by a constant:

g̃i(x) = g̃i(x|θ(i)) = Zi
q(x)

q\i(x)

where g̃i(x) ∈ FU , with g̃i the site approximations and θ(i) the site parameters. FU refers to the

unnormalised exponential family associated with F and

q(x) ∝
n∏
i=0

g̃i(x) = exp(θ′φ(x)).

III. Hybridise the true and approximate distribution

Form a hybrid between the true and approximate distribution by replacing one of the approximate

factors with a true factor.

We start by removing the approximate factor to form a cavity:

q\i(x) ∝
q(x)

g̃i(x)
.

This step can be seen as message deletion, since each site (each bit of likelihood) contributes

information to the whole approximation and the cavity removes that contribution. In terms of

natural parameters, this is θ\i = θ − θ(i).

Next we project gi(x)q\i(x), by taking the exact posterior

p̂(x) = Z−1
i gi(x)q\i(x)

and minimise the KL-divergence D(p̂(x)‖q(x)) for normalising factor Zi =
∫
x gi(x)q\i(x)dx.

The new posterior q(x) ∈ F contains the true factor gi(x), thus message inclusion, and has the

same moments as p̂(x) (moment matching).

IV. Update the approximate factor

Update the approximation of the factor g̃i. That is, find g̃i such that g̃iq\i has the same moments

as giq\i. This is simply a linear operation in the natural parameters: θ(i) = θ − θ\i.

A summary of the above steps is given in Algorithm 1.
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Algorithm 1: Expectation propagation for approximate Bayesian inference [28]

1. Initialise approximations g̃i

2. Compute the posterior for x from the product of g̃i:

q(x) =

∏
i g̃i(x)∫ ∏
i g̃i(x)dx

3. Until all g̃i converge:

(a) Choose g̃i to refine

(b) Remove g̃i from the posterior to get the ’old’ posterior q\i(x) by dividing and
normalising:

q\i(x) ∝
q(x)

g̃i(x)

(c) Combine q\i(x) and gi(x) and minimise the KL-divergence to get the new
posterior q(x) with normaliser Zi

(d) Update g̃i = Zi
q(x)

q\i(x)

4. Use the normalising constant of q(x) as approximation to p(D):

p(D) ≈
∫ ∏

i

g̃i(x)dx

4.6 Gaussian process conditional copula

The notation of this section follows that of the article by Hernández-Lobato et al. [17].

Let DZ = {zi}ni=1 and DU,V = {(ui, vi)}ni=1 where (ui, vi) is a sample drawn from the

assumed parametric copula model CX,Y |zi . If we let θi(z) = σi[fi(z)] for an arbitrary real

function fi and we let the real line of valid configurations for θi be mapped to the set Θi by

a function σi, then the parametric copula model can be described by k parameters θ1, ..., θk as

Cpar[u, v|θ1(z), ..., θk(z)], where the θi’s may be functions of the conditioning variable z. A

parametric model for the conditional copula assumes CX,Y |zi = Cθ(zi) belongs to a parametric

family of copulas and only the parameter θ ∈ Θ varies as a function of Z [22].

A Bayesian non-parametric analysis can be performed to learn the latent functions f1, ..., fk

once the parametric form of Cpar and the mapping functions σ1, ..., σk have been specified. This

is done by setting priors on the functions and determining the posterior distribution given the
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observed data.

Let fi = (fi(z1), ..., fi(zn))T , mi = (mi(z1), ...,mi(zn))T and

[Ki]jk = Cov(fi(zj), fi(zk)) = βiexp{−(zj − zk)
Tdiag(λi)(zj − zk)}+ γi (4.2)

for some mean function mi(z) and n × n covariance matrix Ki, generated by the squared expo-

nential covariance function in (4.2) with inverse length-scales vector λi, amplitude parameter βi

and noise parameter γi. Then the Gaussian process prior distribution for fi given DZ is

p(fi|DZ) = N (fi|mi,Ki).

The posterior distribution for f1, ..., fk given DU,V and DZ, using Bayes’ rule, is

p(f1, ..., fk|DU,V ,DZ) =
p(DU,V |f1, ..., fk)× p(f1, ..., fk|DZ)

p(DU,V |DZ)

=
[
∏n
i=1 cpar(ui, vi|σ1[f1(z1)], ..., σk[fk(zk)])]× [

∏n
i=1N (fi|mi,Ki)]

p(DU,V |DZ)
,

(4.3)

where p(DU,V |DZ) is the normalisation constant or model evidence.

The standard GP prediction formula is used if we want to make predictions about the condi-

tional distribution of U and V given a particular value z∗ of Z:

p(u∗, v∗|z∗) =

∫
cpar(u

∗
i , v
∗
i |σ1[f∗1 ], ..., σk[f

∗
k ])× p(f∗|f1, ..., fk, z

∗,DZ)

× p(f1, ..., fk|DU,V ,DZ)df1, ..., dfkdf
∗

(4.4)

where f∗ = (f∗1 , ..., f
∗
k )T , f∗i = fi(z

∗),

p(f∗|f1, ..., fk, z
∗,DZ) =

k∏
i=1

p(f∗i |fi, z∗,Dz),

p(f∗i |fi, z∗,Dz) = N (f∗i |mi(z
∗) + k′iK

−1
i (fi −mi), ki − k′iK

−1
i ki),

ki = Cov[fi(z
∗), fi(z

∗)] and ki = (Cov[fi(z
∗), fi(z1)], ..., Cov[fi(z

∗), fi(zn)])T .

Equations (4.3) and (4.4) are approximated using an alternating expectation propagation (EP)
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algorithm.

4.6.1 Alternating EP algorithm for approximate Bayesian inference

We write the joint distribution for f1, ..., fk and DU,V given DZ as a product of n+ k factors:

p(f1, ..., fk,DU,V |DZ) =

[
n∏
i=1

gi(f1i, ..., fki)

]
×

[
k∏
i=1

hi(fi)

]
, (4.5)

where fji = fj(zi), hi(fi) = N (fi|mi,Ki) and gi(f1i, ..., fki) = cpar(ui, vi|σ1[f1i], ..., σk[fki])

Each factor gi is approximated with an approximate Gaussian factor which may not integrate to

one:

g̃i(f1i, ..., fki) = si

k∏
j=1

N (fji|m̃ji, ṽji) = si

k∏
j=1

e−(fji−m̃ji)2/[2ṽji], (4.6)

where si > 0 and the parameters m̃ji and ṽji are calculated by EP. The factors hi do not have

to be approximated, since they already have a Gaussian form. The product of g̃i and hi is then,

up to a normalisation constant, a multivariate Gaussian distribution which approximates the exact

posterior p(f1, ..., fk|DU,V ,DZ) in (4.3) and factorises across f1, ..., fk. The joint distribution in

(4.5) can then be approximated as

q(f1, ..., fk) =

 n∏
i=1

si

k∏
j=1

N (fji|m̃ji, ṽji)

×
 k∏
j=1

N (fj |mj ,Kj)

 , (4.7)

We approximate the predictions in (4.4) in two steps:

1. Integrate p(f∗|f1, ..., fk, z
∗,DZ) with respect to q(f1, ..., fk). This results in a factorised

Gaussian distribution q∗(f∗) which approximates p(f∗|DU,V ,DZ).

2. Approximate using Monte-Carlo: sample from q∗(f∗) and then take the average of

cpar(u
∗
i , v
∗
i |σ1[f∗1 ], ..., σk[f

∗
k ]) over the samples.

The resulting conditional copula is semi-parametric, with the dependence between U and V given

Z parametric, and the effect of Z on the copula non-parametric [23].

EP iteratively updates each g̃i, as defined in equation (4.6), until convergence. The first step in

this process is to compute q\i ∝ q/g̃i and minimise the Kullback-Leibler (KL) divergence between

giq
\i and g̃iq\i. That is, we use the KL divergence to minimise the information loss of using g̃i
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instead of gi. This involves updating g̃i by using moment matching of the marginal mean and

variance of giq\i and g̃iq\i.

Due to the complicated form of gi, the moments cannot be computed analytically. As a solu-

tion, an additional approximation is included when computing the moments of fji with respect to

giq
\i in order to compute the k-dimensional integrals. Assume without loss of generality that we

want to compute the expectation of f1i with respect to giq\i and make the approximation∫
f1i × gi(f1i,..., fki)× q\i(f1i, ..., fki)df1i, ..., dfki ≈

C ×
∫
f1i × gi(f1i, f̄2i, ..., f̄ki)× q\i(f1i, f̄2i, ..., f̄ki)df1i

(4.8)

where f̄1i, ..., f̄ki are the means of f1i, ..., fki with respect to the posterior approximation q, and

the constant C approximates the width of the integral around its maximum in all directions except

f1i. The one-dimensional integral on the right of (4.8) is computed using numerical quadrature

techniques, maximising q, instead of gi(f1i, ..., fki) × q\i(f1i, ..., fki) with respect to f2i, ..., fki.

Here q is Gaussian and its maximiser is simply its own mean vector. Since q and gi(f1i, ..., fki)×

q\i(f1i, ..., fki) both approximate (4.5), they should be similar, and (4.8) is expected to be a good

approximation.

Since q factorises across f1, ..., fk, the approximation decouples into k subroutines between

which we alternate. Each subroutine is iterated until convergence before re-running the next one

[17]. For the jth subroutine:

1. Use the means of the approximate distributions generated by the other sub-routines as input

to approximate the posterior distribution of fj .

2. Find a Gaussian approximation to a set of n one-dimensional factors (one factor per data

point), such that the i-th factor of subroutine j is given by gi(f1i, ..., fki).

3. Keep {f1i, ..., fki}\{fji} fixed to its current approximate posterior mean estimated by the

other subroutines.

Each jth EP subroutine optimises the kernel hyper-parameters λj , βj and γj , as well as the

pseudo inputs, by maximising the EP of the model evidence, p(DU,V |DZ). The generalised FITC

approximation is used to speed up the GP related computations.
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Algorithm 2 illustrates the process followed in the GPCC estimation. The sequential EP sta-

bilises in 3 to 4 passes, using damped parameter updates to prevent convergence problems [28].

4.7 Example

This example is a continuation of the example in Chapter 3. Analysis is therefore done on the

same flood data with variables flood peak and flood volume.

4.7.1 Estimation

We assume the copula c(u1, u2|z) to be described by a parametric copula

cpar(u1, u2|θ1(z), ..., θk(z)). For a conditional Student’s t copula, k = 2 where θ1 is the

correlation with constraint set Θ1 = [−1, 1] and θ2 is the degrees of freedom with constraint set

Θi = [0,∞). That is,

τ(z) = στ [fτ (z)], ν(z) = σν [fν(z)],

with corresponding mapping functions

στ (.) = 2Φ(.)− 1, σν(.) = exp(.).

The parametric copula model is then described as

cstudent(u1, u2|τ(z), ν(z)).

The objective is to learn the latent real functions f1 and f2 from the data.

Figure 4.1 illustrates the predictions for ν(t) and τ(t) of the GPCC-T. The left frame gives the

mean parameter value with confidence interval at each time point, and the right frame gives the

distribution of the mean parameter values. It can be seen that although the value of τ(t) changes

over time, it stays relatively constant. The values of ν(t) are more widely spread, but all the

predictions are relatively large.

The parameter values at observation 89 might warrant some further investigation to find a

possible reason for the change (increase in τ(t) value and decrease in ν(t) value).

The one step ahead forecast of the GPCC-T parameters are presented in Figure 4.2, with a
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Algorithm 2: Gaussian process conditional copula

1 for Xtrain and Ztrain do
2 Fit an unconditional t copula to the data:
3 Optimise the copula log-likelihood function, ll = −

∑
log(ct(u1, u2)), and store the

corresponding τ, ν and −ll.
4 Initialise the estimates of τ and ν.
5 Fit a conditional t copula:
6 for i = 1 : 4 do
7 Estimate ν given the current estimate of τ :
8 for τ given do
9 Initialise the hyper-parameters (λi, βi, γi).

10 Initialise the gradient optimisation process:
11 for EP approximation do
12 Initialise the structure with the FITC problem information.
13 Initialise the approximate factors and posterior approximation.
14 while not converged and i < 50 do
15 Refine the first approximate factor using moment matching and check

for a positive definite posterior covariance matrix.
16 Refine the second approximate factor.
17 Update the posterior approximation.

18 Compute the evidence and its gradients.

19 Update the hyper-parameters (λi, βi, γi):
20 while not converged and iteration < 50 do
21 Update (λi, βi, γi) using gradient evidence.
22 Update the corresponding FITC problem information.
23 while posterior covariance matrix not positive definite and counter < 100

do
24 Update (λi, βi, γi) using gradient evidence.
25 Update the corresponding FITC problem information.

26 Update (λi, βi, γi) and optimise gradient using EP approximation.

27 Estimate τ given the current estimate of ν. (Similarly to above.)
28 Store the sequence of model evidence, p(DU,V |DZ).

29 for Xtest and Ztest do
30 Generate predictions for each data point.
31 for τ and ν do
32 Compute the FITC prediction.
33 Obtain the new marginals.
34 Add the contribution of the prior mean

35 Obtain the mean and lower quantiles for τ and ν.
36 Evaluate the test log-likelihood on each data point.

58



4.7. EXAMPLE GAUSSIAN PROCESS CONDITIONAL COPULA

Figure 4.1: GPCC-T predictions for ν(t) and τ(t) on the flood data. Left is the mean predicted
parameter value with confidence interval at each time point and right is the corresponding distri-
bution of the mean predicted parameter values.

rolling-window size of 10 observations respectively. For these forecasts, the value of τ(t) varies a

lot more than for the predicted values in Figure 4.1. In addition, the ν(t) forecasts are significantly

larger compared to those in Figure 4.1.

Figure 4.2: One-step-ahead GPCC-T forecast for ν(t) and τ(t) on the flood data using a rolling-
window size of 10 observations.

4.7.2 Goodness of fit

Evaluating the test log-likelihood on each data point, the average test log-likelihood of the GPCC-

T is 0.1462, compared to 0.0891 for the unconditional Gaussian copula.

For an visual interpretation, the estimated quantile dependence is plotted in Figure 4.3, along

with its 95% i.i.d. bootstrap confidence interval over q ∈ [0.025, 0.975].
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Figure 4.3: The left panel shows the estimated quantile dependence between observed flood peak
and volume (blue) and 90% bootstrap confidence interval (black), as well as the quantile depen-
dence implied by the (unconditional) Gaussian copula (red) and GPCC-T (green). The right panel
gives the difference between corresponding upper and lower quantile tail dependence estimates of
all methods and corresponding 90% bootstrap confidence interval of the observed data.

From this plot, divergence from symmetry is visible in the tails (specifically the lower tail).

It is clear that while the Gaussian copula is symmetric in both tails and does not allow for tail

dependence, the GPCC-T captures the asymmetry in the lower tail. The ‘dip’ to the right of

q = 0.5 in the left plot also seems to suggest that the GPCC is able to adjust with the data.

Since the zero line is included in the 90% bootstrap interval on the right of Figure 4.3, the null

H0 : λq = λ1−q cannot be rejected at a 10% level of significance (the difference is significant and

the dependence structure is relatively symmetric). The negative difference further show that the

lower tail observations are significantly more dependent that those in the upper tail.

The confidence interval for the quantile dependencies become narrower towards q = 0.5, com-

pared to the outer tails. This observation corresponds with the results obtained in the introductory

example in Chapter 1 (Figure 1.6 and Table 1.1), where the predictions under independence are

similar to that of the copulas for the value of flood volume being kept constant at its median,

compared to when the maximum value is considered.
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Chapter 5

Application

Two distinct applications are shown in this chapter. In Section 5.1, a comparison of the static and

dynamic (GPCC) copulas discussed before is done on foreign exchange time series data. Section

5.2 is a novel application of copulas as a way to quantify the coupling efficiency between the solar

wind and magnetosphere for the three known phases of geomagnetic storms.

All applications are done using MATLAB R2020a software [1], using the MvCAT Version

02.02 [39] toolbox for all static copula applications. We developed algorithms in MATLAB from

first principles for the implementation of the GPCC. The code is based on an R software package1

written by Hernandez-Lobato [17]. All results and graphs in this and previous chapters were

produced by this toolbox which can be found on GitHub2.

5.1 Foreign Exchange Time Series

The daily exchange rate of four different currencies, paired with the U.S. dollar, are evaluated from

2006/10/10 to 2010/08/09, yielding a total of 1000 observations 3. The four currencies are Swiss

Franc (CHF), Australian Dollar (AUD), Canadian Dollar (CAD) and South African Rand (ZAR).

Since the Swiss franc is a ’safe haven’ currency during times of uncertainty, CHF-USD is paired

with each of the exchange rate pairs (AUD-USD, CAD-USD and ZAR-USD). The objective of
1R code available at:

https://github.com/lopezpaz/gaussian process conditional copulas/tree/master/code
2MATLAB GPCC Toolbox:

https://github.com/ColetteLR/GPCC.git
3The unprocessed dataset can be found at:

https://www.kaggle.com/thebasss/currency-exchange-rates/data
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this application is to model the dependency between the daily logarithmic returns of a currency

pair (AUD-USD, CAD-USD and ZAR-USD) and CHF-USD over time as it changes in response

to financial conditions [17].

For this case study, a GARCH ‘filter’ is applied to obtain i.i.d. observations. An AR(1)-

GARCH(1,1) model is used to capture the time-dependent scale of the time series observations,

such that each marginal model has 7 parameters. This pre-processing of the data improves the

flexibility of the fitted copula model. Applying the probability integral transform, the empirical

CDF of the standardised residuals from the fitted AR(1)-GARCH(1,1) model is then used to trans-

form the logistic returns into the pseudo-sample of the underlying copula [48]. The performance

of the copulas can then be evaluated on the transformed data.

5.1.1 Distribution analysis

The time plots of each of the four U.S. dollar pairs are given in the right pane of Figure 5.1,

from which we observe a change near the end of 2008 corresponding with the subprime crisis.

Although less obvious, the effects of the European sovereign debt crisis can also be seen around

June of 2010. The daily logarithmic returns, obtained using

rt = 100(ln(yt)− ln(yt−1)),

approximates the percentage change in exchange rate at each time point t, and are plotted in the

left pane of Figure 5.1. From the time plots of the returns, volatility clustering is observed. That

is, large (small) fluctuations at time t are follower by large (small) fluctuations at time t+ 1.

Prior to determining the appropriate models (univariate marginal CDFs), we first analyse the

distributions using Pearson’s moment coefficient of kurtosis and skewness. These values are given

in Table 5.1, from which we conclude that the distributions are leptokurtic (since kurtosis is > 3),

that is, compared to the normal distribution, the tails are heavier (longer and fatter) and the central

peak is higher and sharper. This is also visible in the right pane of Figure 5.2. Furthermore,

all the currency pairs are negatively skew (since the coefficient of skewness is < 0), except for

ZAR-USD, which is positively skew.

In the QQ-plot of the returns against the theoretical normal distribution in the left pane of

Figure 5.2, the observations do not fall on a straight line, especially in the tails. All of the above
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Figure 5.1: Daily exchange rate (left) and corresponding returns (right) time plots

currency pair skewness kurtosis
AUD-USD -0.0814 8.7579
CAD-USD -0.2463 7.8357
ZAR-USD 0.4401 7.0203
CHF-USD -0.3895 10.5756

Table 5.1: Pearson’s moment coefficient of skewness and kurtosis.

indicate that the distributions are not normal and that a skewed distribution with heavier tails is

more suitable for these time series.

5.1.2 Modelling returns

In order to model the returns, we need a model for the mean level and a GARCH model to capture

volatilities.

The univariate marginal CDFs are estimated by assuming an AR(1)-GARCH(1,1) model with

skewed Student’s t-distributed residuals for each series:

rt = φ0 + φ1rt−1 + εt (5.1)

εt = σtzt, zt ∼ SkT (ν, γ) (5.2)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (5.3)

where (5.1) is the mean level and (5.3) is the variance equation with parameter constraints ω > 0,
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Figure 5.2: The left pane shows the histograms of the returns with the kernel density (blue) and
normal distribution density curve (red). Right are the QQ-plots of the returns compared to the
theoretical normal distribution.

α ≥ 0 and β ≥ 0. The unconditional variance is

σ2 =
ω

(1− α− β)
,

such that the error term εt is covariance-stationary when α+ β < 1.

Since the MATLAB Econometric Toolbox does not provide for skewed Student’s t-distributed

residuals, this model is fitted using the Dynamic Copula Toolbox 3.0 4, and the estimated param-

eters are summarised in Table 5.2.

The AR(1) process in equation (5.1) yields the autoregressive parameter estimates φ̂0 at lag 0

and φ̂1 at lag 1 when fitted to the mean level of the returns.

We see that all variance parameter constraints are met and that the error term is covariance-

stationary in all four instances. The conditional variance is therefore mean reverting and stationary.

Since the parameter estimate of β̂ is close to 1 for all return series, the GARCH effect is eminent

in modelling the volatility.

The RVs zt from equation (5.2) follow a skewed Student’s t distribution with ν̂ degrees of

freedom and skewness parameter τ̂ .
4Manthos Vogiatzoglou (2020). Dynamic Copula Toolbox 3.0

(https://www.mathworks.com/matlabcentral/fileexchange/29303-dynamic-copula-toolbox-3-0),
MATLAB Central File Exchange. Retrieved July 27, 2020.
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AUD-USD CAD-USD ZAR-USD CHF-USD
φ̂0 0.0524 (0.0229) -0.0174 (0.0233) -0.0390 (0.0290) -0.0286 (0.0193)
φ̂1 -0.0172 (0.0353) 0.0301 (0.0342) -0.0151 (0.0765) -0.0272 (0.0292)
ω̂ 0.0083 (0.0048) 0.0036 (0.0023) 0.0448 (0.0207) 0.0033 (0.0024)
α̂ 0.1201 (0.0246) 0.0676 (0.0125) 0.1147 (0.0260) 0.0397 (0.0130)
β̂ 0.8781 (0.0255) 0.9314 (0.0121) 0.8525 (0.0358) 0.9556 (0.0150)
ν̂ 9.9655 (2.8617) 6.0192 (1.1397) 9.1753 (2.2941) 5.4471 (0.9840)
γ̂ -0.1976 (0.0404) 0.0170 (0.0486) 0.1018 (0.0454) -0.0454 (0.0373)
L -1243.910 -1036.469 -1473.761 -983.474

AIC 2501.820 2086.939 2961.523 1980.949
BIC 2536.167 2121.286 2995.870 2015.296

Table 5.2: Parameter estimates of the AR(1)-GARCH(1,1) model for the daily returns of the
respective exchange rates using a skewed Student’s t-distribution. Standard errors are given in
parenthesis. The log-likelihood, AIC and BIC of the fitted models are also included as goodness
of fit measures.

5.1.3 Estimation

The static and dynamic copula models can now be fitted to the pseudo-sample obtained from the

empirical CDF of the standardised residuals from the fitted AR(1)-GARCH(1,1) model.

Static copula

A summary of the parameter estimates of the chosen copulas using the MvCAT toolbox [39] is

given in Table 5.3. This toolbox provides maximum likelihood, instead of the log-likelihood for

goodness of fit, and the optimal copula is selected based on the BIC criteria. AUD-USD paired

with CHF-USD is indicated as AUD-CHF, and similarly for the other two exchange rate pairs.

In Table 5.3, τa indicates Kendall’s rank calculated from the marginal distributions and τ b

indicates Kendall’s rank derived from the copula correlation parameter (θ) using Table A.1. Com-

paring these two correlation values, it is clear how ignoring the underlying dependence between

each currency pair leads to an underestimation of the dependency (τa < τ b in all three cases).

Since none of the confidence intervals for τ b includes zero, we can conclude that the correlation

between each of the CHF currency pairs is significant, with AUD-CHF having a negative correla-

tion and CAD-CHF and ZAR-CHF a positive correlation.

The choice of a Frank copula indicates that the first two currency pairs have more symmet-

ric tail dependencies, compared to the Gumbel copula suggesting an asymmetric structure with
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greater upper tail dependence for ZAR-CHF.

AUD-CHF CAD-CHF ZAR-CHF
τa -0.2084∗ 0.1314∗ 0.1788∗

Copula Frank Frank Gumbel
θ -1.9007 1.2101 1.2254

θ c.i. (-1.9157, -1.8868) (1.1973, 1.2232) (1.2229, 1.2277)
τ b -0.2041 0.1325 0.1839

τ b c.i. (-0.2056, -0.2027) (0.1311, 0.1338) (0.1823, 0.1855)
ML 5629.751 5705.172 5605.421
AIC -11257.502 -11408.344 -11208.843
BIC -11252.595 -11403.437 -11203.936

Table 5.3: Evaluate dependence between the daily returns of the respective exchange rates. τa

indicates Kendall’s rank calculated from the marginal distributions and τ b is derived from the
copula correlation parameter (θ). An asterisk (*) indicates significance of the dependence based
on the marginal distributions at a 5% level of significance. Copula selection is done based on the
BIC measure for the goodness of fit.

Gaussian process conditional copula

The GPCC-T predictions for ν(t) and τ(t) for each of the time series pairs are plotted in Figure

5.3. From all three currency pairs, it can be seen that the copula parameters do in fact chance over

time, and using a static copula copula may not be accurate enough in modelling the dependency

structure of these time series.

The sign of the correlation parameter, τ(t), corresponds to that in Table 5.3, fluctuating around

or near the value predicted by the static copula.

The dynamic GPCC-T model provides further information about the movement of the depen-

dency structure. While the parameters of the ZAR-CHF exchange rate pair fluctuates more rapidly

(corresponding to the more volatile economic environment), it is clearly visible that the AUD-CHF

and CAD-CHF pairs reach a turning point around the beginning of 2008 (at the start of the global

recession) and again near the start of 2010 (the European sovereign debt crisis). Comparing this to

the dates at which the changes can be observed in the time series in Figures 5.1, it seems that the

parameters pick up the effects of the financial events before they are observed in the time series.

Looking at the degrees of freedom parameter, ν(t), for each series, it appears that the ZAR-

CHF return series is more prone to outliers compared to the other two series, with the GPCC-T

model least robust to negatively correlated outliers in the CAD-CHF return series [17], with ν(t)
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Figure 5.3: GPCC-T predictions for ν(t) and τ(t) for each of the time series pairs AUD-CHF,
CAD-CHF and ZAR-CHF when trained on data from 2006/10/10 to 2010/08/09.

relatively constant at approximately 28 degrees of freedom, compared to approximately 14 and 11

for AUD-CHF and ZAR-CHF respectively.

5.1.4 Goodness of fit

The results for the predictive likelihood of each method on the transformed data are shown in Table

5.4. The Gaussian copula is included for interest sake, and the suggested static copula corresponds

to the optimal copula suggested by the MvCAT toolbox as summarised in Table 5.3.

Although the Gumbel copula is suggested for the ZAR-CHF pair based on the BIC measure,

it seems to be outperformed by the Gaussian copula when considering the average log-likelihood.

GPCC-T is seen to be the overall best technique, outperforming the static copulas in all three

series.

The quantile dependencies of the three series are plotted in Figure 5.4.
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Method AUD-CHF CAD-CHF ZAR-CHF
Static Gaussian copula 0.0467 0.0189 0.0376
Suggested static copula 0.0497 0.0194 0.0369

GPCC-T 0.0616 0.0319 0.0763

Table 5.4: Average log-likelihood of the methods (constant and dynamic) on the currency data,
with the suggested static copula being that given in Table 5.3.

From the plot of the difference in upper and lower quantile dependence between ZAR and

CHF, the volatility of the South African series is once again clear in that, at some quantiles the

structure is symmetric (equal to zero), while at other quantiles the difference is significant (zero

not included in the 90% bootstrap CI), and the structure therefore asymmetric. We also observe

that higher tail quantiles are more dependent that their corresponding lower tail quantiles (above

the zero line). This corresponds with the Gumbel copula being suggested by the MvCAT toolbox.

Although the Gaussian copula does not capture the dependence structure of this currency pair, it

falls withing the 90% CI while the Gumbel copula diverges outside the CI for tail dependencies,

which may to some extent explain the log-likelihood results.

5.1.5 Conclusion

While the GPCC-T cperforms best for the ZAR-CHF pair in terms of log-likelihood, it does not

seem to significantly outperform the static copulas in terms of quantile dependence. This may

suggest that the GPCC captures volatility of the dependence, but focuses less on shape/ skewness

of the data.

The GPCC-T model outperforms static copulas in all instances of the data considered, showing

that the dependence structure does in fact change with time, and this underlying temporal covariate

needs to be included in estimation and prediction.

Capturing effects of global events before they are observed in the individual time series, this

dynamic model shows potential for predicting financial events and therefore to some extent pre-

venting the large scale effects to follow.
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Figure 5.4: Observed (blue) currency data quantile dependencies with 90% bootstrap confidence
interval (black), as well as the quantile dependencies predicted by each of the models (constant
and dynamic copulas).

5.2 Geomagnetic storms

Solar activity, through geomagnetic storms, has the ability to cause a number of negative effects

on critical technologies such as power grids and various communication systems [12, 4, 6]. Geo-

magnetic storms are intervals of disturbed geomagnetic field lasting from 10s of hours to multiple

days [16]. The most intense storms are caused by energetic plasma from coronal mass ejections

impacting the geomagnetic field after propagating the 1.5× 108km (= 1AU) via the solar wind to

Earth. The relationship between the shocked solar wind and the geomagnetic field can be viewed

as a highly non-linear, non-stationary transfer function.

Fully understanding the coupling between the solar wind and the magnetosphere is an impor-

tant task for space physicists striving to provide accurate predictions of geomagnetic storms. With

this in mind we investigate the use of copulas as a way to quantify the coupling efficiency between
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the solar wind and magnetosphere for the three known phases of storms: onset, main and recov-

ery. Seven intense storms are identified and the dynamic and static copulas between two solar

wind parameters (BZ and Vsw) and a geomagnetic disturbance index (SYM-H) are calculated.

5.2.1 Data sets

Two distinct data sources are utilised in this study.

Measurements of solar wind plasma and the IMF parameters are taken aboard spacecraft orbit-

ing the first Lagrangian point between the sun and the Earth. The time-stamps of these measure-

ments are then shifted in time to account for the propagation time of the plasma from the space

craft position to the leading edge of the magnetosphere (the bow shock nose). This time-shifted

set then represents the solar wind state right at the time of first interaction with the magnetosphere,

enabling direct comparison between space-based and terrestrial data sets, without the need to ex-

plicitly account for solar wind propagation speed. This data is averaged to 1-minute averages and

published as the High Resolution OMNI data set [8]. In this work we only utilise Vsw and BZ ;

however, the OMNI set provides many more parameters such as density, temperature, full IMF

vector (BX , BY , BZ) and various derived parameters such as pressure, plasma β, etc.

Figure 5.5 depicts a geomagnetic storm from 6 April 2000 to 11 April 2000. The shape of

the SYM-H curve in the top panel is typical of a storm driven by a single coronal mass ejection

(CME). The second panel shows the solar wind speed Vsw and BZ is plotted in the bottom panel.

Figure 5.5: A storm in April 2000, with clear onset (red), main (green), and recovery (blue)
phases.
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Figure 5.6: This figure depicts the data processing applied to the solar wind and SYM-H data sets.

The SYM-H index is supplied by the World Data Centre for Geomagnetism in Kyoto, Japan

[26].

In this work 8 intense (SYM-H ≤ −100nT) storms from 2000 (1) and 2001 (7) are identified

according to the process described by [24].

Data processing

The data selection applied, there is a total of 28 157 minutes per parameter. SYM-H is largely

without error, but the solar wind measurements contain many missing values due to instrument

error or saturation (28.5% for Vsw and 11% forBZ). To combat this we interpolate values linearly,

but only for gaps of up to m = 10 minutes. Data is also smoothed with a running mean window

of w = 20 minutes. To reduce data volume we subsample to s = 15 minutes. The data processing

is illustrated in Figure 5.6.

Before applying the probability integral transform and fitting the copula, the data is normalised

(x −mean/std.dev.). This offers improvement in the dependency estimation and modelling of

tails in the distributions, and removes the need for more complicated copula designs.

5.2.2 Analysis

We fitted a copula model SYM-H and BZ to all the storm phases of all storms in 2001. The aim is

to investigate if copulas can quantify the individual dependency structures for each storm phase.

For this purpose, we split the storm phases into three separate datasets. Figure 5.7 indicates the

distributions of SYM-H, Vsw and BZ for each storm phase.
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Figure 5.7: Distribution of SYM-H, Vsw and BZ for each storm phase.

5.2.3 Static copula

In the first part of the analysis, we fit individual copulas to the 7 storms from 2001 and show that

the copula functions relating pairs of parameters change significantly when analysed separately

by storm phase. We model all nine configurations of variable pairs SYM-H, BZ and Vsw and the

three storm phases.

Although many other parametric and non-parametric copulas exist, only the five copula mod-

els mentioned in Section 3.2 (Gaussian, Student’s t, Gumbel, Frank and Clayton) are compared,

using the MATLAB package MvCAT [39] to perform model selection based on the goodness of fit

measures also described in Section 3.2.

Table 5.5 gives the final copula model fitted, along with the Kendall’s rank correlation coef-

ficient based in the marginal distributions and that based in the copula. For all variable pairs and

corresponding storm phases, apart from the onset and main phase between SYM-H and Vsw, using

the copula yields a larger Kendall’s rank value. Bringing the underlying dependence structure into
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account therefore prevents underestimation of the dependence between variables, particularly in

extreme events.

Figure 5.8 is a visual representation of Table 5.5. The lower tail dependence of the Clayton

copula is clearly visible in the main and recovery phase between SYM-H and BZ compared to the

upper tail dependence of the Gumbel copula during the onset of the storm.

The characteristic shapes of the different types of copulas highlights the importance of select-

ing the correct model for each storm phase.

Generally, each of the three pairs exhibit stronger dependence during the main and recovery

storm phases than during the onset phase. The increased dependence of SYM-H on BZ during

the main storm phase is expected since it is the prolonged periods of BZ < 0 which enables the

strong coupling between the solar wind and magnetospheric plasmas. Solar wind speed Vsw has

slightly stronger coupling to SYM-H during the main phase, compared to recovery phase, which

is also expected. The weak dependence between all three pairs during onset phase may be due to

inadequate onset phase identification, as a significant period of quiet time (i.e. no strong coupling)

was padded before the onset of most events.

SYM-H - BZ
Onset Main Recovery

Copula Gumbel Clayton Clayton
Kendall’s ranka 0.287∗ 0.286∗ 0.257∗

Kendall’s rankb 0.288 0.348 0.260
SYM-H - Vsw

Onset Main Recovery
Copula Gaussian Frank Student’s t

Kendall’s ranka -0.115∗ -0.105∗ -0.314∗

Kendall’s rankb -0.112 -0.051 -0.481
BZ - Vsw

Onset Main Recovery
Copula Gumbel Gumbel Frank

Kendall’s ranka 0.026 0.049 0.058∗

Kendall’s rankb 0.053 0.093 0.089

Table 5.5: Evaluate dependence between the two input variables. Kendall’s ranka is calculated
from the marginal distributions and Kendall’s rankb is derived from the copula correlation param-
eter. An asterisk (*) indicates significance at a 5% level of significance. Copula selection is done
based on the BIC measure for the goodness of fit.
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Figure 5.8: Contours of the copula joint distribution of BZ and SYM-H for each storm phase in
the probability space.

5.2.4 Conditional copula

As mentioned in Chapter 4, we assume the copula c(u1, u2|z) to be described by a parametric

copula cpar(u1, u2|θ1(z), ..., θk(z)). For our conditional Student’s t copula, k = 2 where θ1 is

the correlation with constraint set Θ1 = [−1, 1] and θ2 is the degrees of freedom with constraint

set Θi = [0,∞). That is, τ(z) = στ [fτ (z)] and ν(z) = σν [fν(z)], with corresponding mapping

functions στ (.) = 2Φ(.) − 1 and σν(.) = exp(.). The parametric copula model is then described

as cstudent(u1, u2|τ(z), ν(z)) and the latent real functions f1 and f2 are learnt from the data.

In Figure 5.9 we show how the copula parameter τ changes throughout a geomagnetic storm

using time as the conditioning variable. We fit a GPCC to each phase of the storm separately for

the variable pairs SYM-H - BZ , SYM-H - Vsw and BZ - Vsw.

We observe that SYM-H and BZ change from having a mostly negative correlation at the

onset of the storm to a mostly positive correlation during the main phase. During recovery this
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correlation is more erratic and contains more uncertainty (wider confidence interval indicated by

the shaded area).

The change in the parameter over the passage of time indicates that there is a temporal in-

fluence in the dependence structure between the variable pairs, and taking this into account may

improve modelling results.

On the other hand, a constant correlation between variables during a storm phase would indi-

cate that time has a negligible influence on the dependence structure, and that a static copula can

be used instead.

Figure 5.9: The copula parameter τ of the GPCC for SYM-H - BZ , SYM-H - Vsw and BZ - Vsw
for each storm phase over time.

5.2.5 Error correction using copula functions

Spacecraft measuring solar wind and interplanetary magnetic field data often encounter saturation

of sensors or other problems, resulting in missing values. It is especially problematic when these

problems occur during CME passage or other interesting phenomena.

Here we show that the static copulas above can be used to estimate missing values. Figure 5.10
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Figure 5.10: Density (left) and CDF (right) of BZ corresponding to respective values of SYM-H
for the main phase based on the fitted copula.

gives the PDF and CDF of BZ for SYM-H fixed at different quantiles. Using the joint distribution

obtained from the copula, the PDF over the range of possible values of one (unknown) variable

can be obtained for a fixed value of the other (observed) variable. From this, the expected value,

as well as a confidence interval, can be computed for these missing values.

In Figure 5.11 the 5th percentile level of SYM-H (=175.55 nT) is used to estimate the corre-

sponding value of BZ during the event from April 2000. The value of BZ is estimated by utilising

the q0.05 distribution depicted as a blue curve in Figure 5.10 and its 90% confidence interval levels.

Note that this event (April 2000) was not included in the analysis yielding the distribution func-

tions, i.e. the estimate of BZ is for an out-of-sample event. The resulting estimate of BZ (-27.26

nT) does not match the observed value of BZ (-25 nT) but does fall within the confidence interval,

indicated by the red vertical line.

5.2.6 Discussion and Conclusions

Geomagnetic storms are capable of causing major damage to various technological systems, and

therefore the relevant solar wind parameters and geomagnetic field indicators are closely moni-

tored across the globe to enable forecasts and aid mitigation and planning. Recognising the dis-

tinct phases of geomagnetic storms are important to modelling efforts as the coupling between

solar wind drivers and the response of the geomagnetic field change significantly from one phase

to another.

This work has shown a novel application of statistical copulas to the coupled solar wind –

magnetosphere system by analysing copulas between two solar wind parameters (BZ and Vsw)
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Figure 5.11: Utilising the SYM-H 95th percentile distribution ofBZ (green curve in Figure 5.10),
an estimate for BZ is calculated and the 90% confidence interval is given.

and a storm time index (SYM-H). Since the solar wind – magnetosphere coupling is highly non-

linear, we can view this transfer of information through a Bayesian framework. The parameters of

a copula are non-linearly related to a conditioning variable, in our case, time. Another advantage

of the Bayesian framework is that it quantifies the uncertainty of the parameter estimations and

predictions.

We demonstrated that copulas can be used to confirm what is know from the underlying phys-

ical mechanisms: i.e. that the coupling between different solar wind parameters and geomagnetic

field differs for different storm phases. For a selection of 7 storm events with fairly simple cause

and structure, it was shown that static copula functions behave very differently when conditioned

on storm phase. From Figure 5.7 the difference in distributions are clearly seen and the subsequent

calculations of copula functions quantify these changes in terms of Kendall’s rank.

It was shown that the correlation parameter, τ(t), of dynamic copula could be used to reliably

distinguish between storm phases in real time for input parameters Vsw and BZ versus the output

SYM-H.

Copulas are also useful for data imputation (i.e. error correction). Using the copulas calculated

from a large set of solar wind and geomagnetic data, missing solar wind observations can be

estimated. A simple demonstration of this utility was shown and we believe there is scope for

further development and practical application of this method for the space physics community.
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It was shown that copulas can be a valuable tool in the analysis of the coupled solar wind –

geomagnetic field system, and that there is scope for further exploration of the ideas described in

this application.
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Chapter 6

Conclusion

In this work, the importance and advantages of having the conditional distribution (based on both

the static and dynamic copula) in tail dependencies, arising from more extreme events, compared

to when more “general” or “average” (ex. mean or median) values are considered, becomes clear.

The GPCC-T model outperforms static copulas in all instances of the financial data considered,

showing that the dependence structure does in fact change with time, and this underlying temporal

covariate needs to be included in estimation and prediction.

An interesting observation is that the GPCC-T is the best model in terms of log-likelihood,

but does not seem to significantly outperform the static copulas in terms of quantile dependence.

This may suggest that the GPCC captures volatility of the dependence, but focuses less on shape/

skewness of the data.

In our novel application of copulas to capture the coupling in geomagnetic storms, it was

shown that the correlation parameter, τ , of the dynamic (GPCC) copula can be used to reliably

distinguish between storm phases in real time.

In both the exchange rate and geomagnetic storm application, the GPCC model shows potential

to enable forecasts and aid in mitigation and planning of future events. In the latter application,

we also show how copulas can be useful for data imputation (i.e. error correction), thus having

great potential for future work for the space physics community.

We wrote a Student’s t Gaussian process conditional copula toolbox for MATLAB based on

the R package by Hernández-Lobato et al. [17], which is available on GitHub.

In the broader scientific context, uncertainty from volatilities, heteroskedasticity, extreme val-
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ues and missing observations all contribute to the difficulty of dependency estimation and predic-

tion. Other models have been considered in a financial setting, but the Student’s tGPCC seemed to

be the best performing model [17]. In addition, the assumptions of parametric or Gaussian distri-

butions and linear correlation structures regularly applied in statistical analysis are often violated

in practical applications. Fully understanding the advantages (and limitations) of copula models

helps to avoid model mismatching and broadens the field of possible applications.

The advantage of using the Bayesian framework in the GPCC is that it quantifies the uncer-

tainty of the parameter estimations and predictions, provides further information about the struc-

ture/ movement of dependence and relaxes parametric and linear assumptions, providing a more

flexible model.

Some limitations of our work is that only a limited number of copulas were considered and

that model computations become more time consuming for larger datasets, both for the static and

dynamic copula. It is also important to note that pre-processing and parameter initialisation may

have a significant influence on estimation results.

A consideration for future work will be to extend the GPCC to higher dimensions, using vine

copulas [23], and possibly even creating mixture distributions with other models in order to im-

prove model capabilities.
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Appendix A

Theory

Lemma A.0.1. The random variable U = F (X) is distributed as a U(0, 1) random variable. If

we let F−1(u), denote the inverse function, that is,

F−1(u) = {x ∈ R|F (x) = u},

then the variable F (U) has the same distribution as X .

Copula Function Parameter range
(θ)

Kendall’s τ

Gaussian ΦΣ(Φ−1(u1),Φ−1(u2)) (−1, 1) 2
πarcsin(θ)

Student t tν,Σ(t−1
ν (u1), t−1

ν (u2)) (−1, 1) 2
πarcsin(θ)

Gumbel exp[−((−lnu1)θ+(−lnu2)θ)
1
θ ] [1,∞) 1− 1

θ

Frank −1
θ ln(1 + (e−θu1−1)(e−θu2−1)

e−θ−1
) (−∞,∞) 1+4

θ (D1(θ)−1)
with D1(θ) =

1
θ

∫ θ
0

t
et−1dt

Clayton (max{u−θ1 + u−θ2 − 1, 0})
1
θ (0,∞) θ

θ+2

Table A.1: Copula families and their closed form generating functions
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Algorithm 3: Simulating from a Gaussian copula

1. Let X1 and X2 be rvs with cdf F1(.) and F2(.), and pdf f1(.) and f2(.) respectively.

2. Transform to the uniform distribution using the inverse cdf:

U1 = F−1
1 (X1) ∼ U(0, 1), and U2 = F−1

2 (X2) ∼ U(0, 1).

3. Estimate the distribution of the parameter (ρ) using an MCMC simulation within a
Bayesian framework.

Select the maximum likelihood parameter such that Σ =

(
1 ρ
ρ 1

)
.

4. The joint distribution is then simply the cdf of the copula,
H(x1, x2) = CGaussΣ (u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)),

with corresponding joint pdf h(x1, x2) = f1(x1) .f2(x2) .cGaussΣ (u1, u2).

5. Simulate variables from a multivariate normal distribution with correlation structure Σ.
((Z1, Z2) ∼ N (0,Σ)).

6. Transform to the uniform distribution using the standard normal inverse:

V1 = Φ−1(Z1) ∼ U(0, 1), and V2 = Φ−1(Z2) ∼ U(0, 1).

7. Transform back to the original distributions using the original cdf:

Y1 = F1(V1) and Y2 = F2(V2).

Algorithm 4: Density of Student’s t copula i.t.o. Kendall’s τ

1. Let ρ = sin( τπ2 ).

2. From Eq. (3.4), the t copula density is

cT (u1, u2) =

1

2π
√

1−ρ2

(
1 + T−1

ν (u1)2+T−1
ν (u2)2−2ρT−1

ν (u1)T−1
ν (u2)

ν(1−ρ2)

)−(ν+2)
2

tν(T−1
ν (u1))tν(T−1

ν (u2))

3. The corresponding log-likelihood:

log(cT (u1, u2)) = −log(2π)− 1

2
log(1− ρ2)

− −(ν + 2)

2
log

(
1 +

T−1
ν (u1)2 + T−1

ν (u2)2 − 2ρT−1
ν (u1)T−1

ν (u2)

ν(1− ρ2)

)
− log(tν(T−1

ν (u1)))− log(tν(T−1
ν (u2)))
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