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Abstract

In this work, we construct four versions of nonstandard finite difference schemes in order to
solve the FitzHugh-Nagumo equation with specified initial and boundary conditions under
three different regimes giving rise to three cases. The properties of the methods such as
positivity and boundedness are studied. The numerical experiment chosen is quite chal-
lenging due to shock-like profiles. The performance of the four methods is compared by
computing L1, L∞ errors, rate of convergence with respect to time and CPU time at given
time, T = 0.5. Error estimates have also been studied for the most efficient scheme.

Keywords: FitzHugh-Nagumo, nonstandard finite difference scheme, positivity, boundedness,
different regimes, error estimates.

1 Introduction

The study of nonlinear partial differential equations of phenomena (dispersion, dissipation, dif-
fusion, convection) arising in inhomogeneous system is of huge concern from mathematical,
physical and biological point of view. The theoretical design based on nonlinear partial dif-
ferential equations with varying or non-varying coefficient can precisely portray for instance
the wave dynamics of pulses circulating in inhomogeneous systems [1]. Remarkably, nonlinear
partial differential equations with variable coefficients describe well in diverse physical or ma-
terial circumstances compared to their constant coefficients counterparts. The key standing is
to find closed form solutions for nonlinear partial differential equations of physical or practical
suitability. This could be a difficult task and sometimes impossible due to the fact that for
many practical problems, the resulting nonlinear partial differential equations of interest are
non-integrable. The integrability part of nonlinear partial differential equations is of consider-
able concern due to its link with the understanding of the physical and dynamical phenomena in
nonlinear systems [2]. For instance the Kuramoto-Sivashinsky equation, the Ginzburg-Landau
equation, the Korteweg-de Vries-Burgers equation, the Fisher’s equation, the Burgers-Huxley
equation and the Fitzhugh-Nagumo equation are practically well-known equations of this sort
[3]. An exception takes place when a non-integrable nonlinear partial differential equations
becomes integrable for some given values of the parameters involved into the equation. In this
instance, the exact solutions can be written explicitly. Therefore, looking for some exact mean-
ingful solutions is a hot topic because of the wide applications of nonlinear partial differential
equations.
Various efficient approaches for getting exact solutions of nonlinear partial differential equation
have been introduced. We can mention the subsidiary ordinary differential equation method
[4, 5, 6], solitary wave ansatz method [7, 8], sine-cosine method [9], Hirota bilinear method [10],
F-expansion method [11] and the Jacobi elliptic functions method [12] amongst others.
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The FitzHugh-Nagumo equation is one important nonlinear partial differential equation in bi-
ology and is given by

ut − uxx = βu(1− u)(u− γ). (1)

We note that γ ∈ (0, 1) monitors the overall dynamics of the equation [13] and is regarded as
threshold of Allee effect [14]. u(x, t) is the unknown function depending on the temporal variable
t, and the spatial variable, x ∈ Ω (bounded domain), β stands for an intrinsic growth rate [15].
The FitzHugh-Nagumo equation has diverse applications in the field of flame propagation,
logistic population growth, neurophysiology, autocatalytic chemical reaction and nuclear theory
[16, 17]. It is worth noting that the Fitzhugh-Nagumo equation for the case β = 1 is called the
classical or the standard Fitzhugh-Nagumo equation.

2 Organisation of the paper

The paper is organised as follows. In section 3, we describe the physical behaviour of FitzHugh-
Nagumo equation and provide some literature on Allee effect and intrinsic growth rate [15].
In section 4, we list some methods used previously for solving FitzHugh-Nagumo equation. In
section 5, we describe the numerical experiment chosen. In section 6, we give some information
on basic dynamical behaviour of FitzHugh-Nagumo equation. In sections 7 to 10, we present
four versions of nonstandard finite difference schemes, study some of their properties and present
some numericals results. In section 11, we obtain error estimate for NSFD3 scheme. Section
12 shows the relationship between physical behaviour and numerical solutions. Section 13
highlights the salient features of the paper. Tables and figures are presented in sections 14 and
15 respectively. A short version of this work has been published in [18].

3 Physical behaviour and description of parameters in FitzHugh-
Nagumo equation

3.1 Physical behaviour

FitzHugh-Nagumo equation was first established by Hodgkin and Huxley in the early 1950’s
by performing an experiment on a squid giant axon (voltage clamp) and they changed their
studies of transmembrane potential, currents and conductance into a circuit-like model. The
conclusion obtained from the experiment was a system of four ordinary differential equations
that precisely portrayed remarkable propagation alongside an axon. Although Hodgkin-Huxley’s
experiment has shown to be a good model to describe a signal propagation along a nerve, it
is difficult to be analysed. FitzHugh [19] and Nagumo [20] tackled this problem a decade later
when they restrained the original system of four variables down to a simpler model of only
two variables. Their simple model is simpler to be analysed and furthermore still depicts the
essential phenomena of the dynamics (physical behavior) which are:

(1) a sufficiently large stimulus will set off a considerable response, and

(2) after such a stimulus and response, the medium needs a period of recovery before it can
be impulsed again.

These two properties indicated above are described as excitable (γ < 0 : the nerve is in excitable
form) and refractory (γ > 0 : the nerve is in refractory form and does not respond to external
stimulation). Excitation occurs quickly while recovery happens slowly.
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3.2 Biological description of the parameter γ and β

Allee effect was introduced by the pioneer W.C. Allee [21] by demonstrating that goldfish grew
faster in water which had previously contained other goldfish than in water which had not.
The threshold of Allee effect is denoted by γ in Eq. (1). Moreover, Allee [21] carried out an
experiment with a range of species and concluded that larger groups may spur reproduction,
extend survival in adverse conditions and also improve protection [21, 22]. Despite the fact
that the Allee effect is properly well known, the notion has a range of significance not all of
which are allowed by contemporary use. Furthermore, Allee did not give a definition but he
plainly considered ”certain aspects of survival [23]” rather than total fitness and the following
definitions follow:

(1) Allee effect is a positive relationship between any component of individual fitness and
either numbers or density of conspecifics [24].

(2) The Allee effect induces minimum viable population sizes or a threshold value in the
critical spatial lengths of the initial distributions below which the population dies out. It
also induces the critical value of the spatial length of an initial nucleus (problem of critical
aggregation as in [25]).

The remark made from the original idea of Allee and its observations, is, the above definition
demands that some measurable component of the fitness of an organism for instance probability
of dying or reproducing is significant in a wide population (components of mean fitness meant
to provide an overall increase or decrease with increasing abundance relying on the relative
strength of negative density dependence). Moreover, it is worthy to differentiate between com-
ponent Allee effect which is manifested by a component of fitness and demographic Allee effect
which manifest at the level of total fitness [24]. It is shown in [26, 27] that a strong Allee effect
assigns to the population that has a negative growth when the size of the population is below
certain threshold value while a weak Allee effect means that growth is positive and increasing.
Overall, the Allee effect induces a rich variety of spatio-temporal dynamics in the considered
epidemological model.
Furthermore, some researchers used logistic growth (in the form of travelling infection waves)
and growth with a strong Allee effect in the modelling of biological or ecological phenomena.
Those waves, are waves of extinction, which occur when the proposed disease is introduced in
the wake of the invading host population [28]. Moreover, the Allee effect leads to bistability
in the local transmission dynamics [28]. In combination with the minimum viable population
size, this has serious implications for eventual control methods, since they do not necessarily
help in reducing the basic reproductive ratio anymore. If the disease’s infectious is considerable
in comparison with the demographic reproduction, the Allee effect becomes less important due
to the fact that the population dynamics is dominantly driven by the disease to extinction.
Recent results show that the Allee effect produces possible limit cycle oscillations with mass
action transmission [28] in the vital dynamics of the model. Furthermore, the vital dynamics
are generally governed by a strong Allee effect. This can be caused by difficulties in finding
mating partners at small densities, genetic inbreeding, demographic stochasticity or a reduction
in cooperative interactions [24, 29, 30]. It should be noted, moreover, that the study of Allee
effect dynamics is justified in its own rights, because this is largely lacking in the epidemiolog-
ical literature [28]. Though the model of FitzHugh-Nagumo is the one of the straightforward
models, it displays complex dynamics that have not been fully studied.

The intrinsic growth rate denoted by β, in the presence of migration, is an accurate mea-
sure of how quickly a population would ultimately grow if for instance current age-specific rates
of fertility, mortality and migration were sustained indefinitely in contrast to the actual growth
rate of a population (equal weight to all migrants in regard to age). For example, migrants are
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level-headed in their expected future number of births at the age when they come or go (will
not be feigned by migration that happens beyond the end of childbearing [15]).

4 Some methods for solving FitzHugh-Nagumo equation

There are various outcomes about local and global solutions of FitzHugh-Nagumo equations
that develop existence, uniqueness, smoothness, stability, approximation or numerical solutions
but none has been qualified to the exact solution formulae. Furthermore, it is worth under-
lining that, lately semi-analytic methods have been suggested to construct exact solutions of
Fitzhugh-Nagumo equation [31]. The study also unveiled an heterozygote inferiority when
γ ∈ (0, 1) [32] but if γ = −1, Eq. (1) is known as Newell-Whitehead equation representing
dynamical behaviour close to the bifurcation point. Furthermore, it has also been shown that
the exact solution of Eq. (1) demonstrates the fusion of two travelling fronts of the same sense
and change to a front joining two stable constant states. Additionally, Jackson [33] harnessed
Galerkin’s approximations to solve Eq. (1). Bell et al. [34] searched closely the singular pertur-
bation of N-front travelling waves while Gao et al. [35] looked into the existence of wavefronts
and impulses. Krupa et al. [36] examined fast and slow waves of Eq. (1). Moreover, Shonbek
[37] explored the higher-order derivatives of solutions of Eq. (1) whereas, Chou et al. [38]
investigated exotic dynamic behaviour of Eq. (1).

Various methods for Eq. (1) has been investigated such as: Adomian Decomposition Method
(ADM) [39], Homotopy Pertubation Method (HPM) [40, 41, 42, 43], Variational Iteration
Method (VIM) [44, 45, 46], Differential Transform Method (DTM) [47].
Recently, for β depending on time, many authors like Triki and Wazwaz [1], considered a gen-
eralized Fitzhugh-Nagumo equation given by

ut + α(t)ux − Γ(t)uxx + β(t)u(1− u)(γ − u) = 0, (2)

where α(t), Γ(t), β(t) are arbitrary functions of t, exhibits time-changing coefficients and linear
dispersion term. They showed the existence and uniqueness of soliton solutions and used ansatz
and tanh method with specific solitary wave. Jacobi-Gauss-Lobatto collocation method was
used by Bhrawy [17] to solve the generalized Fitzhugh-Nagumo equation. Polynomial differen-
tial quadrature method (PDQM) for numerical solutions of the generalized Fitzhugh-Nagumo
equation with time-dependent coefficients was also utilized by Ram et al [49].
Our focus in this work is for the case α = 0, Γ(t) = 1 and β independent of t.
Mickens [48] introduced the Nonstandard Finite Difference (NSFD) method to obtain solutions
of various partial differential equations. The derivations are mostly based on the idea of dy-
namical consistency which are positivity, boundedness, monotonicity of the solutions, stability
of all fixed points [50]. After generalizing these results, Mickens stated the following three key
rules in constructing NSFD schemes:

(1) The order of discrete derivatives should be equal to the order of corresponding derivatives
arising in the differential equation.

(2) Discrete approximation for derivatives, in general have non trivial denominator functions,
for example

ut ≈
un+1
j − unj
φ(∆t, λ)

(3)

where
φ(∆t, λ) = ∆t+O(∆t2). (4)

4



(3) Nonlinear terms must be represented by nonlocal discrete discretization. For example

u2
j ≈ ujuj+1, u

2
j ≈

(
uj−1 + uj + uj−1

3

)
uj , (5)

and
u3 ≈ 2u3

j − u2
juj+1, u

3
j ≈ uj−1ujuj+1. (6)

5 Numerical experiment

We solve Eq. (1) where u(x, t) is the unknown function which depends on the spatial variable,
x ∈ (−10, 10) ⊂ Ω = R and temporal variable, t.

The initial condition is u(x, 0) = u0(x) = 1
2 −

1
2 tanh

( √
β

2
√

2
x
)

[51] and the boundary conditions
are

u(−10, t) =
1

2
− 1

2
tanh

[ √
β

2
√

2
(−10− ct)

]
, u(10, t) =

1

2
− 1

2
tanh

[ √
β

2
√

2
(10− ct)

]
.

We note that the initial condition is non-negative i.e u(x, 0) ≥ 0.

The exact solution is u(x, t) = 1
2 −

1
2 tanh

[ √
β

2
√

2
(x− ct)

]
, where β > 0 and c = −

√
β
2 (2γ − 1)

with γ ∈ (0, 1). In this work, we consider three cases:

Case 1 : β = 0.5 (0 < β < 1) , γ = 0.2.

Case 2 : β = 1, γ = 0.2.

Case 3 : β > 1 (β = 2), γ = 0.2.

We construct four versions of NSFD schemes in order to discretise

ut − uxx = βu(1− u)(u− γ).

In all the four methods, we use the same discretisation for ut and uxx. We approximate ut by
un+1
j −unj
φ2(∆t) where φ2(∆t) = φ2(k) = eβk−1

β and uxx by
unj+1−2unj +unj−1

ψ1(∆x)ψ2(∆x) where ψ1(∆x) = ψ1(h) =

1−e−βh
β and ψ2(∆x) = ψ2(h) = eβh−1

β . We expect the theoretical rate of convergence in time
to be equal to one. Lax-Equivalence theorem cannot be used to study convergence as we are
working with a non-linear partial differential equation.
We test the performance of the schemes over some different values of β over the domain,
x ∈ [−10, 10] at time, T = 0.5. The spatial step size h is chosen as 0.1. We use some dif-
ferent values for the temporal step size k which must satisfy the condition for positivity and
boundedness.

6 Basic dynamical behaviour and a priori bound of Eq. (1)

In this section, we present a theorem on the existence and uniqueness of the solution to the dy-
namical behaviour of Eq. (1) and a priori bound of the solution. We recall some results from [14].

Theorem 1 ([14])
Suppose that 0 < γ < 1 and Ω ⊂ Rn is bounded domain with smooth boundary:

(a) If the initial condition u0(x) = u(x, 0) is positive (u0(x) ≥ 0) then Eq. (1) has unique
solution u(x, t) such that u(x, t) positive (u(x, t) ≥ 0) for t ∈ (0,∞) and Ω;

5



(b) If u0(x) ≤ 1 then u(x, t) tends to 0 uniformly as t → ∞;

(c) For any solution u(x, t) of Eq. (1), lim supt→∞ u(x, t) ≤ 1.

Proof The full proof is from [14]. Let us define

F (u) = β u(1− u)(u− γ).

(a) From [52, 53], by letting u(x, t) = 0 and u(x, t) = u∗(t), where u∗ is the unique solution
to

du

dt
= F (u), u(0) = u∗, u∗ = sup

x∈Ω

u0(x).

Then u(x) = 0 and u(x, t) = u∗(t), are the lower-solution and upper-solution to Eq. (1),
respectively. Furthermore since

ut(x, t)− uxx(x, t)− F (u(x, t)) = 0 ≥ 0 = u(x, t)− uxx(x, t)− F (u(x, t))

the boundary condition is satisfied and 0 ≤ u0(x) ≤ u∗ by using lower/upper-solution
Definition 8.1.2 in [52] or Definition 5.3.1 in [53]. It follows using Theorem 8.3.3 in [52],
that Eq. (1) has unique globally defined solution u(x, t) which satisfies 0 ≤ u(x, t) ≤ u∗(t),
t ≥ 0. Moreover, by using the strong maximum principle, u(x, t) > 0, for t ≥ 0 and
∀x ∈ Ω.

(b) We assume that u0(x) ≤ u∗ < 1, then u∗(t) → 0 as t → ∞.

(c) It is straightforward from (b) that lim supt→∞ u(x, t) ≤ 1.

�

In the following section, we construct four numerical methods to in order to solve Eq. (1).

7 NSFD1 scheme

We note that the right hand side of Eq. (1) is β (−u3 + (1 + γ)u2 − γu). We use the following
discrete approximations for the right hand side of Eq. (1) as used by Namjoo and Zibaei [54]:

− β γu(xj , tn) ≈ −β γun+1
j , −β (u(xj , tn))3 ≈ β

(
−3

2

(
unj−1

)2
un+1
j +

1

2

(
unj−1

)3)
, (7)

β (1 + γ) (u(xj , tn))2 ≈ β (1 + γ)
(
unj−1

)2
. (8)

The following scheme is proposed:

un+1
j − unj
φ2(k)

−
unj+1 − 2unj + unj−1

ψ1(h)ψ2(h)
= β

(
−3

2

(
unj−1

)2
un+1
j +

1

2

(
unj−1

)3)
+ β (1 + γ)

(
unj−1

)2 − β γ un+1
j . (9)

A single expression for the scheme is

un+1
j =

(1− 2R)unj +R(unj+1 + unj−1) + βφ2(k)

(
(1 + γ)

(
unj−1

)2
+ 1

2

(
unj−1

)3
)

1 + β γ φ2(k) + 3
2β φ2(k)

(
unj−1

)2 , (10)
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where R = φ2(k)
ψ1(h)ψ2(h) .

As discussed in the introduction, the theory of nonstandard finite difference required dynamical
consistency (positivity, boundedness, preservation of fixed points) which helps to avoid numer-
ical instabilities.
The fixed points of Eq. (1) are u∗1 = 0, u∗2 = 1 (which are stable) and u∗3 = γ which is unstable.
Furthermore, Roger and Mickens [55] showed preservation of local stabilities of all fixed points.

Theorem 2 (Dynamical consistency)
If 1− 2R ≥ 0, the numerical solution of Eq. (10) satisfies

0 ≤ unj ≤ 1 =⇒ 0 ≤ un+1
j ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n
and j.

Proof

(1) If 1− 2R ≥ 0, then

R =

(
eβk − 1

β

)(
β

1− e−βh

)(
β

eβh − 1

)
≤ 1

2
. (11)

Since unj ≥ 0 and 1 + β γ φ2(k) + 3
2β φ2(k)

(
unj−1

)2
> 0, NSFD1 is positive definite under

the condition

k ≤ 1

β
ln

[
1 +

1

2β

(
eβh − 1

)2
eβh

]
. (12)

(2) We assume that 0 ≤ unj ≤ 1. If the scheme is bounded, we need to prove that 0 ≤ un+1
j ≤ 1.

Consider

(un+1
j − 1)

(
1 + βγφ2(k) +

3

2
βφ2(k)

(
unj−1

)2)
= (1− 2R)unj +R(unj+1 + unj−1)

+ βφ2(k)

(
(1 + γ)

(
unj−1

)2
+

1

2

(
unj−1

)3)
− 1− βφ2(k)γ − 3

2
βφ2(k)

(
unj−1

)2
.

(13)

It follows
(
unj−1

)3
= unj−1

(
unj−1

)2
≤
(
unj−1

)2
since 0 ≤ unj ≤ 1 for all values of n and j.

Therefore,

(un+1
j − 1)

(
1 + βγφ2(k) +

3

2
βφ2(k)

(
unj−1

)2) ≤ 1− 2R+ 2R+ βγφ2(k)
(
unj−1

)2
+ βφ2(k)

((
unj−1

)2
+

1

2

(
unj−1

)2)
− 1− β γ φ2(k)− 3

2
βφ2(k)

(
unj−1

)2
= 0. (14)

Hence un+1
j − 1 ≤ 0. Thus, we conclude that NSFD1 scheme is bounded.
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�
Using h = 0.1, for positivity we have from (12),

(a) k ≤ 4.9948× 10−3 for β = 0.5.

(b) k ≤ 4.9917× 10−3 for β = 1.0.

(c) k ≤ 4.9917× 10−3 for β = 2.0.

We tabulate L1 and L∞ errors, rate of convergence in time (with respect to L∞ error) and
CPU time at some different values of k using γ = 0.2, h = 0.1 at time, T = 0.5 for three cases
namely; β = 0.5, 1.0, 2.0 using NSFD1 scheme in Tables 1, 2 and 3.

The scheme does not give satisfactory results especially in regard to the rate of convergence
as the theoretical rate of convergence with respect to time is one. This could be due to the

approximation of −β (u(xj , tn))3 by β

(
−3

2

(
unj−1

)2
un+1
j + 1

2

(
unj−1

)3
)

and approximation of

β (1 + γ) (u(xj , tn))2 by β (1 + γ)
(
unj−1

)2
where unj−1 and un+1

j are both non-local approxima-

tion.

Plots of u against x for the three cases using NSFD1 scheme are shown in Fig (1). Corre-
sponding plot of errors against x are shown in Fig (2).
We observe that as we increase the values of β, the profile becomes more stiff and the problem
becomes more challenging for the numerical scheme.

8 NSFD2 scheme

In this section, we make use of the following approximations [54] for the right hand of Eq. (1):

− β γ u(xj , tn) ≈ −β γ un+1
j , β (1 + γ) (u(xj , tn))2 ≈ β(1 + γ)un+1

j unj , (15)

− β (u(xj , tn))3 ≈ −β un+1
j

(
unj
)2
. (16)

This gives the following scheme:

un+1
j − unj
φ2(k)

−
unj+1 − 2unj + unj−1

ψ1(h)ψ2(h)
= β

(
−un+1

j

(
unj
)2

+ (1 + γ)un+1
j unj − γ un+1

j

)
, (17)

which can be rewritten as

un+1
j =

(1− 2R)unj +R(unj+1 + unj−1)

1 + β φ2(k) γ − β (1 + γ)φ2(k)unj + β φ2(k)
(
unj

)2 , where R =
φ2(k)

ψ1(h)ψ2(h)
. (18)

Theorem 3 (Dynamical consistency)
If 1− 2R ≥ 0 and 1− βφ2(k) ≥ 0, the numerical solution of Eq. (18) satisfies

0 ≤ unj ≤ 1 =⇒ 0 ≤ un+1
j ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n
and j.
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Proof

(1) If 1 − 2R ≥ 0 and 1 − βφ2(k) ≥ 0, then NSFD2 is positive definite. Indeed we require

1 + β φ2(k) γ − β (1 + γ)φ2(k)unj + β φ2(k)
(
unj

)2
> 0. Since 0 ≤ unj ≤ 1,

1−
[
β(1 + γ)φ2(k)unj − βφ2(k)γ

]
+ βφ2(k)

(
unj
)2 ≥ 1− βφ2(k) + βφ2(k)

(
unj
)2

≥ 1− βφ2(k). (19)

NSFD2 is positive definite under the conditions

k ≤


1
β ln (2) ,

1
β ln

(
1 + 1

2β
(eβh−1)

2

eβh

)
.

(20)

(2) We note that 0 ≤ unj ≤ 1. We need to check if NSFD2 is bounded. Consider

(un+1
j − 1)

(
1 + βφ2(k)γ − β(1 + γ)φ2(k)unj + βφ2(k)

(
unj
)2)

= (1− 2R)unj

+R(unj+1 + unj−1)− 1− βγφ2(k) + β(1 + γ)φ2(k)unj − βφ2(k)
(
unj
)2
. (21)

Since 0 ≤ unj ≤ 1 for all values for n and j,

(un+1
j − 1)

(
1 + βφ2(k)γ − β(1 + γ)φ2(k)unj + βφ2(k)

(
unj
)2) ≤ 1− 2R+ 2R

− 1− βγφ2(k) + β(1 + γ)φ2(k)unj − βφ2(k)
(
unj
)2

=

− βφ2(k)
[(
unj
)2 − γunj − unj + γ

]
= −βφ2(k)(unj − 1)(unj − γ) ≤ 0. (22)

Hence 0 ≤ un+1
j ≤ 1 and therefore NSFD2 satisfies the boundedness properties.

�

Using h = 0.1, for positivity we have from Eq. (20)

(a) k ≤ 1.3863 and k ≤ 4.9948× 10−3 for β = 0.5.

(b) k ≤ 6.9315× 10−1 and k ≤ 4.9917× 10−3 for β = 1.0.

(c) k ≤ 3.4657× 10−1 and k ≤ 4.9917× 10−3 for β = 2.0.

We tabulate L1 and L∞ errors, rate of convergence in time (with respect to L∞ error) and
CPU time at some different values of k using γ = 0.2, h = 0.1 at time, T = 0.5 for three cases
namely; β = 0.5, 1.0, 2.0, using NSFD2 scheme in Tables 4, 5 and 6.

We observe that L1 error, L∞ errors are quite small for all the three cases. The rate of conver-
gence with respect to time is approximatively one for the case β = 0.5. The rate of convergence
for β = 1 is approximately one if k is properly chosen as 0.005. For β = 2, the rate of conver-
gence deviate from ideal value of one quite significantly.

Plots of u against x for the three cases using NSFD2 scheme are shown in Figs 3 and 4.
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9 NSFD3 scheme

We consider the ordinary differential equation

ε
du

dt
= f(u), (23)

where f(u) = u(1− u)(u− γ), and ε > 0 is a real parameter, γ ∈ (0, 1). Roger and Mickens [55]
showed that the following NSFD scheme

ε
un+1 − un

φ2(∆t)
= −(2un+1 − un) (un)2 + (1 + γ) (un)2 − γun+1. (24)

where φ2(∆t) = e
∆t
ε −1
1
ε

, preserves positivity and local stabilities of all fixed points. We construct

a Nonstandard finite difference scheme using idea from Roger and Mickens [55]. We propose
the following scheme for Eq. (1):

un+1
j − unj
φ2(k)

−
unj+1 − 2unj + unj−1

ψ1(h)ψ2(h)
= β

(
−
(

2un+1
j − unj

) (
unj
)2

+ (1 + γ)
(
unj
)2 − γun+1

j

)
. (25)

A single expression for NSFD3 scheme is

un+1
j =

(1− 2R)unj +R(unj+1 + unj−1) + β φ2(k)

((
unj

)3
+ (1 + γ)

(
unj

)2
)

1 + β φ2(k) γ + 2β φ2(k)
(
unj

)2 . (26)

Theorem 4 (Dynamical consistency)
If 1− 2R ≥ 0, the numerical solution of Eq. (26) satisfies

0 ≤ unj ≤ 1 =⇒ 0 ≤ un+1
j ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n
and j.

Proof

(1) NSFD3 is positive definite if 1−2R ≥ 0. The following condition must be satisfied namely,

k ≤ 1

β
ln

(
1 +

1

2β

(
eβh − 1

)2
eβh

)
. (27)

(2) We next check if the NSFD3 is bounded:

(un+1
j − 1)

(
1 + β φ2(k)γ + 2βφ2(k)

(
unj
)2)

= (1− 2R)unj

+R(unj+1 + unj−1) + βφ2(k)
((
unj
)3

+ (1 + γ)
(
unj
)2)

− 1− β γφ2(k)− 2β φ2(k)
(
unj
)2
. (28)

We note that 0 ≤ unj ≤ 1 for all values of n and j. Therefore

(un+1
j − 1)

(
1 + βγφ2(k) + 2βφ2(k)

(
unj−1

)2) ≤ 1− 2R+ 2R+ βφ2(k)
(
γ
(
unj
)2

+
(
unj
)2)

+ βφ2(k)− 1− β γφ2(k)− 2βφ2(k)
(
unj
)2

= 0.

(29)

Hence 0 ≤ un+1
j ≤ 1 and therefore NSFD3 satisfies the boundedness properties.
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We tabulate L1 and L∞ errors, rate of convergence in time and CPU time at some differ-
ent values of k using γ = 0.2, h = 0.1 at time, T = 0.5 for three cases namely; β = 0.5, 1.0, 2.0
using NSFD3 scheme in Tables 7, 8 and 9.
The scheme is very effective for β = 0.5 , 1.0 in respect to L1 and L∞ errors, rate of convergence
in time. The scheme is effective for β = 2 in regard to rate of convergence if the time step size
is carefully chosen.
Plots of u against x for the three cases using NSFD3 scheme are shown in Fig 5 and correspond-
ing plots of errors against x are displayed in Fig 6.

10 NSFD4 scheme

We observe that NSFD1 has convergence issues for all the three values of β used. NSFD4
scheme is a modification of NSFD1 scheme: We approximate −β (u(xj , tn))3 by

β

(
−3

2

(
unj

)2
un+1
j + 1

2

(
unj

)3
)

instead of β

(
−3

2

(
unj−1

)2
un+1
j + 1

2

(
unj−1

)3
)
. We also approx-

imate β (1 + γ) (u(xj , tn))2 by β (1 + γ)
(
unj

)2
instead of β (1 + γ)

(
unj−1

)2
.

We propose

un+1
j − unj
φ2(k)

−
unj+1 − 2unj + unj−1

ψ1(h)ψ2(h)
= β

(
−3

2

(
unj
)2
un+1
j +

1

2

(
unj
)3)

+ β (1 + γ)
(
unj
)2 − β γ un+1

j . (30)

A single expression for the scheme is

un+1
j =

(1− 2R)unj +R(unj+1 + unj−1) + βφ2(k)

(
(1 + γ)

(
unj

)2
+ 1

2

(
unj

)3
)

1 + β γ φ2(k) + 3
2β φ2(k)

(
unj

)2 , (31)

where R = φ2(k)
ψ1(h)ψ2(h) .

Theorem 5 (Dynamical consistency)
If 1− 2R ≥ 0, the numerical solution of Eq. (31) satisfies

0 ≤ unj ≤ 1 =⇒ 0 ≤ un+1
j ≤ 1,

and the dynamical consistency (positivity and boundedness) holds for all relevant values of n
and j.

Proof

(1) NSFD4 is positive definite if 1 − 2R ≥ 0. We have 1 + β γ φ2(k) + 3
2β φ2(k)

(
unj

)2
> 0

since unj ≥ 0. It follows that

k ≤ 1

β
ln

[
1 +

1

2β

(
eβh − 1

)2
eβh

]
. (32)
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(2) By assumption, 0 ≤ unj ≤ 1. We have

(un+1
j − 1)

(
1 + β γ φ2(k) +

3

2
β φ2(k)

(
unj
)2)

= (1− 2R)unj +R(unj+1 + unj−1)

+ β φ2(k)

(
(1 + γ)

(
unj
)2

+
1

2

(
unj
)3)

− 1− β φ2(k)γ − 3

2
β φ2(k)

(
unj
)2
. (33)

It follows that
(
unj

)3
= unj

(
unj

)2
≤
(
unj

)2
since 0 ≤ unj ≤ 1 for all values of n and j.

Therefore,

(un+1
j − 1)

(
1 + βγφ2(k) +

3

2
βφ2(k)

(
unj
)2) ≤ 1− 2R+ 2R+ βγφ2(k)

(
unj
)2

+ βφ2(k)

((
unj
)2

+
1

2

(
unj
)2)

− 1− β γ φ2(k)− 3

2
βφ2(k)

(
unj
)2

= β γ φ2(k)
((
unj
)2 − 1

)
≤ 0. (34)

Hence un+1
j − 1 ≤ 0 and the therefore NSFD4 is bounded.

�

Using h = 0.1, for positivity we have from Eq. (32),

(a) k ≤ 4.9948× 10−3 for β = 0.5.

(b) k ≤ 4.9917× 10−3 for β = 1.0.

(c) k ≤ 4.9917× 10−3 for β = 2.0.

We tabulate L1, L∞ errors, rate of convergence and CPU time at some different values of k
using γ = 0.2, h = 0.1 at time, T = 0.5 for three cases namely; β = 0.5, 1.0, 2.0, using NSFD4
scheme in Tables 10, 11 and 12.

The scheme gives good results for β = 0.5, 1.0 if k is properly chosen and is an improvement
over NSFD1. The scheme is not effective for β = 2.0 as the numerical rate of convergence
deviates from one.
Plots of u against x for the three cases using NSFD4 scheme are shown in Fig 7 and plot of
errors against x are displayed in Fig 8.

Remark
If β is chosen much larger than the coefficient of diffusion (say β = 5 or 10) for the numerical
experiment considered in this work, the profile becomes stiff and the problem becomes difficult
to solve.
In Agbavon et al. [56], the numerical solution of Fisher’s equation with coefficient of diffusion
term much smaller than reaction was obtained for an initial condition consisting of an expo-
nential function. NSFD methods were used and range of values of k was quite restricted. To
obtain accurate results very small values of k had to be used. Some modification was made to
the NSFD methods.
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11 Error estimates for NSFD3

In this section, we study the error estimate for NSFD3. Before any further discussion, we recall
some of results from [57, 58]. We consider the system of partial differential equations:

Vt = D(x, t, V )∆V +
n∑
j=1

Mj(x, t, V )
∂V

xj
+ F (x, t, V ), (x, t) ∈ Ω× (0,∞), (35)

V (x, 0) = V0(x) x ∈ Ω, (36)

P (x)[V (x, t)−W (x)] +Q(x)
∂V

∂n
= 0 (x, t) ∈ ∂Ω× (0,∞) (37)

Here Ω ⊂ Rµ is a connected, bounded open set with piecewise smooth boundary and V (x, t) ∈
Rν . Let S be the parallelepiped S =

∏µ
i=1[ai, bi] in V−space. We make the following assump-

tions:

(a) D, Mj , and P and Q are diagonal matrices.

(b) There is a constant K1 > 0 such that

di(x, t, V )− K1

2
|mji(x, t, V )|≥ 0, (x, t, V ) ∈ Ω× [0,∞)× S, ∀i, j.

di and mji are bounded and smooth. Furthermore they are i th diagonal entries of D and
M respectively.

(c) F is smooth function and verifies F (x, t, V ) ·Ns(V ) ≤ 0), ∀ (x, t, V ) ∈ Ω × [0,∞) × ∂S.
N is outer normal on S. Also We assume there is constant K2 such that∣∣∣∂F i∂V i

(x, t, V )
∣∣∣ ≤ K2, ∀ (x, t, V ) ∈ Ω× [0,∞)× S and for all i.

(d) V0(x) and W (x) are in S for relevant x.

(e) supi, x,α|Dα
xV

i(x, t)|<∞ for 1 ≤ i ≤ µ, x ∈ Ω and |α|=
∑ν

j=1|αj |≤ 4.

‖V ‖p= supx,α|Dα
xV

i(x, t)|∞, where p is non-negative integer.

We define the finite difference equation

V n+1
j − V n

j

∆t
=

µ∑
j=1

{[
D

∆2
j

(∆xj)2
+Mj

∆j

(2 ∆xj)

]
(z1 V

n+1 + z2 V
n)

}
j

+ F, (38)

where D, Mj and F are evaluated at (xj , tn, V
n
j ). Here z1 and z2 are nonnegative such that

z1 + z2 = 1. We also define the error in the numerical method as

enj = vnj − V n
j (39)

where v is the exact solution of (35)- (37) and V is the finite-difference approximation. We
state the following theorem from [57] and simple case is treated in [58] using Dirichlet boundary
condition.

Theorem 6 (HOFF [57])
Assume that the solution v of (35)- (37) is smooth in the sense of assumption (e) and assume
that the difference scheme (38) is consistent and stable. Then

‖en‖∞≤
e−σ tn

l + e−(σ+p) tn
[‖e0‖∞+p l] +

l

l + e−(σ+p) tn
diamS, (40)

where p = p(tn) is a positive function of tn which depends upon the parameters appearing in
(35)- (37) and upon max0≤t≤tn‖V (·, t)‖4; l = ∆t+

∑µ
j=1(∆xj)2; and σ ≥ 0 is arbitrary.
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Remark
Note that the Theorem 6 is a general case of the following theorem in which Dirichlet boundary
condition is used:

Theorem 7 (Sanz-Serna and Stuart [58])
Under the above assumptions (a) − (e) and under the conditions that as t → ∞, v approaches
an equilibrium and asymptotically stable and the grids are refined in such a way that(
∆t/(∆x)2

)
≤ ε ≤ 1

2 then there exist constants l0 and C depending upon only f, v and ε, such
that for ∆x < l0, the numerical solution V n exists for all positive integers n and satisfies the
error bound. Then

‖en‖2≤ C l, l = ∆t+ (∆x)2. (41)

Remark (ANDÔ [59])
Let p ≥ 1 be a real number. The p-norm (also called lp-norm of Lp space) of vector

x = (x1, · · ·, xn) is

‖ x ‖p=

(
n∑
1

|xi|p
) 1

p

.

We apply the above theorems to our problem. We take S = [0, 1]; diamS = 1; F = f(u) =
β u(1 − u)(u − γ). D = 1; M = 0; P (x) = 0; Q(x) = 1. ν = 1; µ = 1. The fixed points of
Eq. (1) are u∗1 = 0, u∗2 = 1 and they are asymptotically stable. Also u∗3 = γ is fixed point
but it is unstable [55]. From assumption of Theorem 1 we have u0(x) ∈ [0, 1], ∀ x. Further-
more u(x, t) ∈ [0, 1], ∀ x, t. f(u) = β u(1 − u)(u − γ), is smooth in u. ∂s = {0, 1, γ}. Hence
0 = f(x, t, 0) ·Ns(u) = 0; 0 = f(x, t, 1) ·Ns(u) = 0; 0 = f(x, t, γ) ·Ns(u) = 0. fu = β{(1−u)(u−
γ) − u(uγ) + u(1 − u)}. |fu|∞= max|fu|≤ 2 γ + 1 = K2. ux = −

√
β

4
√

2
+
√
β

4
√

2
tanh(

√
β

2
√

2
(x − ct)).

|ux|<∞ since tanh is bounded on [−10, 10].

We can conclude since the NSFD3 scheme is dynamical consistent and stable under the condi-

tion k ≤ 1
β ln

(
1 + 1

2β
(eβh−1)

2

eβh

)
and l = φ2(k) + ψ1(h)ψ2(h). The error bound (error estimate)

is

‖en‖∞≤
e−σ tn

l + e−(σ+p) tn
[‖e0‖∞+p l] +

l

l + e−(σ+p) tn
.

As tn →∞, we have
‖en‖∞≤ 1.

12 Relationship between physical behaviour and numerical so-
lution

In section 3.1, we mentioned that the model of FitzHugh-Nagumo equation which gives signal
propagation (in form of wave) along a nerve has two properties which are excitable (γ < 0 :
the nerve is in excitable form) and refractory (γ > 0 : the nerve is in refractory form and does
not respond to external stimulation) [19, 20]. Excitation occurs quickly while recovery happens
slowly. We also mentioned that FitzHugh-Nagumo equation has a lot of applications in biology
[16, 17]. It was proved in [13] that the solution of the model of FitzHugh-Nagumo equation
has biological meaning only if γ ∈ (0, 1). That makes sense since if γ < 0, the nerve is in
excitable form and depends on external simulation. Therefore the solution of the model can
be out of bound. In biological point of view, the solutions of the model should remain positive
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and bounded as time progresses if γ ∈ (0, 1) (please refer to section 6 of basic dynamical
behaviour and a priori bound). In our work, we are dealing with the case where the solution
biologically makes sense i.e. γ ∈ (0, 1). We have constructed four schemes namely; NSFD1,
NSFD2, NSFD3, NSFD4 which are dynamically consistent (please refer to theorems 2, 3, 4, 5).
Dynamically consistency means preservation of the properties of the original model. Our four
schemes preserve the positivity, boundedness and fixed points of the model.

13 Conclusion

In this work, we have constructed four nonstandard finite difference schemes namely; NSFD1,
NSFD2, NSFD3, NSFD4 in order to solve FitzHugh-Nagumo equation under three different
regimes. The first order time derivative and the second order spatial derivative are approximated
in the same manner for all of the methods and it is only the nonlinear polynomial in the partial
differential equation which is discretised differently. We derive conditions under which the
schemes are positive definite and bounded.
NSFD1 is not effective and gives issues in regard to its rate of convergence in time for all the
three values of β used. NSFD4 is a major improvement over NSFD1. NSFD4 is effective for
β = 0.5, 1.0. NSFD2 is effective for β = 0.5. NSFD2 is quite effective in regard to rate of
convergence for β = 1.0, 2.0 provided k is carefully chosen. NSFD3 seems the best scheme
followed by NSFD2 and NSFD4 when we check performance of the methods based on L1, L∞
errors and rate of convergence in time (with respect to L1 error). We studied the error estimate
for NSFD3 and found that it cannot go beyond one as we progress in time.
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14 Tables

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.7339 ×10−2 2.6693 ×10−3 - 1.007
0.0025 1.7383 ×10−2 2.6742 ×10−3 -3.656 ×10−3 1.229
0.00125 1.7405 ×10−2 2.6767 ×10−3 -1.824 ×10−3 1.752

Table 1: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD1 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 3.4919 ×10−2 7.4411 ×10−3 - 1.032
0.0025 3.5051 ×10−2 7.4613 ×10−3 -5.443 ×10−3 1.280
0.00125 3.5117 ×10−2 7.4715 ×10−3 -2.713 ×10−3 1.815

Table 2: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD1 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 6.9598 ×10−2 2.0534 ×10−2 - 0.608
0.0025 6.9987 ×10−2 2.0625 ×10−2 -8.041 ×10−3 0.804
0.00125 7.0182 ×10−2 2.0671 ×10−2 -1.205 ×10−2 1.277

Table 3: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD1 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 2.0909 ×10−4 3.3657 ×10−5 - 0.502
0.0025 1.0409 ×10−4 1.8821 ×10−5 1.006 0.750
0.00125 5.8981 ×10−5 1.1664 ×10−5 8.195 ×10−1 1.107

Table 4: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD2 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5 at time, T = 0.5.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 5.9109 ×10−4 1.3556 ×10−4 - 0.939
0.0025 3.1703 ×10−4 7.8179 ×10−5 8.987 ×10−1 1.119
0.00125 2.1886 ×10−4 5.0919 ×10−5 5.346 ×10−1 1.535

Table 5: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD2 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.7319 ×10−3 5.4629 ×10−4 - 0.607
0.0025 1.1015 ×10−3 3.3108 ×10−4 6.528 ×10−1 1.293
0.00125 8.8733 ×10−4 2.3146 ×10−4 3.119 ×10−1 1.245

Table 6: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD2 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2.0 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.3466 ×10−4 2.0390 ×10−5 - 0.532
0.0025 6.5704 ×10−5 8.1762 ×10−6 1.035 0.862
0.00125 3.2908 ×10−5 4.6063 ×10−6 9.975 ×10−1 1.231

Table 7: Computation of L1 and L∞ errors, rate of convergence and CPU time using NSFD3
for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 3.6478 ×10−4 6.7996 ×10−5 - 1.063
0.0025 1.8672 ×10−4 2.4832 ×10−5 9.661 ×10−1 1.207
0.00125 1.0268 ×10−4 2.5881 ×10−5 8.627 ×10−1 1.709

Table 8: Computation of L1 and L∞ errors, rate of convergence and CPU time using NSFD3
for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.0211 ×10−3 1.8991 ×10−4 - 1.013
0.0025 5.5377 ×10−4 1.5864 ×10−4 8.827 ×10−1 1.443
0.00125 5.4617 ×10−4 1.6408 ×10−4 1.993 ×10−2 2.673

Table 9: Computation of L1 and L∞ errors, rate of convergence and CPU time using NSFD3
for −10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 7.5948 ×10−5 1.1653 ×10−5 - 0.987
0.0025 3.5996 ×10−5 4.2640 ×10−6 1.077 1.274
0.00125 2.2770 ×10−5 4.1322 ×10−6 6.607 ×10−1 1.659

Table 10: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD4 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 0.5 at time, T = 0.5.
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Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 1.9783 ×10−4 3.4931 ×10−5 - 0.479
0.0025 1.0298 ×10−4 2.0513 ×10−5 9.418 ×10−1 1.190
0.00125 1.0260 ×10−4 2.4227 ×10−5 5.333 ×10−2 1.652

Table 11: Computation of L1, L∞ errors, rate of convergence and CPU time using NSFD4 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 1 at time, T = 0.5.

Time step (k) L1 error L∞ error Rate of convergence CPU (s)

0.005 5.7010 ×10−4 1.1881 ×10−4 - 0.551
0.0025 4.4661 ×10−4 1.4439 ×10−4 3.521×10−1 0.798
0.00125 6.0359 ×10−4 1.5759 ×10−4 -4.345×10−1 1.237

Table 12: Computation of L1, L∞ errors, rate convergence and CPU time using NSFD4 for
−10 ≤ x ≤ 10, γ = 0.2, h = 0.1, β = 2 at time, T = 0.5.

15 Figures
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Figure 1: Plot of u vs x using NSFD1 scheme at time T = 0.5, where x ∈ [−10, 10] for different
values of β namely; 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(b) h = 0.1, β = 1, k = 0.005.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 2: Plot of error vs x using NSFD1 scheme at time T = 0.5, where x ∈ [−10, 10] for
different values of β respectively 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(b) h = 0.1, β = 1, k = 0.005.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 3: Plot of u vs x using NSFD2 scheme at time T = 0.5, where x ∈ [−10, 10] for different
values of β namely; 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 4: Plot of error vs x using NSFD2 scheme at time T = 0.5, where x ∈ [−10, 10] for
different values of β respectively 0.5 , 1.0 , 2.0.

25



−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

u

 

 
Initial
Numerical
Exact

(a) h = 0.1, β = 0.5, k = 0.005.
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Figure 5: Plot of u vs x using NSFD3 scheme at time T = 0.5, where x ∈ [−10, 10] for different
values of β namely; 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(b) h = 0.1, β = 1, k = 0.005.
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Figure 6: Plot of error vs x using NSFD3 scheme at time T = 0.5, where x ∈ [−10, 10] for
different values of β respectively 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.
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(b) h = 0.1, β = 1, k = 0.005.
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(c) h = 0.1, β = 2, k = 0.005.

Figure 7: Plot of u vs x using NSFD4 scheme at time T = 0.5, where x ∈ [−10, 10] for different
values of β namely; 0.5 , 1.0 , 2.0.
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(a) h = 0.1, β = 0.5, k = 0.005.

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

x

E
r
r
o
r

(b) h = 0.1, β = 1, k = 0.005.
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Figure 8: Plot of error vs x using NSFD4 scheme at time T = 0.5, where x ∈ [−10, 10] for
different values of β respectively 0.5 , 1.0 , 2.0.
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