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Abstract

Adjusting for baseline pre-intervention characteristics between treatment groups, through the use

of propensity score matching methods, is an important step that enables researchers to do causal

inference with confidence. This is critical, largely, due to the fact that practical treatment alloca-

tion scenarios are non-randomized in nature, with various inherent biases that are inevitable, and

therefore requiring such experimental manipulations. These propensity score matching methods

are the available tools to be used as control mechanisms, for such intrinsic system biases in causal

studies, without the benefits of randomization (Lane, To, Kyna , & Robin, 2012). Certain assump-

tions need to be verifiable or met, before one may embark on a propensity score matching causal

effects journey, using the Rubin causal model (Holland, 1986), of which the main ones are con-

ditional independence (unconfoundedness) and common support (positivity). In particular, with

this dissertation we are concerned with elaborating the applications of these matching methods,

for a ‘strong-ignorability’ case (Rosenbaum & Rubin, 1983), i.e. when both the overlap and un-

confoundedness properties are valid. We will take a journey from explaining different experimental

designs and how the treatment effect is estimated, closing with a practical example based on two

cohorts of enrolled introductory statistics students prior and post-clickers intervention, at a public

South African university, and the relevant causal conclusions thereof.

Keywords: treatment, conditional independence, propensity score, counterfactual, confounder,

common support
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1

Introduction

In instances where interventions are to be measured for their successes or failures propen-

sity score adjustment techniques are often applied. This dissertation is concerned with

the analysis of causality, which is the effect a given intervention may have, positive or

negative, on some outcome. The famous ‘correlation is no implication of causation’ anec-

dote is attributed to G. A. Barnard (Holland, 1985 and 1986). In both papers, Holland

talks up the philosophy behind the concept of cause and effect and how mathematics helps

to identify distinguishing factors between models for causation and those for association.

Since these kinds of experimental studies puts more emphasis in differentiating cause and

effect from simple associations (Mariani & Pêgo-Fernandes, 2014). Good experimental

design processes will allow us to mix these two worlds into one hence making it easier to

reason, with a degree of confidence, about the causal inference made.

Causal models are useful in a variety of practical fields, such as social, economic,

and political sciences, more specifically epidemiology in the medical sciences, and other

natural sciences, in determining the effect that interventions have on responses. In their

1983 seminal article, Rosenbaum & Rubin refer to randomized trials being the “gold

standard” method for experimental design, even though they are not always feasible,

practically, in real-life scenario implementations due to data sets often being observational

in nature. It is interesting to further note that there may also be ethical implications when

randomized trials are applied on human subjects. This therefore, necessitates the need

for different experimental designs such that researchers can make meaningful conclusions

through causal inference. These are quasi-experimental designs, whose sole purpose is

balancing observational data by controlling for some of the intrinsic biases within them

so that they may eventually mimic random trials, which are discussed in Chapter 2.

Study biases, common with observational data, are those of selection bias which implies

that subjects may self-select to the treatment and information bias or observation bias

which relates to inaccuracies in its collection, measurement, and interpretation, which will

compromise both the internal validity and generalizability of the applied model (Kukull

causality: propensity score adjustments 1
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& Ganguli, 2012). Such biases, especially in selection, tend to cause some of the baseline

or pre-intervention characteristics to confound, meaning some may directly impact both

treatment allocation and the outcome (Starks, Diehr & Curtis, 2009).

A common consensus with causal inference, for observational studies, is that the Rubin

Causal model (Holland, 1985) mostly referred to as ‘the potential-outcomes framework’

model is the technique of choice. Caused by a deeply-rooted problem related to mak-

ing causal inference with ‘missing data’, due to not being able to observe both outcomes

from the same subject (Imai, 2011 and Holland, 1986) which is coined ‘the fundamental

problem of causal inference’ by Holland, (1986). Economists often call this ‘the funda-

mental problem of program evaluation’ in their literature. In any way scientists are in

agreement or admit to the fundamental nature of the requirement of the counterfactual1

or non-observable outcome, thus requiring control mechanisms such as propensity score

modeling, to address this issue. Therefore, in order to estimate, for each subject, the im-

pact on the response with or without the intervention a counterfactual outcome is needed.

This is typically done through comparing subjects from the active treatment to those

with similar features from the control group. Therefore, quasi-experiments are seen as

subsequent control methodologies when analyzing causality with observational data thus

correcting for biases and the fundamental problem of causal inference.

Layout. In Chapter 2 the literature review introduce the reader to, the different kinds

of, experiment-designs, i.e. randomized control trials (RCTs) and quasi-experimental de-

signs (QEDs). The latter is, typically, used for real-life observational studies in order to

control for the mentioned biases that are innate within its data form, and hence help imi-

tate random trial behavior. Comparisons of these designs, in relation to their advantages

and disadvantages, are done together with the mathematical definitions of the efficacy and

or effectiveness of interventions.

Propensity scores are defined and then introduced, before being thoroughly discussed

in the following Chapter 3, as the measures needed, to be estimated, so that matching

techniques can be applied. Chapter 3 continue expanding on the theory behind adjusting

with propensity scores, together with the introduction of causal assumptions or properties

required, the mathematics behind them, the different kinds of matching methods, and

finally the typical steps navigated when matching is applied.

Application. Propensity score matching applications, in a practical scenario through

the mentioned steps of Chapter 3, is the sole purpose of Chapter 4. For this dissertation,

two cohorts of an introductory statistics course enrollees at the University of Pretoria

1Counterfactual refers to what could have been on subjects allocated treatment or intervention but
never partake
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(prior and post a clickers intervention) is utilized. The university implemented a classroom

response system, referred to as clickers, device intervention to improve student interaction,

amongst them and with their instructors, ease of accessing assignments and collaboration

at home or in class, and or sharing course-related knowledge online, for this module. With

the ultimate aim being to ensure students score higher marks and eventually better odds

at success or progressing. Further, the data collection mechanisms of these devices allow

lecturers to consolidate from the real-time information analysis and pinpoint where the

challenge is for the rest of the class. Of utmost importance, to note, here is that these

students were not enrolled at random to either group and so we have an observational

study.

Our cohorts are the class of 2014, or the control group, and that of 2017, which we

refer to as the treatment group from here on, exclusively. Their respective sample sizes are

1,625 in the control group and 1,486 in the treatment group. Propensity score adjustment

techniques are applied, three of them in addition to first starting with an unadjusted case,

for causal inference analysis. These methods are greedy matching with a caliper, optimal

matching, and inverse probability of treatment weights. All these were consistent, in terms

of their individual outcome model estimates, with some slight differences on the estimated

causal risk difference of which was much bigger for the greedy method, between the two

groups for this data.

causality: propensity score adjustments 3
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2

Literature review

For experimental-design studies, estimating the causal effect requires a researcher to hy-

pothesize the success of some intervention on treated subjects (Rosenbaum & Rubin, 1983

and Dehejia & Wahba, 2002). Experimental designs are, therefore, devised as means to

somehow simplify, and observe these effects on the outcome (response) variable whenever

thorough examination was conducted. This is usually done through thorough manipu-

lation of the independent variable(s), via the intervention, and examining their effects

on the response (dependent) variable. The objective is that of correcting or controlling

for any imbalances between the treatment groups, i.e. exposed and control, whenever

randomization was not applicable.

Rosenbaum & Rubin (1983) warn that researchers need to be wary of selection bias

and confounding variables2 when working with observational data. This awareness being

of crucial importance since selection bias and confounders are an inevitability of such a

process. The coin-toss nature of randomized experiments will self-correct for such problems

by giving each subject (or observation unit) an equal chance at allocation (Austin, 2011).

This in turn allows for covariates in both the treatment groupings to be evenly distributed,

hence achieving the balance required for analysis. Therefore, the ability to distinguish

between randomized control and non-randomized experiments is an important skill for a

mathematical statistician and or data scientist to master. These skills aid the relevant

researcher when identifying the experimental-paradigm nature of given data, and hence

swiftly finding the right analytical tool that fit the specified problem design.

Rosenbaum, & Rubin (1983); Dehejia & Wahba (2002) and Thavaneswaran & Lix

(2008) argue that a randomized control trial (RCT) is an ideal exercise for data mining,

more so for experimental design problems. Not all data will, however, adhere to its required

set-up in practical scenarios. For instance, as explained above, selection bias will violate

the independence assumption of the response in observational data scenarios, due to the

2Confounders are those variables that the researcher failed to control for, compromising the
internal validity of an experiment
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inevitability of confounders or confounding variables existing. Confounder variables tend

to affect both the treatment and the outcome, refer to Figure 1, and the basic experimental

design requirement is to control for them. Controlling for confounders ensure that a

quasi-experimental design (QED) process, which will almost behave randomly, is achieved

(Heinrich, Maffioli, & Vázquez, 2010).

Causality using graphs

Directed acyclic graphs (DAGs) are typically used to depict relations between covariates,

treatment status and the outcome variables. Their innate character is that they are set of

vertices (or nodes) linked through pointed arrows (or a set of edges) for causal direction

(Imbens, 2019 and Scheines, 1997). For example Figure 1 shows a pair of DAGs that

indicate two possible causal scenarios, i.e. confounded and non-confounded cases.

(Source: Own elaboration)

Figure 1 Directed acyclic graphs (confounder & non-confounder)

causality: propensity score adjustments 5
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Following the notation from Scheines, (1997), Figure 1 can be interpreted as follows:

Given the sets of three vertices and two edges respectively {X, τ, Y } and

{X→τ, τ→Y }, the diagrammatical nature of our DAG representation is

{X→τ→Y }, where the treatment status is given by τ, the confounder X,

and the outcome Y , respectively.

Similarly, for the same set of three vertices {X, τ, Y } and three edges

{X→τ, X→Y, τ→Y }, the DAG may be represented as follows

{Y ←X→τ→Y } . In this case X is an ‘observed confounder’, meaning that causal

inference is inadequate unless this confounded effect is controlled for (Imbens, 2019).

The concepts of observational and randomized experiments will be discussed in more

detail, Section 2.1. Specifically, Subsection 2.1.1 and 2.1.2 explains the theory behind

randomized control trials (RCTs) and quasi-experimental designs (QEDs) experimental

design paradigms, together with their advantages and disadvantages, as adapted from

Thavaneswaran and Lix (2008). The efficacy or impact of an intervention or a treatment

will be expanded on in Section 2.3, more so the math behind the process, as referred to the

article by Heinrich, Maffioli & Vázquez (2010). As stated above, the main idea, behind

these techniques is that of controlling for confounder variables through minimizing both

overt, and to some extent covert, bias in non-randomized trials or observational studies.

Therefore in Section 2.4 we introduce the technique of propensity score matching that

helps control for confounding in observational studies.

2.1 Experimental designs

It is accepted that randomized control trials (or RCTs) are the “gold standard” methodol-

ogy in estimating causal effects on the response (outcome) variable (Rosenbaum & Rubin

1983 and Austin 2011). Such experiments allow for a random mechanism to drive the

allocation (or assignment) of subjects to treatment groups (Heinrich et al., 2010). Fur-

thermore, Austin (2011) emphasizes that random treatment allocations should eliminate

the possibility of baseline features confounding since all participants have an equal chance

of being selected into either treatment group. In empirical quasi-experimental designs,

however, subjects have options to self-select and normal standard research procedure is

controlling for selection bias ‘prior’ to estimating the treatment effect (Rosenbaum & Ru-

bin, 1983). And so, comparing systematic differences between treatment groups through

techniques like propensity score matching (PSM) may be useful (Lane et al., 2012).

causality: propensity score adjustments 6
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Possible biases with non-randomized designs

As explained above, non-random selection of subjects may lead to variables that confounds

and selection bias. You may balance for this by using a propensity score matching algo-

rithm. This is because segmenting on these scores will ensure that comparisons are on an

equitable basis, “apples with apples”. The implication is that these comparisons will be

done between groups exhibiting similar characteristics, except for the treatment. Austin

(2011) and Rosenbaum & Rubin (1983) allude to ”a steady growth”, witnessed over the

years, in interest from researchers for quasi-experimental design data analysis techniques.

But despite this increase in the popularity of quasi-experimental designs, Rosenbaum and

Rubin (1983) and Austin (2011) note that researchers using these models still face un-

avoidable complexities when interpreting response causal effect.

2.1.1 Randomized control trials

Intra-individual variation is a possibility with experiment designs leading to differences

on the baseline covariates (Stuart, Bradshaw & Leaf, 2015). A most likely scenario with

random trials is that each participant or subject will get an equal chance to be treated

(Rosenbaum & Rubin, 1983). Meaning that, we thus have inherent advantages such as:

• subjects being matched equally on all characteristics (covariates),

• inference on the causal effect can easily be made, and

• that the balancing on both the observed and unobserved features is conditional.

Random allocation ensures that one is exposed to the treatment independent of both their

observed and non-observed covariates (Heinrich, Maffioli & Vázquez, 2010). This result

in an even match on all of the characteristic features (covariates) and therefore causal

inference can be made with confidence. Maintaining an ideal situation where robustness

of the inference gets better with sample size increases. For a binary treatment experiment,

this implies independence of the responses against the treatment status (z),

(Y1, Y0) ⊥⊥ z X (1)

where (Y1, Y0) are the respective responses or outcomes for treatment and control

groups,

z denotes the treatment group or status

⊥⊥ is the independence symbol emphasizing strong-ignorability

X denotes the subjects characteristic features, and

z X indicates that the treatment was allocated conditioning on the observed covariates
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Heinrich, Maffioli & Vázquez, (2010) explain that, proportion-wise, Equation (1) sug-

gests that each subject encompasses of evenly distributed features, or covariates, between

both treatment groups. Thus implying that the two treatment groups are equal on average,

mathematically written as,

E(Y0 treated) = E(Y0 control)⇒E(Y0 z = 1) = E(Y0 z = 0) (2)

and interchanging the counterfactual, in other words what would have happened to

the treatment group without administering treatment, on the left-hand side of Equation

(2) with the observable on the right-hand side allow for an easier estimation of τAT T , the

average treatment effect on the treated (ATT). The counterfactual on the left hand side

of Equation (2), above, is the factual response that a subject is non-treated even though

it was allocated the treatment (Holland, 1986 and Imai, 2011).

With such randomness in the allocation an advantage of a zero selection bias is ensured,

meaning that the treatment effect will just be the difference in expected responses between

the treatment and control groups (Heinrich, Maffioli & Vázquez, 2010). And so, as a

consequence for random trials, an ordinary least-squares (OLS) regression on the treatment

allocation (z) variable and some constant term (α ) will be adequate when estimating the

efficacy of the intervention program (Heinrich, Maffioli & Vázquez, 2010). That is,

Y = α + βz + ε (3)

where β - represents the efficacy (or impact) of the treatment program, and ε - are the

error (residual) terms.

2.1.2 Quasi-experimental designs

In practice, however, allocation to treatments will most likely be of non-random nature

(Heinrich, Maffioli & Vázquez, 2010). The non-randomness causes selection bias and thus

compromises the control group, making it weaker to the treated group, Heinrich, et. al.

(2010). Listed below, in bullet form, are some of the benefits with quasi-experimental

designs (QEDs):

• they control for confounding and extraneous variables , these are any variables that

you were not intentionally studying in your experiment or test,

• they tend to require less resources than randomized control trials (RCTs) would,

Schweizer, Braun & Milstone (2016),

• QEDs are also used when adjusting for the estimate of the treatment effect in non-

random cases, and that
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• they are pragmatic, or tends to represents real-world (or practical) problems.

Equation (1), above, introduced the mathematical notation for denoting the expected

responses (outcomes) related to subjects in either treatment group. That is, the response

Y for each treatment exposure level is given as:

Y =






Y1, if exposed

Y0, otherwise
(4)

The indicator for the observed subjects, in this binary case, is z. The observed response

is thus given by

Y = zY1 + (1 − z)Y0 (5)

For a subject in the treatment group it will be

Y = 1·Y1 + (1 − 1)·Y0 = 1·Y1 + 0·Y0 = Y1

and similarly, for the control group subjects

Y = 0·Y1 + (1 − 0)·Y0 = 0·Y1 + 1·Y0 = Y0.

As noted in Section 2.1.1, with randomized trials the responses together with the influ-

ential characteristics will be independent of the treatment exposure (Heinrich, Maffioli &

Vázquez, 2010). Without random allocations, however, a relationship may exist between

the treatment and these influential features of the responses, Y0, Y1, and the simple mean

treatment effect difference between the groups, as in the randomized case, won’t suffice

(Heinrich, Maffioli & Vázquez, 2010). This is due to the fact that exposed subjects may

be distinct to those in the control group, in spite of the treatment effect, therefore, render-

ing the simple mean response difference useless in evaluating the causal effect, Heinrich,

Maffioli & Vázquez, (2010).

In Section 2.3 below, the effectiveness or impact of the treatment is examined and

one of the solutions, propensity scores with focus on propensity score matching (PSM),

to help curb the above-mentioned correlation problems is suggested in Section 2.4. The

PSM method, which is also the main focus of application for this dissertation will help

minimize, and possibly eliminate, the above-mentioned possible biases. It will be discussed

in further detail in Section 3.2, expanding from the introduction to propensity scores in

subsection 3.1.2.

2.2 Disadvantages

Both randomized control trials and quasi-experimental designs seem to have shortfalls in

some aspects. Some of the problems that one may encounter when applying either of the
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two designs are discussed below.

2.2.1 Disadvantages with RCTs

Possible problems with randomized trials are (Stuart, Bradshaw & Leaf, 2015):

(1) cumbersomeness and or the costliness in terms of execution,

(2) feasibility may not always be accomplished, due to one or more reasons and or

concerns, since the results can often not be easily replicated on humans due to

ethical concerns, such concerns range, amongst others, from subject consenting

to the study and or parental proxy for minors; due to the possibility of subjects

risking lives with clinical trials, and

(3) that at most the design may end up not being generalizable or easily replicated

on human subjects.

Other disadvantages of randomized trials are, if studies were conducted in a natural habi-

tat for subjects, such as in a school or prison, imposition of control on the extraneous

variable3 will be near impossible. This difficulty is attributed to complications in getting

cooperation from study subjects due to their perceived feeling pertaining to the interven-

tion being administered, and the measurement of intra-individual human characteristics

such as personal feelings and or emotional well-being. Some of these are due to the fact

that, sometimes, subjects will need to consent for treatment in randomized trials, and that

in particular, as noted by Stuart, Bradshaw & Leaf (2015), subjects who agreed to partici-

pate at the start exhibit distinct characteristics to those that will jump on the bandwagon,

later-on, once the efficacy of the program is evident.

2.2.2 Disadvantages with QEDs

Despite its increasing use, QEDs have a number of glaring shortcomings. Most notably,

some adapted from Schweizer, Braun & Milstone (2016), these drawbacks includes:

(1) the inevitability of selection bias, as stated in Section 2.1.2, due to lack of

random selection, which leads to

(2) the struggles in making an assumption on causal inference between the treat-

ment and response,

(3) not having control on the influence extraneous variables have on the response,

and that

3An extraneous variable represents any covariate that is not the independent factor under investigation
for outcome effect (McLeod, 2019).
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(4) the reasoning on causal inference is weaker compared to randomized experi-

ments.

As a result, Rosenbaum & Rubin (1983) note that QED studies will, unlike those with

randomized control trials, require that the probability of treatment allocation be esti-

mated since it is unknown. This can be explained, in a Bayesian sense, to imply that the

‘posterior’ probabilities are estimates of the probabilities of exposure conditioned on the

baseline covariates. The concept(s) relating to response efficacy on non-random (observa-

tional) studies is broken down further in Section 2.3, below.

2.3 Defining the influence of the treatment

In this part we detail the effectiveness of an intervention or treatment on the expected

response, i.e. the potential outcome, as adapted from Heinrich, Maffioli & Vázquez (2010).

The treatment effect is defined as the difference on responses between exposed subjects

and those in the control group, mathematically given as below for any subject i:

δi = Y1i − Y0i (6)

for i = 1, 2, , . . . , n , where n = nτ + nC is the sum of all available subjects, where

nτ counts the subjects that were exposed to the treatment

nC the count of subjects that remained for control.

In general, Heinrich et al. (2010) refer to the following as measures related to all

non-observable parameters (or parameters based on counterfactual responses):

The first measure is the expected (average) treatment effect (ATE), and we estimate

it from Equation (6) as;

τAT E = E(δ) = E(Y1 − Y0) (7)

A second measure is that of the average treatment effect on the treated (or ATT);

τAT T = E(Y1 − Y0 z = 1) (8)

We get a third measure, the average treatment effect on the unexposed (ATC) as;

τAT C = E(Y1 − Y0 z = 0) (9)

Now, using the fact that the average of a difference is the difference in averages, the

ATT in Equation (8) can be rewritten as:

τAT T = E(Y1 z = 1) − E(Y0 z = 1), (10)
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where E(Y0|z = 1) is the ‘non-observed’ (counterfactual) average response for treated

subjects that were unexposed. This is a direct consequence of the “Fundamental Problem

of Causal Inference” (Holland, 1986). Drichoutis, Nayga, Jr. & Lazaridis (2009) advise

against trying to estimate the counterfactual using E(Y0 z = 0), since this is what give

rise to self-selection bias. For the ‘observed’ response of untreated subjects Y0, it is given

by E(Y0 z = 0). Thus, we have that:

∆ = E(Y1 z = 1) − E(Y0 z = 0), (11)

where ∆ is the average difference between the outcomes of treated and untreated

subjects. Manipulating the right-hand side of Equation (11) by adding and subtracting

E(Y0|z = 1) , will give us the following difference between ∆ and the AT T :

∆ = E(Y1 z = 1) − E(Y0 z = 0) + E(Y0 z = 1) − E(Y0 z = 1)

= E(Y1 z = 1) − E(Y0 z = 1) + E(Y0 z = 1) − E(Y0 z = 0

= E(Y1 − Y0 z = 1) + E(Y0 z = 1) − E(Y0 z = 0)

= τAT T + {E(Y0 z = 1) − E(Y0 z = 0)}

i.e.

∆ = τAT T + {E(Y0 z = 1) − E(Y0 z = 0)} (12)

On the right hand side (RHS) of Equation (12), {E(Y0 z = 1) − E(Y0 z = 0)} is the

‘selection bias’. This ‘selection bias’ is given as the difference between the counterfactual

for exposed or treated subjects and the observed response (Heinrich, Maffioli & Vázquez,

2010). Or shortly, it represents differences between the two groups in the scenario when

the program was not administered (Zaga Szenker, 2015). We therefore re-write Equation

(11) as follows:

∆ = τAT T + selection bias (13)

Some important notes, pertaining to the above ‘selection bias’ term, are that a case

of selection bias approaching zero will imply that the estimate for the ATT is just the

difference between the mean of the observed responses between the two groups (Heinrich

et al., 2010). However, it is further argued by Heinrich et al. (2010) that consequences

of a non-zero selection bias, as is usually the norm in practice, are a biased estimator for

the ATT from the difference in Equation (11), that is τ̂AT T = E(Y z = 1) − E(Y z = 0).

Therefore, the real purpose of a propensity scores related study is to control for a selection

bias equal to zero in order to correctly estimate the causal parameter of interest.
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2.4 Propensity score analysis

The probability that a subject gets allocated to the treatment, or intervention under inves-

tigation, given a set of pre-exposure characteristics is referred to as the propensity score

(Rosenbaum & Rubin, 1983). Below we explore some specifics related to the applications

of propensity-scores based methods for causal inference. We cover why we need propen-

sity scoring based techniques, the intrinsic mechanics with one of them i.e. matching, and

the ideal scenario for their application in practice, bearing in mind possible biases with

observational data experiments and the fundamental problem with causality, as discussed

above.

2.4.1 Need for propensity scores

Whenever randomized allocation processes are not possible, which is often the case in

practice, such as it is with social, education, socio-political, economic, biostatistics, epi-

demiological and or other medical science data analysis projects, matching via propensity

scores is used in order to control for possible confounding and treatment effect biases (Lane,

To, Kyna & Robin, 2012). This is because such studies are, in their nature, response-based.

Thus implying that analysis projects of this nature are concerned with determining the

effect of some sort of intervention, or treatment, such as how a change in political regime

may have influenced the economy of a country, or the impact some medication had on pa-

tients in curing or controlling for a certain ailment. Heinrich et al. (2010), give an example

of studying the efficacy of introducing incentives for teachers on improving pupils’ pass

rate (performance) and another of studying an impact of a Honduran youth skill training

programme on employment prospects of undereducated children from poor backgrounds.

Matching mechanics

Figure 2, below, is a diagram depicting basic generic parts, as explained in the article by

Heinrich et al. (2010), required in the practical implementation of propensity score match-

ing algorithms. The next chapter expands more, in detail, on these phases of propensity

score matching and will expanding the third part pre and post with internal diagnostic

steps of covariate balance and hidden-bias analysis.

(1) The first step is obtaining the propensity score, through a classification model of

choice, checking for confounding variables and estimating subjects’ propensity scores.

(2) The second step is choosing the matching algorithm to be used. This requires precise

considerations on key parameters and the bias-variance trade-off, i.e. the trade-off

in the efficiency and bias of the estimator of interest.
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(Source: Own elaboration)

Figure 2 Propensity scores analysis (typical implementation phases)

Selecting a matching algorithm is purely dependent on the bias and variance com-

promise for that specific dataset (Heinrich et al., 2010). For instance, using only the

nearest neighbour method will tend to cause higher variance, since only the control sub-

jects that most resemble (or are identical to) the treated ones are likely to be matched

in the construction of the counterfactual, thus causing a definite reduction in the bias

hence excluding a number of control group items, Heinrich et al. (2010). An application

of multiple nearest neighbour algorithms, however, will evidently allow for an exploitation

of more control subjects by the estimator hence increasing both efficiency, due to lower

variance, and bias (Heinrich et. al., 2010; Caliendo & Kopeinig, 2005).

It is important to note that Heinrich et al. (2010) argue further that when matching

against a lot of neighbours, the expected increase in the efficiency of the study will still

come with a high bias cost due to possible mismatching.

(3) The final, and third step, is that of result estimation and then the evaluation of the

impact of the intervention or treatment via the propensity scores model. Heinrich,

Maffioli & Vázquez, (2010) present the evaluation of the intervention’s impact, done

through computing the average treatment effect on the responses between exposed

and control subjects, based on the chosen matching algorithm.
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2.4.2 Uses of propensity scores

The theory of propensity scores, its estimation and that of the propensity score matching

(PSM) method, with applications, will be discussed in more detail in sections 3.1 and

3.2 of this dissertation. Rosenbaum & Rubin (1983) mention that the main objective

of propensity score matching is to emulate, or mimic, random trials also known as the

true experimental design, when the main assumptions of conditional independence (un-

confoundedness) and common support are satisfied. Unconfoundedness is an assumption

that none of the observed or baseline factors are impacting both outcome and treatment

allocation (de Luna & Lundin, 2009). Whenever these two main assumptions are met, the

process is referred to be ‘strongly ignorable’ (Rosenbaum & Rubin, 1983).

Strong ignorability and ‘strongly ignorable’ are interchangeable and so are the as-

sumptions conditional independence and common support with unconfoundedness and

positivity (or overlap) respectively. We’ll discuss these two matching assumptions, which

validate strong ignorability when both met, in Section 3.2.1. Specifically, the propensity

score or the treatment allocation probability is estimated using classification tools such a

probit or logit (logistic regression) model, bagging and or boosted regression trees (CART),

i.e. random forests (Thavaneswaran & Lix, 2008). Note that, logistic regression is said to

be the most propitious one for dichotomous treatment allocation cases (Austin, 2011) and

therefore it is the method usually applied.
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3

Theoretical background

In this chapter, the theory related to the applications of non-randomized control trials,

particularly propensity score matching (PSM), is presented. Different matching tools or

methods for matching using propensity scores are discussed, as well as the logit regression

model, typically used as the technique of choice to estimate these scores in the first place.

Despite growth in popularity, Rosenbaum & Rubin (1983) note that PSM is still a generally

underutilized method in practice. The focus of this part of the dissertation is discussing

the steps in formulating matching via propensity scores for a binary treatment study, see

Figure 3. In order for us to be concise, in explaining the process in the applications of

propensity score matching, our research follows these steps with each for the subsequent

subsections of interest such that the process is easier for the reader to follow. Figure 3 is a

depiction of these steps, and the relevant sections where they will be detailed is 3.1 - 3.5.

Figure 3 Steps in propensity score analysis
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3.1 Estimation

As mentioned in Section 2.4.2, logistic regression is one of the classification tools that is

applied when estimating propensity scores. The logistic regression algorithm, its theory,

and how it connects to propensity scores are detailed below.

3.1.1 Logistic regression

Logistic regression is an algorithm that gets utilized for binary classification experiments,

for example our dichotomous treatment problem here, where one group of subjects are

exposed and another group is the control. It is thus referred, along with discriminant

analysis, to be the method of choice for categorical response problems whenever one seeks

the relationship between the predictors and the response probability (Hair, Jr., William,

Black & Babin, 2010, p. 315). Logistic regression is a statistical algorithm that gives the

output as the log odds of an event occurring, in our case the likelihood that a subject gets

allocated the treatment.

Binary logistic regression

Accordingly, Hair, Jr. et al., p. 316, explains that logistic regression aims to address two

kinds of specific research questions:

• pointing at impacts of the covariates on the response variable, and

• classify subjects into the class they belong.

For a binary classification problem, the algorithm separates the data space into two distinct

groups, to allot the data points or subjects, linearly through some boundary (Joglekar,

2015). The logit learning algorithm and the subsequent input data will determine the form

of such a boundary. Hair, Jr. et al. (2010), p. 315, define a logistic regression model, in its

general form, as an algorithm whose sole purpose is to estimate the relationship between

a single nonmetric (binary) response and a mixture of numeric and categorical predictor

variables.

Comparing logistic regression to linear regression

Linear regression often fails to deal with outliers in binary response experiments since

it can misclassify treatment class subjects as non-exposed (Agrawal, 2017 and Joglekar,

2015). Further, since our target variable Y is binary, we define, for some baseline covariate

set X, p = P (Y = 1 X) as the likelihood that a subject gets the allocated treatment.

Assuming that this probability can be estimated via linear regression, we will have that

p = P (Y = 1 X) = β0 + β1x1 + β2x2 + · · · + βpxp + ε, (14)
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Note that the range of the above linear model is infinite and consequently violates the

probability property that a true probability ranges from zero to one, i.e. 0 < p < 1, as

per the expected predictions (Hair, Jr. et al. 2010, p. 320). The general consensus, in

order to avoid the above mentioned problems especially the one relating to outlier cases,

is that one may take log of the odds to construct the sigmoid or logistic function (Hair,

Jr. et al.2010, p. 320). In essence, this is accomplished through the following steps:

Odds

The odds of allocation to treatment is

odds =

(
p

1 − p

)
⇒odds· (1 − p) = p

⇒odds − p· odds = p

⇒odds = p + p· odds

⇒odds = p· (1 + odds)

⇒ p =
odds

1 + odds

Log-odds

Given the logistic regression model as

ln

(
p

1 − p

)
= Xβ = β0 + β1x1 + β2x2 + · · · + βpxp + ε. (15)

ln
(

p
1−p

)
is the logit function or the log-odds function of interest. Therefore, the

above linear predictors are mapped into the log-odds of the response being ‘classified 1’

or allocated the treatment (Agrawal, 2017).

Sigmoid function

Taking the inverse of the log-odds function gives the, S-shaped, sigmoid or logistic function.

This function always maps the linear combination of predictors to some true response

probability, p∈(0, 1). This is due to the logistic function being asymptotic at these two

extreme points (Agrawal, 2017). We then take exponents on both sides of Equation (15)

and it evaluates to

causality: propensity score adjustments 18



University of Pretoria, Mxolisi Msibi, 2020

p =
eXβ

(1 + eXβ)
, (16)

for i = 1, 2, . . . , n and j = 1, 2, . . . , p, where X is the design matrix of dimension size

np, andβ is a column vector of size p. That is,

X =




x11 x12 . . . . x1p

x21 x22 x2p

. . .

. . .

. . .

. . .

.

xn1 . . . . xnp




and β = [β1, β2, . . . , βp]T .

Letting η = Xβ and multiplying the numerator and denominator of Equation 16 by

e−η gives the defined sigmoid curve, for treatment allocation probabilities in Figure 4, as

S(η) = 1
(1+e−η) .

Figure 4 Sigmoid function maps the probability of treatment into interval (0,1)

Logistic regression formulation and explanation

Consider the probability that a data unit or subject is classified into the treatment class,

denoted P (Y = 1). The following three steps will explain the logic behind the logistic

regression algorithm;
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Step 1

Evaluate the boundary function, i.e. the log-odds function,

log

(
p

1 − p

)
= Xβ = β0 + β1x1 + β2x2 + · · · + βpxp + ε,

Step 2

The odds ratio, which gives the probability of success over failure, is evaluated through

OR(X) = eXβ. Noting that, Xβ = ln(OR(X)).

Step 3

The probabilities are then obtained by,

P (Y = 1) = OR(X)
(1+OR(X))

⇒P (Y = 1) = eXβ

(1+eXβ)

⇒P (Y = 1) = eXβ

(1+eXβ)
·
(

e−Xβ

e−Xβ

)

∴ P (Y = 1) = 1
(1+e−Xβ)

(17)

These probabilities are the propensity scores or ,in our case, the treatment allocation

probabilities.

Estimating logistic regression coefficients

Maximum likelihood estimation (MLE), instead of ordinary least-squares (OLS) estima-

tion, is used when one estimates logistic regression coefficients (Hair, Jr. et al. 2010, p.

322). With the MLE method the advantage is a set of coefficients that maximizes the

probability of the event being observed from our data (Agrawal, 2017). Given a binary

data experiment, where the probability of being allocated treatment is p, that is;

P (Y = 1 X) =





p, if exposed

1 − p, otherwise

the likelihood function is defined as:

L(β, y) =
∏N

i=1

(
pi

1 − pi

)yi

· (1 − pi). (18)

Taking the log of the likelihood in Equation (18) and differentiating with respect to

the parameter estimate of interest then setting this derivative to zero provide optimal pa-

rameter estimates. One may also accomplish this through iterative optimization methods

such as Newton-Raphson when evaluating this maximum of the log-likelihood (Agrawal,

2017).
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Logistic regression diagnostics

(Source: Hair et al. (2010) pg. 320)

Figure 5 Logistic regression comparisons of bad (left) and good (right) fits

Figure 3 (Hair, Jr. et al. 2010, p. 320) depicts graphical representations of good vs bad

binary logit fits. These two types of fits are part (a) the case when the logistic curve was

not a perfect fit to the data, whereas part (b) represents a well-defined curve. Deviance

measures are utilized to measure the goodness-of-fit of a logistic regression model (Hair,

Jr. et al. 2010 p. 323). Such measures are useful in monitoring for overlaps and or perfect

curvature for bad and good fit logistic regression. Hair, Jr. et al. (2010), p. 323 discuss

how a poorly fit model will tend to have higher value for the deviance metric, meaning

that the researcher may still have room to improve the model. With logistic regression

we’ll use two types of deviance metrics, i.e. the null deviance, and model deviance.

Model accuracy is typically measured through the use of confusion-matrices or a “clas-

sification matrix” for binary cases (Hair, Jr. et al. 2010 p. 324). A confusion matrix is

a typical two-by-two tabulation, also called a contingency table, for all possible combina-

tions of actuals against predicted values. Table 1, below, depicts the confusion matrix.

It is used when calculating model performance measures, also known as evaluation met-

rics, such as Precision, Recall, and Accuracy, Specificity and Sensitivity (Matsumoto &

Del-Moral-Hernandes, 2013).

Table 1: Confusion matrix or contingency table (actual v. predicted)
Predicted ŷ

0 1

Actual y
0 T N FP

1 FN T P

where TP= true positive classification of subjects; TN= true negatives; FP= false postives; and FN= false
negatives
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Deviance measures

The deviance is defined as the likelihood difference between some base (or null) model and

the logit fit, and is comparable to a multivariate modeling F test (Hair, Jr. et al. 2010,

p. 323). The perfect model will have a likelihood equaling a unit and thus the deviance

will be given as

deviance = −2ln{L(β)} = −2LL. (19)

As a consequence, the deviance for a perfect fit is the minimum when evaluating the

null and other proposed models, Hair, Jr. et al. (2010), p. 323. Further, the authors

Hair, Jr. et al., have noted that this comparison test is an iterative stepwise, parameter

addition, process where conclusions of improvements of the fits are made if the null model

deviance is greater than that of the model. In effect, a model with the highest hit ratio (or

accuracy) will have a model deviance very closer to zero to confirm its perfect fit status.

Pseudo -R2

In Hair, Jr. et al., (2010), pp. 323, three measures for pseudo-R2 were listed as other

available diagnostic tools for logistic regression fits. And these are:

• the Cox and Snell R2,

• the Nagelkerke R2, and

• a pseudo R2 measure based on the reduction in the −2LL value”.

The authors further note that, comparatively, these three pseudo-R2 measures are inter-

preted similarly to the R2 of OLS regression.

Accuracy

For logistic regression the prediction accuracy is evaluated using confusion matrices (Hair,

Jr. et al. 2010, p. 324). Model predictive accuracy is measured through taking the sum

of correctly classified subjects over the entire subject list (Hair, Jr., et al., 2010, p. 332

and Matsumoto & Del-Moral-Hernandes, 2013), giving a so called “hit ratio” metric.

The summarized outcomes from a logistic regression model are coded, cf. Table 1, as

follows:

• T P and T N are the true positives and negatives respectively, similarly

• FN and FP are false negatives and positives.
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The accuracy of the model or the ’hit ratio’ (Hair, Jr., et al. 2010, p. 335) where ŷ and y

are the predicted and actual responses respectively, is given as follows:

hit ratio =
(

T N+T P
T N+T P +F N+F P

)
=



 T N+T P

all subjects



 .
(20)

Several other measures of interest with classification exercises are precision, recall,

specificity, and Jaccard index. Receiver characteristic curves (ROC), together with the

area under the curve (AUC), may also be evaluated for model accuracy and used as

diagnostics. These measures are explained below.

Precision

The proportion of correctly classified positive predictions is called the precision (Lipton,

Elkan, & Naryanaswamy, 2014; Saxena, 2018; Matsumoto & Del-Moral-Hernandes, 2013).

precision =

(
T P

T P + FP

)
=


 T P

predicted positives


 . (21)

It is usually a good measure to apply in those instances where misclassifying positive

classes induce a higher cost. Since a higher precision indicates that the fit correctly/

’precisely’ identifies the positive class with a higher percantage or degree of confidence the

most times, i.e. subjects allocated treatment in our case. So a good fit, in terms of higher

precision, implies that false negative predictions are forced down or compromised.

Recall or sensitivity

Lipton, et al. (2014); Saxena, (2018) and Matsumoto & Del-Moral-Hernandes (2013) note

that when one was interested in the percentage of positives that got perfectly classified

out of the actual positives, i.e. recall (or sensitivity) measure, the formulation is given as:

recall =

(
T P

T P + FN

)
=



 T P

actual positives



 . (22)

Specificity

For correct classification of the negative class, the typical proportional measure is the

specificity (Matsumoto & Del-Moral-Hernandes, 2013).

specificity =

(
1 − FP

T N + FP

)
=



 1 − FP

actual negatives



 . (23)
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F 1 score

In classification exercises the F1 score, also called the harmonic mean of the precision and

recall measures, is used for balance between these two diagnostic measures (Saxena, 2018).

It comes in handy in cases where the treatment indicator, or target variable, exhibits some

imbalance with majority of subjects being from the control group. The F1 score is thus

given as:

F1 score = 2·

(
precision·recall

precision + recall

)
. (24)

Jaccard index

Authors (Lipton, et al. 2014) defines the Jaccard index as:

Jaccard =

(
T P

T P + FN + FP

)
. (25)

This index is used to measure similarity between the groups or classes, if they are

non-separable. For instance an index closer to 1 or 100% will indicate some great deal

of overlap between the treatment classes. So, a Jaccard index of zero is indication that

the treatment groups are exclusive, whereas when it equals 0.5 the interventions gets split

half, i.e. 50% each.

3.1.2 Propensity scores

Rosenbaum and Rubin (1983) present the propensity score as the conditional probability

of exposure for an individual based on their characteristics or “baseline covariates”. This

means that instead of comparing subjects in higher dimensions the “propensity scores

summarize all of the covariates into one scalar: the probability of being treated.” (Stuart,

2010). Such a balancing score will range from 0 to 1, and is calculated mainly by using

logistic regression. Propensity scores are useful in allowing one to match subjects on a

single number or scalar, i.e. the propensity score, and control for confounder-covariates

in regression analysis problems.

Suppose that you have n subjects (or individual units), let z denotes the treatment

condition, and Y be the subsequent response, such that zi = 1 for a subject allocated the

treatment and its response is Y1i (Pan & Bai, 2015 and Rosenbaum & Rubin, 1983). And

for the control group, zi = 0 for subject i resulting in the subsequent response Y0i. The

propensity score pi of treatment exposure (∀ subject i), conditional on or given a vector

Xi of observed or pre-treatment features, is thus given as:

pi = P (z = 1 Xi) (26)
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The propensity score pi for subject i, can be estimated from logistic regression using

the log-odds of the given binary treatment condition (Pan & Bai, 2015) as follows:

ln

(
pi

1 − pi

)
= ln



 P (z = 1 Xi)

1 − P (z = 1 Xi)



 = βT Xi, (27)

where

pi = β0 + β1x1 + β2x2 + · · · + βkxk + · · · + βpxp = Xβ

= eXβ

1+eXβ = eXβ

1+eXβ × e−Xβ

e−Xβ = eXβ

1+e−Xβ

and therefore:

pi =

(
eXβ

1 + e−Xβ

)
, (28)

with

β0 representing the intercept term,

βk is the regression coefficient, for k = 1, 2, ..., p,

xk depicts the random treatment feature variables, and

Xi is the observed value of the covariates (feature variables).

Note that
{

1 − P (z = 1 Xi)
}

, above, represents the probability that the observed ith

subject was not exposed to this treatment, in other words it remained within the control

group.

3.2 Matching

Once the propensity scores have been estimated, for the two groups, different adjustment

and or matching methods can be chosen and applied (Rosenbaum & Rubin, 1983). The

following are listed, in the literature, as some of the available methods in the applications

of propensity scores in practice (Lane, To, Kyna & Robin, 2012; Rosenbaum & Rubin,

1983; Austin, 2011; Beal & Kupzyk, 2014; Pan & Bai, 2015):

(1) matching,

(2) stratification,

(3) regression or covariate adjustment, and

(4) the inverse propensity score weighting also referred to as “the inverse proba-

bility of treatment weighting (IPW)”.
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From Section 3.1.2 above, using logistic regression the propensity score of Equation (26)

reduces to:

pi = P (z = 1 Xi) =

(
eXiβi

1 + e−Xiβi

)
. (28)

Rosenbaum & Rubin (1983) define a balancing score as any function b(X) such that

X⊥⊥z b(X), conditional on b(X), and that the propensity score p(X) is some balancing

score where the distribution of (X) is uncorrelated from that of the binary treatment

allocation (z). They prove in Theorem 2 that the propensity score is the finest balancing

score that gives the probability of allocating or enrolling subjects to a treatment program.

Note that the proof for Theorem 2, that the propensity score is the finest balancing score,

is given in Appendix 1.

In the following section we look at propensity scores, their underlying techniques in

practice, together with the relevant causal assumptions, especially those numbered (1) and

(2). Recall that, whenever these two conditions (i.e. (1) and (2)) are simultaneously met

‘strong ignorability’ is confirmed.

3.2.1 Propensity score matching

Observational data requires that researchers imitate a conditional randomized trial, of

which implies applications of propensity score matching, Beal & Kupzyk (2014). Propen-

sity score matches are done through the selection of subgroups from the control subjects

and then matching them, on their scores, to those treated. Thavaneswaran & Lix (2008)

state that propensity score analysis is concerned with computing unbiased estimates for

the impact of treatment based on the assumption that subjects with similar base character

exists in both treatment groups. Encompassed in the steps before matching is done are:

(1) determination of how many controls are matched per treatment,

(2) deciding on what is the appropriate algorithm to be used, and

(3) establishing acceptable similarity levels for the estimated propensity scores.

All the above matching steps are possible with propensity score matching whenever the two

properties of unconfoundedness (conditional independence) of the covariates and overlaps

(existence of some common region of support and or positivity) in the distributions of the

scores from each treatment group are satisfied. After the propensity scores are estimated,

the following matching methods, listed in literature as commonly available in practice,

may be implemented for appropriate adjustments (cf. Figure 6):

(1) nearest neighbour (NN) (or greedy) matching,

(2) radius(or caliper) matching,
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(3) many-to-many (N:N) matching,

(4) stratified (or interval) matching,

(5) optimal matching,

(6) kernel matching,

(7) regression adjustment, and

(8) inverse probability of treatment weighting (IPW).

(Source: Thavaneswaran & Lix (2008), self-adapted illustration)

Figure 6 Propensity score matching methods

Causal assumptions

There are three main causal inference assumptions, mostly mentioned in literature, for

observational studies or quasi-experimental design (QED) projects. In order to match

on propensity scores, one needs to understand the twin causal properties of the common

support condition and conditional independence or unconfoundedness assumption, the 1st
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and 2nd assumptions below, as explained in Rosenbaum & Rubin, (1983). We list the

three causal assumptions as:

(1) the conditional independence assumption,

(2) the common support or ‘overlap’ condition, and

(3) the single unit treatment value assumption.

The third property has implications that subjects won’t interfere once the treatment is

allocated and that treatment exhibits a singular form (Ning, Ghosal & Thomas, 2019).

As explained by Rosenbaum & Rubin (1983), for any given unit or subject pair i and j

there should be no conflict over resources, in other words distinct individual outcomes Yτi

and Yτj, for treatment τ, exist. This is due to the fact that subjects can only be exposed

to either version of this treatment and their outcomes are exclusive meaning one subject

being exposed won’t affect another’s outcome (Gordon, Zettelmeyer, Bhargava & Chapsky,

2018). Ning, Ghosal & Thomas, (2019) further states about the conditional independence

assumption that it means subjects have an equal treatment allocation chance, as with a

coin toss, whilst those of the common support (or ‘overlap’) condition will be that all

subjects have a positive exposure probability.

Rosenbaum & Rubin (1983) point out that whenever the common support and con-

ditional independence assumptions are met strict-ignorability or strong-ignorability of

matching is achieved. The implications of being ’strongly ignorable’ are that the potential

responses will not be affected by the treatment status for any given baseline covariate

vector (X). Further stated by Rosenbaum & Rubin is that ‘strong ignorability’ will stay

true, when both these causal assumptions are valid, unless the estimate of interest for the

researcher (investigator) was ‘only’ the average treatment effect on the treated (ATT).

Therefore, our discussion below is on the causal assumptions with focus on the ‘strong

ignorability’ case being true, the main requirement in applications of propensity score

matching (PSM).

Assumption (1): The conditional independence assumption

With this assumption subjects are allocated to the treatment based on observable features

from the sample regardless of the treatment status, meaning that allocation is conditioned

on these characteristics or features. Such conditioning will therefore lead to potential

outcomes that are independent of treatment allocation (Gordon, et al. 2018). This implies

that in the absence of an intervention the potential response (outcome) will be independent

of such status (Heinrich, Maffioli & Vázquez, 2010). This method is given mathematically

as follows (taken from Equation (1), and where the ⊥⊥ is for “strong ignorability”);
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(Y1, Y0) ⊥⊥ z X (29)

In other words, there exist a set X of features, observable at baseline or prior the inter-

vention, to the researcher such that controlling for them leads to potential outcomes that

are independent of treatment exposure (Rosenbaum & Rubin, 1983 and Heinrich, Maffi-

oli & Vázquez, 2010). The proof for conditional independence or the unconfoundedness

property, as adapted from Grilli & Rampichini (2011), is given below.

To prove Equation (29) it will be sufficient to show that

P{z = 1 Y1, Y0, p(X)} = P
{

z = 1 p(X)
}

= p(X).

Implying that the independence of the responses (Y1, Y0) and z, the treatment alloca-

tion, are conditional on the propensity scores p(X)

P (z = 1 Y1, Y0, p(X)) = E[z = 1 Y1, Y0, p(X)] = P (z = 1 p(X))

= E{E[z = 1 Y1, Y0, p(X), X ] Y1, Y0, p(X)}

= E{E[z = 1 Y1, Y0, X] Y1, Y0, p(X)}

= E{E[z = 1 X ] Y1, Y0, p(X)}

= E[p(X)Y1, Y0, p(X)] = p(X),

where the last equality implies the unconfoundedness property. Similarly, we can

evaluate that,

P (z = 1 p(X)) = E[z = 1 p(X)]

= E{E[z = 1 X ] p(X)}

= E[p(X) p(X)] = p(X)

This renders the proof complete.

Equation (29) above is simply the mathematical notation for the idea expressed in

the previous paragraphs that the potential outcomes are independent of treatment status

given the baseline covariates, also referred to ‘conditional on observables’ by Gordon,

Zettelmeyer, Bhargava & Chapsky (2018). In other words, after controlling for X, the

treatment allocation will effectively be “as good as random” (Heinrich, Maffioli & Vázquez,

2010).

This is the ‘unconfoundedness’ property, also known as the selection on observables

property in literature. The conditional independence assumption is of crucial importance

in correctly identifying the impact of the treatment on the response since it ensures that

differences in treatment groups will be accounted for to reduce selection bias, thus allowing

that subjects in the control group be used in constructing the counterfactual for those in

the treatment group.
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Assumption (2): The common support (’overlaps’) condition

Examining possible overlaps in the distributions of propensity scores between the exposure

and control groups is a critical step since the average treatment effect on the treated (ATT)

is only valid within the common support region (Caliendo & Kopeinig, 2005). That is,

valid estimates for a treatment effect are possible only if all exposed subjects are matched

successfully to those in the control group (Gertler, Martinez, Premand, Rawlings & Ver-

meersch, 2010). In order for that to happen, all subjects must have positive treatment

allocation probabilities (Ning, Ghosal & Thomas, 2019).

(Source: Zaga Szenker, 2015)

Figure 7 The common support region

It may happen that scores differ for exposed subjects to those in the control group,

see Figure 7 above, especially at the extreme ends or tails (Gertler et al., 2010). The

consequence is that at these tails, closer to one or zero, exposed subjects will have no

control match at the higher end, and similarly for control subjects at the lower end. That

is, subjects at the tails of these distributions are outside the common support region, at

times necessitating the need for extrapolation. Figure 7 is a typical illustration of the lack

of overlaps (the problem of the common support) where propensity score distributions

between treatment groups are not smooth (Gertler et al., 2010).

There are various methods to deal with, or investigate, this issue that are suggested

by Caliendo & Kopeinig (2005), such as visualization of the propensity score distributions

as done in Figure 7. Others may include a comparison of the minimum and maximum

propensity scores of both groups and also estimation of the groupings’ density distribu-

tions. This requirement is said to rule out the perfect predictability phenomenon ensuring
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that subjects with similar features have a chance of being allocated treatment. In mathe-

matical notation this condition is presented as follows:

0 < P (z = 1 X) < 1. (30)

Consequences (of the common support) are that subjects will have positive probabilities

of being allocated treatment and hence it is also referred to as the positivity assumption

in literature (Ning, Ghosal & Thomas, 2019). This means that a subject will have a

probability that it is exposed somewhere in the (0,1) interval. Probability theory tells us

then that the probability of non-exposure must also lie within this same interval. This

formula is interpreted, using the common support requirement defined above due to these

possible overlaps in matching, as:

P (z = 0 Xi) = 1 − Pr(z = 1 Xi). (31)

Equation (31) is the probability that a subject was not allocated the said treatment.

As stated above, treatment allocations are ‘strongly ignorable‘ whenever both the condi-

tional independence assumption and the common support condition are satisfied. On that

consequence, we then rewrite Equation (31), if the conditional independence assumption

is met, as follows (Rosenbaum & Rubin, 1983):

P (z = 1 Y1iY0i, X i) = P (z = 1 X i) = p(X i) = pi, (32)

i.e. a consequential direct application of the unconfoundedness proof from Equation

(29).

Now, under ‘strong ignorability’ of treatment allocation, the average causal effect can

be estimated by conditioning on the propensity score pi instead of the pre-treatment

characteristics Xi (Rosenbaum & Rubin, 1983). This, according to Rosenbaum & Rubin,

simplifies a multidimensional problem to a one dimensional or ‘scalar’ when matching.

This means that the responses from the study are independent of the treatment allocation

conditional on the covariates and also that treatment allocation is a true probability, i.e. it

is between zero and one (Rosenbaum & Rubin, 1983 and Beal & Kupzyk, 2014). In short,

treatment allocation is ignored and assumed to be random. Matching can thus be done,

only, through the one-dimensional propensity score instead of computing multivariate

distances of Xi.

If the parameter of interest was the average causal effect on those subjects exposed to

treatment (ATE) then one may relax the assumptions of conditional independence and

common support (Rosenbaum & Rubin, 1983 and Heinrich, Maffioli & Vázquez, 2010).

From Equation (8), another parameter of interest is the average causal effect of the treated

participants (ATT), and was thus defined as follows:

causality: propensity score adjustments 31



University of Pretoria, Mxolisi Msibi, 2020

τAT T = E(Y1-Y0 z = 1) = E(Y1 z = 1) − E(Y0 z = 1) (33)

The non-observable outcome or the counterfactual for treated subjects is represented

by the second term, E(Y0 z = 1), on the right hand side of Equation (33), implying that

the average difference in responses over the common support is the estimate of the average

causal effect (Caliendo & Kopeinig, 2005).

Benefits with matching

The three main advantages with matching according to Rosenbaum & Rubin (1983) and

Posner & Ash (2012) are:

(1) Researchers or investigators get to work with better characterized matched

data, thus leading to a simple representation.

(2) Covariate balance in matched samples leads to lower variability of the average

treatment effect than it would have been for randomized trials (RCTs), and

therefore matched samples will tend to lower the estimate for the average

treatment effect due to similarity in covariate distributions after matching.

(3) Outcome-based models are, typically, resilient to any violations of the underly-

ing assumptions. Posner & Ash (2012) credit this to the robustness of model-

based approaches especially in cases where deviations from model assumptions

were visible.

3.2.2 Matching algorithms

Logistic regression is the method of choice in the calculation of propensity scores. Strong

ignorability must still remain valid (Rosenbaum & Rubin, 1983; Heinrich et al., 2010 and

Caliendo & Kopeinig, 2005). Various authors give the following primary factors, to take

into account, when one is selecting a method of choice when matching exposed (treated)

subjects to those in the control or comparison group.

• Will the matching be done with or without replacement?

• What is the neighbourhood or closeness of the match?

• Are the study subjects to be weighted for the analysis?

• Will subjects be counted from the control group and then matched to exposed ones?

Various matching algorithms are available to match control subjects to those treated,

embedded within different statistical software packages. Matching algorithms are ex-

plained in more detail, within their respective subsections, below. First, we expand on the

implementation steps. The following are the key steps in the implementation of propensity

score matching methods, to be discussed in the next section (Stuart, 2010):
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Design

• Step 1: Define the ‘closeness’ or the distance measures between matches

• Step 2: Implement the matching using the defined closeness measures

• Step 3: Assess the matched results for quality (steps 1 - 2 may be repeated to improve

matching quality)

Analysis

• Step 4: Estimate the treatment effect off the high quality matches from above.

Below is a brief explanation of the above steps:

Defining the ’closeness’ requires that we do variable selection for covariate inclusion in

the matching algorithm, followed by calculating their distance measure. The ’strong ig-

norability’ assumption, as discussed above, implies that all differences between the control

and treatment groups were observed whilst adjusting for selected covariates (Rosenbaum

& Rubin, 1983).

Rosenbaum and Rubin (1983) define distance as a similarity measure between any two

subjects from either the exposed or control group. Four distance measures are used to

determine similarity between two subjects:

(1) the exact,

(2) Mahalanobis,

(3) the propensity score, and lastly

(4) the linear propensity score distance measures.

We depict the math notation of these distance measures, denoted Dij, between any subject

pair i and j below.

(1) The exact distance measure

For subjects i and j, we get that

Dij =






0 if Xi = Xj

∞ otherwise
, (34)

where Xi are the covariates for subject i, and Xj for subject j.

causality: propensity score adjustments 33



University of Pretoria, Mxolisi Msibi, 2020

(2) The Mahalanobis distance measure

Dij = (Xi − Xj)
′
∑−1

(Xi − Xj) (35)

where
∑

is the variance-covariance matrix, Xi and Xj represents the covariates for

subjects i and j. This distance is scaled through this variance-covariance matrix for each

subject (Posner & Ash, 2012). For instance, for a case with a variance of Xi double that

of Xj , Mahalanobis requires that an equidistant subject is twice as far. An analogy from

Posner & Ash (2012) is that one can think of rough (or ‘rocky’) and smooth terrain, in

orthogonal directions, south to north then east to west, respectively. The authors note that

an hour drive from either direction is not necessarily similar, as a subject driving west-side

will definitely go the farthest than one driving up north, making Mahalanobis distance

somehow comparable to the time it takes one to get somewhere. Posner & Ash (2012)

also state some degree of equivalence between this measure and the Euclidean distance,

as a consequence of standardizing by the variance-covariance matrix
∑

. For continuous

key features of interest, the Mahalanobis distance measure is defined as follows (Stuart,

2010):

Dij =





(Xi − Xj)
′∑−1(Xi − Xj), if logit(pi) − logit(pj) ≤ c

∞ otherwise

where c denotes the tolerance matching range. Although calculation of this metric

works best for continuous features of X, the covariates will have to be converted to binary

form, i.e. dummy coded, if they are categorical or factor variables (Stuart, 2010). Stuart

further observes that the variance-covariance matrix of X will be dependent on what

interest the researcher harbours, meaning the form of
∑

is based on what effects are being

investigated, whether it is the average treatment effect (ATE) or the average treatment

effect on the treated (ATT). We note that, for ATT, the variance-covariance matrix
∑

will be from the full control group, whilst for ATE;
∑

is from the full treatment exposure

group.

(3) The propensity score distance

Dij = pi − pj (36)

where pi and pj denotes the respective propensity scores for subjects i and j.

(4) The linear propensity score distance

Dij = logit(pi) − logit(pj) (37)

This distance measure is viewed as another way to effectively reduce selection bias
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(Rosenbaum & Rubin, 1983). One major drawback mentioned in Stuart (2010) about

Mahalanobis and the exact distance measures is their lack of robustness within high di-

mensional feature spaces.

After the propensity scores are calculated, using some classifier tool like logistic re-

gression, the next step then is to use them to match the exposed (treated) subjects to

those in the control group. The matching techniques in Figure 6 will be discussed within

the subsequent individual sub-sections below. Note that ‘strong ignorability’ is still a

requirement.

Nearest neighbour (’greedy’) matching

The rationale behind this matching method is that the propensity scores of control group

subjects will be compared to those that received the treatment and the closest ones will be

matched (Heinrich, Maffioli & Vázquez, 2010). In a greedy matching exercise, randomly

selected treated subjects are matched to a control subject whose propensity score is closer

(Austin, 2011). That is done through minimizing the difference in the propensity scores

between the two groups. The steps that are typically taken in a greedy matching exercise

are (Posner & Ash, 2012 and Austin, 2011):

• each subject from the smallest group is matched with a partner closest in propensity

score from the other group,

• the matched pair then gets extrapolated from the data,

• repeat this process until the matching group is exhausted.

Caliendo & Kopeinig, (2005) note that this is the easiest method and it is applied in

variants of matching either with or without replacements. Allowing for these variants in

matching will enable us to control for the bias-variance trade-off, Caliendo & Kopeinig

(2005) and Heinrich, Maffioli & Vázquez (2010). A matching performed allowing for

repeats, with replacement, will have lower bias thus producing high quality matches.

If the data has a different distribution of control vis-à-vis the treatment group, bad

matches are inevitable; thus allowing for replacement, when matching, is a solution. An-

other technique to address the bias-variance trade-off is referred to as ‘oversampling’, when

the researcher applies a number of nearest neighbour methods (Caliendo & Kopeinig,

2005). They explain that this involves making choices on weighting the pairs (i, j) to

match to the treated subjects and the count of these created pairs. With ordered control

and treatment groups we ensure that the first exposed subject is in comparison to a first

control subject with a similar propensity score (Thavaneswaran & Lix, 2008). Mathemat-

ically that is written as:
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Cpi
= min pi − pj (38)

where Cpi
is the class of control subject j matched to treated subject i,

pi is the estimated propensity score for exposed subject i , and

pj is the estimated propensity score for control subject j.

Caliper (’radius’) matching

To avoid the potential risk of mismatches due to the nearest-neighbour algorithm, one

may use a caliper, also referred to as the tolerance on the maximum propensity score,

method (Heinrich, Maffioli & Vázquez, 2010 and Caliendo & Kopeinig, 2005). With this

algorithm, each treated subject is matched with that from the control group on a prede-

fined or pre-determined interval for all propensity scores (Thavaneswaran & Lix, 2008).

Heinrich, Maffioli & Vázquez (2010) argue that this has the consequence of now match-

ing around some radius-neighbourhood, therefore, mapping a group of subjects instead

of only the nearest neighbour. This method allows wide varieties of subjects to be used

in comparisons within the radius or caliper, ensuring that those adjacent enough to be

mapped are considered.

In a many-to-one caliper matching scenario, the estimator can be written as follows

(assuming subjects are matched with replacement):

E(∆Y ) =
1

nτ

∑
i=1

(Y1i − Ȳ1j(i)) (39)

where Ȳ1j(i)) is the average response for all control subjects matched with treated

subject i, Y1i is the response for subject i, and for a subject sample of size n (combining

the exposure and control groups), n = nτ + nC , such that nτ is the number of subjects in

the exposed group, and nC is the number of subjects in the control group.

For this matching method a predetermined caliper range is defined, usually within one-

quarter of the standard error of the estimated score (Thavaneswaran & Lix, 2008). This

ensures that values that fall outside this tolerance level are extrapolated, i.e. enforcing

the common-support directly. This range is given mathematically by:

pi − pj < r (40)

where pi represent the estimated propensity score for the exposed subject i,

pj is the estimated propensity score for the control subject j, and

r is the predetermined tolerance range of the values (or the caliper).
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N:N matching

In this method, a randomized order of the first n subjects from both treatment groups,

the exposed and control groups are matched (Thavaneswaran & Lix, 2008). The closest

propensity scores will be applied as criteria for such matching.

Kernel matching

The above-mentioned algorithms, greedy, N:N, and caliper, typically match on few individ-

uals from the control group to create the counterfactual or imaginary response (Caliendo

& Kopeinig, 2005). They, together with Li (2012), further state this as the reason why

non-parametric matching estimators such as kernel-matching (KM) that utilize all control

group subjects, weighted on their averages, in constructing the counterfactual response

are looked at. Matching with a kernel is applied to an inversely proportional weighted

average of the control subjects in matching to a treated subject (Thavaneswaran & Lix,

2008).

The main advantage with these methods is that more information will most likely

be examined thus lowering the variance, whereas the disadvantage may be that of possi-

ble poor matches on some subjects with an unintended high bias consequence (Caliendo

& Kopeinig, 2005). This typically give rise to a classic ‘bias-variance tradeoff’ statis-

tical exercise for the researcher. A typical kernel estimator, for the potential outcome

E(Y0i pi, z = 0) for the ATT is thus given, adapted from Li (2012), as

E{Y1i − Y0i pi; z = 1} =
1

nτ

nC∑

i=1{zi=0}




Y1i −
nC∑

j=1{zj=0}

Y0j · Wk(pj)




 , (41)

where the weights Wk(pj) are given by

Wk(pj) =
K
{

pj−pi

hn

}

∑nC

k=1{zk=0}· K
{

pk−pi

hn

}

with pi = p(Xi) is the treatment allocation probability, a.k.a. the propensity score

for subject i, similarly for pk and pj, K represent the defined kernel function, and h is

the smoothing parameter (or bandwidth). Typically, Li (2012) further states, a researcher

will have to have to postulate a Gaussian kernel, together with an appropriate bandwidth

smoothing parameter, in order to estimate the causal effects.

Optimal matching

When minimizing the total within-pair difference of the propensity score, the optimal

matching technique is preferred to greedy matching (Austin, 2011). This traditionally

complex approach is made possible lately due to improvements in computation power
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(Olmos & Govindasamy, 2015). With this approach the average propensity score and the

distance within the matched pairs are evaluated and the match group with the lowest

average is chosen. In order to minimize the total propensity score difference for any

given data, matched groups of treatment and control subjects are to be identified, and

mathematically defined as

∆ =
S∑

S=1

ω{ AS , BS }· δ(AS , BS), (42)

where ω is the weighting for the number of subjects, or size, in the grouping, AS or BS

is the size or number of elements within the stratum in groups A or B, and δ is the distance

between elements in the stratum. Note that, this approach ensures a total propensity score

distance of an optimal minimum value between matched subjects (Roy, 2018 and Olmos

& Govindasamy, 2015).

3.2.3 Stratification

This method segments the common-support, or the (0, 1) interval, of the propensity scores

into separate strata or sub-intervals (Caliendo & Kopeinig, 2005). It is also referred

to as “interval matching” or “sub-classification” (Rosenbaum & Rubin, 1983). These

intervals are segmented through the use of a range of values as one strategy, consisting

of subjects with similar average propensity scores from the treatment or control group

(Thavaneswaran & Lix, 2008).

Stratification matching works as follows:

(1) check if the propensity score is balanced per strata; if not

(2) split the strata into smaller subjects.

The rationale behind stratification is that the data sample will be ordered, or ranked on

their propensity scores and then subdivided into equivalent subsets or layers; typically

divided into five strata, usually in quantiles of size 0.2 (Beal & Kupzyk, 2014; Austin,

2011 and Posner & Ash, 2012). Beal & Kupzyk, 2014 argue that this equivalence in

classes when matching helps in eliminating the possibility of covariate-bias.

Analyses of the propensity scores will be done on each of these different layers or equal-

sized quantiles (Austin, 2011). This will allow us to infer causality with confidence due to

the propensity score distributions of the treatment groups overlapping per strata (Posner

& Ash, 2012). Austin further notes a correction of at least 90% on possible covariate-bias

when the researcher is stratifying based on continuous confounder variables. In order to

obtain the average treatment effect, for instance, the average difference measure of the

response outcomes will be calculated for each stratum weighted by the distribution of
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the exposed subject across all the strata. However, there are possible complications in

making decisions with this method as it is said to be time-consuming, as an exercise, since

matching decisions are to be distinct across all strata levels. Further drawbacks, taken

from (Posner & Ash, 2012), are listed below:

(1) Possible extrapolation of large amounts of data in cases where strata is skewed

towards one group. For example when one of the groups consist a small num-

ber of observations in particular (therefore directly impacting the power and

accuracy measures of the analysis).

(2) Random selection may cause problems with replicability, since it means there

is a possibility that two investigators may reach differing conclusions due to

the analysis being based on distinct random samples.

3.2.4 Regression adjustment

Being exposed to one treatment over the other may cause inter-individual variation towards

the expected response. For regression or covariate adjustment to be deemed appropriate

the common support condition (CSC), or substantial overlaps between the groups, case

must be clearly verifiable (Thavaneswaran & Lix, 2008). This prompted researchers to

add the estimated propensity scores into a regression model so as to balance out for such

variability (Rosenbaum & Rubin, 1983). In that sense, the expected average response

difference between the treatment and control groups will be the required causal effect

of the treatment variable when each subject have an adjusted propensity score (Beal &

Kupzyk, 2014). What gets to be evaluated here, between the two groups are the differences

between the respective means of their propensity scores, the ratio of their variances, and

the ratio of their respective covariates’ residuals (Thavaneswaran & Lix, 2008). In case

when the conditional independence or unconfounded property holds, Hirano & Imbens

(2001) formulate the estimated treatment effect by

τAT T (x) = E{Y1-Y0 X = x}

= E{Y1 X = x, z = 1} − E{Y0 X = x, z = 0}

= E{Y X = x, z = 1} − E{Y X = x, z = 0}

And estimating the average treatment effect is done through the following equality,

τAT T = E{τAT T (x)},

giving the final estimate needed for separate exposure and control groups as:

τ̂AT T = (Ȳτ − ȲC) − β(X̄τ − X̄C), (43)
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where β is the weighting parameter for the impact of treatment, (Ȳτ = Ȳ1),(ȲC = Ȳ0)

are the average responses for the treatment groups, respectively, and X̄τ ,X̄C are the

average covariate differences, when comparing the two groups.

Unlike in the above methods, where the propensity score is applied to the separate

groups prior to matching, the covariate adjustment method requires that they be applied

in the final stage of analysis. This method consequently use the actual propensity scores

to do the matching, instead of the estimated propensity scores (Thavaneswaran & Lix,

2008).

3.2.5 Inverse probability weighting

This method relies on weighting based on the inverse of estimated propensity scores, or the

inverse probability of treatment allocation weighting (Rosenbaum & Rubin, 1983; Austin,

2011; Pan & Bai, 2015 and Thavaneswaran & Lix, 2008). It is part of the methods that

are not commonly utilized, in practice, compared to those mentioned above. Weighting

requires that subjects be weighed for better representations of population dynamics on

either treatment group (Thavaneswaran & Lix, 2008). Subjects will get scaled by their

treatment allocation probabilities based on the actual treatment group to which they be-

long (Austin, 2011). Using propensity scores when removing possible confounder influence

(Kuang, et al. 2020).

Pseudo-populations, or ‘synthetic samples’, of weighted copies per subjects, where

treatment allocation will not depend on the covariates X, results from this technique,

Austin (2011). Under-represented subjects will be weighed higher on treatment allocation

whilst those over-represented will get scaled lower such that treatment populations are

comparable. This ensures that subjects are equally likely to be treated, creating a design

that mimics that of randomized control trials (RCTs), as opposed to if it were just the

original population. We define, the weight of an exposed subject i as:

wi =
1

p̂i
(44)

i.e. as the inverse of the propensity score for that ith subject (or the inverse probability

of being allocated the treatment) and the weights for each control subject i are:

wi =
1

1 − p̂i
(45)

Note that, the pseudo-populations created from these weights will ensure that all the

data are utilized, via down and up weighting, instead of discarding unmatched subjects

(Roy, 2018). Estimations are done on the balanced weighted pseudo-populations or ‘syn-

thetic samples’ using the ‘now’ unconfounded relationship between the treatment z and

the potential outcome Y .
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Some drawbacks are that a propensity score closer to zero will cause these weights to

approach infinity and thus cease to exist (Thavaneswaran & Lix, 2008). Below, we depict

how the treatment effect is, typically in some ways, estimated with the inverse probabil-

ity of treatment allocation weighting (IPW) method. We also introduce the concept of

marginal structural models (MSMs) and how they are applied in conjunction with this es-

timation technique. Further in-depth reads pertaining to inverse probability of treatment

allocation weighting and the regression (covariate) adjustment techniques can be found in

Rosenbaum & Rubin (1983); Austin (2011) and Pan & Bai (2015).

Rationale for the IPW technique

The logic of the inverse probability weighting method is shown here, adapted from Austin

& Stuart (2015) and Barter (2017). Recalling, from sub-section 2.1.2, that the observed

outcome or response is given as Y = z· Y1 + (1 − z)· Y0, recalling Equation (5), and in the

presence of observed confounders we estimate the causal effect using the IPW as:

τ̂ ipw =
1

nτ

∑
z=1

Y1

p̂i
−

1

nτ

∑
z=0

Y0

(1 − p̂i)
=

1

n

∑
z=1

zY1

p̂i
−

1

n

∑
z=0

(1 − z)Y0

(1 − p̂i)
,

where p̂i is the estimated propensity score and z ∈ {0, 1} is the treatment status.

To show that the above quantity will remain unbiased in nature, it suffices that we

prove the following (Barter, 2017):

E

{
zY1
p̂i

}
= E[Y1] and E

{
(1−z)Y1

1−p̂i

}
= E[Y0]

That is

E

{
zY1
p̂i

}
= E

{
E

{
zY1
p̂i

Xi

}}

= E

{
E

{
zY1
p̂i

Xi

}}

= E





E[z Xi]·E[Y1 Xi]

p̂i






= E{E[Y1 Xi]} = E[Y1]

∴ the estimator for Y1 is consistent.

Similarly, we work out consistency checks for the Y0 estimand as
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E

{
(1−z)Y0

1−p̂i

}
= E

{
E

{
(1−z)Y0

1−p̂i
Xi

}}

= E

{
E

{
(1−z)·Y0

1−p̂i
Xi

}}

= E





E{(1−z) Xi}·E{Y0 Xi}

1−p̂i






= E





(E[1 Xi]−E[z Xi])·E[Y0 Xi]

1−p̂i






= E

{
E[Y0 X i]

}
= E[Y0],

which confirms that there is consistency in the weighting estimator for Y0.

Estimating the IPW treatment effect

Under the overlap condition, or positivity, and exchangeability assumptions, the impact

of a treatment or an intervention is estimated by

E(Y 1) =

∑n
i=1I(z = 1)Yi

pi∑n
i=1I(z = 1) 1

pi

, (46)

where pi is the propensity score for subject i, the numerator
∑n

i=1I(z = 1)Yi

pi
is the sum

of the outcome in the treated pseudo-population, and the denominator
∑n

i=1I(z = 1) 1
pi

is

the number of subjects in the treated pseudo-population. The indicator function I for the

treated subjects is given as

I(z = 1) =






1 if treated

0 otherwise
.

Similarly,

E(Y 1) =

∑n
i=1I(z = 0)Yi

pi∑n
i=1I(z = 0) 1

pi

, (47)

where
∑n

i=1I(z = 0)Yi

pi
sums the control outcome, and the denominator

∑n
i=1I(z = 0) 1

pi

is the number of subjects, respectively, in the control pseudo-population. The control

indicator function I will thus be given by

I(z = 0) =






1 if control

0 otherwise
.

Marginal structural models (an introduction)

Another common practice is that of controlling for confounder variables through adjusting

via marginal structural models or MSMs (Chiba, Azuma & Okumura, 2009). These are
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particular causal models, which at most utilize two step least squares regressions (2−SLS),

which are different to traditional regression models. Some in-depth discussions pertaining

2−SLS are covered in Angrist & Imbens (1995). MSMs are concerned with modelling the

mean of the potential outcomes (Angrist & Imbens, 1995). Such models are ‘marginal’ for

being based on the population average rather than conditional on confounders (Roy, 2018).

Their ‘structural’ nature is derived from the fact that they are used in modelling potential

outcomes instead of observed outcomes. Further, for more complex causal models, MSMs

will help in allowing for inverse probability of treatment weights to be used as an estimation

method. We detail different kinds of such MSMs below, taken from Roy (2018).

Linear MSM

Let the binary treatment allocation remain as is, i.e. z = 0 for a subject in control and

z = 1 for a subject allocated the treatment, respectively. We define the linear MSM as

E(Yz) = ϕ0 + ϕ1z (48)

Now, E(Y0) = ϕ0 and E(Y1) = ϕ0 + ϕ1 from Equation (37) and, therefore,

E(Y1) − E(Y0) = ϕ0 + ϕ1 − ϕ0 = ϕ1

Hence, we conclude that ϕ1 is the average causal effect, typically used with continuous

outcome experiments.

Logistic MSM

In the case of binary outcome experiments, with the treatment allocation z still defined

as above, we will apply logit transformation as follows

logit{E(Yz)} = ϕ0 + ϕ1z, (49)

where E(Yz) = P (Yz = 1). We get the causal odds-ratio eϕ1 , after logit exponentiation,

that is

ϕ1 =
odds (Y1 = 1)

odds (Y0 = 1)
.

The above numerator and denominator represents the outcome odds, where

odds (Y1 = 1 ) = P (Y1=1)
1−P (Y1=1) , and the odds (Y0 = 1) = P (Y0=1)

1−P (Y0=1) .

causality: propensity score adjustments 43



University of Pretoria, Mxolisi Msibi, 2020

Effect modification MSM

The complexity of marginal structural models led scholars, commonly in the fields of

epidemiological sciences, to investigate requirements of estimating with effect modifiers

(Chiba, Azuma & Okumura, 2009). Typically, the logistic MSM is a technique utilized to

test for bias in the effect modifier estimate (Chiba, Azuma & Okumura, 2009). Suppose

that a modifier variable M exists for the treatment effect, then the marginal structural

model including the effect modifier is defined as:

E(Y M) = ϕ0 + ϕ1z + ϕ3M + ϕ4zM (50)

where z∈{0, 1} still represents our binary treatment status and E(Yz M) is the ex-

pected (potential) outcome conditioned on this modifier variable. The potential outcome

conditional on M will have a mean given by

E(Y1 M) − E(Y0 M) = ϕ1 + ϕ4M,

which is the average causal effect of interest.

General MSM

One can use the following general formulation to define an MSM:

g{E(Y z M)} = h(z, M ; ϕ), (51)

where g(· ) is the link function, like in generalized linear models, except that here the

potential or expected outcomes are used instead of the observed (Roy, 2018). It should

be kept in mind that g(· ) is a function that represents treatment z and modifier M in

parametric forms and will typically be linear and/ or additive in nature. Such potential

outcomes will not necessarily be the same as those from observed data, for instance in

Equation (51), the left hand side involves potential outcomes instead of observed.

Use structural models for IPW estimation

Marginal structural models look a lot like generalized linear models, for example E(Y zi) =

g−1(ϕ0 + ϕ1z), but due to covariate confounding, Roy (2018) argued that this model is

not an equivalent of the regression model E(Y i z) = g−1(ϕ0 + ϕ1zi). However, with the

application of the inverse probability of treatment weights (IPW) method the resulting

pseudo-populations are free from confounding when the assumption of strong ignorability

holds across all treatment allocation levels (Austin & Stuart, 2015). This implies that one

can directly infer causality from the above equation. Estimation of the MSM parameters
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is done through finding solutions for the estimating equations from the observed data of

the pseudo-population or the synthetic sample.

n∑

i=1

∂µT
i

∂ϕ
M−1

i wi{Y − µ(ϕ)} = 0, (52)

where wi is the weight for subject i given as wi = 1
zi·P (z=1|Xi)+(1−zi)·P (z=0|Xi)

, and zi

is still the binary treatment allocation, z1 for case when treatment is allocated to subjects

and z0 for those that remained for control.

3.2.6 Limitations to propensity scores

Some of the limitations associated with propensity score matching are:

• large samples are usually required for propensity score matching;

• the matching algorithm only controls for selection bias based on observed variables

(i.e. only on the measured) due to lack of randomization, and so hidden-bias from

the omitted variables may still cause problems;

• the more confounding variables you try to match on, the harder the matching be-

comes;

• a deviation from ordinary least-squares (OLS) assumptions is that propensity score

matching assumes independence to be conditional on the baseline characteristics;

• useful cases or subjects may be excluded at both extreme ends of the propensity

scores;

• in trying to find the perfect matching, some subjects may be excluded due to incom-

plete matching, i.e. no match found with the same propensity score;

• some confounders may not be matched but still have an effect on your results.

3.3 Balance diagnostics

The requirement with observational studies is that the propensity scores will be estimated,

through the given data, since they will be unknown (Austin, 2011 and Xie, Brand & Jann,

2012). Now, recalling that the propensity score is the realest (finest) balancing score,

Rosenbaum & Rubin (1983), this means that treatment allocation won’t have an impact

on the propensity score distribution and the subject’s baseline covariates (Austin, 2011).

Since the true balancing score is the propensity score (Rosenbaum & Rubin, 1983), it

is expected that the distribution be similar in the strata of subjects in either treatment

group. Appropriate methods in this evaluation stage involve, amongst others:

causality: propensity score adjustments 45



University of Pretoria, Mxolisi Msibi, 2020

• similarity in baseline covariate distribution between the two groups especially for

analogous propensity scores;

• with propensity score matching, adequacy of the model involves comparing the ex-

posed control group to the matched sample;

• with the inverse probability of treatment weighting, model adequacy requires com-

paring the exposed control group to the sample matched on treatment’s inverse

probability weights;

• for stratification, the adequacy involves comparing the exposed control group to the

sample matched within strata of the propensity scores.

For categorical variables, the distributions between exposed and control subjects are eval-

uated whereas the means or medians are of interest with continuous variables, Austin

(2011).

Diagnostics

The process of examining the adequacy of your propensity score model, also known as

‘matching diagnostics’ and or diagnosing the quality of matches, is a critical step for any

researcher to embark on (Stuart, 2010). It is referred to as “perhaps the most impor-

tant step” in the process by Stuart and is vital in evaluating the validity or quality of

the matching model. Generally, investigators (or researchers) are advised to reject any

matching techniques whose response samples are lacking in terms of stability (or balance).

Several balance metrics, or diagnostic methods of matching algorithms, are discussed be-

low, divided into numerical and graphical diagnostics subsections, as detailed in the Stuart

(2010) article.

3.3.1 Numerical balance diagnostics

Stuart (2010) states that this is the most frequently used balance metric.

For continuous variables:

The t-test mean difference is typically used. This metric is given in mathematical

definition as follows (Stuart, 2010);

SMD =
X̄τ − X̄C

στ
, (53)

where SMD is the standardized mean difference, X̄τ , X̄C are sample covariate means

for the exposed and control groups, and στ is the pooled treatment standard deviation,

the bias is given as µτ − µc∼X̄τ − X̄C . Rosenbaum and Rubin (1985) refer to this as

the standardized-bias or the standardized difference of the means. The rule of thumb
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is that the absolute standardized-bias must be less than 5%, with the percentage bias

reduction constrained at greater than 80%, else balance is compromised. We can also

rewrite Equation (53) as follows:

SMD =
µτ − µC√

sτ −sC

2

. (54)

For binary variables:

The standardized mean difference, where a norm set-up is dummy-coding multi-level

categories (Austin, 2011), is defined by

SMD =
π̂τ − π̂c√

π̂τ (1−π̂τ )+π̂C(1−π̂C)
2

(55)

where π̂τ and π̂C are sample proportions in the intervention and control groups, re-

spectively.

The standardized bias:

This measure is calculated (with the rule of thumb that it be less than 5%.) as:

SB =
Bias√

ντ +νc

2

×100 (56)

where Bias represents the bias measure.

The percent bias reduction:

Noting that, the rule of thumb here is for a statistic that is greater than 80%.

PBR =
Biasbefore − Biasafter

Biasbefore
×100 (57)

where Biasbefore and Biasafter are the bias measures before and after matching, re-

spectively.

3.3.2 Graphical balance diagnostics

The wearisome nature of diagnosing the quality of matches using numerical metrics, espe-

cially with high dimensional data, is what necessitates the usefulness of plots in assessing

feature balances (Stuart, 2010). There following are plot diagnostic methods Stuart (2010),

applicable in practice:

(1) Propensity score distribution checks, from the original then matched group

(similar to when checking for the common support, see Figure 7);

(2) QQ-plots, whose examination is by comparing each of the treatment groups

per quantiles compared in each group (for similar empirical distributions of

the treatments, the QQ-plot will produce a 45-degree straight line);
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(3) the standardized mean difference plots, plotted to view how subject covari-

ates improve their balance after matching (here the researcher investigates,

specifically the increase or drop of the standard difference in means);

(4) histograms for the propensity score for each characteristic (for instance, SPSS

software enable one to produce population pyramids).

3.4 Outcome analysis

Once balance diagnostics related to confounder variables are done, and assuming they

were done properly and to the contentment of the researcher, the next step in the process

is response analysis (Olmos & Govindasamy, 2015). Since covariate confounder control

is now intact, causal inference can be made assuredly, and with confidence (Baek, Park,

Won, Park & Kim, 2015). Covariate balance will have implication that, Baek, et al. 2015,

the matched set will be ripe for analysis of response difference between the treatment

groups. Therefore, the matching results are of critical importance in outcome analysis

methods and will always be taken into account.

Typical hypothesis

A typical hypothesis being tested with outcome analysis is that of the treatment having

no effect on the outcomes, in other words the impact of the intervention is as good as if

it were non-administered. This null hypothesis is tested against the alternative that an

apparent treatment effect is evident. Our approach here will be concerned with estimating

the treatment effect and its confidence interval, hence giving the required test statistics.

H0: there is no treatment effect

Ha: the treatment had an effect

Olmos & Govindasamy (2015) detail how the near neighbour and Mahalanobis distance

metrics can be used with techniques such as ANCOV A, linear regression models and or

even matched t-tests for outcome modelling. It is also important to bear in mind, Baek,

Park, Won, Park & Kim (2015), that these matched pairs may still exhibits intra-individual

covariate differences even though between-group distributions seem to depict some degree

of consistency.

3.4.1 Randomization tests

When running randomization tests, also known as permutation and or exact tests, the

following are the steps that researchers must take (Roy, 2018);
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• first compute test statistics from observed data, then

• assume that the null hypothesis of the treatment not having an impact is true, now

• permute the treatment allocations within pairs at random and recalculate the test

statistic, and

• iterate the above steps a number of times checking for changes and or consistency

in your observed test-statistic

The test statistic should thus lie around the mean of the distributions of these iterated

computations in order to conclude that the treatment effect made a difference. Note that,

the above step may easily be accomplished, straight forward, by using the McNemar test

statistic instead of iterative randomization (Fay, 2016). Due to the fact that the McNemar

tests are a straightforward equivalent of the randomization tests, Roy (2018).

3.4.2 McNemar test

In general, a McNemar’s test is applied whenever the significance of the relationship be-

tween response and treatment group variables needs pinpointing (Baek, Park, Won, Park

& Kim, 2015). Thus given a contingency table, also known as a confusion matrix, for

binary response data we will test for treatment and control outcomes, Fay (2016). And

the McNemar test statistic, of which is approximately ”chi-squared”, is thus evaluated in

the following manner:

χ2 =
(b − c)2

b + c
, (58)

The argument, from Fay, 2016, is that ‘only’ the discordant pairs b and c gets used with

this technique, as the other two will not help in identifying the impact of the treatment.

McNemar test will be distributed chi − square, as mentioned above, with freedom degree

1, χ1
2. And for large sums of c and b such a closer approximation, as stated in Fay (2016),

requires continuity correction and will thus be given below as:

χ2 =
( b − c − 1)2

b + c
, (59)

In the case of the exact binomial test, when sample size is small, the exact two-tailed

p−value is calculated as follows, under the null hypothesis of the odds-ratio being 1 (Fay,

2016),

pval = 2
∑n

k=b



 n

k



 0.5k(1 − 0.5)n−k, (60)
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where n is the sum (b + c) of the discordant pairs. Note that Equation (58) - (60) are

based on the McNemar confusion matrix, Table 2 depicted below.

Table 2: McNemar’s confusion matrix
(Source: Fay, 2016)

treatment τ
0 1

control
0 a b

1 c d

3.4.3 The paired t-test

In case of continuous outcome data, a paired t-test is an equivalent to the McNemar test

(Baek, Park, Won, Park & Kim, 2015). This test can either be used or the Wilcoxon

signed-rank test to test for inter-group differences (Baek, et al., 2015). Further note that,

for binary response and or survival event data other listed outcome models exists, available

for use, and they are detailed below.

3.4.4 Conditional logistic regression

For matched binary outcome data, or binary response case, it is as good a strategy to

apply conditional logistic regression outcome models (Roy, 2018). This method is detailed

more, or further, by Kuo, Duan, & Grady, in their 2018 article. Here the authors, Kuo,

Duan & Grady (2018), infer the use of conditional logit on the “sparse data problem”, of

which is a phenomenon associated with loose-matching or matching when you have few

confounders.

3.4.5 Stratified Cox model

In survival analysis, or when dealing with time-to-event outcome data, a prudent strategy

is that of stratified log-rank test and or of a stratified Cox proportional hazard model

(Baek, Park, Won, Park, & Kim, 2015). This is due to the case that the baseline hazard

will be stratified on the matched sets (Roy, 2018). Though, at individual covariate level, a

worry is that of possible pairwise differences despite collective distribution similarity per

group (Baek, et al., 2015).

3.4.6 Generalized estimating equations (GEE)

This technique allows for the group specifier variable to be matched. In case of dichotomous

outcomes, like our binary treatment case, the causal risk difference, causal risk ratio, or
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causal odds-ratio (depending on your link function) will have to be estimated (Roy, 2018).

Also note that for a binary response case, the conditional logistic regression model above

may be as good enough as the GEE for logistic regression as stated by Baek, et al. (2015)

(Since this method allow for the use of odds-ratios as treatment measures for further

requirement).

3.5 Sensitivity analysis

We discuss the concept of sensitivity analysis through diagnostics of heterogeneity, the

possibility that multiple studies may not show the same effect, and then the common

support failure, these two are the Rosenbaum and Lechner bounds, respectively (Lechner,

2000 and Rosenbaum, 2002). This is to check for hidden-bias, especially in cases where

there were unobserved (omitted or ‘missed’) confounders. Glynn, Schneeweiss & Stürmer

(2006) noted that matching methods will, unlike randomized experiments, most likely

balance confounders that were only observed. This necessitates the use/ need of sensitivity

analysis methods to some extent.

In Caliendo & Kopeinig (2005), the Rubin and Lechner bounds are discussed as means

for performing sensitivity analysis. Stuart (2010) states that analyzing the sensitivity

of unobserved variables is performed to eliminate the treatment effect observed, in cases

where correlations between the observed and the hypothetical unobserved covariate fea-

tures are to be monitored. Marco Caliendo and Sabine Kopeinig separated their section

on sensitivity analysis into the following two parts,

(1) the unobserved heterogeneity case, and

(2) the failure of the common support,

i.e. the Rubin and Lechner bounds, respectively. These two cases are discussed below.

3.5.1 The unobserved heterogeneity case

For the Rubin bounds, the assumptions of “strong ignorability” as given by Equation

(26) must be solidly satisfied (valid), i.e. the probability of allocation for treatment is

conditionally independent and within the common support. We rewrite Equation (26)

from Caliendo & Kopeinig (2005) as:

pi = p(Xi) = P (z = 1 Xi) = F (βXi + γui), (61)

where Xi are the observed confounders (or characteristics) for subject i, and letting

p(Xi) = pi so that our notation above get simplified, β is the impact of Xi on the
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treatment allocation, ui represents the unobserved confounder variable, and γ is the impact

that the unobserved confounder ui have on treatment allocation.

Further note that, a hidden-bias free study will have γ = 0. Thus the treatment

allocation probability will be determined through the features Xi of each subject only.

However, as noted in Caliendo & Kopeinig (2005), a process exhibiting hidden-bias will

tend to produce distinct propensity scores even for a similar pair subjects, on all base-

line characteristics. In other words, two subjects will have different treatment allocation

probabilities even though they are an exact identical pair.

Under the assumption that function F in Equation (61) is logistic, the odds–ratio of a

given matched pair i and j will be:

pi

(1−pi)
pj

(1−pj)

=
pi(1 − pj)

pj(1 − pi)
=

e(βXj+γuj)

e(βXi+γui)
, (62)

where pi

(1−pi) and
pj

(1−pj) are the odds-ratios of treatment exposure for subjects i and j,

respectively. We also note that the implications of Equation (62) are that the odds-ratio

will be bounded in nature, Rosenbaum (2002). And that matched subjects will be those

allocated this treatment:

1
eγ ≤

pi(1−pj)
pj(1−pi)≤ eγ (63)

i.e.

⇒
1

Γ
≤

pi(1 − pj)

pj(1 − pi)
≤ Γ,

where Γ = eγ for some γ > 0.

This means that the propensity score, or the treatment allocation probability, is sim-

ilar only when Γ = 1 or in a hidden-bias free scenario. Effectively, this will imply the

perfect case of randomized-trials design (Li, 2011). And that for Γ = 2 subjects will

have odds of treatment that differ by a factor of 2, regardless of their covariates being

similar (Rosenbaum, 2002 and Caliendo & Kopeinig, 2005). Nicely put in Li (2011) as,

sufficient adjustment of pre-treatment covariates implies that the presence of a hidden

or unobserved confounder will be twice as likely in the intervention group as in control.

Thus, application of this Γ measure is best used in the monitoring of any strays from a

hidden-bias free study (Rosenbaum, 2002).

3.5.2 The failure of the common support case

For the case pertaining to the failure of common support, recall from Section 3.2.1 As-

sumption 2 that subjects outside the common support region will be extrapolated. This

is due to impossibilities in matching extreme values from either treatment group. As a

consequence, the researcher has options of letting go of causal inference or hypothesis and
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impose structural imputation with common support failure (Xie, Brand & Jann, 2012).

But extrapolation or removal of subjects outside this region tends to break down the

process by allowing for the phenomenon referred to as “ignoring the common support”

(Lechner, 2000 and Caliendo & Kopeinig, 2005). The authors argue further that this is

most likely due to heterogeneity of the causal effect.

Graphical solution

Figure 7 (Section 3.2.1) is a typical graphical depiction of the common support region,

bounded by dotted vertical lines, between the distributions of the propensity scores for

both treatment groups (Zaga Szenker, 2015). Whenever a large proportion of subjects

are removed in the analysis, the problem or failure of the common support arises (Zaga

Szenker, 2015). Although validity of the common support condition assures us that the

groups will be compatible, problems may still arise at the extremes. This happens espe-

cially when exposed subjects exhibit higher propensity scores whilst control group subjects

have lower propensities. This means that we will have no matches at the tails between

control and exposed subjects as a consequence, in other words the is no overlap.

Analytical solution

Lechner, 2000, devised a non-parametric robustness check for when causal effects were

estimated in midst of common support failure, or when some subjects exist outside of

the common support region. Working out the math behind this approach requires that

information be gathered from these outlying subjects (Lechner, 2000 and Caliendo &

Kopeinig, 2005). In both papers, a new notation was devised and we introduce it for the

purpose of our discussion below.

We’ll define Ω as the subset of the treatment exposure space, where the treatment

status was defined as z∈{0,1}, from a binary treatment perspective as is in Equation (1)

above, and the pre-treatment characteristics set is given by X. Now, we let ΩτAT T be

defined by {(z = 1) × X} such that it be the subset of the treatment exposure that only

contains subjects enrolled to the said treatment, and then define

W τAT T =






1, if observed subject ∈ ΩτAT T

0, otherwise
(64)

Further, we set W τAT T ∗ = 1 when observations are within the region of common

support and Ω̃τAT T will be the complement subset, i.e. the subset where such an effect

is not present. And now, let P (W τAT T ∗ = 1 W = 1) denote the share of subjects that

are within the common support region, relative to the total number, and λ1
0 depicts the

causality: propensity score adjustments 53



University of Pretoria, Mxolisi Msibi, 2020

mean of the treatment response Y1, the expected outcome, for subjects outside the support

region. The average treatment effect on the treated τAT T (ATT) of interest exists when

the second assumption is applied (Lechner, 2000). Therefore, the following are identifiable

(Caliendo & Kopeinig, 2005);

P (W τAT T ∗ = 1 W τAT T = 1)

and

λ1
0 = E(Y 1 W τAT T ∗ = 1 W τAT T = 1)

In addition, using the fact that the potential outcome of the control subjects Y0 is

bounded implies that

P (Y ≤ Y0 ≤ Y W = 0 W τAT T = 1) = 1.

Now, from all these assumptions, the Lechner bounds for the average treatment effect

on the treated (ATT) τAT T (ΩτAT T ) ∈ [τ AT T (ΩτAT T ), τ AT T (ΩτAT T )] can be re-written as,

Caliendo & Kopeinig (2005);

τAT T (ΩτAT T ) = τAT T (ΩτAT T )· P (W τAT T ∗ = 1 W τAT T = 1)

+(λ1
0 − Y )· [P (W τAT T ∗ = 1|W τAT T = 1)] (65)

τAT T (ΩτAT T ) = τAT T (ΩτAT T )· [P (W τAT T ∗ = 1 W τAT T = 1)]

+(λ1
0 − Y )· [P (W τAT T ∗ = 1|W τAT T = 1)] (66)

ΩτAT T is a representation of the effect of ignoring subjects outside the common support

region, i.e. those with neither a perfect match, Lechner, (2000). Lechner further warns

researchers that pleading ignorance of the common support problem, through exclusively

making estimations of τAT T using only subjects inside the region, would be detrimental.

Readers keen on in-depth understanding of these common-support-failure scenarios may

consult the following articles, Lechner (2000) and Caliendo & Kopeinig (2005). Note

that, in this dissertation we will only focus on the heterogeneity case in the application of

sensitivity analysis.
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4

Applications

Success rates for first year introductory level modules are generally low, especially in

statistics courses (Reyneke, Fletcher, & Harding, 2018). The authors argue that this

problem is of concern among universities across South Africa, even at the global stage, and

the University of Pretoria is not immune. They describe various interventions that have

been introduced by the university in order to try curbing these persistent low success rates.

Of specific interest with this chapter, in particular, is determining whether the introduction

of classroom response systems or clickers, for audience response and interaction in a blend

of a traditional and inverted classroom set-up, was successful in improving the average

final examination mark of participating students.

The study comprises two cohorts of students enrolled for a first year introductory

level module, in the first semesters of 2014 and 2017 respectively. The 2014 cohort rep-

resents the class without clickers use and the 2017 cohort is the intervention group, or

the group that got to utilize the said classroom response system. Respective cohort sizes

were 1,625 in 2014 and 1,486 for the clickers class. In particular, our analysis is based on

the investigation of whether propensity scores adjustment of the data, in order to balance

pre-intervention covariates between the two cohorts, depict evidence of differences in the

outcomes compared to simply utilizing these two groups in their raw form.

Flipped classrooms are those organized in such a manner that usual class activities

get flipped around with those that students would traditionally do at home and vice versa

(Lage, Platt, & Treglia, 2000; Brame, 2013; Cabi, 2018; Crouch & Mazur, 2001; Du, 2011;

Nouri, 2016 and Zainuddin & Halili, 2015). Scholars report success for flipped classes,

in literature, compared to those where content is still relayed in the traditional fashion

(Zainuddin & Halili, 2015). These pedagogical models are proving to be beneficial, espe-

cially for underperforming students, in improving performance and confidence in tackling

and engaging with the subject matter and or other students, hence strengthening the case

for proponents of such classrooms in institutions of higher learning and even at basic edu-

cation level (Nouri, 2016). Much better success is reported, especially when these classes
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are blended and taken with aid of classroom response systems or clickers, as instruction

support tools (Bojinova & Oigara, 2011 and Heid & Boshoff, 2011). This is because these

devices allows for improved, continuous, and active student engagements, Siau, Sheng &

Nah (2006), amongst students themselves, between them and their instructor, and in turn

with the subsequent subject matter. In particular, the ability to poll the class solution

replies right on-the-spot remains an attractive feature, for it allows instructors to focus

on explaining the misunderstood concepts that seem to be troubling the class right there

and then or as soon as possible (Bojinova & Oigara, 2011).

Study participants

Our study participants are cohorts of enrolled students for a first semester introductory

first year statistics module. Mostly, these students are from the commerce faculty, known

as Economic and Management Sciences (EMS), and were enrolled for the academic years

2014 and 2017. The 2014 cohort did not get to use the classroom response devices (click-

ers), in their time, meaning that 2017 enrollees are part of the exposed or intervention

group. As mentioned above, a total of 1,625 students are in the 2014 cohort and 1,486

were enrolled in 2017.

Analysis

In order to estimate the differences in the average final mark between the given cohorts,

outcome modeling, together with independent two-sample t-tests, will be conducted across

all prior and post adjustment methods. Specifically, the mean difference in the outcome is

estimated after first isolating the bias, that is natural phenomena with observational data,

by controlling participants pre-treatment characteristics using propensity score methods

(Kabunga, 2014). This is because student enrollment to either cohort was likely non-

randomized, i.e. could have been through self-selection and or due to relevant faculty

requirements. In particular, three propensity score matching methods were used, i.e.

greedy with a caliper, optimal, and inverse probability of treatment weights, to match the

two cohorts. The results are summarized in Table 6 in Section 4.4. Overall, we will follow

the process steps from Chapter 3 when conducting this analysis.

Baseline covariates

Table 3 below displays the variables that were assessed, at baseline or pre-intervention,

for use in propensity score application.
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Table 3 Variables used for propensity score estimation

Variable (name) Description Type Sample data

Study Outcome:

Exam mark Module examination score. Quantitative 0 - 100

Intervention:

Clicker exposure Treatment status or class. Binary
1 (2017)

0 (2014)

Baseline covariates:

Repeats Indicator for module repeaters. Binary
1 (Yes)

0 (No)

Gender Desc Student gender. Binary
1 (Female)

0 (Male)

Race Ethnicity group or race. Categorical
African, Coloured,

Indian, and White

Authority+ Matriculation authority. Categorical

The 9 Provinces,

CMB, FRC,IEB,

and NA

Faculty+ Student enrolment faculty. Categorical
EMS, Humanities

Law, NAS, and other

Home Language Instruction Indicator for home language instruction. Binary
1 (Yes)

0 (No)

Math Grade12 Matric mathematics mark. Quantitative 20-99

Years prior Years prior first attempt.
Quantitative

1-18
(discrete)

+The abbreviations, pertaining to the respective factor levels of the covariates examination authority and

faculty, in Table 3 are as follows: Student matriculation authorities are EC (Eastern Cape), FS (Free State), GP

(Gauteng), LI (Limpopo), MP (Mpumalanga), NC (Northern Cape), NW (North West), and finally WC (Western

Cape). We also have CMB (Cambridge), IEB (Independent Education Board), NA (unknown matric authority),

and lastly FRC represent students whose matric was done in a Foreign country. Further, the typical faculties are

shortened as EMS (Economic and Management Sciences), and NAS (Natural and Agricultural Sciences).
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4.1 Propensity score estimation

In order to estimate student’s probability of being exposed to clickers, i.e. their propensity

scores, we fit a logistic regression classification model of the following form (based on the

observed pre-treatment characteristics in Table 3 above);

log(pi) = log
(

1

1+e
−Xiβi

)
= β0 + Repeats· β1 + Gender· β2 + Race· β3

+Authority· β4 + Faculty· β5 + HomeLanguage· β6

+Grade12Math· β7 + Y earsP rior· β8

This results in the parameter estimates of Table A1. And the subsequent estimation

equation, based on significance of the parameter results, is also part of the Appendix

section. After successfully fitting the logistic regression classifier, in order to estimate the

propensity scores, one needs to check if the estimated scores validate strong ignorability.

This property requires that both the ‘ignorability’ and ’positivity’ causal assumptions are

met for the combined cohorts. Visualizing the estimated scores as in Figure 8 and 9 below,

which depict the common support or overlaps assumption per treatment group, is one way

this can be done. Figure 8 below gives a panoramic view of the common support region

per exposure group.

º(treat) is the cohort or treatment class

Figure 8 Graph of the common support
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The ignorability assumption

Unconfoundedness is an assumption met through the fact that the potential outcomes

do not depend on the cohort the students are in but is only conditional on the observed

baseline covariates.

The positivity assumption

The common support condition plots in Figures 8 and 9 show existence of positive prob-

abilities of enrolling students, whenever the baseline characteristics depict some degree

of similarity across the treatment groups, due to substantial overlaps. And, for our data

space, such a region is given by the interval (0.097, 0.904), i.e. the red dotted vertical

lines in the plots, due to there being no treated (2017) and control (2014) student en-

rollees below and above it respectively. Therefore we conclude that there exists great deal

of overlap in propensity scores in the probability interval (0, 1) thus satisfying the common

support condition. Note that Figures 8 and 9 are two sides of the same coin and allow for

an inspection of the common support condition from differing angles.

Figure 9 Common support region (traditional view)

Extreme value discrepancies, in the propensity scores outside the interval of common

support, between the enrollment classes are visible in both Figures 8 and 9. These plots

characterize the plausibility of the common support or positivity assumption in a sense that

only a few students, visible at both ends of the interval, may get extrapolated through

the matching techniques. In this way, post-adjustment data will tend to have similar
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distributions to the prior case. Since the validity of both the conditional independence

and positivity assumptions satisfies strong-ignorability, the next step in the analysis is the

matching step.

4.2 Matching using estimated propensity scores

Displayed in Table 4 below is the breakdown or splits, in terms of matched participants

from all three matching techniques for the 3,111 students (1,625 in the 2014 control cohort

and 1,486 in the 2017 treatment group).

Table 4 Post-matching group counts for the three methods

Matching Treated Control Treated un- Control un-

method matched matched matched matched

Greedy with
1,430 1,430 56 195

caliper

Optimal
1,486 1,486 0 139

IPW 3061.7 3081.4 0 0

From Table 4 we see that only 251 and 139 participants get dropped, respectively from

both the greedy with a caliper and optimal matching methods, which is 8.07 and 4.47% of

the combined cohorts. These large post-adjustments samples support the substantial pre-

adjustment overlaps. In other words there is homogeneity in the characteristics of enrolled

students across the two cohorts. Note that the pseudo-populations or synthetic-samples,

obtained from the inverse probability weighting technique, created synthetic samples of

about 3,062 (from 1,486) treatment and 3,081 ( from 1,625) control subjects each.

4.2.1 Greedy matching (with a caliper)

Jitter plots are visual aids to inspect post-matching propensity score distributions of the

data, with a nice feature of drilling-down on units. We applied a greedy matching tech-

nique, on the 2014 to 2017 cohorts, by matching at a ratio of 1:1 with a caliper of 0.2 times

the estimated propensity score. Using package MatchIt (Ho, Imai, King & Stuart, 2011),

the following post-adjustment jitter plot was produced. The 195 control and 56 treated

subjects that remained unmatched are visible at the most lower and upper section of this
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jitter plot, in Figure 10. Figure 10 below is the jitter plot visualization for the greedy with

a caliper matching technique.

Figure 10 Greedy match jitter plot

4.2.2 Optimal matching

The optimal minimum distance is taken into account with this matching technique. Post

to pre-intervention cohorts matching is done through the application of the optmatch

package (Hansen & Klopfer, 2006). The 139 unmatched subjects were all from the 2014

(control) enrolment group. In Figure 11 these are consolidated in a jitter plot, and the

139 unmatched control subjects are at the bottom.

Figure 11 Optimal match(‘jitter’ plot)

Drilling-down one can tell that student number 1959 got matched successfully with the

optimal matching method, whilst the nearest-neighbour (greedy) with a caliper method

could not match this 2014 student to an enrollee, refer to Figures 10 & 11.
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4.2.3 Inverse probability of treatment weighting

For the inverse probability of treatment weighting technique, package ipw (van der Wal

& Geskus, 2011) was utilized to create pseudo-populations or synthetic samples. Post-

adjustment figures evaluate to sample sizes of 3,061.70 (3,062) and 3,081.42 (3,081) sub-

jects in the treated and control groups respectively, with the maximum and minimum

weights equaling 14.5 and 1.0 in that order.

Visualizing inverse probability weighting weights

Figure 12 enable us to view the calculated weights from the inverse probability of treatment

weighting method, in lieu of the above jitter plots. Weights are typically plotted so that

they help in visual identification of abnormal weights, if any exists. These are weights

that are either extremely large or too small. Abnormally large-scaled weights tend to be

consequences of low treatment allocation probability (Thavaneswaran & Lix, 2008) and

therefore may require truncation. Figure 12 depicts the graphical representation of pre-

and post-truncation (at 1th and 99th percentiles) distribution of our inverse probability

weights.

Figure 12 Weight distribution plots (pre- and post-truncation)

Clearly, there is no evidence of extremely large weights in Figure 12. Before truncation,

the original minimum and maximum weight were given by 1 and 14.503 (peaking at mean

1.98), respectively. These were fairly reasonable weights, but still needed to be truncated,

as a rule of thumb, for better analysis of the data in case skewed weights were observed.

Post truncation weights, on the other hand, were respectively 1 and 5.792 (with mean

2.00).
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4.3 Evaluating covariate balance

In performing balance diagnosis, methods from Zhang, Kim, Lonjon & Zhu (2019) are

followed and then consolidated using relevant R software packages. We separate this

section into numeric (Zhang et al., 2019) and graphical (Love, 2019) diagnostics for the

inspection of pre- and post-adjustment covariate balance.

4.3.1 Numeric balance diagnostics

For all the three matching methods we have summarized descriptive statistics and fre-

quencies (with their respective standardized mean differences), including the unadjusted

case. These are combined in Table 5 below, from tableone (Yoshida, 2019) outputs.
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Table 5 shows only four baseline covariates that achieved balance at the maximum

allowable threshold of 0.1, and these are home language instruction, matric mathematics

grade, years prior attempting the module, and student racial demographics, respectively

(0.085, 0.021, 0.041 and 0.041). The rest of the baseline covariates therefore lack in balance

and justify that matching methods can be utilized. Prior to adjusting on propensity

scores five of the baseline covariates differ between the groups, with standardized mean

differences greater than 5% as seen in Table 5. These were the proportion of males (12.1%),

module repeaters (10.6%), home language instruction at (8.5%), and the combined average

authority SMD (22.4%), together with faculty percentages (11%). Post-adjustment cases

from the greedy with caliper and optimal matching methods seem to balance almost all

the covariates at 5% threshold, except for the following: education authority (7.2% and

15.4%), and faculty (5.8% and 9.4%) for both methods respectively. Optimal matching

has male (6.1%) and repeater (8.3%) student proportions as unbalanced.

Applying inverse probability of treatment allocation weighting shows all the good signs

of balance, that is all covariates have SMDs less than the 5% threshold. In Table 5

the covariate standardized mean difference (SMD) measures are in brackets and mostly

balanced, for the relaxed 10% threshold, except for examination authority (15.4%) under

optimal matching. In Figure 13, this is shown as a direct consequence of the imbalanced

distribution of student proportions from the independent education examination authority

(IEB).

4.3.2 Visual balance diagnostics

The standardized mean difference measures in Table 5 may also be visualized. In order

to visually inspect covariate balance between treatment groups, the following sample bal-

ance diagnostic plots, also known as love plots, were constructed using packages tableone

(Yoshida, 2019) and cobalt (Greifer, 2020) in R (Core, 2019). Figure 13 below depicts

baseline covariate balance visualization, prior and post-matching on all three propensity

score adjustment methods.
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Figure 13 Balance diagnostics all cases (incl. pre-matching)

Figure 13 depicts differences in the ordered standardized mean differences (SMDs)

at thresholds 5%, and also at the maximum 10%. All these covariates seem to balance

when matching with the greedy with caliper and inverse probability weights matching

techniques. Both these techniques’ depicts absolute standardized mean differences of less

than 5% for the baseline covariates, i.e. below the red dotted vertical line.

It is clear that optimal matching lags slightly behind the other two methods, in terms

of balancing for some covariates, especially at the 5% threshold but still shows a fairly

balanced covariate space for the relaxed 10% threshold. And thus, it is visible from Figure

13 that if optimal matching is an applied technique and that a smaller than the maximum

allowable threshold is enforced for balances, a couple of covariates will not meet our high

balance standards. Such covariates are male gender representation, repeaters, Humani-

ties enrollees and those matriculated from the independent education sector, Cambridge,

Limpopo and Gauteng authorities.

4.3.3 Visualizing individual covariate balance

This subsection continues with covariate balance diagnostics through the plots, but at

individual covariate level, to identify improvements in each confounder control per match-

ing technique. We continued using packages from R (Core, 2019), i.e. tableone (Yoshida,
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2019) and cobalt (Greifer, 2020). A good measure of group balance for any given covariate

is the degree of overlap for the densities, or proportions in case it were categorical, between

the treatment groups (Greifer, 2020).

Distribution balance: Matric mathematics grade

Figure 14 below depicts the distribution of mathematics scores, for students in 2017 (1)

and 2014 (0) respectively, prior to their admission to this introductory statistics module.

Figure 14 Balance diagnostics: math score or grade

The above plots show a large degree of consistency, in that the university tends to

accept students with respective pre-matching mathematics marks of around median and

mean of (60, 60.8) and above for the intervention group, across all three matching tech-

niques. Comparatively, these figures were around (59, 60.4) and above for control group

subjects. Subsequently this implies that, for the given data set, there is good density over-

lap for this covariate. Further, one can revisit the numeric balance table, i.e. Table 5, in

order to validate and relate the mean, standard deviation, and or range, of this covariate,

across all three matching methods.

Distribution balance: Race

Figure 15 below is a depiction of student ethnicity distributions across all three matching

methods, including the unadjusted or unmatched case.
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Figure 15 Balance diagnostics: racial demographics

For racial profile balancing, Figure 15 shows that the greedy with caliper and the

inverse propensity score weighting methods are improving balance proportions from those

prior adjustments. The optimal matching method, on the other hand, does not seem to

change much of the visible overlaps prior to adjusting on it. Even though one may argue for

fairly balanced, across all four levels, pre-matching racial demographics this balance still

gets improved, albeit slightly, by the greedy and inverse probability weighting methods.

The love plots in Figure 13 verify the threshold covariate balance for these four category

levels post-matching.

Distribution balance: Gender

Figure 16 below visualizes gender distribution between the two enrolment classes across

all three matching methods including the unmatched case.
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Figure 16 Balance diagnostics: gender representations

It seems that there is not much difference between pre- and post-matching meaning that

pre-matching gender was fairly balanced across the two levels, except that greedy matching

is seen to be slightly improving upon that balance. Optimal matching has also improved

this covariate balance but not as much as the other two techniques, which corresponds to

the nature of the love plots in Figure 13. Further note that, the volumes (proportions) for

this pre-treatment characteristic, across all three methods and the unadjusted case, can

be viewed in Table 5.

Distribution balance: Repeat students

Figure 17 below shows baseline covariate distribution for repeat students across all three

matching methods and that of the unadjusted case.

Figure 17 Balance diagnostics: repeating students
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Figure 17 show that optimal matching does not change the balance within this covariate

space. Even though balance of this covariate looks fairly reasonable, including for the

unadjusted scenario on the far left, one can still clearly see some improvements from the

other two adjustment techniques in the middle. Whereas, evidently looking on the far

right plot such shifts were minor, if there at all, which implies that optimal matching

did not improve balance for these category levels. From Table 5, one can view individual

category level counts (proportions) for this covariate across all three methods and the

unadjusted case.

Distribution balance: Examination authority

Figure 18 below shows baseline covariate distribution for examination authority across all

three matching methods and that of the unadjusted case.

Figure 18 Balance diagnostics: examination boundaries

Distributions of individual category levels for this covariate also depict minor changes,

for post-adjustment balance, due to optimal matching. Improvements in balancing due to

the greedy with a caliper, and a near-perfect balance with inverse probability weighting

are clearly visible though. One could argue that perhaps the ‘synthetic’ sampling inherent

with the inverse probability weighting method allows for better balancing of this category

due to matching within a bigger data space.

Distribution balance: Faculty

Figure 19 below shows student faculty covariate distribution across all three matching

methods, including the unadjusted case.
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Figure 19 Balance diagnostics: Faculty representations

Few differences are observed in Figure 19 but it can be seen that weighting on the

inverse propensity scores evens out the overlap proportions of the four Faculty category

levels under this covariate. This is also observed in the love plots of Figure 13 above.

Optimal matching, on the far right, shows the least changes or shifts in overlap proportions,

not that much visible, in most covariates except for the EMS faculty, from the unadjusted

state.

Distribution balance: Years prior attempt

Figure 20 shows the baseline covariate distribution for years prior attempting the module

across all three matching methods, including the unadjusted case.

Figure 20 Balance diagnostics: years before attempt

The number of years a student takes from matric prior to attempting this module

remains constant across all three techniques for the intervention groups, in terms of dis-

tribution. We thus conclude that there were not much balancing changes done through
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matching for this covariate. One may argue that this kind distribution makes sense since

students will most likely enroll straight after matric. Table 5 gives the mean (standard

deviation) cohort breakdown for this covariate across all the matching methods and the

unadjusted case.

4.4 Outcome modeling

With the covariate balance confirmed in Section 4.3, the next step is to estimate the treat-

ment effect through an appropriate statistical technique, both the independent samples

t-test and regression outcome model on the treatment status are applied here. The main

focus of this study is to determine whether introducing clickers, in a blended flipped-

classroom setup, impacted the final examination mark of enrolled students. And, in order

to accomplish this, we test the hypothesis of no impact from the clickers’ intervention

against the alternative, as described in Section 3.4. That is,

H0: post-clickers average examination mark =pre-clickers average

H1: post-clickers average examination mark 6= pre-clickers average

Here we test for significance in the differences, on average, for examination marks

between the cohorts. As mentioned above, an independent samples t-test, together with

a causal outcome model, are applied to this end. Tables 6 below depicts all our outcome

model results, in order to try keep things cleaner in the paper I listed the t-test results

in Table A3 in the Appendix section, from the pre-matching case plus all three applied

matching methods. All these are R (Core, 2019) outputs.

Tables 6 give all our outcome model results, across all three methods plus the unad-

justed case.
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Table 6 Outcome model results (pre- and post-matching)

Matching Effect Standard

method size (drop) Coefficient Estimate error t value 95% CI

Unadjusted
n1 = 1, 486 (constant) 58.243 0.43 136.97 (57.41, 59.08) ***

n0 = 1, 625 2017 (Yes) 1.756 0.62 2.855 ( 0.55, 2.96) **

Greedy n1 = 1, 430
(251)

(constant) 58.243 0.43 136.97 (57.69, 59.59) ***

with a caliper n0 = 1, 430 2017 (Yes) 2.276 0.69 3.32 (0.93, 3.62) ***

Optimal
n1 = 1, 486

(139)
(constant) 58.645 0.49 120.99 (57.41, 59.08) ***

n0 = 1, 486 2017 (Yes) 1.756 0.62 2.855 (0.55, 2.96) **

IP-Weights
n1 = 3, 062 (constant) 58.204 0.42 137.23 (57.37, 59.04) ***

n0 = 3, 081 2017 (Yes) 1.895 0.63 3.016 ( 0.66, 3.13) **

Signif. codes: 0 ;’***’ ˜ 0. 001; ’**’ ˜ 0. 01; ’*’ ˜ 0.05; ’.’ ˜ 0.1; and ’ ’ ˜ 1. n1 and n0 are the effective cohort
sizes for the exposed (2017) and the control (2014) students, respectively. In particular, dropped student cases are
represented by the (drop) count variable for each method of adjustment.

4.4.1 The unadjusted case

In Table 6, the causal risk difference is estimated at 1.76 with a subsequent 95% confidence

interval of (0.55, 2.96), meaning that we will reject the null hypothesis of no treatment

effect. Therefore, we conclude for an impact on the response from this intervention. Fur-

thermore, the high significance of the corresponding probability values at 0.043, of which

is less than 0.05, the conventional level of significance for hypothesis testing. The in-

dependent samples t-test results for the unadjusted case were that students have mean

examination mark at 59.99 in the 2017 or treatment class whereas the baseline control stu-

dent average was 58.24, a t-statistic of negative 2.85 is within a significant 95% confidence

interval of (-2.96,-055), see Table A3. The straightforward outcome model, cf. Table 6, an

alternative to the independent-sample t-test, is used to model potential outcomes or the

Rubin causal model (Holland, 1986), for this unadjusted case, of the following form:

E(Yz) = α + βz

E(Y1) − E(Y 0) = α + β − α

= β

Causal risk difference = 1.76
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4.4.2 Greedy matching (with a caliper)

When using the nearest-neighbour with a caliper of 0.2 we got a causal risk difference of

2.28 which is bounded within the 95% confidence interval of (0.93 , 3.62). Now since this

interval is also above zero we will conclude a positive impact, or causal risk difference,

due to the intervention on the outcome. The probability value below 0.001 implies that

the null hypothesis can be rejected with high confidence. Finally, Table 6 shows that the

mean examination mark is up to 60.52 for students enrolled after the clickers’ interven-

tion from 58.24 at baseline (t–test results in Table A3 shows them as 60.92 and 58.24

respectively). Besides a two-sample t-test one can also estimate, for the greedy method,

potential outcomes from an outcome model of the form:

E(Yz) = α + βz

E(Y1) − E(Y 0) = α + β − α

= β

Causal risk difference = 2.28

4.4.3 Optimal matching

For the optimal adjustment, Table 6 gives a 95% confidence interval for the causal dif-

ference as (0.55, 2.96), the intervention had a positive impact of 1.76. Note that, this

particular risk difference measure is similar or equivalent to the one for the unadjusted

case which corresponds to the covariate balancing observed in Section 4.3. A correspond-

ing low probability value of 0.043 (<5%), again equaling that for the no matching case,

confirms rejection of the null hypothesis of no treatment effect. Finally, the mean examina-

tion mark, after adjusting with optimal matching is estimated at 60.40 for the post-clickers

class of 2017 up from the 58.65 of the prior or 2014 class (t–test results in Table A3 shows

them as 59.99 and 58.24 respectively). Again, one can also estimate the causal risk via

the Rubin causal, or potential, outcome model (Holland, 1986) as:

E(Yz) = α + βz

E(Y1) − E(Y 0) = α + β − α

= β

i.e.

Causal risk difference = 1.76

This is noted as an, coincidental, equivalent to that of the unadjusted case above.
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4.4.4 Inverse probability of treatment weighting

When adjusting with the inverse probability weighting method, the post-clickers students

got a mean exam mark estimated up to 60.10 up from 58.20 prior (t–test results in Table

6 shows them as 59.99 and 58.20 respectively). This method evaluates to a causal risk

difference of 1.90 of which is bounded by a 95% confidence interval of (0.66, 3.13). Now,

due to this interval being above zero we conclude that the treatment effect is significant.

And therefore the implications are that the clickers’ intervention had some positive impact.

It suffices that the null hypothesis will also be rejected, due to the low probability value

of 0.026 (<5%), as it is with all the previous three cases. Utilizing the marginal structural

model form for weighting we evaluated the outcome or Rubin causal model, Holland (1986),

for this case as follows:

E(Yz) = ϕ0 + ϕ1z

E(Y1) − E(Y 0) = ϕ0 + ϕ1 − ϕ0

= ϕ1

i.e.

Causal risk difference = 1.90

Short summary:

Causal risk differences are estimated at 1.76, 2.28, 1.76, and 1.90 for the unadjusted

case, greedy with a caliper, optimal, and weighting adjustment methods, respectively.

Their respective 95% confidence intervals are given as (0.55, 2.96), (0.93, 3.62), (0.55,

2.96), and (0.66, 3.13). We have that all of the probability values are below the 5%

level of significance, given by 0.0043, <0.001, 0.0043, and 0.0026, and therefore the null

hypothesis is rejected and the conclusion is in favour of clickers, or the classroom response

system, having a positive impact on examination grades. Thus, controlling for the baseline

confounders gives the same significant evidence to the prior adjustment case that post-

clickers intervention students scored higher, on average, for their examination than those

in the 2014 cohort.

These minor changes in the causal risk difference imply that pre- and post-matching

data do not differ significantly. These results are not surprising since we saw a great deal

of overlaps, or common support, in Section 4.1 that may be enough to confirm individual

covariate balance. Furthermore, at the individual covariate level, we saw that the matching

methods seem to have made little or no big covariate balance difference, post-adjustment,

at all, cf. Section 4.3.3. The lack of substantial differences in the causal risk difference,

across the matching methods, coupled with the minor shifts in individual pre-treatment
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covariate balance is proof that, with so much visible overlap, the two cohorts were not

that different to begin with, therefore leading to the consistency of the results. Further,

the subsequent minor shifts in the causal risk, for two of the three methods with one not

even moving from the unadjusted level, lead us to conclude that maybe matching was not

worth the effort for this dataset and that perhaps a simple two-sample comparison would

have sufficed.

4.5 Sensitivity analysis

Unlike randomization, adjustments on propensity scores will not necessarily guarantee

absolute control for unobserved confounders, and in turn hidden-bias, Glynn, Schneeweiss

& Stürmer (2006). Sensitivity analysis is another critical step required in order to satisfy

ourselves about the robustness and or generalizability of the applied techniques. We apply

R (Core, 2019) packages, i.e. rbounds (Keele, 2014), for sensitivity analysis in this section

to determine if hidden-bias is a factor on our causal models and if so to what extent. This

is for our chosen heterogeneity case in the investigation of hidden-bias sensitivity. Different

estimates of the Rubin-bounds (Rosenbaum, 2002) from this rbounds package are listed

in the resultant Table 7 below, for all the three post-adjustment methods. Equation (63),

in Section 3.5.1, informs us that low sensitivity to hidden bias post-matching is verified

when the Rubin Γ estimate is bounded between 1
2 and 1.

Table 7 below depicts the Rubin estimates across all the three matching methods,

including the unadjusted case, for sensitivity analysis purposes.

Table 7 Gamma values for Rubin bounds

Rubin estimate

Γ

Matching method

Unadjusted 5.0401

Greedy (with a caliper) 1.0003

Optimal matching 1.0412

Inverse probability weights 4.8840

In Table 7 the greedy and optimal matching techniques have Rubin estimate values

that are within the acceptable interval of Equation (63), Caliendo & Kopeinig (2005) and

Rosenbaum (2002). Both methods, in particular, have the implications that from the

baseline odds ratio of 1 each pair of enrolled and control students will have a next-to-

nothing shift of 0.03% and another of a 4%, respectively, due to any unobserved confounder

ui (Ogutu, Okello, & Otieno, 2014). A technique out of bounds in Table 7, due to its high

gamma estimate value of Γ=4.88 and not being closer to 1 and within the required 1
2 to 2
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boundary, is the inverse probability of treatment weighting. Note that, this high gamma

estimate is closer to the one for the unadjusted case, of which was Γ=5.04. This implies

that the inverse probability weighting method ought to be highly sensitive to hidden-bias

in our model almost as if there were no taken control measures, alas the unadjusted case.

Subsequently, taken from Ogutu, et al. (2014) again, this implies that from the baseline

odds rate a hidden-confounder will move the odds-ratio between a pair of clickers and non-

clickers students with an enormous shift effect of 388%, i.e. almost a factor four difference

in the enrollment odds. Note that, this shift was at 404% for the unadjusted case, meaning

that it remains almost similar even after adjustments with the ipw method. Therefore,

this gives enough confirmation that the inverse probability of treatment weighting method

failed abjectly to balance or improve the pre-treatment covariate space.

This outcome, on the higher sensitivity of the inverse probability weights method is

plausible in a sense that it negates the fact that it was the one with extremely high

covariate balancing compared to the other methods in Section 4.3. All that great balance

is, subsequently, meaningless and goes to waste as it did almost nothing to help control

for hidden-bias. It is imperative, then, that one takes heed of the fact pertaining to higher

balancing not necessarily implying immunity to hidden or unobserved bias. Researchers

should keep this at the back of their minds when estimating causal models. Rigorous data

mining and understanding of the covariates to include or drop at the design stage is a

compulsory requirement, if weighting was preferred, since it seems to be highly sensitive

to bias from unobserved confounders, at least for these cohorts. It is interesting to note

here that even with a somewhat worse covariate balance than the greedy matching and

weighting methods, see Figure 13, optimal matching have lower sensitivity (Γ=1.04) to

hidden-bias or unobserved confounders than the latter. An implication is thus, for any

unobserved confounder, the odds-ratio between any clickers and non-clickers student pair

will only shift by 4% to nullify the outcome estimate, subsequently the greedy matching

technique will not change (0.03% ) much of the odds-ratios at all. Therefore, we conclude

in favour of both the greedy and optimal matching methods passing the sensitivity test.
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5

Conclusions

Explicit definition of the research question is a critical requirement in order to take ad-

vantage of the methods of adjusting observational data using propensity scores (Ali, et al.,

2009). The analysis in this dissertation illustrated an effective application, in terms of pre-

treatment (or baseline) covariate balance control, using estimated propensity scores. Both

the greedy with a caliper and inverse probability of treatment weighting adjustment cases

successfully removed covariate differences at 5% threshold significance, whereas adjusting

on optimal matching could only balance for racial demographics, home language instruc-

tion, matric math score, and years prior attempting the module. Note that, relaxing the

threshold at 10% achieved bias reduction, due to controlling for baseline confounders, by

all three methods except for optimal matching on the examination authority covariate.

This seems to be related to optimal matching not being able to balance proportions for

the independent education board level.

With post-matching covariate balance satisfactory, the outcome model was statistically

evaluated to determine the causal risk difference or the treatment effect on the treated

cohort. In particular, this scenario outcome was concerned with the determination of the

impact clickers had on student’s examination scores. All post-adjustment causal effect esti-

mates, including for the pre-adjustment case, are bounded within positive 95% confidence

intervals therefore implying that clickers may have significantly improved examination

performance for the exposed students.

5.1 Results

The two cohorts combine to 3,111 students, of which 1,486 (47.8%) were exposed to

clickers. In Table 5 we viewed and then compared the balance of the baseline covariates

prior and post adjusting with propensity score methods. Prior to the use of propensity

score adjustment techniques we see slightly more proportions of repeat and male students

in the clickers group an in addition, proportionally, more students were instructed in
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their home language in 2014. There are also some proportional differences in examination

authority and faculty numbers between the two cohorts.

Outcome model outputs cf. Table 6; confirm the existence of a treatment effect or

causal risk difference on student examination scores. This is also supported by the fact

that all our confidence intervals, from the unadjusted to the three matched cases, given in

Table 6, are above zero with probability values below the 5% significance level. This led

us to reject the validity of the null hypothesis of no treatment effect.

Furthermore, the Rubin bounds in Table 7 shows that only the greedy with caliper and

optimal matching methods have Γ estimates bounded in the interval (1
2 , 2) and closer to 1,

thereby exhibiting relatively lower sensitivity to hidden-bias (Mariani & Pêgo-Fernandes,

2014). We conclude that, at least for our data set-up, the preferred methods of choice for

estimating treatment effects are the greedy with a caliper and optimal matching. And,

with a Γ value out of bounds, the inverse probability of treatment weights method is

dropped since it lacks robustness to handle unobserved confounders due to being highly

sensitive. Our conclusion, therefore, is based on both the greedy with a caliper and optimal

matching methods, that there is significant evidence that students who enrolled post the

clickers’ intervention have, on average, better examination scores than the first group.

5.2 Future research

Literature shows a lot of various data scenarios, where one can apply the techniques visited

above, refer to Spertus & Normand (2018), Love (2019), Ning et al. (2019) and Imai (2011).

I have noted a couple of cases for specific applications of causal inference methods that I

would love to pursue further for future research purposes. These include, amongst others,

methods relating to different outcome models and their subsequent further techniques in

investigating causality (Love, 2019 and Gran, Lie, Øyeflaten, Borgan & Aalen, 2015). In

addition, in Chapter 4, I would like to further investigate two outcome scenario, those

are continuous using the final mark and binary outcome through the odds of passing

cases, for causal modeling. Other interesting outcome scenarios are also discussed in the

literature, ranging from repeated measure outcomes which will require using hierarchical or

mixed-effect models, to survival outcome scenario that will necessitate Cox proportional

hazard modeling, refer to (Love, 2019) where there is an R practical for Right Heart

Catheterization treatment data.

In a causal inference scenario where one may need to deal with high dimensional

confounders, Spertus & Normand (2018) introduced Bayesian techniques to handle the

estimation of propensity scores as a solution. Furthermore, when dealing with spatially-

correlated time series data, Ning et al. (2019) suggest using Bayesian methods to bal-

ance the counterfactual using the real outcome. They show this through applying the
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Expectation-Maximization (EM) algorithm for variable selection in order to pick the sig-

nificant covariates needed when setting-up a propensity model for an advertisement cam-

paign.

Political scientist Kosuke Imai, on his 2011 summary article Introduction to the Virtual

Issue: Past and Future Research Agenda on Causal Inference listed a summary of a couple

of new techniques that researchers, mostly from the political and social sciences disciplines,

are actively pursuing in this interesting causal inference field. Since, as he states further,

scholars can no longer ‘brush under the table’ most of the problems or biases related

to causal inference matters. Imai (2011) name drop some of these researchers that are

pursuing these techniques, at least, from the political and social science perspective. I

have listed two of these as;

• effective design of field experiments through treatment/control ratio adjustment

through utilizing placebos in the control (article quoted is David Nickerson’s (2005,

Vol 13 (3), pp. 233–252), and

• analysis of list experiment which helps scholars elicit thoughtful responses from sur-

vey respondents, especially with sensitive issues like racism ( and Daniel Corstange’s

(2009, Vol. 17(1), pp. 45–63) is credited for this work).

Further mentioned were the needs to improve current matching and weighting techniques,

ways to identify degrees of benefits or harm on differing subjects by the treatment, design

of statistical experiments that will ascertain causal direction, and, finally how time series

responses can be handled with causal models. Schweizer, et al. (2016) discusses the idea

of interrupted time series designs and analysis as some experimental techniques, and ’will

definitely get used a lot’, in future research. Note that interested readers are referred to

the summary article by Schweizer, et. al (2016).

Authors Austin, Grootendorst, & Anderson, in their (2007) article use Monte Carlo

simulation techniques to see if observed confounders may still get balanced, hence re-

ducing biases, especially in cases where researchers are not sure of variables to use for

propensity score modeling to begin with. Hirano & Imbens (2001) proposed an interesting

technique that aims to analyze causal inference using a regression adjustment combination

with inverse probability of treatment allocation weights in order to increase robustness in

removing bias. This, they say, works better that just relying on either method for bias

reduction on its own. An example, they show, is how an ensemble of both adjustment

techniques allows one to perform an exercise in pairwise estimations of treatment effects

and hence creating a solution that can be viewed as doubly-robust.

Gran, Lie, Øyeflaten, Borgan, & Aalen, (2015) use causal inference concepts of G-

computation together with the inverse probability Cox proportional hazards and Aalen

additive hazards outcome models in a multi-state framework for sick-leave causality study.
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Post-matching imbalance is looked at using regression adjustment methods of residual

balance in Nguyen, et al. (2017), where a simulation study is taken in order to try

balancing any of the confounders that remained unbalanced post-matching, in between

multiple set-thresholds. Such, they reiterate, have shown to be a success in modeling

differences in complex work-benefit data scenarios.

Chih-Lih investigates, in his 2011 PhD dissertation, the use of hierarchical or multilevel

models for repeated cross-sectional observational studies, simulating a smoke cessation

project pre- and post-ban level for intra-individual and group-wide effects, where the

treatment gets repeated onto multiple cohorts and also for the case when the interventions

were varied over time. Li, C. (2011), in this sense, got an opportunity expand or flex

further the Rubin causal model in order to counter the challenges, due to both the nature

of observational design especially when longitudinal data is in the mix, to identify the

differing impacts that factoring time tends to cause on participants covariates within such

studies. All of the above mentioned methods may be successfully employed on an extension

of the applications discussed in Chapter 4.
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Appendix 1: Proofs

Theorem 1

From Rosenbaum & Rubin, (1983) The propensity scores or allocation probability given the ob-

served pre-treatment covariate set is conditionally independent to the treatment status, also taken

from Equation (1) and (18); given the propensity scores

X ⊥⊥ z p(X), (A.1)

where p(Xi) - is the the treatment allocation probability for subject i. Further note that in

Rosenbaum & Rubin (1983), Theorem 1 is declared to be the special case of Theorem 2 from

Cochran & Rubin (1979).

Theorem 2

Let the balancing function be b(X), such that b(X) it is a function of X, that is; X ⊥⊥ z b(X) if

and only if (iff) for some function f , p(X) = f{b(X)} , b(X) is finer than p(X)

Proof :

Case 1°

Suppose b(X) was finer than p(X), it then follows that showing that b(X) is a balancing score

will suffice.

Note that, it is sufficient to show that P {z = 1 b(X)} = p(X) in order for b(X) to be a

balancing score

Recalling the definition of the propensity score:

p(X) = P {z = 1 b(X)} = P {p(X) b(X)}, (A.2)

And since, b(X) is finer than p(X) by supposition above, then the right hand side of equation.

(A.2 ) will evaluate to the propensity scores - p(X), as required. Thus meaning;

E{p(X) b(X)} = p(X)

Therefore, b(X)is the balancing score

causality: propensity score adjustments 91



University of Pretoria, Mxolisi Msibi, 2020

Conversely,

Case 2°

Suppose b(X) is a balancing score and that it is not finer than the propensity scores p(X) so

that we have a pair of features X1 and X2 such that p(X1) 6= p(X2) but b(X1) = b(X2) Recalling

the definition of the propensity score, again;

p(X) = P {z = 1 X}

P {z = 1 X1} = P {z = 1 X2}, so that z and X are not conditionally independent given b(X),

and that b(X) is a balancing score

Therefore; b(X) must then be finer than p(X) to cause such balancing!

This completes the proof! �

Theorem 3

Given some b(X) a balancing score, Rosenbaun & Robin(1983) notes that if the treatment allo-

cation is strongly ignorable given X then so should it be when the condition is on b(X). Mathe-

matically, that is;

(Y1, Y0) ⊥⊥ z X and 0 < P (z = 1 X) < 1, ∀X, meaning that

(Y1, Y0) ⊥⊥ z b(X) and 0 < P {z = 1 b(X)} < 1, ∀b(X)

Proof:

The inequality given b(X) is a consequence of that one given X . Thus, it suffices to show that;

P {z = 1 Y1, Y0, b(X)} = P r{z = 1 b(X)}

Of which is equal to p(X) by Theorem 2, i.e. P {z = 1 b(X)} = p(X). Therefore showing;

P {z = 1 Y1, Y0, b(X)} = p(X)

Now,

P {z = 1 Y1, Y0, b(X)} = E{P [z = 1 Y1, Y0, X] Y1, Y0, b(X)}

This, by the assumption, equals;
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P {z = 1 Y1, Y0, b(X)} = E{P (z = 1 X) Y1, Y0, b(X)}

= E{p(X) Y1, Y0, b(X)}

Equalling the propensity score as required, since b(X) is a finer balancing score than p(X),

and therefore:

E{p(X) Y1, Y0, b(X)} = p(X)

Which completes our proof! �
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Appendix 2: Miscellaneous tables

and figures

Propensity scores estimator

Table A1 Logistic regression estimates results

Standard Prob

Covariates Estimate error z - value value

(Intercept) 0.46770 0.4414 1.06 0.28934

Repeater:1 0.53025 0.1505 3.523 0.00043 ***

Gender:Male 0.27632 0.0759 3.64 0.00027 ***

Race:Coloured 0.33341 0.2722 1.225 0.22069

Race:Indian 0.04949 0.1779 0.278 0.78090

Race:White 0.11746 0.0986 1.192 0.23332

Education authority: EC -0.77638 0.4455 -1.743 0.08138

Education authority: FRC -1.39389 0.9334 -1.493 0.13535

Education authority: FS -0.42325 0.4255 -0.995 0.31988

Education authority: GP -0.82981 0.3393 -2.446 0.01446 *

Education authority: IEB -0.37556 0.3445 -1.09 0.27570

Education authority: KZN -0.57829 0.3636 -1.591 0.11172

Education authority: LI -1.02858 0.3579 -2.874 0.00405 **

Education authority: MP -0.85067 0.3588 -2.371 0.01776 *

Education authority: NA -14.00313 266.6420 -0.053 0.95812

Education authority: NC -1.90035 0.7468 -2.545 0.01094 *

Education authority: NW -1.25950 0.4022 -3.132 0.001734 **

Education authority: WC -0.90637 0.6236 -1.454 0.14608

Faculty: Humanities 0.55737 0.3065 1.819 0.06894

Faculty: Law -13.83068 535.4112 -0.026 0.97939

Faculty: other 0.47129 0.2957 1.594 0.11098

Faculty: NAS -0.13539 0.1053 -1.286 0.19857

Insruction in home language -0.40567 0.0934 -4.343 < 0.001 ***

Math score (Grade12) 0.00313 0.0040 0.789 0.43036

Years prior attempt -0.05642 0.0249 -2.265 0.02349

—Signif. codes: 0 ;’***’ ˜ 0. 001; ’**’ ˜ 0. 01; ’*’ ˜ 0.05; ’.’ ˜ 0.1; and ’ ’ ˜ 1.

And the resulting estimation equation, from the significant parameters, is:
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log(pi) = +0.53· Repeater + 0.28· Gender : Male + (−0.83)· Authority : GP +

(−1.03)· Authority : LI + (−0.85)· Authority : MP + (−1.90)· Authority : NC

+(−1.26)· Authority : NW + (−0.41)· HomeLanguage

Logistic diagnostics

Table A2 Logistic regression diagnostics

Measure Name Measure

Accuracy : 0.576

95% CI : (0.5584, 0.5935)

No Information Rate : 0.5223

P-Value [Acc > NIR] : < 0.001 ***

:

Kappa : 0.1429

:

Mcnemar’s Test P-Value < 0.001

:

Sensitivity : 0.6868

Specificity : 0.4549

Pos Pred Value : 0.5794

Neg Pred Value : 0.5705

Prevalence : 0.5223

Detection Rate : 0.3587

Detection Prevalence : 0.6191

Balanced Accuracy : 0.5708

:

Positive’ Class : F

—Signif. codes: 0 ;’***’ ˜ 0. 001; ’**’ ˜ 0. 01; ’*’ ˜ 0.05; ’.’ ˜ 0.1; and ’ ’ ˜ 1.
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t-test

Table A3 Independent samples t-test model results

Effect

Method size (drop) 2014 (mean) 2017 (Mean) t statistic df 95% CI

Unadjusted
n1 = 1, 486

n0 = 1, 625 58.24 59.99 -2.85 3057.8 (-2.96, -0.55)**

Greedy n1 = 1, 430

matching n0 = 1, 430 (251) 58.24 60.92 -3.32 2531.3 (-3.62, -0.93)***

Optimal n1 = 1, 486

matching n0 = 1, 486 (139) 58.24 59.99 -2.85 3057.8 (-2.96 -0.55)**

Weighted n1 = 3, 062

matching n0 = 3, 081 58.204 59.99 -2.85 3057.86 (-2.96, -0.55 )**

Signif. codes: 0 ;’***’ ˜ 0. 001; ’**’ ˜ 0. 01; ’*’ ˜ 0.05; ’.’ ˜ 0.1; and ’ ’ ˜ 1.
n1 and n0 are the effective cohort sizes for the exposed (2017) and the control (2014) students, respectively. In particular, dropped
student cases are represented by the (drop) count variable for each method of adjustment.
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Appendix 3: R code

1. Data manipulation

##------------------------------------------------------- (START!)**

###*()** ... i. Data manipulations

##-------------------------------------------------**

#* *************************************************

#*

#* * created by: Mxolisi Msibi , Mr.

#* * organisation: University of Pretoria

#** ** degree : Magister Scientiae

#* * create datae: 2019.11.25

#* * update1: 2019.12.05

#* * update 2: 2019.12.27

#* * update 3: 2020.01.02

#* * update 4: 2020.01.08

#* * update 5: 2020.03.18

#*

#* * update 7: 2020.05.21

#* * update 8: 2020.05.22

#**

#* * update 9: 2020.06.04

##-------------------------------------------------**

#* *************************************************

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** I. Data Manipulations ( (step) )**

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++
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##-------------------------------------------------**

#* get required libRaries (in)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* 0.0. installin ’ required packages

install.packages( c( #*

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**

#1. Data manipulations

"sqldf", # do sql man (in R)* ...

"janitor",

"naniar",

"readxl", #get data from excel " sheets "

#*

"tidyverse",#*( for ’pippin ’) and datamanipulations

’vctrs’,

#*

"broom",

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**

#2. Propensity score analysis

###* i. estimation

"lme4",# i.glms ( with logit)

#* ii. matching

"Matching",###* ii.matching

"MatchIt",#for matching

"ipw",#inverse treatment probability

’optmatch’,###* for full matchin ’

"WeightIt", # ipw weights ( weer weer)

"CBPS",# require(cbps )### citation(" CBPS")

"cobalt",#install. packages(" cobalt ")

#* iii. covariate balance

"tableone", ###* iii. covariate balance

"sandwich", #for robust variance estimation

"survey",

#* iv.outcome modeling

"survival", #*

"lme4",

###* v. sensitivity analysis

"rbounds", ## #*v. sensitivity analysis

"rgenoud",
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#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**

#3. Miscellaneous

"dplyr",#*impute missings ’

"ggpubr", ###*()**

# ggplot ()

"ggplot2", "cowplot",# install. packages(" ggplot2")

"ggridges" #plots (and themes )

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**

))

#* install package by uncommenting "at top"

#( if commented out)

#*(these are the required packages that you

#might require for analysis)...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 0.1. loadin ’ packages

library(janitor)

library(naniar)#*

library(broom)

require(sqldf)#doin ’ sql (in R*) ...

library(tidyverse)#(for ’pippin ’) and datamanipulations

library(rgenoud)#> library( rgenoud)

# ----------------*()** ...

##2. Match your data (with these ...)

library(’optmatch’)#* for full matchin ’

#load packages#*()**

library(Matching)##; for matching techniques

library(MatchIt)# conventional matching package

library(’optmatch’)###* for full matchin ’

library(tableone)

library(ipw)#inverse treatment probability matching

library(sandwich)# robust variance estimation library(survey )

# ----------------*()** ...

##3. Assess balance

library(tableone)#; balance diagnostic

#tools ( incl. in this package)

library(cobalt) #;* ... (for) calculatin SMDs and other

# balance measures.

library(survey) # bala\nce diagnostics ( too )

# ----------------*()** ...

##4. Outcome modelin ’

library(lme4) #* ... (for) linear and hierarchical models

library(survival) #* .... (for) time -to -event outcomes
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# ----------------*()** ...

##5. Asses hidden -bias

library(rbounds)# Sensitivity analysis (Rubin bounds )

library(rgenoud)# sensitivity ansalysis (nb)**???...

library("xlsx") # imorting excel files (with " readxl " package)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 0.2. create logit and sigmoid functions ’

sigmoid<- function(x){1/(1+exp(-x)) }#*.sigmoid fun ’

logit <- function(p){log(p)-log(1-p)}#*.(ze)log -odds

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 0.3. lread the four ’excel -sheets ’ using

#" readxl" package

library("readxl") #*get data from excel "sheets "

library(tidyverse)

#*( for) ’pippin ’ you know/ data manipulations

## # ... *()** ...

setwd("C:\\Users\\ mxmsibi\\ Downloads\\Biz.Related

\\ms␣dissertation

\\psm_5th.draft_2019.08.27␣-␣due␣end␣-␣Oct")

getwd()

#* 1. get all data sets (in)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.1. read the four sheets using " readxl"

# package import data off both (the) groups ***....

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.1.1. read into a list object

lst <- lapply (1:4, function(i) read_excel(

"1.␣-␣Praticals/data/Mxo␣data␣-␣v3.1.. xlsx"

, sheet = i))

###*(home)**

tail(lst[[1]])

head( lst[[1]] ,11)

###*()**...

lapply(excel_sheets(path), read_excel , path = path)
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lst1 <- lapply( excel_sheets(

"1.␣-␣Praticals/data/Mxo␣data␣-␣v3.1..xlsx")

, read_excel ,

path = "1.␣-␣Praticals/data/Mxo␣data␣-␣v3.1..xlsx")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.1.2. separate the data sets from the list

#* stk data ( for both groups )

my_data_2014<- lst[[1]]; my_data_2017<- lst[[3]]

head(my_data_2014, 11)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.1.3. separate matric data sets

#* matric information( both groups)

matric_2014<- lst[[2]];

matric_2017<- lst[[4]];

head(matric_2014, 11)

#*

#* ( 2. ) manipulate your data (hier)**

# **************************************************

#** *** (redone )

#* 2.1 *2014 data*...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.1.1. create home language instruction

#flag (2014)

colnames(my_data_2014); colnames(matric_2014)#*()**

colnames(my_data_2017); colnames(matric_2017)

#*(don ’t forget to) rename the " number " column

#to "st number"

colnames(my_data_2014)[

colnames(my_data_2014)=="Number"] <- "St␣number"

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.1.2. flag 2014 home language

my_data_2014 %>%

mutate(Home_Language_Instr = ifelse(

‘Home Language Desc ‘ ==

‘Language of Preference Desc ‘, 1, 0))

my_data_2014x<- my_data_2014 %>%
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mutate(Home_Language_Instr = ifelse(

‘Home Language Desc ‘ ==

‘Language of Preference Desc ‘, 1, 0))

head(my_data_2014x,7)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.2.1. create the home language instruction

#flag (2014)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.1.3. flag 2014 (as " treatment group˜ ’0’")

my_data_2014x<- my_data_2014x %>%

mutate(treat = "0"); head(my_data_2014x,7)

head(my_data_2014x$treat ,7)

#[1] "0" "0" "0" "0" "0" "0" "0"

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** 2.2 *2017 data*...**

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.2.1. create the home language instruction

#flag (2017)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.2.1. flag 2017 home language

my_data_2017 %>%

mutate(Home_Language_Instr = ifelse(

‘Home Language Desc ‘ ==

‘Language of Preference Desc ‘, 1, 0))

my_data_2017x<- my_data_2017 %>%

mutate(Home_Language_Instr = ifelse(

‘Home Language Desc ‘ ==

‘Language of Preference Desc ‘, 1, 0))

head(my_data_2017x,11)

head(my_data_2017x$Home_Language_Instr ,11)

#**()** [1] 1 1 0 1 1 1 1 1 0 0 1

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **
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##-------------------------------------------------**

#* 2.2.2. flag 2014 (as " treatment group ")

my_data_2017x<- my_data_2017x %>%

mutate(treat = "1")

head(my_data_2017x,11)

head(my_data_2017x$treat ,11)

#[1] [1] "1" "1" "1" "1" "1" "1" "1" "1" "1" "1" "1"

#* 3. grade 12 marks manipulator (hier)**

###**************************************************

#* 3.get grade 12 math marks (in)

# (both group(s)) (*2014/17 data*)*...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.1. map your matric grades (math) (2014)

matric_2014 %>%

filter(‘School Subject Desc ‘ == "Mathematics")

merge(my_data_2014, matric_2014,by="St␣number")

###**()**

merge(my_data_2014,

matric_2014[ ,

c(’St␣number ’,’Final␣Mark’)]

,by="St␣number")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.1.1. get math marks (2014)

matric_2014 %>%

filter(‘School Subject Desc ‘ == "Mathematics")

matric_2014x<- matric_2014 %>%

filter(‘School Subject Desc ‘ == "Mathematics")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.1.2. map 2014 math grades

colnames(matric_2014x)[

colnames(matric_2014x)=="Final␣Mark"]

<- "Math_Grade12"; matric_2014x$Math_Grade12;

is.na(matric_2014x$Math_Grade12)

colnames(matric_2014x)[

colnames(matric_2014x)=="Home␣Language␣Desc"]

<- "Home␣Language" merge(my_data_2014x

,matric_2014x
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,by="St␣number")

is.na(merge(my_data_2014x,

matric_2014x,

by="St␣number")); is.na(

(merge(my_data_2014x,matric_2014x,

by="St␣number"))$Math_Grade12)

my_data_2014y<- merge( my_data_2014x,

matric_2014x ,by="St␣number")

head(my_data_2014y,11)

#*

dim(my_data_2014y)#** ([1] 1625 32)**

dim(my_data_2014x)#***([1] 1676 23)***

is.na(my_data_2014y$Math_Grade12)

###**all "FAALSE " that ’s good ....

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.2. map your matric grades (math) (2017)

matric_2017 %>%

filter(‘School Subject Desc ‘ == "Mathematics")

merge(my_data_2017, matric_2017,by="St␣number")

#*( this1 got the right student number )**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.2.1. get math marks (2017)

matric_2017 %>%

filter(‘School Subject Desc ‘ == "Mathematics")

matric_2017x<- matric_2017 %>%

filter(‘School Subject Desc ‘ == "Mathematics")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.2.2. map 2017 math grades

colnames(matric_2017x)[

colnames(matric_2017x)==

"Final␣Mark"]<-"Math_Grade12"

matric_2017x$Math_Grade12; is.na(

matric_2017x$Math_Grade12)

#* (ˆˆˆ)** ... all " FALSE" that ’s good ....

colnames(matric_2017x)[

colnames(matric_2017x)==

"Home␣Language␣Desc"] <-"Home␣Language"

merge(my_data_2017x,

matric_2017x, by="St␣number")

(merge(my_data_2017x,
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matric_2017x,

by="St␣number"))$Math_Grade12;

is.na((merge(my_data_2017x,

matric_2017x,

,by="St␣number"))$Math_Grade12)

###*()** all " FAALSE" that ’s good ....

my_data_2017y<- merge(my_data_2017x,

matric_2017x,

by="St␣number")

head(my_data_2017y,11)#

#*( 4.) combine these dataframes (into1)**

###*************************************************

#* 4. append your final data (2014/17 data0)**...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.1. make 2014 and 2017 data (one)

dim(my_data_2014y); dim(my_data_2017y)

#*[1] [1] 1625 32

## [1] [1] 1486 32

rbind( my_data_2014y, my_data_2017y)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.1.1. check if matric marks are valid (???)*....

(rbind(my_data_2014y,

my_data_2017y))$Math_Grade12; is.na(

(rbind(my_data_2014y

,my_data_2017y))$Math_Grade12)

###*()** all " FAALSE" that ’s good ....

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.1.2. check rbinding

dim(rbind( my_data_2014y, my_data_2017y))

###*()*[1] 3[1] 3111 32

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.2. final datasets

rbind( my_data_2014y, my_data_2017y)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.2.1. create dataset

data <- rbind( my_data_2014y, my_data_2017y)
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typeof(data)#* [1] "list"

data$Math_Grade12; is.na(data$Math_Grade12)

###*()** all " FAALSE" that ’s good ....

data$Math_Grade12; unique(

data$‘Matric Authority Desc ‘)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.2.2. try data type changes

data <- as.data.frame( rbind( my_data_2014y,

my_data_2017y) )

typeof(data)#[1] "list"

###*()* seems type remains the same

data$Math_Grade12; is.na(

data$Math_Grade12 )

###*()** all "FAALSE " that ’s good ....

data[,ncol(data)];is.na(data)

#check the last column & ’nas ’ #*

#*( 5. ) data cleansin ’ process (hier)**

# *************************************************

#* 5.1. feature cleanin ’...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 5.1.1. matric authority

unique(data$‘Matric Authority Desc ‘)

#*()** unique(data_sampled$‘Matric Authority Desc ‘)

require(sqldf)#* install. packages(" sqldf ")

#*()**data$Matric _Auth <- data$‘Matric Authority Desc ‘

data <- data %>%

mutate(Matric_Auth=‘Matric Authority Desc ‘)

sqldf("select␣a.*,

case␣when␣a.[Matric_Auth]=’ Gauteng␣Educ␣Dept ’

␣␣␣␣then␣’GP ’

when␣a.[ Matric_Auth]=’Free␣State␣Dept␣of␣Educ ’

␣␣␣␣then␣’FS ’

when␣a.[ Matric_Auth]=’IEB␣-␣Independant␣Exam␣Board ’

␣␣␣␣then␣’IE ’---*()**␣␣␣’IEB ’

when␣a.[ Matric_Auth]=’KZN␣Dept␣of␣Educ ’

␣␣␣␣then␣’KZN ’

when␣a.[ Matric_Auth]=’Limpopo␣Prov␣Dept␣of␣Educ ’

␣␣␣␣then␣’LI ’

when␣a.[ Matric_Auth]=’North␣West␣Dept␣of␣Educ ’
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␣␣␣␣␣then␣’NW ’

when␣a.[ Matric_Auth]=’Mpumalanga␣Dept␣of␣Educ ’

␣␣␣␣␣then␣’MP ’

when␣a.[ Matric_Auth]=’Cambridge ’␣then␣’CMB ’

when␣a.[ Matric_Auth]=’Eastern␣Cape␣Dept␣of␣Educ ’

␣␣␣␣then␣’EC ’

when␣a.[ Matric_Auth]=’Northern␣Cape␣Dept␣of␣Educ ’

␣␣␣␣then␣’NC ’

when␣a.[ Matric_Auth]=’Western␣Cape␣Dept␣of␣Educ ’

␣␣␣␣then␣’WC ’

when␣a.[ Matric_Auth]=’Foreign␣Country ’

␣␣␣␣then␣’FR ’---*()**’FRC ’

when␣a.[ Matric_Auth]

in␣(’NE␣-␣Not␣Applicable ’,’0␣-␣Not␣Provided ’)

␣␣␣␣then␣’NA ’

end␣as␣Authority

from␣data␣a")

datax <- sqldf("select␣a.*,

case␣when␣a.[Matric_Auth]=’ Gauteng␣Educ␣Dept ’

␣␣then␣’GP ’

when␣a.[ Matric_Auth]=’Free␣State␣Dept␣of␣Educ ’

␣␣␣then␣’FS’

when␣a.[ Matric_Auth]=’IEB␣-␣Independant␣Exam␣Board ’

␣␣␣then␣’IEB ’---*()**␣␣␣’IE’---*()**␣␣␣’IEB ’

when␣a.[ Matric_Auth]=’KZN␣Dept␣of␣Educ ’␣then␣’KZN ’

when␣a.[ Matric_Auth]=’Limpopo␣Prov␣Dept␣of␣Educ ’

␣␣␣␣then␣’LI ’

when␣a.[ Matric_Auth]=’North␣West␣Dept␣of␣Educ ’

␣␣␣then␣’NW’

when␣a.[ Matric_Auth]=’Mpumalanga␣Dept␣of␣Educ ’

␣␣␣then␣’MP’

when␣a.[ Matric_Auth]=’Cambridge ’␣then␣’CMB ’

when␣a.[ Matric_Auth]=’Eastern␣Cape␣Dept␣of␣Educ ’

␣␣␣then␣’EC’

when␣a.[ Matric_Auth]=’Northern␣Cape␣Dept␣of␣Educ ’

␣␣␣then␣’NC’

when␣a.[ Matric_Auth]=’Western␣Cape␣Dept␣of␣Educ ’

␣␣␣then␣’WC’

when␣a.[ Matric_Auth]=’Foreign␣Country ’␣then␣’FRC ’

---*()**␣␣␣␣␣␣␣␣␣␣’FR’---*()**␣␣␣’FRC ’

when␣a.[ Matric_Auth]␣in␣(’NE␣-␣Not␣Applicable ’,

’0␣-␣Not␣Provided ’)␣then␣’NA ’
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end␣as␣Authority

from␣data␣a")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 5.1.2. ‘Academic Plan ‘

sub("\\:.*", "", datax$‘Academic Plan ‘)

#*()**

datax <- datax %>%

mutate( Plan =

sub("\\:.*", "", datax$‘Academic Plan ‘) )

head(datax ,11)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###***************************************************

#* 5.2. feature cleanin ’ ’...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 5.2.1. rename ( columns) with "_" - scores

datax %>%

rename(

Ethnic_Group_Desc = ’Ethnic␣Group␣Desc’#,

#

,Semester_Mark = ’Semester␣Mark’

,Exam_Mark = ’Exam␣Mark’

,Final_Mark=’Final␣Mark’

, Gender_Desc=‘Gender Desc ‘

,Offering_Language_Desc=‘Offering Language Desc ‘

, Academic_Plan=‘Academic Plan ‘

, Matric_Authority_Desc=‘Matric Authority Desc ‘)

datax <- datax %>%

rename(

Ethnic_Group_Desc = ’Ethnic␣Group␣Desc’#,

#

,Semester_Mark = ’Semester␣Mark’

,Exam_Mark = ’Exam␣Mark’

,Final_Mark=’Final␣Mark’

, Gender_Desc=‘Gender Desc ‘

,Offering_Language_Desc=‘Offering Language Desc ‘

, Academic_Plan=‘Academic Plan ‘

, Matric_Authority_Desc=‘Matric Authority Desc ‘

,St_number=’St␣number ’

)
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###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 5.2.2. (shuffle the pack) add Facculty

# or schools ’

unique(datax$Plan)

dataxx <- sqldf("select␣a.*,

case␣when␣a.[Plan]␣like ’BSc%’␣then ’NAS ’---’Science ’

␣␣when␣a.[Plan]␣like ’BCom%’␣or␣a.[Plan]␣like␣ ’%Econ%’

␣␣␣␣␣or␣␣a.[Plan]␣like ’BCon%’␣then ’EMS ’---’Commerce ’

␣␣when␣a.[Plan]␣like ’BA%’

␣␣␣␣␣or␣a.[Plan]␣like ’%BPolSci%’

␣␣␣␣␣or␣a.[Plan]␣like ’BEd%’

␣␣␣␣␣or␣a.[Plan]␣like ’%BSocSci%’then␣’Humanities ’

␣␣when␣a.[Plan]␣like ’LLB%’␣then ’Law ’

--*()**␣when␣a.[Plan]␣like␣’BIS%’␣then␣’BIS ’

---*()**when␣a.[Plan]␣like␣’BTRP%’␣then␣’BTRP ’

--BCon

---when␣a.[Plan]␣like␣’BCon%’␣then␣’Consumer ’

--BTown␣and␣Regional␣Planning

---*()***when␣a.[Plan]␣like␣ ’%BTown␣and␣Regional␣Planning%’

--then␣’Engineering ’

else␣’other ’␣---*()***␣␣else␣a.[Plan]

end␣as␣Faculty

,␣case␣when␣a.[ Gender_Desc]␣=␣’Female’

then␣1␣else␣0␣end␣as␣Gender

--␣␣␣**(Nov␣29,␣2019)***␣␣␣add␣race␣to

---␣␣␣␣␣monitor␣black/␣africans␣students

---***,case␣when␣a.Ethnic_Group_Desc␣is␣’African ’␣then␣1

--else␣0␣end␣as␣Race

,case␣when␣a.Ethnic_Group_Desc

in␣(’African ’,’Coloured ’)␣then␣1

else␣0␣end␣as␣black

,case␣when␣a.Ethnic_Group_Desc␣is␣’White ’

then␣1␣else␣0␣end␣as␣white

,case␣when␣a.Ethnic_Group_Desc␣is␣’Indian ’

then␣1␣else␣0␣end␣as␣india

from␣datax␣a")

head(dataxx ,11)

dataxx$Ethnic_Group_Desc;unique(

dataxx$Ethnic_Group_Desc )

#*[1] "White" " Coloured" "African" "Indian "
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###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 5.2.3. (data) factorize some factor columns ’

as.factor(dataxx$treat);str(

as.factor(dataxx$treat )); glimpse(

as.factor(dataxx$treat))

str(datax$Repeat)

unique( (datax$Repeat) )

###**()**data$treat <- as. factor(data$treat)

typeof(dataxx$treat)

#[1] "character"

dataxx$treat <- as.factor(dataxx$treat)

datax$treat ;unique(

dataxx$treat)

typeof(dataxx$treat)#

typeof(dataxx$Repeat)#

dataxx$Repeat <- as.factor(dataxx$Repeat)

typeof(dataxx$Repeat)#*[1] " integer"

typeof(as.factor(dataxx$Repeat ))#[1] " integer"

typeof(dataxx$‘Gender ‘)#* typeof( dataxx $‘Gender _Desc ‘)

dataxx$Gender <- as.factor(dataxx$‘Gender ‘)

typeof(dataxx$‘Gender ‘);unique(dataxx$‘Gender ‘)

#

unique(dataxx$‘Ethnic_Group_Desc ‘)

##[1] "White" " Coloured" "African" "Indian "

#> gotta code zis

typeof(dataxx$‘Ethnic_Group_Desc ‘)#

typeof(dataxx$‘Gender_Desc ‘)#[1] " character"

dataxx$Ethnic_Group_Desc<-

as.factor(dataxx$‘Ethnic_Group_Desc ‘)

typeof(dataxx$‘Ethnic_Group_Desc ‘)#[1] "integer"

unique(dataxx$‘Ethnic_Group_Desc ‘)

#[1] White Coloured African Indian

## Levels: African Coloured Indian White

typeof(dataxx$‘Authority ‘)

dataxx$Authority<- as.factor(dataxx$‘Authority ‘)

typeof(dataxx$‘Authority ‘)#[1] " integer" "
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unique(dataxx$‘Authority ‘)

#[1] GP IEB MP LI EC CMB NW KZN FRC FS NC WC NA

#Levels : CMB EC FRC FS GP IEB KZN LI MP NA NC NW WC

typeof(dataxx$‘Plan ‘)

dataxx$Plan<- as.factor(dataxx$‘Plan ‘)

typeof(dataxx$‘Plan ‘) #[1] " integer" "

unique(dataxx$‘Plan ‘);typeof(dataxx$‘Faculty ‘)#*

dataxx$Faculty<- as.factor(dataxx$‘Faculty ‘)

typeof(dataxx$‘Faculty ‘);unique(dataxx$‘Faculty ‘)

#Levels : Commerce Humanities Law other Science

#Home_Language_Instr

typeof(dataxx$‘Home_Language_Instr ‘)

dataxx$Home_Language_Instr <- as.factor(

dataxx$‘Home_Language_Instr ‘

)

typeof(dataxx$‘Home_Language_Instr ‘)

unique(dataxx$‘Home_Language_Instr ‘)

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** x. permute data @random...**

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* .3.1. ( shuffle the pack)

#* i. set random seed (so that work is reproducible)

set.seed (1234567)

#* ii. use the sample () function to shuffle row indices

rows <- sample(nrow(dataxx ))

#* ii. lastly , use random vector (to reorder the df)

data_sampled <- dataxx[rows , ]

head(data_sampled ,11)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**
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#* 5.3.2 add row_id column

data_sampled <- data_sampled %>%

mutate(id = row_number ())

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* .3.1. ( shuffle the pack)

#* 1. set random seed

# (for reproducibility):

set.seed (1234567)

#* 2.use the sample function

# ( shuffle rowindices):

rows <- sample(nrow(dataxx ))

#* 3. lastly , use random vector

# (to reorder the df):

data_sampled <- dataxx[rows , ]

head(data_sampled ,11)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 5.3.2 add row_id column

data_sampled <- data_sampled %>%

mutate(id = row_number ())

#*(6) the data clensin ’ process continues (hier)**

###*****************************************************

#* 6.1. feature organisin ’ ’...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 6.1.1 importing the data (into data_ cleaning)

colnames(data_sampled)

column_types_stk <- cols(

Semester_Mark = "d",

Exam_Mark = "d",

Final_Mark = "d",
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Math_Grade12= "d",

‘Number of Years ‘= ’d’,

Term = col_ factor(c("2014", "2017")),

Ethnic_Group_Desc = col_factor(

c("African", "Coloured", "Indian", "White")),

Offering_Language_Desc =

col_ factor(c("English", "Afrikaans")),

Gender_Desc = col_ factor(c( "Female","Male")),

Home_Language_Instr = col_factor(c("0", "1")),

Matric_Authority_Desc = col_ factor(

c("Gauteng␣Educ␣Dept",

"Free␣State␣Dept␣of␣Educ",

"IEB␣-␣Independant␣Exam␣Board",

"KZN␣Dept␣of␣Educ",

"Limpopo␣Prov␣Dept␣of␣Educ",

"North␣West␣Dept␣of␣Educ"

,"Mpumalanga␣Dept␣of␣Educ",

"Cambridge",

"Eastern␣Cape␣Dept␣of␣Educ"

,"Northern␣Cape␣Dept␣of␣Educ",

"Western␣Cape␣Dept␣of␣Educ",

"Foreign␣Country"

,"NE␣-␣Not␣Applicable",

"0␣-␣Not␣Provided" )),

Authority= col_ factor(c("CMB","ECC","FRC",

"FS","GP","IEB","KZN",

"LI","MP","NA","NC","NW","WC")),

Faculty= col_factor(c("EMS",

"Humanities",

"Law",

"other",

"NAS")),

Plan= col_factor(c("BCom␣",

"BSc␣Information␣Technology",

"BSc",

"BSc(Computer␣Science)",

"BIS",

"BSocSci", "BA",

"BSc␣(Construction␣Management)",

"BConsumer␣Science",

"BTown␣and␣Regional␣Planning",

"BConSci", "BScAgric","BEd",

"BAdmin", "BTRP", "BComHons",
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"Econ␣and␣Man␣Sc␣UG", "LLB␣",

"BPolSci",

"BISHons")),

treat = col_factor( c("0", "1") ),

Gender = col_factor( c("0", "1")) )

###*()** Warning message:

data_cleaning <- data_sampled%>%

dplyr::select( St_number ,

treat ,

Final_Mark ,

Repeat ,

Gender ,

Ethnic_Group_Desc ,

Plan ,

Home_Language_Instr

, Math_Grade12 ,

Authority ,

Faculty ,

Matric_Authority_Desc ,

Plan ,

Gender_Desc ,

Term ,

Offering_Language_Desc ,

Semester_Mark ,

Exam_Mark ,

‘Matric Year ‘

,‘Number of Years ‘ ) %>%

mutate(Pass= ifelse(Final_Mark >49,"Yes","No")

#*add normal pass and or distinctions...

,Pass50= ifelse(Final_Mark >49,"Yes","No")

,Pass75= ifelse(Final_Mark >74,"Yes","No"))

data_cleaning <-

sqldf("Select␣St_number ,

␣␣␣␣␣␣␣treat ,

Final_Mark␣,Repeat,␣␣Gender,

Ethnic_Group_Desc ,␣␣---Plan ,

Home_Language_Instr ,

Math_Grade12 ,

Authority ,␣Faculty ,

Matric_Authority_Desc ,␣Plan ,

Gender_Desc ,Term ,

Offering_Language_Desc ,
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Semester_Mark ,␣Exam_Mark ,

‘Matric␣Year ‘,‘Number␣of␣Years ‘

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_sampled" )%>%

mutate(Pass= ifelse(Final_Mark >49,"Yes","No")

### add normal pass and or distinctions...

,Pass50= ifelse(Final_Mark >49,"Yes","No")

,Pass75= ifelse(Final_Mark >74,"Yes","No")

)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 6.1.2. get head ’

data_cleaning head(data_cleaning ,7)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 6.2. Check for any missingness?

data_cleaning %>%

miss_var_summary()

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#*II. final set -up before propensity scores ( methods)

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

#*(1.) identify your treatment / exposure(s) of interest(s)

###************************************************* &&&

#*1.1. the treatment of interest here is (’pre

# and post -clickerS ’) enrolments...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* our treatment studied

data_cleaning %>%

tabyl(Term)

#*(2.) Outcomes/ responses of interest(s) (hier)

###***************************************************

###*2.1. student exam , final marks plus a

# binary outcome(’passed ’)...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.1.1. refactoring outcome & exposure variables ’
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#*()** Refactoring

data_clean <- data_cleaning %>%

mutate(exposure = as.numeric(Term == "2017"),

Pass = fct_relevel(Pass , "Yes"),

passed = as.numeric(Pass == "Yes"))

str(data_clean$exposure)

glimpse(data_clean[,c(’exposure’,’Pass’,’passed ’)])

#*

# ***************************************************

#*2.2. student final course mark ,as

# (a quantitative outcome: ’Final_Mark ’...)

#* Finale <- data_ clean$ Final_Mark

# ***************************************************

#*2.2. student exam mark

# (as second quantitative outcome)

Exam<- #exam mark ( will be used as outcome of choice !)**

data_clean$Exam_Mark

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.2.1. Our second outcome is ....

data_clean <- data_clean %>%

mutate(yrsbefore = Term - ‘Matric Year ‘)

#years before attemptin ’ (the module ) *(nb)** ...

head(data_cleaning ,11)

mosaic :: favstats(Final_Mark ˜ Term ,

data = data_clean) #all of these

#values looks reasonable

#(in that they are all positive)/no missing(s)...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 22.2.2. impute missing (for years before )

data_clean %>%

filter(is.na(yrsbefore))%>%

dplyr:: select(St_number,

Final_Mark ,

Term ,

yrsbefore)

data_clean <- data_clean %>%
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mutate(yrsbefore = replace_na(yrsbefore ,

mean(is.numeric(yrsbefore))))

#*

data_clean %>%

select(yrsbefore) %>%

miss_var_ summary()

#*

#*(3.) the covariates features(’confounders ’) listed ...

# *****************************************************

#* 3.1. the covariates of interest...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.1.1. the covariates/ features

## Covariates

vars<-c( "Repeat", #*()** ...

"Plan",

"Home_Language_Instr",

"Faculty",

"Semester_Mark",

"Math_Grade12"

,"Number␣of␣Years"

,"yrsbefore",

"Gender_Desc",

"Authority",

"Math_Grade12",

"Ethnic_Group_Desc"

)

xvars <- c( ’Repeat ’,

’Gender_Desc’,

’Ethnic_Group_Desc’,

###’Plan ’,

’Authority’,

’Faculty’,

’Home_Language_Instr’,

’Math_Grade12’

,’yrsbefore’

)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.1.2. get a tableOne output for these ...

tableOne <- CreateTableOne(vars = xvars ,
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strata = "Term",

#* CreateTableOne(vars = vars , strata = "Term",

data = data_clean ,

test = FALSE)

print(tableOne , smd = TRUE)

## (count) covariates with important imbalance

addmargins(table(ExtractSmd(tableOne) > 0.1))

###> addmargins(table( ExtractSmd(tableOne) > 0.1))

## ### FALSE TRUE Sum

### 4 4 8

##

### Authority (%)˜ 0.224; Gender _Desc

#= Male (%) ˜0.121; Repeat = 1 (%)˜ 0.106; and

## Faculty (%)˜ 0.110

#*(4.) 4. set random seed ( for rproducibility)**

# ***************************************************

#* 4.1. random seed ...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

### here is our seed (for reproducibillity).

set.seed (1234567)

#*

# ******************************************************

#* 4.2. gettin my data into environ ’ (for. better.man).

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#**...

attach(data_clean)# ### ****

## #####*(Data man steps!)** ...

##------------------------------------------------------- (EnD!)**
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2. Propensity score modeling

##------------------------------------------------------- (START!)**

###*()** ... ii. PSM methods

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* * created by: Mxolisi Msibi , Mr.

#* * organisation: University of Pretoria

#** ** degree : Magister Scientiae

#* * datae: 2019.11.25

#* * update: 2020.01.08

#* * update 6: 2020.05.18

#* * update 7: 2020.05.21

#* * update 8: 2020.05.22/23

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

##-------------------------------------------------**

#* get required libRaries (step)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* installin ’ (any) packages

# install. packages(c(" any1","any2 " ,"..."))

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* load packages

library(MatchIt)## install.packages(’MatchIt ’)

library(’optmatch’)#* install.packages(" optmatch")

# relaxinfo()

library("RItools")#*install. packages(’RItools ’)

require("vctrs")

library(Hmisc)#*(Mxova ’s)*.* install.packages(" Hmisc ")

# install. packages(" WeightIt")

library(WeightIt) # citation(" WeightIt")

library(ggplot2)

library(cowplot)#install. packages(" cowplot")

library(ggridges)## install. packages(" ggridges")

##-------------------------------------------------**
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#* create that match_data for opt

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* some final data man ’ steps* ...

match_data <- data_clean[,c( "Repeat"

, "Ethnic_Group_Desc",

"Plan" ,

"Home_Language_Instr"

, "Math_Grade12"

, "Authority"

, "Faculty"

, "Gender"

, "Gender_Desc"

, "yrsbefore" ,

’passed ’,

’exposure’

, ’Final_Mark’,

’Exam_Mark’

, ’St_number ’)]

head(match_data ,7)#*...Jan 05, 2020*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* some final data man ’ steps* ...

dataxx[rowSums(is.na(dataxx ))==0 ,]

dataxx[, c("Repeat" ,

"Gender",

"Ethnic_Group_Desc",

#*()** "Offering_ Language_Desc",

#*()**

"Plan",

"Home_Language_Instr",

"Math_Grade12"

## #," Matric_Auth"

,’Authority’,

’Faculty’)][rowSums(is.na(

dataxx[,

c( "Repeat" ,

"Gender" ,

"Ethnic_Group_Desc" ,

#*()** "Offering_ Language_Desc",
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#*()**

"Plan" ,

"Home_Language_Instr" ,

"Math_Grade12" ,

## #," Matric_Auth"

’Authority’,

’Faculty’)]))==0,]

#> 2986+125

#[1] 3111

2986+125 #*( > 2986+125 [1] 3111)**

v <- data.frame(colnames(match_data));v

#data.frame( colnames(match_data ));v

v1 <- data.frame(old = colnames(match_data), #*

new = colnames(match_data),

new = c(’Repeats’,

’Race’,

’Academc␣Plan’,

’Home␣language␣Instruction’,

’Grade␣12␣Math’,

’Authority’,

’Faculty’,

’Sex’,

’Gender␣Description’,

’Years␣before␣attempt’

,’Pass’, ’Exposure’,

’Final␣Mark’,

’Exam␣Mark’

,’Student␣No’)

);v1

xvars1 <- c(’Repeat ’,’Gender_Desc’,

’Ethnic_Group_Desc’

,’Authority’,’Faculty’,

’Home_Language_Instr’

,’Math_Grade12’,

’yrsbefore’)

v2<- data.frame(old = xvars1 , ###

new= c(’Repeats’,

’Sex’,

’Race’,
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’Authority’,

’Faculty’,

’Home␣language’,

’Grade␣12␣Math’,

’Years␣prior’ )

);v2;###*()** ... (ˆ )

new.names <- c(Authority_IEB = "Authority:␣IEB",

Authority_NC = "Authority:␣NC",

Authority_GP = "Authority:␣GP",

Authority_NW = "Authority:␣NW",

Authority_NA = "Authority:␣NA",

Authority_LI= "Authority:␣LI",

Authority_CMB = "Authority:␣CMB",

Authority_KZN = "Authority:␣KZN",

Authority_FS = "Authority:␣FS",

Authority_FRC = "Authority:␣FRC",

Authority_MP = "Authority:␣MP",

Authority_EC = "Authority:␣EC",

Authority_WC = "Authority:␣WC"

, yrsbefore= "Years␣prior␣(Years)"

, Gender_Desc_Male= "Sex␣(Male)"

#, Gender _Desc_Male= "Sex (F/M)"

, Repeat= "Repeats␣␣(Y/N)"

,Faculty_Science= "Faculty:␣NAS",#" Faculty: Science",

Faculty_Law= "Faculty:␣Law"

,Faculty_Commerce= "Faculty:␣EMS",#"Faculty: Commerce",

Faculty_other= "Faculty:␣other"

,Home_Language_Instr= ’Home␣Language␣(Y/N)’

, Ethnic_Group_Desc_African= ’Race:␣Black’

,Ethnic_Group_Desc_Indian= ’Race:␣Indian ’ ,

Ethnic_Group_Desc_White= ’Race:␣White’ ,

Ethnic_Group_Desc_Coloured= ’Race:␣Colored’

, Math_Grade12= "Grade␣12:␣Math␣score"

)

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** I. Estimate propensity scores (( step)**

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++
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##-------------------------------------------------**

#* logistic regression*...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* *set seeds (for reproducibility)

set.seed (1234567)###

##-------------------------------------------------**

#* fit our propensity score model

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ps estimation via logistic regression

ps_model <-glm( (Term==2017)˜Repeat+

Ethnic_Group_Desc+

Plan+#*...

Home_Language_Instr+

Math_Grade12+

Authority+

Faculty+

Gender_Desc+

# ‘Number of Years ‘+

yrsbefore

, family = binomial(link = "logit") ,

data = match_data

###*data_clean ##

)

summary(ps_model) ###>

##-------------------------------------------------**

#* data man ’ (on pscores)*...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -attach the predicted scores to datafile

match_data$pscore <- predict(

ps_model ,

type= "response")

#*(May 20, 2020)**match_data <- data_clean

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -concatenate pscores and linpscores to data

pscores<- fitted(ps_model); linpscores =

ps_model$linear.predictors
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data_cleaner <- data_sampled %>%

#data_ cleanComplete%>%

mutate( ps = pscores ,

linps = linpscores)

max(data_cleaner$linps)#*()**[1] 16.25023

#[1] 16.23288##*[1] 16.20938

head(data_cleaner , 7)

data_cleaner %>%

#dplyr :: select(St_number , ps , linps) %>%

dplyr:: select( ps , linps) %>%

head(7)

#*OR

sqldf("Select␣St_number ,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ps ,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣linps

␣␣␣␣␣␣␣from␣␣data_cleaner")%>%

#* sqldf (" Select St_number ,ps ,linps from data_clean ")

head(7)

attach(data_cleaner)#* attachin the clean dataset*...

##-------------------------------------------------**

#* causal assumptions*...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* plot these scores (to Verify ’common -support ’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* get min max values

min((data_cleaner%>%subset(treat =1))$ps)

#*[1] 9.950226e -08

min((data_cleaner%>%subset(treat =0))$ps)

#*[1] 9.950226e -08

max((data_cleaner%>%subset(treat =1))$ps)

#*[1] 0.9999999

max((data_cleaner%>%subset(treat =0))$ps)

#*[1] 0.9999999

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* get min/ max values (via sql)
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min(sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣where␣Term=2017")$ps)# [1]0.09684227

max(sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣where␣Term=2014")$ps)# [1]0.9043355

###*min ˜ [1] 0.06895231 ###*max ˜ [1] 0.8983455

##-------------------------------------------------**

#* the Common - Support region

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* plot data

ggplot(data_cleaner , aes(x = ps, fill = treat)) +

###*()**

geom_ density(alpha = 0.5) +

theme_bw()+

scale_fill_grey()+

theme_classic()+##*()** change my scale grey ...

# changin my line type , color and size(common - support)

geom_vline(xintercept = min(

sqldf("select␣*␣from␣data_cleaner␣where␣Term=2017")$ps),

linetype="dotted", color = "red", size =1.0)+

geom_vline(xintercept = max(

sqldf("select␣*␣from␣data_cleaner␣where␣Term=2014")$ps),

linetype="dotted", color = "red", size=1.0)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* common - support ( panoramic view) plot

ggplot(data_cleaner ,aes( x= treat , y= ps)) +

###*()**

geom_violin(aes(fill = treat)) +

scale_fill_grey()+

theme_classic()+#*()** channge scale grey .....

geom_ boxplot(width = 0.2) +

guides(fill = FALSE) +

coord_flip() +

theme_bw() +

# changin ’ the line type , color and size(common - support)

geom_hline(yintercept = min(

sqldf("select␣*␣from␣data_cleaner␣where␣Term=2017")$ps),

linetype = "dotted",

color = "red", size =1.0) +

geom_hline(yintercept = max(
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sqldf("select␣*␣from␣data_cleaner␣where␣Term =2014")$ps),

linetype ="dotted",

color = "red", size =1.0)#*this plot stays!!!!!!! **

##-------------------------------------------------**

## # * craete prediction data (Apr 07, 2020)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* create pred data (to rank asc)*

predData<- data.frame(

probTreat = ps_model$ fitted.values ,

treat = data_clean$treat)

##-------------------------------------------------**

#* *- loglikelihood ratio tests

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* calc the log - likelihood (" just for control")*

ll_proposed<- ps_model$deviance*(( -2)ˆ -1)

## residual dev ˜ psmodel$ deviance

ll_null <- ps_model$null.deviance

(ll_null -ll_proposed)/ll_null

###[1] 0.0225006###*[1] 0.07615674#*[1] 1.459262

#*ˆ pseudo Rˆ2 1 - pchisq (

2*(ll_proposed - ll_null),

df=( length(ps_model$ coefficients)-1)

)

#*[1] 1.461126 #[1] 1.00967e -10

#i.e. ˜ 0

#*.. [1] 0 #*[1] 1

#*()** Apr 08..

pred_data <- predData[

order(predData$probTreat ,

decreasing = F), ]

pred_data$rank <- 1:nrow(pred_data)

pred_data$rank#*ggplot ()

##-------------------------------------------------**

## # *-plot the sigmoid curve

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **
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# #* prep pred data (for plot)*

pred_data <- pred_data%>% #as.factor (treat)

mutate(treated= ifelse(treat== 1,"yes", "no"))

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* create the plot object *

sigPlot<- ggplot(data= pred_data ,

aes(x= probTreat , y= rank))+

#geom_point ()

#aes(x= rank , y= probTreat))+### geom_point ()

geom_point( aes(color= treated) ,

alpha=1, shape=4, stroke =2)+

scale_color_manual(values =

c("yes" = "darkslategrey", "no" = "grey"))+

ylab("index")+

xlab("treatment␣allocation␣probability")+

theme_classic() +# Classic theme (wanted *)

theme(#Hide panel borders and remove grid lines

panel.border = element_blank(),

panel.grid.major = element_blank(),

panel.grid.minor = element_blank()

) # +

### geom_hline( yintercept = min(

#sqldf (" select *

#from data_ cleaner where Term =2017")$ps),

# linetype=" dotted ",

#color = "red", size =1.0)

#scale_fill_grey ()+ colors = c("grey", "navy")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* plot the plot object *

sigPlot +

#*mark the common - support region

geom_vline(xintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣where␣Term=2017")$ps),

linetype ="dotted",

color = "red", size =.70) +

#scale_fill_grey ()+ colors = c("grey", "navy") +

geom_vline(xintercept = max(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣from␣data_cleaner
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␣␣␣␣␣␣␣␣␣␣where␣Term=2014")$ps),

linetype = "dotted",

color = "red",

size = .70)# +

#scale_fill_grey ()+ colors = c("grey", "navy")

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** II. Propensity scores match (( step)**

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

#(0)*

##-------------------------------------------------**

#* quantitative outcome: (final mark)

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* *an un - matched scenario (hier)**...

table(Final_Mark , treat)

t.test( Final_Mark˜ (treat ==1) )#

table(Exam_Mark , treat)

t.test( Exam_Mark˜ (treat ==1) )

#(1)*

##-------------------------------------------------**

## # * binary outcome: ( passed)

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* *an un - matched scenario (hier)**...

table(Pass , treat)

chisq.test(table( Pass , treat ))

Performance <- matrix(table(Pass , treat),

nrow = 2,

dimnames = list("Passed"=

c("Yes", "No"),

"Treated" =

c("2014", "2017")))

Performance

Performance
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mcnemar.test(Performance)

(1298 -247)ˆ2/(1298+247)#[1] 714.9521

#(2)*

##-------------------------------------------------**

## # *... greedy matching (with caliper)*

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ... with response variable (Fina mark)*

#**ps;linps

match.nnc<-

Match(Tr = (Term == 2017) ,#Need to be in 0,1

#* logit of PS ,i.e.,log(PS/(1-PS)) as matching scale

X = log( ps / (1 - ps)),

## 1:1 matching

M = 1,

##caliper = 0.2 * SD( logit(PS))

caliper = 0.2,

replace = FALSE ,

ties = TRUE ,

version = "fast")

## Extract matched data

clicker_nnc.data <- data_clean[unlist(

match.nnc[

c("index.treated","index.control")]), ]

summary(match.nnc)###*()**

psens(match.nnc , Gamma = 2, GammaInc = 0.1)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ... with response variable (Fina mark)*

#*ps;linps

match.nncF <- Match(Tr =

(Term == 2017) ,#Need to be in 0,1

## logit of PS ,i.e., log(PS/(1-PS)) as matching scale

X = log( ps / (1 - ps)),

## 1:1 matching

M = 1,

Y = Final_Mark ,

## caliper = 0.2 * SD(logit(PS))

caliper = 0.2,

replace = FALSE ,
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ties = TRUE ,

version = "fast")

## Extract matched data

clicker_nncF.data <- data_cleaner[

unlist(match.nncF[

c("index.treated","index.control")]), ]

summary(match.nncF)#*()**

psens(match.nncF , Gamma = 2, GammaInc = 0.1)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ... with response variable (Exam mark)*

#***ps;linps

#match.nncE <- Match(Tr = treat#*(Term == 2017) ,

# Need to be in 0,1 # ,

# ## logit of PS ,i.e., log(PS/(1-PS)) as matching scale

# # X = log( ps / (1 - ps)),

# ## 1:1 matching

# # M = 1,

# # Y= Exam_Mark ,#na.omit(Exam_Mark)

# # ## caliper = 0.2 * SD(logit(PS))

# # caliper = 0.2 ,

# replace = FALSE ,

# ties = TRUE ,

# version = "fast")

#* Error in Match(Tr = (Term == 2017) ,

#*X = log(ps/(1 - ps)), M = 1, Y = Exam_Mark , :

#* Match (): input includes NAs

## Extract matched data

# clicker_nncE.data <- data_ cleaner[

# unlist (#*data_clean[unlist (#

# match.nncE[c(" index.treated"," index.control")]) , ]

# summary( match.nncE) ##

#*(..)**psens(match.nncE , Gamma = 2, GammaInc = 0.1)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ... with response variable (Pass)*

#*() ps; linps

match.nncP <- Match(Tr = (Term == 2017) ,# Need to be in 0,1

## logit of PS ,i.e., log(PS/(1-PS)) as matching scale

X = log( ps / (1 - ps)),

## 1:1 matching

M = 1,

Y= Pass ,###Y= Final_Mark ,

## caliper = 0.2 * SD(logit(PS))
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caliper = 0.2,

replace = FALSE ,

ties = TRUE ,

version = "fast")

# Extract matched data

clicker_nncP.data <- data_cleaner[unlist(#

match.nncP[

c("index.treated","index.control")]), ]

#

summary(match.nncP) ##

#*()** psens(mDW , Gamma = 2, GammaInc = 0.1)

psens(match.nncP , Gamma = 2, GammaInc = 0.1)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* plot data

#sqldf (" select a.*,b.ps from clicker_nncP left join ")

ggplot(clicker_nncP.data ,

aes(x = ps , fill = treat )) +#*()**

geom_density(alpha = 0.5) +

theme_bw()+

scale_fill_grey()+

theme_classic()+#*()** change my scale grey .....

# changin my line type , color and size(common - support)

geom_vline(xintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term=2017")$ps),

linetype="dotted",

color = "red", size=1.0) +

geom_vline(xintercept = max(

sqldf("select␣*

from␣data_cleaner

␣␣␣␣␣where␣Term=2014")$ps),

linetype="dotted",

color = "red",

size =1.0) +

#*geom_title (" Post greedy match score distribution")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* ( panoramic view) plot of data

ggplot(clicker_nncP.data ,aes(x=treat ,y=ps))+###*()**

geom_violin(aes(fill = treat)) +

scale_fill_grey()+

theme_classic()+#*()** change scale grey ...

geom_ boxplot(width = 0.2) +
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guides(fill = FALSE) +

coord_flip() +

theme_bw() +

#changin ’ the line type , color and size(common - support)

geom_hline(yintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term=2017")$ps),

linetype = "dotted",

color = "red",

size=1.0) +

geom_hline(yintercept = max(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term=2014")$ps),

linetype ="dotted", color = "red", size=1.0)

#* (ˆˆˆ)**this plot stays!!!!!!!!!!!!!!!!!*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* plot data

#sqldf (" select a.*,b.ps from clicker_nncP left join ")

ggplot(clicker_nncF.data , aes(x = ps , fill = treat))+#*

geom_ density(alpha = 0.5) +

theme_bw()+

scale_fill_grey()+

theme_classic()+##*()** change my scale grey ...

# changin my line type , color and size (common -support)

geom_vline(xintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term =2017")$ps),

linetype="dotted",

color = "red",

size = 1.0) +

geom_vline(xintercept = max(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term=2014")$ps),

linetype="dotted",

color = "red",

size = 1.0) #+

#*geom_tile(" Post greedy match score distribution")

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* (panoramic view) plot of data
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ggplot(clicker_nncF.data ,aes(x=treat ,y=ps))+#*()**

geom_violin(aes(fill = treat)) +

scale_fill_grey()+

theme_classic()+#*()**change scale grey ...

geom_boxplot(width = 0.2) +

guides(fill = FALSE) +

coord_flip() +

theme_bw() +

#changin ’ the line type , color and size(common - support)

geom_hline(yintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term =2017")$ps),

linetype = "dotted",

color = "red",

size=1.0) +

geom_hline(yintercept = max(

sqldf("select␣*

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣Term=2014")$ps),

linetype ="dotted",

color = "red", size =1.0)

#*()**this plot stays!!!!!!!!!!!!!!!!!*

##-------------------------------------------------**

#*(OR) 1:2 greedy matching on linear pscore (w/ replacement)

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* (panoramic view) plot of data

X <- linps##data_clean$linps

Tr <- as.logical(Term == 2017)

#*as. logical(data_clean$Term == 2017)

match.nnc_linps <- Match(Tr = Tr ,

X = X,

M = 2,

estimand = "ATT",

replace = TRUE ,

caliper = 0.2,

ties = FALSE)

summary(match.nnc_linps) #*
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## Extract matched data

clicker_matched_linps <- data_cleaner[unlist(

match.nnc_linps[

c("index.treated","index.control")]), ]

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* plot data

#sqldf (" select a.*,b.ps from clicker_nncP left join ")

ggplot(clicker_matched_linps ,

aes(x = ps, fill = treat)) +#*()**

geom_ density(alpha = 0.5) +

theme_bw()+

scale_fill_grey()+

theme_classic()+##*()** change my scale grey .....

# changin my line type , color and size(common - support)

geom_vline(xintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣where␣Term=2017")$ps),

linetype="dotted", color = "red", size =1.0)+

geom_vline(xintercept = max(

sqldf("select␣*

␣␣␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣where␣Term=2014")$ps),

linetype="dotted",

color = "red",

size =1.0) #+

###*geom_ title (" Post greedy match score distribution")

#(ˆˆˆ) linearps_post. matching. psdistribution

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* ( panoramic view) plot of data

ggplot(clicker_matched_linps ,aes(x=treat ,y=ps))+#*()**

geom_violin(aes(fill = treat)) +

scale_fill_grey()+

theme_classic()+#*( change scale grey ...)**

geom_boxplot(width = 0.2) +

guides(fill = FALSE) +

coord_flip() +

theme_bw() +

#changin ’ the line type , color and size(common - support)

geom_hline(yintercept = min(

sqldf("select␣*

␣␣␣␣␣␣␣␣from

data_cleaner
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␣␣␣␣␣␣␣where␣Term=2017")$ps),

linetype = "dotted",

color = "red", size =1.0) +

geom_hline(yintercept = max(

sqldf("select␣*

␣␣␣␣␣from␣data_cleaner

␣␣␣␣␣␣␣␣where␣Term=2014")$ps),

linetype ="dotted",

color = "red",

size =1.0)#*(this plot stays!!!!!!!!!!!!)***

##-------------------------------------------------**

#* (OR) a 1:1 greedy matching method using linear

#pscore , (with replacement)

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* set up the linps matching

X <- linps##data_clean$linps

Tr <- as.logical(Term == 2017)

match.nnc_linps <- Match(Tr = Tr ,

X = X,

M = 1,

estimand = "ATT",

replace = TRUE ,

caliper = 0.2,

ties = FALSE)

summary(match.nnc_linps)

## Extract matched data

clicker.nnc_linps.data <- data_cleaner[unlist(

match.nnc_linps[

c("index.treated","index.control")]), ]

matchingGreedyCaliper.data <-

match.data(match.nnc_linps)

##-------------------------------------------------**

## # *(OR) 1:1 greedy Matching on the linear ps , & ps

# (with replacement)

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* set up (both)* the linps and ps matching

X<- cbind(linps ,ps)##data_clean$ linps
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Tr<- as.logical(Term == 2017)

match.nnc_both <- Match( Tr = Tr,

X = X,

M = 2,

estimand = "ATT",

replace = TRUE ,

caliper = 0.2,

ties = FALSE)

summary(match.nnc_both)

#

match.nnc_bothF <- Match( Y= Final_Mark ,

Tr = Tr ,

X = X,

M = 2,

estimand = "ATT",

replace = F,

caliper = 0.2,

ties = FALSE)

psens(match.nnc_bothF , Gamma= 2,

GammaInc = 0.05)

#*()**

data_cleanComplete <- data_clean %>%

# MatchIt does no allow missing values

dplyr::select( Final_Mark ,

#

#**Exam_Mark ,#* (Jun 06, 2020)

#

(passed),

Term ,

one_of(xvars)) %>%

na.omit()

#*OR

sqldf("Select␣St_number␣from␣data_clean␣")

match.nncModel<- matchit( (treat) ˜

Repeat +

Gender_Desc +

Ethnic_Group_Desc +

Authority +

Faculty
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+Home_Language_Instr

+Math_Grade12+

yrsbefore

,method = "nearest",

caliper = 0.25

,data = data_cleanComplete)

head(match_data ,7)

summary(match.nncModel)

##-------------------------------------------------**

#* -match using nearest -neighbor with

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* greedy with a caliper of 0.2( using "MatchIt" )

m.nnc <- matchit( treat ˜ Repeat +

‘Gender_Desc ‘ +

‘Ethnic_Group_Desc ‘ +

Authority +

Faculty +

Home_Language_Instr +

Math_Grade12 +

yrsbefore ,

data = data_cleanComplete ,#*match_data

#**()** , mydata ,#

method = "nearest",

caliper = .2)

summary(m.nnc)

##-------------------------------------------------**

#* jitter plot for nearest neighbor

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* (for ) greedy with a caliper of 0.2

plot(match.nncModel , type="jitter")

##

###* > plot(match.nncModel , type =" jitter ")

#**[1]"To identify the units , use first mouse

#**... button ; to stop , use second ."

#[1] 627 693 1253 1877 1959

##-------------------------------------------------**

#* * Optimal matching** ...

##-------------------------------------------------**
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###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* check columns with missingness ’

allmisscols <- sapply(data_clean ,

function(x) all(is.na(x)|x == ’’))

allmisscols

allmisscols <- sapply(data_cleaner ,

function(x) all(is.na(x)|x == ’’))

allmisscols

##-------------------------------------------------**

## # * create that match_data for opt and greedy

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Figurex presents the commands to estimate( Optimal)

# distance using MatchIt.

# -??? - -??? - -???-Optimal matching with 1:1 ratio

match.optModel<- matchit( (treat) ˜

Repeat +

‘Gender_Desc ‘ +

‘Ethnic_Group_Desc ‘

#* ...+ Plan

+ Authority +

Faculty +

Home_Language_Instr +

Math_Grade12 +

yrsbefore

, data = data_cleanComplete

#* ... match_data ### data_clean

, method = "optimal"

, ratio = 1)

E#* ... Warning message:

#In optmatch:: fullmatch(d, min. controls = ratio ,

#max. controls = ratio , :

# Without ’data ’ argument the order of the match

#is not guaranteed to be the same

# as your original data.#*()**

summary(match.optModel)

# Extract matched data

clicker_opt.data <- data_cleaner[unlist(

match.optModel[

c("index.treated","index.control")]), ]
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##-------------------------------------------------**

## -(optimal match) jitter plot

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* optimal matching jitter plot

plot(match.optModel , type="jitter")

#> plot(match.optModel , type=" jitter ")

#**[1] "To identify the units , use first mouse button ;

#**to stop , use second ."

#[1] 506 572 693 1959 2010 3016

##-------------------------------------------------**

## ##* * -create that match_data for opt and greedy

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* create a dataset(df), for the optimal (& nnc)

matchOpt.data <- match.data(match.optModel)

#* matchGreedyC.data <- match.data(match.nncMod )#

matchGreedy.data <- match.data(match.nncModel)

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ (Jun 06, 2020)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* plot data

head(match.data(match.optModel), 7)

matchOpt.data

mean(ps)#*[1] 0.4776599

sum( is.na(sqldf("select␣a.*,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣b.ps ,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣b.treat

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣matchOpt_data1␣a

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣left␣join␣data_cleaner␣b

␣␣␣␣␣␣␣␣␣␣␣␣on␣b.St_number=a.subclass")$ps)

)#*[1] 266 #** ...

matchOptPlot.data <- sqldf("select␣a.*,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣b.ps␣as␣pscore ,

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣b.treat

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣from␣matchOpt_data1␣a

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣left␣join␣data_cleaner␣b

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣on␣b.St_number=a.subclass
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␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣where␣a.ps␣>␣0")

matchOptPlot_data <-matchOptPlot.data

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ (Jun 06, 2020)

##-------------------------------------------------**

## # *-optimal matching case

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -??? - -??? - -???-Optimal matching with 1:1 ratio

m.om<- matchit( treat ˜ Repeat +

Gender_Desc +

‘Ethnic_Group_Desc ‘ +

#*

+

#*

Authority +#

Home_Language_Instr +

Math_Grade12 +

###*(nb)

Faculty+

yrsbefore ,

data = data_cleanComplete#*match_data

,###data ,

method = "optimal",

ratio = 1)

summary(m.om)

##-------------------------------------------------**

## # * inverse probability of treatment weights**...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* new dataset

# #* -set possible binary outcome responses

treat <- data_clean$exposure; Finale <-

data_clean$Final_Mark;Pass<-

as.factor(data_clean$passed)

Exam<-#exam mark(used as ’outcome ’ of interest!)**

data_clean$Exam_Mark

Pass50 <- as.factor( data_clean$Pass50 )

Pass75 <- as.factor( data_clean$Pass75 )

#*
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mydata <-cbind(data_clean[,xvars],

treat ,

Finale ,

Exam ,

Pass ,

Pass50 ,

Pass75 ,

linps ,

ps )###*()** ...

head(mydata ,7)

mydata <-data.frame(mydata)

str(mydata ); glimpse(mydata)

##-------------------------------------------------**

## # * create inverse propensity weights

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* -get weights (for the ip weighted matching)

weight <- ifelse(treat==1,1/(ps),1/(1-ps))

max(weight ); min(weight)#*> max( weight ); min( weight )

#[1] 14.50278

#[1] 1 #*

mean(weight)#[1] 1.978607

sd(weight)#[1] 0.7216573

mean(weight )+sd(weight)#[1] 2.700264

mean(weight)-sd(weight)#[1] 1.256949

summary(weight)

# Min. 1st Qu. Median Mean 3rd Qu. Max.

#1.000 1.610 1.868 1.979 2.202 14.503

##-------------------------------------------------**

#* apply weights to data

##-------------------------------------------------**

weighteddata<- svydesign(ids = ˜ 1,

data = mydata

, weights = ˜ weight)

summary(weighteddata)

##-------------------------------------------------**

#* -inverse probability weights case

##-------------------------------------------------**
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###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* -get weights* for the weighted adjustment

weights.out <- weightit( (treat) ˜ Repeat +

Gender_Desc +

Ethnic_Group_Desc +

Authority +

Faculty +

Home_Language_Instr+

Math_Grade12+

yrsbefore

,data = data_cleaner###*mydata

, estimand = "ATT"

, method = "ps" )

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** III. Balance diagnostics (step)****

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* * numeric balance / SMDs (hier)**...

#* tableone for ’greedy -caliper ’ matching...

#* unadjusted (table.one)

print(tableOne , smd = TRUE)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* greedy with caliper (table.one)

tableOne_Greedy <- CreateTableOne(

vars = xvars ,

strata = "Term",

data = matchGreedy.data# clicker_nnc.data

,

## clicker_nnc ,## clickrMatched ,

# data = clicker_nnc.data_linps ,

#data = clickrMatched ,

test = FALSE)

print(tableOne_Greedy, smd = TRUE)##

CreateTableOne(

vars = xvars ,

strata = "Term",data = matchGreedy.data ,

#data= clicker_nnc.data_linps ,# data= clickrMatched ,

test = FALSE)
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print(CreateTableOne(vars = xvars ,

strata = "Term",

data = matchGreedy.data ,

test = FALSE),

smd = TRUE)

##-------------------------------------------------**

#* (&) tableone for optimal matching...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* optimal matching (table.one)

tableOne_Optimal <- CreateTableOne(

vars = xvars ,

strata = "Term",

data = matchOpt.data ,

test = FALSE)

print(tableOne_Optimal , smd = TRUE)

#* (ˆˆˆ) iyang ’dena nou (???)

##-------------------------------------------------**

#* weighted tableOne (ipw)

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* weightedtable (as a table.one object )

tableOne_IPW <-svyCreateTableOne(

vars = xvars ,

strata = "treat"

, data = weighteddata

, test = FALSE)

## Show table with SMD

print(tableOne_IPW , smd = TRUE)

#*( )* ˆˆˆ these are the after iptw adjustment SMDs

#*(ˆˆ)*.Error: covs must be a data. frame(of covariates.

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

# #* weightedtable (as is!)

weightedtable <-svyCreateTableOne(

vars = xvars ,

strata = "treat",

data = weighteddata ,

test = FALSE)

## Show table with SMD

print(weightedtable , smd = TRUE)

##-------------------------------------------------**
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## # * visualize balance / (Love)* plots**...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -3.2.0. love plot for Match m.nnc

#* ---visual diag(s): love plot for greedy match (1)

#*(May 21, 2020)**love.plot(match.nncBal ,

#* threshold = .1,

#* size = 1.5 ,

#* var.order = " unadjusted",

#* title = " Standardized Differences(Greedy

#* Match with ’caliper ’)")+

#* theme_bw ()###*()** ... xxx

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -visual diag(s): love plot for Match m.nnc

#*-visual diag(s): love plot for greedy (’matchit ’)

#Repeat + ‘Gender _Desc ‘ +

#‘Ethnic_ Group_Desc ‘ + Authority + Faculty+

#Home_Language_Instr + Math_Grade12 +yrsbefore

love.plot(m.nnc ,

### Figure 4(7) - Balance diagnostics love plots ..

#nnc match case

#*(vs. pre - matching) _new.sh1t_( @treshold˜ .05)

drop.distance = TRUE ,

var.order = "unadjusted",

abs = TRUE ,

line = TRUE ,

threshold = .050,#

var.names = new.names ,

colors = c("navy", "grey"),

#*c(" grey", "navy"),

shapes = c("circle␣filled",

"triangle␣filled"),

sample.names = c("Greedy␣(with␣caliper)",

"Unadjusted"),

#*c(" Unmatched", " Greedy (with caliper)") ,

limits = c(0, .82),

position = c(.45, .80)) +###

theme(legend.box.background = element_rect(),

legend.box.margin = margin (1, 1, 1, 1)) +

ggtitle("Greedy␣match␣(with␣caliper)

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣covariate␣balance")+

# Fixed values
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geom_vline( xintercept = .050,

linetype= "dotted",

color = "red", size =1.0)#* xxxxx**

##-------------------------------------------------**

## # * ... for optmatch

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -visual diag(s): love plot for optimal match (1)

summary(tableOne_Optimal)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#*-visual diag(s): love plot for optimal (’matchit ’)

love.plot(m.om,

#* Figure 4(7) - Balance diagnostics love plots ..

#*opt match case

#*(vs. pre - matching) _new.sh1t_ ( @treshold˜ .05)

drop.distance = TRUE ,

var.order = "unadjusted",

abs = TRUE ,

line = TRUE ,

threshold = .050,#

var.names = new.names ,

colors = c("navy", "grey"),

shapes = c("circle␣filled",

"triangle␣filled"),

sample.names = c("Optimal␣matching",

"Unmatched"),

limits = c(0, .82),

position = c(.45, .80)) +#

theme(legend.box.background = element_rect(),

legend.box.margin = margin (1, 1, 1, 1))+

ggtitle("Optimal␣matching␣covariate␣balance")+

# Fixed values

geom_vline(xintercept = .050,

linetype = "dotted",

color = "red",

size = 1.0)

##-------------------------------------------------**

## # * ... for ipw matching

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **
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#* weightedtable

summary(weightedtable)

#* (888)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* -visual diag(s): love plot for ipw ( weightit)

love.plot( weights.out ,

drop.distance = TRUE ,

var.order = "unadjusted",

abs = TRUE ,

line = TRUE ,

threshold = .05,#*threshold = .1,

var.names = new.names ,

colors = c("navy", "grey"),#

shapes = c("circle␣filled",

"triangle␣filled"),#

sample.names = c("Weighted",

"Unweighted"),

#c("IPW matching", "Pre -match "),

#*c(" Unweighted", "PS Weighted"),

limits = c(0, .82),

position = c(.75, .65)) +

theme(legend.box.background = element_rect(),

legend.box.margin = margin (1, 1, 1, 1)) +

ggtitle("Probability␣weights␣covariate␣balance")+

# Fixed values

geom_vline(xintercept = .030,#* xintercept = .050 ,

linetype = "dotted",

color = "red",

size = .85)

#* c(" red", "blue"), colors = c(" red", "blue"),

##-------------------------------------------------**

#* combined balanced view

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* combining weightit and matchit cov balance plots

love.plot( (treat) ˜

Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+

Faculty+##

#* Figure 4(5) - Balance diagnostics all match cases
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#(incl. pre - matching) _new.sh1t_ v2.0.

#( @treshold˜ 0.05)

Home_Language_Instr+

Math_Grade12+

yrsbefore ,

data = mydata ,

estimand = "ATT",

weights = list(

w1 = get.w( (weights.out) ),

###*()** ...

w2 = get.w( m.nnc )

,w3 = get.w( m.om )

),###get.w(m.nnc)),

var.order = "unadjusted",

abs = TRUE ,

line = TRUE ,

threshold = .1,

var.names = new.names ,

colors = c("grey", "navy", "darkolivegreen", ’darkslategrey’),#

shapes = c("triangle␣filled", "circle␣filled","square␣filled"

,’plus’),##

sample.names = c("Unmatched", "IPTW", "Greedy␣(with␣caliper)",

’Optimal’),#

limits = c(0, .82)) +

theme(legend.position = c(.75, .75),###c(.75 , .3) ,

legend.box.background = element_rect(),

legend.box.margin = margin (1, 1, 1, 1))+

ggtitle("Covariate␣balance:␣all␣cases")+

# Fixed values

geom_vline(xintercept = .10,

linetype="dotted",

color = "navy",

size =0.000000000025)+

geom_vline(xintercept =.050 ,

linetype="dotted",

color = "red",

size =1.0)

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%***

##-------------------------------------------------**

## # * individual balance plots (hier)**...

##-------------------------------------------------**
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###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* greedy ( is ’ with "ipw" ’)

#*( Matric math)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Matric math score

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

,data = mydata , #

weights = data.frame(Greedy = get.w(m.nnc),

IPW = get.w(weights.out)),

method = c("matching", "weighting"),

var.name = "Math_Grade12",

which = "both") +

scale_fill_grey() +

ggtitle(’Grade␣12␣Math␣score␣distributional␣balance’)

#*(Years prior)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Years prior attempting module

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+

Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data = mydata , #

weights = data.frame(

Greedy = get.w(m.nnc),

IPW = get.w(weights.out)),

method = c("matching", "weighting"),

var.name = "yrsbefore", which = "both")+

scale_fill_grey()+ #

ggtitle(’Years␣prior␣distributional␣balance’)

#*(Gender )**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Sex distribution
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bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data = mydata , #bal.plot(treat ˜ new.names ,

#data = data_clean ,

weights = data.frame(

Greedy = get.w(m.nnc),

IPW = get.w(weights.out)),

method = c("matching", "weighting"),

var.name = "Gender_Desc", which = "both") +

scale_fill_grey()

#*(Race)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Race distribution

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data = mydata ,

#bal.plot(treat ˜ new.names , data = data_clean ,

weights = data.frame(

Greedy = get.w(m.nnc),

IPW = get.w(weights.out)),

method = c("matching", "weighting"),

var.name = "Ethnic_Group_Desc",

which = "both") +

scale_fill_grey() +

ggtitle(’Race␣distributional␣balance’)

#*(Authority)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Authority distribution

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+
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Math_Grade12+

yrsbefore

,data = mydata ,

weights = data.frame(

Greedy = get.w(m.nnc),

IPW = get.w(weights.out)),

method = c("matching", "weighting"),

var.name = "Authority", which = "both") +

scale_fill_grey() +

ggtitle(’Exam␣authority␣distributional␣balance’)

#*(Faculty)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Faculty distribution

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data = mydata, #

weights = data.frame(

Greedy = get.w(m.nnc), #

IPW = get.w(weights.out) ),

method = c("matching", "weighting"),

var.name = "Faculty", which = "both") +

scale_fill_grey() +

ggtitle(’Faculty␣distributional␣balance’)

#*(Sex)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Sex distribution

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data = mydata ,

#bal.plot(treat ˜ new.names , data = data_clean ,

weights = data.frame(Greedy = get.w(m.nnc),

###

IPW = get.w(weights.out) ),
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method = c("matching", "weighting"),

var.name = "Gender_Desc", which = "both") +

scale_fill_grey() +

ggtitle(’Sex␣distributional␣balance’)

#*(Repeat )**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Repeat distribution

bal.plot( (treat) ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+ Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data = mydata , #

weights = data.frame(

Greedy = get.w(m.nnc),

IPW = get.w(weights.out) ),

method = c("matching", "weighting"),

var.name = "Repeat", which = "both") +

scale_fill_grey() +

# + xlabel (c("No","Yes"))+

ggtitle(’Repeats␣distributional␣balance’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* optimal ( is ’lonely ")* ...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Sex

bal.plot(m.om , "Gender_Desc", which = "both",

which.treat = c("prior", "posterior"),

sample.names = c("Unadjusted",

"Optimal␣Matching"))+

scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Sex␣distributional␣balance’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Race

bal.plot(m.om , "Ethnic_Group_Desc", which = "both",

which.treat = c("prior", "posterior"),

sample.names = c("Unadjusted",

"Optimal␣Matching"))+

scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Race␣distributional␣balance’)
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###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Authority

bal.plot(m.om , "Authority", which = "both",

which.treat = c("prior", "posterior"),

sample.names = c("Unadjusted",

"Optimal␣Matching"))+

scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Exam␣Board␣distributional

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣balance’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Reapeats

bal.plot(m.om , "Repeat", which = "both",

which.treat = c("prior", "posterior"),

sample.names = c("Unadjusted",

"Optimal␣Matching"))+

scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Repeats␣distributional

#␣␣␣␣␣␣␣balance’)

##

## #Faculty

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Faculty

bal.plot(m.om , "Faculty", which = "both",

which.treat = c("prior", "posterior"),

sample.names = c("Unadjusted",

"Optimal␣Matching"))+

scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Faculty

distributional␣balance’) ##

###*(Math grades )** ...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Matric math grade*

bal.plot(m.om , "Math_Grade12", which = "both",

which.treat = c("prior", "posterior"),

sample.names = c("Unmatched", "Matched"))+

scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Matric␣math␣distributional

␣␣␣␣␣␣␣␣balance’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* Years prior attempting the module (from matric)*

bal.plot(m.om , "yrsbefore", which = "both",

which.treat = c("prior", "posterior")

, sample.names = c("Unmatched", "Matched"))+
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scale_fill_grey()+

ggtitle(’Optimal␣␣match:␣Years␣prior␣distributional

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣balance’)

#$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%$ **

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* ** IV. Outcome model(step)**

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

#***(4)*

##-------------------------------------------------**

#* continuous outcome (hier)**...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* get causal risk difference (greedy matching)

#* (greedy ) outcome model(s): two sample t-test

with(data_cleanComplete ,

t.test(Final_Mark ˜ (Term== 2017)))

with(data_clean ,

t.test(Final_Mark ˜ (Term== 2017)))

ttest.Unadj <- with(data_cleanComplete ,

t.test(Final_Mark ˜ (Term== 2017)))

ttest.Unadj

with(data_clean ,

t.test(Final_Mark ˜ (Term== 2017)))#

ttestExam.Unadj <- with(data_cleanComplete ,

t.test(Exam_Mark ˜ (treat)))#

ttestExam.Unadj

with(data_clean ,t.test(Exam_Mark ˜ (treat) ))#

#*(... )**

#*(OR)** ... Or we can use OLS with/out covariates:

linmod.Unadj <- lm(Final_Mark ˜ (treat),#(Term== 2017) ,

data = data_cleanComplete)

summary(linmod.Unadj)

linmod.Unadj$ coefficients;confint(linmod.Unadj)#

#*(... )**

linmod.UnadjEx<- lm(Exam˜ (Term== 2017) ,#*(treat),

data = data_cleanComplete)

summary(linmod.UnadjEx)
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linmod.UnadjEx$ coefficients;confint(linmod.UnadjEx)#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* est. treatment effects ( outcome model)

#**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#*get causal risk difference (greedy matching)_2*...

#* estimating treatment effects for

match.nncMod ttest.Greedy <- with(matchGreedy.data ,

t.test(Final_Mark ˜ (Term== 2017)))

ttest.Greedy##

greedy_ttest_e1<- with(clicker_nnc.data ,#*

t.test(Exam_Mark˜ (treat )))

greedy_ttest_e1##

#*(OR)*Or we can use OLS with/out covariates:

linmod.Greedy <- lm(Final_Mark ˜ (Term== 2017) ,

data = matchGreedy.data)

summary(linmod.Greedy)

linmod.Greedy$ coefficients;confint(linmod.Greedy)

#*

#** linmod . GreedyEx <- lm(

Exam_Mark ˜ (treat),#(Term== 2014) ,

data =clicker_nnc.data

summary(linmod.GreedyEx)

linmod.GreedyEx$ coefficients;confint(linmod.GreedyEx)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* get causal risk difference ( optimal matching)* ...

#* (opt) estimating treatment (with a t-test)

ttest.Optimal<- with(matchOpt.data ,

t.test(Final_Mark ˜ (Term== 2017)))

#* we ’ll fail to reject hier!!! ttest. Optimal

ttest.OptimalEx<- with(matchOpt_data ,

# matchOpt.data ,

t.test(Exam ˜ (treat) ))#*(Term== 2017)))

#* we ’ll reject (the null) hier!!!

# {& conclude existence of a (+ve) impact }

ttest.OptimalEx#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* get causal risk difference (optimal matching)

linmod.Optimal <- lm(
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formula = ( (Final_Mark) )

˜ (Term) == 2017,

data = matchOpt.data)

summary(linmod.Optimal) #

linmod.Optimal$ coefficients#

confint(linmod.Optimal)#

#**

linmod.OptimalEx <- lm(

formula = ( (Exam_Mark) ) ˜ (treat)

,#(Term) == 2017 ,

data = matchOpt.data)

summary(linmod.OptimalEx) ###

linmod.OptimalEx$ coefficients ###

confint(linmod.OptimalEx) ##

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* get causal risk difference (IPTW matching)* ...

#* (ipw) outcome model(s)

ttest.IPTW <- with(weighteddata ,

t.test(Final_Mark ˜ (Term== 2017)))

#* we ’ll fail to reject hier!!!

ttest.IPTW; confint(ttest.IPTW)

#* ttest. IPTWEx <- with(weighteddata ,

t.test(Exam_Mark ˜ (Term== 2017)))

#* we ’ll fail to reject hier!!!

ttest.IPTWEx; confint(ttest.IPTWEx)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###* get causal risk difference (ipw)

###** glm.obj <-glm( (Finale ) ˜ treat ,

# weights = weight ,

# family = quasibinomial(link=" identity"))

#* Error in eval(family $ initialize) :

#y values must be 0 <= y <= 1

lm.obj<- lm( (Finale) ˜ Term==2017 ,

weights = weight,

data = mydata )

lm.obj#

#*

lm.objex <- lm( (Exam) ˜ Term==2017 , weights = weight ,

data = mydata )

lm.objex#
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summary(lm.objex); confint(lm.objex)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###* (ipw) weights model

weightmodel<- ipwpoint(exposure = treat ,#*(treat)**,

family = "binomial",

link ="logit",

denominator = ˜ Repeat+

Gender_Desc+

Ethnic_Group_Desc+

Authority+

Faculty+

Home_Language_Instr+

Math_Grade12+

yrsbefore

, data= mydata)

summary(weightmodel$ipw.weights)

#*

sd(weightmodel$ipw.weights)

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###*..y. plot of weights

ipwplot(weights = weightmodel$ipw.weights ,

logscale = FALSE ,

main = "inverse␣prob␣weights␣(trunc)",

xlim = c(0, 52), xlab = ’ip␣weights’)

#**

mydata$wt<-weightmodel$ipw.weights

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#*.y. original weights

ipwplot( weights = weight ,

logscale = FALSE ,

main = "inverse␣prob␣weights␣(orig)",

xlim = c(0, 52), xlab = ’ip␣weights’)

##** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#*y.the split in weights (per treatmnt)* (truncated)

mydata$treat <- as.factor(treat)

ggplot(mydata , aes(x = wt , fill = (treat) )) +

geom_density(alpha = 0.5,

colour = "grey50") +

geom_rug() +

scale_x_log10(breaks = c(1, 5, 10, 20, 40)) +
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ggtitle("Distribution␣of␣inverse

␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣probability␣weights␣(trunc)")+#

#xlabel = ’ip weights ’

scale_fill_grey()+

theme_classic()

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#*.y.the split in weights (per treatmnt)* ( originals)

mydata$weight <- weight

ggplot(mydata , aes(x = weight , fill = (treat ))) +

geom_ density(alpha = 0.5,

colour = "grey50") +

geom_rug() +

scale_x_log10(

breaks = c(1, 5, 10, 20, 40)) +

ggtitle("Distribution␣of␣inverse

␣␣␣␣␣␣␣␣␣␣probability␣weights␣(pre -trunc)")+

# ggtitle(" Distribution of inverse

# probability weights (orig )")+#

# xlabel = ’ip weights ’

scale_fill_grey()+

theme_classic()

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#*z.fit a marginal structural model(risk difference)

msm <- (svyglm(Finale ˜ treat ,

design = svydesign(˜ 1,

weights = ˜wt ,

data = mydata )))

#*msm;

summary(msm)

#**

coef(msm) ; confint(msm)

#*msm

summary(msm)

#*

confint(msm); smsm$ coefficients

#***

msm.ex <- (svyglm(Exam ˜ treat ,

design = svydesign(˜ 1,

weights = ˜wt ,

data = mydata )))

#**msm;

summary(msm.ex)

#*
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coef(msm.ex); sconfint(msm.ex)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ..xz. (try) showin all these results together

xwhy<- (with(matchGreedy.data ,

t.test(Final_Mark ˜ (Term== 2017))) )

xwhy$statistic;xwhy$estimate#*

#*mean in group FALSE mean in group TRUE

# 60.32168 60.82448

#*( 60.39538 60.8026)** xwhy$conf.int

xwhy$conf.int #*

xwhy$alternative;xwhy$parameter;xwhy$p.value#

xwhy$data.name;xwhy$stderr

#*

xyzee <- ( with(matchGreedy.data ,

t.test(Exam_Mark ˜ (treat))

#*(Term== 2017)

)

)

xyzee$statistic;xyzee$estimate;xyzee$conf.int

xyzee$null.value;xyzee$alternative;

xyzee$parameter;xyzee$p.value;xyzee$data.name

#*

xyzee$stderr#

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* .xxx. all results together ( Final mark outcome)

resultLinearModels<- list(

# Unmatched = (xwhy$ statistic )

Unadjusted= linmod.Unadj$coefficients ,

GreedyMatching = linmod.Greedy$coefficients ,

OptimalMatching = linmod.Optimal$ coefficients ,

IPWMatching = (msm$ coefficients)

#ipwCI= confint(msm),

)

print(resultLinearModels , quote = FALSE)#*(... )**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* .. xxy. all results together (Exam mark outcome)

resultLinearModels.Ex<- list(

# Unmatched = (xwhy$statistic )

Unadjusted=linmod.UnadjEx$ coefficients#

,#

GreedyMatch = linmod.GreedyEx$coefficients ,

OptimalMatch = linmod.OptimalEx$coefficients ,
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ipwMatch = (msm.ex$ coefficients )

# ipwCI= confint(msm),

)

print(resultLinearModels.Ex, quote = FALSE)#* (...)**

#95% CI ’s ...

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ..xx.z. all CIs together (Final mark outcome)

resultCIs<- list(# Unmatched = (xwhy$statistic )

UnadjustedCI=confint(linmod.Unadj),#

, #

GreedyCI = confint(linmod.Greedy),

OptimalCI = confint(linmod.Optimal),

IPTWCI = confint(msm) )

print(resultCIs , quote = FALSE)

#*

#* ###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

#* ..xx.xy. all results together (Exam mark outcome)

resultExCIs<- list(# Unmatched = (xwhy$ statistic )

UnadjustedCI=confint(linmod.UnadjEx),# ,# ## ,

# ##

GreedyCI = confint(linmod.GreedyEx),

OptimalCI = confint(linmod.OptimalEx),

IPTWCI = confint(msm.ex) )

print(resultExCIs , quote = FALSE)

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

##--- ---**

#* V. Sensitivity analysis(i.e. ’hidden -bias ’ step)*

##--- ---**

# +++++++++++++++++++++++++++++++++++++++++++++++++++++ ++

#***(5)*

##-------------------------------------------------**

#* * heterogeinity case***... ...

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###* * unadjusted (or unmatched) case*...

#* Rubin Rule: result must ideally be near 0(post -

# matching), certainly in the interval( -50 ,+50)...

unadjRubin<- with(data_clean ,
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abs(100*(mean(linps[Term=="2017"])

-

mean(linps[Term=="2014"]))

/

sd(linps )))

unadjRubin

unadjRubin1<- with(data_clean ,

var(linps[Term=="2017"])/var(linps[Term ==2014]))

unadjRubin1#*( > unadjRubin1 [1] 4.884034)**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###* * greedy with caliper* ...

greedy.caliperRubin<-with(( matchGreedy.data),

abs(100*(mean(linps[Term ==2017])

-

mean(linps[Term== 2014]))

/

sd(linps )))

greedy.caliperRubin

greedy.caliperRubin1 <- with(( matchGreedy.data),

var(linps[Term ==2017])/ var(linps[Term ==2014]))

greedy.caliperRubin1#*([1] 1.000279)**Rubin Rule

#2: the result after matching must ideally be

#near 1 (& certainly bounded in (1/2 ,2).

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

###* * optimal matching *...

optimalRubin <- with( (matchOpt.data)

,

abs(100*(mean(linps[Term ==2017])

-

mean(linps[Term== 2014]))

/

sd(linps )))

optimalRubin

#*

optimalRubin1 <- with((matchOpt.data),

var(linps[Term ==2017])/var(linps[Term ==2014]))

optimalRubin1

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **
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###* *ipw matching *...

ipwRubin <- with( (weighteddata),

abs(100*(mean(linps[Term== 2017])

-

mean(linps[Term== 2014]))

/

sd(linps )))

ipwRubin

###*

ipwRubin1 <- with((weighteddata),

var(linps[Term==2017])/var(linps[Term ==2014]))

ipwRubin1

#*

psens(match.nncF , Gamma = 2, GammaInc = 0.1)

psens(match.nncP , Gamma = 2, GammaInc = 0.1)#* #> >

psens(match.nnc_bothF , Gamma= 2,

GammaInc = 0.05) #&&&&&&&***** -----**

## #####*(PSM steps!)** ...

##--------------------------------------------------------- (END!)**
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3. DAGs vizualisations

##------------------------------------------------------- (START!)**

###*()** ... iii. Causal graphing (DAGs)

# ###################################################**

#* * created by: Mxolisi Msibi , Mr.

#* * organisation: University of Pretoria

#* * datae: 2019.11.25

#* * update : 2020.01.08

#*

# ###################################################**

##-------------------------------------------------**

#* 1. read psm text (in)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.1. installin ’ required packages

install.packages( c(

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**

#1. Data manipulations

"sqldf",# do sql man (in R)* ...

"janitor", "naniar",

"readxl",#get data from excel " sheets"

"tidyverse",#*(for ’pippin ’) and datamanipulations

’vctrs’, "broom",

"tidytext" #*need this for text minin ’

’wordcloud’#* wordclouds (text minin ’)

’igraph ’#*math graph - theory for DAGs

’ggraph ’#*math graph - theory

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.2. required libraries( off top)

library(tidyverse)#*should be the tidyverse

library(tidytext)#*need this for text minin ’

library(readxl)# Super simple excel reader

library(ggplot2)#* graphics & eda

library(stringr)#string manipulator
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library(wordcloud)#plot text wordclouds

library(tokenizers)# sentencing

library(igraph)#graph theory

library(ggraph)#plot the igraph object #*

require(lubridate)##* install.packages(’janitor ’)

library(janitor)#*

# ##*(DAGs!)** ...

library(dagitty)

library(ggdag)#*install. packages(c(’dagitty ’,’ggdag ’))

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.3. sourcing available functions

source(

’C:\\Users \\mxmsibi\\ Downloads/Biz.Related/

␣␣␣␣␣ms␣dissertation/R_functions/muliplot.R’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.4. source the textfile

##-------------------------------------------------**

#* 2. Directed acyclic graphs ( graphics)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.1. unconfoundedness

dagified<- dagify(z ˜ x,

y ˜ z,

exposure = "z",

outcome = "y")

tidy_dag<- tidy_dagitty(dagified)

ggdag(tidy_dag , layout = "circle")

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.0. confoudedness

dagified1<- dagify( z ˜ x,

y ˜ x,
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y ˜ z,

exposure = "z",

outcome = "y")

tidy_dag1<- tidy_dagitty(dagified1)

ggdag(tidy_dag1 , layout = "circle")

dagify(z ˜ x,

y ˜ x + z) %>%

ggplot(aes( x = x,

y = y,

xend = xend ,

yend = yend)) +

geom_dag_point() +

geom_dag_edges_arc() +

geom_dag_text() +

theme_dag()

# ##*(DAGs!)** ...

##--------------------------------------------------------- (END!)**
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4. Wordcloud vizualisations

##------------------------------------------------------- (START!)**

###*()** ... iv. text mine ( WordClouds)

# ###################################################**

#* * created by: Mxolisi Msibi , Mr.

#* * organisation: University of Pretoria

#* * datae: 2019.11.25

#* * update : 2020.01.08

#*

# ###################################################**

##-------------------------------------------------**

#* 1. read psm text (in)**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.1. installin ’ required packages

install.packages( c(

#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**

#1. Data manipulations

"sqldf",# do sql man (in R)* ...

"janitor", "naniar",

"readxl",#get data from excel " sheets"

"tidyverse",#*( for ’pippin ’) datamanipulations

’vctrs’, "broom",

"tidytext" #*need this for text minin ’

’wordcloud’#* wordclouds (text minin ’)

’igraph ’#*math graph - theory for DAGs

’ggraph ’#*math graph - theory

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.2. required libraries( off top)

library(tidyverse)#*should be the tidyverse

library(tidytext)#*need this for text minin ’

library(readxl)# Super simple excel reader

library(ggplot2)#* graphics & eda

library(stringr)#string manipulator

library(wordcloud)#plot text wordclouds
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library(tokenizers)# sentencing

library(igraph)#graph theory

library(ggraph)#plot the igraph object #*

require(lubridate)##* install.packages(’janitor ’)

library(janitor)#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.3. sourcing available functions

source(’C:\\Users\\mxmsibi\\ Downloads/Biz.Related/

␣␣␣␣␣␣␣␣ms␣dissertation/R_functions/muliplot.R’)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 1.4. source the textfile

read.csv("psm_textfile__nonblanks.csv", header = TRUE)

psm_text <- read.csv(

"psm_textfile__nonblanks␣Apr␣27,␣2020. csv",

header= TRUE)

#read.csv(" psm_ textfile__ nonblanks.csv", header= TRUE)

head( psm_text)

##-------------------------------------------------**

#* 2. data manipulations**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.1. read the (text) file

###***() already done above )

require(tidyverse)# ###########

# ########

#There were 26 warnings (use warnings() to see them)

warnings()#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 2.2. views first few rows head(psm_text ,7)

head(psm_text) tail.matrix(psm_text)

head( as.data.frame(psm_text) )

psm_text1 <- as.tibble(psm_text)

# ######################## #################### **

library(lubridate)

# # date formattin ’ ##* ( using lubridate::ymd_hms )
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library(lubridate)

##-------------------------------------------------**

#* 3. text mining **

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.1. we break the text (into individual tokens )

library(tidytext)#* tidytext needed (for stop_ words)

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.2. callin on the default stop words dataset ...

data(stop_words) #*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.3. tokenize the text

psm_text1$x<- as.character(psm_text1$x)

(psm_text1)%>%

unnest_tokens( word , x )

#* YESSSSSSSSSSSSSSSSSSSSSS !!!!*...

(psm_text1 )%>%

unnest_tokens( word , x )%>%

#unnest _ tokens works better nou(NB)*

anti_join(stop_words)

#* exclude stop words(on the text!)*

psm_text2 <- (psm_text1)%>%

unnest_tokens( word , x )%>%

#unnest _ tokens works better nou(NB)*

anti_join(stop_words)

#*excl. stop words(on the text!)**

#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 3.4. Counts and plots

psm_text2 %>% count(word , sort = TRUE)#*

##-------------------------------------------------**
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#* 4. wordclouds**

##-------------------------------------------------**

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.1. lookin @ the most common words

#(in the dissertation)

library(wordcloud) #*

library(ggplot2)

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.2. set seed for reproducibility set.seed (1234)

# to always get the same WordCloud and

# (for better reproducibility)

head(psm_text2)

tail(psm_text2)#*

###** xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx **

##-------------------------------------------------**

#* 4.3. plotting (the wordcloud)

psm_text2 %>%

anti_join(stop_words) %>%

count(word) %>%

filter(n > 17) %>%#only those above 17 times

with( wordcloud(word , n#min.freq=2,

# ,vfont=c(" serif", "plain ")) )

#load(" mxos_ reviews&psm_ Des2019. RData ")###*()**...

# wordcloud(clean_words , min.freq=2,

#vfont=c(" script ", "plain "))

# #####*( TextMinor!)** ...

##--------------------------------------------------------- (END!)**
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