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Abstract 
 
This paper uses the Dynamic Factor Model (DFM) framework, which accommodates a large cross-
section of macroeconomic time series for forecasting regional house price inflation. As a case study, 
we use data on house price inflation for five metropolitan areas of South Africa. The DFM used in this 
study contains 282 quarterly series observed over the period 1980Q1-2006Q4. The results, based on the 
Mean Absolute Errors of one- to four-quarters-ahead out of sample forecasts over the period of 2001Q1 
to 2006Q4, indicate that, in majority of the cases, the DFM outperforms the VARs, both classical and 
Bayesian, with the latter incorporating both spatial and non-spatial models. Our results, thus, indicate 
the blessing of dimensionality.   
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1. Introduction 

This paper investigates whether the wealth of information contained in the Dynamic Factor Model 
(DFM) framework, developed by Forni et al. (2005), can be useful in forecasting regional house price 
inflation. To illustrate, we use the DFM to predict house price inflation in five metropolitan areas of 
South Africa, namely, Cape Town, Durban, Johannesburg, Port Elizabeth and Pretoria, using quarterly 
data over the period of 1980Q1-2006Q4. The panel data comprises 282 quarterly series for the South 
African economy, a set of global variables such as commodity industrial inputs price index and crude 
oil prices, and time series of major trading partners , namely, Germany, the United Kingdom (UK), and 
the United States (US) of America.. The forecast performance of DFM is evaluated in terms of the 
Mean Absolute Errors (MAEs), by comparing it with Spatial Bayesian Vector Autoregressive 
(SBVAR) models, based on the First-Order Spatial Contiguity (FOSC) and the Random Walk 
Averaging (RWA) priors,. The performace is also compared to  non-spatial models like the unrestricted 
classical Vector Autoregressive (VAR) model and Bayesian Vector Autoregressive (BVAR) models 
with the Minnesota prior which are estimated based on only the house price inflation .  

The motivation for investigating  regional house price inflation is to answer two related 
questions : First, why is forecasting house price growth an important exercise? And, second, why look 
at regional data for this purpose? The importance  of predicting house price inflation  is motivated by 
recent studies that conclud that asset prices help forecast both inflation and output (Forni, Hallin, Lippi, 
and Reichlin, 2003; Stock and Watson, 2003). Since large amount of individual wealth are imbedded in 
houses, similar to other asset prices, houses are thus important in signaling inflation as well.1 As such,  
models that forecast house price inflation can give policy makers an idea about the direction of CPI 
inflation in the future, and\ hence, can provide a better control for designing of appropriate policies. 
Secondly, we use regional data on house prices as in this paper we are trying to investigate whether the 
rich information environment of the DFM can be used to improve the prediction of house price 
inflation, relative to other standard spatial models of forecasting besides the non-spatial VAR and 
BVARs,. More importantly, the need to use regional data is simply to account for possible 
heterogeneity and segmentation that might exist in the housing market. Herein then also comes the 
justification of modeling house-prices separately based on size of house.2  

At this juncture, we elaborate on why we use the South African housing market as a case 
study. The reasons are twofold: Firstly, of the easy access and availability of such regional data, and; 
Secondly, and perhaps more importantly, the choice being driven by the existence of a recent study by 
Gupta and Das (2008) on forecasting house price inflation in the metropolitan areas of South Africa 
based on SBVARs. In this paper, we thus aim to compare the performance of our benchmark model, 
with spatial models, similar to those used by Gupta and Das (2008). Both the paper of Gupta and Das 
(2008), as well as the paper by Burger and van Rensburg (2007), provide an idea about the segmented 
nature of the housing market in South Africa. Gupta and Das (2008)  estimated SBVARs, based on the 
FOSC and the RWA priors, for six metropolitan areas of South Africa, using monthly data over the 
period of 1993:07 to 2005:06, and then forecasted one- to six-months-ahead house prices over the 
forecast horizon of 2005:07 to 2007:06. It must be noted, that unlike Gupta and Das (2008), we use 
quarterly data on all variables, including house prices to compute house price inflation. And further, 
using a DFM also allows us to incorporate a wide variety of variables that can possibly affect the 
housing market, unlike that of the VAR, BVARs and SBVARs, which were estimated based on data on 
house price inflation only. It must be emphasized, though, that our analysis, eithe using the DFM, or 
the spatial and non-spatial models, is a general one, and these techniques can be used to forecasts 
regional variable(s) of any economy. In our case, it happens to be the South African economy due to 
the availability of relevant data and the pre-existing of similar studies.  

The rationale for a DFM to forecast house prices inflation emanates from the fact that a large 
number of economic variables help in predicting housing price growth (Cho, 1996; Abraham and 
Hendershott, 1996; Johnes and Hyclak, 1999; and Rapach and Strauss, 2007). For instance, income, 
interest rates, construction costs, labor market variables, stock prices, industrial production, and 
consumer confidence index – which are included  in the DFM,, are potential predictors. In addition, 
given that movements in the housing market are  likely to play an important role in the business cycle, 
not only because housing investment is a very volatile component of demand (Bernanke and Gertler, 
1995), but also because changes in house prices tends to have important wealth effects on consumption 
                                                            
1 Gupta and Das (2007) point out that, in South Africa, housing inflation and CPI inflation tend to move together, 
though the former, understandably, is more volatile. 
2See Kang and Stulz (1997), Choe et al. (1999), Dahlquist et al. (2003), Christoffersen et al. (2006), Burger and 
van Rensburg (2007) and Gupta and Das (2008) for further details. 



 3

(International Monetary Fund, 2000) and investment (Topel and Rosen, 1988), the importance of 
forecasting house price inflation is vital. The housing sector thus plays a significant role in acting as 
leading indicator of the real sector of the economy, and as such,  predicting it correctly cannot be 
overemphasized, especially in the light of the recent credit crunch in the U.S. that started with the burst 
of the housing price bubble which, in turn, transmitted to the real sector of the economy driving it 
towards an imminent recession.  

Note, in a DFM, each time series in the panel is represented as the sum of two latent 
components: a common component which captures most of the multivariate correlation, and an 
idiosyncratic component which is poorly cross-sectionally correlated. The rational behind factor 
analysis is that common components are driven by a few common shocks, and as such, the low 
dimensionality implies that common components can be consistently estimated and forecasted on the 
basis of few factors only. The estimation process involves the construction of aggregates of variables 
that capture relevant information in the cross-section, since the idiosyncratic components, which are 
poorly correlated vanish by the law of large number. There are several empirical researches that 
provide evidence of improvement in forecasting performance of macroeconomic variables using factor 
analysis (Gupta and Kabundi, 2008; Giannone and Matheson, 2007; Van Nieuwenhuyze, 2007; 
Cristadoro et al., 2005; Forni et al., 2005; Schneider and Spitzer, 2004; Kabundi, 2004; Forni et al., 
2001; and Stock and Watson, 2002a, 2002b, 1999, 1991, and 1989). But, to the best of our knowledge, 
this is the first attempt to compare the forecasting performances of a full-fledged DFM with spatial and 
non-spatial econometric models in terms of predicting regional house price inflation. We must, 
however, point out of two related study by Rapach and Strauss (2007a, 2007b).3 In the first paper, the 
authors used an autoregressive distributed lag (ARDL) model framework, containing 25 determinants, 
to forecast real housing price growth for the individual states of the Federal Reserve’s Eighth District. 
Given the difficulty in determining a priori the particular variables that are the most important for 
forecasting real housing price growth, the authors also use various methods to combine the individual 
ARDL model forecasts, that resulted in better forecasts of real housing price growth. While, Rapach 
and Strauss (2007b) looks at doing the same for 20 largest US states based on ARDL models 
containing large number of potential predictors, including state-level, regional and national level 
variables. Again, the authors reach similar conclusions as far as the importance of combining forecasts 
are concerned. Given that, in practice forecasters and policymakers often extract information from 
many series than the ones included in smaller models like the ones used by Rapach and Strauss (2007a, 
2007b), the role of a large-scale DFM cannot be ignored. In addition, one should not condone the fact 
that the main problem of small models, as seen above from the studies by Rapach and Strauss (2007a, 
2007b), is in the decision regarding the choice of correct potential predictors to be included.  

Finally, we outline a few facts about the South African house price data. Burger and van 
Rensburg (2007) show that  products sold at different regions can only be comparable when a clear 
definition of the product is provided at the outset. Thus,  as in Burger and van Rensburg (2007) and 
Gupta and Das (2008), we do not consider the residential market in general, rather we subdivide the 
market in terms of sizes and prices of the houses. Specifically, we use the ABSA4 Housing Price 
Survey, which distinguishes between three price categories as --- luxury houses (R 2.6 million to R9.5 
million), middle-segment houses (R226,000 to R2.6 million) and affordable houses (R226,000 and 
below with an area in the range of 40 m 2 -79 m 2 ); and further subdivides the middle segment category 
based on the square meters of house area into small (80 m 2 -140 m 2 ), medium (141 m 2 -220 m 2 ) and 
large (221 m 2 -400m 2 ). Given that regional house price data is only available for middle-segment 
houses, we restrict our study to this category. Also, though the ABSA Housing Price Review reports 
data for both metropolitan and non-metropolitan areas, the availability is limited and also lacks clarity 
regarding the area of coverage, especially for the rural areas. We thus limit our analysis to the five 
major metropolitan areas of South Africa.  

The remainder of the paper is organized as follows: In section 2 we lay out the DFM, Section 3 
discusses the data used to estimate the DFM. Section 4 outlines the basics of the VAR and Minnesota-
type BVARs, and SBVARs based on the FOSC and the RWA priors, and Section 5 presents the results 
from the forecasting exercise. Finally, section 6 concludes and lays out the areas of further research.  

2. The Model 

This study uses the Dynamic Factor Model (DFM) developed by Forni et al. (2005) to extract common 
components between macroeconomics series, which are then used to forecast metropolitan house price 
                                                            
3 See Dua and Smyth (1995) and Dua et al. (1999) for papers that use Bayesian methods to forecast home sales.  
4ABSA is one of the Leading Private banks of South Africa. 
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inflation for the South African housing market. In the VAR models, since all variables are used in 
forecasting, the number of parameters to be estimated depends on the number of variables n . With 
such a large information set, n , the estimation of a large number of parameters leads to a curse of 
dimensionality. The DFM uses information set accounted by few factors q n<< , which transforms the 
curse of dimensionality into a blessing of dimensionality. The DFM expresses individual times series 
as the sum of two unobserved components: a common component driven by a small number of 
common factors and an idiosyncratic component, which are specific to each variable. Forni et al. 
(2005) demonstrated that when the number of factors is small relative to the number of variables and 
the panel is heterogeneous, the factors can be recovered from the present and past observations.  

Consider an 1n×  covariance stationary process 1( ,..., )t t ntY y y ′= . Suppose that tX  is the 
standardized version of tY , i.e. tX  has a mean zero and a variance equal to one. Under the DFM 
proposed by Forni et al. (2005), tX  is described by a factor model, and can be written as the sum of 
two orthogonal components: 

( )it i t it i t itx b L f Fξ λ ξ= + = +   (1) 
or, in vector notation: 

( )t t it t itX B L f Fξ ξ= + =Λ +  (2) 
where tf  is a 1q×  vector of dynamic factors, 0 1( ) ... s

sB L B B L B L= + + +  is in an n q×  matrix of factor 
loadings of order s , tξ  is the 1n×  vector of idiosyncratic components, tF  is 1r×  vector of static 
factors, with ( 1)r q s= + . However, in more general framework we use r q≥ , instead of ( 1)r q s= + , 
which is too restrictive.  
 
Let tf  and tξ  be mutually orthogonal stationary processes and let ( )t tB L fχ =  be the common 
component. In factor analysis jargon ( )t t itX B L f ξ= +  is referred to as the dynamic factor model, and 

t t itX F ξ= Λ +  as the static factor model. Similarly, tf  is regarded as the vector of the dynamic factors 
while tF  as the vector of the static factors. Since dynamic common factors are latent, they need to be 
estimated. Forni et al. (2005) estimate dynamic factors through the use of dynamic principal 
component analysis. It involves estimating the eigenvalues and eigenvectors decomposition of the 
spectral density matrix of tX , which is a generalization of the orthogonalization process in case of 
static principal components. The spectral density matrix of tX , which is estimated using the frequency 
π θ π− < < , can be decomposed into the spectral densities of the common and the idiosyncratic 

component:  
 ( ) ( ) ( )ξθ θ θΧΣ =Σ + Σ  (3) 

where ( )( ) ( ) ( )i i
fB e B eθ θ

χ θ θ− − ′
Σ = Σ  is the spectral density matrix of the common component tχ  and 

( )ξ θΣ  is the spectral density matrix of the idiosyncratic component tξ .  The rank  of ( )χ θΣ  is equal 
to the number of dynamic factors, q . Similarly, the covariance matrix of tX  can be decomposed as: 

k k k
χ ξΓ =Γ +Γ  (4) 

where F
k k
χ ′Γ =ΛΓ Λ , F

kΓ   is the covariance matrix of tF  at lag k  and k
ξΓ  is the covariance matrix of tξ  

at lag k . The rank of k
χΓ  is equal to r ; the number of static factors. 

The forecast of the ith variable h-steps ahead is not feasible in practice since the common factors 
are unobserved. However, if data follow an approximate dynamic factor model, the set of common 
factors tF  can be consistently estimated by appropriate cross-sectional averages, or aggregators in the 
terminology of Forni and Reichlin (1998) and Forni and Lippi (2001). The rational is that using the law 
of large numbers, only the pervasive common sources survive the aggregation, as the weakly correlated 
idiosyncratic errors are averaged out. Building on Chamberlain and Rothschild (1983), Forni et al. 
(2000) and Stock and Watson (2002a) have shown that principal components of the observed variables 

tX , are appropriate averages. That is, the common component can be approximated by projecting 
either on the first r  principal components of the covariance matrix (see Stock and Watson (2002a)) or 
on the first  q  dynamic principal components (see Forni, Hallin, Lippi, and Reichlin (2000)). 

Empirically, we estimate the autocovariance matrix of standardized data, 1
ˆ ˆ ˆ( ,..., )t t ntX x x ′=  by: 
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1 ˆ ˆˆ
1

T

k t t
t k

X X
T k =

′Γ =
− − ∑  (5) 

where T  is the sample size. Following Forni et al. (2005) the spectral density matrix will be estimated 
by averaging a given number m  of autocovariances:  

1ˆ ˆ( )
2

m
i k

k k
k m

w e θθ
π

−

=−

Σ = Γ∑  (6) 

where kw  are Barleet-lag window estimator weights 11 k
k mw += − . The consistent estimates are 

ensured, provided that m →∞  and 0m
T →  as T →∞ . In the empirical section we will use m T= , 

which satisfies the above asymptotic requirements. 
The procedure of by Forni et al. (2005) consists of two steps. The first step is the problem of the 

spectral density matrix, defined, at a given frequency θ , as: 
ˆ ( ) ( ) ( ) ( )q q qV V Dθ θ θ θΣ =    (7) 

where ( )qD θ  is a diagonal matrix having the diagonal on the first q  largest eigenvalues of ˆ ( )θΣ  and 
( )qV θ  is the n q×  matrix whose columns are the corresponding eigenvectors. Let tX  is driven by q  

dynamic factors, the spectral density matrix of the common component is given by: 
( )ˆ ( ) ( ) ( )q q qV D Vχ θ θ θ θ ′Σ =  (8) 

The spectral density matrix of the idiosyncratic part is estimated as a residual: 
ˆ ˆ ˆ( ) ( ) ( )ξ χθ θ θΣ =Σ −Σ  (9) 

The covariance matrices of common and idiosyncratic parts are computed through an inverse Fourier 
transform of spectral density matrices: 

2ˆ ˆ ( )
2 1

j
m

ik
k j

j m

e
m

θχ
χ

π θ
=−

Γ = Σ
+ ∑  (10) 

2ˆ ˆ ( )
2 1

j
m

ik
k j

j m

e
m

θξ
ξ

π θ
=−

Γ = Σ
+ ∑  (11) 

where 2
2 1j m jπθ +=  and , ...,j m m=−  

In a second step, the estimated covariance matrix of the common components is used to construct the 
factor space by r  contemporaneous averages. These r  contemporaneous averages are solutions from 
the generalized principal components (GPC) problem: 

0 0
ˆ ˆ

rg rg rgV V Dχ ξΓ =Γ  (12) 

s.t. 0
ˆ

rg rg rV V Iξ′ Γ =  
 
where rgD  is a diagonal matrix having on the diagonal the first r  largest generalized eigen values of 

the pair ( )0 0
ˆ ˆ,χ ξΓ Γ  and rgV  is the n r×  matrix whose columns are the corresponding eigenvectors. 

The first r  GPCs are defined as: 
ˆ ˆg
t rg tF V X′=  (13) 

The off-diagonal elements of 0
ˆ ξΓ  are set to zero to overcome the problem of instability that is common 

in the generalized principal component methodology. With such restrictions, the generalized principal 
components can be seen as static principal components computed on weighed data, in that these 
weights are inversely proportional to the variance of the idiosyncratic components. Such a weighting 
scheme should provide more efficient estimates of the common factors.  

1
., 0

ˆˆ ˆˆ ( )i r rg rg rg rg TiT r T V V V V Xχχ −
+

′ ′= Γ Γ  (14) 
and 

1
, , ,

ˆ ˆ ˆ ˆ ˆ,..., ,...,ii r ii r p i k iT iT piT r T W x xξ ξξ −
+ −+

′⎡ ⎤ ⎡ ⎤= Γ Γ ⎣ ⎦⎣ ⎦  (15) 

where 
,0 , ( 1)

,

, 1 ,0

ˆ ˆ

ˆ ˆ

ii ii k

i k

ii k ii

W
− −

−

⎡ ⎤Γ Γ
⎢ ⎥

= ⎢ ⎥
⎢ ⎥Γ Γ⎢ ⎥⎣ ⎦

"
… " "

"
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The forecast of ,i T h Ty +  is computed as follows: 

( ), , ,
ˆˆˆ ˆ ˆi ii T k T i T k T i T k Ty σ χ ξ µ+ + += + +  (16) 

3. Data 

It is imperative in factor analysis framework to extract common components from a data rich 
environment. After extracting common components of house price inflation in five metropolitan areas 
of South Africa, we make out-of-sample forecast for one, two, three, and four quarters ahead. The data 
set contains 282 quarterly series of South Africa, ranging from real, nominal, and financial sectors. We 
also have intangible variables, such as confidence indices, and survey variables. In addition to national 
variables, we use a set of global variables such as commodity industrial inputs price index and crude oil 
prices. The data also comprises series of major trading partners such as Germany, the United Kingdom 
(UK), and the United States (US) of America. All series are seasonally adjusted and covariance 
stationary. The more powerful  *** (DFGLS) test of Elliott, Rothenberg, and Stock (1996), instead of 
the most popular *** (ADF) test, is used to assess the degree of integration of all series. All 
nonstationary series are made stationary through differencing. The Schwarz information criterion is 
used in the selecting the appropriate lag length so that no serial correction is left in the stochastic error 
term. Where there were doubts about the presence of unit root, the KPSS test proposed by Kwiatowski, 
Phillips, Schmidt, and Shin (1992), with the null hypothesis of stationarity, was applied. All series are 
standardized to have a mean of zero and a constant variance. The in-sample period contains data from 
1980Q1 to 2000Q4, while the out-of-sample set is 2001Q1-2006Q4.5  

There are various statistical approaches in determining the number of factors in the DFM. For 
example, Bai and Ng (2002) developed some criteria guiding the selection of the number of factors in 
large dimensional panels. The principal component analysis (PCA),  where the a number of factors q be 
based on the first eigenvalues of the spectral density matrix of tX , can also be used in establishing the 
number of factors in the DFM. Thereafter, the principal components are added till the increase in the 
explained variance is less than a specific α , say equal to 0.05. The Bai and Ng (2002) approach 
proposes five static factors, while Bai and Ng (2007) suggests two primitive or dynamic factors. 
Similar to the latter method, the principal component technique, as proposed by Forni et al. (2000) 
suggests two dynamic factors, with the  first two dynamic principal components explaining 
approximately 99 percent of variation, while the eigenvalue of the third component is  0.002 < 0.05.  

4. Alternative Forecasting Models 

In this study, the DFM is our benchmark model. To evaluate the forecasting performance of the DFM, 
we require alternative models, and in our case, these are namely, the unrestricted classical VAR, 
BVARs based on the Minnesota Prior, and the SBVARs based on the FOSC and RWA priors. This 
section outlines the basics of the above-mentioned competing models.  
4.1 The Vector Autoregressive (VAR) model 
The Vector Autoregressive (VAR) model, though ‘atheoretical’, is particularly useful for forecasting. A 
VAR model can be visualized as an approximation of the reduced-form simultaneous equation 
structural model. An unrestricted VAR model, as suggested by Sims (1980), can be written as follows: 

0 ( )t t ty A A L y ε= + +                                                                                              (17)                                     
where y is a ( 1n× ) vector of variables being forecasted; A(L) is a ( n n× ) polynomial matrix in the 
backshift operator L with lag length p, i.e., A(L) = 2

1 2 ................ p
pA L A L A L+ + + ; 0A is a ( 1n× ) 

vector of constant terms, and ε  is a ( 1n× ) vector of error terms. In our case, we assume 
that 2~ (0, ), where is a identity matrixn nN I I n nε σ × . Note, the VAR model generally uses equal lag 
length for all the variables of the model. A drawback of VAR models is that many parameters need to 
be estimated, some of which may be insignificant. This problem of overparameterization, resulting in 
multicollinearity and a loss of degrees of freedom, leads to inefficient estimates and possibly large out-
of-sample forecasting errors. A solution often adapted, is simply to exclude the insignificant lags based 
on statistical tests. Another approach is to use a near VAR, which specifies an unequal number of lags 
for the different equations.   

An alternative approach to overcome overparameterization, as described in Litterman (1981), 
Doan et al (1984), Todd (1984), Litterman (1986), and Spencer (1993), is to use a Bayesian VAR 
(BVAR) model. Instead of eliminating longer lags, the Bayesian method imposes restrictions on these 
                                                            
5Details about data and their statistical treatment are available upon request. 



 7

coefficients by assuming that they are more likely to be near zero than the coefficients on shorter lags. 
However, if there are strong effects from less important variables, the data can override this 
assumption. The restrictions are imposed by specifying normal prior distributions with zero means and 
small standard deviations for all coefficients, with the standard deviation decreasing as the lags 
increase. The exception to this is that the coefficient on the first own lag of a variable has a mean of 
unity. Litterman (1981) used a diffuse prior for the constant. This is popularly referred to as the 
‘Minnesota prior’ due to its development at the University of Minnesota and the Federal Reserve Bank 
at Minneapolis.  

Formally, as discussed above, the means and variances of the Minnesota prior take the 
following form: 

2 2~ (1, ) and ~ (0, )
i ji jN Nβ ββ σ β σ                                                                  (18)                                    

where iβ  denotes the coefficients associated with the lagged dependent variables in each equation of 
the VAR, while jβ  represents any other coefficient. In the belief that lagged dependent variables are 
important explanatory variables, the prior means corresponding to them are set to unity. However, for 
all the other coefficients, jβ ’s, in a particular equation of the VAR, a prior mean of zero is assigned to 

suggest that these variables are less important to the model. The prior variances 2
iβ

σ and 2
jβ

σ , specify 

uncertainty about the prior meansβi  = 1, andβ j  = 0, respectively. Because of the 
overparameterization of the VAR, Doan et al. (1984) suggested a formula to generate standard 
deviations as a function of small numbers of hyperparameters: w, d, and a weighting matrix f(i, j). This 
approach allows the forecaster to specify individual prior variances for a large number of coefficients 
based on only a few hyperparameters. The specification of the standard deviation of the distribution of 
the prior imposed on variable j in equation i at lag m, for all i, j and m, defined as S1(i, j, m), can be 
specified as follows:   

1

ˆ
( , , ) [ ( ) ( , )]

ˆ
j

i

S i j m w g m f i j
σ
σ

= × ×                                                                         (19)                               

with f(i, j) = 1, if i = j and ijk  otherwise, with ( 0 1ijk≤ ≤ ), g(m) = , 0dm d− > . Note that ˆ iσ  is the 
estimated standard error of the univariate autoregression for variable i. The ratio ˆ ˆ/i jσ σ  scales the 
variables to account for differences in the units of measurement and, hence, causes specification of the 
prior without consideration of the magnitudes of the variables. The term w indicates the overall 
tightness and is also the standard deviation on the first own lag, with the prior getting tighter as we 
reduce the value. The parameter g(m) measures the tightness on lag m with respect to lag 1, and is 
assumed to have a harmonic shape with a decay factor of d, which tightens the prior on increasing lags. 
The parameter f(i, j) represents the tightness of variable j in equation i relative to variable i, and by 
increasing the interaction, i.e., the value of ijk , we can loosen the prior.6  

Note, the overall tightness (w) and the lag decay (d) hyperparameters used in the standard 
Minnesota prior have values of 0.1 and 1.0, respectively, while ijk = 0.5, implies a weighting matrix (F) 
with 1.0 on the diagonals and 0.5 as the off-diagonal elements.. Given that the Minnesota prior treats 
all variables in the VAR, except for the first own-lag of the dependent, in an identical manner, several 
attempts have been made to alter this fact. Usually, this has boiled down to increasing the value for the 
overall tightness (w) hyperparameter from 0.10 to 0.20, so that the larger value of w can allow for more 
influence from other variables in the model. In addition, as proposed by Dua and Ray (1995), we also 
try out a prior that is even more loose, specifically with w = 0.30 and d = 0.50. Alternatively, LeSage 
and Pan (1995) have suggested the construction of the weight matrix based on the First-Order Spatial 
Contiguity (FOSC), which simply implies the creation of a non-symmetric F matrix that emphasizes 
the importance of the variables from the neighboring states/provinces more than that of the non-
neighboring states/provinces. Lesage and Pan (1995) suggests the use of a value of unity on not only 
the diagonal elements of the weight matrix, as in the Minnesota prior, but also in place(s) that 
correspond to the variable(s) from other state(s)/province(s) with which the specific state in 
consideration have common border(s). However, for the elements in the F matrix that corresponds to 
variable(s) from state(s)/province(s) that are not immediate neighbor(s), Lesage and Pan (1995) 
proposes a value of 0.1.  

 
Referring to the provincial map of South Africa given in Figure 1, the design of the F matrix 

                                                            
6 For an illustration, see Dua and Ray (1995). 
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based on the FOSC prior, given the alphabetical ordering7 of the five metropolitan areas as the Eastern 
Cape Metropolitan area (Port Elizabeth/Uitenhage), Greater Johannesburg, the Kwa-Zulu Natal 
Metropolitan area (Durban Unicity), Pretoria and the Western Cape Metropolitan area (Cape Town), 
can be formalized as follows: 

1.0 0.1 1.0 0.1 1.0
0.1 1.0 0.1 1.0 0.1
1.0 0.1 1.0 0.1 0.1
0.1 1.0 0.1 1.0 0.1
1.0 0.1 0.1 0.1 1.0

F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                           …………              …(20)  

The intuition behind this asymmetric F matrix is based on our lack of belief on the prior means 
of zero imposed on the coefficient(s) for house price inflations(s) of the neighboring province(s). 
Instead we believe that these variables do have an important role to play, hence, to express our lack of 
faith in the prior means of zero, we assign a larger prior variance, by increasing the weight values, to 
these prior means on the coefficients for the variables of the neighboring states. This, in turn, allows 
the coefficients on these variables to be determined based more on the sample and less on the prior. 

LeSage and Krivelyova (1999) have put forth an alternative approach to remedy the equal 
treatment nature of the Minnesota prior, called the “Random-Walk Averaging” (RWA) prior. that 
involves both the prior means and the variances based on a distinction made between important 
variables (like house price inflation(s) of neighboring province(s)) and unimportant variables (like 
house price(s) of non-neighboring province(s)) in each equation of the VAR model. To understand the 
motivation behind the design of the prior means, consider the weight matrix F for the VAR consisting 
of house price inflation of the five metropolitan areas. Retaining the ordering of the five metropolitan 
areas as outlined in the FOSC prior, the weight matrix contains values of unity in positions associated 
with the house price inflation(s) of neighboring province(s), i.e., for important variables in each 
equation of the VAR model, while, zero values are assigned to the unimportant variables, i.e., house 
price(s) of non-neighboring province(s). However, as with the Minnesota prior, we continue to have a 
value of one on the main diagonal of the F matrix, simply to emphasize our belief that the 
autoregressive influences from the lagged values of the dependant variable (house price of a specific 
metropolitan area) are important.8  

[INSERT Figure 1 HERE] 
 

1.0 0 1.0 0 1.0
0 1.0 0 1.0 0
1.0 0 1.0 0 0
0 1.0 0 1.0 0
1.0 0 0 0 1.0

F

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                                       (21)                                

The weight matrix given above is then standardized so that the rows sums to unity. Formally, we can 
write the standardized F matrix, C, as follows: 

0.33 0 0.33 0 0.33
0.33 0 0.33 0 0.33
0 0.50 0 0.50 0
0.33 0 0.33 0 0.33
0.50 0 0 0 0.50

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                                        ………….    (22) 

The matrix C, standardized along the rows, allows us to consider the random-walk with drift, which 
averages over the important variables in each equation i of the VAR. Formally, 

1
1

n

it i ij jt it
j

y C y uδ −
=

= + +∑                                                              …………                                     (23) 

where in our case n = 5. On expanding equation (23), we observe that multiplying 1jty − containing the 
house price growth rates of five metropolitan areas at t-1 by the matrix C  would produce set of 
                                                            
7 It must, however, be pointed out that alternative ordering of the six metropolitan areas do not affect our final 
results in any way.   
8 However, using a value of one on the main diagonal element of the F matrix, under the RWA prior, is not always 
an obvious choice. See LeSage and Krivelyova (1999) for an alternative exposition, where autoregressive 
influences are considered to be important only for certain variables.  
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explanatory variables for each equation of the VAR equal to the mean of observations from the 
important variables (neighboring house prices) in each equation i at t-1.9 This also suggests that the 
prior mean for the coefficients on the first own-lag of the important variables is equal to 1/ ic , with ic  
being the number of important variables in a specific equation i of the VAR model. However, as in the 
Minnesota prior, the RWA prior uses a prior mean of zero for the coefficients on all lags, except for the 
first own lags. At this juncture, it is important to point out that RWA approach of specifying prior 
means require the variables to be scaled to have similar magnitudes. This is simply because, it does not 
make much sense intuitively otherwise to suggest that the value of a variable at t  was equal to the 
average of values from the important variables at t-1. This transformation is not much of an issue as the 
data on the variables, in our case the house prices, can always be expressed as percentage change or 
annualized growth rates, thus meeting the similar magnitudes requirements of the RWA prior. 

As proposed by LeSage and Krivelyova (1999),  a flexible form in which the RWA prior 
standard deviations ( 2 ( , , )S i j m ) for a variable j in equation i at lag length m is as follows:    

 

2

2

2

1( , , ) ( , ); ; 1; , 1,....,

( , , ) (0, ); ; 2,...., ; , 1,....,

( , , ) (0, ); ; 1,...., ; , 1,....,

∈ = =

∈ = =

¬∈ = =

∼

∼

∼

c
i

c

c

S i j m N j C m i j n
c

S i j m N j C m p i j n
m

S i j m N j C m p i j n
m

σ

σ
η

σ
ρ

                                                              (24)                           

where 0 1; 1and 0 1cσ η ρ< < > < ≤ . For the variables j = 1,….,n in equation i that are important in 
explaining the movements in variable i i.e., j C∈ , the prior mean for the lag length of 1 is set to the 
average of the number of important variables in equation i and to zero for the unimportant variables, 
i.e., j C¬∈ . With 0 1cσ< < , the prior standard deviation for the first own-lag imposes a tight prior 
mean to reflect averaging over important variables. For important variables at lags greater than one, the 
variance decreases as m increases, but the restriction of 1η >  allows for the zero prior means on the 
coefficients of these variables to be imposed loosely. Finally, we use /c mρσ  for lags on unimportant 
variables, which has prior means of zero, to indicate that the variance decreases as m increases. In 
addition, with 0 1ρ< ≤ , we impose the zero means on the unimportant variables with more certainty. 
 
5. Evaluation of Forecast Accuracy 

The BVARs and the SBVARs, based on the FOSC and the RWA priors, are estimated using 
Theil's (1971) mixed estimation technique, which essentially involves supplementing the data with 
prior information on the distribution of the coefficients. The number of observations and degrees of 
freedom are increased by one in an artificial way, for each restriction imposed on the parameter 
estimates. The loss of degrees of freedom due to over- parameterization associated with a classical 
VAR model is, therefore, not a concern in the BVARs and SBVARs. 

Given the specification of the priors above, we estimate a VAR, BVARs and two SBVAR 
models each for small, medium and large middle-segment houses, based on the FOSC and the RWA 
priors, for the Eastern Cape Metropolitan area (Port Elizabeth/Uitenhage), Greater Johannesburg, the 
Kwa-Zulu Natal Metropolitan area (Durban Unicity), Pretoria and the Western Cape Metropolitan area 
(Cape Town) over the period of 1980:Q1 to 2000:Q4, using quarterly data. Then we compute the out-
of-sample one- through four-quarters-ahead forecasts for the period of 2001:Q1 to 2006:Q4, and 
compare the forecast accuracy relative to that of the forecasts generated the benchmark DFM model. 
Note the variables included in the VARs, classical and Bayesian (spatial and non-spatial) are the house 
price inflation (percentage change in the house prices) of the above mentioned five metropolitan areas. 
All data on house prices are seasonally adjusted, before being converted to house price inflation, in 
order to, inter alia, address the fact that, as pointed out by Hamilton (1994:362), the Minnesota-type 
priors are not well suited for seasonal data. Again recall, the house price data are obtained from the 
latest ABSA Housing Price Review. 

 In each equation of the different types of VARs, there are 41 parameters including the constant, 
given the fact that the model is estimated with 8 lags10 of each variable. Note Sims et al. (1990) 
indicates that with the Bayesian approach entirely based on the likelihood function, the associated 

                                                            
9 Just as with the constant in the Minnesota Prior, δ is also estimated based on a diffuse prior. 
10 The choice of 8 lags is based on the unanimity of the sequential modified LR test statistic, Akaike information 
criterion (AIC), and the final prediction error (FPE) criterion.  
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inference does not need to take special account of nonstationarity, since the likelihood function has the 
same Gaussian shape regardless of the presence of nonstationarity. Given this, we do not need to bother 
about ensuring the stationarity of house price inflation in the Bayesian models. 

The five-variable VAR, and the BVAR and the SBVAR models for an initial prior, are 
estimated for the period of 1980:Q1 to 2000:Q4 and, then, we forecast from 2001:Q1 through to 
2006:Q4. Since we use eight lags, the initial eight quarters of the sample, 1980:Q1 to 1981:Q4, are 
used to feed the lags. We generate dynamic forecasts, as would naturally be achieved in actual 
forecasting practice. The models are re-estimated each quarter over the out-of-sample forecast horizon 
in order to update the estimate of the coefficients, before producing the 4-quarters-ahead forecasts. This 
iterative estimation and 4-steps-ahead forecast procedure was carried out for 24 quarters, with the first 
forecast beginning in 2001:Q1. This experiment produced a total of 24 one-quarter-ahead forecasts, 24-
two-quarters-ahead forecasts, and so on, up to 24 4-step-ahead forecasts. We use the algorithm in the 
Econometric Toolbox of MATLAB11, for this purpose. The MAEs12 for the 24, quarter 1 through 
quarter 4 forecasts are then calculated for the house price inflation of the five metropolitan areas. The 
values of the MAE statistic for one- to four-quarters -ahead forecasts for the period 2001:Q1 to 
2006:Q4 are then examined. The model, DFM or any of the VARs, that produces the lowest average 
value for the MAE is selected, as the ‘optimal’ model for a specific metropolitan area corresponding to 
a specific size of the middle-segment houses.  
 

To evaluate the accuracy of forecasts generated by the DFM, we need alternative forecasts.  To 
make the MAEs comparable with the DFM, we report the same set of statistics for the out-of-sample 
forecasts generated from an unrestricted classical VAR, BVARs, and SBVAR based on the FOSC and 
RWA13 priors. In Tables 1 to 3, we compare the average MAEs of one- to four-quarters-ahead out-of-
sample-forecasts for the period of 2001:Q1 to 2006:Q4, generated by the unrestricted DFM, VAR, the 
BVARs and the SBVARs.14 The conclusions from these tables can be summarized as follows: 

  
[INSERT TABLES 1 THROUGH 3] 

 
(i) Large Middle-Segment Houses: As can be seen from the average MAE 

values for one- to four-quarters-ahead forecasts, reported in Table 1, for this category of 
middle-segment houses, the DFM outperforms the all the other models, except for Eastern 
Cape and the Western Cape metropolitan area, which, in turn, were forecasted best by the 
SBVAR model based on the FOSC, respectively. Amongst the alternative VARs, the 
SBVAR model does the best for all the metropolitan areas, except for Durban Unicity, 
under the Kwa-Zulu Natal metropolitan area, which, in turn, is forecasted with the lowest 
errors by the BVAR model with w = 0.1, d = 1.0. 
(ii)  Medium Middle-Segment Houses: As reported in Table 2, the DFM 

produced the minimum one- to four-quarters-ahead average MAE values for all of the 
four metropolitan areas, except for the Western Cape, when compared to all the 
competing models. The BVAR model with w = 0.2, d = 1.0, does the best for Western 
Cape. Amongst the VARs, the BVAR with w = 0.2, d = 1.0, stands out for Johannesburg, 
by producing the lowest average MAEs.  Durban Unicity and Pretoria are forecasted with 
the lowest average MAEs by the SBVAR based on the FOSC. While, the BVAR with w = 
0.1, d = 1.0, is best-suited for forecasting the Eastern Cape and Western Cape 
metropolitan areas.  

                                                            
11 All statistical analysis was performed using MATLAB, version R2006a. 
12 Note that if t nA +  denotes the actual value of a specific variable in period t + n and t t nF + is the forecast made in 

period t for t + n, the MAE statistic can be defined as 1( ( )) 100,t n t t nabs A F
N + +− ×∑  where abs stands for the 

absolute value. For n = 1, the summation runs from 2001:01 to 2006:04, and for n = 2, the same covers the period 
of 2001:02 to 2006:04, and so on. 
13 Note, the SBVAR model based on the RWA prior that did best amongst other SBVAR models with the RWA 
prior, consistently for all house sizes and majority of the metropolitan areas, had the following values of the 
hyperparameters: 0.3; 8and 1.cσ η ρ= = =  Note the values for these hyperparameters are based on the ranges 
suggested by LeSage (1999). 
14 However, the MAEs for each of the steps of the one- to four-quarters-ahead for all the seven models have been 
reported in Tables A1 through A7 in the appendix of the paper. We have now abbreviated the metropolitan areas 
as: ECAP, JOBU, KWAZ, PRET and WCAP for Eastern Cape, Johannesburg, Kwa-Zulu Natal, Pretoria and 
Western Cape. 
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(iii) Small Middle-Segment Houses: As can be seen from Table 3, except for the 
Pretoria and Western Cape Metropolitan areas, the DFM stands out as the best-suited 
model for forecasting house price inflation. For the Eastern Cape metropolitan area, 
SBVAR based on the FOSC performs best, while for Pretoria the BVAR model with w = 
0.1, d = 1.0 is the preferred model. Amongst the VARs, the SBVAR based on the FOSC 
produces the lowest average MAEs for the two Capes, while the BVAR model with w = 
0.1, d = 1.0 outperforms the other VAR models for Johannesburg and Pretoria. The 
BVAR model with w = 0.2, d = 1.0 does the best for Durban. 

At this stage, refer to the results of Gupta and Das (2008), to put the results of this paper into 
perspective. The authors observed that, though there did not exist a specific model that performed 
outright best, in terms of forecasting house prices of different sizes in the six metropolitan areas of 
South Africa the spatial models in general, tended to outperform the other models for large middle-
segment houses; while the unrestricted VAR and the BVAR models tended to produce lower average 
out-of-sample forecast errors for middle and small middle segment houses, respectively. In our case 
though, in general, and especially for the large middle-segment houses, the SBVAR model based on 
the FOSC, tends to stand out,15 when we take the DFM out of consideration. The next best performing 
model is the BVAR model with w = 0.2, d = 1.0. In addition, the VAR, the BVAR with w = 0.2, d = 
0.5, and the SBVAR based on the RWA prior are the worst performing models.  However, what we can 
say is that, in general, the DFM, performing best in three, four, and three cases for the large-, medium-, 
and small-middle segment houses, respectively, clearly is the overwhelming favorite in forecasting 
regional house price inflation in South Africa over the period of 2001:Q1 to 2006:Q4.16 
 
 
6. Conclusions 

This paper analyzes whether the wealth of information contained in the DFM framework can be 
useful in forecasting regional house price inflation. As a case study illlustration, we use the DFM to 
predict house price inflation in five metropolitan areas of South Africa, namely, Cape Town, Durban, 
Johannesburg, Port Elizabeth and Pretoria, using quarterly data over the period of 1980Q1-2006Q4. 
The in-sample period contains data from 1980Q1 to 2000Q4 and the out-of-sample forecasts are based 
on one- to four-quarter-ahead forecasts over a 24-quarter forecasting horizon covering 2001Q1 to 
2006Q4. The forecast performance of DFM is evaluated in terms of the MAEs, by comparing it with 
SBVAR models, based on the FOSC and the RWA priors, besides the non-spatial models like the VAR 
model and BVAR models with the Minnesota prior, estimated merely based on the house price 
inflation of the five abovementioned metropolitan areas of South Africa.  

Our results indicate that the data-rich DFM, in general, is best suited in forecasting regional 
house price inflation, when compared to the alternative VARs. Clearly then, the role of a DFM 
containing  a wide range of data for an economy, besides also including a set of global variables of 
major trading partners, cannot be underestimated in predicting regional house price inflation. In 
addition, given that there are at least two major limitations to using a Bayesian approach for 
forecasting,: Firstly, as it is clear from Tables 1 to 3, the forecast accuracy is sensitive to the choice of 
the priors. So if the prior is not well specified, an alternative model used for forecasting may perform 
better. Secondly, in case of the Bayesian models, one requires to specify an objective function, for 
example the average MAEs, to search for the ‘optimal’ priors, which, in turn, needs to be optimized 
over the period for which we compute the out-of-sample forecasts. However, there is no guarantee that 
the chosen parameter values specifying the prior will continue to be ‘optimal’ beyond the period for 
which it was selected.  As such, the DFM is, perhaps, a better model to base ones’ forecasts on. 

An immediate extension of the current study would be to put the DFM to test against a full-
fledged model of house prices, based on proper theoretical considerations of the demand and supply 
factors affecting the housing market. In this regard, as in Rapach and Strauss (2007a, 2007b), one can 
also consider using a small-scale DFM that incorporates the essential fundamentals affecting the 
housing market and variables specific to this market.  
 

                                                            
15 Gupta and Das (2008) point out that this might be due to the importance of spatial correlations in the 
determination of the prices of large-sized houses possibly because, there exists less heterogeneity in the supply of 
these kind of housing, or, alternatively, wealthier customers tend to have similar characteristics, thus, causing the 
prices to cluster around some values. 
16 In all the case where the DFM are outperformed, it is the third-best model. 
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Table1. Average MAEs for Large Middle-Segment Houses (2001:Q1-2006:Q4) 

Models 
Eastern 
Cape Johannesburg Kwa-Zulu Natal  Pretoria Western Cape  

DFM 5.1261 2.2191 4.9401 2.1836 2.3428 
VAR 9.1879 11.3401 7.0362 10.3206 4.3185 
BVAR1 4.3975 6.2833 6.2342 6.2009 1.6372 
BVAR2 6.4503 7.8983 6.4835 7.4639 2.6518 
BVAR3 8.5352 10.4708 6.8107 9.6630 3.8612 
SBVAR1 3.5749 4.7957 7.5275 4.2249 1.4566 
SBVAR2 31.1068 82.8945 10.5748 37.1312 8.5379 

Notes: BVAR(1):w=0.1,d=1.0;BVAR(2):w=0.2,d=1.0;BVAR(3):w=0.3,d=0.5, SBVAR1: FOSC, SBVAR2: RWA. 
 
 
Table 2. Average MAEs for Medium Middle-Segment Houses (2001:Q1-2006:Q4) 
Models Eastern Cape Johannesburg Kwa-Zulu Natal  Pretoria Western Cape 
DFM 3.3206 2.3328 3.5333 1.6659 2.0668 
VAR 7.1063 5.3399 5.7949 3.9338 3.2189 
BVAR1 5.5432 5.4218 5.0300 3.6084 0.3212 
BVAR2 5.8387 5.1316 5.4250 3.4440 0.9284 
BVAR3 6.6339 4.8972 5.5663 3.5361 2.5226 
SBVAR 5.7803 5.3247 4.0480 3.3879 0.9659 
RWASVAR 78.2692 37.4065 16.3128 22.3649 26.5445 

Notes: BVAR(1):w=0.1,d=1.0;BVAR(2):w=0.2,d=1.0;BVAR(3):w=0.3,d=0.5, SBVAR1: FOSC, SBVAR2: RWA. 
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Table 3. Average MAEs for Small Middle-Segment Houses (2001:Q1-2006:Q4) 
Models Eastern Cape Johannesburg Kwa-Zulu Natal  Pretoria Western Cape  
DFM 4.6881 2.6770 4.1480 2.4607 2.3597 
VAR 12.7709 5.6551 5.4324 4.2063 5.7359 
BVAR1 11.2287 3.1076 5.0095 2.0019 2.1255 
BVAR2 12.1519 4.0998 4.3014 2.6640 3.2852 
BVAR3 12.4742 5.4004 5.1237 3.8314 5.1758 
SBVAR1 10.2354 4.1184 4.6609 2.4438 1.7485 
SBVAR2 18.3635 5.8401 7.2547 7.7028 6.4930 

Notes: BVAR(1):w=0.1,d=1.0;BVAR(2):w=0.2,d=1.0;BVAR(3):w=0.3,d=0.5, SBVAR1: FOSC, SBVAR2: RWA. 
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APPENDIX 
 

                                                        
 

                       Table: A1. VAR 
 

 
 
 

                                                        Table: A2. BVAR1 
 
                                                            [w=0.1, d=1.0] 
 

                              HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                     LARGE 
ECAP 10.0321 5.8801 1.2706 0.4071 4.397475 
JOBU 3.9313 9.9808 5.705 5.5159 6.28325 
KWAZ 7.959 6.1716 3.0805 7.7257 6.2342 
PRET 1.4258 5.4672 6.2821 11.6288 6.200975 
WCAP 2.6904 0.1238 2.8885 0.8459 1.63715 

MEDIUM 
ECAP 4.1945 6.5177 1.5659 9.8946 5.543175 
JOBU 4.6954 1.0591 5.6908 10.2419 5.4218 
KWAZ 0.8303 4.6862 7.7882 6.8153 5.03 
PRET 3.1483 3.8595 4.069 3.3567 3.608375 
WCAP 0.2072 0.0455 0.7143 0.3176 0.32115 

SMALL 
ECAP 6.0819 12.503 15.0107 11.3192 11.2287 
JOBU 0.2011 0.1766 0.9689 11.0836 3.10755 
KWAZ 2.3705 9.5199 1.9187 6.2289 5.0095 
PRET 1.2747 0.3346 1.6375 4.7608 2.0019 
WCAP 0.9446 4.1117 3.2231 0.2226 2.1255 

 

HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                   LARGE 
ECAP 15.0508 12.4597 5.9946 3.2464 9.187875 
JOBU 10.0058 17.0889 9.5959 8.6696 11.34005 
KWAZ 10.9667 6.4443 0.5436 10.1903 7.036225 
PRET 1.2083 5.7533 13.065 21.2559 10.320625 
WCAP 5.3392 3.2372 5.7853 2.9121 4.31845 

MEDIUM 
ECAP 6.5993 9.4703 1.1398 11.2156 7.10625 
JOBU 8.5337 2.4571 4.6054 5.7632 5.33985 
KWAZ 1.1915 5.6245 9.2084 7.155 5.79485 
PRET 4.3455 5.5938 4.0547 1.741 3.93375 
WCAP 3.249 1.5139 6.4243 1.6884 3.2189 

SMALL 
ECAP 13.6897 5.6866 13.5655 18.1417 12.770875 
JOBU 1.0606 6.1381 3.1665 12.255 5.65505 
KWAZ 5.6244 4.7593 4.5131 6.8327 5.432375 
PRET 1.0269 2.1015 4.6619 9.0347 4.20625 
WCAP 1.9862 10.1872 8.1482 2.6219 5.735875 
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                                                              Table: A3. BVAR2 
 
                                                           [w=0.2, d=1.0] 
 

HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                  LARGE  
ECAP 12.0673 8.6699 3.275 1.7889 6.450275 
JOBU 5.5166 12.3197 7.0058 6.751 7.898275 
KWAZ 8.5688 6.0966 2.714 8.5545 6.483475 
PRET 1.5411 5.5052 8.2946 14.5147 7.4639 
WCAP 3.614 1.7174 4.5606 0.715 2.65175 

MEDIUM 
ECAP 4.6092 7.6662 0.9685 10.111 5.838725 
JOBU 5.3784 0.7535 5.259 9.1356 5.131625 
KWAZ 0.9625 5.1783 8.4557 7.1036 5.425025 
PRET 3.114 3.9278 3.878 2.8563 3.444025 
WCAP 0.7087 0.3443 2.3682 0.2922 0.92835 

SMALL 
ECAP 8.3782 11.1588 14.657 14.4135 12.151875 
JOBU 1.3236 2.5438 0.256 12.2757 4.099775 
KWAZ 4.0961 7.337 0.4965 5.2759 4.301375 
PRET 0.7429 1.3416 2.3766 6.1947 2.66395 
WCAP 0.1677 6.769 5.5159 0.6883 3.285225 

  
 

 
                                                     
                                                        Table: A4. BVAR3 
 
                                                            [w=0.3, d=0.5] 

HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                   LARGE 
ECAP 14.3259 11.2806 5.4729 3.0613 8.535175 
JOBU 8.7199 15.907 9.0779 8.1783 10.470775 
KWAZ 10.2667 6.3273 1.0838 9.5651 6.810725 
PRET 1.6494 5.7059 11.6689 19.6279 9.663025 
WCAP 5.1252 2.823 5.7233 1.7734 3.861225 

   MEDIUM 
ECAP 6.0416 9.3684 0.5666 10.5593 6.633975 
JOBU 7.3179 1.2121 4.6373 6.4215 4.8972 
KWAZ 1.0925 5.426 8.8355 6.9113 5.566325 
PRET 3.8311 5.1434 3.7428 1.4272 3.536125 
WCAP 2.5125 1.1907 6.3641 0.0229 2.52255 

    SMALL 
ECAP 12.0705 7.0767 13.6923 17.0572 12.474175 
JOBU 1.1382 5.6132 2.5776 12.2727 5.400425 
KWAZ 5.6716 5.426 3.2538 6.1432 5.12365 
PRET 1.316 1.7885 4.1368 8.0841 3.83135 
WCAP 1.5112 9.3581 7.7059 2.1281 5.175825 
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                                                             Table: A5. SBVAR1  
 
 

HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                LARGE 
ECAP 8.1351 5.3245 0.3423 0.4978 3.574925 
JOBU 1.8976 7.2774 4.8673 5.1403 4.79565 
KWAZ 10.4105 6.2443 3.2883 10.1669 7.5275 
PRET 1.2296 3.3061 2.7382 9.6258 4.224925 
WCAP 1.4089 1.9586 1.8549 0.6039 1.456575 

   MEDIUM 
ECAP 2.3531 7.1931 3.1303 10.4448 5.780325 
JOBU 3.3057 2.388 5.1277 10.4774 5.3247 
KWAZ 0.6009 3.7289 6.3767 5.4856 4.048025 
PRET 2.6666 3.5549 4.1017 3.2287 3.387975 
WCAP 1.0785 1.8961 0.4865 0.4024 0.965875 

   SMALL 
ECAP 5.2827 11.1244 15.517 9.0175 10.2354 
JOBU 0.8871 3.7471 2.5432 9.296 4.11835 
KWAZ 3.1231 8.457 2.9925 4.071 4.6609 
PRET 2.8895 3.2949 0.2809 3.31 2.443825 
WCAP 2.7179 0.8927 1.2679 2.1156 1.748525 

 
 
 
 
 

                                                             Table: A6. SBVAR2 
 
 

HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                LARGE 
ECAP 8.1346 28.9259 53.4731 33.8935 31.106775 
JOBU 53.8578 65.2186 86.2647 126.237 82.894525 
KWAZ 6.0048 17.2346 9.4617 9.5981 10.5748 
PRET 17.4786 96.933 26.0426 8.0704 37.13115 
WCAP 19.6173 3.3318 1.2938 9.909 8.537975 

    MEDIUM 
ECAP 134.4307 157.9479 16.647 4.0512 78.2692 
JOBU 73.69 17.3448 47.3904 11.2008 37.4065 
KWAZ 1.4714 1.8619 25.6476 36.2701 16.31275 
PRET 35.0418 13.1685 30.8687 10.3808 22.36495 
WCAP 29.7737 3.8096 6.0944 66.5002 26.544475 

   SMALL 
ECAP 19.477 22.1439 10.0257 21.8072 18.36345 
JOBU 0.0463 1.4273 8.1476 13.739 5.84005 
KWAZ 14.7464 3.2491 4.1831 6.8402 7.2547 
PRET 16.4413 10.8168 0.4975 3.0555 7.702775 
WCAP 5.4072 4.3506 3.7109 12.5032 6.492975 
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                                                           Table: A7. DFM 
 

HORIZON 
1 2 3 4 AVERAGE 

PROVINCES                                LARGE 
ECAP 4.8165007 4.998561 5.193826 5.495563 5.12611289 
JOBU 1.7741236 2.492483 2.402638 2.207314 2.21913958 
KWAZ 4.6638863 5.145848 5.07201 4.878549 4.94007348 
PRET 1.7914662 2.939627 1.939383 2.063738 2.18355355 
WCAP 2.0844328 2.084066 2.563278 2.639538 2.34282873 

   MEDIUM 
ECAP 3.0095516 3.715013 3.253477 3.304407 3.32061216 
JOBU 2.2333937 2.336845 2.390551 2.370381 2.33279262 
KWAZ 2.9650327 3.761953 3.693652 3.712709 3.53333665 
PRET 1.5771161 1.692194 1.708774 1.685557 1.66591036 
WCAP 1.952452 1.994611 2.115071 2.205016 2.06678743 

   SMALL 
ECAP 4.5754356 4.984405 4.612619 4.579804 4.68806598 
JOBU 2.3652301 2.292981 2.796089 3.253591 2.67697269 
KWAZ 3.8410471 4.537948 4.086012 4.127189 4.14804915 
PRET 2.2913425 2.734702 2.484763 2.331947 2.46068846 
WCAP 2.0849579 2.359213 2.514553 2.48019 2.35972841 
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Figure 1. Provincial Map of South Africa  
(Source: http://www.sa-venues.com/maps/south-africa-provinces.htm.) 

 
 


