
Forecasting Core Inflation: The Case of South Africa

Franz Ruch · Mehmet Balcilar · Rangan Gupta · Mampho P.
Modise

Abstract Underlying, or core, inflation is likely the most important variable for monetary policy. It is considered
to be the optimal nominal anchor as it is stable, excludes relative price shocks, and reflects underlying trends in the
behaviour of price-setters and demand conditions in the economy. Despite its importance there is sparse literature
on estimating and forecasting core inflation in South Africa, with the focus still on measuring it. This paper empha-
sises predicting core inflation from small, medium and large time-varying parameter vector autoregressive models
(TVP-VARs), factor augmented VARs (FAVAR), and structural break models using quarterly data from 1981Q1
to 2013Q4. We use mean squared forecast errors (MSFE) and predictive likelihoods to evaluate the forecasts. In
general, we find that (i) time-varying parameter models consistently outperform constant coefficient models (ii)
small TVP-VARs outperform all other models; (iii) models where the errors are heteroscedastic do better than
models with homoscedastic errors; and (iv) allowing for structural breaks does not improve the predictability of
core inflation. Overall, our results imply that additional information on the growth rate of the economy and the
interest rate is sufficient to forecast core inflation accurately, but the relationship between these three variables
needs to be modelled in a time-varying (non-linear) fashion.
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1 Introduction

Like many central banks targeting inflation, the South African Reserve Bank (SARB) uses forecasts of headline
inflation as its operational target. However, headline inflation can be volatile, making it difficult to distinguish
between increases in generalised prices and relative price shocks. This volatility typically arises from a small
number of goods and services, most commonly food and energy prices. Petrol prices are a good example of this
type of shock, reacting quickly to changes in the international product price and the exchange rate, and having the
ability to shift headline inflation by a couple of percentage points in months. However, these movements do not
reflect the underlying trends in the behaviour of price-setters or demand conditions in the economy, the issues that
matter for a central bank.

In the mid-2000s, prior to the financial crisis, some monetary economists including Goodfriend (2007) and
Woodford (2003) argued that monetary policy had reached a consensus, namely, that core inflation rather than
headline inflation was the best nominal anchor for monetary policy1. Core inflation is more stable and would
serve as a better anchor for inflation expectations. Woodford (2003, :14) stated that “central banks should target a
measure of ‘core’ inflation that places greater weight on those prices that are stickier”. These authors were talking
about a conventional definition of core inflation as in “inflation that excludes volatile prices of such goods as food
and oil” (Goodfriend, 2007, :62). In South Africa, SARB generally refers to core inflation as headline consumer

prices less food, non-alcoholic beverages, petrol, and energy (SARB, 2016).

Only one central bank, however, targets a measure of core inflation2. Despite the use of headline inflation as
the operational target, central banks depend just as heavily on core inflation in their decision-making processes.
In SARB’s March 2015 Monetary Policy Committee (MPC) statement, the MPC stated that oil prices would lead
to a breach of the 3-6 per cent inflation target range and that the bank would “look through these developments”
(Kganyago, 2015a). Similarly, in the May 2015 statement, the MPC stressed that “[w]hile monetary policy should
generally look through supply side shocks, such as large electricity tariff increases and oil price changes, we have
to be mindful of the second-round effects of such shocks” (Kganyago, 2015b). These statements reflect the value
of core inflation in determining a path for monetary policy.

The critical importance of core inflation in the monetary policy process, especially a forward-looking process,
as in South Africa, requires accurate forecasts of core inflation. To ensure that the best possible estimates of core
inflation are available to the central bank, we looked at a host of possible models that the existing literature shows
to have some success in forecasting, and that incorporate a wide variety of new techniques. These include models
that take account of large datasets of information, that address possible breaks in the inflation series as monetary
policy regimes change, that address the changing relationship between macroeconomic variables and inflation or
the structure of the economy, and that provide mechanisms to look at the importance of volatility. We consider core
inflation to be defined as targeted consumer prices less food, non-alcoholic beverages, petrol, and energy, as this
is the measure used by policymakers in communicating issues surrounding underlying prices. We used targeted
inflation because the target variable has changed from headline CPI less mortgage interest (CPIX) to headline
CPI after the introduction of the CPI basket, based on the Classification of Individual Consumption by Purpose
(COICOP) in 2009.

The first contribution of this paper is that we employed methods for forecasting core inflation in large TVP-
VARs, developed by Koop and Korobilis (2013). These models use forgetting factors for computational feasibility.

1 Monetary policy is subject to a new debate on policy frameworks, including nominal income targeting and price-level targeting, following
the global financial crisis (see, for example, Woodford et al., 2014).

2 Only Norway operationally targets core inflation, while its mandate is in terms of headline inflation. There are a number of reasons why
headline inflation has become the variable of choice for central banks, including that communication with the public is thought to be easier;
wide public understanding; and that people care about a cost-of-living index, the basket of goods they actually consume, rather than core
inflation.
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Second, and in addition to the models in Koop and Korobilis (2013), we also assessed the performance power of
factor-augmented VARs. As stated in Camba-Mendez and Kapetanios (2005), dynamic factor models tend to
perform well in comparison to traditional measures. Third, the paper adds value by also considering structural
break models. Du Plessis et al. (2015) states that South African core inflation data has recently been subjected to a
structural break given changes in the basket of goods and services and the methodology used in constructing this
index. To deal with the structural break dilemma, we combined the Pesaran et al. (2006) (PPT) and the Koop and
Potter (2007) (KP) methods. The basic idea of the methodology was to use the PPT prior for the break process
and the KP prior in conditional mean and variance. We followed Koop and Korobilis (2012, 2013) and Stock and
Watson (1999) in the selection of data, which is motivated by a basic New Keynesian model with a generalised
Phillips curve. We used quarterly data starting from 1981Q1 to 2013Q4 for 21 variables that include activity
variables, labour market variables, financial variables and other prices.

To the best of our knowledge, this is the first paper to forecast core inflation formally in South Africa. The only
other relevant paper is that of Gupta et al. (2015), where the authors used the latent state-information recovered
from a dynamic stochastic general equilibrium (DSGE) model to forecast core inflation, which, however, was not
modelled within the DSGE model explicitly. This means that it was not possible to identify the variables that
could help forecast core inflation. Allowing for a large number of predictors, in line with the empirical literature
on forecasting inflation based on a New-Keynesian Phillips curve, we were able to determine, which variables
contain predictive information for core inflation.

The main results of this paper are that addressing changing dynamics by introducing time-varying parameters
generates forecasts of core inflation that are more accurate. More information does not necessarily mean better
forecasts, as small models outperform large models. In general, i) time-varying parameter models consistently
outperform constant coefficient models; (ii) small time-varying parameter vector autoregressive models (TVP-
VARs) outperform all other models tested; (iii) models where the errors are heteroscedastic do better than models
with homoscedastic errors; (iv) models assuming that the forgetting factor remains 0.99 throughout the forecast
period outperform models that allow for the forgetting factors to change with time; and (v) allowing for discrete
structural breaks does not improve the predictability of core inflation.

The rest of the paper is as follows: section 2 places this paper in the context of the literature, section 3 discusses
the methodology followed by section 4 discussing the data. Section 5 follows with a discussion of the results before
concluding in section 6.

2 Literature review

Most of the literature on core inflation has evolved around defining a practical measure of core inflation rather than
on forecasting that measure. This is because core inflation is an unobservable only defined theoretically. Theory
provides two broad definitions of core inflation expounded in Roger (1998): as a ‘persistence’ concept as defined
by Friedman et al. (1963) or as a ‘generalised’ concept as defined initially by Eckstein (1981). Friedman et al.
(1963, pg. 25) highlights two distinct characteristics of inflation “...between a steady inflation, one that proceeds
at a more or less constant rate, and an intermittent inflation, one that proceeds by fits and starts...” the former being
core inflation. Eckstein (1981, pg. 7), on the other hand, describes core inflation as “...the trend increase of the
cost of the factors of production” which “...originates in the long-term expectations of inflation in the minds of
households and businesses, in the contractual arrangements which sustain the wage-price momentum, and in the
tax system”. These theoretical definitions have seen exclusion-, model- and statistical-based methods all developed
in order to estimate a practical measure of core inflation (see for example Cogley, 2002; Cristadoro et al., 2005;
Quah and Vahey, 1995; and Bryan and Cecchetti, 1993).
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The South African literature has similarly been focused exclusively on defining a measure of core inflation
rather than forecasting this measure (see Rangasamy, 2009; Blignaut et al., 2009; Ruch and Bester, 2013 and
Du Plessis et al., 2015). Blignaut et al. (2009) and Rangasamy (2009) create exclusion-based measures of inflation
which exclude important components of inflation depending on their volatility and persistence respectively. Ruch
and Bester (2013) use a statistical method of singular spectrum analysis to filter out the more volatile components
of inflation in the frequency rather than time domain. Finally, Du Plessis et al. (2015) compare and contrast a
number of alternative methods and introduce wavelet and dynamic factor model based measures of core inflation.

There is an element to this literature that does provide some guidance on the forecastability of core inflation
but only as a means to an end. One of the defining characteristics of a good core inflation measure is that it helps
predict future headline inflation (see Clark, 2001 and Blinder, 1997). To this end Nolazco et al. (2016), Bryan
and Cecchetti (1993) and Camba-Mendez and Kapetanios (2005) internationally, and Ruch and Bester (2013) and
Du Plessis et al. (2015) domestically, are examples that look at the in- and out-of-sample performance of core
inflation measures to help predict headline inflation.

However, core inflation does not only form part of the information set of headline inflation. It is by definition
that part of inflation a central bank should most be concerned about. Core inflation measures attempt to examine
the component of inflation that is related to broad trends in economic conditions and pricing behaviour, and which
are likely to be more persistence (Ranchhod, 2013). Bryan and Cecchetti (1994) further describe core inflation
as a process that should be highly persistent, forward looking and strongly linked to monetary policy dynamics.
Recognising core inflation’s central role in policy deliberation, Sun (2004), Morana (2007), and Kapetanios (2004)
directly look at the ability to forecast core inflation. Sun (2004) proposes an approach to forecast Thailand core
inflation. He combines a short-term model which attempts to filter the forecasting power of a variety of monthly
indicators based on goodness-of-fit criteria, with an equilibrium-correction model linking core inflation to its
longer-run structural determinants. Morana (2007) uses a principal components frequency domain approach which
is suited to estimate systems of fractionally co-integrated processes to estimate and forecast core inflation for the
euro area. Kapetanios (2004) propose the use of large datasets using factor models in modeling and forecasting
core inflation.

There is only one paper in the South African literature that directly addresses our ability to forecast core
inflation. Gupta et al. (2015) use the latent state-information recovered from a Dynamic Stochastic General Equi-
librium (DSGE) model to forecast core inflation, which was, however, not modeled within the DSGE model
explicitly. This meant that, it was not possible to identify the variables that could help forecast core inflation. The
domestic literature tends to focus on forecasting headline inflation (for detailed literature reviews, see Woglom,
2005; Kanda et al., 2016; and Gupta et al., 2015).

3 Methodology

The methods used in this paper to forecast are motivated by the desire to improve simple models in areas that have
been shown to lead to bias and poor forecast performance. Models were extended in four important dimensions
in an attempt to be all-encompassing. First, recent methodological and computing gains have made it possible
to increase the dimensionality of models, solving the omitted variable bias in smaller VARs, to include up to
a hundred variables when analysing and forecasting macroeconomic variables. Bańbura et al. (2010), Giannone
et al. (2014), and Carriero et al. (2015) show that increasing the number of variables leads to better forecasting
accuracy but that this does have its limitations. Bańbura et al. (2010) and Koop (2013) provide evidence that this
limit is in the region of 20 variables. We considered a number of model sizes, with up to 21 variables.

Second, a common assumption in simple models of analysis and forecasting is that the errors are homoscedas-
tic. Of course, macroeconomic shocks are not. Engle (1982) first introduced heteroscedastic errors using an au-
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toregressive conditional heteroscedastic (ARCH) process and showed with this seminal piece that inflation in the
United Kingdom had significant and changing volatility, especially during the 1970s. Fedderke and Liu (2016)
highlight the “surprising” lack of work taking into account ARCH effects in SA inflation, especially given the
substantial focus on the effects of the exchange rate on inflation. This paper, however, looks at another version of
heteroscedasticity called stochastic volatility first introduced to VARs by Uhlig (1997). Both homoscedastic and
heteroscedastic error structures are used.

Third, significant changes in the structure of the SA economy over the last four decades have made it unlikely
that relationships between economic variables remained constant or that there were not any structural breaks.
Structural breaks are a significant cause of poor forecasting performance (Stock and Watson, 1996; Ang and
Bekaert, 2002; Clements and Hendry, 1998; and Bauwens et al., 2011). To address changing relationships, time-
varying parameters were introduced. Primiceri (2005) importantly shows that monetary policy has changed over
time in the US. One recent example of changing relationships in SA is provided by Jooste and Jhaveri (2014), who
show that the exchange rate pass-through to inflation is time-varying and has declined recently. These changing
relationships also matter for forecasting. To deal with structural breaks, two methods were used. First, discrete
breaks were taken into account using methods introduced by Bauwens et al. (2011). Second, we used dynamic
dimension selection (DDS) as in Koop and Korobilis (2010), allowing for switches between entirely different
models to accommodate these breaks.

Fourth, the way large information sets are collated may affect the forecasting accuracy of models. So, in-
stead of estimating large VARs it may be that factor augmented VARs – where information is combined into a
smaller number of common factors that remove noise – provide better forecasts. Factor models have been shown
to improve forecasting accuracy compared with naive models over short horizons by Giannone et al. (2008) and
Kabundi et al. (2016).

This section introduces the methodologies that were followed.

3.1 Large TVP-VARs

We followed the specification in Koop and Korobilis (2013) and specified the time-varying parameter vector-
autoregressive model (TVP-VAR) as:

yt = Ztβt + εt (1)

and

βt+1 = βt +µt (2)

where εt is an independently and identically distributed (i.i.d.) error with N(0,Σt) and µt is i.i.d. N(0,Qt). εt

and µt are independent of one another for all s and t. yt for t = 1, ...,T is an M×1 vector containing observations on
M time-series variables and Zt is an M× k matrix, defined so that each TVP-VAR equation contains an intercept
and p lags for each of the M variables for k = (1+ pM). Following Koop and Korobilis (2013), Fagin (1964),
Jazwinski (2007), and Raftery et al. (2005), we used forgetting factors instead of standard Bayesian statistical
inference, since the latter tends to work well only with small TVP-VARs. Forgetting factors allow the Kalman
filter to be run only k times, providing an accurate approximation of the likelihood function as the state vector
becomes independent across models (for further details on formulating the Kalman filter see, among others, Koop
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and Korobilis, 2013; as well as Frühwirth-Schnatter, 2006). In estimating a TVP-VAR using forgetting factors, let
ys = (y1, ...,ys)

′ denote observations through time s. The standard Kalman filter states the following:

βt−1|yt−1 ∼ N(βt−1|t−1,Vt−1|t−1) (3)

The formulae for βt−1|t−1 and Vt−1|t−1 are given in Frühwirth-Schnatter (2006). Further,

βt |yt−1 ∼ N(βt|t−1,Vt|t−1) (4)

where

Vt|t−1 =Vt−1|t−1 +Qt (5)

To estimate using the forgetting factor, we replaced Equation 5 with the following equation:

Vt|t−1 =
1
λ

Vt−1|t−1 (6)

λ is the forgetting factor, and varies between 0 < λ ≤ 1. Equation 6 implies that observations for t periods in
the past have weight λ t in the filter estimate of βt . This controlled the degree of time-variation of the coefficients.
Equations 5 and 6 also imply that Qt = (λ−1− 1)Vt−1|t−1; if λ = 1, then we get constant coefficients. Raftery
et al. (2010) set λ = 0.99, while Koop and Korobilis (2012) use [0.8,0.95,0.99]. In this paper, we show results for
λ = 0.99, and we followed the approach in Koop and Korobilis (2013) of estimating λ at each point in time3.

We also used a decay factor, κ , to simplify the implementation of multivariate stochastic volatility in εt . An
exponential weighted moving average (EWMA) was used to estimate Σt following RiskMetrics (1996):

Σ̂t = κΣ̂t−1 +(1−κ)ε̂t ε̂
′
t (7)

where ε̂t = yt −βt|tZt is estimated by the Kalman filter. We set the decay factor equal to 0.96.
Although TVP-VARs work relatively well for modelling the gradual evolution of coefficients, they tend to

work poorly for abrupt changes of the coefficients. One solution to this problem is allowing for switches between
entirely different models to accommodate these breaks. We used methods developed in Raftery et al. (2010) and
Koop and Korobilis (2012, 2013) for doing dynamic model averaging (DMA), which can also be used for dynamic
model selection (DMS). DMA refers to the averaging of a large set of j models, weighted based on their predictive
content, to forecast at a specific point in time, i.e. calculating the likelihood function for j = 1, ...,J and averaging
these likelihoods to generate a forecast. This produces a probability πt|t−1, j with j = 1, ...,J. πt|t−1, j varies over
time, and the forecasting model can switch over time. Once the πt|t−1, j for j = 1, ...,J are obtained, they can be
used either to achieve model selection or model averaging. DMS refers to when the single best model – which can
change overtime, given selection over a large number of predictors – is used to forecast at each point in time, that
is, selecting the model with the highest likelihood. The advantage of this approach is that optimal values for λ , κ

and the VAR shrinkage parameter can be selected in a time-varying manner.
To construct a dynamic model selection, we followed the basic algorithm in Raftery et al. (2010) and Koop

and Korobilis (2012, 2013). Given the initial condition π0|0, j for j = 1, ...,J, the model prediction equation using
the forgetting factor approach was derived as follows:

πt|t−1, j =
πα

t−1|t−1, j

∑
J
l=1 πα

t−1|t−1,l

(8)

3 Estimating λ involves using dynamic model selection to choose a value of λ ∈ {0.97,0.98,0.99,1} at each point in time. For more details,
see Koop and Korobilis (2013, :9).
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with a model updating equation of:

πt|t, j =
πt|t−1, j p j(yt |yt−1)

∑
J
l=1 πt|t−1,l pl(yt |yt−1)

(9)

where p j(yt |yt−1) is the predictive likelihood, measuring the forecast performance. πt|t−1, j can be written as
follows:

πt|t−1, j ∝

t−1

∏
i=1

[p j(yt−i|yt−i−1)]α
i

(10)

The above equation can be interpreted as follows: if α = 0.99, then the forecast performance five years ago
receives 80 per cent as much weight as the forecast performance for the last period, but if α = 0.95, then the
weight for the forecast performance five years ago will only be 35 per cent. α = 1 corresponds to conventional
model averaging using maximum likelihood.

The forgetting and decay factors introduced help to deal with the time-varying nature of the model and negate
the need for priors on the covariance matrices Qt and Σt . However, equally important is how the parameters βt are
estimated. Since we are estimating large VARs and time-varying VARs, and hence could have run into overfitting
problems (see Bańbura et al., 2010 as well as Koop and Korobilis, 2013), we used a tight Minnesota prior for β0,
specified in Koop and Korobilis (2013). After transforming the data to stationarity, the prior mean was set equal
to E(β0) = 0. The Minnesota prior covariance matrix for β0 is a diagonal matrix such that var(β0) = V and V i

denotes the diagonal elements. The prior covariance matrix was then defined as:

V i =


γ

r2 for coefficients on r for r=1,...,p

a for the intercept
(11)

where p is the lag length. γ determines the degree of shrinkage on the VAR coefficients, as they are lagged
further into the past. Generally, training samples are used to determine appropriate values of priors, as would be
the case with a normal Minnesota prior. Here instead, γ is estimated in a similar way as the forgetting factors using
DMS with a wide grid for γ ∈ [105,0.001,0.005,0.01,0.05,0.1]. In practice this means that there were a number
of different prior values for γ , with the optimal one being chosen by maximising the predictive likelihood. γ is
small, since a large degree of shrinkage is needed to produce reasonable forecast performance in large VARs and
TVP-VARs4. a was set to equal 102.

We also augmented the model space with models of different dimensions. In particular, we did dynamic model
selection for small (including only three variables), medium (including seven variables) and large (including 21
variables) TVP-VARs. As discussed in Koop and Korobilis (2013) – and as used by Ding and Karlsson (2014)
– working with TVP-VARs of different dimensions, yt will be of different dimension, and therefore predictive
densities p j(yt−1|yt−i−1) will not be comparable. This can be resolved by using the predictive densities for the
small VARs (these are variables that are included in all models). In this analysis it means that the dynamic model
selection is determined by the joint predictive likelihood for economic growth, core inflation and the three-month
Treasury Bill rate.

4 Unlike the normal Minnesota prior, which has two hyperparameters for own lags and other lags, we used one shrinkage parameter to
simplify computation.
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3.2 FAVAR models

Although work by Koop and Korobilis (2013) and Bańbura et al. (2010) provide techniques to shrink the parameter
space in order to make large VAR estimation and analysis feasible, it may be that using other methods such as
data shrinkage from factor augmented VARs (FAVARs) provide better forecasts of core inflation. We therefore
estimated a FAVAR model using a two-step process (as in Bernanke et al., 2005). This method is simpler and
easier to implement. First, the factors are estimated using principal components analysis with the number of
factors determined according to the information criterion by Alessi et al. (2010)5. Next, the FAVAR model was
estimated. Equations 1 and 2 then became:

F̄t+1 = F̄tβt + εt (12)

and
βt+1 = βt +µt (13)

where F̄t = [Ft ,xt ] with Ft the factors and xt being core inflation. In the estimation step, Ft was replaced with
an estimate F̂t from step one.

3.3 Structural break models

South Africa underwent substantial changes in its economic structure over the past four decades including financial
liberalisation with the end of Apartheid, the great moderation, and disinflation from inflation rates closer to 20 per
cent to rates around the South African Reserve Bank’s upper target of 6 per cent. Similarly the monetary policy
target and the methodology used to calculate inflation has changed. Given the importance of these breaks in both
levels and differences data we also consider a structural break model to forecast core inflation. Structural breaks are
a significant cause of poor forecasting performance (Stock and Watson, 1996; Ang and Bekaert, 2002; Clements
and Hendry, 1998; and Bauwens et al., 2011). We consider a combination of the PPT and the KP priors. The
model uses the PPT prior for the break process and the KP prior in conditional mean and variance. We use the
same framework as in Bauwens et al. (2011) and a detailed discussion is presented there. We specify the linear
regression model framework for the structural break models as:

yt = Ztβst +σst εt (14)

Where yt is the dependent variable, Zt contains the lagged dependent variables or lagged exogenous variables
available for forecasting yt , εt is i.i.d. N(0,1). βst determines the conditional mean coefficients and σst represents
volatilities. This regression allows for βst and σst to vary over time with st ∈ 1, ...,K a random variable indicating
which regime applies at time t.

We use the KP prior in conditional mean and variance which adopts a hierarchical prior motivated by the state
space literature on time-varying parameter models (discussed in detail in Bauwens et al., 2011). The random walk
evolution of coefficients is specified as:

β j = β j−1 +µ j (15)

Where µ j is i.i.d. Nm(0,B0) which is equivalent to β j|β j−1 ∼ Nm(β j−1,B0). This means that if a structural
break occurs, the conditional mean of β j will be drawn from a distribution with mean β j−1 such that the next

5 We employed numerous other methods, including Bai and Ng (2002) and Onatski (2010) to ensure that we were getting the correct number
of factors.
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regime is determined by the most recent regime. The parameters β j−1 and B0 are unknown and can be estimated
from the data.

To model the break process, we consider an approach in Chib (1998) and used in PPT. Assume that the
restricted Markov process for st is given by:

Pr(st = i|st−1 = i) = pi (16)

and
Pr(st = i+1|st−1 = i) = 1− pi (17)

This equation is interpreted as a hierarchical prior and implies a geometric prior distribution for di = τt − τt−1

- which measure the durations of regimes. Therefore if regime i holds at time t−1, then at time t the process can
either remain in regime i with probability pi or moves to regime i+1 with probability 1− pi if a break occurs. To
select the number of breaks, we rely on the specification in Bauwens et al. (2011) and set the maximum breaks
allowed to five such that: K = 1, ...,Kmax.

4 Data

The data used was motivated by a generalised New Keynesian Phillips curve, as in Koop and Korobilis (2012)
and Stock and Watson (1999). Table 1 provides details of the 21 variables included in the dataset, the VAR these
variables were used in, as well as the transformation imposed. The data is quarterly and ranges from 1981Q1 to
2013Q4. All data was transformed to be stationary (see transformation in Table 1). This includes activity variables
such as real GDP and capacity utilisation; labour market variables such as unit labour cost, wages and employment;
financial variables such as stock returns and money stock; and other prices such as producer price inflation, oil
prices and non-energy commodity prices. Note that the start and end dates of our sample were driven purely by
the available data on the various variables used, at the time of writing this paper.

Core inflation is defined as targeted inflation less food, non-alcoholic beverages, petrol, and energy, obtained
from data collected by StatsSA. This is the core inflation most commonly used by SARB when communicating
issues of monetary policy and also the core inflation measure used in the Bank’s main econometric model. Targeted
inflation refers to headline CPI less mortgage interest (CPIX) prior to 2009 and as headline CPI thereafter. This
takes into account the new CPI basket introduced in 2009, based on Classification of Individual Consumption
According to Purpose (COICOP). It is seasonally adjusted.

5 Results

5.1 Determining the number of factors in the FAVAR model

We implement a modified Bai and Ng (2002) information criterion as developed in Alessi et al. (2010) that chooses
the number of factors by minimising the variance of the idiosyncratic component of the approximate factor model,
subject to a penalisation in order to avoid over-parameterisation. The information criterion is:

r̂T
c,M = argmin

0≤w≤rmax

ICT∗
α,M(w) (18)

where

ICT∗
α,M(w) = log[

1
MT

M

∑
i=1

T

∑
i=1

(xit − β̂
(w)
i F̂(w)

t )2]+ cwpa(M,T )for a=1,2 (19)
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For w common factors, M is the number of variables, T the number of observations, xit − β̂
(w)
i F̂(w)

t the id-
iosyncratic error, c an arbitrary positive real number and pa(M,T ) the penalty function. The penalty function is
multiplied by c since Hallin and Liška (2007) show that p(M,T ) leads to consistent estimation of w, the number
of factors, if and only if cp(M,T ) does as well.

The behaviour of r̂T
c,M can only be determined from analysing subsamples of sizes (mh, th). For any h, we can

compute r̂th
c,mh which is a monotonic non-increasing function in c. Therefore, there exist moderate values of c such

that r̂T
c,M converges from above to w. This has to occur independent of h for the criterion to be stable. This is

measured by the variance of r̂th
c,mh as a function of h:

Sc =
1
H

H

∑
h=1

[r̂th
c,mh
− 1

H

H

∑
h=1

r̂th
c,mh

]2 (20)

We use all data included in the large VAR (excluding core inflation itself) to estimate factors for a FAVAR
model. The transformed data is standardised. Figure 1 plots the criterion estimate for the number of factors on the
y-axis and an arbitrary positive real number c on the x-axis. We run the results over a number subsample sizes
in order to ensure that they are robust. To determine the number of factors we have to find the first value of r̂T

c,M

where Sc is zero. The results suggest that the number of factors should be three.

Fig. 1: Estimating the number of factors
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Other methods were also used including the original Bai and Ng (2002) information criterion and a method
proposed by Onatski (2010). The Bai and Ng (2002) method did not converge, a common problem with smaller
datasets6. According to Onatski (2010), three factors were also chosen.

5.2 Forecasting performance

The main results of this paper are presented in Table 2 and Table 3. These show the iterated forecasts for horizons
1 to 8 quarters (h = 1, ...,8) with a forecast evaluation period of 2000Q1 to 2013Q4, i.e. the starting point of
the out-of-sample period corresponds to the starting quarter of the inflation targeting era in South Africa. We
look at one- to eight-quarters-ahead forecasts, since the SARB carries out its monetary policy decisions based on
inflation forecasts till two-years-ahead, i.e., eight quarters.7 The VAR models are estimated with p = 1 based on
the Bayesian Information Criteria (BIC). In the appendix we include models with p = 4. The following models
are presented:

– A full approach which uses all three VAR model sizes using DMS; referred to as dynamic dimension selection
(DDS). This is labeled TVP-VAR-DDS in the tables;

– TVP-VAR model using the three different size VARs including a small (S) VAR using three variables; a
medium (M) VAR using seven variables; and a large (L) VAR using 21 variables;

– Heteroscedastic VARs using the three dimensions setting λ = 1 and κ = 0.96;
– Homoscedastic VARs using the three dimenstions setting λ = 1 and κ = 0.6;
– A structural breaks model using PPT and KP priors;
– A random walk model;
– TVP-AR models;
– A small VAR estimated using Ordinary Least Squares (OLS);
– FAVAR models;
– and an AR(1) model using OLS.

Since the use of iterated forecast increases the computational burden we follow Koop and Korobilis (2013) and
do the predictive simulation in two ways. First, we assume that the that the VAR coefficients remain unchanged
between T and T +h, i.e. βT+h = βT . Second, we assume that these coefficients change out-of-sample and simulate
from equation 2 to produce draws of βT+h and is labeled as βT+h ∼ RW in the tables. Both methods provide βT+h,
which we use to simulate draws of yT+h conditional on βT+h to approximate the predictive density.

To evaluate the forecast performance we use mean squared forecast errors (MSFE) and the predictive likeli-
hood. The MSFE and the predictive likelihood in Table 2 and 3 are presented as relative to the random walk model.
This means that the numbers in Table 2 are the ratios of a particular model specification divided by the random
walk model. For Table 3, the results presented are the sum of log predictive likelihood of different models minus
the sum of log predictive likelihood obtained for the random walk model.

DDS forecasts use the TVP-VAR of dimension with the highest probability. We therefore plot the time-varying
probabilities associated with the TVP-VAR of each dimension in Figure 2. Between 1981 and 1994 DMS switches
between all three models with periods where each model dominates. In general the medium VAR tends to have
the highest probability throughout this period. From 1994 onwards the small VAR dominates with the large VAR
consistently having the lowest probability. This means that DMS is using the small VAR to produce forecasts of
core inflation.

6 In factor analysis, usually M ≥ 100. See Forni et al. (2009) as a example of convergence problems.
7 However, we also conducted our analysis till twelve-quarters-ahead. Our basic results in terms of the ranking of the models based on their

forecast performances, continued to remain unchanged when compared till eight-quarters-ahead. Complete details of these results are available
upon request from the authors.
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Fig. 2: Estimated Dynamic Dimension Selection probabilities of the small, medium and large TVP-VARs

In general, most models (full model, TVP-AR, small and medium TVP-VARs and FAVAR) and different
specification (excluding the VAR with homoscedastic errors) perform better than the random walk model. The
models perform particularly much better for h = 3,4,5,6. The average performance of all models excluding the
benchmark models improve the forecast of core inflation relative to the random walk model by between 20 and
40 per cent. The only horizon where we do not see any gains is one period ahead (h = 1). The full model and the
TVP-AR are preferred for core inflation across all horizons and model specifications. For the small and medium
TVP-VARs as well as the FAVAR only the VAR with homoscedastic errors is outperformed by the random walk
model at some horizons. The large TVP-VAR and the benchmark models tend to compete with the random walk
model since they perform better in some horizons and worse in others. The large TVP-VAR outperforms the
random walk model only when h = 4,5,6.

Figure 3 provides a summary of the relative performance of different types of models. It compares models
with heteroscedatic errors to those with homoscedastic errors, time-varying parameter models with its constant
parameter counterparts, Different sizes of models, the overall best performing model – the small TVP-VAR model
with λ = 0.99 and βT+h ∼ RW – to the random walk model, and the best model at each forecast horizon with the
random walk model. The results are discussed below. The figure reports the percentage gain in performance; i.e.
Small VAR models outperform Large VAR models by about 40 per cent one-quarter ahead.
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Fig. 3: Result Summary: Relative performance gains
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Small VAR models outperform its larger variants by a significant margin. The average outperformance of the
small VARs compared to the large VARs is 48 per cent while compared to the medium VAR is it 25 per cent. The
best outperformance compared to the large VARs occurs at h = 2 at 51 per cent while the least outperformance
occurs at h = 1 of 39 per cent. Generally the expectation of more information should improve forecasts of core
inflation. This result is not universal across variables as a similar exercise on real GDP growth reveals that Large
VARs tend to do better than small VARs. This implies that the additional variables included in the medium and
large VARs do not have any predictive power for core inflation.

Over all models and all horizons time-varying parameter models outperform constant coefficient models by an
average 31 per cent8. The minimum improvement is at h = 1 at 22 per cent and the best outperformance is at h =

3,5,6 of 33 per cent. The importance of time-varying parameters highlights the changing economic relationships
over the past three decades and particularly since the financial crisis. Jooste and Jhaveri (2014), for example, show
that exchange rate passthrough in South Africa has changed significantly over time with important implications
for inflation. This is a particularly important result since most models used to forecast the main macroeconomic
variables by professional forecasters and the central bank are constant coefficient models including the model
used in De Jager (1998). Of course these forecasts include judgment but time-varying parameter models provide
a better starting point. Moving to time-varying parameter models can improve forecasts by a 1

3 .
VARs with stochastic volatility outperform models with homoscedastic errors at all horizons improving fore-

casts of core inflation by 37 per cent with the best outperformance occurring at h = 1 where stochastic volatility
VARs outperform by 41 per cent. However, performances are variable. Relative to the random walk model the
small and large homoscedastic VAR models outperform at the majority of horizons while this is not the case with
the medium and FAVAR. The poor performance of the homoscedastic VAR model highlights the importance of

8 We also included models with only time-varying intercept terms as an alternative TVP strategy. These models do not outperform models
where all parameters are allowed to vary but do better than the constant coefficient models.
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allowing for heteroscedastic errors in getting the shape of the predictive density. In general, these results show that
the models employed in this paper provide an effective way of estimating even large VARs with heteroscedastic
errors and choosing prior shrinkage.

From Table 2, there are no significant gains when simulating βT+h from the random walk model compared to
just assuming that the VAR coefficients remain unchanged over the forecast horizon. The noticeable comparison
can be made between models where λ = 0.99 and models with λ = λt . Models where the forgetting factor is
pre-specified outperform models where the forgetting factors are allowed to change over time.

The Bayesian information criterion chose one lag for the VAR models. However, it may be that longer lag
orders perform better at forecasting despite the risk of overfitting and higher parameter uncertainty. Table A1 in
appendix A looks at the MSFE relative to the random walk model for models with lag length four. In general,
more lags improves the forecasting performance of all models by around 14 per cent compared to models with
one lag. The overall relative performance of models generally mimics the main results of this paper with a few
exceptions. Models with time-varying parameters outperform models with constant coefficients by an average of
47 per cent over all horizons. Small VARs outperform Large VARs. Models with stochastic volatility improve
forecasts by an average of 72 per cent compared to models with homoscedastic errors. In essence, the full model,
TVP-AR, the small and medium TVP-VAR models, as well as the FAVAR (excluding the VAR with homoscedastic
errors) perform better on average relative to the other models and the random walk model. Specifically, the small
TVP-VAR has the smallest MSFE relative to all models employed.

With regards to the predictive likelihood results presented in Table 3, all VAR specifications perform signif-
icantly better than the random walk model, confirming somewhat the results presented in Table 2. Even in this
case, models with λ = 0.99 perform better than models where λ = λt . Also, the VARs with heteroscedastic errors
outperform the VARs with homoscedastic errors. Even with the predictive likelihood, the benchmark models tend
to perform poorly relative to the random walk model. Only the AR(1) structural break model performs better than
the random walk model for h = 3 onwards. When taking the average of the models, the full model, TVP-AR,
the small and medium TVP-VAR models, as well as the FAVAR (excluding the VAR with homoscedastic errors)
perform better on average relative to the other models - as in the case in Table 2. Similar to the results using the
MSFE, the small TVP-VAR has the largest predictive likelihoods relative to all other models for all specifications.9

To summarize our findings, in Tables 4 and 5, we present the results for point and density forecasts of core
inflation of the best models on average (over the eight forecast horizons) in a specific category relative to that
small-scale TVP-VAR model with λ = 0.99, βT + h = βT , which in turn is the best performing model across
all categories of models considered. As can be seen the gains are relatively large compared to the large-scale
TVP-VAR and the benchmark models. The TVP-VAR-DDS, λ = 0.99,βT + h = βT , however, does reasonably
well, when it comes to density forecasts. When compared to the literature, our results that small-scale TVP-VAR
models with stochastic volatility performs better than constant parameter versions of the same are in line with the
results found in Amisano and Serati (2004), D’Agostino et al. (2013), and Korobilis (2013) for the Euro Area, US
and UK respectively. However, the superior performance of the small-scale TVP-VAR to large-scale TVP-VARs
in our case is opposite to those detected by Koop (2013), and Amisano et al. (2015) for the US economy.

The modelling and forecasting literature on South African inflation tends to suggest that what is most impor-
tant in modelling inflation, is persistence (Gupta and Steinbach, 2013; De Waal et al., 2015), with little role from
open economy features in the model. In addition, a recent study has shown that South African inflation persis-
tence is time-varying (Balcilar et al., 2016; Gupta et al.,forthcoming). Finally, Balcilar et al. (2017) show that the
relationship between inflation, output growth and interest rates is also theoretically non-linearly related based on

9 We also estimated the small-scale TVP-VAR models, without the approximation based on the forgetting factors. However, this version of
the small-scale TVP-VAR model was outperformed by all the other small-scale TVP-VAR models reported in the paper both in terms of point
and density forecasts. Complete details of these results are available upon request from the authors.
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non-linear DSGE models. This suggest that to forecast inflation, we need a model that is non-linear allowing for
time-varying persistence and a small set of information from growth and interest rate. This type of a model is
not unrealistic if one looks at the history of South African inflation, with it being primarily driven by growth and
various forms of monetary policy before 1999, and then by interest rate policies post this period in the inflation
targeting era (Gupta and Steinbach, 2013; Balcilar et al., 2017). This result is echoed in Stock and Watson (1999)
who also find that a single index of overall economic activity is the only variable that improves the forecast of
the most successful univariate models. In our case, economic growth seems to function in a similar manner by
representing overall economic activity.

6 Conclusion

In this paper, we use a suite of econometric models to forecast quarterly core inflation in South Africa using
21 variables for the period covering 1981Q1 to 2013Q4. The forecasts are evaluated using the MSFE and the
predictive likelihood relative to the random walk model for 1 to 8 quarters ahead. We find that most VAR models
(specifically the small TVP-VARs and excluding the large TVP-VARs) perform better than the random walk model
and other benchmark models for both forecast evaluation methods and for all horizons. Allowing for structural
breaks does not improve the forecast performance for core inflation. The structural model only performs better
than the random walk model for h = 3 onwards, but is outperformed by other models. Further, the forecasts
where we allow for heteroscedastic errors in getting the shape of the predictive density outperform VARs with
homoscedastic errors. We also find that models with λ = 0.99 perform better than models where the forgetting
factors are allowed to change over time. Overall, our results imply that additional information on the GDP growth
rate and interest rate is sufficient to forecast core inflation accurately, but the relationship between these three
variables needs to be modeled in a time-varying (nonlinear) fashion.

Camba-Mendez and Kapetanios (2005) used disaggregated price indices to forecast core inflation by employ-
ing factor models. In light of this, future research could be aimed at forecasting South African core inflation using
disaggregated price indices based on time-varying models, to see if such disaggregated information on price can
produce more accurate forecasts than those obtained from GDP growth rate and interest rates. At the same time,
an issue that we have ignored in this paper is that of persistence in the (core) inflation rate (Kouretas and Wohar
(2012)), and hence, modeling and forecasting of the same using long-memory models accounting for nonlinear-
ity, breaks and seasonality, as stressed and shown to exist for South African (and African) inflation rates by, for
example, Gil-alana (2010), Gil-Alana (2011), Gil-Alana et al. (2014), and Boateng et al. (2018), could be an area
of further research as well.
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Table 1: Data series used in the small, medium and large VARs

Variable Transformation* Description VAR*

RGDP Log first diff.
Gross domestic product
at market prices (GDP)

S,M,L

CORE Log first diff.
Headline CPI less interest on mortgages,
food, petrol and electricity

S,M,L

TB3 Levels Treasury bills: 91 days tender rate S,M,L

NEER Log first diff.
Nominal effective exchange rate of
the rand: Average for the period -
15 trading partners

M,L

OIL Log first diff. Brent crude oil spot price (USD) M,L

FORPRD Log first diff.
Foreign wholesale price index
(trade weighted) (own calculation)

M,L

ULC Log first diff. Manufacturing: Unit labour costs M,L

PCE Log first diff.
Final consumption expenditure
by households: Total

L

GFCF Log first diff.
Gross fixed capital
formation (Investment)

L

JSE Log first diff.
Johannesburg Stock Exchange
(JSE) All Share index

L

M3 Log first diff. Money supply: M3 L

CREDIT Log first diff.
All monetary institutions:
Total domestic credit extension

L

LEAD_FOR Log first diff.
Leading indicator of all the
main trading partner countries

L

RETAIL Log first diff. Retail sales L

WAGES Log first diff.
Total salaries and wages
in the manufacturing sector

L

EMPL_PVT Log first diff.
Employment in private
sector (own calculation)

L

INCOME Log first diff. Disposable income of households L

IP Log first diff.
Industrial production
(own calculation)

L

UTIL Levels
Manufacturing: Utilisation
of production capacity - Total

L

PPI Log first diff.
Manufacturing Producer
Price Index

L

COM_NENG Log first diff.
World bank commodity
price index: non-energy (USD)

L

*Log first diff=logged and the first difference was used, S=Small VAR,
M=Medium VAR, L=Large VAR
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Table 2: MSFE relative to the random walk model for core inflation

 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 
Full Model 

TVP-VAR-DDS, λ=0.99,	  0.66 0.48 0.43 0.43 0.40 0.43 0.50 0.55
TVP-VAR-DDS, λ=0.99,	 ~  0.93 0.63 0.52 0.52 0.47 0.54 0.60 0.62

TVP-AR 
TVP-AR, λ=0.99,	  0.80 0.57 0.45 0.41 0.40 0.44 0.50 0.50
TVP-AR, λ= λt, 	  0.85 0.67 0.54 0.48 0.47 0.52 0.58 0.60
TVP-AR, λ=0.99, ~  0.79 0.55 0.45 0.42 0.40 0.43 0.49 0.50
TVP-AR, λ= λt, ~  0.86 0.67 0.54 0.48 0.48 0.52 0.58 0.60

Small VAR 
TVP-VAR, λ=0.99,  0.72 0.47 0.38 0.35 0.35 0.38 0.44 0.45
TVP-VAR, λ= λt,  0.77 0.55 0.45 0.41 0.41 0.46 0.51 0.54
TVP-VAR, λ=0.99, ~  0.72 0.46 0.39 0.35 0.35 0.39 0.44 0.45
TVP-VAR, λ= λt, ~  0.75 0.55 0.45 0.41 0.42 0.46 0.51 0.54
VAR, Heteroscedastic 0.78 0.58 0.48 0.43 0.43 0.48 0.54 0.57
VAR, Homoscedastic 0.83 0.71 0.59 0.53 0.53 0.60 0.64 0.71

Medium VAR 
TVP-VAR, λ=0.99,  0.86 0.51 0.41 0.41 0.39 0.43 0.48 0.52
TVP-VAR, λ= λt,  0.91 0.64 0.52 0.49 0.48 0.53 0.58 0.63
TVP-VAR, λ=0.99, ~  0.86 0.50 0.41 0.41 0.39 0.43 0.48 0.51
TVP-VAR, λ= λt, ~  0.92 0.64 0.51 0.50 0.47 0.53 0.57 0.63
VAR, Heteroscedastic 0.93 0.68 0.55 0.53 0.51 0.57 0.61 0.67
VAR, Homoscedastic 2.33 1.64 1.31 1.15 1.10 1.24 1.26 1.38

Large VAR 
TVP-VAR, λ=0.99,  1.07 0.96 0.80 0.75 0.72 0.79 0.85 0.93
TVP-VAR, λ= λt,  1.22 1.22 1.01 0.91 0.87 0.96 1.00 1.12
TVP-VAR, λ=0.99, ~  1.04 0.96 0.82 0.75 0.72 0.80 0.84 0.94
TVP-VAR, λ= λt, ~  1.22 1.22 1.00 0.90 0.88 0.95 1.00 1.11
VAR, Heteroscedastic 1.30 1.31 1.07 0.97 0.92 1.03 1.07 1.19
VAR, Homoscedastic 1.55 1.00 0.80 0.69 0.68 0.75 0.77 0.80

FAVAR 
TVP-FAVAR, λ=0.99,  0.94 0.65 0.50 0.48 0.48 0.52 0.59 0.57
TVP-FAVAR, λ= λt,  0.97 0.78 0.61 0.56 0.56 0.62 0.68 0.69
TVP-FAVAR, λ=0.99, ~  0.92 0.64 0.51 0.47 0.48 0.52 0.58 0.56
TVP-FAVAR, λ= λt, ~  0.97 0.78 0.61 0.56 0.56 0.62 0.69 0.69
FAVAR, Heteroscedastic 0.99 0.83 0.66 0.59 0.59 0.66 0.71 0.74
FAVAR, Homoscedastic 2.07 2.27 1.83 1.57 1.53 1.71 1.74 1.93

Benchmark Models 
Random Walk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Small VAR OLS 1.00 1.01 0.99 0.96 0.99 1.14 1.18 1.26
AR(1) OLS 1.03 1.06 1.07 1.03 1.08 1.25 1.28 1.37
AR(1) Structural Breaks 1.68 1.18 0.96 0.87 0.85 0.91 0.90 0.94

Average performance 
Excluding benchmark models 1.01 0.80 0.65 0.60 0.58 0.64 0.69 0.74
Including benchmark models 1.01 0.82 0.68 0.63 0.61 0.68 0.73 0.78
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Table 3: Sum of log predictive likelihoods relative to the random walk model for core inflation

 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
Full Model

TVP-VAR-DDS, λ=0.99,  87.7 70.4 62.8 59.4 56.8 53.6 49.7 49.7
TVP-VAR-DDS, λ= 0.99, ~  82.3 63.1 58.1 52.2 49.4 47.9 44.7 45.8

TVP-AR

TVP-AR, λ=0.99,  82.3 67.3 61.5 55.6 53.4 53.2 48.6 49.0
TVP-AR, λ= λt,  80.6 63.5 57.7 51.9 49.8 49.1 45.2 45.2
TVP-AR, λ=0.99, ~  81.9 67.5 61.0 54.9 53.7 52.9 48.9 49.2
TVP-AR, λ= λt, ~  80.5 63.6 57.3 51.8 49.8 49.1 45.5 45.3

Small VAR

TVP-VAR, λ=0.99,  86.3 71.7 65.0 59.4 56.8 55.6 51.2 51.6
TVP-VAR, λ= λt,  84.6 68.5 61.7 56.1 53.6 52.2 48.4 47.8
TVP-VAR, λ=0.99, ~  85.8 71.6 64.4 59.1 55.9 55.5 51.1 50.7
TVP-VAR, λ= λt, ~  84.6 68.5 61.4 56.0 52.9 52.2 49.1 47.8
VAR, Heteroscedastic 84.1 67.3 60.7 54.8 52.3 51.1 47.4 46.6
VAR, Homoscedastic 86.1 61.8 59.0 49.8 45.0 46.4 36.6 28.3

Medium VAR

TVP-VAR, λ=0.99,  85.7 68.5 62.8 55.3 53.4 52.6 49.6 48.2
TVP-VAR, λ= λt,  82.4 64.3 58.5 51.5 49.4 48.3 45.5 44.1
TVP-VAR, λ=0.99, ~  85.3 68.6 62.4 55.4 53.1 52.2 48.7 47.9
TVP-VAR, λ= λt, ~  82.8 64.9 58.3 51.0 49.7 48.3 45.4 43.9
VAR, Heteroscedastic 81.5 63.1 56.9 49.6 47.7 46.7 43.7 42.7
VAR, Homoscedastic 52.0 36.1 31.5 27.1 26.3 24.5 22.0 21.5

Large VAR

TVP-VAR, λ=0.99,  78.7 55.1 48.1 42.4 40.5 39.1 36.4 35.8
TVP-VAR, λ= λt,  74.9 48.3 41.5 36.1 34.6 33.7 31.5 30.4
TVP-VAR, λ=0.99, ~  79.4 55.0 47.3 42.1 40.4 39.0 36.8 35.5
TVP-VAR, λ= λt, ~  74.9 48.4 41.7 36.4 34.9 34.0 32.0 31.0
VAR, Heteroscedastic 73.0 46.0 39.5 33.8 32.8 31.6 29.8 28.4
VAR, Homoscedastic 57.5 44.7 41.7 34.3 31.9 31.9 30.5 35.1

FAVAR

TVP-VAR, λ=0.99,  84.0 63.3 58.1 51.3 49.3 48.3 45.0 46.0
TVP-VAR, λ= λt,  82.0 59.0 54.0 47.8 45.8 44.1 40.6 41.7
TVP-VAR, λ=0.99, ~  84.2 63.7 57.9 51.6 49.7 48.2 45.4 46.4
TVP-VAR, λ= λt, ~  82.1 58.9 53.9 47.2 45.6 44.0 40.6 41.8
VAR, Heteroscedastic 81.3 57.6 52.2 46.6 44.4 42.9 39.6 40.1
VAR, Homoscedastic 56.7 24.9 20.5 15.1 15.5 14.6 12.4 11.5

Benchmark Models
 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
Random Walk 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Small VAR OLS -1.5 -3.6 -5.4 -7.4 -9.3 -10.6 -13.0 -15.8
AR(1) -0.7 -2.2 -3.5 -5.1 -6.8 -8.0 -10.5 -13.4
AR(1) Structural Breaks -34.1 -7.8 6.1 12.0 17.1 20.3 24.1 27.0

Average performance
Excluding benchmark models 79.6 59.9 53.9 47.8 45.8 44.8 41.4 41.0
Including benchmark models 73.4 55.1 49.5 43.8 41.9 40.8 37.6 37.1
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Table 4: MSFE relative to the TVP-VAR (λ = 0.99, βT +h = βT ) model for core inflation

 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 
Full Model 

TVP-VAR-DDS, λ=0.99,	  0.92 1.02 1.13 1.23 1.14 1.13 1.14 1.22

TVP-AR 
TVP-AR, λ=0.99, ~  1.10 1.17 1.18 1.20 1.14 1.13 1.11 1.11

Medium VAR 
TVP-VAR, λ=0.99, ~  1.19 1.06 1.08 1.17 1.11 1.13 1.09 1.13

Large VAR 
TVP-VAR, λ=0.99,  1.49 2.04 2.11 2.14 2.06 2.08 1.93 2.07

FAVAR 
TVP-FAVAR, λ=0.99, ~  1.28 1.36 1.34 1.34 1.37 1.37 1.32 1.24

Benchmark Models 
Random Walk 1.39 2.13 2.63 2.86 2.86 2.63 2.27 2.22

 

Table 5: Sum of log predictive likelihoods relative to the TVP-VAR (λ = 0.99, βT +h = βT ) model for core inflation

 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8
Full Model

TVP-VAR-DDS, λ=0.99,	 1.3 -1.3 -2.2 0.0 0.0 -2.1 -1.5 -1.9

TVP-AR

TVP-AR, λ=0.99,  -4.5 -4.2 -4.0 -4.5 -3.1 -2.8 -2.3 -2.4

Medium VAR

TVP-VAR, λ=0.99,  -1.0 -3.1 -2.6 -4.0 -3.7 -3.5 -2.5 -3.6

Large VAR

TVP-VAR, λ=0.99,  
-7.6 -16.6 -16.9 -17.0 -16.3 -16.5 -14.9 -15.7

FAVAR

TVP-VAR, λ=0.99, ~  -2.1 -7.9 -7.1 -7.8 -7.1 -7.5 -5.9 -5.2

Benchmark Models
AR(1) Structural Breaks 

-120.4 -79.5 -58.9 -47.4 -39.7 -35.3 -27.1 -24.6
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Appendices
A Forecasting performance with p = 4

Table A1: MSFE relative to the random walk model for core inflation

 h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8 
Full Model 

TVP-VAR-DDS, λ=0.99,	  0.78 0.61 0.64 0.75 0.64 0.61 0.68 0.78
TVP-VAR-DDS, λ=0.99,	 ~  0.77 0.65 0.68 0.78 0.63 0.60 0.72 0.78

TVP-AR 
TVP-AR, λ=0.99,	  0.66 0.43 0.36 0.31 0.26 0.31 0.38 0.42
TVP-AR, λ= λt, 	  0.67 0.44 0.37 0.32 0.28 0.33 0.40 0.44
TVP-AR, λ=0.99, ~  0.67 0.43 0.36 0.31 0.26 0.31 0.38 0.42
TVP-AR, λ= λt, ~  0.67 0.45 0.38 0.33 0.29 0.33 0.40 0.44

Small VAR 
TVP-VAR, λ=0.99,  0.67 0.44 0.36 0.31 0.27 0.31 0.37 0.41
TVP-VAR, λ= λt,  0.66 0.43 0.35 0.31 0.27 0.31 0.36 0.42
TVP-VAR, λ=0.99, ~  0.67 0.44 0.36 0.32 0.27 0.31 0.37 0.41
TVP-VAR, λ= λt, ~  0.66 0.43 0.35 0.30 0.27 0.31 0.37 0.41
VAR, Heteroscedastic 0.65 0.43 0.35 0.30 0.27 0.31 0.36 0.41
VAR, Homoscedastic 0.73 0.56 0.56 0.55 0.56 0.65 0.72 0.83

Medium VAR 
TVP-VAR, λ=0.99,  0.73 0.41 0.36 0.34 0.27 0.31 0.37 0.43
TVP-VAR, λ= λt,  0.69 0.39 0.35 0.34 0.26 0.30 0.37 0.43
TVP-VAR, λ=0.99, ~  0.76 0.41 0.35 0.35 0.27 0.30 0.37 0.43
TVP-VAR, λ= λt, ~  0.70 0.39 0.36 0.33 0.26 0.30 0.37 0.43
VAR, Heteroscedastic 0.69 0.39 0.35 0.34 0.26 0.30 0.37 0.44
VAR, Homoscedastic 2.00 1.83 1.76 1.70 1.81 2.02 2.09 2.32

Large VAR 
TVP-VAR, λ=0.99,  0.89 0.53 0.49 0.45 0.41 0.46 0.56 0.66
TVP-VAR, λ= λt,  0.78 0.52 0.46 0.43 0.38 0.42 0.49 0.56
TVP-VAR, λ=0.99, ~  0.87 0.55 0.49 0.46 0.41 0.46 0.57 0.67
TVP-VAR, λ= λt, ~  0.77 0.53 0.46 0.43 0.38 0.42 0.50 0.57
VAR, Heteroscedastic 0.79 0.54 0.48 0.45 0.40 0.45 0.51 0.59
VAR, Homoscedastic 3.04 2.27 1.89 1.72 1.75 1.97 2.02 2.27

FAVAR 
TVP-FAVAR, λ=0.99,  0.81 0.50 0.41 0.36 0.31 0.37 0.43 0.45
TVP-FAVAR, λ= λt,  0.76 0.50 0.41 0.35 0.30 0.36 0.42 0.44
TVP-FAVAR, λ=0.99, ~  0.82 0.51 0.41 0.36 0.31 0.38 0.43 0.46
TVP-FAVAR, λ= λt, ~  0.77 0.50 0.40 0.36 0.30 0.36 0.42 0.45
FAVAR, Heteroscedastic 0.75 0.50 0.41 0.35 0.30 0.37 0.42 0.45
FAVAR, Homoscedastic 1.61 1.47 1.44 1.42 1.34 1.52 1.59 1.78

Benchmark Models 
Random Walk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Small VAR OLS 1.01 1.05 1.07 1.09 1.11 1.13 1.16 1.18
AR(1) OLS 1.02 1.05 1.08 1.11 1.15 1.18 1.21 1.23
AR(1) Structural Breaks 1.73 1.26 1.02 0.91 0.87 0.89 0.87 0.89

Average performance 
Excluding benchmark models 0.88 0.62 0.55 0.51 0.47 0.53 0.59 0.67
Including benchmark models 0.92 0.67 0.61 0.57 0.53 0.59 0.65 0.71
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