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Abstract: The aim of this paper is to introduce a modified viscosity iterative method to approximate
a solution of the split variational inclusion problem and fixed point problem for a uniformly
continuous multivalued total asymptotically strictly pseudocontractive mapping in CAT(0) spaces.
A strong convergence theorem for the above problem is established and several important known
results are deduced as corollaries to it. Furthermore, we solve a split Hammerstein integral inclusion
problem and fixed point problem as an application to validate our result. It seems that our main
result in the split variational inclusion problem is new in the setting of CAT(0) spaces.

Keywords: split variational inclusion problem; fixed point problem; CAT(0) space; total
asymptotically strictly pseudocontractive mapping

1. Introduction

1.1. Cat(0) Space

Let (X, d) be a metric space. A geodesic path joining x and y is a map c : [0, l] ⊂ R→ X such that

i. c(0) = x, c(l) = y and d(x, y) = l.
ii. c is an isometry: d(c(t), c(s)) = |t− s| for all t, s ∈ [0, l].

In this case, c([0, l]) is called a geodesic segment joining x and y which when unique is denoted
by [x, y].

The space (X, d) is said to be a geodesic space if any two points of X are joined by a
geodesic segment.

A geodesic triangle ∆(x1, x2, x3) in a geodesic space (X, d) consists of three points in X (the vertices
of ∆) and a geodesic segment between each pair of vertices (the edges of ∆).

A comparison triangle for geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆̄(x̄1, x̄2, x̄3) in
(R2, d) such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (Bridson and
Haefliger [2]).

A metric space X is said to be a CAT(0) space if it is geodesically connected and every geodesic
triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane.
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Let ∆ be a geodesic triangle in X, and let ∆̄ be its comparison triangle in R2. Then, X is said to
satisfy CAT(0) inequality, if, for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄,

d(x, y) ≤ dR2(x̄, ȳ).

If x, y1, y2 ∈ X, and y0 is the midpoint of the segment [y1, y2], then, the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1
2

d(x, y2)
2 − 1

4
d(y1, y2)

2. (1)

It is well known that the following spaces are CAT(0) spaces: a complete, simply connected
Riemannian manifold with non-positive sectional curvature, Pre-Hilbert spaces [2], Euclidean
buildings [3], R-trees [18], and Hilbert ball with a hyperbolic metric [10,16].

1.2. Some Basic Concepts in Hilbert Space

Let H be a real Hilbert space with inner product 〈·, ·〉 and C a nonempty closed and convex subset
of H.

The inner product 〈·, ·〉 : H × H → R generates norm via

〈x, x〉 = ‖x‖2

for all x ∈ H.
A mapping T : C → C is said to be total asymptotically strictly pseudocontractive (see [4]), if there

exists a constant γ ∈ [0, 1] such that

‖Tnx− Tny‖2 ≤ ‖x− y‖2 + γ‖x− Tnx‖2 + κn ϕ(‖x− y‖) + µn

holds for all x, y ∈ C, the sequences κn, µn ∈ [0, ∞) satisfy lim
n→∞

κn = lim
n→∞

µn = 0, and ϕ : [0, ∞)→
[0, ∞) is strictly increasing and continuous mapping with ϕ(0) = 0.

For concepts such as bounded linear operator and its adjoint operator, maximal monotone operator
and metric projection, we refer to Chidume [5].

The metric projection is parity and scale invariant (cf. Proposition 1.26(e) in [30]) in the sense that

λPCx = PλCλx, f or every λ ≥ 0, x ∈ H,

consequently,

λ(PC−x(x)− x) = PλC−λx(λx)− λx, f or every λ ≥ 0, x ∈ H.

1.3. Counterpart of the above Concepts in the Setting of a Cat(0) Space

A mapping T : C → C is said to be total asymptotically strictly pseudocontractive if there exists
γ ∈ [0, 1] such that

d(Tnx, Tny)2 ≤ d(x, y)2 + γd(x, Tnx)2 + κn ϕ(d(x, y)) + µn (2)

holds for all x, y ∈ C, the sequences κn, µn ∈ [0, ∞) satisfy lim
n→∞

κn = lim
n→∞

µn = 0, and ϕ : [0, ∞) →
[0, ∞) is strictly increasing and continuous mapping with ϕ(0) = 0.

Define an addition (x, y) 7→ x ⊕ y and a scalar multiplication (α, x) 7→ α · x in the space
X as follows: for any z ∈ X and α, β ∈ R, we denote the point z = αx ⊕ βy such that
d(x, z) = d((1− α)x, βy).

A mapping A : X → X is said to be linear if for x, y ∈ X, we have

A(αx⊕ βy) = αA(x)⊕ βA(y).
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A mapping A : X → X is said to be bounded if for all x, y ∈ X, there exists M ≥ 0 such that

d(Ax, Ay)2 ≤ Md(x, y)2,

Let C be a nonempty subset of a CAT(0) space X.

In [1], a mapping 〈·, ·〉 : (X× X)× (X× X)→ R is said to be quasi-linearization in X if

〈−→pq,−→rs 〉 =
1
2
(d(p, s)2 + d(q, r)2 − d(p, r)2 − d(q, s)2), (3)

holds for all p, q, r, s ∈ X; here a pair (p, q) ∈ X× X is denoted by a vector −→pq. Consequently, we have

1. 〈−→pq,−→pq〉 = d(p, q)2,
2. for all p, q, r, s, t, u, v, w ∈ X,〈−−→−→pq−→rs ,

−−−→−→
tu−→vw

〉
=
〈−→pq,

−→
tu
〉
−
〈−→pq,−→vw

〉
−
〈−→rs ,

−→
tu
〉
+
〈−→rs ,−→vw

〉
. (4)

A mapping A∗ : X → X is said to be adjoint operator of A if for all x, y, w, z ∈ X, we have

〈−−−→AxAw,−→yz〉 = 〈A−→xw,−→yz〉 = 〈−→xw, A∗−→yz〉 = 〈−→xw,
−−−−→
A∗yA∗z〉. (5)

Clearly, A∗ is a linear operator when so is A. As in a Hilbert space, we have

d(A∗y, A∗z)2 = d(Ax, Aw)2 ≤ Md(x, w)2,

and hence, A∗ is bounded in X.
For any x ∈ X, there exists a unique point x0 ∈ C such that

d(x, x0) ≤ d(x, y) ∀ y ∈ C,

and the mapping PC : X → C defined by PCx = x0 is called the metric projection of X onto C
(cf. Proposition 2.4 in [2]). Equivalently, in view of the characterization of Hossein and Jamal [12],
we have

〈−→x0x,−→yx0〉 ≥ 0,

consequently,

P−→
Cx

: X → −→Cx is defined by
−−−−→
P−→

Cx
(x)x = −→x0x,

equivalently, 〈−−−→−→x0x−→xx,
−−−→−→yx−→x0x

〉
≥ 0,

⇔
〈−→x0x,

−−−→−→yx−→x0x
〉
≥ 0 (because −→xx is an additive identity element),

⇔
(〈−→x0x,−→yx

〉
−
〈−→x0x,−→x0x

〉)
≥ 0 (by (4)), (6)

where −→x0x,−→yx ∈ −→Cx.
The metric projection is parity and scale invariant in the sense that

λPCx = PλCλx, f or every λ ≥ 0, x ∈ X,
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consequently,

λ
−−−−→
P−→

Cx
(x)x =

−−−−−−−−→
P−−−→

λCλx
(λx)λx, f or every λ ≥ 0, x ∈ X. (7)

1.4. Fixed Point Theory in a Cat(0) Space

Fixed point theory in a CAT(0) space has been introduced by Kirk (see for example [19]).
He established that a nonexpansive mapping defined on a bounded, closed and convex subset of a
complete CAT(0) space has a fixed point. Consequently, fixed point theorems in CAT(0) spaces have
been developed by many mathematicians; see for example [8,29]. More so, some of these theorems in
CAT(0) spaces are applicable in many fields of studies such as, graph theory, biology and computer
science (see for example [9,18,20,31]).

Let T : X → 2X be a multivalued mapping. A point x ∈ X is called a fixed point of T if x ∈ Tx
and F(T) = {x ∈ X : x ∈ Tx} is called the fixed point set of T.

1.5. Our Motivation

As a generalized version of the well known split common fixed point problem, Moudafi [25]
introduced the following split monotone variational inclusion (SMVI) by using maximal
monotone mappings;

f ind x∗ ∈ H1 such that 0 ∈ f (x∗) + B1(x∗),

y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) + B2(y∗),

where B1 : H1 → 2H1 and B2 : H2 → 2H2 , A : H1 → H2 is a bounded linear operator, f : H1 → H1 and
g : H2 → H2 are given single-valued operators.

In 2000, Moudafi [26] proposed the viscosity approximation method by considering the
approximate well-posed problem of a nonexpansive mapping S with a contraction mapping f over a
nonempty closed and convex subset; in particular he showed that given an arbitrary x1 in a nonempty
closed and convex subset, the sequence {xn} defined by

xn+1 = αn f (xn) + (1− αn)Sxn,

where {αn} ⊂ (0, 1) with αn → 0 as n→ ∞, converges strongly to the fixed point set of S, F(S).
In [28], viscosity approximation method for split variational inclusion and fixed point problems

in Hilbert Spaces was presented as follows.{
un = JB1

λ (xn + γn A∗(JB2
λ − I)Axn);

xn+1 = αn f (xn) + (1− αn)Tn(un), ∀n ≥ 1,
(8)

where B1 and B2 are maximal monotone operators, JB1
λ and JB2

λ are resolvent mappings of B1 and
B2 respectively, f is a Meir-Keeler mapping, T a nonexpansive mapping, A∗ is an adjoint of A,
γn, αn ∈ (0, 1) and λ > 0.

In this paper, motivated by (8), we present a modified viscosity algorithm sequence and prove
strong convergence theorem for split variational inclusion problem and fixed point problem of a
total asymptotically strictly pseudocontractive mapping in the setting of two different CAT(0) spaces.
It seems that our main result is new in the setting of CAT(0) spaces.
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2. Preliminaries

Denote by CB(X), the collection of all nonempty closed and bounded subsets of X and let H be
the Hausdorff metric with respect to the metric d; that is,

H(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)} (9)

for all A, B ∈ CB(X), where d(a, B) = inf
b∈B

d(a, b) is the distance from the point a to the subset B.

Let X be a complete CAT(0) space with its dual X∗ (for details, see [17]). A mapping G : D(G) ⊂
X → 2X is said to be monotone if

〈−→xy,
−−→
x∗y∗〉 ≥ 0 ∀x, y ∈ D(G), x∗ ∈ Gx, y∗ ∈ Gy.

A mapping G : D(G) ⊂ X → 2X is said to be maximal monotone if it is monotone and also has
no monotone extension, that is, its graph gr(G) : = {(x, x∗) ∈ X× X∗ : x∗ ∈ G(x)} is not properly
contained in the graph of any other monotone operator on X.

For γ > 0, a mapping BG
γ = (I + γG)−1 : X → 2X defined by BG

γ (x) = {z ∈ X : [ 1
γ
−→zx] ∈ G(z)}

is said to be a resolvent of G.
The operator G is said to satisfy the range condition if for every γ > 0, D(BG

γ ) = X.
Let X be a complete CAT(0) space and {xn} be a bounded sequence in X. Then the asymptotic

center of {xn} is defined by

A({xn}) = {x ∈ X : lim sup
n→∞

d(x, xn) ≤ lim sup
n→∞

d(z, xn), ∀z ∈ X}.

The asymptotic center A({xn}), consists of exactly one point ([6]).

Definition 1. A sequence {xn} in a CAT(0) space X is said to be ∆-convergent to x ∈ X if x is the unique
asymptotic center of any subsequence {xnk} ⊂ {xn}. Symbolically, we write it as ∆− lim

n→∞
xn = x [21,22].

Lemma 1. Let {xn} be a bounded sequence in a complete CAT(0) space X [21]. Then

i. {xn} has a ∆-convergent subsequence.
ii. the asymptotic center of {xn} ⊂ C ⊂ X is in C, where C is nonempty, closed and convex.

Lemma 2. Let {xn} be a bounded sequence in a complete CAT(0) space and A({xn}) = {x}. Let {xnk} be
an arbitrary subsequence of {xn} and A({xnk}) = {y}. If lim

n→∞
d(xn, y) exists, then x = y [7].

Let C be closed and convex subset of a CAT(0) space X and {xn} a bounded sequence in C.
Then the relation xn ⇀ x is described by

lim sup
n→∞

d(xn, x) = inf
y∈C

lim sup
n→∞

d(xn, y).

Lemma 3. [27] Let C be closed and convex subset of a CAT(0) space X and {xn} a bounded sequence in C.
Then ∆− lim

n→∞
xn = x implies that xn ⇀ x .

Lemma 4. [7] Let X be a CAT(0) space and x, y, z ∈ X. Then

i. d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z), t ∈ [0, 1],
ii. d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2, t ∈ [0, 1].

Lemma 5. [13] Let X be a complete CAT(0) space, {xn} a sequence in X and x ∈ X. Then {xn}, ∆−converges
to x if and only if lim sup

n→∞
〈−→xnx,−→yx〉 ≤ 0 for all y ∈ X.
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Lemma 6. [34] Let X be a complete CAT(0) space. Then for all x, y, z ∈ X, the following inequality holds

d(x, z)2 ≤ d(y, z)2 + 2〈−→xy,−→xz〉.

3. Main Results

Let X1 and X2 be two CAT(0) spaces, C ⊂ X1 be a closed and convex subset, A : X1 → X2

bounded linear and unitary operator, U : X1 → 2X1 and S : X2 → 2X2 be uniformly continuous and
maximal monotone operators, f : X1 → X1 contraction mapping and T : C → CB(C) be uniformly
continuous multivalued total asymptotically strictly pseudocontractive mapping defined as

H(Tnx, Tny)2 ≤ d(x, y)2 + γd(x, Tnx)2 + κn ϕ(d(x, y)) + µn

where x, y ∈ C and the sequences κn, µn ∈ [0, ∞) satisfy ∑∞
n = 1 κn < ∞ and ∑∞

n = 1 µn < ∞.
Suppose that γ ∈ [0, 1] and ϕ : [0, ∞) → [0, ∞) is strictly increasing and continuous mapping
such that ϕ(0) = 0, and PAC : X2 → AC and P−−−→

ACAx
: X2 →

−−−→
ACAx are the metric projections onto,

respectively, nonempty closed and convex subset AC and
−−−→
ACAx of X2, where AC = {Ax, ∀x ∈ C}

and
−−−→
ACAx = {−−−→AyAx, ∀y ∈ C and Ax fixed}. Let, for γ > 0, BU

γ : 2X1 → X1 and BS
γ : 2X2 → X2 be

resolvent operators for U and S, respectively. Denoted by VIP(U, γ) and VIP(S, γ), and F(T) the
solution set of variational inequality problems with respect to U and S and fixed point problem with
respect to T.

As in [25], we define the split variational inclusion (SVI) as follows:

find x ∈ X1 such that −→xx ∈ U(x) and Ax ∈ X2 solves
−−−→
AxAx ∈ S(Ax),

where −→xx and
−−−→
AxAx are the additive identity elements in X1 and X2, respectively.

Denoted by F(T) is the fixed point set of a map T, let F(T) 6= ∅ and p ∈ F(T). Then T is
multivalued total quasi-asymptotically strictly pseudocontractive mapping if

H(Tnx, Tn p)2 ≤ d(x, p)2 + γd(x, Tnx)2 + κn ϕ(d(x, p)) + µn.

Remark 1. Please note that a multivalued total asymptotically strictly pseudocontractive mapping is
multivalued total quasi-asymptotically strictly pseudocontractive provided, its fixed point set is nonempty.

Throughout this paper we shall strictly employ the above terminology.
For a bounded sequence {xn} in C, we employ the notion:

lim sup
n→∞

d(xn, x) = inf
y∈C

lim sup
n→∞

d(xn, y), (10)

equivalently x is the asymptotic center of each subsequence of {xn}.
Following Karapinar et al [14], we first establish a demiclosedness principle based on (10).

Lemma 7. (Demiclosedness of T) Let T be a multivalued total asymptotically strictly pseudocontractive
mapping on a closed and convex subset C of a CAT(0) space X. Let {xn} be a bounded sequence in C such that
∆− lim

n→∞
xn = x and lim

n→∞
d(xn, Txn) = 0. Then x ∈ Tx.

Proof. By the hypothesis ∆− lim
n→∞

xn = x and so by Lemma 3, we get {xn}⇀ x. Then by Lemma 1 (ii),

we arrive at A({xn}) = {x}. Let lim
n→∞

d(xn, Txn) = 0. So we obtain

lim sup
n→∞

d(xn, y) = lim sup
n→∞

d(y, Txn), (11)
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for all y ∈ C. From the hypothesis that T is multivalued total asymptotically strictly pseudocontractive
mapping and by (11), choosing y ∈ Tx, we have

lim sup
n→∞

d(xn, y)2 = lim sup
n→∞

d(y, Txn)
2 ≤ lim sup

n→∞
H(Txn, Tx)2

≤ lim sup
n→∞

{d(xn, x)2 + γd(xn, Txn)
2 + κn ϕ(d(xn, x)) + µn}

= lim sup
n→∞

d(xn, x)2. (12)

By (1), we get

d
(

xn,
x⊕ y

2

)2
≤ 1

2
d(xn, x)2 +

1
2

d(xn, y)2 − 1
4

d(x, y)2.

Let n→ ∞ and take superior limit on the both sides of the above inequality and get

lim sup
n→∞

d
(

xn,
x⊕ y

2

)2
≤ 1

2
lim sup

n→∞
d(xn, x)2

+
1
2

lim sup
n→∞

d(xn, y)2 − 1
4

d(x, y)2.

Since A({xn}) = {x}, therefore we have

lim sup
n→∞

d(xn, x)2 ≤ lim sup
n→∞

d
(

xn,
x⊕ y

2

)2
≤ 1

2
lim sup

n→∞
d(xn, x)2

+
1
2

lim sup
n→∞

d(xn, y)2 − 1
4

d(x, y)2,

which implies that

lim sup
n→∞

d(xn, x)2 ≤ lim sup
n→∞

d(xn, y)2. (13)

By (12) and (13), we conclude that x = y and therefore x ∈ Tx, as desired.
Next, we prove our main result as follows.

Theorem 1. Let x1 ∈ X1 be chosen arbitrarily and the sequence {xn} be defined as follows;yn = BU
γn

(
αnxn ⊕ (1− αn)λn A∗

−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn(Axn)Axn

)
xn+1 = βn f (xn)⊕ (1− βn)zn, zn ∈ {Tnyn}, n ≥ 1,

(14)

where A∗ is the adjoint operator of A, and M, λn, αn, βn ∈ [0, 1]. Suppose that AC is closed and convex,
PACBS

γ is demiclosed and Γ = {x ∈ VIP(U, γ) : Ax ∈ VIP(S, γ)} ∩ {x ∈ F(T)} 6= ∅, and the following
conditions are satisfied;

1. there exists constant N > 0 such that ϕ(r) ≤ Nr, r ≥ 0;
2. lim

n→∞
βn = lim

n→∞
αn = 0;

3. T satisfies the asymptotically regular condition lim
n→∞

d(yn, Tnyn) = 0.

Then {xn} converges strongly to a point x ∈ Γ, where PACBS
γ(Ax) = BS

γ(Ax).

Proof. We will divide the proof into three steps.
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Step one . We prove that {xn} is bounded.
If p ∈ Γ, then by Lemma 4(ii) and (9) we obtain

d(yn, p)2 = d
(

BU
γn

(
αnxn ⊕ (1− αn)λn A∗

−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn
(Axn)Axn

)
, p
)2

≤ αnd (xn, p)2 + (1− αn)d
(

λn A∗
−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn
(Axn)Axn, p

)2
(15)

whereas, by (6), (4), (5), and boundedness, linearity and unitary property of A, we have,

d
(−−−−−−−−−−−−−−−−−−−−−→(

λn A∗P−−−−−→
ACn Axn

BS
γn
(Axn)

)
Axn, p

)2

=

〈−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−→(
λn A∗P−−−−−→

ACn Axn
BS

γn
(Axn)

)
Axn p,

−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−−−→(
λn A∗P−−−−−→

ACn Axn
BS

γn
(Axn)

)
Axn p

〉

=

〈−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−→(
λnP−−−−−→

ACn Axn
BS

γn
(Axn)

)
Axn Ap,

−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−→(
λnP−−−−−→

ACn Axn
BS

γn
(Axn)

)
Axn Axn

〉

−
〈
−−−−→
ApAxn,

−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−→(
λnP−−−−−→

ACn Axn
BS

γn
(Axn)

)
Axn Axn

〉

−
〈−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−→(

λnP−−−−−→
ACn Axn

BS
γn
(Axn)

)
Axn Axn,

−−−−→
ApAxn

〉
+
〈−−−−→

ApAxn,
−−−−→
ApAxn

〉

≤ −
〈−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−→(

λnP−−−−−→
ACn Axn

BS
γn
(Axn)

)
Axn Axn,

−−−−→
ApAxn

〉
+ Md (xn, p)2 . (16)

Substituting (16) into (15), we get

d(yn, p)2 ≤ −(1− αn)

〈−−−−−−−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−−−−→(
λnP−−−−−→

ACn Axn
BSn

γn
(Axn)

)
Axn Axn,

−−−−→
ApAxn

〉
+ (M(1− αn) + αn)d (xn, p)2 (17)

≤ d (xn, p)2 . (18)

By Remark 1, (14), (2), Lemma 4(ii) and (9), we get

d(xn+1, p)2 = d (βn f (xn)⊕ (1− βn)zn, p)2

≤ βnd ( f (xn), p)2 + (1− βn)d (zn, p)2 − βn(1− βn)d ( f (yn), zn)
2

≤ βn(d ( f (xn), f (p))2 + d ( f (p), p)2) + (1− βn)H (Tnyn, Tn p)2

≤ βnd ( f (p), p)2 + (1− (1− ζ)βn)(1 + κn N))d (xn, p)2

+ (1− βn)γd (yn, Tnyn)
2 + (1− βn)µn. (19)

Since ∑∞
n = 1 κn < ∞, ∑∞

n = 1 µn < ∞ and γ is arbitrary in [0, 1], therefore by (19), we get

d(xn+1, p)2 ≤ βnd ( f (p), p)2 + (1− (1− ζ)βn)d (xn, p)2

≤ max{d (xn, p)2 ,
1

1− ζ
d ( f (p), p)2}

...

≤ max{d (x1, p)2 ,
1

1− ζ
d ( f (p), p)2}. (20)



Mathematics 2019, 7, 749 9 of 14

By (18) and (20), we have that {xn} and {yn} are bounded. Hence {Tnyn} and { f (xn)} are
also bounded.

Step two. We will show that lim
n→∞

d(PACn BS
γn(Axn), Axn) = 0.

By Lemmas 1 and 2, there exists a subsequence {xnk} of {xn} such that ∆− lim
n→∞

xnj = x ∈ C.

Thus, ∆− lim
n→∞

xn = x. By Lemmas 5 and 6, we get

d (xn+1, xn)
2 ≤ 2d (xn+1, x)2 + 2d (x, xn)

2

= 2
〈−−−→xn+1x,−−−→xn+1x

〉
+ 2

〈−→xnx,−→xnx
〉

−→ 0 as n→ ∞. (21)

This implies that xn → x as n→ ∞.
In addition, by Lemma 4(ii) we have

d (yn, xn+1)
2 = d (yn, βn f (xn)⊕ (1− βn)zn)

2

≤ βnd (yn, f (xn))
2 + (1− βn)d (yn, zn)

2

≤ βnd (yn, f (xn))
2 + (1− βn)d (yn, Tnyn)

2

−→ 0 as n→ ∞, (22)

and therefore by (21), (22) and Lemma 6, we get

d (yn, xn)
2 ≤ d (yn, xn+1)

2 + d (xn+1, xn)
2

−→ 0 as n→ ∞. (23)

This implies that yn → x as n→ ∞.
As λn is arbitrary in [0, 1], so by (17), (3) and (7) we arrive at

(1− αn)

〈−−−−−−−−−−−−−−−−−−−→
λn
−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn(Axn)Axn Axn,
−−−−→
ApAxn

〉
≤ d(xn, p)2 − d(yn, p)2

=⇒2(1− αn)d
(

λn
−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn(Axn)Axn, Axn

)2
≤ d(xn, p)2 − d(yn, p)2

=⇒2(1− αn)d
(−−−−−−−−−−−−−−−−−−−−−→

P−−−−−−−−−→
λn ACnλn Axn

BS
γn(λn Axn)λn Axn, Axn

)2
≤ d(xn, p)2 − d(yn, p)2

=⇒2(1− αn)d
(−−−−−−−−−−−−−−→

P−−−−−→
ACn Axn

BS
γn(Axn)Axn, Axn

)2
≤ d(xn, p)2 − d(yn, p)2

−→ 0 as n→ ∞. (24)

It follows from (24) that

d
(

PACn BS
γn(Axn), Axn

)
−→ 0 as n→ ∞. (25)
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Step three. We show that xn → x ∈ Γ.
By (14), we obtain

αnxn ⊕ (1− αn)λn A∗
−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn
(Axn)Axn ∈ yn ⊕ γnUn(yn)

=⇒
xn ∈ yn ⊕ γnUn(yn) (since αn is arbirary in [0, 1]).

=⇒
−−→xnyn ∈ γnUn(yn) (26)

Since U and S are uniformly continuous, therefore it follows by (26), as n→ ∞, that −→xx ∈ U(x).
In addition, it is clear that ∆− lim

n→∞
Axn = Ax. So by using (25) and applying the demiclosedness

of PACBS
γ, we have that

−−−→
AxAx ∈ SAx, as PACBS

γ Ax = BS
γ Ax. On the other hand, by Lemma 7 and

∆− lim
n→∞

yn = x (by (23)), we have by the hypothesis lim
n→∞

d(Tyn, yn) = 0 that x ∈ Tx, as T is uniformly

continuous. Hence, x ∈ Γ.

The proof is completed.
If U : X1 → X1 and S : X2 → X2 are total asymptotically strictly pseudocontractive in Theorem 1

and their fixed point sets F(U) and F(S) are nonempty, then we get:

Corollary 1. Let x1 ∈ X1 be chosen arbitrarily and the sequence {xn} be defined as follows;yn = Un

(
αnxn ⊕ (1− αn)λn A∗

−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
Sn(Axn)Axn

)
xn+1 = βn f (xn)⊕ (1− βn)zn, zn ∈ {Tnyn}, n ≥ 1,

where A∗ is the adjoint operator of A, and M, λn, αn, βn ∈ [0, 1]. Suppose that AC is closed and convex,
Γ = {x ∈ F(U) : Ax ∈ F(S)} ∩ {x ∈ F(T)} 6= ∅, and the following conditions are satisfied;

1. there exists constant N > 0 such that ϕ(r) ≤ Nr, r ≥ 0;
2. lim

n→∞
βn = lim

n→∞
αn = 0;

3. T satisfies the asymptotically regular condition lim
n→∞

d(yn, Tnyn) = 0.

Then {xn} converges strongly to a point x ∈ Γ, where PACS(Ax) = S(Ax).

Remark 2. Corollary 1 is about split common fixed point problem and fixed point problem. Hence, this result
is new in the literature; in particular, it generalizes similar results in [24,33] from Banach space setting to
CAT(0) spaces.

In Theorem 1, let
−−−−−−−−−−−−→
P−−−−−→

ACn Axn
(Axn)Axn =

−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BS

γn(Axn)Axn and PC = BU
γn , where PC : X1 → C

is the metric projection of X1 onto C. Then we get the following result.

Corollary 2. Let x1 ∈ X1 be chosen arbitrarily and the sequence {xn} be defined as follows;yn = PCn

(
αnxn ⊕ (1− αn)λn A∗

−−−−−−−−−−−−→
P−−−−−→

ACn Axn
(Axn)Axn

)
xn+1 = βn f (xn)⊕ (1− βn)zn, zn ∈ {Tnyn}, n ≥ 1,

where A∗ is the adjoint operator of A, and M, λn, αn, βn ∈ [0, 1]. Suppose that AC is closed and convex,
Γ = {x ∈ C : Ax ∈ AC} ∩ {x ∈ F(T)} 6= ∅, and the following conditions are satisfied;

1. there exists a constant N > 0 such that ϕ(r) ≤ Nr, r ≥ 0;
2. lim

n→∞
βn = lim

n→∞
αn = 0;
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3. T satisfies the asymptotically regular condition lim
n→∞

d(yn, Tnyn) = 0.

Then {xn} converges strongly to a point x ∈ Γ.

Remark 3. As Corollary 2 deals with split feasibility problem and fixed point problem so it is a new result in the
literature. It also extends similar results in Banach spaces [15,32] to the case of CAT(0) spaces.

4. Application to Split Hammerstein Integral Inclusion and Fixed Point Problem

An integral equation of Hammerstien-type is of the form

u(x) +
∫

C
k(x, y) f (y, u(y))dy = g(x)

(see [11]).
By writing the above equation in the following form

u + KFu = g,

without loss of generality, we have

u + KFu = 0. (27)

If instead of the singlevalued maps f and k, we have the multivalued functions f and k, then
we obtain Hammerstein integral inclusion in the form 0 ∈ u ⊕ KFu, where F : X1 → CB(X1)

defined by Fu(y) : = {v(y) : v is some selection of f (·, u(·))} and K : X1 → CB(X1) defined by
Kv(x) : = {w(x) : w is some selection of k(·, y)}, are bounded and maximal monotone operators
(see for example [23]).

So the split Hammerstein integral inclusion problem is formulated as: find x∗, y∗ ∈ X1 × X1 such
that, for v(·) ∈ Fu(·) and w(·) ∈ Kv(·)

x∗ ⊕ w(v(x∗)) = 0 with v(x∗) = y∗ and w(y∗)⊕ x∗ = 0

and Ax∗, Ay∗ ∈ X2 × X2 such that, for v′(·) ∈ F′u′(·) and w′(·) ∈ K′v′(·),

Ax∗ ⊕ w′(v′(Ax∗)) = 0 with v′(Ax∗) = Ay∗ and w′(Ay∗)⊕ Ax∗ = 0

where F′ : X2 → CB(X2) and K′ : X2 → CB(X2), defined as F and K, respectively, are also bounded
and maximal monotone.

Lemma 8. Let X be a CAT(0) space, E : = X × X and let F : dom(F) ⊆ X → CB(X), K : dom(K) ⊆
X → CB(X) be two multivalued maps. Define D : dom(F)× dom(K)→ CB(E) by D(x, y) : =

(−→
Fxy

)
×

(Ky ⊕ x) ∀x, y ∈ dom(F) × dom(K) =
{
(
−−−→
v(y)y, w(x)⊕ x) : v(y) ∈ Fu(y), w(x) ∈ Kv(x)

}
.

Suppose that F and K are monotone. Then D is monotone.
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Proof. Let z1 = (x1, y1), z2 = (x2, y2) ∈ E and let w̄1 ∈ D(z1), w̄2 ∈ D(z2) .

Then z̄1 = (
−−−−−→
v1(y1)y1, w1(x1) ⊕ x1), z̄2 = (

−−−−−→
v2(y2)y2, w2(x2) ⊕ x2), for some v1(y1) ∈ Fu1 ,

v2(y2) ∈ Fu2 , w1(x1) ∈ Ky1 and w2(x2) ∈ Ky2. Therefore, by monotonicity of F and K, we get

〈−−→z1z2,−−→z̄1z̄2〉 = 〈(−−→x1x2,−−→y1y2), (
−−−−−−−−−→−−−−−−−−→
v1(y1)v2(y2)y1 ⊕ y2,

−−−−−−−−→
w1(x1)w2(x2)⊕−−→x1x2)〉

= 〈−−→x1x2,
−−−−−−−−−→−−−−−−−−→
v1(y1)v2(y2)y1 ⊕ y2〉+ 〈−−→y1y2,

−−−−−−−−→
w1(x1)w2(x2)⊕−−→x1x2〉

= 〈−−→x1x2,
−−−−−−−−−→−−−−−−−−→
v1(y1)v2(y2)y1〉 − 〈−−→x1x2,−−→y1y2〉+ 〈−−→y1y2,

−−−−−−−−→
w1(x1)w2(x2)〉

+ 〈−−→y1y2,−−→x1x2〉 = 〈−−→x1x2,
−−−−−−−−→
v1(y1)v2(y2)〉+ 〈−−→y1y2, η

−−−−−−−−→
w1(x1)w2(x2)〉 ≥ 0.

This completes the proof of the lemma.
By Lemma 8, we have two resolvent mappings,

BD
γ = (I + γD)−1 and BD′

γ = (I + γD′)−1,

where D′ : dom(F′)× dom(K′)→ CB(E) is defined by

D′(Ax, Ay) : =
(−−−−→

F′AxAy
)
× (K′Ay⊕ Ax)

∀Ax, Ay ∈ dom(F′)× dom(K′) =
{
(
−−−−−−→
v′(Ay)Ay, w′(Ax)⊕ Ax) : v′(Ay) ∈ F′u(Ay), w′(Ax) ∈ K′v′(Ax)

}
.

Now D and D′ are maximal monotone by Lemma 8. When U = D and S = D′ in Theorem 1,
the algorithm (1) becomesyn = BD

γn

(
αnxn ⊕ (1− αn)λn A∗

−−−−−−−−−−−−−−→
P−−−−−→

ACn Axn
BD′

γ (Axn)Axn

)
xn+1 = βn f (xn)⊕ (1− βn)zn, zn ∈ {Tnyn}, n ≥ 1,

and its strong convergence is guaranteed, which solves the split Hammerstein integral inclusion
problem and fixed point problem for the mappings involved in this scheme.
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