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Abstract

This dissertation focuses on two mathematical models to study biologically, theoret-

ically and computationally the alarming declines of the colony population of honey

bees, specifically the Colony Collapse Disorder (CCD) and capensis calamity (cc).

A comprehensive description of honey bees as model organisms is provided with the

aim of understanding and elaborating the assumptions that are made in order to

formulate the two models.

The first model is due to Khoury, Meyerscough and Barron [43]. Assuming that

the rate at which the maximum eclosion is approached is sufficiently large, we have

established the following result: There exists a critical value, mc, of the foragers

mortality rate, m, which is a transcritical bifurcation. More precisely, the CCD

occurs for m > mc in the sense that the trivial equilibrium point, (0,0), is globally

asymptotically stable (GAS) for such large values of the mortality rate. If m < mc,

the colony is healthy in the sense that a new interior equilibrium point which is GAS

is born , while the trivial equilibrium point is unstable.

In the second step, we propose a social parasite (SP) model which is characterized

by a low recruitment rate of the host population. We prove that the cc occurs in

the sense that the total population of the host decays to zero.

We design nonstandard finite difference (NSFD) schemes that preserve the stability

properties of the two continuous models including the CCD and cc phenomena. The

faster decline in the SP setting is demonstrated theoretically for the NSFD scheme.

Numerical simulations are provided to support the theory.
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Chapter 1

Introduction

In our daily lives, reference to the word honey is made to reflect a state of happi-

ness, joy and comfort. Some of the most famous expressions include, “to go or be

on honeymoon”, and “the promised land flowing with milk and honey”. Saint John

Chrysostom goes deeper and hits the nail on the head when he says bees are more

honored than other animals, not because they labor, but because they labor for oth-

ers. This is because, among other pollinators, bees work to ensure food security and

nutrition, maintain biodiversity as well as vibrant ecosystems for plants, humans,

animals and bees themselves [31].

Bees and the environment

Bees belong to the class Insecta (insects), phylum (Arthropod) in the kingdom of

Animalia, group Aculeate and of order Hymenoptera. It is estimated that there

are about 20 000 species of bees globally and 3000 of them are found in Africa [40].

Bees can be either solitary with one female in a nest, semi-social with more than one

adult that take care of the nest or eusocial with distinct castes and a well organized

division of labor like in stingless and honey bees [40]. Bees effectively pollinate

plants as they visit flowers to collect pollen and nectar which they use as food for

themselves [40,101].
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Classification of bees

Bees are categorized into 7 families, namely; Colletidae, Stenotritidae, Andrenidae,

Halictidae, Apidae, Megachillidae and Melittidae [28, 40, 81]. This classification is

biologically based either on the type of nest they occupy, their colony organization

or the way they collect pollen and nectar. Based on their nesting behavior, bees are

further grouped into the following types [40]:

• soil tunneling bees- nests occur in distinct soil types, or termite mounds

depending on the species.

• plant tunnel nester- they nest in dead plants (Fig 1.1(B)).

• mud and resin daubers- build nests of mud, sand or plants resin.

• leafcutters bees- they construct their nest in wood or ground tunnels (see

Fig 1.1(D)).

• carder bees- they use grass seeds to construct their nests.

• cavity nesters- their nests are in cavities in the ground (see Fig 1.1(A)).

• honey bees- they either build their nests in ground cavities, or hollow trees,

or in rocks crevices or under rocks.

Figure 1.1: Different types of bee nests [100].
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The features of the bee families mentioned above are described below. Our main

references are [28, 40,81].

Family Colletidae

Members in this family are short-tongued bees that secrete a plastic-like substance

used to construct their nest. They nest under ground or in hollow twigs. Some

subfamilies lack an external pollen carrying apparatus, as a result they carry pollen

inside their crops.

Family Andrenidae

This is a family of mining bees that nest and burrow in the soil. Most species in

this family do not sting, have short-tongues and are characterized by the presence

of two subantennal suture. The females carry pollen on their hind legs.

Family Halictidae

They are called “sweat” bees. This family is the largest amongst the short-tongued

bees. Possession of a single subantennal suture is their distinguishing feature. De-

pending on the species, members nest either in soil or wood. The family comprises

of both social, solitary and cleptoparasitic bees (the ones that lay eggs in the nest

of other species and steal the nest provisions of others because females do not carry

pollen at all).

Family Melittidae

Members are short-tongued bees with one subantennal suture. They nest in dry

regions. In addition to pollen harvesting, they also harvest oils from plants. They

feed their larvae with the mixture of pollen and plant oils.

Family Megachilidae

These are the long-tongued bees. This family displays various types of nest con-

structing behavior. It comprises of carder bees, mason bees, leaf-cutters, and resin

bees. Megachilid have no corbicula (pollen collecting structure), hence they collect

pollen using the seta on their abdomen.

Family Stenotritidae

This family is only found in Australia and comprises of solitary bees that are large

in size and fly very fast. They secrete plastic-like substance and build their nests in

borrows. Their larvae are fed pollen and nectar.
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Family Apidae

This is the family of the long-tongued bees. Depending on species, they nest in

wood, tunnels or use existing cavities. Although most members are solitary bees,

there are also social and eusocial bees. Members includes, honey, bumble, digger,

squash, and carpenter bees.

Honey bees (Apis mellifera L.)

In this dissertation, the main interest is on Apis mellifera L. (honey-bearing) West-

ern bees that belong to the family Apidae. There are about 24 races of Apis mellifera

that are recognized by taxonomists of which about 10-12 of them occur in Africa

and two are found in South Africa [40]. Figure 1.2 shows the distribution of Apis

mellifera races in Africa and Europe. Races of Apis mellifera are categorized into

four groups of genetic lineage, namely A (African), O (Eastern), C (European) and

M (West European) groups [75]. A.m. capensis Escholtz (Cape honey bee) and

A.m. scutellata Lepelerier (Savannah honey bee) races, which are the subject of

this study, are found in South Africa and fall under the A lineage.

Figure 1.2: Distribution of Apis mellifera across Africa and Europe as modified

from [37].
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In addition to genetic variation among lineages, races of Apis mellifera are further

classified according to their ability to adapt to climate. That is from temperate to

tropical weather conditions and from high rainfall regions to semi-deserts [40]. The

classification (taken from [37,40]) is described as:

1. Temperate races: These races of Apis mellifera are able to survive winter

temperature. They do not rear brood in winter and are large in size because

they accumulate more proteins and fats which they use during the idle winter

period.

2. Tropical races: These races comprise of the smaller populations that grow

faster due to shorter developmental time. They either nest in cavities, bushes

or underground. All races of Apis mellifera found in Africa (called African

races) belong to this group. African races: The 10 Apis mellifera races

found in Africa as shown in Fig 1.2 [40] occur in different vegetative zone on

the continent [40, 75]. For instance: A.m. capensis is endemic to the cape

floristic region of Southern Africa. A.m. scutellata has the widest distribution

with ranges from the northern parts of South Africa up to the low lands of

Eastern Africa (Fig 1.2). A.m. adansomii that is found in central and west

Africa has the second widest distribution while A.m. monticola is found in

the mountains of east Africa and A.m. unicolor on the islands of Madagascar.

A.m. litorea in the east coast of the continent, A.m. intemissa occurs in the

north, A.m. sahariensis is found in Atlas mountain ranges, A.m. lamarckii is

distributed along the Nile river [75] (Fig 1.2).

In general, the classification of African races is based on natural zones of hybridiza-

tion and introgression, the seasonal cycles of development, the swarming, migration

and absconding, and the analysis of the bee flora of the continent [37].

Honey bees and their importance

Honey bees are essential to man and his environment through services they provide

directly or indirectly. The importance of honey bees can not be overemphasized for

two main reasons described below.
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• Ecosystem services: Honey bees play an important role in the ecosystem

since they pollinate many plant species [91]. Because of the unique and crucial

part they play in tropical ecosystems [91], bees from the Apidae family (honey,

bumble, stingless bees, etc) are regarded as major pollinators in agricultural

globally [1]. Thus, honey bees are viewed as keystone pollinators in ecosys-

tem. Because for an ecosystem to function properly in terms of facilitating

both plant and animal diversity, there is a critical need for pollination [91].

On one hand, flowering plant species need pollinators to transport pollen from

anthers to their stigma or the stigma of other plants so that fertilization, that

leads to development and maturity of fruits and seeds, can take place [91].

Pollination is very important in agriculture since it assists in the production

of food and increasing crop yields. Although there are other insect and non-

insect pollinators, honey bees are said to contribute approximately 9.5% to the

global agriculture pollination [33]. The Western honey bees, Apis mellifera,

contribute about USD 215 billion globally to ecosystem (specifically pollina-

tion) [86]. To carryout the ecosystem service of pollinating agricultural crops,

managed honey bees are used as mobile pollinators in that they are moved

from one place to another so they can pollinate crops where need arises [86].

Out of 300 crops grown globally, insects are said to pollinate about 80% [4].

This value, in agriculture is worth about USD 194 billion per year globally [6].

Both wild and managed honey bees are responsible for pollinating about 33%

of crops [46]. This is why experts say “one of every three bites of our food

depends on bees” [11].

• Honey bee hive products: Honey bee hive products are the basis for a

multi-million dollar commercial industry globally [91], one of the reasons why

humans have succeeded in partially domesticating them. These hive products

includes honey, beeswax, propolis and royal jelly. In what follows, a brief

description on how each of the hive-products is produced, used by both honey

bees and humans is given. We start with honey, a sweet substance that honey

bee workers produce. To produce honey, workers use their tube-shaped tongue

to suck nectar (which is composed of water and sugars) from flowering plants as
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they forage [101]. They store it (nectar) in their honey crop (honey stomach)

and fly back to the hive. As they get to the hive, they regurgitate the nectar

and pass it to other workers in the hive who mix it with enzymes so as to

break the sugar contents and extracting water from the nectar, leaving a thick

syrup (called honey) that they store in honeycomb cells [45,101]. Honey bees

use honey as food for the hive during seasons when flowers have little or no

nectar [101]. Humans use honey for medications such as cough drops and

wound salves [48]. Honey is used as a food nutrient since it is a good source

of energy [64] and as a replacement for sugar. It should be noted that one

worker produces 1
12

of teaspoon for their lifetime which is achieved after 800km

of trip [11]. Thus, 12 workers are needed to produce one tablespoon full of

honey. In European honey bees, a colony harvests approximately 240 kg of

nectar and produces about 60 kg of honey per year [93] while African honey

bees produce 15 kg of honey per season [87]. It should be noted that the

amount of honey produced by the colony is influenced by factors such as the

quantity and quality of nectar flow, laying rate of queen, pests and diseases in

the hive and others [87]. Honey is often referred to as golden syrup because

of health benefits associated with it to both honey bees and humans. The

market value of honey is more expensive than oil and its demand is increasing

globally [38]. In 2017, the total value of natural honey exported globally was

USD 2.4 billion which is about 5% less compared to 2016 [103] . Table 1.1 below

shows the top ten countries that imported natural honey in 2017, an estimated

value of honey imported together with percentage [104]. Table 1.2 below shows

the amount of natural honey produced in South Africa from the year 2013 to

2017 as recorded by Food and Agricultural Organization (FAO) [32].
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Table 1.1: The top ten countries that imported natural honey in 2017, edited from

[104].

Country Amount (in million USD) ratio (in %)

United States 568.8 24.4

Germany 281.9 12.1

Japan 143 6.1

United Kingdom 130.7 5.6

France 130.5 5.6

China 91.2 3.9

Italy 81.3 3.5

Belgium 79.7 3.4

Spain 76.8 3.3

Saudi Arabia 66.1 2.8

Table 1.2: The amount (in tonnes) of natural honey produced in South Africa from

2013 - 2017, edited from [32].

Year Amount (in tonnes)

2017 1088

2016 1087

2015 1087

2014 1087

2013 1086

Honey bee wax or simply beeswax is a complex lipid that honey bee workers

secrete from their wax-glands [101]. This wax consists mainly of hydrocarbons,

monoesters, diesters, hydroxy polyesters and free acids [45, 93]. Workers use

beewax to construct their nests and comb cells (where they raise brood and

store pollen and honey). Humans have originally used beewax to make church

candles [20]. Nowadays, beeswax is used in many products such as coating
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pills in pharmaceutical industries, production of cosmetics like baby products

and fragrances [64].

Royal jelly is a milky-substance which honey bee workers secrete from their

hypopharangeal glands that are situated in the hypopharyx [45]. The workers

use royal jelly to feed the brood at the larva stage. It is known that royal jelly

is a designer-diet in the hive amongst the queen and the worker [93] because if

workers in the hive want to raise a new queen due to various reasons such as,

when the queen of the colony has left or the laying rate of the current queen

has decreased. Then the workers feed the larva in the queen cell (honeycomb

cell that look like a tea cup) more royal jelly than larvae in the other comb

cells [45, 93]. Royal jelly provides bee larvae with an immunity against bac-

teria infection [93]. Humans mostly use royal jelly in anti-aging and wrinkle

prevention creams [64]. It has been reported that long term consumption of

royal jelly by humans does improve mental health and formation of red blood

cells [60].

Propolis is made up of sticky resin collected by honey bee workers from trees

and other botanical sources which is mixed with their saliva to produce propo-

lis, known also as bee glue [45]. Workers use this glue as a sealant to close open

spaces in the hive to protect the hive from rain, cold and diseases, to inhibit

fungal, bacteria growth and parasites [101]. On the other hand, humans use

propolis for the cure of dental cavities and in the production of cosmetics [64].

Therefore, beekeeping can be viewed as a conservation and poverty alleviation tool,

which can be used to empower communities to boost economy.

Challenges facing beekeeping

In the past decades, beekeepers have witnessed an increase in colony losses globally

through phenomena known as Colony Collapse Disorder (CCD) which could not be

associated with any pathogen or pests. But the result of interactions between pests,

pathogens and pesticides [61]. Losses credited to CCD are in the range of 1.8% to
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85% of total managed honey bee colonies [68]. In the case where the colony has

fully collapsed, CCD is characterized by either the presence of food stores (pollen

and honey), capped brood and no adult bees in the colony, with little or no build

up of dead bees inside or in front of the colony. However, where the colony appears

to be actively collapsing, there are few workers to maintain the present brood and

the queen [43, 51]. Recent reports have revealed that pests, diseases, global honey

trade and improper beekeeping management practices have contributed significantly

towards colony losses [61, 68,86].

In 2006, honey bee colony failures were reported globally [43], with South Africa

reporting about 46.2% of colony loses in 2011 [74]. In this regard, we can mention

the so-called capensis calamity (cc), which has, and is still causing great losses

(up to 80%) of managed A.m. scutellata in the northern parts of South Africa

[74]. In the process of writing this dissertation, it was reported that beekeepers

were experiencing a massive loss of honey bees in the Cape region of South Africa.

Thousands of bees along the Cape peninsula were reported dying where the cause of

the death was assumed to be the poisonous insecticide from agricultural farming [71].

Without pollination in South Africa, it is estimated that about USD 700 billion per

year of fruit export industry would be negatively affected while in seed production,

between USD 5 and USD 6 million per year will decline [13]. It has been confirmed

that there will be a miserable future without honey bees, and we were reminded of

the price that we would pay due to the rapid loss of biodiversity and honey bees

in particular which “could be the herald of a permanently diminishing planet” [98].

Thus, there has been significant concern over declines and losses of managed honey

bee colonies due to their role as keystone pollinators of crops concurrent with existing

concern regarding global pollinator declines [86]. Hence it is important to study

honey bee population dynamics.

The purpose of the work

The general purpose of this work is to study the dynamics of honey bee population

within a colony from the modeling, theoretical and computational point of view,
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specifically in the setting of the observed biological phenomenon of colony declines.

The interest and involvement in this fascinating topic of colony population dynamics

of honey bees started in my honors project [50]. The purpose of the project was to

understand as much as possible the fundamental paper [43] on this topic.

The specific purpose of this dissertation is four-fold.

1. Firstly, to provide a comprehensive description of honey bees as model organ-

isms including their morphology, reproduction system, life cycle, division of

labor and life span. We also focus on the biology behind honey bee races in

South Africa, specifically the social parasite scenario as well as the cause(s)

and symptoms of the capensis calamity.

2. Secondly, to build on the honors project [50] for a much better understanding

of the paper [43]. More precisely:

(a) Thanks to the comprehensive biology of honey bees provided on the dis-

sertation, we add, adjust, enhance and interpret the assumptions made

in the formulation of the model (KMB) in [43].

(b) Provide details and proofs for the quantitative and qualitative results

stated in [43] including global asymptotic stability results.

3. Thirdly, to improve the social parasite (SP) model that was proposed in [50]

and do careful analysis that explains the capensis calamity in South Africa.

4. Lastly, to construct nonstandard finite difference (NSFD) schemes that are

dynamically consistent with the KMB and SP models.

The tools used are fundamental results on continuous and discrete dynamical sys-

tems. These includes Gronwall inequality, Hartman-Grobman theorem, Lyapunov

direct method and LaSalle invariance principle. Since our continuous models are

two-dimensional dynamical systems, we also use the Poincaré-Bendixon theorem as

well as the Dulac criterion. Note that these results (Poincaré-Bendixson theorem

and Dulac criterion) apply neither to continuous dynamical system of dimension
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greater than two nor to discrete dynamical systems. We use Wolfram Mathematica

software for numerical simulations.

Literature on honey bee modeling

The literature on the biology of honey bees is abundant. In particular, one can

have an indication on the ever-growing publications in this field by looking at the

“The South African Bee Journal” which is published quarterly by the South African

Bee Industry Organization (SABIO). The biology of honey bees presented in this

dissertation comes mostly from [93,101].

As mentioned earlier, this dissertation originated from the mathematical model pro-

posed in [43]. This specific choice is made for the following reasons:

1. To my best knowledge, this is the first mathematical model that predicts and

explains colony collapse disorder (CCD) in terms of the foragers’ death rate

without reference to any other factors.

2. The model is relatively simple, being restricted to only two compartments,

namely the hives class and foragers class.

3. The restriction to only two compartments mentioned in (2) above has biological

relevance. In particular:

• The focus on workers only is justified by the fact that drones do not

contribute to colony work [73, 80, 101]. Furthermore, there is a well rec-

ognized and documented division of labor among workers, which is age-

based [83,101], therefore it makes sense to classify them as hive bees and

foragers.

• Bearing in mind that in a healthy colony, the rate at which hive bees die

is less significant to the overall population [80,101], the death rate of hive

bees is ignored while that of foragers can not.

• Based on many reported cases on honey bee colony losses, it makes sense

not to necessarily consider brood disease on colony failure and CCD [22,
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69,72]. Furthermore, given the complex relation that exists between the

number of eggs reared in a colony and the number of bees in the hive,

it makes sense to attempt to capture this relation by assuming that the

eclosion rate is a saturated function that approaches the queen’s laying

rate as the total population of the hive bees increases.

• Whether the model is simple or not, death rate of the foragers is the

underlying factor for the colony decline.

4. From the mathematical point of view, 2-dimensional dynamical systems allow

the use of other results such as Poincaré-Bendixson Theorem, Dulac Criterion

etc. system

This simplification permits therefore to easily gain some insight on the population

dynamics and decline of honey bee colony.

We now want to comment on some of mathematical models that have additional

compartments apart form the hive and foragers classes. While [16] improves the

model in [43] by including the mortality rate of hive bees, it should be noted that

the model in [43] was extended by the same authors in [44] where an additional

compartment for brood is incorporated with an explicit dependence on food. These

contributions, [44] and [16], fall under the category of works that explore the inter-

actions of strategies (such as availability of food and climate change) and foragers

death rate on colony fate [25,27,80].

The second category consists of works that model the colony failure as a contagion by

a virus, which is transmitted by parasite varroa mites [25,29,47,77]. In this category,

models are enriched by additional compartments and factors such as infected bee

class, mites class, demographics etc. In the two categories, the underlying factors

for the decline is the foragers death rate.

To my best knowledge, our work [51] is the first publication on the NSFD method for

differential equations model for honey bees. NSFD schemes are constructed using

Mickens’ rules [55], as formalized in [7], taking into account useful information such

as the availability of exact schemes [79] and conservation laws [59].
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Outline of the dissertation

The rest of this dissertation is organized as outlined below. Chapter 2 deals with the

review of some basic concepts on dynamical systems that are defined by ordinary

differential equations and difference equations. These concepts are selected accord-

ing to our needs for the quantitative and qualitative analysis of the mathematical

models for honey bee population dynamics within the colony on which we focus in

this work. The discrete dynamical systems on which we focus being nonstandard

finite difference (NSFD) schemes, we present a directed overview of this approach.

In Chapter 3, we give an extensive description of the organizational structure of

honey bee colonies. This includes their castes, morphology, reproduction system,

division of labor, life cycle and lifespan. This knowledge of the biology of honey bees

enables us to enhance the assumptions made in [43] so as to better understand how

the model (KMB) proposed in [43] is derived . The main result on the existence and

non existence of the CCD is proved in this chapter and reads as follows: The trivial

equilibrium point (0,0) is globally asymptotically stable (GAS) whenever the death

rate of foragers is above a critical value mc; the colony increases and stabilizes at

a unique positive interior equilibrium point if the foragers’ death rate is below mc.

This chapter is concluded by describing some mathematical models in the literature

that explore other factors contributing to the declines of honey bee colonies.

Chapter 4 is devoted to the social parasite phenomenon in honey bees in South

Africa. Our focal point is on how the host population of A.m. scutellata is affected

by the presence of the parasites population of A.m. capensis. We discuss how the

capensis calamity, which is still threatening South African beekeeping occurs and the

symptoms associated with it. Assumptions are made, that enable us to formulate a

mathematical (Social Parasite, SP) model. We show how colonies of A.m. scutellata

are overtaken by parasitic clones of A.m. capensis in such a manner that colonies

of A.m. scutellata decays exponentially to zero.

In Chapter 5, we design NSFD schemes for both the KMB and SP models. We

theoretically prove that the constructed schemes are dynamically consistent with
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their continuous models. This chapter is concluded by numerical simulations that

support the theory and reliability of our schemes.

In the last chapter, we provide concluding remarks and show how our findings fit in

literature. We also indicate how the work can be extended.
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Chapter 2

Preliminaries on dynamical

systems

The mathematical models investigated in this dissertation are in the framework of

dynamical systems defined either by ordinary differential equations or difference

equations. In this chapter, the main results and tools needed for the quantitative

and qualitative analysis of continuous ordinary differential equations (from Section

2.1 to Section 2.5) and discrete dynamical systems (from Section 2.6 to Section

2.8) are collected. These results and tools are presented in the form that we will

use them in this dissertation. Whenever it is necessary, we comment and provide

suitable references on the general form of the results. Since the discrete dynamical

systems that we have in mind are in the setting of the nonstandard finite difference

(NSFD) method, we devote the last section of this chapter to it.

2.1 Generalities on continuous dynamical systems

We first consider dynamical systems defined by ordinary differential equations (ODEs).

Our main reference on dynamical systems is [89]. We also mention the theses [42,94]

where most of the material that we need are presented in a way that we require.

The general setting of this dissertation is an autonomous first-order system of two-

dimensional differential equations, in the dependent variable y ∈ R2 and independent

variable t ≥ 0 which has the form:

ẏ ≡ dy

dt
= f(y), y(0) = y0, (2.1.1)
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where f : R2 → R2 is a given vector-valued function and y0 ∈ R2 is the given initial

data. We start by giving the definition of a dynamical system on a subset E ⊆ R2.

Definition 2.1.1. [42,89,94] The initial value problem (2.1.1) is said to be a dynam-

ical system on a set E ⊆ R2 if for every y0 ∈ E, there exists a unique continuously

differential function y : [o,∞)→ E which solves the Equation (2.1.1).

Remark 2.1.2. The system (2.1.1) and Definition 2.1.1 of a dynamical system can

be considered for any vector-valued function f : Rm → Rm, and any given initial

data y0 ∈ Rm, such that y(t) ∈ Rm is a solution defined for all t ≥ 0, where m ∈ N.

Throughout this dissertation, we will be focusing on dynamical systems in R2 which

is the setting of population dynamics of hives and foragers in the honey bee colonies.

It should also be noted that two-dimensional dynamical systems have specific features

(e.g. Poincaré-Bendixson Theorem) that do not apply to higher order dimensional

systems.

At this stage, we introduce the concept of evolution semigroup operator for a dy-

namical system that helps to describe the evolution of the solution as time increases.

Definition 2.1.3. For a dynamical system on E ⊆ R2, its evolution semigroup

operator or solution operator is defined to be the map;

φ(t) : E → E such that y(t) = φ(t)y0,

where y(t) is the unique solution of the system (2.1.1).

The terminology in Definition 2.1.3 is inspired by the following properties:

1. For all t > 0, s > 0, we have φ(t+ s) = φ(s)φ(t) = φ(t)φ(s),

2. If t = 0 then φ(0) = I, the identity operator.

Definition 2.1.3 is a convenient notation for the advancement of the solution through

time t. Taking this definition into account, we introduce the set

Γ+(y0) =
{
φ(t)y0 : t ∈ [0,∞)

}
⊂ E

which is called the positive or forward orbit/trajectory of the initial data y0.
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Remark 2.1.4. Stating that the initial value problem (2.1.1) is a dynamical system

is linked to saying that the problem (2.1.1) is well-posed in the sense of Hadamand.

That is:

1. A solution, y(t), to the problem (2.1.1) exits.

2. The solution is unique.

3. The solution depends continuously on the given initial data.

The minimal condition to be imposed on the function f in Equation (2.1.1) is con-

tained in the next definition:

Definition 2.1.5. The function f(y) is said to be locally Lipschitz if for every

compact set B ⊂ E ⊆ R2, there exists a real number K ≥ 0 (called the Lipschitz

constant) depending on B such that

‖f(y1)− f(y2)‖ ≤ K ‖y1 − y2‖ for all y1, y2 ∈ B. (2.1.2)

Here ‖·‖ denotes the Euclidean norm. If Condition (2.1.2) is satisfied for B = E

then the function f is said to be globally Lipschitz. The Lipschitzian nature of

functions plays a major role in proving the existence and uniqueness results for

many mathematical problems [105]. To be more specific, we have the following

theorem which guarantees the existence and uniqueness of the local solution.

Theorem 2.1.6. [42] Assume that the function f : R2 → R2 satisfies the Lipschitz

condition on the ball B = B(y0, r) with Lipschitz constant LB. Consider the finite

time

TB =
r

supy∈B ‖f(y)‖
.

Then the initial value problem (2.1.1) has a unique solution y(t) in the interval

[0, TB].

The global solution is obtained by proving some a priori estimates as stated in the

following result.

Theorem 2.1.7. [42,89] Let f : R2 → R2 be locally Lipschitz on an ε-neighborhood

Eε of a bounded set E ⊆ R2. If for any y0 ∈ E, the solution y(t) of (2.1.1) satisfies
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y(t) ∈ E for each time t ≥ 0 where the solution exists, then (2.1.1) defines a

dynamical system on E.

The next result is the so-called Gronwall’s Inequality. The general forms of which

can be found in the literature [99]. Gronwall’s Inequality helps in obtaining a priori

bounds for solutions of differential equations. We provide below a simple version of

the Gronwall’s Inequality which is relevant to our needs in this dissertation.

Lemma 2.1.8. [89] [Gronwall’s Inequality] For a real-valued function

z : [0,+∞)→ R

that satisfies the inequality

ż :=
dz

dt
≤ az + b ; z(0) = z0

where a and b are constants, there holds the following inequalities:

z(t) ≤


z0e

at +
b

a

(
eat − 1

)
if a 6= 0

z0 + bt if a = 0

In many cases, it is not possible to explicitly solve dynamical systems even though

it is known that the solution exists and is unique. Thus the importance of studying

the behavior of the solutions. In order to do the qualitative analysis, the concepts

in the next definition are essential regarding the action of the evolution semigroup

operator φ(t) on E ⊆ R2.

Definition 2.1.9. [42,89,94] For a dynamical system defined by (2.1.1), a set E is

said to be

1. positively invariant under the map φ if φ(t)E ⊆ E for all t ≥ 0,

2. negatively invariant under φ if φ(t)E ⊇ E for all t ≥ 0,

3. invariant under φ if it is both positively and negatively invariant so that

φ(t)E = E for all t ≥ 0.

Special trajectories play a crucial role in the qualitative analysis of dynamical sys-

tems. The simplest of such trajectories are equilibrium points which turn out to be

the simplest invariant sets. In what follows, we define an equilibrium point of the

dynamical system and explain its properties.
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Definition 2.1.10. A point y∗ ∈ R2 is said to be an equilibrium point of the au-

tonomous system (2.1.1) if

f(y∗) = 0.

Remark 2.1.11. It is with no doubt from Definition 2.1.10 that the point y∗ is

an equilibrium point of the system (2.1.1) if and only if it is a fixed point of the

semigroup operator, that is φ(t)y∗ = y∗.

In order to compare the other trajectories to the simplest invariant sets, equilibrium

points, we use the following definition

Definition 2.1.12. [89] An equilibrium point, y∗, for a dynamical system on E ⊂ R2

is said to be:

(a) stable if for every ε > 0, there exists δ > 0 such that ‖y0 − y∗‖ < δ implies

‖y(t)− y∗‖ < ε for all t > 0,

(b) locally attractive, if there exists η > 0 such that ‖y0 − y∗‖ < η implies that

limt→∞ y(t) = y∗,

(c) locally asymptotically stable if y∗ is stable and locally attractive

(d) globally attractive if (b) holds for any y0 ∈ E,

(e) globally asymptotically stable if (a) and (d) hold.

(f) unstable whenever (a) fails to hold.

2.2 Linearization for continuous dynamical

systems

In practice, it is not easy to determine the stability/instability of equilibrium point

of a dynamical system through Definition 2.1.12. The simplest way to investigate the

stability property of the equilibrium point is through linearization process, which we

explain below. The type of the equilibrium point for which the linearization process

works is described in the following definition.
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Definition 2.2.1. [15, 89] An equilibrium point y∗ is said to be hyperbolic if the

eigenvalues, λ, of the Jacobian matrix, J ≡ J(y∗) of the function f at the equilibrium

point y∗, have non-zero real parts, that is, Re(λ) 6= 0. Otherwise, the equilibrium

point is called non hyperbolic.

In what follows, we explain the linearization process of the dynamical system (2.1.1)

about the equilibrium point y∗.

Suppose that y∗ is a hyperbolic equilibrium point of the dynamical system (2.1.1)

and that the function f is sufficiently smooth. Then, the Taylor expansion of the

function f about the equilibrium point y∗ yields:

f(y) = f(y∗) + J(y∗)(y − y∗) +O((y − y∗)2) (2.2.1)

or, where u = y − y∗,

u̇ = Ju+O(u2). (2.2.2)

Since O(u2) is small whenever u is, it makes sense to assume that u0 near the origin

the solutions of (2.2.2) behaves in a similar manner as solutions of

u̇ :=
du

dt
= Ju, (2.2.3)

which are given by

u(t) = u0e
tJ . (2.2.4)

Equation (2.2.3) is called the linearization of the system (2.1.1) at y∗.

The stability of the non-linear dynamical system (2.1.1) via the linear dynamical

system (2.2.3) is guaranteed by the following theorem, which is an important result

about the local behavior of dynamical systems in the neighborhood of a hyperbolic

equilibrium point.

Theorem 2.2.2. [89] [Hartman-Grobman Theorem] Assume that the function f :

R2 → R2 is of class C1 and consider a hyperbolic equilibrium point y∗ of a dynamical

system (2.1.1). Then there exists δ > 0, a neighborhood N ⊂ R2 of the origin, and

a homeomorphism h : B(y∗, δ) → N such that u(t) := h(y(t)) solves (2.2.3) if and

only if y(t) solves (2.1.1).
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Figure 2.1: Hartman-Grobman Theorem for the continuous system

Theorem 2.2.2 implies that, for a hyperbolic equilibrium point y∗ of a dynamical

system, the behavior of the solution, y(t) of the non-linear system (2.1.1) near y∗,

as t → +∞ is the same as the behavior of the solution, u(t), of the linear System

(2.2.3) near the origin.

Remark 2.2.3. With the matrix J of order two having entries Jij, we have

trJ = λ1 + λ2 = J11 + J22 and detJ = λ1λ2 = J11J22 − J12J21,

where the eigenvalues λ1 and λ2 of J are the roots of the characteristic equation

det(J − λI) = 0 which is equivalent to λ2 − λtrJ + detJ = 0.

Taking into consideration the equation (2.2.4), we have the following precise result:

Corollary 2.2.4. For y0 close to y∗, the equilibrium point y∗ is asymptotically stable

if and only if Re(λ) < 0 for all λ ∈ σ(J) or equivalently, the trace, trJ, of J is

negative and the determinant, detJ, is positive.

2.3 Poincaré-Bendixson Theorem

We address, in this section, the situation when the Linearization process does not

hold, resulting in a more complex structure of the final state of the trajectories.

It should be noted that the results in this section do not hold true for dynamical

systems of dimension higher than two. The complex structure of the trajectories

can be either one of the following [15]:

22



1. the system does not have asymptotically stable equilibrium points,

2. the solution does not start near an equilibrium point,

3. the equilibrium point of the system is non hyperbolic.

To carryout the qualitative analysis of a dynamical system that has one of the above

feature, we study the structure of the ω−limit set that we define below.

Definition 2.3.1. [15] Let y0 ∈ R2 be the initial data of the system (2.1.1) with its

forward orbit Γ+ ≡ Γ+(y0). The limit set of Γ+, known also as the ω− limit set of

the point y0, is denoted by L(Γ+) = ω(y0), and defined by

L(Γ+) ≡ ω(y0) :=
{
y ∈ R2 : ∃ {tn > 0} → ∞ : lim

n→∞
φ(tn)(y0) = y

}
.

The Poincaré-Bendixson Theorem in its general form can be found in [36,88]. Here

we state the theorem in the setting of a dynamical system on E in the sense of Def-

inition 2.1.1 whereby the existence and uniqueness of a global solution that remains

in E is guaranteed.

Theorem 2.3.2. [36] [Poincaré-Bendixson Theorem] Suppose that a subset E of

R2 is compact, positively invariant and has a finite number of equilibrium points

(possibly zero) of the two-dimensional dynamical system (2.1.1). Let y0 ∈ E. Then

one of the following possibilities holds for the bounded forward orbit Γ+ and for the

structure of the ω−limit set of y0:

1. The ω− limit set, ω(y0), is a single point y which is an equilibrium point and

the solution is such that limt→∞ φ(t)(y0) = y.

2. The ω− limit set, ω(y0), is a periodic orbit Γ. In this case either Γ+(y0) =

ω(y0) = Γ or else Γ+(y0) spirals with increasing time towards Γ on one side of

Γ.

3. The ω−limit set, ω(y0), consists of equilibrium points and an orbit joining

them.

Remark 2.3.3. In the case when the positively invariant and compact set E does not

contain equilibrium points of the dynamical system, only the scenario 2 in Theorem
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2.3.2 will apply. One interesting situation in this scenario is when Γ+(y0) 6= Γ. In

this case Γ is called the limit cycle [36].

From Remark 2.3.3, Poincaré-Bendixson Theorem is very useful in identifying the

existence of the periodic solutions and to find out whether the system under consid-

eration has a confined set. At the same time it is important to determine whether

a 2-dimensional system has periodic orbits or not. The next theorem addresses this

situation in a manner that is sufficient to this dissertation.

Theorem 2.3.4. [15] [Dulac Criterion] Let β be a function of class C1 on a simply

connected domain E on which the system (2.1.1) is considered. If the divergence of

the vector-valued function, βf ,

div(βf) =
∂(βf1)

∂y1

+
∂(βf2)

∂y2

,

has a constant sign then there are no periodic orbits of the system (2.1.1) in E.

Remark 2.3.5. 1. If β = 1 in Theorem 2.3.4 above then Theorem 2.3.4 is known

as Bendixson Theorem.

2. Other sufficient conditions for the system (2.1.1) not to have periodic solutions

include:

(i) the vector function f is a gradient system as defined below f = −∇γ.

(ii) the system admits a strict Lyapunov function as defined below (conclusion

1 in Theorem 2.3.2 will apply).

2.4 Lyapunov direct method for continuous

dynamical systems

In this section, we consider the Lyapunov direct method (also called the second

method of Lyapunov) to determine the stability or instability of the equilibrium

point of dynamical systems. Apart from being also suitable for situations where

the Poincaré-Bendixson theorem and linearization process do not apply, this ap-

proach permits one to establish global stability results. First, we define a Lyapunov

function.
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Definition 2.4.1. [36, 53, 88, 89, 99] Assume that the system (2.1.1) defines a dy-

namical systems on an open E ⊂ R2 and y∗ ∈ E is an equilibrium point.

1. A function V ∈ C1(E,R) is called a Lyapunov function of System (2.1.1) for

y∗ on a neighborhood B ⊂ E of y∗ if it satisfies the following two properties:

(i) V is positive definite in the sense that

V (y∗) = 0 and V (y) > 0 for all y ∈ B \ {y∗},

(ii)

V̇ (y) ≤ 0 for all y ∈ B (2.4.1)

where V̇ (y) is the directional derivative of V in the direction of the vector-

function f and is given by

V̇ (y) := lim
h→0

V (y + hf(y))− V (y)

h
.

2. A Lyapunov function V is called a strict Lyapunov function whenever

V̇ (y) < 0 for all y ∈ B.

Note that by Taylor expansion

V̇ (y) = ∇V (y)f(y). (2.4.2)

Moreover, if y(t) is the solution of the differential equation (2.1.1), then by the chain

rule from Equations (2.4.2) and (2.1.1), we obtain

V̇ (y(t)) =
d

dt
V (y(t)). (2.4.3)

The relation (2.4.3) motivates the fact that V̇ is often called the derivative of V

along trajectories. The Lyapunov function and the relation (2.4.3) give information

on the solution y(t) of the dynamical system (2.1.1) without its prior knowledge. As

a matter of fact, we have the following result:

Theorem 2.4.2. [53, 89, 94] Let V be a positive definite Lyapunov function of the

dynamical system (2.1.1) on a neighborhood set B ⊂ E of an equilibrium point y∗.

Then the following holds true:
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1. The equilibrium point y∗ is stable,

2. The equilibrium point y∗ is locally asymptotically stable if V̇ (y) < 0 for all

y ∈ B \ {y∗} (i.e V is strictly a Lyapunov function).

3. The equilibrium point y∗ is unstable if V̇ > 0 for all y ∈ B \ {y∗}.

The main challenge associated with the use of a Lyapunov function is that it is not

easily constructed. But once it is available, it has the advantage of leading to some

global stability properties of an equilibrium point especially if the system under

consideration is dissipative.

Definition 2.4.3. [89, 94] A dynamical system defined on a set E ⊆ R2 is said to

be dissipative if there exists a bounded, positively invariant set U with the property

that for any bounded set B ⊆ R2, there exists a time t∗ = t∗(U,B) ≥ 0 such that

φ(t)B ⊆ U for all t > t∗. The set U is called an absorbing set.

With Definition 2.4.3 in mind, the global stability result is the LaSalle Invariance

Principle that reads as follows:

Theorem 2.4.4. [94] [LaSalle Theorem] Let y∗ be an equilibrium point of a dissi-

pative dynamical system on a set E, defined by (2.1.1). Let V be a positive definite

Lyapunov function for y∗ on the set E. Furthermore, let E = {y ∈ E : V̇ (y) = 0}.

If M is the largest invariant subset of E , then y∗ is globally asymptotically stable on

E if and only if it is globally asymptotically stable for the system restricted to M.

In particular, y∗ is globally asymptotically stable on E if E = {y∗}.

2.5 Bifurcation of equilibrium points

To conclude the preliminaries on continuous dynamical system, we consider the

concept of bifurcation of equilibrium points. Bifurcation theory is well documented.

However, to make this part of the dissertation self-contained, we follow the presen-

tation given in [94].

Let us assume that the right-hand side of the dynamical system (2.1.1) depends on
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a real parameter, say µ. That is, the system

ẏ = f(y)

is replaced by

ẏ = f(y, µ). (2.5.1)

The equilibrium points of the system (2.5.1) are the roots (y, µ) of the equation

f(y, µ) = 0. (2.5.2)

In a nutshell, we say that a bifurcation occurs at a critical point µ = µ0 of the

parameter µ whenever the behavior of the system changes as the parameter passes

through µ0, namely for µ < µ0 and for µ > µ0. In fact, according to Fred-Brauer

and Castillo-Chavez [15], a bifurcation is defined by a point in the parameter space,

say µ − y, where equilibrium points appear, disappear or change stability. More

specifically, we have the following definition:

Definition 2.5.1. [94, 102] An equilibrium point (y∗, µ0) of System (2.5.1) is said

to undergo a bifurcation at the point µ = µ0 or alternatively the parameter µ = µ0 is

said to be a bifurcation value for the system (2.5.1) if the dynamics of (2.5.1) near

both y = y∗ and µ = µ0 is not the same as the dynamics near y = y∗ at µ = µ0.

Though there are several types of bifurcation (e.g pitchfork bifurcation, saddle node

bifurcation, hopf bifurcation) we will, in this work, mostly be interested in the

following type of bifurcation:

Definition 2.5.2. [94,102] The dynamical system (2.5.1) is said to undergo a tran-

scritical bifurcation at µ = µ0 if there holds the following conditions:

1. At least two curves y = y(µ) of equilibrium points exist in the µ− y space for

µ < µ0 and µ > µ0;

2. The curves of the equilibrium point branch at µ = µ0 or intersect at the point

(y∗, µ0);

3. The stability of the equilibrium point along a given curve changes as it passes

the point µ = µ0.
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Figure 2.2: Bifurcation diagram of ẏ = y(µ − y) [102]; solid lines represent stable

equilibrium points and dashed lines represent unstable equilibrium points.

Remark 2.5.3. Typically, the bifurcation points of the system (2.5.1) are repre-

sented on a bifurcation diagram, which is the parameter space µ − y where curves

y = y(µ) of equilibrium points and their stability properties are displayed. Fig 2.2

illustrates Definition 2.5.2, with µ = 0 being a transcritical bifurcation for the in-

volved scalar equation: for µ < 0, y = 0 is asymptotically stable while y = µ is

unstable; for µ > 0, y = 0 becomes unstable while y = µ is asymptotically stable.

2.6 Generalities on discrete dynamical systems

Dynamical systems generated by the mappings from R2 to R2 are presented in this

section. Discrete dynamical system concepts are in some sense the same as those of

continuous dynamical systems on the understanding that the time variable t ≥ 0 is

now replaced by the discrete variable n ∈ N. Our main references are [42,94] in the

specific form adapted in [89].

Here and after, we consider a sequence {yn}∞n=0 in R2 defined recursively from y0 by

yn+1 = G(yn), (2.6.1)

where G : R2 → R2 is a map.
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Definition 2.6.1. Equation (2.6.1) defines a discrete dynamical system on a set

E ⊆ R2 if, for every y0 ∈ E, the sequence {yn}∞n=0 is such that yn remains in E for

all n ≥ 0.

Definition 2.6.2. The evolution semigroup operator for a discrete dynamical system

of E is defined to be the map Sn : E → E such that yn = Sny0 = G ◦G... ◦Gy0.

The following are the properties of the evolution semigroup operator:

1. ym+n = Smyn = Snym = Sm+ny0 for all m,n ≥ 0,

2. S0 = I, the identity operator.

The discrete analogue of Gronwall’s Inequality, as stated in Lemma 2.1.8, reads as

follows:

Lemma 2.6.3. [Gronwall’s Inequality] Let a positive sequence {yn}Nn=0 satisfy

yn+1 ≤ Cyn +D for all n = 0, 1, ..., N − 1,

where C and D are constants and C > 0. Then, there holds the following:

yn ≤
D

1− C
(1− Cn) + y0C

n for all n = 0, 1, ..., N if C 6= 1

and

yn ≤ nD + y0 for all n = 0, 1, ..., N if C = 1.

We deal with the behavior of the discrete dynamical system on E ⊆ R2 defined by

the system (2.6.1).

Definition 2.6.4. [42, 89, 94] A subset B ⊂ E ⊆ R2 is said to be

1. positively invariant under the map Sn if SnB ⊆ B for all n ≥ 0,

2. negatively invariant under the map Sn if SnB ⊇ B for all n ≥ 0,

3. invariant if it is both positively and negatively invariant; That is, SnB = B

for all n ≥ 0.

Definition 2.6.5. A point y∗ ∈ R2 is called a fixed-point of the discrete dynamical

system (2.6.1) if y∗ = G(y∗) or y∗ = Sny∗ for all n ≥ 0.
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Definition 2.6.6. [42,89,94] Let y∗ ∈ R2 be a fixed point of the discrete dynamical

system. Then, y∗ is:

1. stable if, for any ε > 0, there exists δ(ε) > 0 such that if ‖y0 − y∗‖ < δ, then

‖yn − y∗‖ < ε for all n ≥ 0;

2. locally attractive if there exists η > 0 such that ‖y0 − y∗‖ < η implies that

lim
t→∞

y(t) = y∗

3. locally asymptotically stable if (1) and (2) hold

4. globally attractive if (2) holds for all y0 ∈ E

5. globally asymptotically stable if (1) and (4) holds

6. unstable if (1) does not hold.

In practice, it is difficult to investigate the stability of fixed points of the discrete

dynamical system using Definition 2.6.6. In the next section, we explain the practical

way of determining the stability or instability of the fixed points.

2.7 Linearization for discrete dynamical systems

To investigate the stability or instability of the fixed-point y∗ of the discrete dynam-

ical system, we assume that the map G in Equation (2.6.1) is of class C1 and we

denote the Jacobian matrix of G at y∗ by J = JG(y∗). Then,

un+1 = Jun for n = 0, 1, 2, ... (2.7.1)

is the linearization of (2.6.1) around the fixed point y∗ where un = yn − y∗. The

stability properties of the discrete linear system (2.7.1) is determined by the eigen-

values of the Jacobian matrix J. Thus, the stability property of the fixed point y∗

of (2.6.1) would be easily related to the stability property of the fixed point u∗ = 0

of the linear system (2.7.1). Below, we define the type of the fixed point for which

the linearization process works.
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Definition 2.7.1. [89] A fixed point y∗ of the discrete dynamical system is said to

be hyperbolic if no eigenvalues of the Jacobian matrix J lie on the unit circle. That

is, |λ| 6= 1 for all λ ∈ σ(J). Otherwise, the fixed point is called non-hyperbolic.

Theorem 2.7.2. [89] [Hartman-Grobman Theorem] Let the discrete dynamical sys-

tem (2.6.1), with map G : R2 → R2 of class C1, have hyperbolic fixed point y∗.

Then, there exist δ > 0, a neighborhood N ⊂ R2 of the origin and a homeomor-

phism h : B(y∗, δ)→ N such that

h(G(y0)) = Jh(y0) for all y0 ∈ B(y∗, δ).

Consequently, by setting un = h(yn) for all n ≥ 0, the mapping (2.6.1) in the

neighborhood B(y∗, δ) of y∗ is equivalent to the mapping (2.7.1) in the neighborhood

N of the origin.

Figure 2.3: Hartman-Grobman Theorem for the discrete system

The practical use of Theorem 2.7.2 is stated in the next result.

Theorem 2.7.3. [89, 94, 99] Let a dynamical System (2.6.1), with G : R2 → R2 of

class C1, have hyperbolic fixed-point y∗. Then,

1. The fixed-point y∗ is asymptotically stable if and only if for

un = Jnu0,

solution of (2.7.1), with ‖u0‖ := ‖y0 − y∗‖ small enough, we have

lim
n→∞

un = 0 or equivalently |λ| < 1 for all λ ∈ σ(J).
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2. The fixed-point is unstable if there exists at least one eigenvalue, λ ∈ σ(J), of

the Jacobian matrix such that

lim
n→∞

‖un‖ =∞ or equivalently |λ| > 1.

2.8 Lyapunov direct method for discrete dynam-

ical systems

In this section, we assume that a fixed-point y∗ of the discrete dynamical system

(2.6.1) can be non-hyperbolic, in which case Theorem 2.7.2 and Theorem 2.7.3 do

not apply. In order to address the stability or instability property of the fixed point,

we use a Lyapunov function in conjunction with LaSalle Invariance Principle just

as explained in the continuous dynamical system case (section 2.4).

Definition 2.8.1. [53,89,94] Let y∗ be a fixed point of the discrete dynamical system

(2.6.1) defined on E ⊆ R2. A function V ∈ C1(E,R2) is said to be a Lyapunov

function for y∗ on some neighborhood B ⊂ E if

1. the function V satisfies V (y∗) ≤ V (y) for all y ∈ B,

2. the inequality V (G(y)) ≤ V (y) holds for all y ∈ B.

If, in addition, V (y∗) = 0 and V (y) > 0 for all y ∈ B \ {y∗}, then V is said to be

positive definite function at y∗.

Like in the case of continuous dynamical systems, construction of Lyapunov func-

tion is not easy. But once determined, it becomes possible to check the stability

properties of a fixed-point as specified in the next result.

Theorem 2.8.2. [53,89,94] If there exists a Lyapunov function V (y) for the fixed-

point y∗ on the ball B(y∗, δ), then the fixed point y∗ is stable. If V (G(y)) < V (y) for

all y ∈ B(y∗, δ) \ {y∗} then y∗ is locally asymptotically stable, whereas y∗ is unstable

if V (G(y)) > V (y) for all y ∈ B(y∗, δ) \ {y∗}

The following concept plays a major role for the global asymptotic stability of the

fixed-point.
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Definition 2.8.3. [53, 89, 94] A discrete dynamical system on E is said to be dis-

sipative if there exists a compact, positively invariant set B ⊂ R2 with the property

that for any bounded set D ⊆ E, there exists n∗ = n∗(B,D) ≥ 0 such that SnD ⊆ B

for all n > n∗. The set B is called an absorbing set. In the case when set D is

replaced by each point y0 ∈ E, the dynamical system is said to be point dissipative.

The following result describes how the global asymptotic stability can be achieved.

Theorem 2.8.4. [53,89,94] Suppose that y∗ is a fixed-point of the discrete dynamical

system (2.6.1) defined on E. Assume further that the system (2.6.1) is dissipative.

Assume also that there exists a continuous function V : E → R such that

1. the function V is bounded from below on E,

2. the inequality V (G(y)) ≤ V (y) holds true for all y ∈ E,

3. the fixed-point is globally asymptotically stable when the system (2.6.1) is re-

stricted to the set M, which is the largest invariant set contained in

E = {y ∈ E : V (G(y)) = V (y)}.

Then, the fixed-point y∗ is globally asymptotically stable on the whole set E,

which is in particular the case when M = {y∗}.

Remark 2.8.5. Theorem 2.8.4 is a version of the LaSalle Invariance Principle.

The function V is some kind of Lyapunov function even though the lower bound

required for V (y) is not specifically for V (y∗) as stated in the first part of Definition

2.8.1. The invariance principle nature is contained in part (3) of Theorem 2.8.4.

2.9 Nonstandard finite difference schemes

In general, the continuous system (2.1.1) cannot be completely solved by analytic

techniques. Consequently, numerical methods are of fundamental importance in

gaining more useful insights on the solution of the differential equation.

We consider a difference equation

D∆tyn = G∆t(f, yn), (2.9.1)
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which gives rise to a sequence {yn}∞n=0 of approximations to the solution y(t) of the

system (2.1.1) at the discrete time {tn = n∆t}∞n=0, where ∆t ≡ h is the step size

and

y(tn) ≈ yn. (2.9.2)

It is implicitly understood that D∆tyn is an approximation of the derivatives
dy

dt
,

while G∆t(f, yn) approximates the function f(y). It is also important to note that

the algorithm (2.9.1) permits to find the discrete solution yn+1 at the time tn+1

assuming that the discrete solution yn is known at the time tn.

We start with some general concepts about the numerical method (2.9.1). We fix a

time t∗ which can be represented in the form

t∗ = n∆t = tn (2.9.3)

for different values of n and ∆t.

Definition 2.9.1. [49] The difference scheme (2.9.1) of a well-posed initial value

problem (2.1.1) is said to be convergent if, we have that

lim
∆t→0
t∗=n∆t

yn = y(t∗) (2.9.4)

holds for all t∗ ≥ 0 and for all solutions {yn} of the difference Equation (2.9.1).

As mentioned earlier, the exact solution y(t∗) is not known. It is therefore difficult

to check the convergence based on Definition 2.9.1. To overcome this difficulty, we

consider three additional concepts.

Definition 2.9.2. [49] The local truncation error, Rn+1, of the numerical method

(2.9.1) is the amount by which the exact solution y(t) fails to satisfy the relation

(2.9.1). That is

Rn+1 := D∆ty(tn)−G∆t(f, y(tn)).

Definition 2.9.3. [49] The method (2.9.1) is said to be consistent with the dif-

ferential equation if, for all initial value problems, the local truncation error Rn+1

satisfies

lim
∆t→0
t∗=n∆t

Rn+1 = 0. (2.9.5)
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Definition 2.9.4. [49] Let {δn}∞n=0 and {δ∗n}∞n=0 be any two perturbation of the

scheme (2.9.1), and let {Zn}∞n=0 and {Z∗n}∞n=0 be the resulting pertubated solutions.

If there exist constants S and ∆t0 such that for all ∆t ∈ (0,∆t0], we have

‖Zn − Z∗n‖ ≤ Sε whenever ‖δn − δ∗n‖ ≤ ε for n ≥ 0,

then the scheme (2.9.1) is said to be zero-stable.

The challenge mentioned earlier about checking the convergence of the scheme is

addressed by the following fundamental result:

Theorem 2.9.5. [49] Assume that the problem (2.1.1) is well-posed. Then the

difference scheme (2.9.1) is convergent if and only if it is both consistent with dif-

ferential equation and zero-stable.

Convergence of the scheme is important. A numerical method that is not convergent

is not useful. In addition to convergence, we want schemes which replicate dynamics

of the continuous systems. A typical example is the so called exact scheme. For the

exact scheme, the local truncation error is zero.

Definition 2.9.6. The numerical method (2.9.1) that approximates (2.1.1) is called

an exact scheme whenever the difference equation (2.9.1) and the differential equa-

tion (2.1.1) have the same general solutions at the discrete time t = tn. In particular,

with y(t) being the solution of the initial value problem (2.1.1,) we have yn = y(tn)

A lot of work has been done in providing exact schemes of a wide range of models

that arise in applications. Typical references for this include [55–57,79]. We restrict

ourselves to give the exact schemes of two equations that we will deal with in this

dissertation. The first model is the decay equation which will arise, in the KMB

model for the honey bee colony population, when the hive bees are ignored (see

Section 5.1).

Proposition 2.9.7. The exact scheme of the decay equation

dy

dt
= −my, y(0) = y0, (2.9.6)

is
yn+1 − yn

(1− e−m∆t)/m
= −myn (2.9.7)
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or equivalently
yn+1 − yn

(em∆t − 1)/m
= −myn+1. (2.9.8)

Proof. By separation of variables, the solution of (2.9.6) is y(t) = y0e
−mt. Thus, the

solution of (2.9.6) at time t = tn+1, is

y(tn+1) = y0e
−mtn+1 . (2.9.9)

By subtracting y(tn) and doing some manipulations, (2.9.9) leads successively to

y(tn+1)− y(tn) = y0e
−mtn+1 − y(tn)

= y0e
−m(tn+∆t) − y(tn)

= y(tn)e−m∆t − y(tn)

= −my(tn)
(
e−m∆t − 1

)
/(−m).

Therefore, setting yn := y(tn) allows us to re-write (2.9.9) in the equivalent form

(2.9.7). To obtain relation (2.9.8), we divide both sides of (2.9.7) by em∆t. That is

yn+1 − yn
em∆t

(
1−e−m∆t

m

) = −myne−m∆t,

which implies that

yn+1 − yn
em∆t−1

m

= −myn+1 since yn+1 = yne
−m∆t.

The second model of interest in this dissertation is the Michaeli-Menten (M-M)

equation
dH

dt
=

LH

ω +H
. (2.9.10)

While the M-M model arises directly from the KMB model in the absence of foragers

(Section 5.1), we motivate below how the M-M equation is of great use in applica-

tions. As reported in [18] and [19], the M-M equation represents one of the most

basic enzymatic reactions that was proposed more than a century ago by Michaelis-

Menten. This equation models the enzyme kinetics in pharmacology and was solved

in [70, 84] with a singular perturbation where for our case for instance, H is one of

the leading order terms of the expansion of the outer solution. The right-hand side
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of the M-M equation also arises as a functional response in the predator-prey and

infectious disease models in specific extended forms ranging from the M-M type, the

ratio-dependent type, the Beddington-De Angelis type, to the general Holling type

II considered in the Rosenzweig-Mac Arthur model [18]. To derive its exact scheme,

we need to use the Lambert W function, known also as the Omega function, which

is given by the relation [21]

z = W (z) exp(W (z))

as the multivalued inverse of the non-injective complex-valued function

v 7→ v exp(v).

Note that the Lambert W function satisfies the differential equation

dW

dz
=

W (z)

z(1 +W (z))
. (2.9.11)

The next result is due to Mickens [58].

Proposition 2.9.8. The exact scheme of the M-M equation (2.9.10) is

Hn+1 = ωW
[Hn

ω
exp

(Hn

ω

)
exp

(L
ω

∆t
)]
. (2.9.12)

Proof. By separation of variables and integration in Eq.(2.9.10) we have(H + ω

H

)
dH = Ldt

and

ω lnH(t) +H(t) = Lt+ C. (2.9.13)

Setting t = t0, we obtain the constant C as follows:

C = ω lnH0 +H0 − Lt0.

Thus, the solution of Equation (2.9.10) is given implicitly by the relation,

ω lnH(t) +H(t) = L(t− t0) + ω lnH0 +H0

or

lnH(t) +
H(t)

ω
=
L

ω
(t− t0) + lnH0 +

H0

ω
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or

H exp(H
ω

) = H0 exp(H0

ω
) exp(L

ω
(t− t0))

or
H

ω
exp(H

ω
) =

H0

ω
exp(H0

ω
) exp(L

ω
(t− t0)).

By definition of the Lambert W function, we have

H

ω
= W

[H0

ω
exp(H0

ω
) exp(L

ω
(t− t0))

]
.

Thus

H(t) = ωW
[H0

ω
exp(H0

ω
) exp(L

ω
(t− t0))

]
. (2.9.14)

For t = tn+1, using the semi-group property of the evolution operator in Definition

2.6.2, we have

H(tn+1) = ωW
[H(tn)

ω
exp(H(tn)

ω
) exp(L

ω
∆t)
]
. (2.9.15)

Thus, setting Hn := H(tn) allows us to re-write the relation (2.9.15) in the equivalent

form (2.9.12) which by a theorem on page 71 in Mickens [55] is the exact scheme of

M-M Equation. (2.9.10).

Definition 2.9.9. [7] The difference equation (2.9.1) is called a nonstandard finite

difference (NSFD) scheme if at least one of the following conditions is satisfied:

1. In the first order discrete derivative D∆tyn ≈ ẏ(tn), the classical denominator

h = ∆t is replaced by a nonnegative function φ : (0,∞) → (0,∞) satisfying

the asymptotic relation (Rule 2)

φ(∆t) = ∆t+O([∆t]2). (2.9.16)

For example in Proposition 2.9.7, we have

φ(∆t) =
1− e−m∆t

m
or φ(∆t) =

em∆t − 1

m
.

2. In the expression G∆t(f, yn), non-linear terms are approximated in a non-local

manner. For example, a term like y2(tn) is approximated by yn+1yn instead of

y2
n. (Rule 3)
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Remark 2.9.10. Note that Definition 2.9.9 retains only two rules out of the five

rules proposed by Mickens [55] to construct NSFD schemes. For convenience, the

other three rules are stated below.

1. The order of the discrete derivative should be equal to the order of the corre-

sponding derivative of the differential equation. (Rule 1)

2. The special condition that holds for the solution of differential equations should

also hold for the solutions of the finite difference scheme. (Rule 4)

3. The scheme should not introduce extraneous or spurious solutions. (Rule 5)

In order to illustrate Definition 2.9.9, we construct below a NSFD scheme for the

M-M equation (2.9.10) that we will be using throughout this dissertation. This is

particularly important because the exact scheme (2.9.12) involves the Lambert W

function, which is not explicitly known and is therefore of limited use in practice.

To proceed with the said construction, we first note that the linearized equation of

the M-M equation (2.9.10) around the unique fixed point H = 0, is the exponential

equation
dH

dt
=
L

ω
H, (2.9.17)

which has exact scheme
Hn+1 −Hn

φ1

=
L

ω
Hn (2.9.18)

or equivalently
Hn+1 −Hn

φ2

=
L

ω
Hn+1 (2.9.19)

where

φ1 ≡ φ1(∆t) =
exp(L

ω
∆t)− 1
L
ω

and φ2 ≡ φ2(∆t) =
1− exp(−L

ω
∆t)

L
ω

.

Therefore the exact scheme of the M-M equation in Equation (2.9.12) can be written

as

Hn+1 −Hn

φ1

=
ωW

(
Hn

ω
exp(Hn

ω
) exp(L

ω
∆t)
)
−Hn

φ1(∆t)
(2.9.20)

In the formulation (2.9.20), it is clear that the right hand side is an approximation

of
LH

H + ω
. Indeed, since

W
(Hn

ω
exp(Hn

ω
)
)

=
Hn

ω
,
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we have

ωW
(Hn

ω
exp(Hn

ω
) exp(L

ω
∆t)
)
−Hn

φ1(∆t)
=
ωW

(Hn

ω
e
Hn

ω e
L
ω

∆t
)
− ωW

(Hn

ω
e
Hn

ω

)
φ1(∆t)

=
ω
dW

dz
(zn)

Hn

ω
e
Hn

ω

(
e
L
ω

∆t − 1
)

φ1(∆t)
;

by the mean value theorem, for some zn ∈

(
Hn

ω
e

(
Hn

ω

)
;

Hn

ω
e

(
Hn

ω

)
e

(
L
ω

∆t
))
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= L

dW
dz

(zn)Hn

ω
exp(Hn

ω
)
(

exp(L
ω

∆t)− 1
)

exp(L
ω

∆t)− 1
by definition of φ1

= L
dW

dz
(zn)

Hn

ω
exp(Hn

ω
)

= L
Hn

ω
exp(Hn

ω
)

W (zn)

zn(1 +W (zn))
by Equation (2.9.11)

=
LHn

ω
exp(Hn

ω
)

zn

ωW (zn)

ω(1 +W (zn))

≈ L



ωW
(
Hn

ω
exp(Hn

ω
)
)

ω + ωW
(
Hn

ω
exp(Hn

ω
)
) if zn =

Hn

ω
exp(Hn

ω
)

ωW
(
Hn

ω
exp(Hn

ω
) exp(L

ω
∆t)
)

ω + ωW
(
Hn

ω
exp(Hn

ω
) exp(L

ω
∆t)
) if zn = Hn

ω
exp(Hn

ω
) exp(L

ω
∆t)

≈ L



H(tn)

ω +H(tn)

H(tn+1)

ω +H(tn+1)

≈ L


Hn

ω +Hn

Hn+1

ω +Hn+1

.

Thus, we retrieve the following NSFD schemes that were proposed by Chapwanya

et al. in [18].
Hn+1 −Hn

φ1

=
LHn

ω +Hn

(2.9.21)

Hn+1 −Hn

φ1

=
LHn+1

ω +Hn+1

(2.9.22)
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In addition to these, and whenever L < 0, Chapwanya et al. [19] considered the

NSFD scheme
Hn+1 −Hn

φ2

=
LHn+1

ω +Hn

, L < 0, (2.9.23)

in which Rule 3 on the non-local approximation of the non linear term
LH

ω +H
is

reinforced. The NSFD scheme of interest in this dissertation is the one given in

(2.9.21).

The power of NSFD schemes over usual numerical schemes is their potential to be

dynamically consistent with respect to the continuous model as clarified in the next

definition.

Definition 2.9.11. [7, 8] Assume that the solution of (2.1.1) satisfies a property

P. The difference equation (2.9.1) is said to be qualitatively stable or dynamically

consistent with respect to property P if for all step sizes ∆t > 0, the discrete solution

for (2.9.1) satisfies P.

Below, we describe the minimal desirable property P for any scheme.

Definition 2.9.12. [89,94] The difference scheme (2.9.1) that approximates differ-

ential Equation (2.1.1) is said to be elementary stable if, for any value of the step

size ∆t, its fixed points are exactly the equilibrium points of the differential system

(2.1.1) and these fixed points for the difference scheme have the same linear stability

or instability properties as the differential system.

To illustrate Definition 2.9.12, we have the following result:

Theorem 2.9.13. The NSFD schemes (2.9.21), (2.9.22) and (2.9.23) are elemen-

tary stable.

Proof. For all these NSFD schemes, it is obvious that the equilibrium point H = 0

of the continuous system (2.9.10) is their unique fixed point. Regarding the stability,

we start with the scheme (2.9.23). Solving for Hn+1 we have

Hn+1 =
ωHn +H2

n

ω +Hn − φ2L
. (2.9.24)

Differentiating with respect to Hn and evaluating the derivative at Hn = 0, we get

dHn+1

dHn

∣∣∣∣
Hn=0

=
ω

ω − φ2L
.
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It follows that the linearized equation of (2.9.24) about Hn = 0 is

Hn+1 =
( ω

ω − φ2L

)
Hn, or equivalently Hn+1 =

( ω

ω − φ2L

)n
H0.

Therefore

Hn → 0 as n→∞ because, with L < 0,
ω

ω − φ2L
< 1.

This shows that the fixed point H = 0 is asymptotically stable as is the equilibrium

point H = 0 for (2.9.10).

We next check the stability of the scheme in Equation (2.9.21). Making Hn+1 the

unknown of the formula in (2.9.21), we obtain

Hn+1 =
φ1LHn +H2

n + ωHn

ω +Hn

. (2.9.25)

Thus
dHn+1

dHn

∣∣∣∣
Hn=0

=
φ1L+ ω

ω
.

This leads to the linearized equation

Hn+1 =
(φ1L+ ω

ω

)
Hn, or equivalently Hn+1 =

(φ1L+ ω

ω

)n
H0.

Therefore Hn →∞ as n →∞ since
φ1L+ ω

ω
> 1 for L > 0. Hence H = 0 is

unstable for both NSFD scheme (2.9.21) and the continuous model (2.9.10).

Lastly, we examine the stability of the scheme in Equation (2.9.22). We observe

that Equation (2.9.22) is equivalent to a quadratic in Hn+1. That is:

H2
n+1 − (φ1L+Hn − ω)Hn+1 − ωHn = 0. (2.9.26)

The unique positive root of (2.9.26) is

Hn+1 =
(φ1L+Hn − ω) +

√
(φ1L+Hn − ω)2 + 4ωHn

2
. (2.9.27)

Evaluating the derivative of (2.9.27) at Hn = 0, we get

dHn+1

dHn

∣∣∣∣
Hn=0

=
φ1L

φ1L− ω
.

From the linearized equation

Hn+1 =
( φ1L

φ1L− ω

)
Hn or equivalently Hn+1 =

( φ1L

φ1L− ω

)n
H0,

of (2.9.22), it follows that Hn → ∞ as n → ∞, which shows the instability of

H = 0 for the continuous and discrete equation.
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Chapter 3

The KMB model

3.1 The western honey bee as a model organism

In this section, we provide some biology of the western honey bees. Most of the

material appears in [50] and is taken from [46, 93, 101]. The western honey bee

known also as Apis mellifera L. (honey-carrying bees [93]) is a eusocial insect, that

has well organized division of labor among themselves [101]. A colony of honey

bees consist of one queen, which is responsible for laying brood reared in the hive,

thousands workers and some drones (during reproduction season) [77,101].

The population within the honey bee colony is made up of related and closely

interacting individuals that form a highly complex society [43]. Their dynamics

is complicated [43,80], because the organizational level is influenced by the number

of bees within the colony [80]. As a result of this, the fate of bees within the colony

is not independent on their macro and micro habitat [43,80], and the survival of the

colony is mostly determined by dynamic interactions of individuals [80]. Therefore,

the lifespan of an individual is influenced by the role they play in and outside the

colony [43].

Depending on the season and time, honey bee colonies have three types of individ-

uals, namely; the fertile female (queen), the sterile females (workers) and the males

(drones). The main differences between these individuals are that: the queen hatches

from a diploid egg and has fully functional reproductive system. She is character-
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ized by an elongated body, large abdomen, shorter wings, small head, moderately

developed eyes and her three pairs of legs are the same with a total body length of

approximately 20mm (see Fig 3.1) [45,101]. The workers, that have body length of

about 15mm, Fig 3.1, [45], hatch from diploid eggs and are regarded as the main

essential elements of the colony due to the roles they play [101]. Though the queen

and worker hatch from diploid eggs, the difference between them is that workers’

reproductive system is suppressed in the presence of the queen. Workers are charac-

terized by the well developed wings, stingers, corbicula-hind legs designed to carry

pollen and they have completely developed and long proboscis for collecting nectar.

Workers have glands that produce wax and royal jelly [45,101]. Drones are haploid

males produced from unfertilized eggs of the workers or the queen and have heavily

built body with an average length of 19mm, Fig 3.1, [45]. They are characterized by

long wings that cover their bodies, developed eyes that are large and joined behind

the occiput.

Figure 3.1: The morphology of queen, worker and drone honey bees [76].

Reproduction of honey bees

In this paragraph, we explain briefly what is meant by “functional and non func-

tional reproductive system” in honey bees. Starting with the queen: as mentioned

previously, her reproductive system is fully functional because her genital apparatus

is well developed and comprises of two piriform ovaries [45]. She (queen) has a sper-

matheca (that stores sperm cells collected during mating flights with the drones).

Drones, as well, have functional reproductive tracts and an evagiable endophallus

which they use to ejaculate sperms into the queen during mating [101]. It should
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be noted that drone dies soon after mating as his abdomen rips open when his en-

dophallus is removed [101]. In the presence of the queen, the reproductive system

of workers is suppressed by pheromones secreted by the queen. These pheromones

restrict workers to produce but to focus on other hive activities [41, 45, 101]. Thus,

workers are considered to have non functional reproductive system in the presence

of the queen (under normal circumstances). We will elaborate later the unusual

scenario where workers become reproductive in the presence of the queen.

Life cycle

Honey bees undergo a complete metamorphosis, that is; egg, larva, pupa and adult,

but the eclosion period differs by caste and sex [16]. The egg, hatched from either

queen or worker, develops into a larva after 3 days. If it is an unfertilized (resulting

to the birth of drone), it develops into pupa in 18 days while the fertilized (worker)

egg becomes a pupa at day 14 and that give rise to queen by day 12. From the pupa

stage, drones develop into an adult bee in 6 days while workers reach adulthood

in 7 days and queens have a shorter development time which only takes 4 days

from pupa to adult [101]. This shows that queen, worker and drone complete their

metamorphosis in 16, 21 and 24 days respectively. Figure 3.2 shows the life cycle

(Fig 3.2(a)) and the developmental stages of honey bees with time taken from one

stage to the next, depending on the caste (Fig 3.2(b)).

(a) Honey bee life cycle [9]. (b) Honey bee eclosion period [12].

Figure 3.2: Honey bee life cycle with eclosion period adapted from [9] and [12].
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Division of labor amongst honey bees

Division of labor among honey bees is the most researched topic in the study of

animal behavior [41]. There are two basic classes of division of labor across honey

bees. The first one is between the queen and workers in relation to reproduction of

the brood reared in the hive and the second one is between the workers themselves

regarding the duties (that are not related to reproduction) in the hive [41]. In what

follows, we describe duties each set of individuals perform within the colony.

Queen

Before laying eggs, the queen takes mating flights where she mates with many drones

[78]. Upon the completion of the mating period, she stays in the hive for the rest of

her life and lays both fertilized and unfertilized eggs that develop into workers/queen

and drones respectively, depending on the demands of the colony [101]. She also

secretes pheromones that are used to control the hive [45,78,101].

Drones

Haploid individuals that are ideal models for population studies as well as studies

aimed at understanding the dynamics of honey bee pests such as Varroa mites has

shown, recently, that drones do communicate with each other in the colony using

drone pheromones [97], to give signal of where other drones are. They also mate

with the queens at a specific area called drone congregation areas (DCA) [101],

which is about 10− 40 meters above the ground [14]. This is where the queen goes

and secrete pheromones so that drones get attracted to her [14].

Workers

The division of labor amongst honey bee workers is highly complex and flexible

in that workers quickly adapt to changing colony needs and accelerate or reverse

their behavioral development [78]. For instance; if there are few foragers to sustain

the colony, young workers start foraging precociously [43, 78]. Or young foragers

can revert back to nursing behavior and develop fully functional brood food glands

when there are few nurse bees [78].

We describe the division of labor amongst honey bees under normal circumstances
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(when there is no precocious foraging or the reversion from forager class to hive

class). This division of labor is age-dependent [41, 43, 45, 78, 101]. Since the newly

hatched honey bees are developmentally immature [41, 101], their duties consist

of cleaning cells by removing the remains of larvae and pupae from the cells [41],

eliminate excess water vapor and regulate temperature in the hive by rapidly beating

their wings [45]. As they mature, they become nurse bees. During the nursing

period, they feed the brood with honey, pollen and glandular secretions [41, 45].

Later on, they secret royal jelly that is fed to the brood during larval stage [101].

They also care for the queen by surrounding her as attendants, monitoring how she

eats as well as sending pheromones secreted by the queen within the colony [41].

It is during the nursing period when they (workers) become stokers. That is; they

receive nectar and pollen from foragers and process nectar into honey then store

them (pollen and honey) in the combs [41, 45]. From being stokers, they grow to

become comb-makers. At this stage, they secret beeswax and use it to build and

repair comb cells [41]. Graduating from the comb-making stage, they become guards

and prevent intruders like insects or workers from foreign hives from entering their

hive [41,45]. They later become foragers [83,101] where, they leave the hive to collect

resources (water, pollen, nectar, propolis) needed in the colony [41, 45, 83, 101]. In

general, the division of labor among honey bee workers as throughly observed was

recorded by Seeley [83] and is listed in Table 3.1.

Table 3.1: Summary of age-dependent division of labor amongst honey bee workers

[83].

Age Main activity

From birth till day 2 Cleaners

From day 3 to day 11 Brood care

From day 12 to day 20 Store provisions

guarding

From day 21 till death Foragers
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Life span

The lifespan of honey bees varies by caste, sex and season and is strongly influenced

by the role they play in the colony [43]. The queen lives between 3 and 5 years [45].

The drones live longer in mid-summer at an average of 90 days while in spring their

lifespan is between 21 and 32 days [16], and in winter they are expelled from the

hive [43]. The workers live longer in winter, since they are inactive, as compared to

summer, when foraging (that exposes them to a lot of stress and adverse weather

conditions [80]) is at its most, with an average of 140 days in winter and between

15 to 38 days in summer [101].

3.2 Formulation of the Mathematical model

Khoury, Meyerscough and Barron considered several models for the dynamics of

honey bee population [43, 44]. In this work, we focus on the basic mathematical

model proposed in [43]. The assumptions they used are stated below with more

motivation from the biology of honey bees.

Assumptions

1. We neglect factors that compromise the health of the queen. Thus, we assume

that the queen does not die, or if there arise a need for her to be replaced, this

is done without affecting the overall performance of the colony [73].

2. The model focuses on workers only since drones do not contribute to colony

work [43,73,80] and because they are not present in the colony during winter

[101].

3. Workers are classified either as hive bees, H, or foragers, F, and there is no

overlap between these two behavioral classes. This assumption is motivated

by the fact that there is a well recognized division of labor among workers

which is age-based (as discussed in Section 3.1)

4. Because many reported cases of honey bee colony declines are not associated

with brood disease [22,43,69,72], and since brood is maintained at the humidity

levels within narrow limits inside the hive and constant temperature that is
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crucial for normal development and growth [90]. It makes sense not to consider

brood disease on colony failure.

5. Death rate of hive bees is ignored. This is because in a healthy colony, the

rate at which hive bees die is extremely low [43] and is less significant to the

overall population [80].

6. Workers are recruited from the hive class to the forager class at the maximum

rate α.

7. Foragers die at the rate m.

8. The maximum rate of eclosion is equivalent to the queen’s laying rate, L,

and eclosion rate approaches this maximum as the total number of workers,

N := H + F , in the hive increases. This assumption is an attempt to capture

the complex relation that exists between the number of eggs reared in a colony

(eclosion rate) and the number of bees in the hive [43].

9. In the absence of foragers, new workers become foragers in
1

α
≥ 4 days after

eclosion.

10. There is a reversion from the foragers class to hive bee class at the rate σ > α

if more than
α

σ
N are foragers.

11. The eclosion approaches L at the rate ω.

Remark 3.2.1. Regarding Assumption 8, the relationship between the number of

eggs reared in the colony and the number of bees in the hive is expressed by using, as

eclosion function, the Michaelis-Menten or Holling function of type II, as follows:

E(H,F ) =
L(H + F )

H + F + ω
=

LN

N + ω
:= f(N). (3.2.1)

Other possible functions include ,

g(N) = L tanh(N), N ≥ 0. (3.2.2)

More generally, we can use a saturated function f(N) which is bounded and increas-

ing such that f(N) → L as N → ∞. However, we will use the function (3.2.1)
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because it is extensively applied in several population dynamics frameworks such as

predator-prey models [15], epidemiological models [15] and reaction kinetics [63].

Figure 3.3 illustrates Assumption 11.

Figure 3.3: Eclosion function, E(H,F ) =
L(H + F )

ω +H + F
[43].

To describe the recruitment function, we follow an approach which is similar to

the standard incidence formulation in epidemiology of infectious diseases [15]. The

presentation outlined in [50] is detailed below. In view of Assumption 10, we note

that social inhibition will take place whenever the hive bees are in contact with the

foragers. The probability for the hive bees to be in contact with one forager is

H

N
.

Thus the total number of contacts between hive bees and foragers is

H

N
F.

However, not all the bees
H

N
F

become foragers. Instead, the social inhibition process is such that

σ
H

N
F

are returned to the hive compartment on the grounds of being immature. Conse-

quently, with Assumption 6 in mind, the recruitment rate function is, for H > 0

and F > 0 given by

R(H,F ) =
(
α− σ F

H + F

)
H.
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With the above assumptions and the comments as well as the flow diagram in Figure

3.4, we are led to the following model (as proposed in [43]):
dH

dt
=

L(H + F )

H + F + ω
−
(
α− σ F

H + F

)
H =: f1(H,F )

dF

dt
=
(
α− σ F

H + F

)
H −mF =: f2(H,F )

(3.2.3)

H(0) = H0 and F (0) = F0 (3.2.4)

Figure 3.4: Social dynamics of a honey bee population model modified from [43].

Remark 3.2.2. Based on Assumption 9, if new workers become foragers in a min-

imum of 4 days in the absence of foragers, it makes sense to take α = 0.25. As a

result of this and Assumption 10 whereby less than
0.25

σ
N of the total population

are foragers, we can choose σ = 0.75 so that 1
3

of the total population are foragers.

Indeed,

R(H,F ) =
(
α− σ F

H + F

)
H = 0 iff α = σ

F

H + F

or
σ

3
= α.

This is precisely the choice made in [43]. We extend this assumption by assuming

that

0.25 ≤ α <
σ

2
. (3.2.5)
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Throughout this work, we further assume that

α− L

ω
> 0, (3.2.6)

in order to have the only condition (3.3.14) bellow instead of double condition used

in [43].

3.3 Analysis of the model

For the well-posedness of the KMB model (3.2.3), we assume for simplicity that we

are in the normal situation where social inhibition works. In this case the recruitment

rate is positive. More precisely, we assume that there exists a constant Γ > 0 such

that

R ≡ R(H,F ) = α− σ F

H + F
≥ Γ > 0. (3.3.1)

We use the three facts below:

a. The existence of unique local solution of (3.2.3), which is trivial;

b. The positivity of any solution corresponding to positive initial conditions,

which follows from the intermediate value theorem,

c. The boundedness of any solution, which is established by Gronwall’s inequality.

Then the following result can be proved (see [50]):

Theorem 3.3.1. The model (3.2.3) is a dynamical system in the biological feasible

region

Ω =
{

(H,F ) ∈ R2
+ : H ≤ L

Γ
and F ≤ L

mΓ

}
.

In other words, for (H0, F0) ∈ Ω, there exists one and only one solution
(
H(t), F (t)

)
of the System (3.2.3) such that

(
H(t), F (t)

)
∈ Ω for any time t ≥ 0.

Remark 3.3.2. Adding the equations in (3.2.3), we have the following conservation

law:
dN

dt
=

LN

N + ω
−mF. (3.3.2)
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Let
(
H(t), F (t)

)
∈ Ω be a solution of the model (3.2.3) corresponding to the initial

condition (H0, F0) ∈ Ω. From (3.3.2) it follows, using the relations

F = N −H, H ≤ L

Γ
and 0 < Γ ≤ 1 that

dN

dt
≤ L

Γ
+m

L

Γ
−mN. (3.3.3)

By Lemma 2.1.8, we have from (3.3.3)

N(t) ≤ N0e
−mt +

( L

mΓ
+
L

Γ

)
(1− e−mt). (3.3.4)

Remark 3.3.3. Assume that
(
H(t), F (t)

)
is a solution of the model (3.2.3) that

satisfies the relation (3.3.3) such that

N(t) >
L

mΓ
+
L

Γ
for all t ≥ 0. (3.3.5)

Then, it follows from (3.3.3) and (3.3.5) that

dN

dt
< 0.

Thus, N(t) is a decreasing function that converges to
L

mΓ
+
L

Γ
as t→∞, in view

of (3.3.4) and (3.3.5). This means that the region Ω is attracting [89]. This explains

why we will study the KMB model (3.2.3) in the compact invariant set Ω.

With regard to the qualitative analysis of the KMB model (3.2.3), we note that the

defining equations of an equilibrium point
(
H,F

)
are

L(H + F )

H + F + ω
−
(
α− σ F

H + F

)
H = 0

(
α− σ F

H + F

)
H −mF = 0.

(3.3.6)

It is obvious from (3.3.6) that the origin, (0,0), is an equilibrium point of the system.

It is equally clear that the system does not have boundary equilibrium points (H, 0)

and (0, F ) for H > 0 and F > 0. For a potential interior equilibrium point (H,F ),

we follow [16,43,51] and set

H =
1

J
F. (3.3.7)

Substituting (3.3.7) in first equation in (3.3.6) we have

L(H + JH)

(H + JH + ω)
−mJH = 0. (3.3.8)
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Multiplying both sides of (3.3.8) by (H + JH + ω) we get:

0 = L
(
H + JH

)
−mJH

(
H + JH + ω

)

= LH + LHJ −mJH2 −mJ2H2 −mJHω.

Thus

L+ LJ −mJH −mJ2H −mJω = 0 after dividing by H.

Solving for H we obtain

H =
L

Jm
− ω

1 + J
, (3.3.9)

which in view of (3.3.7) gives

F =
L

m
− ωJ

1 + J
. (3.3.10)

In order to determine the expression for J, we substitute (3.3.7) in the second equa-

tion in (3.3.6) and obtain(
α− σ JH

H + JH

)
H −mJH = 0,

which is equivalent to

J2 −
( α
m
− σ

m
− 1
)
J − α

m
= 0. (3.3.11)

Thus, the unique positive root of (3.3.11) is

J =
1

2

[( α
m
− σ

m
− 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m
.

]
(3.3.12)

Lemma 3.3.4. Under the second condition in Inequality (3.2.5), the root in (3.3.12)

of (3.3.11) is such that J < 1.

Proof. It should be noted that
(
α
m
− σ

m
− 1
)
< 0 whenever α <

σ

2
, for any m > 0.

Now, assume by contradiction that J ≥ 1. Then, we will have( α
m
− σ

m
− 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m
≥ 2,

which implies that√( α
m
− σ

m
− 1
)2

+ 4
α

m
≥
(

1 +
σ − α
m

)
+ 2. (3.3.13)
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Squaring on both sides of (3.3.13) we obtain(
1 +

σ − α
m

)2

+ 4
α

m
≥
(

1 +
σ − α
m

)2

+ 4
(

1 +
σ − α
m

)
+ 4,

which simplifies to
2α

m
≥ σ

m
+ 2,

or equivalently
α

m
≥ σ

2m
+ 1.

This is impossible since

2α

m
<
σ

m
because 2α < σ by relation (3.2.5).

Thus, J < 1.

Theorem 3.3.5.

1. If the foragers’ death rate, m, is smaller than a critical value mc in the sense

that

m <
L

2ω

(α + σ) +
√

(α− σ)2 + 4Lσ
ω

α− L
ω

 =: mc, (3.3.14)

then KMB model (3.2.3) has a unique interior equilibrium point, which is glob-

ally asymptotically stable (GAS), while the trivial equilibrium point is unstable.

2. If the condition (3.3.14) is not satisfied, then the trivial equilibrium point (0,0)

is GAS.

Theorem 3.3.5 is stated in [43] without a proof. We provide its proof in different

steps consisting of Propositions 3.3.6 to 3.3.10 below.

Proposition 3.3.6. The positivity of the forager component of the equilibrium point,

(H,F ), given in Equation (3.3.10) is equivalent to the condition (3.3.14).

Proof. The condition

F =
L

m
− ωJ

1 + J
> 0 or equivalently m <

L(1 + J)

ωJ
(3.3.15)
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is, in view of (3.3.12), equivalent to

m <
L

ω

[( α
m
− σ

m
+ 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

]
[( α

m
− σ

m
− 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

] .

Rationalizing the denominator, we get

m <
L

2ω

[( α
m

+
σ

m
+ 1
)

+

√( α
m
− σ

m
− 1
)2

+ 4
α

m

]
α

m

,

which is equivalent to

mα− L

2ω

(
α + σ +m

)
<
Lm

2ω

√( α
m
− σ

m
− 1
)2

+ 4
α

m
. (3.3.16)

From (3.3.16) we deal, separately, with cases when

mα− L

2ω

(
α + σ +m

)
> 0 (3.3.17)

and

mα− L

2ω

(
α + σ +m

)
≤ 0. (3.3.18)

Assuming that case (3.3.17) holds true, by squaring on both sides of (3.3.16) we

obtain

m2α2 − 2mα
L

2ω

(
α + σ +m

)
+

L2

4ω2

(
α + σ +m

)2

<
L2

4ω2

(
α− σ −m

)2

+ 4
α

m
.

Expanding bracket and simplifying we have

m2α
(
α− L

ω

)
−mαL

ω

(
α + σ

)
<

L2

4ω2

(
− 4ασ

)
,

which (after dividing by α) is equivalent to

m2
(
α− L

ω

)
−mL

ω

(
α + σ

)
<
−L2

ω2
σ.

We are therefore led to the following quadratic inequality in m:

m2
(
α− L

ω

)
−mL

ω

(
α + σ

)
+
L2

ω2
σ < 0. (3.3.19)
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Thus solving for m we get

m <

L

ω
(α + σ) +

√
L2

ω2
(α + σ)2 − 4(α− L

ω
)
L2σ

ω2

2
(
α− L

ω

)
or equivalently

m <

L

ω

[
(α + σ) +

√
α2 − 2ασ + σ2 + 4σ

L

ω

]
2
(
α− L

ω

) .

Simplifying the expression under the square root we obtain condition (3.3.14). Now,

assuming Condition (3.3.18) is satisfied, we have

mα− L

2ω

(
α + σ +m

)
≤ 0

or

mα ≤ L

2ω

(
α + σ +m

)
.

Re-arrangement gives

m
(
α− L

2ω

)
≤ L

2ω

(
α + σ

)
. (3.3.20)

For any positive real numbers, L and ω, the following equality is always true:

L

2ω
<
L

ω
.

That is

− L

2ω
> −L

ω
.

Addition of α yields

α− L

2ω
> α− L

ω
> 0 by (3.2.6).

Solving for m from (3.3.20) we get:

m ≤

L

2ω
(α + σ)

α− L

2ω

<

L

2ω
(α + σ)

α− L

ω
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Addition of the positive quantity

L

2ω


√

(α− σ)2 + 4Lσ
ω

α− L

w


does not affect the inequality sign. So

m <
L

2ω

(α + σ) +

√
(α− σ)2 + 4

Lσ

ω

α− L

w

 .

Thus, the positivity of (3.3.15) is equivalent to condition (3.3.14).

Proposition 3.3.7. Under the condition (3.3.14), the interior equilibrium point,(
H,F

)
, is locally asymptotically stable.

Proof. We use Hartman-Grobman [15] linearization process as stated in Theorem

2.2.2, Remark 2.2.3 and Corollary 2.2.4. The Jacobian matrix, Jc := Jc(H,F ), of

the right hand side of the model (3.2.3) is

Jc =


ωL

(H + F + ω)2
− α + σ

F 2

(H + F )2

ωL

(H + F + ω)2
+ σ

H2

(H + F )2

α− σ F 2

(H + F )2
−σ H2

(H + F )2
−m

 .

(3.3.21)

At the interior equilibrium point (H,F ) that is given by Equations (3.3.9) and

(3.3.10), the matrix (3.3.21) becomes

Jc(H,F ) =


ωm2J2

L(1 + J)2
− α +

σJ2

(1 + J)2

ωm2J2

L(1 + J)2
+

σ

(1 + J)2

α− σJ2

(1 + J)2
− σ

(1 + J)2
−m

 , (3.3.22)

which has trace

trJc(H,F ) = m
( ωmJ2

L(1 + J)2
− 1
)
− α + σ

J − 1

1 + J
(3.3.23)

and determinant

detJc(H,F ) =
ωm2σJ2

L(1 + J)3
(J−1)− ωm3J2

L(1 + J)2
+αm− σmJ2

(1 + J)2
− ωαm2J2

L(1 + J)2
. (3.3.24)
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We show that trJc(H,F ) < 0. Since J < 1 as proved in Lemma 3.3.4, it is enough

to show that
ωmJ2

L(1 + J)2
− 1 < 0.

Now,( ωJ2m

L(1 + J)2
− 1
)
<
(ωJ2L(1 + J)

ωJL(1 + J)2
− 1
)

using (3.3.15) i.e m <
L(1 + J)

ωJ

=
( J

1 + J
− 1
)

< 0.

Next, we show that detJc(H,F ) > 0. From the second equation in (3.3.6) and (3.3.7),

we have

σ =
(
α−mJ

)1 + J

J
. (3.3.25)

With the equation (3.3.25) in mind, the expression (3.3.24) of detJc(H,F ) simplifies

to

detJc(H,F ) = αm
[
1− ωmJ

L(1 + J)2
− J

1 + J

]
+
m2J2

1 + J

[
1− ωmJ

L(1 + J)

]
.

Thus,

detJc(H,F ) > αm
[
1− 1

1 + J
− J

1 + J

]
+
m2J2

1 + J

[
1− 1

]
using m <

L(1 + J)

ωJ

= 0.

Therefore, the local asymptotic stability of
(
H,F

)
follows directly from Theorem

2.2.2 and Corollary 2.2.4.

Proposition 3.3.8. When Condition (3.3.14) is satisfied, the trivial equilibrium

point (0,0) is unstable and not attractive.

Proof. Using the fact that m < mc, we have, from Remark 3.3.2 and the definition

of Ω that

dN

dt
=

LN

N + ω
−mF

≥ LN
L
Γ

+ L
mΓ

+ ω
−mc

L

mΓ
.
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By comparison theorem (Gronwall’s inequality) in Lemma 2.1.8, we obtain

N(t) ≥ N0e
−at +

b

a
(1− e−at) where a =

L
L
Γ

+ L
mΓ

+ ω
, b = mc

L

mΓ
.

Thus, N(t) cannot tend to zero.

Proposition 3.3.9. The system (3.2.3) does not have periodic orbits.

Proof. By Dulac criterion [15], Theorem 2.3.4, using the function

β(H,F ) =
1

HF
,

we have

∇.
〈∂(βf1)

∂H
,
∂(βf2)

∂F

〉
= − L(H2F + 2HF 2 + F 3 + ωF 3)

(H2F +HF 2 + ωHF )2

= −L(H2F + 2HF 2 + F 3 + ωF 3)

(H2F +HF 2 + ωHF )2
− α

F 2

< 0 for H > 0 and F > 0.

Therefore, from Theorem 2.3.4, the model (3.2.3) does not have periodic solutions.

Combining Propositions 3.3.6 to 3.3.9, part 1 of Theorem 3.3.5 is proved. Regarding

the second part we have the following result:

Proposition 3.3.10. When Condition (3.3.14) is violated so that there is no inte-

rior equilibrium point, the trivial equilibrium point (0,0) is globally asymptotically

stable.

Proof. Here, we use a Lyapunov argument as in [29]. The candidate Lyapunov

function V : R2
+ → R is the C1 function defined by

V ≡ V (H,F ) := H + F.

For anyH and F, we have V (H,F ) > 0 for all H,F ∈ Ω\{(0, 0)} and V (0, 0) = 0.

This shows that V is positive definite. Now, the derivative V̇ along the trajectories
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is

V̇ (H,F ) = ∇V.(
−−−→
f1, f2)

=
∂V

∂H
f1 +

∂V

∂H
f2

= 1× f1 + 1× f2

=
L(H + F )

H + F + ω
−mF,

which is the right hand side of the conservation law (3.3.2). We observe that

∂V̇

∂F
(H, 0) =

Lω

(H + ω)2
−m

≤ L

ω
−m

< 0 by (3.2.6) since the death rate is large, i.e m > α.

Therefore, there exists r > 0 such that V̇ (H,F ) < 0 for 0 < H ≤ r and 0 < F ≤ r.

This shows that V is indeed a positive definite Lyapunov function, in Ω, by Definition

2.4.1. Furthermore, Theorem 2.4.2 guarantees that the equilibrium point (0,0) is

locally asymptotically stable. Combining this result with Proposition 3.3.9, we

obtain the global asymptotic stability of the trivial equilibrium point (0,0) based on

Theorem 2.3.2.

Remark 3.3.11. Note that Poincaré-Bendixson Theorem 2.3.2 on which the proof

of Proposition 3.3.10 is based is not valid for dynamical systems of more than two

space dimension. For the sake of completeness, let us reprove Proposition 3.3.10 by

using the LaSalle Invariance Principle in Theorem 2.4.4, which applies to any space

dimension.

Knowing that the KMB model is dissipative, we want to show that the largest in-

variant set, M, contained in the set E = {(H,F ) ∈ Ω ; V̇ = 0} is reduced to the

singleton set {(0, 0)} where V is the Lyapunov function defined by V (H,F ) = H+F.

The global asymptotic stability of the equilibrium point (0,0) will then follow from

Theorem 2.4.4.

Let A be an invariant set such that A ⊂ E . For any initial condition (H0, F0) ∈ A,
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the corresponding solutions
(
H(t), F (t)

)
= φ(t)(H0, F0) of the KMB model (3.2.3)

is such that
(
H(t), F (t)

)
∈ A ⊂ E . Thus, with V (t) = H(t) + F (t),

dV

dt
≡ V̇ =

LV

V + ω
−m(V −H) = 0. (3.3.26)

Consequently, V is a constant: V (t) ≡ V . By Definition 2.3.1, the ω− limit set

of the point (H0, F0) is the singleton (0, 0) in view of the violation of the condition

(3.3.14). Therefore H = 0, F = 0, and A ⊂ {(0, 0)}. Thus, M = {(0, 0)}.

3.4 Some models for colony population declines

Possible extensions of our work which we intend to carry out elsewhere includes

focusing on other factors that contribute to declines of honey bee populations. This

section is dedicated to introduce some of mathematical models, in the literature,

that explore such factors. In all the models, the impact of these factors (that con-

tribute to the declines) is the high foragers’ death rate, which in turn remains the

underlying reason for the colony declines.

• Mathematical models of honey bee populations: rapid population

declines [16].

This is a direct extension of the model formulated in [43]. In this model,

author [16] has included death rate of hive bees. Apart from µ that represents

the death rate of hive bees, the other parameters and variables have the same

meaning as those the KMB model (3.2.3). The model reads as follows:
dH

dt
=

L(H + F )

(H + F + ω)
−
(
α− σ F

H + F

)
H − µH

dF

dt
=
(
α− σ F

H + F

)
H −mF

. (3.4.1)

It is discovered that there exists critical values of hive bees death rate and

that of foragers above which the colony declines.

• Modeling Colony Collapse Disorder in honey bees as a contagion

[47].
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This model is also an extension of the KMB model [43] where an additional

compartment of the infected population (I) of bees due to CCD is incorpo-

rated. Authors found that the survival of the colony can be attained if the

queen’s laying rate is greater than the maximum recruitment rate from hive

class to foraging class at the egg-laying half-saturation threshold. The model

reads as follows:

dH

dt
= L

H

H + Ω
− γH − αH Φ

F + I + Φ

dF

dt
= γH + αH

Φ

F + I + Φ
− µ1F − βF

I

I +K

dI

dt
= βF

I

I +K
− µ2I

. (3.4.2)

The parameters and variables of the model are tabulated in Table 3.2 below.

Table 3.2: The parameters and variables of the model (3.4.2).

Parameter Description

H hives populations

F foragers population

L queen’s laying rate

Ω number of hives needed for the emergence rate to reach
L

2

γ recruitment rate from hives class to foragers class

α the maximum additional maturation rate when there is a need

to accelerate transition from hive to foragers class

Φ number of foragers at which additional maturation rate is
α

2

µ1 death rate of foragers

µ2 death rate of infected bees

I population of infected bees

β rate at which bees are infected

K half-saturation constant

• Dynamic modeling of honey bee (Apis mellifera) colony growth and

failure [80].
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This model explores how interaction between internal demographic process

within honey bee colony and the availability of food and brood rearing im-

pact on the growth of the hive. The model is formulated based also on the

KMB model [43]. It is discovered that the growth of the honey bee colony

is influenced mainly by death rate of foragers, availability of food and other

factors influencing the age at which workers transit to foraging class. The

model parameters and variables are listed in Table 3.3 below.

Table 3.3: The parameters of the model (3.4.3).

Parameter Description

H hives populations

F foragers population

Lmax maximum effective laying rate of the queen

Ls proportion of the maximum laying rate approximated

to particular season

αmin minimum possible transition rate from hives to foragers

when there is plenty of food but no foragers

αmax maximum additional rate of transition when food stores are low

b constant that determines the steepness of the function governing

the rate that the food dependent term decreases as food stores

increases.

f variable describing the amount of food in the colony

ml maximum death rate of foragers in summer

ms death rate seasonality term

γB, γH , γF food consumption rate of brood, hives and foragers respectively

BL number of brood in the larval stage

Cmax highest rate at which foragers can collect food

Cs seasonality factor representing food collection rate
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The model reads as:

dH

dt
=

L(H + F )

H + F + Ω
−
(αt − σF
H + F

)
H

dF

dt
=
(αt − σF
H + F

)
H −mFF

df

dt
= CF

(
γBBL + γH + γFF

)
, (3.4.3)

where

L = Lmax × Ls

αt = αmax ×
( b2

b2 + f 2

)
+ αmin

mF = ms ×ml,

C = Cmax × Cs.

• Importance of brood maintenance terms in simple models of the

honey bee-varroa destructor acute bee paralysis virus complex [29].

This is the mathematical model that focuses on the infestation of honey bee

population as a result of the Acute paralysis virus. The outcome of the study

shows that colonies contaminated with the virus can still function like any

other healthy colonies for some years before declining provided they (virus-

contaminated colonies) have the required number of workers to care for the

brood at the end of winter seasons. The model reads as follows:

dm

dt
= β1(M −m)

y

x+ y
− β2m

x

x+ y
dx

dt
= µg(x)h(m)− β3m

x

x+ y
− d1x

dy

dt
= β3m

x

x+ y
− d2x

. (3.4.4)

The parameters and variables of the model are presented in Table 3.4.
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Table 3.4: The parameters and variables of the model (3.4.4).

Parameter Description

m number of the mites carrying the virus

x number of virus-free bees

y number of infected bees

M mites population in the colony

µ maximum birth rate of workers per day

d1, d2 death rate of uninfected and infected bees respectively

β1 rate at which mites do not carry the virus acquire it

β2 rate at which mites lose virus to an uninfected host

β3 rate at which bees are infected

h(m) the function that shows that the birth rate is affected

by the presence of mites that carry the virus

g(x) the function that represents the relation that sufficiently large

number of healthy workers is needed to care for the brood

• A mathematical model of the honey bee-varroa destructor- acute

bee paralysis virus system with seasonal effect [77].

This is an extension of the mathematical model formulated in [29], in which

an additional compartment, M(governed by logistic equation), for the number

of mites that infest the colony is included. The findings of the study show

that the use of varroacide treatment is important in that it reduces the rate at

which colonies might collapse as a result of the virus. Additional parameters

and variables to the model (3.4.4) are listed in Table 3.5 below.
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Table 3.5: Additional parameters to the model .

Parameter Description

r(t) maximum birthrate of mites

α(t) carrying capacity for the mites

x+ y the total population of the host bees

δ1, δ3 the mortality rates of uninfected and infected bees due

to varroacide respectively

δ2 shows that the effect of varroacide on mites that carry

the virus and on the total mite is the same.

γ1, γ2 rates at which mites kill healthy bees and infected bees

respectively

The model reads as follows:

dm

dt
= β1(M −m)

y

x+ y
− β2m

x

x+ y
− δ2m

dx

dt
= µg(x)h(m)− β3m

x

x+ y
− d1x− γ1Mx− δ1x

dy

dt
= β3m

x

x+ y
− d2y − γ2My − δ3y.

dM

dt
= rM

(
1− M

α(x+ y)

)
− δ2M

(3.4.5)

• A mathematical model of Varroa mite (Varroa destructor Anderson

and Trueman and honey bee (Apis mellifera L.) population dynam-

ics [25].

This is a mathematical model that describes the interactions between Varroa

destructor and a honey bee colony. This model shows, through numerical

simulations, how the growth of the colony population and that of mites are

affected by weather conditions, seasonal brood rearing and mite infestation

rates for both worker and drone cells. It is discovered that the survival of

thresholds for miticides depend on climate and yearly brood rearing cycle in

a colony.
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Chapter 4

The presence of a social parasite

4.1 The social parasite scenario

We started describing social parasitic scenario in the honors project [50]. In this

section, we provide more details on the biology of honey bee races found in South

Africa including their geographical location, their morphology, reproduction biology

as well as the history and symptoms of the capensis calamity (cc).

Social parasitism in social insects is a situation whereby insects benefit from brood

care or managed resources (such as food stores) of the host colony [26]. Our main

references in this section are [23, 26, 35]. It has been confirmed that honey bee

workers can function as social parasites in social bees [26, 65]. The host-parasites

relationships in honey bees is composed of sharing the nest, enslavement of the host

workers and elimination of the host queen from the colony [26].

South Africa is home to two races of honey bees that occur naturally, namely A.m.

scutellata Lepeletier and A.m. capensis Escholtz [52]. These two sub-species are sep-

arated by a region of introgression or a buffer zone where hybrids exist [23]. Figure

4.1 shows geographical distribution of these two races of A. mellifera across South

Africa together with the hybrid zone. A.m. capensis are found in the winter rainfall

region of the Cape such as the Bokkeveld (1), Cedarberg (2), Swartberg (3) and

Suurberg (4) mountains while A.m. scutellata occurs in the summer rainfall region

north of the Roggenveldberg (5), Nuweveldberg (6), Sneeuberg (7), Kikvorsberg (8),
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Stormberg (9) and Drakensberg (10) mountains [52].

Figure 4.1: Geographical distribution of Apis mellifera capensis (South of mountain

ranges 1 - 4), Apis mellifera scutellata (North of mountain ranges 5 - 10) and the

hybrid zone between mountain ranges 1 - 4 and 5 - 10 [52]. The numbers correspond

to towns described above [52].

(a) A.m. scutellata. (b) A.m. capensis.

Figure 4.2: Morphology of honey bee races found in South Africa
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The difference between these races is that A.m. capensis have dark abdomen and

well developed spermatheca whereas A.m. scutellata have orange/yellow abdomen

and do not have a well developed spermatheca [23]. Worker reproduction in honey

bee races, including A.m. scutellata, result in male offspring through the process

called arrhenotokous parthenogenesis [10] (See Fig 4.3 (A)). This is not the case

with A.m. capensis as workers are capable of laying unfertilized eggs which develop

into female offspring through thelytokous parthenogenesis [23] (see Fig 4.3 (B)).

Figure 4.3: Reproduction methods in insects, edited from [34]

To produce female offspring, A.m. capensis workers produce gametes that fuse

their pronuclei with one of their polar bodies in the absence of meiosis and produce

female offspring [35]. A.m. capensis thelytokous workers then mimic the pheromone

of the host queen and start to lay eggs undetected by the host queen [3]. The

actively reproductive pseudo-queens may suppress the development of the ovaries of

their clones which will result in dominance hierarchies of these clones [35]. These

clones do not contribute to activities of the hive mainly because they activate their

ovaries, which make it liable for them to reproduce rather than to care for the
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brood. As a result of this, foraging becomes a problem for them as their pollen

combs and baskets on their hind legs are suppressed [2, 35, 67]. When these clones

enter the host colony of other races, they immediately activate their ovaries and

start reproducing [24, 52, 62, 66]. It has been discovered that if the host colony has

its own queen, then about 10% of the clones activate their ovaries whereas in a

queen-less host colonies all the clones activates their ovaries and start producing

females [62]. In comparison with the A.m. capensis, A.m. scutellata workers only

activate their ovaries in the absence of the queen and her pheromonal controls to

reproduce only haploid eggs that lead to male offspring [10, 101]. Figure 4.4 shows

how queens, typical Apis mellifera workers and A.m. capensis workers reproduce.

(a) Queen. (b) Typical worker. (c) A.m. capensis.

Figure 4.4: How queen, typical A.m. worker and A.m. capensis worker produce

offspring edited from [30].

Background of the recent capensis calamity

There were two major movements of honey bees that involved large number of

colonies of A.m. capensis into the region of A.m. scutellata [52]. The first one was

in 1990, where about 400 colonies of A.m. capensis were moved from Lamberts Bay

region in the Cape to the Rust-der-Winter region in Limpopo province [2, 52]. The
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second recorded movement was in 1991, where colonies from high flats in Natal were

moved to the Langkloof in the Cape and returned to Natal and subsequently moved

to Douglas in the Northern Cape [52]. The main reason for these migrations was

for pollination services [2, 4, 52]. It is reported that one of these movement caused

the so called “capensis problem bee” [52] or capensis calamity (cc).

In what follows, we describe the capensis calamity. As mentioned earlier, under

normal circumstances, honey bee workers do not reproduce diploid offspring but can

do so under queenless conditions [66]. A.m. capensis workers are an exception to this

rule as they parthonogenetically produce female offspring that normally develop into

workers and occasionally queens [2, 24, 66]. Some of the workers produced by A.m.

capensis workers can develop into pseudoqueens, which are characterized by high

ovarial development and queenlike pheromone bouquet [24, 52, 66]. These workers

then act as parasites when placed in foreign colonies [24, 52, 62, 66]. As a result of

one of the above mentioned movements that took place in the 1990s, it is assumed

that A.m. capensis workers (parasites) gained access to A.m. scutellata colonies

(host) and established themselves as pseudo-queens taking over the roles of the host

queen [24,52,62,66].

The offspring of these parasites are cared for by the workers of the A.m. scutellata

[66] as they themselves do not participate in hive activities as mentioned previously

[2, 67]. As a result, the infected colonies end up with large number of these idle

clones and few host workers to sustain their colony [2, 24, 35, 51, 67]. As time goes

on, these infested colonies dwindles down and dies out [2, 6, 35, 35] with the cycle

continuing as clones seek new host colonies. The parasites of the A.m. capensis

workers have infested and are continuing to infest the colonies of the A.m. scutellata

colonies resulting in the so-called capensis calamity for South African bee keeping

enterprises [2, 3]. Due to capensis calamity, an estimated number of 100,000 A.m.

scutellata colonies die every year [2]. Figure 4.5 (b) shows how the A.m. capensis

parasites are being nursed or tendered for by the A.m. scutellata workers just like

a typical queen being nursed by workers (Fig 4.5(a)).
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(a) Workers nursing the queen(green dot). (b) Parasites (circled) [35].

Figure 4.5: The queen and parasites being attended by nurse bees.

According to Johannsmeier, the following are the signs or symptoms of capensis

calamity (cc) [39]:

1. Outside the hive:

• reduced foraging activities

• a lot of dead bees

• bees engaged in fighting

2. Inside the hive:

• absence of the queen

• mixture of dark abdomen bees (A.m. capensis clones) and yellow ab-

domen bees (A.m. scutellata workers)

• multiple eggs inside the cells of workers and queen

• matured queen cells ripped opened on the sides.

• scattered non-diseased brood with all larval stages next to each other

Due to the social parasitism by the A.m. capensis, we propose a mathematical model

basing ourselves with the model developed in [43], so as to capture the impact of

social parasitism by the A.m. capensis clones on the population of the A.m. scutel-

lata. Our main focus is on the transition from hive compartment to the foragers’

compartment.
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4.2 Model formulation

The compartmental model that we propose for the social parasite by the A.m.

capensis clones is in line with the KMB model (3.2.3) studied in Chapter 3. It is

based on the following assumptions, as well as explanations made, apart from those

made for the normal scenario. We shall call this model Social Parasite (SP) model

throughout this dissertation.

Assumptions:

1. Brood diseases on clones is not considered.

2. The rate at which hive bees leave their compartments is α + m̃.

3. Death rate of clones in the hive is negligible.

From the above assumptions and the flow chart in Figure 4.6, we have the following

model: 
dH

dt
=

L(H + F )

(H + F + ω)
− (α + m̃)H

dF

dt
= αH −mF

(4.2.1)

H(0) = H0 and F (0) = F0 (4.2.2)

It should be noted that:

• The quantity m̃H in the first equation in (4.2.1) is the number of clones/parasites

leaving the hive compartment and not becoming foragers, while αH is the

number of A.m. scutellata workers/hosts which are recruited to the foraging

class.

• The number of the A.m. scutellata workers/hosts which are dying is repre-

sented in the second equation in (4.2.1) by mF.

• In [50], the death rate m of foragers was assumed to be equal to the rate m̃ of

parasites that leave the hive compartment. Note that the parasites m̃H that

abscond the hive class due to shortage of resources (food and care) proceed to

invade other colonies [5].
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Figure 4.6: The flow diagram of honey bees (A.m. scutellata) in the presence of

social parasite (A.m. capensis clones). Clone 1 = clone brood, clone 2 = hive bees

that are hatched from clone brood and clone 3 = effect of clones on foragers.

4.3 Analysis of the model

The analysis carried out in the previous chapter for the KMB model (3.2.3) applies

to the model (4.2.1). Thus, we just state the main results without repeating the

arguments for all the proofs, observing that the condition (3.2.6) implies that

α + m̃− L

ω
> 0, (4.3.1)

which is used here and after.

The analysis of the model reads as follows:

Theorem 4.3.1. The model (4.2.1) is a dynamical system on the biologically feasible

region

Ω =
{

(H,F ) ∈ R2
+ : H ≤ L

α + m̃
and F ≤ L

m(α + m̃)

}
.

That is, for any (H0, F0) ∈ Ω, there exists one and only one solution
(
H(t), F (t)

)
of the system (4.2.1) such that

(
H(t), F (t)

)
∈ Ω for any t ≥ 0.

The equilibrium points of the model are described in the next results.

Theorem 4.3.2. 1. The system (4.2.1) has trivial equilibrium point (0,0) and

does not have boundary equilibrium points.

76



2. Under the condition

m <
αL

ω
[
(α + m̃)− L

ω

] , (4.3.2)

there exists a unique interior equilibrium point,
(
HI , F I

)
given by

HI =
L

α + m̃
− ωm

α +m

and

F I =
α

m

( L

α + m̃
− ωm

α +m

)
.

For the stability analysis of the equilibrium points of the model (4.2.1), we denote

the Jacobian matrix of the right hand side of (4.2.1) by J(H,F ), and obtain

J(H,F ) =


ωL

(H + F + ω)2
− (α + m̃)

ωL

(H + F + ω)2

α −m

 . (4.3.3)

When evaluated at the trivial equilibrium point,(0,0), (4.3.3) simplifies to

J(0, 0) =


L

ω
− (α + m̃)

L

ω

α −m

 . (4.3.4)

At the interior equilibrium point

J(HI , F I) =


ωm2(α + m̃)2

L(α +m)2
− (α + m̃)

ωm2(α + m̃)2

L(α +m)2

α −m

 . (4.3.5)

Thus, from (4.3.4),

trJ(0, 0) =
(L
ω
− (α + m̃)

)
−m, (4.3.6)

and

detJ(0, 0) = m(α + m̃)−mL

ω
− αL

ω

= m
[
(α + m̃)− L

ω

]
− αL

ω
. (4.3.7)
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From (4.3.5)

trJ(HI , F I) =
ωm2(α + m̃)2

L(α +m)2
− (α + m̃)−m

=
ωm(α + m̃)2

L(α +m)2

(
m− L(α +m)2

ω(α + m̃)2

)
− (α + m̃) (4.3.8)

and

detJ(HI , F I) = m(α + m̃)− ωm3(α + m̃)2

L(α +m)2
− αωm2(α + m̃)2

L(α +m)2

= m(α + m̃)− ωm2(α + m̃)

L(m+ α)

=
ωm(α + m̃)2

L(α +m)

(L(α +m)

ω(α + m̃)
−m

)
. (4.3.9)

From Equations (4.3.6)-(4.3.7), we derive the following results for the model (4.2.1)

regarding the stability of the equilibrium points:

Theorem 4.3.3.

1. When Condition (4.3.2) is satisfied, the trivial equilibrium point (0,0) is unsta-

ble and the interior equilibrium point (HI , F I) is locally asymptotically stable.

2. Otherwise if (4.3.2) is violated, the system (4.2.1) does not have an interior

equilibrium point (HI , F I) and the trivial equilibrium point (0,0) is locally

asymptotically stable.

Proof. Given the importance of this result, we give the proof in detail.

1. From (4.3.7) we have

detJ(0, 0) = m
[
(α + m̃)− L

ω

]
− αL

ω

<
αL

ω
(

(α + m̃)− L
ω

)[(α + m̃)− L

ω

]
− αL

ω
by (4.3.2)

= α
L

ω
− αL

ω

= 0.
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Thus, (0,0) is unstable. For the local asymptotic stability of the interior equi-

librium point, we have, from (4.3.8)

trJ(HI , F I) <
ωm(α + m̃)2

L(α +m)2

( αL

ω
(
(α + m̃)− L

ω

) − L(α +m)2

ω(α + m̃)2

)
− (α + m̃)

<
m(α + m̃)2

(α +m)2

( (α +m)2(
(α + m̃)− L

ω

) − (α +m)2

(α + m̃)2

)
− (α + m̃)

< 0.

From (4.3.9) we have

detJ(HI , F I) >
ωm(α + m̃)2

L(α +m)

(L(α +m)

ω(α + m̃)
− αL

ω
[
(α + m̃)− L

ω
]

)

>
m(α + m̃)2

(α +m)

(α +m

α + m̃
− α

α + m̃

)

=
m(α + m̃)2

(α +m)

( m

α + m̃

)
> 0.

Therefore, the local asymptotic stability of (HI , F I) follows directly from The-

orem 2.2.2 and Corollary 2.2.4.

2. Based on Condition (4.3.1), the trace of J(0, 0) in (4.3.6) is always negative

regardless of the condition (4.3.2). It only remains to show that detJ(0, 0) is

positive. Now, from (4.3.7) we have

detJ(0, 0) = m
[
(α + m̃)− L

ω

]
− αL

ω

>
αL

ω
(

(α + m̃)− L
ω

)[(α + m̃)− L

ω

]
− αL

ω
violating (4.3.2)

= 0.

Therefore (0,0) is locally asymptotically stable by Theorem 2.2.2 and Corollary

2.2.4.
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Furthermore, Dulac criterion (Theorem 2.3.4) applies to the model (4.2.1) and rules

out the existence of periodic orbits. Thus, Theorem 4.3.3 can be improved as follows:

Theorem 4.3.4. If Condition (4.3.2) is satisfied, then the interior equilibrium point

(HI , F I) is globally asymptotically stable, otherwise the “trivial” equilibrium point

(0,0) is globally asymptotically stable.

The conclusion of Theorem 4.3.4 does not as such take into consideration the social

parasite nature of the Apis mellifera capensis because the theorem is simply based

on the analogues of the conditions in Theorem 3.3.5 for the KMB model (3.2.3). In

order to obtain a more relevant conclusion, we have to refer to the biology of honey

bees in the social parasite scenario as described in Section 4.1.

In the social parasite scenario, the impact of the ability of parasites to mimic

pheromones of the host brood and queen [24] is that the rate ω, at which the max-

imum eclosion is approached, is large. On the other hand, the number of clones

who do not contribute to foraging but leave the hive class at the rate m̃ after ben-

efiting from the host workers resources is large. Also, the mortality rate of host

workers who are recruited to foragers class is large (since there are many bees in

the hive to feed) [5]. It has been shown biologically that A.m. capensis parasites

lay multiple eggs resulting in an increased number of parasitic offspring [54,66] and

rapid spread in an apiary [17]. Also A.m. capensis workers need more (at least five)

A.m. scutellata workers to tender their needs within the colony [82]. These facts

can mathematically be reflected by the following condition:

L

ω
< min{m, m̃}, (4.3.10)

which is stronger than Condition (4.3.1). Now, adding equations in (4.2.1) yields

the conservation law

dN

dt
=

LN

N + ω
− m̃H −mF

≤ LN

N + ω
−min{m, m̃}N

≤
(L
ω
−min{m, m̃}

)
N.
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By Lemma 2.1.8, we have

N(t) ≤ N0e

(
L
ω
−min{m,m̃}

)
t
.

We have thus proved the following result which explains how fast colonies of the

A.m. scutellata are lost as a result of social parasitism by the A.m. capensis clones:

Theorem 4.3.5. If Condition (4.3.2) is violated, the total population decays to zero

under the condition (4.3.10)
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Chapter 5

Nonstandard finite difference

schemes for honey bee models

In this chapter, we propose reliable numerical methods which are dynamically con-

sistent with the continuous, KMB and SP, models considered in Chapter 3 and

Chapter 4, respectively. We use the nonstandard finite difference approach [55] as

explained in Section 2.9. This chapter is a detailed version of our results published

in [51].

5.1 The KMB discretization

To construct NSFD schemes, we apply Mickens’ method of sub-equations [7, 55].

That is, we divide the full equation into simpler equations for which exact schemes

are known or available useful qualitative information can be incorporated into the

derived schemes.

From the model (3.2.3), in the absence of hive bees, the foragers are governed by

the decay equation
dF

dt
= −mF. (5.1.1)

The exact scheme of the decay equation was given in Proposition 2.9.7 and reads as

follows:
Fn+1 − Fn

(em∆t − 1)/m
= −mFn+1. (5.1.2)
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In the absence of foragers, hive bees are governed by the equation

dH

dt
=

LH

H + ω
− αH, (5.1.3)

which has both the decay equation

dH

dt
= −αH (5.1.4)

and the Michaelis-Menten, M-M, equation

dH

dt
=

LH

H + ω
. (5.1.5)

Once again the exact scheme of (5.1.4) is

Hn+1 −Hn

(eα∆t − 1)/α
= −αHn+1. (5.1.6)

For the NSFD approximation of (5.1.5), we use the scheme (2.9.21) which by Propo-

sition 2.9.13 is elementary stable. It reads

Hn+1 −Hn

φ
=

LHn

Hn + ω
, (5.1.7)

where φ is specified in (5.1.11), (5.1.15) and (5.1.17) below. In order to preserve

unconditional positivity, we propose the following NSFD scheme for Eq (5.1.3),

based on (5.1.6) and (5.1.7):

Hn+1 −Hn

φ
=

LHn

Hn + ω
− αHn+1. (5.1.8)

Furthermore, using Definition 2.9.9, the nonlinear term
HF

H + F
in (3.2.3) is approx-

imated in a nonlocal manner by

FnHn+1

Hn+1 + Fn
. (5.1.9)

Combining the partial schemes in equations (5.1.2), (5.1.8) and (5.1.9) we propose

the following NSFD scheme for the KMB model (3.2.3):
Hn+1 −Hn

φ
=

L(Hn + Fn)

Hn + Fn + ω
− αHn+1 + σ

FnHn+1

Hn+1 + Fn

Fn+1 − Fn
φ

= αHn+1 − σ
FnHn+1

Hn+1 + Fn
−mFn+1.

(5.1.10)
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Here and after

φ ≡ φ(∆t) =
1− e−∆tQ

Q
(5.1.11)

is a complex denominator function where the number Q > 0 to be determined

shortly in different situations is supposed to capture the features of the model. It

should be noted that φ satisfies the asymptotic relation (2.9.16) in Definition 2.9.9.

We now address the issue of implementation of the NSFD scheme (5.1.10) and the

choice of Q. The first equation in (5.1.10) is quadratic in Hn+1. That is,

AH2
n+1 +BnHn+1 − Cn = 0, (5.1.12)

where

A = 1 + φα > 0

Bn = (1 + φα− φσ)Fn −Hn − φ
LNn

Nn + ω

Cn = HnFn + φ
LNnFn
Nn + ω

.

Assuming that Hn and Fn are nonnegative, so that Cn > 0, there is a unique

nonnegative root of (5.1.12), given by

Hn+1 =
−Bn +

√
B2
n + 4ACn

2A
. (5.1.13)

Once Hn+1 has been computed from (5.1.13), we continue in the Gauss-Seidel type

process to compute Fn+1 as follows:

Fn+1 =

[
φαHn+1 + Fn

(
1− φσ Hn+1

Fn +Hn+1

)]
(

1 +mφ

) . (5.1.14)

In order for Fn+1 in (5.1.14) to be positive, we assume that

Q ≥ σ so that 0 < φ <
1

σ
, (5.1.15)

in view of equation (5.1.11). The root in (5.1.13) can also be written in the following
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implicit equivalent form:

Hn+1 =

[
Hn + φ

L(Hn + Fn)

Hn + Fn + ω

]
(

1 + φα− φσ Fn
Hn+1 + Fn

) . (5.1.16)

In view of (5.1.15) and in order to incorporate essential parameters m and α that

appear in the sub-equations (5.1.1)-(5.1.2), (5.1.4) and (5.1.6), we choose the de-

nominator function φ in (5.1.11) such that

Q ≥ m+ α + σ. (5.1.17)

Theorem 5.1.1.

1. The NSFD scheme (5.1.10) is dynamically consistent with respect to positivity.

2. Under the condition (3.3.1), the NSFD scheme (5.1.10) is a dynamical system

on the same biologically feasible region Ω just as for the continuous KMB

system (3.2.3) in Theorem 3.3.1.

Proof.

1. The positivity is obtained by construction of the NSFD scheme (5.1.10).

2. From Equation (3.3.1) and the first equation of (5.1.10), we have

Hn+1 −Hn

φ
≤ L− ΓHn+1.

Solving for Hn+1, assuming that Hn ≤
L

Γ
, we get

Hn+1 ≤
L

Γ
. (5.1.18)

The second equation of (5.1.10) and Equation (5.1.18) yield

Fn+1 − Fn
φ

≤ αHn+1 −mFn+1 ≤
L

Γ
−mFn+1, since 0 < α ≤ 1,

which implies that

Fn+1 ≤
L

mΓ
if Fn ≤

L

mΓ
. (5.1.19)

Therefore the NSFD scheme (5.1.10) is a dynamical system on Ω.
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Theorem 5.1.2. The NSFD scheme (5.1.10) is elementary stable (Definition

2.9.12). That is:

1. The fixed-points of the NSFD scheme (5.1.10) are the equilibrium points of the

continuous model (3.2.3).

2. The fixed-points of the NSFD scheme (5.1.10) have the same local stability

properties as the equilibrium points of the KMB model (3.2.3). More precisely,

whenever for Jc, representing the Jacobian matrix associated with KMB model

(3.2.3) at the equilibrium point, Q is chosen such that

Q ≥ ‖Jc‖2

|traceJc|

apart from satisfying the relation (5.1.17), we have the following:

(a) Under the condition (3.3.14), the unique interior fixed-point (H,F ) is

locally asymptotically stable (LAS) and the trivial fixed-point (0,0) unsta-

ble.

(b) If (3.3.14) is violated, then (0,0) is GAS.

Proof. We prove Theorem 5.1.2 in different steps.

A. A point (H,F ) is a fixed point of the NSFD scheme (5.1.10) if, and only, if it

satisfies the defining equations (3.3.6) of the equilibria of the continuous KMB

model (3.2.3).

B. We prove the local asymptotic stability of the interior fixed-point (H,F ).

Putting

U = H −H and V = F − F ,

the linearized continuous equation (3.3.21) about the equilibrium point (H,F )

in terms of the eclosion function E(H,F ) and the recruitment functionR(H,F )

can be re-written as 
dU

dt

dV

dt

 = Jc


U

V
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where

Jc =


EH −RH EF −RF

RH RF −m

 =


EH EF −RF

0 RF

−


RH 0

−RH m


(5.1.20)

is the Jacobian matrix at the interior equilibrium point (H,F ). Here and af-

ter, EH , RH , EF and RF denote the partial derivatives of the functions

E(H,F ) and R(H,F ) at the point (H,F ).

The NSFD scheme (5.1.10) can be re-written in the form
Hn+1 −Hn

φ
= E(Hn, Fn)−R(Hn+1, Fn)

Fn+1 − Fn
φ

= R(Hn+1, Fn)−mFn+1.

(5.1.21)

The linearized equation about the interior fixed-point (H,F ) is
(1 + φRH)Un+1 = (1 + φEH)Un + φ(EF −RF )Vn

φRHUn+1 + (1 + φm)Vn+1 = (1 + φRF )Vn.

(5.1.22)

Solving the algebraic system (5.1.22) in
(
Un+1, Vn+1

)
, the linearized NSFD

scheme reads 
Un+1

Vn+1

 = Jd


Un

Vn

 (5.1.23)

where

Jd =


1 + φRH 0

−φRH 1 + φm


−1

1 + φEH φ(EF −RF )

0 1 + φRF



= T


1 + φEH φ(EF −RF )

0 1 + φRF .

 ,
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for

T =


1

1 + φRH

0

φRH

(1 + φRH)(1 + φm)

1

1 + φm

 .

From the expression of Jc in (5.1.20) we have

Jd = I + φTJc. (5.1.24)

With RH(H,F ) being positive, the spectral radius of the matrix (T −I) is less

than 1. Therefore, the sequence (T − I)n of the matrices converges to the null

matrix. Consequently, the difference system (5.1.23) has the same qualitative

behavior as the system 
Ũn+1

Ṽn+1

 = J̃d


Ũn

Ṽn

 (5.1.25)

where

J̃d = I + φJc. (5.1.26)

It is easy to check that µ is an eigenvalue of the matrix J̃d if, and only, if

λ =
µ− 1

φ
is an eigenvalue of Jc. That is

µ = φλ+ 1 = (1 + φλ1) + iφλ2.

Furthermore,

|µ|2 =


1− 2φ|λ1|+ φ2|λ|2 if λ1 < 0

1 + 2φ|λ1|+ φ2|λ|2 if λ1 > 0.

Thus, whenever

φ <
2|λ1|
|λ|2

, (5.1.27)

we have, for λ1 < 0,

|µ|2 < 1− 2φ|λ1|+
2φ|λ1|
|λ|2

|λ|2

= 1.
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Therefore |µ| < 1 if λ1 < 0. In a similar manner, |µ| > 1 if λ1 > 0. The

function φ in (5.1.11) with Q as specified in the statement of Theorem 5.1.2

satisfies the condition (5.1.27) because

φ <
1

Q
and Q ≥ |λ|

2

2|λ1|

for each eigenvalue of Jc, given that |λ| ≤ ‖Jc‖ and λ1 = 2traceJc for the

2x2 matrix Jc. This proves the local asymptotic stability of the fixed-point

(H,F ), based on Theorem 2.7.8, whenever the interior equilibrium point is

locally asymptotically stable.

C. We deal with the stability of the trivial fixed-point (0,0) with the assumption

that Condition (3.3.14) holds true. We proceed as follows:

Adding the two equations in (5.1.10), we obtain the discrete conservation law

Nn+1 −Nn

φ
=

LNn

Nn + ω
−mFn+1. (5.1.28)

Under the condition (3.3.14), and using the definition of Ω, we have

Nn+1 −Nn

φ
≥ LNn

L
Γ

+ L
mΓ

+ ω
−mc

L

mΓ
.

Hence

Nn+1 ≥

(
1 + φ

L
L
Γ

+ L
mΓ

+ ω

)
Nn −mc

L

mΓ
.

By Gronwall inequality (Lemma 2.6.3), the sequence (Nn)n cannot tend to

zero. Thus (0,0) is unstable and not attractive.

D. We prove part 2 of Theoreme 5.1.2 regarding the stability of the fixed-point

(0,0) when Condition (3.3.14) is not satisfied.

Since the NSFD scheme (5.1.10) is convergent, the discrete conservation law

(5.1.28) has the same behavior as the difference equation

Nn+1 −Nn = φ
LNn

Nn + ω
− φmFn (5.1.29)

for n large enough. Consequently, when Condition (3.3.14) is violated it follows

from the Lyapunov argument used in the continuous setting for the proof of

Proposition 3.3.10 that

Nn+1 −Nn < 0 for 0 < Hn ≤ r and 0 < Fn ≤ r.
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This shows that the trivial fixed point (0,0) is locally asymptotically stable.

E. For the global asymptotic stability of the trivial fixed-point (0,0), we are going

to apply Theorem 2.8.4. In this regard, it suffices to show that the largest

invariant set M contained in the set E can be reduced to the singleton set

M = {(0, 0)}. That is;

E =
{

(H,F ) ∈ Ω : V (G(H,F )) = V (H,F )
}

=
{

(H,F ) ∈ Ω : φ
L(H + F )

H + F + ω
−mF = H + F

}

= {(0, 0)}

We shall prove by contradiction. Assume that there are H > 0 and F > 0

such that

φ
L(H + F )

H + F + ω
− φmF = H + F.

Or equivalently

φ
LV

V + ω
− φmF = V.

This implies that

φmF = φ
LV

V + ω
− V

=
( φL

V + ω
− 1
)
V

<
(φL
ω
− 1
)
V

< 0 since φ
L

ω
− 1 < φ

(L
ω
− 1
)

by (3.2.6), (5.1.15) and Remark 3.2.2.

But it is impossible to have φmF < 0 for F > 0. So F = 0. Which implies

that H = F = 0 from the definition of V (H,F ). Thus, E = {(0, 0)}.
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Remark 5.1.3. We conjecture that the interior fixed-point of the NSFD scheme

(5.1.10) is GAS. This conjecture which is supported by numerical simulations in

Section 5.3 could probably be proven by using an appropriate Lyapunov function.

5.2 The SP discretization

We now construct a NSFD scheme for the SP model (4.2.1). Using the method of

sub-equations that led to the scheme (5.1.10), we propose, for the SP model, the

NSFD scheme 
Hn+1 −Hn

φ
=

L(Hn + Fn)

Hn + Fn + ω
− (α + m̃)Hn+1

Fn+1 − Fn
φ

= αHn+1 −mFn+1,

(5.2.1)

which is equivalent to 
Hn+1 =

(φL(Hn + Fn)

Hn + Fn + ω
+ Fn

)
1 + α + m̃

Fn+1 =
αφHn+1 + Fn

1 + φm
,

(5.2.2)

where φ is defined in (5.1.11) with Q = α + m̃+m.

The analysis carried out for the NSFD scheme (5.1.10) does apply to the NSFD

scheme (5.2.1). Therefore, we are going to mention main results without giving

their proofs.

In a similar manner to the proof of Theorem 4.3.1, we obtain the result below.

Theorem 5.2.1. The NSFD scheme (5.2.1) is a dynamical system in the biological

feasible region Ω defined in Theorem 4.3.1.

Adding the equations in (5.2.1), we have the conservation law

Nn+1 −Nn

φ
=

LNn

Nn + ω
− m̃Hn+1 −mFn+1,

from which it follows that

−(m+ m̃)Nn+1 ≤
Nn+1 −Nn

φ
≤ LNn

ω
−min{m, m̃}Nn+1. (5.2.3)
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From the left inequality in (5.2.3) we have

−(m+ m̃)Nn+1 ≤
Nn+1 −Nn

φ
Nn

1 + φ(m+ m̃)
≤ Nn+1. (5.2.4)

On the other hand, the second inequality in (5.2.3) gives

Nn+1 −Nn

φ
≤ LNn

ω
−min{m, m̃}Nn+1

Nn+1 ≤
( 1 + φL

ω

1 + φmin{m, m̃}

)
Nn. (5.2.5)

Combining (5.2.4) and (5.2.5) we obtain

Nn

1 + φ(m+ m̃)
≤ Nn+1 ≤

( 1 + φL
ω

1 + φmin{m, m̃}

)
Nn. (5.2.6)

When we proceed by mathematical induction form (5.2.6) we obtain( 1

1 + φ(m+ m̃)

)n+1

N0 ≤ Nn+1 ≤
( 1 + φL

ω

1 + φmin{m, m̃}

)n+1

N0. (5.2.7)

We, therefore, have established the following result, which shows the GAS of the

trivial fixed point, (0,0), in the more specific way below.

Theorem 5.2.2. Under the condition (4.3.10), the colony declines to zero in a

contractive manner.

5.3 Numerical simulations

For numerical simulations for the discrete KMB-NSFD scheme (5.1.10), we use the

parameters in Table 5.1 below, which are taken from [43].

Table 5.1: Basic parameters for simulations

Parameter L α σ ω

Value 2000 0.25 0.75 27000
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The choice of the values α = 0.25 and σ = 0.75 is motivated by the fact that, in the

absence of foragers, new workers become foragers in a minimum of four days, and

there is reversion (social inhibition) from foragers class to hive class if more than

one third of the total population are foragers [43]. To Table 5.1, we add the critical

value, mc, of the foragers death rate obtained from Equation (3.3.14) as mc = 0.355.

We will therefore use the quantities below and above the critical value mc namely

m = 0.24 and m = 0.4, as in [43]. Finally, we take ∆t = 2, a large value of step

size which shows the power of the nonstandard approach as this is not permissible

in classical numerical schemes [55].

In the KMB setting, Figure 5.1 illustrates through both the phase plane and the

population-time axes the GAS of the interior equilibrium or fixed point when m =

0.24 in accordance with Theorem 3.3.5(1) and Theorem 5.1.2(a). Furthermore, when

m = 0.4, the CCD phenomenon or the GAS of the trivial equilibrium or fixed point

occurs according to Theorem 3.3.5(2) and Theorem 5.1.2(b), as displayed in Figure

5.2.
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(a) Phase plane. (b) Population-time.

Figure 5.1: GAS of the interior fixed-point for the KMB-NSFD scheme (5.1.10).

The shift between the global asymptotic stability of the trivial fixed point and the

interior fixed point is addressed in the following bifurcation diagram where for-

agers’ death rate, m, is a bifurcation parameter. Moreover, m = 0.355 is a for-

ward/transcritical bifurcation of the model (3.2.3) in the sense that for m > 0.355,

the model has only one equilibrium point (0,0) which is globally asymptotically sta-
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Figure 5.2: CCD in the KMB-NSFD scheme (5.1.10).

ble. But for m < 0.355, the stability nature of the trivial equilibrium point changes

to unstable and an additional interior equilibrium point is born and is globally

asymptotically stable. By Definition 2.5.2, the model (3.2.3) undergoes transcritical

bifurcation at the point m = mc. The NSFD scheme (5.1.10) is dynamically con-

sistent with respect to all these properties as illustrated in Figure 5.1 and 5.2 (see

Figure 5.3).

Figure 5.3: The bifurcation diagram of KMB-NSFD scheme (5.1.10)

Regarding the SP setting, we still use the values in Table 1 because we assume that
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the laying rate of the queen remains the same. The rate, m̃, at which parasites

leave the hive class is, for simplicity, taken to be equal to the death rate m =

0.24 of foragers. As predicted by Theorem 4.3.5 and Theorem 5.2.2, Figure 5.4

exhibits faster decay to zero of the total population, which once again justifies the

terminology capensis calamity

• The colony collapses in 100 days for the SP model when m = 0.24 (Figure

5.4(b)), while there is no CCD for the KMB model in this case (see Figure

5.1(b));

• The colony collapses in 400 days for the KMB model when m = 0.4 (Figure

5.2(b)).
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Figure 5.4: Faster decline of the colony for SP-NSFD scheme (5.2.1)
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Chapter 6

Conclusion

This dissertation is motivated by the work [43], which provides a fundamental math-

ematical model for the decline of the honey bee populations within the colony. The

alarming declines of the colony population of honey bees constitute a serious threat

to ecosystem services and honey bee products which would have great consequences.

The situation is worsen nowadays by an increase in colony losses world-wide through

Colony Collapse Disorder (CCD) and particularly the capensis calamity(cc) in South

Africa. Both phenomena are characterized by imminent losses of managed honey

bee colonies, thus resulting in the decline of these important pollinators.

In this dissertation, we build on the honors project [50], which in turn is based

on [43], to investigate some mathematical models of honey bee population dynam-

ics. The starting point is therefore the KMB model [43] consisting of the hive

compartment, H, and the foragers compartment, F, with positive recruitment rate,

R = R(H,F ). We have provided mathematical details and rigorous analysis of the

model. With the assumption that the rate ω, at which the maximum eclosion is ap-

proached is large enough, the following results have been theoretically established:

There exists a critical value, mc, of the parameter m (foragers’ death rate) which

is a transcritical bifurcation. That is, the trivial equilibrium point (0,0) is glob-

ally attractive whenever m > mc, which means that the CCD phenomenon occurs,

whereas it is not attractive when m < mc, and an additional interior equilibrium

point which is globally asymptotically stable (GAS) is born.
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We have addressed one of the research questions that was identified in [50] by con-

structing a nonstandard finite difference (NSFD) scheme for the KMB model that

is dynamically consistent with respect to the decline property. More specifically, we

have theoretically established that the fixed-points of the KMB-NSFD schemes are

exactly the equilibrium points of the KMB model and, they have the same stability

properties in the sense that: for m > mc, the trivial fixed-point (0, 0) is GAS while

for m < mc, there exists a unique interior fixed-point which is LAS.

In addition to the model formulated in [43], we improved the social parasite, SP,

model in a way that the rate, m̃, at which clones leave the hive compartment is

different from the rate m at which foragers die. This model is motivated by the

capensis calamity that arises when some A.m. capensis clones (parasites) gain access

into the colonies of A.m. scutellata (hosts). We have described the social parasite

scenario by a low positive and constant recruitment rate due to the presence of

parasites which do not contribute to foraging but leave the hive compartment at a

constant rate after benefiting from the resources produced by the hosts. We have

proved that the total population declines rapidly in this parasitic scenario.

We have constructed a NSFD scheme for the SP model (SP-NSFD scheme) and

proved theoretically the capensis calamity phenomenon. We have provided nu-

merical simulations that confirm the theory for both KMB and SP nonstandard

discretizations. In the SP-NSFD scheme, we observed a rapid decline in the total

population of the host colony, (Figure 5.4). This means that the SP setting indeed

represents abandoned brood as a diagnostic of CCD colonies [43]. In our simulations,

it takes about 100 days for A.m. scutellata population to reach zero, regardless of

the foragers’ death rate, after A.m. capensis have entered their colony and started

producing (Figure 5.4(b)), whereas it takes about 400 days for a normal honey bee

population, as in the KMB model, to reach zero when the death rate of foragers is

above a certain critical point (Figure 5.2(b)).

Apart from the construction of the NSFD schemes, the following natural question

that was raised in [50] remains.

1. Regarding the colony population declines, which measures and strategies are
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needed to avoid or at least to reduce honey bee colony declines? Since the

model proposed in [43] suggests that the colony growth is attained when the

death rate, m, of the foragers is below a critical value, a possible strategy is to

make mc small. Given the fact that mc is a function of the parameters L, α,

σ, and ω, it can be seen from (3.3.14) how mc can be reduced by appropriate

choice of some of these parameters. From the biological point of view, growth

of honey bee colonies can be achieved by providing enough resources to honey

bees, either through planting many different flowering plants (bee plants) closer

to the colonies as this would prevent foragers from undertaking long and risky

travel [96] as it is confirmed that they (foragers) die due to exhaustion [11].

Enactment of legislation that will reduce or ban indiscriminate use of pesticides

in agriculture could also help in this regard [85] like the recent ban on the use

of neonicotinoid pesticides in Europe.

2. Regarding the model with social parasites, what strategies could be to taken

to reduce the spread of parasites. Measures that could be taken to reduce

the spread of the social parasites in honey bees includes stopping migration of

honey bees of different races between regions [92] in South Africa as enshrined

by the law. This is important since clones rely heavily on anthropogenic

factors to move from one region. Obeying enacted laws that restrict migratory

beekeeping and enforcement of same would help in stopping the spread. In

the event that migration is unavoidable, hives should be inspected regularly

after migration for the presence of the parasites and infested hives placed in

quarantine and destroyed accordingly [52].

A further extension, not mentioned in [50], but outlined in Section 3.4 of this dis-

sertation, is to improve the KMB and SP models in a more realistic manner. To

this end, one way could be to consider in the models, numerous factors responsible

for colony declines. These include:

3. Death rate of hive bees and brood [16,27], pests and diseases [25] and climate

change [27].

4. Other compartments can be incorporated that will model colony failure as
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contagious by viruses and other pathogens [29,47,77].

5. To investigate the interactions of suitable strategies (e.g food and climate) and

forager mortality on colony fate [44,80].

6. Since studies have shown that secreted pheromones, either by queen or work-

ers, play a big role in assigning different tasks in the colony [11], it is of

interest to consider the part that drones and drone-produced chemicals play

on mediating social interaction with themselves and their importance in com-

municating with other individuals [14, 97]. It is of interest to see how drones

can be considered in the formulation of mathematical models for the honey

bee population dynamics since Varroa mites prefer drone brood over worker

brood to complete their life cycle [11].
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