Supporting Information 2 Interpolating entrance and exit points of a circle

Given a series of locations $\mathbf{X}_i = (X_i, Y_i)$ recorded at constant time intervals Δt . Whereas the turning angle at constant time interval α_i (top) corresponds to the change in direction between vectors $\mathbf{X}_{i-1} \rightarrow \mathbf{X}_i$ (with length L_i) and $\mathbf{X}_i \rightarrow \mathbf{X}_{i+1}$ (with length L_{i+1}) and therefore acts as a proxy for angular speed $(\alpha_i/\Delta t)$, the turning angle at constant length interval α_i^* (bottom) corresponds to the change in direction between vectors $\mathbf{P}_{en} \rightarrow \mathbf{X}_i$ and $\mathbf{X}_i \rightarrow \mathbf{P}_{ex}$, where \mathbf{P}_{en} and \mathbf{P}_{ex} are the last entrance and first exit locations, respectively, of a virtual circle with radius rcentred on current location \mathbf{X}_i . Let $\mathbf{I} = (X_{in}, Y_{in})$ and $\mathbf{O} = (X_{\text{out}}, Y_{\text{out}})$ be the last inside and first outside recorded locations, respectively, of the

first passage at the circle perimeter, either backwards ($\mathbf{I} = \mathbf{I}_{en}$ and $\mathbf{O} = \mathbf{O}_{en}$; $\mathbf{I}_{en} = \mathbf{X}_i$ if $L_i > r$) to determine \mathbf{P}_{en} , or forwards ($\mathbf{I} = \mathbf{I}_{ex}$ and $\mathbf{O} = \mathbf{O}_{ex}$; $\mathbf{I}_{ex} = \mathbf{X}_i$ if $L_{i+1} > r$) to determine \mathbf{P}_{ex} . The location \mathbf{P} (either \mathbf{P}_{en} or \mathbf{P}_{ex}) corresponds to the point where the vector $\mathbf{I} \rightarrow \mathbf{O}$ intersects the circle perimeter. The length of this vector is $d_{\mathbf{IO}} = (d_x^2 + d_y^2)^{0.5}$, with $d_x = X_{out} - X_{in}$ and $d_y = Y_{out} - Y_{in}$, and its orientation is θ , with $\cos(\theta) = d_x/d_{\mathbf{IO}}$ and $\sin(\theta) = d_y/d_{\mathbf{IO}}$. In a new orthonormal frame of reference (U, V) originating at \mathbf{I} and with U axis running through \mathbf{O} , the coordinates of current location \mathbf{X}_i become $U_i = (X_i - X_{in}) \cos(\theta) + (Y_i - Y_{in}) \sin(\theta)$ and $V_i = (Y_i - Y_{in}) \cos(\theta) - (X_i - X_{in}) \sin(\theta)$. By applying Pythagoras' theorem, one gets $r^2 = (d_{\mathbf{IP}} - U_i)^2 + V_i^2$, where $d_{\mathbf{IP}}$ corresponds to the distance between \mathbf{I} and \mathbf{P} , with $d_{\mathbf{IP}} > U_i$. Entrance or exit location can therefore be linearly interpolated as $\mathbf{P} = \mathbf{I} + (\mathbf{O} - \mathbf{I}) d_{\mathbf{IP}/d_{\mathbf{IO}}}$ (i.e. $X_P = X_{in} + \cos(\theta) d_{\mathbf{IP}}$ and $Y_P = Y_{in} + \sin(\theta) d_{\mathbf{IP}}$), with $d_{\mathbf{IP}} = U_i + (r^2 - V_i^2)^{0.5}$.