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Abstract 
 

s discussed by Perron (1989), a common problem when testing 
for unit roots is the presence of a structural break that has not 

been accounted for in the testing procedure.  In such cases, unit root 
tests are biased to non-rejection of the null hypothesis of non-
stationarity. These results have been discussed using asymptotic 
theory and large samples in papers by Leybourne and Newbold 
(2000), Montanes and Reyes (1998) and Lee, Huang, and Shin 
(1997).  In this paper we investigate the impact of ignoring structural 
breaks on sample sizes of more interest to empirical economists and 
show the results on power and size for both tests of the null of non-
stationarity (ADF and Phillips-Perron) and the null of stationarity 
(KPSS). We are also able to give some guidelines on break 
placement which can cause the rapid flipping of rejection probabilities 
as discussed in Leybourne and Newbold (2000). Finally, we provide 
examples from time series data in South Africa to show the danger of 
misdiagnosis and the resulting misspecifications that can occur. 

 
 

1. Introduction 
 
The most important implication of the unit root revolution is that under this 
hypothesis random shocks have a permanent effect on the system. However, many 
such series may also contain structural breaks, and therefore it is important to 
assess carefully the reliability of unit root tests in the presence of a structural break. 
This paper compares the performance of unit root and stationarity tests in the 
presence of a structural break, allowing for both the null of stationarity and the null 
of non-stationarity. Such a comparison can be of use as the debate continues as to 
the appropriate null hypothesis for different applications.  
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The most influential contribution with respect to the effect of structural breaks on 
unit root tests is found in Perron (1989). He considers the null hypothesis that a 
time series has a unit root against the alternative that the process is trend-stationary. 
Under both the null and alternative hypotheses a one-time change in the level 
and/or in the slope of the trend function is allowed, assuming that the time of the 
break is known. He shows that asymptotically standard tests of the unit root 
hypothesis against trend stationarity cannot reject the unit root hypothesis if the true 
data generating process (DGP) is that of stationary fluctuations around a trend 
function which contains a one-time break. Therefore these tests are biased towards 
accepting the null whether it is true or not, which means that it decreases the 
potential power of the tests. 
 
Montanes and Reyes (1998) extend the results of Perron (1989) for the Dickey 
Fuller (DF) test and show with Monte Carlo studies that the unit root tests are 
biased in favour of non-rejection of the unit root hypothesis. In contrast with Perron 
(1989) where it is supposed that the effects of different types of structural breaks 
are identical, they showed that the DF tests react differently to different types of 
structural breaks. They also show that the tests react differently to breaks at the 
beginning of the sample and breaks at the end of the sample, and that the tests also 
react differently to different sizes of the breaks. The paper by Leybourne and 
Newbold (2000) also considers the ADF t-test and, like Montanes and Reyes, 
considers the importance of break placement. In their paper, the authors find that 
there is a potential break placement which causes a rapid flip from very many 
rejection to very few with a stationary DGP containing a structural brea. They 
further predict that in smaller samples, which they do no investigate, this flipping 
could occur in breaks which are in the first half of the data set. Identifying the exact 
placement of this break flipping could be an important tool for applied 
econometricians in interpreting testing results. 
 
When the unit root is the null hypothesis to be tested, then the way in which 
classical hypothesis testing is carried out ensures that the null hypothesis is 
accepted unless there is strong evidence against it. Therefore an alternative 
explanation for the common failure to reject a unit root is simply that most 
economic time series are not very informative about whether or not there is a unit 
root, or equivalently, that standard unit root tests are not very powerful against 
relevant alternatives. For example, De Jong et al. (1989) provide evidence that the 
Dickey-Fuller tests have low power against stable autoregressive alternatives with 
roots near unity, and Diebold and Rudebusch (1990) show that they also have low 
power against fractionally integrated alternatives. By testing both the unit root 
hypothesis and the stationarity hypothesis, it is possible to distinguish series that 
appear to be stationary, series that appear to have a unit root and series for which 
the data (or the tests) are not sufficiently informative to be sure whether they are 
stationary or integrated. Kwaitkowski et al. (1992) (hereafter KPSS), considered 
Lagrange Multiplier (LM) tests with a stationary or trend stationary null hypothesis 
rather than a unit root hypothesis. However, the KPSS test of the null of stationarity 
faces a parallel problem as the null of non-stationarity in the presence of a 
structural break.  
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Lee, Huang and Shin (1997) clarify the nature of the effects of a structural break on 
the KPSS stationarity tests. They show that stationarity tests ignoring the existing 
break diverge and are biased toward rejecting the null hypothesis of stationarity in 
favor of the false alternative unit root hypothesis. This result can be compared with 
the findings of Perron (1989) and Montanes and Reyes (1998) that unit root tests 
are biased toward accepting the false unit root null hypothesis. The size distortion 
problem of stationarity tests parallels the power loss problem of unit root tests. 
However, like Perron (1989) they only looked at the asymptotic consequences and 
not the small sample case. In addition, Lee et al. (1997) only consider breaks in the 
first halve of the sample, but since the KPSS statistic does not treat the errors 
symmetrically the effect of a break in the second half of the sample may be 
different. Therefore, in this study the effect of breaks in both halves of the sample 
will be tested. 
 
However, all the results described above have been established asymptotically and 
might differ substantially for small samples that are of practical interest to the 
applied economist. In this paper we expand on the results of Perron (1989) for unit 
root tests, and the results of Lee et al. (1997) for stationarity tests to show the small 
sample results on power and size in the presence of a structural break. Our testing 
will be more general than these tests, allowing for different types of structural 
breaks, different break magnitudes, different placements of the break and also more 
general error structures. The paper is outlined as follows: Section 2 summarizes 
tests and explains the Monte Carlo design for the comparison of the tests. Section 3 
summarizes the results of the Monte Carlo experiments. Section 4 presents an 
application of the tests for South Africa, and Section 5 provides some concluding 
thoughts.  
 
2. The Monte Carlo design 
 
The goal of this Monte Carlo study is to compare the size and power of unit root 
and stationarity tests in the presence of a structural break, with special reference to 
the small sample properties. Three tests are considered: the Dickey Fuller (DF), 
Phillips-Perron (PP) and Kwaitkowsky et al. (KPSS). The first two tests are 
constructed under the null of a unit root and the last one under the null of 
stationarity. The power and size of these tests are compared across both the null of 
stationarity and the null of non-stationarity.  
 
2.1 The test statistics 
 
The DF and PP tests are tests of the null hypothesis of non-stationarity against the 
alternative of stationarity. The DF test involves estimating the autoregressive (AR) 
coefficient (ρ) of the dependent variable and then determining whether to accept or 
reject the null hypothesis of a unit root (ρ=1) by comparing the following statistic 
with the appropriate DF critical value:  
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DF t-statistic: 
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By definition, the DF test assumes that the data generating process (DGP) is an 
AR(1) process. To allow for a higher AR order, the augmented Dickey-Fuller 
(ADF) test is used. Both DF tests assume that the errors are i.i.d. Said and Dickey 
(1984) showed that the ADF test can be used when the error process is a moving 
average (MA). In this study the DF test will be used except when the errors contain 
an AR component, in which case the ADF test will be used. 
 
The PP test is a generalization of the DF-procedure that allows for fairly mild 
assumptions concerning the error distribution, by allowing the errors to be weakly 
dependent and heterogeneously distributed. The test is performed by comparing the 
following test statistic to the relevant critical value: 
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Although the ADF and PP tests have very low power especially for a near unity AR 
term or trend stationarity, Monte Carlo studies have shown that the PP test has 
greater power than the ADF test (Enders 1995:242). However, Monte Carlo studies 
have also shown that in the presence of negative MA terms, the PP test tends to 
reject the null of a unit root whether or not the actual DGP contains a negative unit 
root (Enders 1995, p. 242). It is therefore preferable to use the ADF test when the 
true model contains negative MA terms and the PP test when the true model 
contains positive MA terms. However, in practice the true DGP is never known, 
and therefore a safe choice is to use both tests.  
 
Kwaitkowsky et al. (1992) (hereafter KPSS) developed a test of the null hypothesis 
that an observable series is stationary around a deterministic trend, against the 
alternative that the series is difference-stationary. They derived a one-sided LM-test 
under the assumption that the errors are white noise, however, since this is 
assumption is not credible in many applications they derived a modified version of 
the LM statistic that is valid under more general conditions. In the modified version 
they use a similar autocorrelation correction to the PP corrections. 
 
Test statistic: ∑−
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Bartlett window: w(s, ) s /( 1)= − +  … (7) 
 
With i.i.d. errors, the KPSS test has approximately the correct size, except when T 
is small and the lag truncation parameter ( ) is large. The power of the test 
increases as T increases. There is a trade-off between correct size and power: 
choosing  large enough to avoid size distortions in the presence of realistic 
amounts of autocorrelation will make the tests have very little power.  
 
2.2 Construction of the hypotheses 
 
As in Perron (1989), three different models are considered under both the null 
hypotheses: one that permits an exogenous change in the level of the series, one 
that permits an exogenous change in the time trend, and a mixed model that allows 
both changes. These hypotheses are parameterized as follows: 
 
Under the null of a unit root: 
 
Model A: t1ttt y)TB(dDy ε+++µ= −  … (8) 
 
Model B: tt11tt DUyy ε+δ++µ= −  … (9) 
 
Model C: tt1t1t1t DU)TB(dDyy ε+δ+++µ= −  … (10) 
 
Under the null of trend stationarity: 
 
Model A: tt11t DUty ε+δ+β+µ=  … (11) 

 
Model B: t

*
t21t DTty ε+δ+β+µ=  … (12) 

 
Model C: tt2t111t DTDUty ε+δ+δ+β+µ=  … (13) 
 
where: 
 
TB is the time of the break 
 
D(TB)t = 1 if t = TB+1, 0 otherwise … (14) 
 
DUt = 1 if >TB, 0 otherwise … (15) 
 
DTt* = t – TB if t > TB, 0 otherwise … (16) 
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DTt = t if t > TB, 0 otherwise … (17) 
 
In model A, the null hypothesis of a unit root is characterized by a dummy variable 
that takes the value one at the time of the break. Under the alternative hypothesis of 
trend stationarity, the model allows for a one-time change in the intercept of the 
trend function. Model B allows a change in the drift parameter at the time of the 
break under the null, as opposed to a change in the slope of the trend under the 
alternative. Model C allows for both effects to take place simultaneously, in other 
words a break consisting of a change in the level as well as a change in the time 
trend. All the testing will be performed under all three models, to test whether 
different types of breaks have significantly different effects on the unit root and 
stationarity testing.  
 
2.3 Experiment dimensions 
 
Different dimensions of the structural break will be tested in four experiments. The 
dimensions that will be considered are the sample size, the placement of the break, 
the size of the break, different error structures and the distance between the null and 
the alternative. To test the distance between the null and the alternative, a more 
general form of the stationary models will be used by adding an autoregressive 
dependent variable. The coefficient of this variable (ρ in (18) to (20)), will then be 
varied to change the distance between the null and the alternative. 
 
The focus of this paper is on sample sizes that are of practical interest to the applied 
economist. In Experiment 1, the power and size of the tests are compared for 
different sample sizes, as the sample size (T) will take on the following values: T ∈ 
{15, 25, 50, 100}. 
 
Montanes and Reyes (1998) and Leybourne and Newbold (2000) showed that the 
power and size of the DF tests are influenced by the placement of the break. To test 
whether small samples have the same results, and to test whether this is also the 
case with the PP and the KPSS tests, the effect of the placement of the break will 
also be tested. This is done by assigning the following values to the break fraction 
(λ), i.e. the ratio of pre-break sample size to total sample size:  λ ∈ {0,1, 0,2, 0,3, 
0,4, 0,5, 0,6, 0,7, 0,8, 0,9}. 
 
Again, the results of Montanes and Reyes (1998) and Leybourne and Newbold 
(2000) indicate that the magnitude of the break has a significant impact on the 
rejection rate of the DF tests. In Experiment 2 the magnitude of the break will be 
varied tot test whether it is also the case in small samples and for the other tests, by 
using the following values for the break magnitudes δ1 and δ2: δ1 ∈ {1, 2, 3, 4}, δ2 
∈ {0,2, 0,4, 2, 4}. 
 
The AR(1) parameter ρ is a convenient nuisance parameter to consider, since it 
naturally measures the distance of the null from the alternative. Since Monte Carlo 
studies have shown that unit root tests can not distinguish between non-stationary 
and stationary series when the AR coefficient (ρ) is close to unity (Enders 1995: 
251), it will be tested whether ρ has a significant impact on the tests. The 
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coefficient (ρ) will take on the following values: ρ ∈ {0, 0,25, 0,5, 0,6, 0,7, 0,8, 
0,9}. In Experiment 3, a lagged dependent variable will be added to model A, B 
and C under stationarity, which give the following null hypotheses: 
 
Model A: t1tt11t yDUty ε+ρ+δ+β+µ= −   … (18) 
 
Model B: t1t

*
t21t yDTty ε+ρ+δ+β+µ= −   … (19) 

 
Model C: t1tt2t111t yDTDUty ε+ρ+δ+δ+β+µ= −   … (20) 
 
Without a structural break the tests perform differently with different error 
structures, for example, PP tends to always reject the null when the errors are 
negative MA (Enders 1995, p. 242), and Lee et al. (1997) have shown that the 
power of KPSS increases as σ increases with i.i.d. N(0, σ) errors. Therefore the 
tests’ performances in the presence of a structural break will be tested with different 
error structures. In Experiment 4 different error structures will be used: an AR(p) 
structure, a MA(q) structure and an i.i.d. N(0, σ) structure where: p ∈ {0,75, 0,85, 
0,95}, q ∈ {-0,8, 0, 0,8}, σ ∈ {0,25, 1, 4}.  
 
Unless otherwise specified, the study considers λ=0.5 and T=25, and the errors that 
are i.i.d. N(0,1). The random number generator used for this study is URN22 from 
Karian and Dudewicz (1991). All the experiments were done with a 5% level of 
significance, and each experiment was repeated 10 000 times. 
 
3. Monte Carlo results 
 
All the results of the Monte Carlo study are presented as rejection rates, where a 
rejection rate is the percentage of times that a test rejects the null hypothesis. 
Because the tests are not all derived under the same null hypothesis, it is difficult to 
compare their performances directly. When the DGP is stationary, the rejection rate 
of the KPSS measures its size, while the rejection rate of the DF and PP measure 
their power. On the other hand, when the DGP is non-stationary, the rejection rate 
of the KPSS measures its power while the rejection rates of DF and PP measure 
their size. Table 1 provides an overall summary of the results. 
 
3.1 Experiment 1  
 
In Experiment 1 the size and power of the tests were compared for different sample 
sizes (T) to see whether the results of small samples corresponds to the asymptotic 
results. At the same time the influence of the break fraction (λ) was also tested. The 
rejection rates of the ADF, PP and KPSS tests for the models, A, B and C explained 
in Section 3, are given for a stationary DGP in Table 2 and for a non-stationary 
DGP in Table 3.  
 
With model A, the ADF and PP tests performs very well under both hypotheses, as 
both has constant power of 0,9999 while the size was also within reasonable ranges. 
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For example, the size of ADF ∈ (0,048, 0,076) and the size of PP ∈ (0,05, 0,12). 
For both tests, the size distortions get worse as the T decreases. In other words, a 
break in the intercept doesn’t entirely mislead the tests although it is a little bit 
more misleading in smaller samples. However, it seems as if the break makes the 
data look non-stationary to KPSS, since it is biased towards rejecting stationarity 
whether the DGP is stationary or not. For example, under stationarity the rejection 
rate of KPSS (i.e. size) ∈ (0,22, 0,99), while the rejection rate under non-
stationarity (i.e. power) ∈ (0,45, 0,99). In model A, the break fraction (λ) did not 
have a significant impact on any of the tests, apart from slight size distortions with 
KPSS.  
 
 
Table 1: Summary of results of experiments 

 
Experiment Parameter(s) 

tested 
Results 

 
1 

 
T, λ 

 
Model A: Tests perform consistent with asymptotic results. 
Model B & C: ADF and PP reject when break at beginning, 
ADF and PP don’t reject when break at end. 
KPSS almost always rejects. 
 

2 δ2  
δ1 

Insignificant 
Only significant under stationarity: ↑δ → ↑bias of tests toward 
finding series non-stationary. 
 

3 ρ ↑ρ→↑bias toward finding series non-stationary 
 

4 AR(p) 
MA(q) 
 
N(0,σ) 

PP better than DF. 
DF higher power than PP.  
DF better for negative q, PP better for positive q. 
DF better than PP;  
size and power of KPSS increase as σ increases 
 

 
 
For data constructed according to model B, the ADF and PP tests seem to always 
reject the null, whether it is true or not, for breaks at the beginning of the sample. 
This result is consistent with the findings of Montanes and Reyes (1998) that 
asymptotically the test statistics converge to values that only permit the rejection of 
the unit root null hypothesis if the break is very close to the beginning of the 
sample. For breaks at the beginning of the sample ADF and PP tend to reject less as 
T decreases, because it converges slower to the theoretical values in smaller 
samples. For example, when λ=0,2 the rejection rate of DF decreases from 0,99 to 
0,24 under stationarity while it decreases from 0,82 to 0,30 under non-stationarity, 
when T decreases from 100 to 15. However, when the break occurs in the first or 
second year in a very small sample (T=15 or T=25), the break doesn’t mislead the 
tests and they have the normal characteristics, which means approximately the 
correct size and the usual low power. For example, when T=15 and λ=0,1 (i.e. a 
break in the first year) the size of DF is 0,06 while the power is 0,13. For breaks 
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that appear later on, the ADF and PP tests converge to nearly zero rejection in 
larger samples (as predicted by Montanes and Reyes (1998)), but again they 
converge slower to the theoretical values in smaller samples.  
 
This discussion allows us to identify crucial break placement values for which the 
rejection probabilities quickly flip from high to low rates of rejection. The presence 
of such flip values is an important result of Leybourne and Newbold. It is also 
interesting to see that these flip values, according to our results, depend on T and 
even the test used. For example, consider the DF test, if T=100, the rejection rate 
dramatically decreases from 0,99 to 0,01 as λ decreases from 0,2 to 0,4. For T=50, 
the rejection rate does not reach 0,01 until λ=0,5. Overall, the PP test seems to flip 
at higher λ than the DF test. For example, for T=100, the rejection rate is still as 
high as 0,57 when λ=0,5 and decreases to 0,07 for λ=0,6. In addition, in our 
simulations for small T (either 25 or 15) there is a return to high rejection rates for 
λ=0,9. This does not happen in the samples where T=50 or 100. Understanding the 
importance of the break placements may give applied researchers more incentive to 
use the PP test (at least in conjunction with the DF tests) as the PP tests have better 
power and are more useful under a wider variety of break placements. Note that in 
Model C the flip values occur for earlier break values, especially in the case of the 
DF test. 
 
In model B, KPSS has very high power, which seems to decrease as the T 
decreases. For example, its power decreases from 0,99 to 0,54 when T decreases 
from 100 to 15, when λ=0,1. However, it shows some serious size distortions, 
consistent with the results of Lee et al. (1997). The size distortions tend to be 
smaller in very small samples, for example it decreases from 0,99 to 0,19 when T 
decreases from 100 to 15, when λ=0,4. 
 
In model C, the change in the intercept (model A) is added to the change in the time 
trend (model B), and the results are consistent with that of only a change in the time 
trend (model B). This is consistent with the initial result for model A, namely that 
the change in the level doesn’t mislead the tests. For all three tests, the power and 
size only change slightly but still have the same properties than with model B.  
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Table 2: Rejection rates with stationary DGP, for different T and λ   
(Experiment 1) 

 
 Model A Model B Model C 

T= 100 50 25 15 100 50 25 15 100 50 25 15 
 
Test 

      
λ=0,1 

     

DF 0,99 0,99 0,99 0,99 0,99 0,98 0,17 0,13 0,99 0,80 0,08 0,06 
PP 0,99 0,99 0,99 0,99 0,99 0,99 0,54 0,45 0,99 0,99 0,15 0,25 
KPSS 0,96 0,74 0,62 0,54 0,45 0,13 0,86 0,54 0,99 0,93 0,99 0,98 
       

λ=0,2 
     

DF 0,99 0,99 0,99 0,99 0,99 0,91 0,78 0,24 0,43 0,20 0,08 0,09 
PP 0,99 0,99 0,99 0,99 0,99 0,99 0,95 0,75 0,99 0,96 0,64 0,41 
KPSS 0,99 0,92 0,70 0,52 0,99 0,43 0,14 0,12 0,99 0,99 0,89 0,66 
       

λ=0,3 
     

DF 0,99 0,99 0,99 0,99 0,54 0,65 0,08 0,10 0,03 0,07 0,00 0,00 
PP 0,99 0,99 0,99 0,99 0,99 0,99 0,42 0,38 0,93 0,86 0,03 0,04 
KPSS 0,99 0,89 0,86 0,80 0,99 0,89 0,95 0,65 0,99 0,99 0,99 0,99 
       

λ=0,4 
     

DF 0,99 0,99 0,99 0,99 0,01 0,22 0,27 0,21 0,00 0,02 0,04 0,06 
PP 0,99 0,99 0,99 0,99 0,76 0,95 0,86 0,70 0,26 0,61 0,49 0,39 
KPSS 0,97 0,77 0,51 0,39 0,99 0,99 0,47 0,19 0,99 0,99 0,96 0,68 
       

λ=0,5 
     

DF 0,99 0,99 0,99 0,99 0,00 0,01 0,03 0,08 0,00 0,00 0,00 0,00 
PP 0,99 0,99 0,99 0,99 0,14 0,57 0,28 0,35 0,00 0,17 0,02 0,05 
KPSS 0,93 0,66 0,69 0,66 0,99 0,99 0,99 0,69 0,99 0,99 0,99 0,99 
       

λ=0,6 
     

DF 0,99 0,99 0,99 0,99 0,00 0,00 0,03 0,10 0,00 0,00 0,00 0,02 
PP 0,99 0,99 0,99 0,99 0,00 0,07 0,42 0,49 0,00 0,00 0,11 0,21 
KPSS 0,97 0,77 0,51 0,39 0,99 0,99 0,99 0,54 0,99 0,99 0,99 0,95 
       

λ=0,7 
     

DF 0,99 0,99 0,99 0,99 0,00 0,00 0,01 0,05 0,00 0,00 0,00 0,00 
PP 0,99 0,99 0,99 0,99 0,00 0,00 0,19 0,35 0,00 0,00 0,01 0,07 
KPSS 0,99 0,90 0,62 0,50 0,99 0,99 0,99 0,72 0,99 0,99 0,99 0,99 
       

λ=0,8 
     

DF 0,99 0,99 0,99 0,99 0,00 0,00 0,00 0,03 0,00 0,00 0,00 0,00 
PP 0,99 0,99 0,99 0,99 0,00 0,00 0,08 0,27 0,00 0,00 0,00 0,04 
KPSS 0,99 0,92 0,69 0,52 0,99 0,99 0,99 0,80 0,00 0,00 0,67 0,15 
       

λ=0,9 
     

DF 0,99 0,99 0,99 0,99 0,00 0,00 0,53 0,21 0,00 0,00 0,67 0,15 
PP 0,99 0,99 0,99 0,99 0,00 0,00 0,86 0,84 0,00 0,00 0,76 0,90 
KPSS 
 

0,96 0,74 0,33 0,22 0,00 0,99 0,97 0,38 0,99 0,99 0,81 0,99 
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Table 3: Rejection rates with non-stationary DGP, different T and λ   
(Experiment 1) 
 
 Model A Model B Model C 

T 100 50 25 15 100 50 25 15 100 50 25 15 
Test       

λ=0,1 
     

DF 0,05 0,05 0,06 0,08 0,75 0,41 0,05 0,06 0,75 0,40 0,04 0,06 
PP 0,06 0,07 0,08 0,13 0,83 0,53 0,19 0,10 0,82 0,52 0,18 0,10 
KPSS 0,99 0,99 0,79 0,45 0,99 0,99 0,85 0,54 0,99 0,99 0,84 0,54 
       

λ=0,2 
     

DF 0,05 0,05 0,05 0,08 0,82 0,46 0,31 0,30 0,82 0,46 0,32 0,30 
PP 0,06 0,07 0,08 0,12 0,90 0,56 0,37 0,41 0,90 0,56 0,37 0,42 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,77 0,99 0,99 0,99 0,75 
       

λ=0,3 
     

DF 0,05 0,05 0,05 0,08 0,27 0,11 0,12 0,20 0,27 0,11 0,12 0,21 
PP 0,06 0,07 0,08 0,12 0,42 0,17 0,17 0,26 0,42 0,18 0,18 0,27 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,92 0,99 0,99 0,99 0,92 
       

λ=0,4 
     

DF 0,05 0,05 0,05 0,08 0,01 0,01 0,01 0,05 0,01 0,01 0,01 0,05 
PP 0,06 0,07 0,08 0,12 0,01 0,01 0,02 0,06 0,01 0,01 0,02 0,07 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 
       

λ=0,5 
     

DF 0,05 0,05 0,05 0,08 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,02 
PP 0,06 0,07 0,08 0,12 0,00 0,00 0,00 0,03 0,00 0,00 0,00 0,03 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 
       

λ=0,6 
     

DF 0,05 0,05 0,05 0,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
PP 0,06 0,07 0,08 0,12 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99 
       

λ=0,7 
     

DF 0,05 0,05 0,06 0,08 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 
PP 0,06 0,07 0,08 0,12 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,98 0,99 0,99 0,99 0,99 
       

λ=0,8 
     

DF 0,05 0,05 0,05 0,07 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 
PP 0,06 0,07 0,08 0,12 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,01 
KPSS 0,99 0,98 0,79 0,45 0,99 0,99 0,99 0,93 0,99 0,99 0,99 0,94 
       

λ=0,9 
     

DF 0,05 0,05 0,05 0,08 0,00 0,00 0,04 0,06 0,00 0,00 0,04 0,06 
PP 0,06 0,07 0,08 0,12 0,00 0,00 0,03 0,11 0,00 0,00 0,02 0,10 
KPSS 
 

0,99 0,98 0,79 0,45 0,99 0,99 0,92 0,59 0,99 0,99 0,93 0,62 
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3.2 Experiment 2 
 
In Experiment 2 the effect of the magnitude of the break was tested. In Table 4 and 
5, the results of the tests are summarized under the null of stationarity and the null 
of non-stationarity respectively. As δ1, the size of the once-off change in the 
intercept, was increased, the power of ADF and PP decreased while the size 
distortions of KPSS got worse. When the data is already non-stationary, an increase 
in the magnitude of the break doesn’t make the data appear more non-stationary. 
The results for the ADF and PP tests for model B and C are consistent with the 
results of Lee et al. (1997), namely that the power of the tests are not affected when 
different values of the magnitude of structural breaks (δ1 and δ2) are used.  
 
3.3 Experiment 3 
 
In Experiment 3 the effect of the distance between the null and the alternative was 
tested by varying the AR(1) coefficient (ρ) of the dependent variable when it was 
added to each of the three stationary models. The results are summarized in Table 
6. The results of the power of the ADF and PP tests in model A are counter-
intuitive as it decreases for ρ<0,5, and increases for ρ>0,5. With the changing time 
trend model, the power of ADF and PP decreases as ρ increases, since the data 
gives less evidence of not being stationary and therefore the tests reject less often. 
Overall the PP test seems to perform better than the ADF test, for example with 
model A power of PP ∈ (0,195, 0,682) while the power of DF ∈ (0,021, 0,159).  
 
 
Table 4: Rejection rates with trend stationary DGP, for different δ1 
(Experiment 2) 
 
Test DF PP KPSS DF PP KPSS DF PP KPSS DF PP KPSS 
     
 δ1=1 δ1=2 δ1=3 δ1=4 
Model             

A 0,37 0,91 0,23 0,13 0,67 0,69 0,02 0,32 0,97 0,00 0,10 0,99 
B 0,00 0,00 0,99 0,00 0,00 0,99 0,00 0,00 0,99 0,00 0,00 0,99 
C 
 

0,00 0,00 0,99 0,00 0,00 0,99 0,00 0,00 0,99 0,00 0,00 0,99 

 
 
 
Table 5:Rejection rates with non-stationary DGP, for different δ1 
(Experiment 2) 
 
Test DF PP KPSS DF PP KPSS DF PP KPSS DF PP KPSS 
     
 δ1=1 δ1=2 δ1=3 δ1=4 
Model             

A 0,05 0,08 0,79 0,05 0,08 0,79 0,05 0,08 0,79 0,05 0,08 0,79 
B 0,02 0,03 0,98 0,00 0,00 0,99 0,00 0,00 0,99 0,00 0,00 0,99 
C 
 

0,02 0,03 0,98 0,00 0,00 0,99 0,00 0,00 0,99 0,00 0,00 0,99 
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Table 6: Rejection rates with trend stationary DGP, for different ρ 
(Experiment 3) 
 
 Model A Model B Model C 
          
 ADF PP KPSS ADF PP KPSS ADF PP KPSS 
ρ          
0,00 0,131 0,671 0,694 0,027 0,284 0,989 0,001 0,022 0,999 
0,25 0,070 0,287 0,815 0,013 0,071 0,994 0,000 0,001 0,999 
0,50 0,034 0,080 0,918 0,006 0,012 0,997 0,000 0,000 0,999 
0,60 0,026 0,048 0,960 0,004 0,007 0,998 0,000 0,000 0,999 
0,70 0,021 0,048 0,994 0,003 0,004 0,998 0,000 0,000 0,999 
0,75 0,024 0,081 0,999 0,002 0,003 0,998 0,000 0,000 0,999 
0,80 0,044 0,195 0,999 0,001 0,002 0,999 0,000 0,000 0,999 
0,90 
 

0,159 0,682 0,999 0,000 0,000 0,999 0,000 0,000 0,999 

 
 
As expected, the size distortions of KPSS get worse as ρ comes closer to 1, which 
means that the growing AR coefficient made the data appear even more non-
stationary to the test. With model A, for example, the size of KPSS increased from 
0,694 to 0,999 when ρ increased from 0 to 0,9. 
 
With model C all three tests perform really badly, since the complexity of break 
structure, the inclusion of both types of breaks and the AR component, is 
completely misleading. In this case the power of DF are always less than 0,001 and 
the power of PP are always less than 0,022, while the size of KPSS was constant at 
0,999. 
 
3.4 Experiment 4 
 
Most of the studies on unit root testing in the presence of a structural break assume 
that the errors are i.i.d. N(0,1). However, when different error structures were 
created in Experiment 4, the results (see Tables 7 and 8) indicate that the 
performances of the various tests are significantly influenced by different error 
structures.  
 
When the errors are i.i.d. N(0,σ), DF has larger power and smaller size than PP. 
Consistent with the results of Lee et al. (1997), the power of KPSS increases as σ 
increases.  The size of KPSS also increases as σ increases. For example, with 
model A the power of KPSS increased from 0,173 to 0,787 when σ increased from 
0,25 to 1, and then to 0,997 when σ subsequently increased to 4. With model A, the 
size of KPSS increased from 0,119 to 0,694 when σ increased from 0,25 to 1, and 
then to 0,995 when σ increased to 4. 
 
With AR error terms, the size of DF and PP increases and the power decreases as 
the AR coefficient (p) increases. However, p does not influence the size or power 
of the KPSS test. When the errors contain an AR component, PP has larger power 
and smaller size than DF. 
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Table 7: Rejection rates with trend stationary DGP, different error structures 
(Experiment 4) 

 
  Model A Model B Model C 
           
  ADF PP KPSS ADF PP KPSS ADF PP KPSS 
           
AR(0.75) 0,039 0,088 0,999 0,019 0,040 0,999 0,003 0,007 0,999 
AR(0.85) 0,036 0,067 0,999 0,016 0,03 0,999 0,003 0,008 0,999 
AR(0.95) 0,030 0,052 0,999 0,016 0,024 0,999 0,004 0,008 0,999 
           
MA(-0.8) 0,004 0,993 0,999 0,000 0,910 0,999 0,000 0,487 0,999 
MA(0.00) 0,023 0,710 0,999 0,003 0,328 0,999 0,000 0,035 0,999 
MA(0.80) 0,073 0,152 0,999 0,025 0,058 0,999 0,002 0,008 0,999 
           
N(0,0.25) 0,003 0,099 0,119 0,000 0,003 0,997 0,000 0,000 0,999 
N(0,1.00) 0,131 0,671 0,694 0,027 0,284 0,989 0,000 0,022 0,999 
N(0,4.00) 
 

0,372 0,910 0,995 0,242 0,786 0,999 0,067 0,473 0,999 

 
 
Table 8: Rejection rates with non-stationary DGP, different error structures 
(Experiment 4) 
 
  Model A Model B Model C 

           
  ADF2 PP2 KPSS ADF PP KPSS ADF PP KPSS 
           
AR(0.75) 0,067 0,015 0,999 0,056 0,023 0,999 0,055 0,023 0,999 
AR(0.85) 0,070 0,022 0,999 0,061 0,025 0,999 0,060 0,025 0,999 
AR(0.95) 0,070 0,043 0,999 0,062 0,039 0,999 0,061 0,039 0,999 
           
MA(-0.8) 0,102 0,927 0,999 0,001 0,000 0,999 0,102 0,927 0,999 
MA(0.00) 0,049 0,078 0,999 0,016 0,007 0,999 0,049 0,078 0,999 
MA(0.80) 0,091 0,016 0,999 0,039 0,018 0,999 0,091 0,016 0,999 
           
N(0,0.25) 0,055 0,081 0,173 0,000 0,000 0,999 0,000 0,000 0,999 
N(0,1.00) 0,054 0,081 0,787 0,002 0,004 0,999 0,002 0,004 0,999 
N(0,4.00) 
 

0,054 0,081 0,997 0,016 0,028 0,999 0,016 0,028 0,999 

 
 
Normally the PP test rejects H0 whether or not it is true in the case of a negative 
MA error structure. Our results in the previous experiments that the break of model 
A is not very misleading are confirmed, since PP has the normal property of over-
rejecting with negative MA errors. But in model B and C, PP rejects less if the true 
DGP has a unit root, which means that the effect of the break is dominating the 
effect of the negative MA errors. When the errors contain a negative MA 
component, DF has smaller size than PP, while PP has smaller size then DF for a 
positive MA component. With model A, for example, the size of DF and PP are 
0,102 and 0,927 for MA(-0,8) errors, while their sizes are 0,091 and 0,016 
                                                 
2For the ADF and PP tests 3 lags were used. 
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respectively for MA(0,8). The power of DF is always higher than that of PP when 
the errors contain a MA component. With model A for instance, the power of DF ∈ 
(0,004, 0,073) while the power of PP ∈ (0,152, 0,993). 
 
The results of this experiment indicate that the relative performance of the tests is 
significantly influenced by the error structure. This is additional evidence that more 
than one test should be used in applied work when the true structure of the errors is 
usually unknown. 
 
4. Does the South African economy really walk randomly? 
 
The graph of the South African long-term interest rate (see Figure 1) confirms that 
a possible structural break occurred in 1985 when monetary policy in South Africa 
changed from direct control to market orientated monetary instruments (Botha 
1997). The results of the Perron test for testing unit roots in the presence of a 
structural break, which are summarized in Table 10, confirms that the long-term 
interest rate is trend stationary with a structural break in 1985. The naïve researcher 
that misspecifies the break will do the DF, PP and KPSS tests, of which the results 
are given in Table 9. The DF and PP tests does not reject the null of a unit root 
when the variable is tested in levels, but rejects when the variable is first-
differenced. In other words the researcher will regard the variable to be integrated 
of order one. The KPSS test, on the other hand, rejects the null of stationarity for 
the interest rate in levels. This will confirm the researcher’s conclusion from the DF 
and PP tests that the interest rate is integrated of order one. However, if the break is 
correctly specified, and the Perron test for a unit root in the presence of a structural 
break is done accordingly, the researcher will reject the null of a unit root and 
therefore regard the variable trend stationary with a structural break. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The South African long-term interest rate 
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The results of the DF, PP and KPSS tests for consumer price inflation are given in 
Table 9. Both the ADF and PP tests do not reject the null of a unit root in levels, but 
it rejects the null when inflation is first-differenced. KPSS rejects the null of 
stationarity in levels, therefore inflation is rendered non-stationary, which does not 
conform to economic theory. However, if there is a structural break in inflation, it 
invalidates the results of the ADF and PP tests. The results of the Perron test for 
unit roots in the presence of a structural break renders inflation trend stationary 
with a structural break in 1985. The inflation rate is therefore regarded as 
stationary, consistent with expectations that it cannot contain a unit root. 
 
 
Table 9: Augmented Dickey-Fuller and Phillips-Perron unit root tests and 
KPSS test, levels 
 

 
Series 

 

 
Model 

 
ADF Lags3 

 
ττ,τµ,τ 

 
φ3,φ1 

 
PP4 

 
KPSS 

       
Long-term 
interest rate 

Trend 
Constant 

None 
 

3 
3 
3 

-1,28 
-1,36 
1,59 

2,40 
2,81 
2,22 

-3,24* 
-1,05 
1,32 

143,66*** 

Inflation 
rate 

Trend 
Constant 

None 

3 
3 
3 

0,61 
-1,69 
-0,16 

2,70 
2,01 
1,50 

-0,35 
-1,61 
-0,31 

 

1352*** 

       
∆long-term 
interest rate 

Trend 
Constant 
None 
 

3 
3 
3 

-3,39* 
-3,25** 
-2,70*** 

14,13*** 
17,43*** 
21,03*** 

-8,75*** 
-8,84*** 
-8,17*** 

0,18** 

       
∆inflation 
rate 

Trend 
Constant 
None 
 

3 
3 
3 

-3,61** 
-2,53 
-2,55** 

7,72*** 
7,07*** 
9,66*** 

-5,21*** 
-4,79*** 
-4,85*** 

1,28 

 
*/**/*** Significant at a 10%/5%/1% level 
 
 
According to the Monte Carlo results in the previous section, DF and PP will be 
biased toward non-rejection and KPSS will be biased toward rejection in the 
presence of a structural break. The examples above are consistent with this Monte 
Carlo result, since DF and PP did not reject while KPSS rejected when the break 
was misspecified. The results of the Perron test for a unit root in the presence of a 
structural break were in both examples consistent with the a priori expectations of 
stationarity in the presence of a structural break.  

                                                 
3The number of lags used in the estimated equations was determined according to the method 
suggested by Said and Dickey (1984), which means a maximum of T1/3 lags. 
 
4The number of truncation lags used in the Bartlett kernel was determined as suggested by Newey-
West. For this sample size Newey-West suggested 3. 
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Table 10: Perron Test5 for non-stationarity in the presence of a structural 
break6, levels 
 
 
Series 

 
TB 

 
λ 

 
K 

 
µ~  

( µ~t ) 

 

β
~

 

( β
~t ) 

 
γ~  

( γ~t ) 

 
α~ 7 

( α~t ) 

 

T( 1~ −α ) 
 

         
Long-
term 
interest 
rate 

1985 0,64 0 -851,71 
(-14,04) 

0,44 
(14,21) 

-0,42 
(-4,75) 

0,23 
(-4,81***) 

-29,26* 
 

         
Inflation 
rate 
 

1985 0,64 1 -1330,27 
(-16,13) 

0,68 
(16,23) 

-1,39 
(-11,65) 

0,3 
(-4,68***) 

-26,6* 

 
*/**/*** Significant at a 10%/5%/1% level 
 
5. Conclusion 
 
In this paper we have shown with Monte Carlo simulations and practical examples 
from the South African economy that misdiagnosed structural breaks in small 
samples have serious consequences for unit root and stationarity testing. In the 
presence of a structural break the DF and PP tests are biased toward non-rejection 
of non-stationarity, while the KPSS test is biased toward rejection of stationarity. 
The DF and PP have low power in the presence of a structural break, while the 
KPSS test has serious size distortions. However, the different types of structural 
breaks are not misleading the tests to the same extent. A structural break consisting 
only of a change in the intercept is generally less disruptive as a structural break 
that includes a change in the slope.  
 
The impact of certain dimensions of possible structural breaks has also been tested. 
When the break consists only of a change in the intercept, the effect of the small 
sample is dominating the effect of the break since DF and PP are still low power 
tests while KPSS has serious size distortions. However, when the break includes a 
change in the time trend, the effect of the break placement is dominating, since DF 
and PP are biased toward rejection when the break is at the beginning of the 
                                                 
5The version that tests H0: tt11ttt DUyy ε+δ++µ= − against Ha: tt2t *DTty ε+δ+β+µ= , where 
DUt=1 if t>TB and 0 otherwise and DTt*=t if t>TB and 0 otherwise, was used. 
 
6The parameters given are from the model: 

 ∑
=

ε+−∆+−α=+γ+β+µ=
K

1i tityic1tyty;tyt*DTtty  

 
7Phillips and Ouliaris (1990) showed that t-ratio procedures diverge under that alternative at a slower 
rate than direct coefficient tests, which means that direct coefficient tests should have superior power 
properties over t-ratio tests. Therefore the T(α-1) test might have higher power than the α test so that 
both are reported. However, in this study they gave the same results. 
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sample, while they are biased toward non-rejection when the break occurs at the 
end of the sample. This is true regardless the sample size, although it is less biased 
in smaller samples. KPSS is not influenced by the placement of the break, and has 
serious size distortions for any type of break.  
 
The magnitude of the break is only significant when the true DGP is stationary, 
since the data appears less stationary as the break increases. All the tests are 
increasingly biased towards finding the data non-stationary as the magnitude of the 
break increases. The performances of the tests are also significantly influenced by 
the error structure. This is additional motivation to use a combination of tests rather 
than only one to test the stationarity of a series. 
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