
   

 

 

 

 

 

A generic probabilistic model for natural hazard assessment  

 

By 

 

Ansie Smit 

 

Submitted in partial fulfilment of the requirements for the degree 

 

Philosophiae Doctor (Mathematical Statistics) 

 

In the Faculty of Natural and Agricultural Sciences 

University of Pretoria 

 

(June 2019)



   

 

ii 

 

Declaration 

I, Ansie Smit, declare that the thesis, which I hereby submit for the degree Philosophiae Doctor 

(Mathematical Statistics) at the University of Pretoria, is my own work and has not previously been 

submitted by me for a degree at this or any other tertiary institution 

 

 

SIGNATURE:……………………………………….……. 

DATE:……………………………………………………. 

 

 

Ethics Statement 

The author, whose name appears on the title page of this thesis, has obtained, for the research described 

in this work, the applicable research ethics approval. 

The author declares that he/she has observed the ethical standard required in terms of the University of 

Pretoria’s Code of ethics for researchers and the Policy guidelines for responsible research. 

  



 

 

iii 

 

Acknowledgments 

I would like to thank God for providing me with the opportunity, strength, patience and perseverance 

to undertake this research. Without his blessings, this would not have been possible.  

I wish to express my sincere appreciation and gratitude to the following people for their constructive 

guidance and unfailing support, without which this thesis would not have been possible: 

 My supervisor and mentor, Prof. Andrzej Kijko, for his continuous motivation, guidance, 

and support. Thank you for always expecting the best, while reminding me what is truly 

important in life.  

 My co-supervisor, Prof. Alfred Stein, for his valuable input and ideas related to this thesis 

and publications and the writing thereof. 

 My family, Arnold, Susanne, Retha, and Christa, for their endless supply of love, 

encouragement, interest, and cups of tea. 

In addition, I should like to express my gratitude to the following people, departments, and 

companies for their support and insightful and helpful feedback throughout the course of my studies: 

 University of Pretoria Natural Hazard Centre; 

 University of Pretoria Department of Geology; 

 University of Pretoria Department of Statistics and, in particular Dr I Fabris-Rotelli, 

Dr PJ van Staden, and Ms L Bodenstein; 

 Past and current sponsors of the UP Natural Hazard Centre (MMI Holdings, Munich 

Reinsurance Company of Africa Limited (MRoA), and AON Benfield); 

 Ms S Verryn for providing the derivation of exponential-gamma distribution of apparent 

event size (Eq. 3.34); 



 

 

iv 

 

 Prof VK Gusiakov of the Novosibirsk Tsunami Laboratory of the Institute of Computational 

Mathematics and Mathematical Geophysics (NTL/ICMMG) SDRAS, Novosibirsk, Russia, 

for the tsunami dataset used in this thesis and relevant publications;  

 Mr R Britz and Ms M van der Merwe from Momentum Short-term Insurance Company 

Limited (MSTI) for their assistance and guidance during the hail project;  

 Mrs A van Heerden for the language editing required for this thesis and publications. 

Finally, I should like to acknowledge the financial assistance I received: 

 Research and travel were supported by the South African National Research Foundation and 

the South Africa Statistical Association under the SASA-NFR Grant for Vulnerable 

Discipline — Academic Statistics 2017. This work is based on research supported wholly 

or in part by the National Research Foundation of South Africa (Grant Numbers 76906, 

96412, 94808 and 103724). 

 University of Pretoria Natural Hazard Centre, University of Pretoria, Department of 

Geology. 

 

 

 

  



 

 

v 

 

Summary  

A generic methodology for probabilistic natural hazard assessment is presented. Three area-

characteristic recurrence parameters are defined by combining a Poisson process with the relevant 

natural-hazard-frequency–event-size power law. The distribution of the Poisson process describes the 

temporal characteristics present in the data and the power law describes the relationship between the 

frequency of events and the event sizes. The estimates for the mean rate of occurrence 𝜆 and the power 

law parameter 𝑏 are based on empirical datasets consisting of extreme prehistoric and historical data, 

along with more-recent instrumental data. Likelihood functions are defined to allow for datasets to be 

combined and for the application of both maximum likelihood estimation (MLE) and Bayesian 

inference (BI). The proposed methodology accounts explicitly for aleatory and epistemic uncertainty 

by making provision for incomplete datasets, uncertainty associated with the observed event sizes, 

uncertainty associated with the parameters of the applied occurrence and event size distributions, and 

uncertainty associated with the occurrence of events in the dataset. These types of uncertainty are 

introduced in the modelling process through convolution and mixture distributions, as well as weighted 

likelihood functions. Existing techniques to assess the third recurrence parameter, the maximum 

possible event size 𝑥𝑚𝑎𝑥 , are discussed briefly. The applicability of the proposed methodology is 

demonstrated by using a synthetic earthquake dataset, real earthquake datasets for Central Italy and the 

Ceres–Tulbagh region in South Africa, tsunami data for three tsunamigenic regions in the Pacific 

Ocean, and HAILCAST ensemble re-analysis hail data for Gauteng province, South Africa. Various 

combinations of the different types of assumptions, data, and uncertainty are investigated. The 

methodology shows the universality of the power law in assessing natural hazards. In practice, the 

methodology is not restricted to natural hazard assessment, but can be applied to any instance in which 

the frequency–event-size relationship follows a power law distribution. To illustrate this statement, 

financial vehicle loss information related to hail damage, obtained from a short-term insurer in South 

Africa, is analysed. The versatility of the modelling process provides the researcher with various options 

to account for incomplete data, as well as data and parameter uncertainty.  

Keywords: probabilistic natural hazard assessment; incomplete and uncertain data; power law; 

maximum likelihood and Bayesian estimation, mixture distributions, earthquakes, tsunami, hail.  
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Chapter 1. Introduction 

1 1 

Hazard is defined as the feature of a phenomenon that can cause damage. 

Risk is defined as the probability of any type of loss occurring because of the hazard.  

Significant hazard not necessarily results in significant risk. 

 

1.1 Overview 

Natural disasters and their effects are not new phenomena. Nature and humans have been at odds 

presumably since the evolution of the modern human species. Evidence of such conflict is preserved in 

the remnants of catastrophes, such as the eruption of Mount Vesuvius and the total destruction of 

Pompeii in AD 79. Proof of prehistoric (palaeo) and historical geophysical, hydrological, 

meteorological, and climatological disasters have been captured in the geology of the earth, as well as 

in the accounts from people. Over the last few decades, unprecedented global urbanisation has taken 

place, to the point where more than half of the global population is living currently in urban areas 

(IMechE, 2013). Urbanisation inevitably gives rise to the development of industries, potentially 

harmful, and leads to the general deterioration of the immediate and eventually global environment. 

Concomitant with the global migration to urban areas, the number of recorded natural disasters and 

their effects on society appear to have increased substantially. Since the 1960s to 1970s, the number of 

natural disasters (Figure 1.1) has increased three fold, with countless people affected by climatological, 

hydrological, and meteorological hazards (Figure 1.2). The number of occurrences of these three types 

of disasters shows a much sharper growth rate over time compared with biological and geophysical 

hazards. The total number of natural events causing fatalities of more than 100 has increased remarkably 

over the last 30 years (Figure 1.3). Although there is no evidence to suggest a rise in the death toll, the 

number of people affected, and the estimated cost of damages have increased dramatically (EM-DAT).  



 

 

2 

 

This apparent relationship suggests that losses from natural disasters could ultimately, by the mid-21st 

century, absorb the entire economic gain of a country. Such a hypothesis, rests on the extrapolation of 

losses based on the growth of the mean losses. In addition, as damage from natural disasters generally 

follows a heavy-tail power distribution, this assumption could be erroneous. Pisarenko and Rodkin 

(2010, 2014) provide a detailed discussion on this topic. 

The intensification in the aftermath of natural hazards can be attributed to the increased concentration 

of people in urbanised areas, many of which are located in or near high-risk areas, such as riverbanks, 

forests, tectonically unstable areas, and coastal areas. Urbanisation leads to the clustering of people and 

accumulated wealth in a small area, which means that a natural disaster occurring today would have a 

much larger effect than the same event occurring 100 years ago in the same area. Barthel and Neumayer 

(2012) show that although no noteworthy increase can be seen in the normalised global financial insured 

losses over time, such an increase is noticeable in developed countries because of their accumulated 

wealth.  

 

 

FIGURE 1.1. Increasing trend in the frequency of natural disasters from 1960 to 2016 (EM-DATA). 
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FIGURE 1.2. Increasing trend in the frequency of natural disasters per subgroup from 1960 to 2016 

(EM-DATA). 

 

 

FIGURE 1.3. Frequency of the total number of people affected by natural disasters per subgroup from 

1960 to 2016 (EM-DATA). 
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Poor and lower income groups, particularly, are most affected by natural disasters. The United Nations 

Office for Disaster Risk Reduction (UNISDR, 2018) reports that since the year 2000, low income 

countries had experienced on average of 130 fatalities per million people living in hazardous areas 

compared with the average of 18 fatalities per million in higher income countries. Poor and lower 

income groups often reside in informal settlements or slums, located in open and unbuilt areas deemed 

unfit for formal infrastructure development. These areas include flood plains, areas well below flood 

lines, and high, unstable mountain slopes prone to landslides. Houses are often built haphazardly, with 

inferior building plans and materials (Kohli et al., 2012; Kuffer et al., 2016). 

Human activities can have a compounding effect on the hazard and risk, as in the instances of the Huang 

He Yellow River flood in China in 1887 and Hurricane Katrina in the southeastern United States (US) 

in 2005 (e.g. Brown et al., 2010). In both these instances, severe storms and rainfall caused the collapse 

of the manmade levees, with devastating effects. On 25 January 1981, the small Karoo town of 

Laingsburg, South Africa, was devastated by a flash flood that resulted in over 100 fatalities and 

economic losses of more than ZAR 10 million. One significant contributing factor to the resulting 

damage was the gross underestimation of potential flood levels, resulting in infrastructure being built 

below the appropriate flood lines, and within a river bend where three rivers converge (Roberts and 

Alexander, 1982; Zawada, 1994). Furthermore, the extent of the wildfires during the summer of 1988 

in Yellowstone National Park (USA) was attributable directly to the incorrect management of naturally 

occurring fires, which, essentially, created a giant tinderbox. The fires raged uncontrollably for months, 

costing nearly USD 120 million (Brown et al., 2010).  

Despite all the precautions in place and the research results available, we cannot ever be prepared fully 

for disasters. Sadly, it also takes devastating natural disasters to highlight the shortcomings in 

management systems, as illustrated by the Sumatra–Andaman earthquake and resulting Indian Ocean 

tsunami in 2004. Although comprehensive tsunami early-warning systems have been in place in the 

Pacific Ocean since the early 1950s, no such system existed for the Indian Ocean prior to 2004. This 

devastating event not only affected Indonesia but also Thailand, India, Sri-Lanka, Madagascar, and the 
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eastern coast of Africa. The earthquake and tsunami in Tohoku-Oki (Japan) in 2011 further illustrates 

our vulnerability to such disasters. As Japan is located in the ‘Ring of Fire’, the country experiences a 

high frequency of mega-earthquakes, resulting in Japan having one of the most advanced building codes 

and tsunami early-warning systems in the world. In 2011, however, the damage wrought by the 

earthquake paled in comparison with the damage from the resulting tsunami. More than 13 000 people 

were killed, 15 000 are still missing, and 335 000 people were left homeless. Approximately 190 000 

buildings were damaged or destroyed, the most spectacular being the Fukushima Nuclear Power 

Reactor (Norio et al., 2011). The total cost associated with this disaster amounted to approximately 

USD 210 billion, with insured losses amounting to USD 40 billion, making this event one of the costliest 

natural disasters in human history (Munich Re, Press Release 20121). Furthermore, this event had a 

severe global economic impact and it re-ignited the international debate on the safety of nuclear energy.  

In September 2015, the 2030 Agenda for Sustainable Development Goals (SDG) was adopted at a 

special United Nations summit. The 2030 Agenda contains 17 goals, with the ultimate aim to eradicate 

all forms of global hunger. The UNISDR released a reflection paper titled Disaster Risk Reduction and 

Resilience in the 2030 Agenda for Sustainable Development2, which investigated the links between 

disaster risk reduction and the 2030 Agenda for SDG and the Sendai Framework for Disaster Risk 

Reduction 2015–2030. Direct links between disaster risk reduction and each of the 17 goals are made, 

highlighting the importance of including natural hazard and risk assessments to assist in reduction and 

mitigation strategies.  

The successful modelling of natural hazards and their associated risks is important for human health, 

safety, and economic growth. Various industries use probabilities of exceedance, return periods, and 

the maximum possible event size to generate products for safeguarding society. This is done by means 

                                                           

1 www.munichre.com/en/media-relations/ publications/press-releases/2012/2012-01-04-press-

release/index.html; last accessed 2014/07/18. 

2 https://www.unisdr.org/files/46052_disasterriskreductioninthe2030agend.pdf; last accessed 2018/09/15. 

https://www.unisdr.org/files/46052_disasterriskreductioninthe2030agend.pdf
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of disaster management, and financial and engineering mitigation strategies. As natural hazard events 

occur frequently across national borders and affect different countries, research emphasis is moving 

from country-specific to regional investigations (e.g. Alfieri et al., 2013). Research is focused mainly 

on complex hazard and risk modelling in an attempt to reduce the effect of catastrophes. These types of 

models are used primarily by the engineering sector and the insurance and reinsurance industries, as 

well as disaster management centres.  

 

1.2 Research Statement 

The statistical modelling of natural hazards and their associated risks is hampered often by a lack of 

complete datasets with good quality data. Such lack dictates the type of methodology applied, and care 

must be taken to reduce the potential hazard estimation errors. Underestimation could lead to fatalities 

and economic losses (Wyss et al., 2012; Kousky, 2014; Howard, 2018), whereas overestimation could 

result in overpriced and excessive safety measures (Kossobokov et al., 2015).  

Most statistical hazard assessment methods have been developed in countries that have extensive event 

datasets for different hazard types. This does not apply to developing countries, particularly in Africa, 

where, in many instances, instrumental data are not collected at a level that allows the effective 

employment of such modelling tools. Key factors influencing the completeness of event datasets include 

historical, socioeconomic, and demographic variations, as well as variation in the event monitoring 

networks. In most instances, the level of completeness is a monotonically increasing function of time, 

where the more-recent portion of the datasets is more complete than the older parts. Furthermore, the 

incorporation of additional prior information into the calculation of hazard models is necessary to 

constrain the results. This prior information includes additional evidence for the parameters and 

processes that govern the particular natural hazard, expert opinions from independent sources, as well 

as experiences in areas with similar but non-overlapping hazard conditions. 
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This thesis presents a generic probabilistic model for natural hazard assessment that is capable of 

assessing any type of natural hazard by utilising information from various sources and accounting for 

data uncertainty. The methodology is designed to account for observed data that are incomplete, and 

has uncertainty in recorded event sizes, uncertainty regarding the parameters of the applied distributions 

that describe the occurrence and physical characteristics of the hazard, as well as uncertainty in the 

occurrence of the events in the particular datasets. In addition, user-friendly computational tools have 

been developed.  

The proposed methodology assesses three key area-characteristic recurrence parameters, namely 𝜆 the 

mean annual rate of occurrence of an event, the power law parameter 𝑏 , and 𝑥max  the maximum 

possible size of an event. This assessment is done for a specific area or source for different natural 

hazard event datasets consisting of incomplete and uncertain data. These three key recurrence 

parameters are used currently in seismic hazard assessment. The methodology is an extension of the 

procedures by Kijko and Dessokey (1987), Kijko and Sellevoll (1989, 1992), and Kijko and Smit (2012) 

that provide for the incompleteness of the earthquake event datasets by accounting for the largest 

historical events and instrumental records with different levels of completeness (LoC), as well as for 

the uncertainty in earthquake event size (magnitude) determination. For the rest of this thesis, 𝜆 will be 

referred to as the rate of occurrence. 

In addition to making provision for incompleteness and the event size uncertainty in natural hazard 

datasets, the methodology for natural hazard assessment considers the discrepancy between the data 

and the applied models describing the event occurrence and size, and accounts for the uncertainty of 

occurrence, i.e. the validity of events contained in the dataset. Both maximum likelihood estimation 

(MLE) and Bayesian inference (BI) are utilised in the estimation of 𝜆 and 𝑏. 
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1.3 Research Aims and Objectives 

The aim of this thesis is to develop a generic probabilistic model that assesses natural hazard. Its aim is 

to serve as a computational tool for industries, such as civil engineering, insurance, and disaster 

management. The description in this thesis is focused on natural phenomena, such as earthquakes, 

tsunamis, hail, floods, and fires and their associated risk. 

The hazard methodology applied in this thesis is an extension of the current formalisms utilised by the 

University of Pretoria Natural Hazard Centre, Africa (UPNHCA), developed originally for seismic 

hazard assessment. Four data quality characteristics that affect natural hazard modelling are considered 

in an attempt to utilise as much of the available data as possible, so as to reduce the epistemic and 

aleatory uncertainty associated with modelling. These four data quality characteristics are: 

 the incompleteness of the event datasets,  

 uncertainty in event size determination,  

 uncertainty associated with the parameters in the applied event occurrence and size 

distributions,  

 uncertainty of event occurrence (e.g. was the event a tsunami because of a geological 

disturbance, or waves because of substantial meteorological storms?). 

The following objectives were identified to achieve the general aim of this thesis: 

1. A literature study of hazard assessment methodologies used for natural hazards. 

2. Definition and development of the mathematical formalisms for a generic probabilistic natural 

hazard model that can be used to determine the expected hazard in an area for different types 

of natural hazards, and data uncertainties.  

3. Estimation of the hazard recurrence parameters using maximum likelihood estimation (MLE) 

and/or Bayesian inference (BI). 
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4.  Comparison of MLE and BI estimates of recurrence parameters when applying differently 

constructed datasets and distributions. 

5. Description of where and how the model should be adapted to incorporate the distribution of 

the physical process for any natural hazard under review.  

6. Application of the developed mathematical formalisms to practical examples, which can 

include but are not limited to earthquakes, tsunamis, storms (hail), sinkholes, fires, and floods.  

7. Development of user-friendly computational tools.  

8. Publication of the relevant results in journals accredited with the Department of Higher 

Education and Training (DHET) in South Africa. 

9. Integration of the published results into the final thesis manuscript for submission.  

 

1.4 Research Outputs 

Three papers have been published in field-specific journals, with the third paper currently under review 

for publication in an environmental statistical journal. A fourth paper is being drafted for publication in 

a field-specific journal.  

Data, examples, results, and conclusions from publications related to the thesis were added to the thesis 

with minimal changes. Below is a description of each publication, with the objectives it addresses, and 

in which chapters and sections of the thesis the largest part of the particular publication can be found. 

Articles published  

1. Kijko, A., Smit, A., Sellevoll, M.A. (2016). Estimation of Earthquake Hazard Parameters from 

Incomplete Data Files. Part III. Incorporation of Uncertainty of Earthquake-Occurrence Model. 

Bulletin of the Seismological Society of America, 106(3). pp 1210–1222. DOI: 

10.1785/0120150252. Full text available at the University of Pretoria library repository link 
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https://repository.up.ac.za/bitstream/handle/2263/55817/Kijko_Estimation_2016.pdf?sequence

=1.  

This paper on the application of the methodology in terms of earthquakes was the first published. 

It addresses objectives 1, 2, 3, 6, 7, 8, and 9, as set out in Section 1.3. In this paper, a substantial 

part of the methodology is discussed, as in Chapter 3, in terms of the Gutenberg–Richter power 

law for earthquake magnitudes. The example used in the publication is added with minimal 

amendments to Chapter 5, Section 5.1. My contribution to the paper was approximately 50% 

and focussed on literature review, adaptation of theory, co-writing the article, and the 

computation and analyses of the data. 

2. Smit, A., Kijko, A., Stein, A. (2017). Probabilistic Tsunami Hazard Assessment from 

Incomplete and Uncertain Historical Catalogues with Application to Tsunamigenic Regions in 

the Pacific Ocean. Pure and Applied Geophysics. 174(8). pp 3065–3081. DOI: 10.1007/s00024-

017-1564-4. Full text available at the University of Pretoria library repository link 

https://repository.up.ac.za/handle/2263/62181?show=full.  

In this paper, the methodology is presented as applied to tsunamis in the Pacific 

Ocean. This paper addresses objectives 1, 2, 3, 5, 6, 7, 8, and 9, as set out in Section 1.3. In the 

paper, a substantial part of the methodology is discussed, as in Chapter 3, in terms of the 

Soloviev–Imamura power law for tsunami intensities. The example used in the publication is 

added with minimal amendments to Chapter 5, Section 5.2. My contribution to the paper was 

approximately 75% and focused on the literature review, adaptation of theory, the computation 

and analyses of the data, interpretation of results, formulated discussion items and drafted 

conclusions, and co-writing the article. 

3. Smit A., Stein A., Kijko A. (2019). Bayesian Inference in Natural Hazard Analysis for 

Incomplete and Uncertain Data. Environmetrics. p.e2566. DOI: 10.1002/env.2566. 

https://repository.up.ac.za/bitstream/handle/2263/55817/Kijko_Estimation_2016.pdf?sequence=1
https://repository.up.ac.za/bitstream/handle/2263/55817/Kijko_Estimation_2016.pdf?sequence=1
https://repository.up.ac.za/handle/2263/62181?show=full
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This paper addresses objectives 1–9, as set out in Section 1.3. In the paper, a substantial part of 

the methodology is discussed, as in Chapter 3, in terms of the general power law. Parts of the 

text of this paper are used with minimal changes in this thesis, e.g. Section 3.3.2. The example 

used in the paper includes parts of the examples used in Chapter 4 and Section 5.2. My 

contribution to the paper was approximately 75% and focused on the literature review, 

adaptation of theory, the computation and analyses of the data, interpretation of results, 

formulated discussion items and drafted conclusions, and co-writing the article. 

Article currently in preparation 

4. Smit A., Kijko A., Stein, A., Dyson, L. Probabilistic Hail Hazard and Risk Analysis.  

This paper will address objectives 1–9, as set out in Section 1.3. In the paper, a substantial part 

of the methodology is discussed, as in Chapter 3. The example described in Section 5.3 will be 

used in the paper.  

Conferences and Workshops 

Over the last few years, I have presented the results from this thesis at several national and international 

conferences. I have also attended relevant workshops, as listed below. 

 All-Russian Scientific Conference in Geodynamical Processes and Natural Hazards. Lessons 

of Neftegorsk, 26 to 30 May 2015, Yu. Sakhalinsk, Russia. Oral presentation titled Common 

Problems in Estimation of Seismic Hazard Parameters and their Solutions by A Kijko 

(presenter) and A Smit.  

 All-Russian Scientific Conference in Geodynamical Processes and Natural Hazards. Lessons 

of Neftegorsk, 26 to 30 May 2015, Yu. Sakhalinsk, Russia. Oral presentation Probabilistic 

Tsunami Hazard Assessment from Incomplete and Uncertain Data by A Kijko (presenter) and 

A Smit. 
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 Advances in Extreme Value Analysis and Application to Natural Hazard (EVAN), 16 to 18 

September 2015 in Santander, Spain. Poster presentation titled New Procedure for Probabilistic 

Hazard Assessment for Incomplete and Uncertain Data by A Smit (presenter), A Kijko, I Fabri-

Rotelli, PJ van Staden. 

 57th Annual Conference of the South African Statistical Association (SASA), 30 November to 

4 December 2015 in Pretoria, South Africa. Oral presentation titled New Procedure for 

Probabilistic Hazard Assessment for Incomplete and Uncertain Data by A Smit (presenter), A 

Kijko, I Fabri-Rotelli, PJ van Staden. 

 European Geosciences Union General Assembly (EGU), 17 to 22 April 2016, Vienna, Austria. 

Oral presentation titled Probabilistic Seismic Hazard Assessment for Incomplete and Uncertain 

Data by A Smit (presenter) and A Kijko. 

 58th Annual Conference of the South African Statistical Association, 28 November to 2 

December 2016, Cape Town, South Africa. Oral presentation titled Probabilistic Tsunami 

Hazard Assessment for Incomplete and Uncertain Data by A Smit (presenter), A Kijko, I Fabri-

Rotelli, PJ van Staden. 

 Extreme Value Theory Conference, Delft, the Netherlands, 26 to 30 June 2017. Oral 

presentation titled Process Characteristic Extreme Value Distributions by A Smit (presenter), 

A Kijko, and A Stein.  

 IAPSO-IAMAS-IAGA Joint Conference, Cape Town, South Africa, 27 August to 1 September 

2017. Oral presentation titled Procedure for Probabilistic Tsunami Hazard Assessment from 

Incomplete and Uncertain Data by A Smit (presenter), A Kijko, and A Stein.  

 Attended the workshop titled R Software Fundamentals with Applications to Statistical 

Analysis and Modelling, 21 to 27 July 2017, University of the Witwatersrand, Johannesburg, 

South Africa. 

 59th Annual Conference of the South African Statistical Association, 27 to 30 November 2017, 

Bloemfontein, South Africa. Oral presentation titled Extreme Distributions Based on Process 

Characteristics by A Smit (presenter), A Kijko, and A Stein. 
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 Attended summer school on Bayesian Inference: Foundations and Application, 17 to                   

27 January 2018, Betties Bay, South Africa, hosted by the University of Stellenbosch. 

 University of Pretoria, Department of Statistics Seminar Series, 27 March 2018. Oral 

presentation titled Generic Statistical Method of the Assessment of Hazard and Risk by A Smit 

(presenter), A Kijko, and A Stein. 

 60th Annual Conference of the South African Statistical Association, 26 to 29 November 2018, 

Roodepoort, South Africa. Oral presentation titled Probabilistic Hail Hazard and Risk Analyses 

by A Smit (presenter), A Kijko, and A Stein. 

Awards 

 Second prize for best oral presentation in the Young Statistician stream at the 58th Annual 

Conference of the South African Statistical Association, 28 November to 2 December 2016, 

Cape Town, South Africa. Oral presentation titled Probabilistic Tsunami Hazard Assessment 

for Incomplete and Uncertain Data by A Smit (presenter), A Kijko, I Fabri-Rotelli, and PJ van 

Staden. 

 The 2018 Herbert Sichel Medal for the best statistical paper for the published article 

Probabilistic Tsunami Hazard Assessment from Incomplete and Uncertain Historical 

Catalogues with Application to Tsunamigenic Regions in the Pacific Ocean by A Smit, A Kijko, 

and A Stein (2017) in Pure and Applied Geophysics, 174(8). pp 3065–3081. DOI: 

10.1007/s00024-017-1564-4. 

 

1.5 Contributions to Scientific Research 

The field of natural hazard assessment is vast, with countless relevant multi-disciplinary publications 

and books having been issued already. The aim of this thesis is to provide a focused overview and one 

potential framework that could be applied to various types of natural hazards and data types. 
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The developed methodology uses the probabilistic hazard assessment for seismic recurrence 

parameters, as originally initiated by Kijko and Dessokey (1987) and Kijko and Sellevoll (1989, 1992). 

Their methodology describes how to assess the seismic recurrence parameters 𝜆, the rate of occurrence, 

the Gutenberg–Richter 𝑏-parameter (𝑏-value), and the maximum possible earthquake magnitude (event 

size) 𝑥𝑚𝑎𝑥, taking into consideration extreme and instrumental data, the incompleteness of the dataset, 

as well as making provision for uncertainty in earthquake magnitude. 

In this thesis and associated publications, the methodology is extended by incorporating several aspects 

into the modelling process, as illustrated in Figure 1.4.  

 

 

FIGURE 1.4. Schematic illustration of the applied methodology to combine prehistoric, historical, and 

instrumental data, as well as account for data incompleteness, uncertainty in the size of the 

events, uncertainty associated with the parameters in the applied occurrence and event size 

distributions, and uncertainty of the validity of the events in the dataset. The grey blocks 

represent the modelling process, as defined by Kijko and Sellevoll (1989, 1992). The blue 

blocks represent the contribution of this thesis to the methodology. 
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These aspects are: 

 Uncertainty associated with the parameters of the applied occurrence and event size 

distributions. 

This uncertainty is incorporated to account for instances where weak dependencies can be 

observed between events, thereby violating the distributional requirements for the use of the 

Poisson distribution. For this thesis, mixture distributions with a gamma mixing distribution 

are used to aid with the modelling of weak dependencies or space-time fluctuations the 

investigated processes.  

 

 Uncertainty in the occurrence of events in the dataset.  

To incorporate as much available information as possible into the modelling process, 

prehistoric and historical records should be utilised by using the additive property of likelihood 

functions. By introducing the weighted likelihood function and Bayesian formalism to the 

methodology in this thesis, the researcher has the option to include all the events and retrieve 

a rate of occurrence that is more realistic. 

 

 Using prior information to estimate parameters using Bayesian inference. 

Employing Bayesian inference is new in the scope of this methodology. The synthetic data 

example (Section 4) illustrates the effect BI has on the estimated parameters. Additionally, an 

example is presented of how knowledge on hazard parameters can be used as prior information 

for the financial risk assessment of the same natural phenomena. It is shown in the example of 

hail that a direct link can be established between the hazard and risk assessments by employing 

a physical law distribution with the same parameters, and using the hazard assessment as a 

priori information for the risk assessment. 

  

 The power law in natural hazard assessment.  

It is shown that by employing power laws to describe the physical characteristics of natural 

hazards and in some circumstances, their associated risks, the derived methodology is generic 
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and can be applied to any natural hazard dataset where events can be described in terms of a 

frequency–event-size relationship.  

 

 Application of methodology to new types of hazards. 

The methodology is applied for the first time to real tsunami events, hail climatology events, 

and hail financial loss data. This shows that by interchanging the power law distribution 

relevant to the field of study, the methodology is generic. Furthermore, various aspects of the 

estimation process are discussed.  

 

1.6 Overview of Thesis 

The thesis is divided into seven chapters and two appendices. Chapter 1 provides an introduction and 

overview of the importance of natural hazard modelling, followed by the research statement, aims and 

objectives. The various research outputs in the form of publications and conference presentations are 

discussed, as well as the contribution to scientific research.  

In Chapter 2, the literature review for this thesis is presented. Natural hazard modelling in the broad 

sense is discussed, with more-detailed and field-specific literature reviews provided for each of the 

practical examples in Chapter 5. In addition, potential data sources are investigated, as well as the data 

quality characteristics associated with natural hazards, and the application of power laws. 

The methodology is introduced in Chapter 3 by means of a series of assumptions. The principal model 

and its variations are introduced and extended to account for the data quality characteristics of 

incomplete event datasets, uncertainty in event size determination, uncertainty associated with the 

parameters of the applied event occurrence and size distributions, and uncertainty of event occurrence. 

Parameter estimation, the assessment of the maximum possible event size, the calculation of the hazard 
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estimates in terms of return periods and probabilities of exceedance and model comparison methods are 

also discussed.  

The methodology and the combination of the models are tested on a synthetic earthquake dataset in 

Chapter 4. The focus of this chapter is on how the introduction of the data incompleteness and 

uncertainties and the applied estimation process influence the parameter estimates, as well as the 

contribution of the input information. In Chapter 5, the methodology is applied to real-world examples. 

These examples are the earthquake datasets for the Ceres–Tulbagh region in South Africa (Section 

5.1.1) and Central Italy (Section 5.1.2), tsunami data for three tsunamigenic regions in the Pacific Ocean 

(Section 5.2), HAILCAST ensemble re-analysis hail data for Gauteng province, South Africa (Section 

5.3.2), and financial vehicle loss information related to hail, from a short-term insurer in South Africa 

(Section 5.3.3).  

The conclusions related to each of the analyses in Chapters 4 and 5 are discussed in the respective 

chapters. The thesis concludes with overall conclusions and remarks presented in Chapter 6, and with 

ideas for future research in Chapter 7. Derivations of key equations are provided in the Appendix.  

 

1.7 Data and Resources 

Ceres–Tulbagh seismic event dataset. The instrumentally recorded events were selected mainly from 

the available database provided by the Council for Geoscience, Pretoria, and the International 

Seismological Centre in the United Kingdom (http://www.isc.ac.uk). The dataset used in the analysis 

spans a period of approximately 268 years, namely from 1751/01/01 to 2012/01/31.  

Central Italy seismic event dataset. The zonation of Italy was done according to the ZS9 zones of 

MPS (2004). Extreme prehistoric data were obtained from Galli et al. (2008) and the historical and 

http://www.isc.ac.uk/
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instrumental data from the European–Mediterranean Earthquake Catalogue (EMEC, 20123; Grünthal 

and Wahlström, 2012). 

Tsunami data for Kuril–Kamchatka, Japan, and South America. The international tsunami database 

used in this study was provided by Dr VK Gusiakov of the Novosibirsk Tsunami Laboratory of the 

Institute of Computational Mathematics and Mathematical Geophysics (NTL/ICMMG) SDRAS, 

Novosibirsk, Russia (HTDB/WLD, 2013). 

HAILCAST ensemble data. The data for hail occurrence in South Africa comprise ensemble data from 

the HAILCAST model using ERA-INTERIM reanalysis data. This information was provided by Prof. L 

Dyson from the Department of Geography, Geoinformatics and Meteorology at the University of Pretoria. 

Hail insurance loss data. A dataset consisting of individual losses incurred from hail events was 

provided by Momentum Short-term Insurance Company Limited (MSTI) for the period 2007 to 2017. 

The MATLAB computer software4 and MS Excel5 was used for the calculations. The code is available 

on request, from the University of Pretoria Natural Hazard Centre, for academic purposes.   

                                                           

3 https://www.gfz-potsdam.de/en/section/seismic-hazard-and-stress-field/data-products-services/emec-

earthquake-catalogue/, last accessed 2019/01/25.  

4 https://www.mathworks.com/products/matlab.html, last accessed 2018/09/28. 

5 https://products.office.com/en-za/excel, last accessed 2018/09/28. 

https://www.gfz-potsdam.de/en/section/seismic-hazard-and-stress-field/data-products-services/emec-earthquake-catalogue/
https://www.gfz-potsdam.de/en/section/seismic-hazard-and-stress-field/data-products-services/emec-earthquake-catalogue/
https://www.mathworks.com/products/matlab.html
https://products.office.com/en-za/excel
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Chapter 2. Literature Review 

The literature relevant to this study includes several disciplines of the natural sciences, namely, 

mathematics, physics, and statistics. The initial development of the mathematical formalisms will rely 

heavily on the mathematical and statistical procedures followed in seismic hazard assessment, as 

discussed in Kijko and Dessokey (1987), Kijko and Sellevoll (1989, 1992), and Kijko and Graham 

(1998, 1999). This chapter provides a general overview of natural hazard assessment, the data sources, 

nature of the data, and power laws in nature. A more-detailed discussion relating to the methodology 

and the respective applications is presented in Chapters 3, 4, and 5. 

2 2 

2.1 Hazard Analyses 

There are two types of natural hazard assessment methods, namely deterministic and probabilistic, 

which are related closely. Deterministic methods assess the effect of an event occurrence at a specified 

site from a single, specified source. They aim to assess the effect of a single event, usually the worst-

case scenario, which provides valuable information for disaster management agencies for planning 

purposes. In addition, several deterministic scenarios can be aggregated to identify the worst-case 

credible scenario (e.g. for tsunamis Tonini et al., 2011; Grilli et al., 2011; Harbitz et al., 2012).  

Probabilistic scenarios focus on assessing the probabilistic nature of a hazard by considering all the 

potential sources (both locally and regionally) that can contribute to the overall hazard and risks. This 

type of assessment provides a comprehensive estimation of the hazard for the entire area under 

investigation. This, however, complicates the assessment process, as it can incorporate a vast amount 

and different types of information (e.g. Geist and Parsons, 2006; Power et al., 2007; Thio et al., 2007; 

Kijko, 2011; Sørensen et al., 2012; Brizuela et al., 2014). Large-scale research is required therefore, 

relevant to all the potential sources and the movement of an event, such as the propagation of seismic 
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and tsunami waves or the path that a severe weather system or fire will follow. Probabilistic methods 

are crucial in risk mitigation processes for disaster management, engineering, and insurance companies 

to understand the short-, medium-, and long-term characteristics of events in order to develop 

safeguards for society. For this reason, and the nature of the data, as discussed in the remainder of this 

section, the rest of the thesis focusses on probabilistic hazard assessment procedures.  

The nature and quality of the data often dictate the type of probabilistic methodology that can be applied. 

This ranges from pure empirical methods using only observed data, computational analyses using 

numerical modelling of the physical process, e.g. tsunami and flood propagation modelling and 

climatological ensembles, as well as Bayesian methods that combine empirical data with prior 

information. Empirical and Bayesian models remain the preferred methods for inferences. As these 

methods were developed primarily for large datasets, the statistical accuracy of the results does not 

necessarily hold when applied to small datasets. Therefore, it is vital to collect and incorporate as much 

historical information as possible to stabilise and improve the accuracy of the results. Prehistoric and 

historical information is essential, especially in terms of return periods and the probabilities of 

exceedance. 

Uncertainties can be introduced in the modelling process through, e.g. Bayesian techniques, mixture 

distributions, and convolution principles (Sections 3.2.2 and 3.2.3). Some probabilistic hazard analysis 

procedures provide for uncertainty in the data by separately modelling the different sources of an event 

and subsequently combining them. For landslides, uncertainty is accounted for by separately modelling 

the probability of occurrence owing to earthquakes and rainfall and afterward combining the two to 

obtain a single probability of occurrence estimate (Corominas and Moya, 2008; Wartman et al., 2013). 

Probabilistic tsunami modelling functions in a similar manner, in that the probability of occurrence of 

various types of triggering events (e.g. earthquakes, land- and submarine landslides, and volcanic 

activity) is estimated and combined to assess the likelihood of a local or trans-oceanic tsunami (Geist 

and Parsons, 2006). This type of modelling requires extensive research and knowledge of the 

fundamentally different physical occurrences, making the assessment difficult and time consuming. 



 

 

21 

 

Pisarenko and Rodkin (2010) reviewed empirical distributions that were developed for the analysis of 

empirical natural hazard and risk data. These include traditional and field-specific parametric 

distribution functions, of which heavy-tailed extreme distributions are popular. Relevant applications 

are found across all subfields of historical, geophysical, hydrological, meteorological, and 

climatological disasters. Risk assessments in terms of the victims, fatalities, and economic losses 

resulting from such events are often modelled in this manner as well (e.g. Pisarenko and Rodkin, 2014).  

Extreme value theory (EVT) is a widely used technique and is often used in the assessment of extreme 

natural hazard and risk. EVT focuses on modelling only the tail behaviour especially in cases where it 

is assumed that extreme events do not follow the same behaviour as small and intermediate events (e.g. 

Pisarenko and Sornette, 2003; De Haan and Ferreira, 2007). Attention is given also only to the largest 

events exceeding a specific threshold, as their occurrences are usually unforeseen, and their effect 

dwarfs the combined effects of the smaller events. These large events are also the most memorable, 

making it more likely that most, if not all, would have been recorded. Block maxima and peaks-over-

threshold (POT) are techniques used to determine the threshold from which events are included in the 

assessments. Popular distributions in EVT include the Generalised Pareto (GPD) and the Generalized 

Extreme Value distributions (GEV) in the form of the Gumbel, Fréchet and Weibull distributions (e.g 

Pisarenko and Sornette, 2003; De Haan and Ferreira, 2007).  

Other empirical analyses consist of parametric, semi-parametric, and non-parametric modelling, 

stochastic modelling of conditional probabilities of recurrence times (e.g. Orfanogiannaki and 

Papadopoulos, 2007), or modelling by means of cumulative frequency–event-size relationship laws 

(e.g. Gutenberg and Richter, 1942; Soloviev, 1970; and references in Table 2.2). Empirical methods are 

highly dependent on the completeness and quality of the dataset. Adequate historical and instrumental 

information is required to counter the high levels of bias that small datasets can introduce to the results. 

In addition, empirical distributions can be ambiguous, as any descriptors of the underlying physical 

characteristics of the natural hazard are removed (Pisarenko and Rodkin, 2010). Instead, a phenomenon 

is described only in terms of its location, shape, and the spread of the applied distribution. 
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Physical distribution laws are parametric distributions that retain the physical properties of the natural 

hazard event. Typical systems include the Gaussian (normal) law, the Boltzmann law (an exponential 

distribution), and the Pareto power law that can be transformed to the exponential distribution by the 

transformation 𝑦 = 𝐹𝑌
−1(𝐹(𝑥)) (Balakrishnan and Basu, 1995; Pisarenko and Rodkin, 2014). Power 

laws are used frequently to assess the relationship between the frequency of occurrence and the size of 

the event, with the power law parameter indicating the relationship between the large and small events. 

In Pisarenko and Rodkin (2010, 2014), detailed reviews are presented on the heavy-tailed power law 

and the use of the EVT to estimate the parameters. In Section 2.4, power laws and their application to 

natural hazards, as well as the proposed methodology, are discussed.  

   

2.2 Data Sources 

Natural perils are typically analysed from systematic data recorded with the help of networks of 

specialised measurement stations. These datasets can be augmented with data obtained from the 

insurance industry, as well as non-systematic data obtained from historical recordings and palaeo-

environmental studies. These datasets are often incomplete in terms of their spatial and temporal 

context. With the growth of social media platforms, these datasets can be augmented to create datasets 

with finer resolutions, although these are often of lower quality. A brief overview of the three types of 

data sources is provided below.  

 

2.2.1 Systematic and non-systematic data 

The most reliable systematic data are provided by calibrated networks of instruments, such as 

seismographs and accelerographs for earthquakes, ocean buoys and tide gauges for tsunamis, stream 

gauges for terrestrial bodies of water, rain gauges for rainfall to investigate flood occurrences, and 

inclinometers for landslides. For other, more complex hazards, such as volcanoes, several tools are 
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employed to measure the seismicity, ground deformation, released gasses, lava flow, and pyroclastic 

flow and surge. Developed countries often have extensive datasets, e.g. Japan has an instrumental 

earthquake dataset spanning more than 1 000 years. The Japanese seismic network consists of 

approximately 1 000 accelerometers and 1 800 strong-motion seismograph stations spaced at 20–25 km 

intervals (Furumura et al., 2011). This is in stark contrast with developing countries, where event 

datasets are dependent on information from temporary or external networks. Examples of international 

data sources are the International Seismological Centre6, the United States Geological Survey Science 

Data Catalog7, and the National Oceanic and Atmospheric Administration8. Pisarenko and Rodin (2010) 

provide a review of the available datasets, terminology, as well as the parameterisation and 

classification of events.  

Non-systematic data include information that is not measured systematically over time. Prehistoric and 

historical data are measurements of natural perils that are typically quantified using qualitative methods 

during focussed studies in pre-defined areas. Prehistoric data are collected by palaeo-environmental 

studies and historical information from recorded accounts by eye-witnesses of the events. Accurate 

instrumental recordings of natural disasters represent only an extremely small part of the overall 

historical timeline; therefore, it is likely that the largest events are not included in the dataset. This 

omission could result in the underestimation of the hazard and a subsequent underestimation of the 

vulnerability or risk for the area under investigation. Over the years, various fields of natural hazards 

have started to include prehistoric and historical data into hazard assessments, e.g. floods (Baker 1987, 

Fernandes et al, 2010, Lam et al., 2017), earthquakes and tsunamis (McCalpin, 2009; Heidarzadeh and 

Kijko, 2011), and tropical cyclones (e.g Nott, 2003). Although prehistoric and historical data are not 

recorded with the precision of instrumental data, they do preferentially record the more extreme events. 

                                                           

6 isc.ac.uk, last accessed 2018/09/25.  

7 data.usgs.gov/datacatalog, last accessed 2018/09/25.  

8 noaa.gov, last accessed 2018/09/25. 
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A detailed discussion of the characteristics of systematic and non-systematic information is presented 

in Section 2.3. 

 

2.2.2 Insurance data 

The insurance and reinsurance industry provides a second source of information on natural perils and 

the attendant loss of lives and property. Over the years, multi-peril natural and man-made catastrophe 

loss data sources have been made available online. These includes databases, such as Sigma by Swiss 

RE9, NatCatSERVICE10 by Munich Re, OasisHUB11, and Emergency Events Database EM-DAT12, 

established by the Centre for Research on the Epidemiology of Disasters (CRED) at Leuven University 

(Université catholique de Louvain) in Belgium.  

Kron et al. (2012) provide a detailed discussion on the effective use of locally sourced and international 

data operators and identify the potential pitfalls. A typical pitfall is that losses are aggregated across 

perils for an individual event. For example, a small distinction may or can be made as to the exact cause 

of the damage. Additionally, various insurers may classify events differently, making it difficult to 

combine information from diverse companies in a homogeneous manner. To comprehend the effect of 

economic losses over time, care should be taken to normalise the values for any potential change in 

population and the socioeconomic status of the specific country. Financial loss information may be of 

help in assessing future potential risks from natural perils, particularly in the absence of specific damage 

information with which to build statistical loss models.  

 

                                                           

9 institute.swissre.com/research, last accessed 2018/09/25. 

10 munichre.com/en/reinsurance/business/non-life/natcatservice, last accessed 2018/07/25. 

11 https://oasishub.co/, last accessed 2018/09/13. 

12 emdat.be/database, last accessed 2018/07/25. 

http://institute.swissre.com/research/overview/
https://www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html
https://oasishub.co/
http://www.emdat.be/database
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2.2.3 Social media data 

Social media or volunteer data consist of information that can be obtained from the vast array of digital 

technologies. Photos and video recordings can be valuable in collecting information on the location, 

size, and damage of natural phenomena (Blair and Leighton, 2012). The United States Geological 

Survey (USGS) website Did You Feel It? (DYFI)13 is an interactive tool that collects information and 

generates maps of earthquakes based on the information provided by individuals. This information is 

combined with instrumental recordings and translated into scales of earthquake intensity (Wald et al., 

2011). The most often used scales are the Modified Mercalli Intensity Scale or the European 

Macroseismic Scale (EMS). These scales describe the intensity of the observed ground movement 

(shaking). Data on the observed intensity of an event help in investigating the propagation of the seismic 

waves, the correct classification of observed damage, and the updating of existing damage matrices and 

curves.  

Social media are also used in other fields. In 2013, Schnebele and Cervone (2013) combined remote 

sensing flood hazard assessment with data from internet searches for news, videos, and photographs. 

Authors such as Guan and Chen (2014) have shown how natural disasters can be spatially and 

temporally characterised during their evolution by using social media. Social media provide valuable 

information not only in terms of hazard assessment but also for disaster risk-mitigation planning.  

Using social media in combination with various types of geographic information systems (GIS) is useful 

in data sharing for hazard and risk mitigation (Manfré et al., 2012). Using the information from past 

events helps to understand where and how natural disasters occur in a specific area, serving as prior 

information in natural hazard and risk analyses. 

 

                                                           

13 https://earthquake.usgs.gov/data/dyfi/; last accessed 2018/09/22. 

https://earthquake.usgs.gov/data/dyfi/
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2.3 Nature of Empirical Data 

Geophysical, hydrological, meteorological, and climatological data can be incomplete and uncertain. 

The quality of the event dataset of a country or a region is dependent on its recording history. Accurate 

instrumental and systematic recordings of natural disasters have emerged only over the last 

approximately 100 years. As instruments became more sensitive and accurate, the quality and quantity 

of the observed data improved, with the location, time, and size of the events recorded with care. The 

compiled instrumental datasets of these events contain information on the level of completeness (LoC) 

and the measured event sizes. The event size 𝑥, an element of the random variable 𝑋, is described in 

terms of energy, magnitudes, intensities, or the affected areas. The LoC, also denoted 𝑥𝑚𝑖𝑛, is defined 

as the minimum size in the dataset for a specific time interval, assuming that all the events were 

observed and recorded. This type of dataset represents only a fraction of the overall historical time line. 

Accordingly, there is a real possibility that the observed instrumental datasets do not contain the records 

of large, or even the largest, observed events. This results in an underestimation of the hazard and the 

subsequent risks and vulnerabilities.  

In an effort to include more information to supplement the instrumental datasets and reduce epistemic 

uncertainty, extensive research has been done on collecting reliable sources of prehistoric and historical 

information. These two types of datasets are often considered to contain data that are of lower quality 

than those of instrumental data. This can be attributed to additional levels of uncertainty relevant to the 

exact location, date, and size of the events recorded. The information generally contained in historical 

event datasets was observed typically before the advent of the instrumental age. The quality of this 

information, therefore, depends on whether these events were observed and accurately described 

according to the effect of the event on the surrounding environment. The observations in this event 

dataset is are not limited to extreme events, and observations of events of different sizes can be included. 

Prehistoric events, in contrast, are events recorded with palaeo-environmental studies. This requires the 

extraction and analyses of geological sediments and rocks with the aim of assessing changes in the 
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chemical, physical, and biological nature of sediment deposits over the last few thousand years. Such 

investigations are expensive, as the potential area where a natural event could have taken place must be 

identified, trenching must be done, and chemical and geological analyses must be conducted. One 

disadvantage of palaeo-studies is that the date of occurrence and the size of an event will only fall within 

a specific time and size interval. It addition, it is currently not possible to identify all the events that 

occurred in prehistoric times. The prehistoric event set, therefore, represents a temporally and spatially 

biased view of the occurrences of natural events.  

Several fields of natural hazard assessment incorporate prehistoric and historical information. Nott 

(2003) has discussed the importance of including prehistoric data, using tropical cyclones, tsunami, 

terrestrial floods, and landslides in Australia as examples. The inclusion of this type of data helps to 

identify possible changes in the stationarity assumptions. Prehistoric and historical data are included 

more frequently in hazard assessments, particularly in relation to earthquakes, tsunamis, and floods 

(Cohn and Stedinger, 1987; Ogata, 1999a; IAEA TECDOC-1767, 2015; Grezio et al, 2017; Lam et al., 

2017; Zöller, 2018).  

Figure 2.1 provides an illustration of the typical nature of the data that are used to assess hazard 

parameters. Different types of uncertainty can be identified for each of the datasets. Prehistoric data are 

subject to uncertainty relevant to the time of occurrence and event size, as well as incompleteness 

relevant to the equal probability of detecting an event over a spatial grid. In both historical and 

instrumental event datasets, incompleteness and uncertainty occur relevant to the observed event size, 

with varying levels of certainty on the exact location, and the probability of an event size being observed 

above the LoC. Furthermore, prehistoric and historical data can contain some uncertainty in the event 

occurrence or validity of the classification of an event. This is observed in tsunami datasets, as it can be 

unclear whether the observed effects are from a tsunami or from severe storms. 

Area-characteristic recurrence parameter assessment for the typical data scenario shown in Figure 2.1 

can be addressed in a manner similar to that in Kijko and Dessokey (1987), Kijko and Sellevoll (1989, 
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1992), Kijko and Smit (2012), and Kijko et al. (2016). It is assumed that the dataset can be divided into 

several smaller sub-datasets consisting of prehistoric (P), historical (H), and multiple complete, 

typically instrumental datasets (𝑖 = 1,… , 𝑠), respectively. The prehistoric and historical sub-datasets 

typically consist of the largest events that occurred over the last few thousand years and last few hundred 

years, respectively. The most-recent events are usually recorded with the aid of sophisticated 

instruments and networks, and these can be classified as a complete dataset. It is assumed that each of 

these subsets is complete for event sizes exceeding a certain level of completeness (LoC) 𝑥min
(𝑖)

, during 

a period of time Δ𝑡𝑖 for 𝑖 = 1,… , 𝑠. This approach permits the occurrence of ‘gaps’ (𝑇𝑔) to account for 

missing event records. Missing records can be attributed to e.g. event recording equipment or networks 

being non-operational, whereas socioeconomic and social factors could also play a role. 

 

 

 

FIGURE 2.1. Illustration of a typical event dataset that can be used to obtain the three key parameters 

for the specified natural hazard assessment (modified after Kijko and Sellevoll, 1992). 

 

Natural systems have different data characteristics. Hewitt (1970) reviewed some of these 

characteristics, including randomly and identically distributed observations that are not necessarily 

independent, potential spatial and temporal patterns, and observations that can show one or more 
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underlying physical processes that could regulate recurrence patterns. Such characteristics can differ 

from each other when prehistoric, historical, and instrumental datasets are compared. Table 2.1 shows 

the typical characteristics of prehistoric, historical, and instrumental data in terms of how the data are 

observed. 

TABLE 2.1. Underlying assumptions of the various types of data found in natural event datasets. 

 Prehistoric data Historical data Instrumental data 

Time period 

represented 

Represent data on events 

thousands of years ago. 
Hundreds of years ago. Last 100–150 years. 

How event 

was measured 

Recorded through focussed 

geological studies of particular 

events, e.g. palaeoseismology. 

Human accounts Instruments 

Time of 

occurrence 

Uncertain.  

No specific distribution 
Certain Certain 

Location of 

event 
Certain Not necessarily certain Certain 

Event size 

error 

Uncertain.  

Follows uniform distribution 

Uncertain. 

Follows Gaussian or 

another symmetric 

distribution 

Measured errors.  

Follows Gaussian or 

another symmetric 

distribution 

 

Many of the event size measurement scales are defined in terms of the log scale, e.g. the earthquake 

magnitude scale, tsunami intensity scale, and the Volcano Explosivity Index. Other measurement scales 

represent a compromise between linear and log scales, such as the Beaufort wind velocity scale, the 

Saffir–Simpson damage potential scale for hurricanes or tropical cyclones, the Fuiita and Parson 

tornado scale, and the TORRO hail size scale. Blong (2003) provides an overview of the characteristics 

of various event size magnitude and intensity scales.  

In Kijko and Dessokey (1987), Kijko and Sellevoll (1989, 1992), Kijko and Smit (2012), and Kijko et 

al. (2016), some of the above data quality characteristics, i.e. incompleteness, and data and event size 

uncertainty, are addressed with reference to the earthquake frequency–event-size (magnitude) relation 

by Gutenberg–Richter. Datasets that contain one or more of the three types of data (prehistoric, 
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historical, and instrumental) were used. Aleatory and epistemic uncertainty were considered in dealing 

with incomplete datasets, errors in the observed earthquake magnitude (event size), and uncertainty 

regarding the parameters of the applied occurrence and event size distributions. Aleatory uncertainty 

represents the inherent randomness of the phenomenon, whereas epistemic uncertainty represents the 

lack of knowledge. The probabilistic earthquake hazard in terms of earthquake magnitude is defined 

relevant to three recurrence parameters, namely 𝜆 , the rate of occurrence; the Gutenberg–Richter           

𝑏-value (parameter); and the maximum possible earthquake magnitude 𝑥𝑚𝑎𝑥.  

 

2.4 Power Laws in Nature 

Power laws are used often to model natural systems, including the Gutenberg–Richter relation for 

earthquake magnitude (Gutenberg and Richter, 1942, 1956), tsunami intensity (Soloviev, 1970; 

Houston et al., 1977; Horikawa and Shuto, 1983; Burroughs and Tebbens, 2005; Geist and Parsons, 

2006), landslide areas (Caccavale et al., 2017; Malamud et al., 2004), solar flare intensity and burned 

area for wildfires (Newman, 2005; Clauset et al., 2009), and air pollution (Shi and Liu, 2009). 

Publications such as Newman (2005), Burroughs and Tebbens (2001), and Geist and Parsons (2014) 

discuss the power laws found in various types of natural systems. Table 2.2 provides examples of the 

power laws found in nature. 
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TABLE 2.2. Some examples of frequency–event-size relations following power laws, as observed in 

nature. 

Type of 

Hazard 
Governing Frequency–Size Relation Reference 

Earthquakes 

𝑙𝑜𝑔
10
𝑁(𝑚) = 𝑎 − 𝑏𝑚 

 

𝑚:  seismic magnitude (a logarithmic variable), 𝑁(𝑀 ≥ 𝑚): 

cumulative number of seismic events with magnitude 𝑚 ≥ 𝐿𝑜𝐶; 𝑎, 

and 𝑏: parameters related to tectonic features.  

Gutenberg and 

Richter (1942, 1956) 

Tsunami 

𝑛(𝑖) = 𝑎10−𝑏𝑖 
 

𝑖:  Soloviev–Imamura tsunami intensity, 𝑛(𝐼 ≥ 𝑖):  number of 

tsunami events per annum, 𝑎 and 𝑏: parameters related to the wave 

height features of a tsunami wave. 

Soloviev (1970), 

Geist and Parsons 

(2006) 

Floods 

𝑄(𝑇) = 𝐶𝑇𝜉 
 

𝑄(𝑇): maximum discharge associated with recurrence interval 𝑇, 

𝐶 and 𝜉: parameters. 

Sachs et al. (2012) 

Landslides 

𝑁𝐶𝐿 = 𝐶𝐴𝐿
𝛽
 

 

𝐴𝐿: landslide area; 𝑁𝐶𝐿: cumulative number of landslides with 

area > 𝐴𝐿; 𝛽: power law parameter, 𝐶: parameter. 

Malamud et al. 

(2004), Caccavale et 

al. (2017) 

Solar Flares 

𝑑𝑁 = 𝐴𝑥−𝜉𝑑𝑥 
 

𝑑𝑁:  number of events recorded with parameter 𝑥  of interest 

between [𝑥; 𝑥 + 𝑑𝑥], 𝐴: parameter, 𝜉: power law parameter. 

Newman (2005), 

Clauset et al. (2009) 

Wildfires 

𝑑𝑁𝐹

𝑑𝐴𝐹
= 𝑁𝑐 = 𝐶𝐴𝐹

−𝜉
 

 

𝑁𝐶:  cumulative number of events per year, 𝐴𝐹: burned area, 𝜉 : 

power law parameter; 𝐶: parameter. 

Newman (2005), 

Clauset et al. (2009) 

Air pollution 

𝑁 = 𝐶𝑟−𝜉 
 

𝑟: magnitude per daily pollution index, 𝑁: cumulative number of 

events ≥ 𝑟, 𝐶: parameter, 𝜉: power law parameter. 

Shi and Liu (2009) 

Climate change 

variables (e.g. 

vapour 

pressure) 

𝑁 = 𝑐𝑟−𝜆 

𝑁: cumulative number of events per time unit, 𝑟: size, 𝜆: power 

law parameter, 𝑐: parameter. 
Liu et al. (2014) 

Tornadoes 

𝑁 =
𝐶

𝛼 − 1
𝑥−(𝛼−1) 

𝑁:  cumulative number of events per time unit, 𝑥:  size, 𝛼 − 1: 

power law parameter, 𝐶: parameter. 

Machado et al. 

(2015) 
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In this thesis, power laws are used in the frequency–event-size analysis, equating the frequency with 

the respective event sizes (Burroughs and Tebbens, 2001, 2005; Newman, 2005; Clauset et al., 2009; 

Machado et al., 2015). Power laws are observed when the number of event occurrences 𝑛(𝑥) with event 

size in the interval [𝑥, 𝑥 + 𝑑𝑥] tends to be a linear line either on the log-log or on the log-linear scale. 

Assuming the event size 𝑥 is measured on a logarithmic scale, this linear relationship is expressed as 

ln 𝑛(𝑥) = 𝑐 − 𝑘𝑥 and transforms to 𝑛(𝑥) = 𝐶𝑒−𝑘𝑥, with 𝑘 representing the power law parameter and 

𝐶 = exp (𝑐) a constant. One disadvantage of using the frequency–event-size relation is the division of 

the size variable into bins, which is not always possible to do. The cumulative frequency–event-size 

relation overcomes this problem and allows measurement sizes to fall on a continuous scale (Newman 

2005).  

The cumulative frequency–event-size relation 𝑛𝑋≥𝑥 equals 

𝑛𝑋≥𝑥 =
𝐶

𝑘 − 1
10−(𝑘−1)𝑥, (2.1) 

and represents the number of event equal or exceeding 𝑥. By taking the logarithm, Eq. 2.1 transforms 

into 

log𝑛𝑋≥𝑥 = 𝑎 − 𝑏𝑥 , (2.2) 

representing a line with 𝑎 = log (
𝐶

𝑘−1
) and 𝑏 = 𝑘 − 1  (Newman, 2005), with 𝑎  considered to be 

constant. The cumulative frequency–event-size power law probability distribution is also referred to as 

a Pareto distribution. Eq. 2.2 can be transformed into  

𝑛𝑋≥𝑥 = 𝑒𝛼−𝛽𝑥, (2.3) 

with 𝛽 = 𝑏 ln 10 and the constant 𝛼 = 𝑎 ln 10.  

As an example, we will use the Gutenberg–Richter cumulative frequency–size relation of Gutenberg 

and Richter (1942, 1956) to discuss the rest of the thesis. This relation shows how the cumulative 
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number of events greater than or equal to 𝑥 relates to the size of the event 𝑥, as given in Eq. 2.2 , with 

parameters 𝑎 and 𝑏 related to the tectonic setting of the area under investigation. The event size 𝑥 is 

measured on the logarithmic scale, thereby providing a linear relationship between the logarithm of 

both, namely the frequency (histogram) and cumulative frequency and earthquake event size. A typical 

example is provided in Figure 2.2 of the histogram for the number of earthquakes on a logarithmic scale 

when investigating the frequency–event-size relation. This depiction is seen also in the histograms of 

other types of natural hazards. The right-hand side of the histogram can be modelled by Eq. 2.2. 

Contrary to expectation, the left-hand side does not increase linearly as the size of the events 

progressively declines. This is attributable to small events not being observed.   

 

 

FIGURE 2.2. Histogram of apparent distribution of events in a hypothetical seismic dataset. 

 

Pisarenko and Rodkin (2014) provide a detailed discussion on employing heavy-tail power laws in the 

hazard assessment of extreme events. Their reasoning, i.e. using only these types of events, stems from 

these events being the brunt of the associated effect on humans in terms of loss of life and financial 
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losses. Datasets for these events are considered complete, thereby facilitating a straightforward 

implementation of statistical methods. 

Due to the devastating effects of a natural hazard event on society, extensive research has been devoted 

to understanding and modelling such events, with the aim of imparting resilience to society. Almost all 

the statistical models currently used require datasets that are complete in order to provide statistically 

sound estimates. This requirement, however, cannot be met in all instances. Accordingly, the 

methodology first developed by Kijko and Sellevoll (1989) and extended in Kijko and Sellevoll (1992) 

shows that it is possible to utilise datasets that are highly incomplete and that have uncertain event sizes.  

The underlying relationship between frequency and event size provides a unique opportunity to define 

a single methodology that can be used in any setting where data can be described through frequency– 

or cumulative frequency–event-size relations following a power law. This can be done by following the 

same framework for earthquake hazard modelling as that described by Kijko and Sellevoll (1989, 1992). 

Unlike the method of Pisarenko and Rodin (2010, 2014), using the previously mentioned framework 

does not restrict the user to employing only extreme events but facilitates utilising as much of the data 

as is possible. This provides an opportunity to include all the available types of data in the analyses, 

namely prehistoric, historical and instrumental data, and prior independent information. Therefore, the 

model parameters can be assessed in a more reliable way.  

Two aspects are lacking in the framework by Kijko and Sellevoll (1989, 1992). The first relates to 

instances of the data not following the required strict independence and stationarity of the investigated 

process. Space–time fluctuations of the natural process are common, and provision should be made to 

include them.  

The second aspect relates to the uncertainty in occurrence of event or the validity of the events. For 

example, tsunami datasets can contain an additional parameter or validity index that shows the 

confidence of the authors of the dataset as to whether the evidence supports the classification of a 

tsunami event or only a severe storm. By introducing the weighted likelihood function to the 
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methodology, the researcher has the option to include all the events and retrieve a rate of occurrence 

that is more realistic. 

The framework by Kijko and Sellevoll (1989, 1992) estimates parameters using maximum likelihood 

estimation (MLE). To use prior information, there is a need for Bayesian inference (BI). Prior 

information is arguably a valuable tool to estimate parameters from and should be useful in stabilising 

the results based on incomplete and uncertain data.  

 

2.5 Summary 

In conclusion, Chapter 2 provides a broad overview of the different types of data and statistical 

methodologies typically used in natural hazard analyses. Various data sources exists and include 

systematics and non-systematic data, insurance data and social media data. Each of these data types can 

add information necessary to better model the underlying behaviour of the hazard under investigation. 

The nature of typical empirical natural hazard datasets are also evaluate, listing their respective 

advantages and disadvantages. These data characteristics can typically be modelled by sub-setting the 

data according to certain parameters. Power laws are used to derive empirical probability density 

functions (PDF) and cumulative probability density functions (CDF). This is done to ensure the 

modelling process remains true to the physical characteristics of the natural phenomena under 

investigation. From the empirical distributions, model-based PDFs and CDFs are defined and used to 

build likelihood functions for each of these sub-datasets, MLE and BI can be applied in the estimation 

of the recurrence parameters (Chapter 3). 
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Chapter 3. Methodology  

“All models are wrong, but some are useful.” George Box 

In this chapter, a methodology is described that can be used to assess the potential natural hazard 

associated with some physical properties of geophysical, hydrological, meteorological, or 

climatological phenomena. For this purpose, the hazard will be described using two types of distribution 

processes that characterise natural events. These are the temporal, frequency occurrence distribution, 

and the event size distribution. For both processes, a probability distribution is defined, and parameter 

estimates are derived. In this way, the associated probabilities of exceedance and the return periods for 

different event sizes can be defined.  

The methodology applied comprise of estimating the hazard recurrence parameters based on different 

types of input data and using power laws or their transformation. Estimation of the rate of occurrence 

𝜆, the power law parameter 𝑏, and the maximum possible event size 𝑥𝑚𝑎𝑥 are based on information 

provided by prehistoric, historical and instrumental data types. The parameter 𝜆 will be referred to as 

rate of occurrence for the rest of the thesis. 

Several assumptions are made to define the principal and extended methodology. Section 3.1 defines 

the methodology as applied in Kijko and Dessokey (1987) and Kijko and Sellevoll (1989). Section 3.2 

introduces various types of uncertainty, thereby extending the principal model. Section 3.3 discusses 

parameter estimation using maximum likelihood estimation (MLE) and Bayesian inference (BI). One 

method for the estimation of the maximum possible event size 𝑥𝑚𝑎𝑥 is provided in Section 3.4, the 

hazard estimates in Section 3.5, and the model comparisons in Section 3.6. 
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3 3 

3.1 Principal Model 

The methodology is first defined in terms of a principal model for a single, complete event dataset. For 

the principal model, the occurrence (Section 3.1.1) and event-size distributions (Section 3.1.2) are 

defined to describe the temporal and physical nature of the data. Next, two possible adjustments to the 

event-size distribution are introduced (Section 3.1.3). The adjustments focus on the potential shifting 

of the distribution to start at an event-size other than 0, and a potential upper truncation. Lastly, the 

same equations are described for extreme prehistorical and historical data in Section 3.1.4. 

 

Assumption 1. The random variable 𝑋 refers to the size of the observed events. The sample space for 

event sizes is defined in terms of 𝑁 (𝑗 = 1,…𝑁), the random number of possible independent and 

identically distributed (iid) event sizes, X = {𝑋1, 𝑋2, … 𝑋𝑁}.  

 

3.1.1 Occurrence distribution  

Assumption 2. The occurrence of observed events in a specific area is a stationary Poisson process 

with a rate of occurrence parameter 𝜆 > 0. For a random number of 𝑁 events, within an time interval 

𝛥𝑡, the probability of observing 𝑛 events equals  

𝑃𝑁(𝑛) =
𝑒−𝜆Δ𝑡(𝜆Δ𝑡)𝑛

𝑛!
, 𝑛 = 0,1,2…. (3.1) 

 

References to instances where this assumption was used can be found in, e.g. Cornell (1968), Lomnitz 

(1973), Gardner and Knopoff (1974), Geist and Parsons (2006), Corominas and Moya (2008), and 

Rougier et al. (2018).  

The Poisson parameter 𝜆 > 0 describes the rate of event occurrences. It is also known as the rate of 

exceedance. An estimate of the parameter 𝜆  is obtained by dividing the number of events by the 
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specified time interval, i.e. 𝜆 = 𝑛/Δ𝑡 . The violation of the requirement that events have to be 

independent is discussed in Section 3.2. 

Following Assumption 2, the inter-arrival times of events are defined by assuming that Δ𝑡 is a random, 

time to the first arrival, variable. The probable of first arrival can be considered as the probability of no 

events being observed in a specific time interval Δ𝑡, i.e. 

𝑃𝑟(Δ𝑇 > Δ𝑡) = 1 − 𝐹Δ𝑇(Δ𝑡), (3.2) 

where 𝐹Δ𝑇(Δ𝑡)  is the cumulative distribution function (CDF) of Δ𝑡 , defined as 𝑃𝑁(𝑛)  with the 

parameter 𝑛 = 0. Therefore  

𝐹Δ𝑇(Δ𝑡) = 1 − 𝑒
−𝜆Δ𝑡       Δ𝑡 ≥ 0, (3.3) 

with the probability distribution function (PDF) defined as  

𝑓Δ𝑇(Δ𝑇) =
𝑑𝐹Δ𝑇(Δ𝑇)

𝑑Δ𝑇
= 𝜆𝑒−𝜆Δ𝑡   Δ𝑡 ≥ 0. (3.4) 

 

The memoryless property often associated with the Poisson distribution translates from the memoryless 

property for the inter-arrival times, which is an exponential distribution. In other words, the failure for 

an event to occur does not affect the inter-arrival time (Balakrishnan and Basu, 1995; Bain and 

Engelhardt, 1992). 

 

3.1.2 Event size distribution  

 Assumption 3. The frequency–event-size relation of random variable 𝑋 follows a linear equation, 

defined in terms of 𝑁  (random) possible iid events 𝑋 = (𝑋1, 𝑋2, …𝑋𝑁) , which are related to the 

frequency of occurrence, as defined by the log-transformed power law in Eq. 2.2 and the exponential 

distribution of Eq. 2.3. The two parameters 𝑎 and 𝑏 are a function of the area under investigation.  
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Equation 2.2 can be viewed as the log-transformed cumulative histogram of the number of event sizes 

𝑥𝑗 ≥ 𝑥. Following Eq. 2.3 the CDF and PDF for the event size equal 

𝐹𝑋(𝑥) =  1 − 𝑒
−𝛽𝑥 𝑥 > 0,  (3.5a) 

𝑓𝑋(𝑥) = 𝛽𝑒
−𝛽𝑥 𝑥 > 0, (3.5b) 

with the parameter 𝛽 = 𝑏 ln(10). The derivations are available in the Appendix. 

 

3.1.3  Adjustments to event size distribution 

3.1.3.1 Shifted event size distribution 

Different levels of completeness (LoC) can be observed in datasets. For instrumental data, LoC is a 

function of the accuracy of instrumentation and the coverage of an observational network. Prehistoric 

and historical datasets are dependent on whether the event was felt and how well its effects were 

recorded. The LoC of an instrumental dataset is dependent on the quality of the instruments, which 

decreases with the increasing ability of instruments to detect smaller events. Nevertheless, there are still 

instances of smaller size events being undetected, which is particularly relevant when measuring 

instruments that are faulty or not yet able to detect small events. Small recorded events are often not of 

interest, as they seldom cause noteworthy damage or loss. These events are sometimes ignored during 

hazard analyses, depending on the aim of the project. This results in a typical histogram, as in Figure 

3.1, showing a decrease in the number of small event sizes compared with that expected. The apparent 

distribution, therefore, varies from the expected true distribution. By introducing the LoCs, the 

methodology makes provision for deviations from the power law at small event sizes, i.e. the left tail of 

the distribution. 
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Assumption 4. The event dataset is considered complete for event sizes equal to and exceeding a certain 

event size, also known as the level of completeness (LoC) or 𝑥𝑚𝑖𝑛. 

 

The introduction of parameter 𝑥𝑚𝑖𝑛 results in the starting point of the distribution being shifted, as 

illustrated in Figure 3.1. This shift is reflected in the rate of occurrence (Cosentino et al., 1977; Youngs 

and Coppersmith, 1985; McGuire and Arabasz, 1990; Benjamin and Cornell, 2014) by redefining the 

Poisson distribution in Eq. 3.1 as the probability of observing 𝑁 events for event sizes 𝑥𝑗 ≥ 𝑥𝑚𝑖𝑛         

(𝑗 = 1,…𝑁) in the time interval Δ𝑡.  

 

 

Figure 3.1. Histogram of the apparent distribution of events in a hypothetical seismic dataset. The 

dashed, vertical red lines represent examples of potential shifts in the event size 

distribution according to the chosen level of completeness 𝑥𝑚𝑖𝑛. Various methods exist to 

assess this parameter, which can lead to different results (modified from Kijko and Smit, 

2017). 
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Parameter 𝑥𝑚𝑖𝑛 has a substantial effect on the final estimates, as seen in Section 3.3. Several different 

methodologies exist to assess this parameter, with no clear preferred one. These include goodness-of-

fit analysis, maximum curvature, 𝑏-value stability estimation method, entire-magnitude-range method, 

median based assessment of segment slope, and assessment of 𝑥𝑚𝑖𝑛 by the method of moments. These 

methods and their performance are discussed in detail in, e.g. De Witt (2013), and Mignan and 

Woessner (2012).   

For the purpose of this thesis, the visual cumulative method by Mulargia and Tinti (1985) was applied 

for the estimation of 𝑥𝑚𝑖𝑛 . This method aims to identify periods in time where the event dataset is 

complete for a specified event size. All events are divided into their respective event-size intervals and 

represented graphically as the cumulative number of events over time. The time period where the 

cumulative trend evens out to approximate a straight line is considered the cut-off date. The LoC for the 

period is the lowest event size for that time period. This method helps identify both the sub-datasets and 

the respective LoC to be used in this thesis (Section 3.2). 

 

Assumption 5. The frequency–event-size distribution is shifted from zero to 𝑥𝑚𝑖𝑛 . The respective 

conditional CDF and PDF of the shifted event size distribution equal  

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛) =  {

0 𝑥 < 𝑥𝑚𝑖𝑛

1 − 𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛) 𝑥 ≥ 𝑥𝑚𝑖𝑛

, (3.6a) 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛) = {

0 𝑥 < 𝑥𝑚𝑖𝑛

𝛽𝑒−𝛽(𝑥−𝑥min) 𝑥 ≥ 𝑥𝑚𝑖𝑛

. (3.6b) 

The derivations are available in the Appendix. 
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3.1.3.2 Truncated from the top event size distribution 

Natural hazards are driven by forces of nature adhering to certain physical constraints. These constraints 

are unique to the different types of hazards. As events behave in a specific manner, given the input 

stimulus, some assumptions regarding natural events can be made. One of these is the assumption that 

an upper limit or maximum event size 𝑥𝑚𝑎𝑥 exists. The upper limit depends on a series of factors, 

including the type of hazard and the physical properties of the region. For example, the potential 

earthquake magnitude of a specific fault line is related to the fault line geometry. This physical law 

indicates that an upper limit 𝑥𝑚𝑎𝑥 exists (Wells and Coppersmith, 1994; Gibowicz and Kijko, 1994; 

Pisarenko et al., 1996; Sahakian et al., 2017). Similarly, the physical processes that govern events, such 

as tsunamis (Burroughs and Tebbens, 2001), landslides (e.g. Guzzetti et al., 2008), floods (e.g. 

Fernandes et al., 2010), and fires (e.g. Cumming, 2001) are subject to upper limits. Its parameter 

depends on the type of hazard and the physical properties of the region.  

The maximum possible event size or the upper limit of the distribution is an important parameter in any 

hazard modelling process. It represents the worst-case scenario, for which society has to make 

provision. Assessing the upper limit of the power laws can be problematic if only a few large events are 

available for analyses. In such instance, the inclusion of the largest prehistoric and historical information 

plays a crucial role in constraining the estimation of the upper limit of the event size distribution. 

 

Assumption 6. An upper limit for event size 𝑥𝑚𝑎𝑥 exists for the area under investigation. 

 

 Adjusting the shifted event size distribution (Eq. 3.6) to include a truncated upper bound, as shown in 

Figure 3.2, leads to the shifted-truncated event size distribution. In this instance, the power law is 

defined between 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥. The distribution is normalised, such that the conditional CDF and PDF 

are defined, respectively, as (Cosentino et al., 1977; Youngs and Coppersmith, 1985; McGuire and 

Arabasz, 1990; Benjamin and Cornell, 2014) 
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𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =

{
 

 
0 𝑥 < 𝑥𝑚𝑖𝑛

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
𝑥min ≤ 𝑥 ≤ 𝑥max,

1 𝑥 > 𝑥𝑚𝑎𝑥

 (3.7a) 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =

{
 

 
𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛 )

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛 )
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

0 𝑥 < 𝑥𝑚𝑖𝑛; 𝑥 > 𝑥𝑚𝑎𝑥

. (3.7b) 

The derivations are available in the Appendix. 

 

FIGURE 3.2. Histogram of the apparent distribution of events in a hypothetical seismic dataset. The 

dashed, vertical red line represents the LoC 𝑥𝑚𝑖𝑛 and the green line the upper limit 𝑥𝑚𝑎𝑥. 

The power law defined between these two limits will be evaluated (modified from Kijko 

and Smit, 2017).   

 

3.1.4  Inclusion of prehistoric and historical data 

By adjusting Assumptions 1 and 6 to adhere to the characteristics of datasets that contain only extreme 

events, similar frequency–event-size distributions are defined, respectively, for prehistoric and 
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historical datasets (Figure 3.3). Let 𝑥𝑚𝑖𝑛  represent the LoC of the entire dataset that includes the 

extreme prehistoric, historical, and instrumental event datasets. The values 𝑥𝐻 ≥ 𝑥𝑚𝑖𝑛 and 𝑥𝑃 ≥ 𝑥𝑚𝑖𝑛 

represent the smallest observed event sizes in the historical and the prehistoric datasets, respectively. 

For the probabilistic model, both datasets are considered to be governed by extreme distributions.  

 

 

FIGURE 3.3. An event dataset that can be used to obtain three key recurrence parameters for natural 

hazard assessment. The values 𝑥𝑃 and 𝑥𝐻 represent the smallest observed event sizes in 

the respective prehistoric and historical datasets. The parameter 𝑥𝑚𝑖𝑛  represents the 

smallest level of completeness (LoC) of the entire dataset (modified after Kijko and 

Sellevoll, 1992). 

  

Compared with complete datasets, where all the events that are above the LoC (𝑥𝑗 ≥ 𝑥𝑚𝑖𝑛) are included 

in the analyses, only the largest event within a specific time interval is used when analysing extreme 

prehistoric and historical datasets. It is possible, therefore, that within a specific time interval in the 

prehistoric and historical datasets, several events could be ignored in favour of the largest event. An 

extreme event size distribution defined for the prehistoric dataset is based the parameters of the 

frequency–event-size recurrence relation (power law) and, therefore, retains the connection with the 

event size distribution of the instrumental dataset, as defined in Sections 3.1.2 and 3.1.3. A similar 

distribution can be defined for historical datasets by modifying the specified time interval. 
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Assumption 7. Let 𝑁𝑃 be the random number of events in an extreme prehistoric dataset. The random 

event size variable 𝑋 = {𝑋1, 𝑋2, … 𝑋𝑁𝑃} are independently, identically distributed (iid) with 𝑥𝑗 ≥ 𝑥𝑚𝑖𝑛 

for 𝑗 = 1,…𝑛. The occurrence of the events is assumed to be a stationary Poisson process within time 

interval Δ𝑡𝑃. The probability to observe 𝑛𝑃 events in the time interval Δ𝑡𝑃 equals  

𝑃𝑁𝑃(𝑛𝑃) =
𝑒−𝜆𝑃Δ𝑡𝑃(𝜆𝑃Δ𝑡𝑃)

𝑛𝑃

𝑛𝑃!
, 𝑛𝑃 = 0,1,2… (3.8) 

where 𝜆𝑃 represents the rate of occurrence. The Poisson process for historical data is defined in a 

similar way.  

 

Identity 1. The rate of occurrence for event size 𝑥 equals (e.g. Benjamin and Cornell, 2014)  

𝜆(𝑥) = 𝜆(𝑥𝑚𝑖𝑛)[1 − 𝐹𝑋(𝑥)],  

with 𝜆(𝑥𝑚𝑖𝑛) is the rate of occurrence for 𝑥𝑚𝑖𝑛, and 𝐹𝑋(𝑥) the applied CDF used to calculate 𝜆(𝑥𝑚𝑖𝑛).  

 

This parameter helps to assess the rate of occurrence for any event size when at least one other rate of 

occurrence is known (Campbell, 1982, Kijko and Sellevoll, 1989; 1992).  

 

Assumption 8. Let 𝑥0 be the largest event size in the time interval Δ𝑡𝑃. For iid event sizes, the CDF and 

PDF (Coles, 2001) equal 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) = [𝐹𝑋(𝑥0)]

𝑛𝑃 , (3.9a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0) = 𝑛𝑃[𝐹𝑋(𝑥0)]

𝑛𝑃−1𝑓𝑋(𝑥0). (3.9b) 

The derivations are available in the Appendix.  

The shifted extreme event size distribution is defined by substituting Eq. 3.6a into Eq. 3.9a and Eq. 3.6b 

into Eq. 3.9b. 
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𝐹𝑋
𝑀𝐴𝑋(𝑥0|𝑥𝑚𝑖𝑛) = [1 − 𝑒

−𝛽(𝑥0−𝑥𝑚𝑖𝑛)]
𝑛𝑃

𝑥0 ≥ 𝑥𝑚𝑖𝑛, (3.10a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝑥𝑚𝑖𝑛) = 𝑛𝑃[1 − 𝑒

−𝛽(𝑥0−𝑥𝑚𝑖𝑛)]
𝑛𝑃−1

𝛽𝑒−𝛽(𝑥0−𝑥𝑚𝑖𝑛) 𝑥0 ≥ 𝑥𝑚𝑖𝑛. (3.10b) 

 

Similarly, the shifted-truncated extreme event size distribution, truncated at the maximum possible 

event size 𝑥𝑚𝑎𝑥, can be described in terms of the conditional CDF and PDF by substituting Eq. 3.7a 

into Eq. 3.9a and Eq. 3.7b into Eq. 3.9b. 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =

{
 
 

 
 

0 𝑥0 < 𝑥𝑚𝑖𝑛

[
𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥0

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
]

𝑛𝑃

𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥

1 𝑥0 > 𝑥𝑚𝑎𝑥

, (3.11a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =  

{[
𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥0

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
]

𝑛𝑃−1
𝑛𝑃𝛽𝑒

−𝛽(𝑥0−𝑥𝑚𝑖𝑛 )

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥

0 𝑥0 < 𝑥𝑚𝑖𝑛; 𝑥0 > 𝑥𝑚𝑎𝑥

. 

(3.11b) 

 

Assumption 9. Let 𝑥0 be the largest event size in a specified time interval Δ𝑡𝑃, and 𝑛𝑃 is the random 

number of events with a probability distribution 𝑃𝑁𝑃(𝑛𝑃) . The probability that the maximum event size 

in the dataset does not exceed 𝑥0 equals  

𝑃(max (𝑋) ≤ 𝑥0|Δ𝑡) = 𝑃𝑁𝑃(𝑛𝑃)[𝐹𝑋(𝑥0)]
𝑛𝑃 . (3.12) 

 

From Assumption 9 (Epstein and Lomnitz, 1966) and the theorem of total probability (Cramér, 1961), 

follows the conditional CDF for extreme events 𝑥0 in a time interval Δ𝑡𝑃  
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𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃) = ∑ 𝑃𝑁𝑃(𝑛𝑃)[𝐹𝑋(𝑥0)]

𝑛𝑃 ,

∞

𝑛𝑃=0

 (3.13) 

(derivation available in the Appendix), such that the subsequent generic conditional CDF and PDF 

reduce to 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡𝑃) = 𝑒

−𝜆𝑃𝛥𝑡𝑃[1−𝐹𝑋(𝑥0)], (3.14a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡𝑃) = 𝜆𝑃𝛥𝑡𝑃𝑓𝑋(𝑥0)𝑒

−𝜆𝑃𝛥𝑡𝑃(1−𝐹𝑋(𝑥0)). (3.14b) 

The derivations are available in the Appendix.  

The extreme event size distributions are defined by substituting the relevant equations into Eqs 3.14a 

and 3.14b. Substituting Eqs 3.5a and 3.5b into Eqs 3.14a and 3.14b equal  

𝐹𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡𝑃) = exp(−𝜆𝑃𝛥𝑡𝑃𝑒

−𝛽𝑥0) 𝑥0 > 0, (3.15a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡𝑃) = 𝜆𝑃𝛥𝑡𝑃𝛽exp (−𝛽𝑥0) exp[−𝜆𝑃𝛥𝑡𝑃𝑒

[−𝛽𝑥0]] 𝑥0 > 0. (3.15b) 

 

Equation 3.15a is the Gumbel I extreme distribution (Gumbel, 1962), with distribution parameters 

defined as 𝛼 > 0 and 𝑢 with 𝑥0 ∈ (−∞,+∞) and  

𝐹𝑀𝐴𝑋
I (𝑥0) = exp(−exp(−𝛼(𝑥0 − 𝑢))), 

with 𝛼 = 𝛽 = 𝑏 𝑙𝑛(10) and −𝜆𝑃Δ𝑡𝑃 = exp(𝛼𝑢) (Epstein and Lomnitz, 1966).  

Similarly, the conditional CDF and PDF of the extreme shifted event size distribution are defined by 

substituting Eqs 3.6a and 3.6b into Eqs 3.14a and 3.14b to equate to 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|𝑥𝑚𝑖𝑛, Δ𝑡𝑃) = exp(−𝜆𝑃Δ𝑡𝑃e

−𝛽(𝑥0−𝑥𝑚𝑖𝑛)) 𝑥0 ≥ 𝑥𝑚𝑖n, 

 

(3.16a) 
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𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝑥𝑚𝑖𝑛, Δ𝑡𝑃) =  

𝜆𝑃Δ𝑡𝑃𝛽 exp(−𝛽(𝑥0 − 𝑥𝑚𝑖𝑛)) exp(−𝜆𝑃𝛥𝑡𝑃𝑒
−𝛽(𝑥0−𝑥𝑚𝑖𝑛)) 𝑥0 ≥ 𝑥min, 

(3.16b) 

and the conditional extreme shifted-truncated event size CDF and PDF are defined by substituting       

Eqs 3.7a and 3.7b into Eqs 3.14a and 3.14b to equate to 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃 , 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =  

exp(−𝜆𝑃Δ𝑡𝑃 (
𝑒−𝛽𝑥0 − 𝑒−𝛽𝑥𝑚𝑎𝑥

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
)) 𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥, 

(3.17a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃 , 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =  

𝜆𝑃Δ𝑡𝑃𝛽[𝑒
−𝛽(𝑥0−𝑥𝑚𝑖𝑛)]

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
exp(−𝜆𝑃Δ𝑡𝑃 (

𝑒−𝛽𝑥0 − 𝑒−𝛽𝑥𝑚𝑎𝑥

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
)) 𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥 .  

(3.17b) 

 

Equation 3.17a can also be considered a Gumbel Type III equation (Benjamin and Cornell, 2014), 

where 𝐹𝑌
MAX(𝑦) = exp(− (

𝑤−𝑦

𝑤−𝑢
))𝑘, such that 𝑤 = −𝑒−𝛽𝑥𝑚𝑎𝑥, 𝑦 = −𝑒−𝛽𝑥0, 𝑢 = −𝑒−𝛽𝑥𝑚𝑖𝑛 , and    

𝑘 = 1.  

 

3.2 Extension of the Principal Model 

The assumptions for the principal model require events to behave in a strict manner. In reality, the 

recorded information is seldom complete and not all events have been captured. In many instances, 

records are incomplete and uncertain, and are available only for a limited number of years. In regard to 

natural phenomena, certain countries are unable to measure and record events of all sizes owing to the 

lack of appropriate infrastructure. In certain instances, the occurrence of large events could destroy 

measuring equipment, such as river flow measurement stations, and much time could pass before the 
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instruments are replaced. Therefore, the recorded datasets inherently have different sub-datasets, with 

varying levels of completeness.  

As the quality and quantity of measurement instrumentation have improved over the years, so has the 

accuracy with which events are recorded. Currently, the location and size of natural hazards can be 

identified with a small error, in most cases. Older events, however, are recorded with substantial errors, 

particularly concerning the size of the event. Often, event sizes are estimated based on qualitative 

descriptions. In such instances, uncertainty could be present in the event size estimation, which could 

result in the severe under- or overestimation of the actual hazard and the subsequent risk. 

Investigations into natural hazard datasets often reveal spatial and temporal dependencies in the data. 

These dependencies can manifest through cycles, oscillations, or otherwise related fluctuations, and 

violate the assumptions of independence and stationarity required in the modelling process 

(Section 3.1). A common way of dealing with this problem is to decluster the datasets by removing 

smaller related events and keeping only the largest event in the cluster. In relation to earthquakes, this 

implies the removal of fore- and aftershocks. The disadvantage of declustering is that not only are the 

data points removed to better fit a model but also it could lead to underestimation of the hazard. Ideally, 

any methodology must provide for these types of dependencies. 

The methodology described in Kijko et al. (2016) and Smit et al. (2017) accounts for the above aleatory 

and epistemic uncertainty by making provision for incompleteness in the dataset, uncertainty in the 

event size determination, and uncertainty associated with the parameters in the applied occurrence and 

event size distributions. The methodology is focused primarily on empirical data but, as shown later, is 

flexible enough to utilise any additional information in an attempt to improve the parameter estimation.  

The aim of this section is to update the principal model in Section 3.1 to account for four common data 

quality problems when working with real-world data, namely: 

 incompleteness of the datasets 
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 uncertainty in the event size  

 uncertainty associated with the parameters of the applied occurrence and event size 

distributions 

 uncertainty in the event occurrence (validity). 

 

3.2.1 Incompleteness 

The principal model of Section 3.1 can be applied to the datasets of the form illustrated in Figure 3.3 in 

three ways. Either the prehistoric and historical data are discarded or a high, single LoC 𝑥𝑚𝑖𝑛, that holds 

for all the different types of datasets, is selected. Both options facilitate the application of established 

methodologies. Both these options (discarding prehistorical and historical data or selecting a high, 

single LoC 𝑥𝑚𝑖𝑛) have the disadvantage that it reduces the number of events for model calibration. This 

could affect the estimation of both model parameters, the power law parameter, i.e. the slope of Eq. 2.2, 

and the estimated rate of occurrence and the return periods of events. A third option is to subset the data 

further according to different LoCs.  

Several authors, such as Molchan et al. (1970), Weichert (1980), Kijko and Sellevoll (1989, 1992), 

Rosenblueth (1986), Rosenblueth and Ordaz (1987), and Kijko and Smit (2012) have investigated the 

possibility of sub-setting data according to a type of LoC. These authors divided the data according to 

time or according to event size levels over time. For this thesis, the data are subdivided according to the 

format of Figure 3.3, following Kijko and Sellevoll (1989, 1992), Kijko and Smit (2012), Kijko et al. 

(2016), and Smit et al. (2017, 2019).  

 

Assumption 10. A typical dataset related to natural hazard assessment consists of prehistoric, 

historical, and instrumental data or a combination thereof. It is assumed that the prehistoric (P) and 

historical (H) datasets are independent, and that the instrumental dataset (I) can be divided into 𝑠 
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subsets. Each of the 𝑠 instrumental sub-datasets has a LoC 𝑥𝑚𝑖𝑛
(𝑖)

 for 𝑖 = 1,… , 𝑠. Each sub-dataset 

contains a random number of 𝑁𝑖 events, within a time interval 𝛥t.  

 

Assumption 11. The model parameters are estimated utilising all the available data types by defining 

likelihood functions for prehistoric (P), historic (H) and instrumental datasets 𝑖 = 1,… , 𝑠. 

 

By structuring the dataset following Assumptions 11 and 12 and applying the additive property of 

likelihood functions (Rao, 1973), a single likelihood function 𝐿𝑇𝑜𝑡𝑎𝑙  for the entire dataset can be 

defined. Following this formula allows the user to construct likelihood functions around data gaps 𝑇𝑔.  

𝐿𝑇𝑜𝑡𝑎𝑙(𝜆, 𝛽|𝓘𝑃 , 𝓘𝐻 , 𝓘𝐼) = 𝐿𝑃(𝜆, 𝛽|𝓘𝑃) 𝐿𝐻(𝜆, 𝛽|𝓘𝐻) 𝐿𝐼(𝜆, 𝛽|𝓘𝐼), (3.18) 

where 𝐿𝑃 and 𝐿𝐻 denote the likelihood functions based on the prehistoric and historical parts of the 

dataset, and 𝐿𝐼  is the likelihood function based on the instrumental sub-datasets. The background 

information matrices for the three types of datasets are defined as 𝓘𝑃 = (𝒙𝑷, 𝚫𝒕𝑷), 𝓘𝐻 = (𝒙𝑯, 𝚫𝒕𝑯), 

and 𝓘𝐼 = (𝒏𝑰, 𝚫𝒕𝑰, 𝑿𝑰). For the prehistoric dataset, 𝒙𝑃 and 𝚫𝒕𝑃  are the 𝑛𝑃  vectors of the prehistoric 

event sizes 𝑥𝑃𝑗 that occurred within time intervals Δ𝑡𝑃𝑗, where 𝑗 = 1,… , 𝑛𝑃. The vectors 𝒙𝑯 and 𝚫𝒕𝑯 

are defined similarly for the historic dataset. For the instrumental dataset, the vectors are defined as 

𝒏𝑰 = [𝑛1, 𝑛2, . . 𝑛𝑠]  and  𝚫𝒕𝑰 = [Δ𝑡1, Δ𝑡2, . . Δ𝑡𝑠] , and the matrix 𝑿𝑰 = (𝒙𝟏, 𝒙𝟐, … 𝒙𝒔)  represents the 

vectors of events 𝑥𝑖𝑗  with 𝑖 = 1,… 𝑠, the number of instrumental sub-datasets, and 𝑗 = 1,…𝑛𝑖 , the 

number of events in subset 𝑖. 

The likelihood function for the prehistoric dataset 𝐿𝑃(𝜆, 𝛽|𝓘𝑃) is constructed, following the chosen 

extreme conditional PDF 𝑓𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃), from Eqs 3.15b, 3.16b or 3.17b, in 𝑁𝑃  consecutive time 

intervals 𝚫𝒕𝑷 = {Δ𝑡𝑃1, Δ𝑡𝑃2, … , Δ𝑡𝑃𝑛𝑃} equals  
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𝐿𝑃(𝜆, 𝛽|𝓘𝑷) =∏𝑓𝑋
𝑀𝐴𝑋(𝑥0𝑃𝑗|Δ𝑡𝑃).

𝑛𝑃

𝑗=1

 (3.19a) 

The historical likelihood function 𝐿𝐻(𝜆, 𝛽|𝓘𝑯) is defined in a similar manner.  

The likelihood function for the instrumental datasets 𝐿𝐼(𝜆, 𝛽|𝓘𝐼) is a combination of the likelihood 

functions, following from the defined frequency and event size distributions. In the instance of activity 

rate 𝜆 being independent of the power law parameter 𝛽, then  

𝐿𝑖(𝜆, 𝛽|𝓘) =∏𝐿𝜆𝑖(𝜆|𝑛𝑖, Δ𝑡𝑖) × 𝐿𝛽𝑖(𝛽|𝒙𝑖)

𝑠

𝑖=1

, (3.19b) 

for 𝑖 = 1, . . 𝑠. The conditional PDFs for the occurrence and event size distributions chosen by the 

researcher are substituted into Eqs 3.18 and 3.19a and b. In the instance of a single dataset or only 

instrumental data, parameter estimation is relatively effortless (see Sections 3.3.1.1 and 3.3.1.3). In the 

instance of prehistoric and historical data being combined with instrumental data, the function becomes 

non-linear, and can be solved only with numerical methods. Other examples of constructing a total 

likelihood function to combine various types of data are employed in earthquake, tsunami, and extreme 

flood analyses (e.g. Stedinger and Cohn 1986; Cohn and Stedinger, 1987; Fernandes et al., 2010; Kijko 

et al., 2016; Lam et al., 2017, Smit et al., 2017; Cloete et al., 2018).  

Further extensions of the likelihood functions are explored in Section 3.2.4. Section 3.3 explores the 

estimation of the likelihood functions using MLE and Bayesian inference (BI). 

 

3.2.2 Parameter uncertainty 

The standard and most simplistic assumption about the occurrences of natural hazards is that they follow 

a Poisson distribution (Assumption 2). This assumes that the occurrence of events of natural phenomena 

is random and mutually independent. In other words, the distribution has stationary and independent 
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increments, with the rate of occurrence depending on the number of events in the specified time interval. 

The distribution, therefore, depends only on the size of the time interval and not its start or end-points. 

In addition, the distributions of each time increment are independent of every other time increment. 

This means that in a specific area, the rate of occurrence (𝜆) and the power law parameter 𝑏, remain 

constant over time.  

This assumption can be true in most cases, and results in a mathematical formalism that is easy to apply. 

By assuming that the probability of event occurrence in a small time interval Δ𝑡 is negligible, the 

probability of observing at least one event within time interval Δ𝑡 is  

𝑃(𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑡𝑖𝑚𝑒 Δ𝑡) = 1 − 𝑒−𝜆Δ𝑡,  

which for 𝜆Δ𝑡 < 0.1 can be approximated as 𝜆Δ𝑡 (Baker, 2013). 

The assumption that recorded events follow a stationary, homogeneous Poisson process is not always 

true, particularly where prehistoric and historical data are incorporated into the analyses (Nott, 2003). 

Temporal, spatial, or spatial–temporal dependencies result in a potentially non-homogeneous effect 

(Cornell and Winterstein, 1988; Benito et al., 2004). These dependencies can manifest through cycles 

(periodic variations), short-term oscillations (seasonal variations), and/or purely random fluctuations 

(Daykin et al., 1993; Cunningham et al., 2012). These dependencies can be attributed to various factors, 

including the state of stress in rock in the instance of seismic event occurrence (Simpson and Richards, 

1981; Gibowicz and Kijko, 1994; Sharma et al., 2013; Scholz, 2015) and, by inference, tsunamis (e.g. 

Ogata and Abe, 1991, Mora et al., 2000, Karakaisis et al., 2002, Talbi and Yamazaki, 2009, Sharma et 

al., 2013; Scholz, 2015). Rainfall, deforestation, and earthquakes influence the occurrence of landslides 

(Tatard et al., 2010), whereas weather phenomena, such as El Niño Southern Oscillation (ENSO) affect 

meteorological and hydrological occurrences (Khaliq et al., 2006; Egüen et al., 2016). Therefore, an 

assumption that the stationary Poisson distribution can be used to describe the temporal occurrence of 

events is not necessarily true and neither is the assumption of independent, identically distributed event 

sizes.  
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These levels of uncertainty of potential non-homogeneous effects in the data are often referred to as 

statistical uncertainty or aleatory uncertainty, where the variability in the data is random and cannot 

necessarily be reduced by additional information. The inherent randomness in the data is the 

unpredictable physical properties of the data. Epistemic uncertainty refers to the lack of understanding 

of the process owing to insufficient data (McGuire and Toro, 1986). In an interesting article, Der 

Kiureghian and Ditlevsen (2009) discuss the difference between aleatory and epistemic uncertainties, 

how uncertainty manifests, and how to deal with it. Anderson et al. (2000) describe how the primary 

form of uncertainty in the data is epistemic in nature but is confused sometimes with aleatory 

uncertainty. Additionally, the authors state that the decision on whether epistemic or aleatory 

uncertainty is applicable depends on the context and the application of information in the ‘modelling 

universe’. It is possible, therefore, for a certain uncertainty to migrate from aleatory to epistemic based 

on how the ‘modelling universe’ changes.  

In the case of natural hazard assessment, uncertainties in the data can prove difficult to identify and/or 

remove. Often, they are dealt with by using complex modelling of dependence structures, as well as 

simulations. This situation is attributable to most natural hazard event datasets not only being 

incomplete or not long enough but also having certain elements of uncertainty related to location and 

size. A wide range of opinions on spatial and temporal fluctuations of, e.g. seismogenic processes and, 

by inference, tsunami occurrences are discussed i.e. by Ogata and Abe (1991), Mora et al. (2000), 

Karakaisis et al. (2002), Talbi and Yamazaki (2009), Parsons and Geist (2008), Tatard et al. (2010), 

Witt et al. (2010).  

Cornell and Winterstein (1988) showed that a deviation of up to 30% could be observed in the Poisson 

process of an earthquake dataset before the assumption of a stationary Poisson process no longer holds 

and negatively affect the results. Rhoades (1996) indicated that if the dataset spanned a sufficient time 

period (Δ𝑡) , the effects of short-term clustering in an earthquake dataset because of fore- and 

aftershocks would not have a noteworthy influence on the results.  
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This conclusion can be extended to other types of natural phenomena. Nevertheless, it is important that 

this type of uncertainty in the data is accounted for, if possible, to ensure that the perceived hazard is 

not under- or overestimated. 

 

3.2.2.1 Mixture distributions 

One way of providing for weak dependencies and non-homogeneity in the data (excluding trends), is to 

assume that the parameters of the distributions are random. In the non-stationary Poisson process, the 

constant mean of the Poisson process (𝜆Δ𝑡) is assumed a random variable and is incorporated using 

mixture or Bayesian distributions (e.g. Pisarenko et al., 1996; Pisarenko and Lyubushin, 1997; Ogata, 

1999b; Rotondi and Varini, 2007; Vicini et al., 2013). This method is used also in economics, finance, 

and insurance (McDonald and Butler, 1987; Daykin et al., 1993; Cunningham et al., 2012). Both 

mixture and Bayesian distributions assume that a parameter of a distribution, in this instance 𝜆 and 𝛽, 

is distributed randomly. Classic Bayesian theory requires prior information to be independent regarding 

the data (Von der Linden et al., 2014). Unfortunately, in natural hazard assessments, the Bayes’ rule is 

frequently used incorrectly by incorporating a priori information that is dependent on the data 

(Fernandes et al., 2010; Yadav et al., 2013). With mixture distributions, the uncertainty in the data 

follows directly from the observations by assuming that the relevant parameters are stochastic variables 

and subjected to change (Daykin et al., 1993; Cunningham et al., 2012), imparting a semi-parametric 

feel to the modelling process. This technique is used also to model different latent structures in a dataset 

(Marin et al., 2005). The term Bayesian is used often to refer to a mixture or compound distributions 

for continuous variables in field-specific literature, e.g. Mortgat and Shah (1979), Campbell (1982, 

1983), Parvez (2007), and Yazdani and Kowsari (2013). The mixing distribution can be viewed as a 

priori information and the mixture distribution as the predictive posterior distribution. However, 

whereas the resulting posterior distributions are the same (for the distributions defined in this thesis), 

the requirement of application of the Bayesian and mixture distributions are fundamentally different. 
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Alternative methods to consider model parameter uncertainty are described in Mortgat and Shah (1979) 

who used a combination of the Bernoulli and beta distributions, whereas Dong et al. (1984) and 

Stavrakakis and Tselentis (1987) used a combination of uniform and multinomial distributions. Bender 

and Perkins (1993) and Rhoades et al. (1994) provide reviews of various alternative ways to deal with 

various uncertainties. Furthermore, Shi and Bolt (1982) and Guttorop and Hopkins (1986) addressed 

the question of fluctuations in the hazard parameters by applying an approximate variance stabilising 

transformation to the power law parameter 𝑏, which is assumed to be a slowly varying random variable. 

Mixture distributions assume that the occurrence distributions are defined for the random variable 𝑋 by 

the original CDF ℱ𝐴 for the parameter 𝜃𝑖 (for 𝑗 = 1,…𝑥), from the parameter space Θ, which is also a 

random variable described by the mixing distribution ℱ𝐵. The mixture distribution for Θ is denoted as 

ℱ𝐴 ⋀ ℱ𝐵Θ . In an instance of the mixing distribution ℱ𝐵 having a discrete origin with probabilities 𝑝𝑗, 

the mixture distribution is also discrete, known as a countable mixture. Assuming that the CDF of ℱ𝐴 

takes the form 𝐹𝑋(𝑥; 𝜃), dependent on 𝜃, the CDF of the countable mixture 𝑌, in the discrete instance, 

takes the form (Campbell, 1982, 1983; Johnson et al., 2005) 

𝐹𝑌(𝑦) =∑𝐹𝑋(𝑥; 𝜃)𝑝𝜃(𝜃)

𝜃

,  

with the moments of 𝑌 defined as 

𝐸[𝑌𝑛] = 𝑚𝑌
(𝑛)

=∑𝑚𝑋
(𝑛)(𝜃)𝑝𝜃(𝜃)

𝜃

.  

The continuous instance or the infinite mixture distribution is defined in terms of the conditional CDF 

𝐹𝑋(𝑥; 𝜃), which is dependent on the random variable 𝜃, with a PDF form ℎ𝜃(𝜃). The resultant mixture 

takes the form  
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𝐹𝑌(𝑦) = ∫ 𝐹𝑋(𝑥; 𝜃)ℎ𝜃(𝜃)

𝜃

𝑑𝜃  𝜃 ∈  𝛩, (3.20) 

with the moments of 𝑌 defined as 

𝐸[𝑌𝑛] = 𝑚𝑌
(𝑛)

= ∫ 𝑚𝑋
(𝑛)(𝜃)ℎ𝜃(𝜃)𝑑𝜃

∞

−∞

, (3.21) 

such that the mean and variance reduce to 

𝑚𝑌 = ∫ 𝑚𝑋 (𝜃)ℎ𝜃(𝜃)𝑑𝜃

∞

−∞

, (3.22a) 

𝜎𝑌
2 = 𝑚𝑌

(2)
− (𝑚𝑌

(1))
2
= ∫ 𝑚𝑋

(2)(𝜃)ℎ𝜃(𝜃)𝑑𝜃

∞

−∞

− ( ∫ 𝑚𝑋
(1)(𝜃)ℎ𝜃(𝜃)𝑑𝜃

∞

−∞

)

2

. (3.22b) 

The distribution of 𝑌 can be described as a weighted average of the CDF of 𝑋 for each realisation of 𝜃.  

This thesis accounts for the randomness of the recurrence parameters with the help of the two-parameter 

gamma mixing density function. This function is a convenient choice in many research fields, as it is 

flexible enough to take on different forms through the shape (𝑝) and scale (𝑞) parameters of the gamma 

distribution. Examples of probabilistic models using gamma distribution are found in engineering 

(Hamada et al., 2008), seismology (Benjamin, 1968; Campbell, 1982, 1983; Benjamin and Cornell, 

2014), transport (Lord and Park, 2008), and the insurance and risk industry (Klugman et al., 2008).  

The choice of the gamma distribution is not random. Similar to the Poisson process, it is infinitely 

divisable, a resultant condition from iid random variables. The gamma distribution is also the maximum 

entropy distribution for the Pearson Type III distributions (Pearson 1894, 1895). This means that the 

distribution commits only to the known information, and limits the prior information required. In 

addition, it adheres to the characteristic of systems governed by physical laws that always tend to move 

toward maximum entropy. As Jaynes (1957) said, the resulting maximum entropy distribution, “...is the 
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least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard 

to missing information”. Compared with principal distributions, mixture distributions have the 

additional benefit that the unconditional variance of the mixture distribution is larger because of the 

assumed uncertainty in the mixing distribution (Klugman et al., 2008).   

Assuming a gamma mixing distribution ~𝐺𝐴𝑀(𝑝, 𝑞) that equals 

ℎ𝑍(𝑧) =
𝑧(𝑞−1)𝑝𝑞

Γ(q)
exp(−𝑝𝑧) 𝑧, 𝑝, 𝑞 > 0, (3.23a) 

with the gamma function defined as  

Γ(𝑞) = ∫ 𝑧(𝑞−1) exp(−𝑧) 𝑑𝑧

∞

0

𝑞 > 0, (3.23b) 

such that the mean, variance, and coefficient of variance equal  

𝑀𝑒𝑎𝑛: 𝜇𝑧 = 𝑞/𝑝

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎𝑧
2 = 𝑞/𝑝2

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑣𝑧 = 𝜎𝑧/𝜇𝑧

. (3.23cc) 

 

The gamma function is a logical choice, as it is a conjugate prior for both the Poisson and exponential 

distributions. In terms of Bayesian statistics, ℎ𝑍(𝑧) can be seen as a priori distribution and the mixture 

distribution 𝐹𝑌(𝑦) from Eq. 3.20, as the predictive posterior distribution with hyper-parameters 𝑝 and 

𝑞.  

 

3.2.2.2 Parameter uncertainty in occurrence distribution  

Assumption 2 is replaced by Assumption 12 by incorporating the two-parameter gamma distribution to 

account for uncertainty in the temporal occurrence. 
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Assumption 12. The occurrence of observed events is a non-homogeneous Poisson process.  

 

The probability to observe a number of 𝑛 events in the specific area under investigation, for the time 

interval 𝛥𝑡, for a non-homogeneous Poisson distribution equals  

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) = ∫ 𝑃𝑁(

∞

0

𝑛; Δ𝑡)𝑓Λ(𝜆)𝑑𝜆,  

resulting in the Poisson-gamma distribution, with gamma hyper-parameters 𝑝𝜆 and 𝑞𝜆. The probability 

is then defined as 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑝𝜆
Δ𝑡 + 𝑝𝜆

)
𝑞𝜆
(

Δ𝑡

Δ𝑡 + 𝑝𝜆
)
𝑛

. (3.24) 

where 𝑣𝜆 is the coefficient of variance for 𝜆̅. The derivation is available in the Appendix. 

Equation 3.24 is equivalent to the negative binomial distribution. Interestingly, the resultant Bayesian 

formulation with the gamma distribution as a priori information also results in the negative binomial 

distribution (Karlis and Xekalaki, 2005). The mean, variance, and coefficient of variance for 𝜆 are 

defined in terms of the parameters 𝑝𝜆 and 𝑞𝜆, and are given in Eq. 3.25. 

𝐸(𝜆) = 𝜆̅ =
𝑞𝜆
𝑝𝜆
, (3.25a) 

𝑣𝑎𝑟(𝜆) = 𝜎𝜆
2 =

𝑞𝜆

𝑝𝜆
2, (3.25b) 

𝑣𝜆 = 𝜎𝜆/𝜇𝜆. (3.25c) 

 

Alternatively, 𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) can be rewritten as 
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𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) ≡ 𝑃𝑁(𝑛|𝜆̅, 𝛥𝑡, 𝑞𝜆) =
𝛤(𝑛 + 𝑞𝜆)

𝑛! 𝛤(𝑞𝜆)
(

𝑞𝜆

𝜆̅𝛥𝑡 + 𝑞𝜆
)

𝑞𝜆

(
𝛥𝑡𝜆̅

𝛥𝑡𝜆̅ + 𝑞𝜆
)

𝑛

. (3.26) 

The derivation is available in the Appendix. 

 

3.2.2.3 Parameter uncertainty in event size distribution 

Similarly, the two-parameter gamma distribution is used to account for uncertainty in the parameters of 

the event size distribution, with Assumption 13 replacing Assumption 3. This is applied to the 

conditional CDFs and PDFs of the shifted-truncated event size distributions (Eqs 3.7a and b), and the 

extreme event size distributions (Eqs 3.17a and b). The same process can be followed for the unaltered 

and shifted distributions. The exponential-gamma function is also known as the Lomax or Pareto II 

function (Arnold, 2014).  

For the rest of this thesis, the conditional CDFs and PDFs will be referred to only as CDF and PDF. 

 

Assumption 13. The frequency–event-size relation of random variable 𝑋  is defined in terms of 𝑁 

(random) possible events 𝑋 = (𝑋1, 𝑋2, … 𝑋𝑁) that account for the possibility that the 𝑁  events are 

random, weakly dependent, and identically distributed. 

 

The normalised, shifted-truncated exponential event size distribution of Eq. 3.7a is altered to allow for 

a varying 𝛽  parameter. The CDF and PDF of the shifted-truncated exponential-gamma event size 

distribution equal 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = 𝐶𝛽 [1 − (
𝑞𝛽

𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

] 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, (3.27a) 
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𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = 𝐶𝛽𝛽̅ [1 +
𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛)

𝑞𝛽
]

−(𝑞𝛽+1)

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 , (3.27b) 

and  

𝐶𝛽 = [1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]

−1

. (3.27c) 

The parameters 𝑝𝛽 and 𝑞𝛽 represent the parameters of the gamma function, such that 𝑝𝛽 = 𝛽̅ 𝜎𝛽
2⁄  and 

𝑞𝛽 ≡ 𝑣𝛽
−2 = 𝛽̅2 𝜎𝛽

2⁄ , and 𝛽̅ and 𝜎𝛽
2 denote the mean and variance of 𝛽, derived in a similar manner as 

Eqs 3.25a and b. The derivations of Eqs 3.27a to c are available in the Appendix. 

A similar extension is conducted for the extreme shifted-truncated distributions by substituting Eqs 3.27 

a and b into the generalised extreme value distribution formulas defined in Eqs 3.14 a and b. The CDF 

and PDF of the shifted-truncated extreme exponential-gamma distribution equal 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃 , 𝛽̅, 𝜆̅𝑃 , 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝒗𝑷) = 

exp(−𝜆̅𝑃Δ𝑡𝑃 [1 − 𝐶𝛽 [1 − (
𝑞𝛽

𝛽̅(𝑥0 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]]) 𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥, 

(3.28a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃 , 𝛽̅, 𝜆̅𝑃 , 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝒗𝑷) =  

𝜆̅𝑃𝛥𝑡𝑃𝛽̅𝐶𝛽 [1 +
𝛽̅(𝑥0 − 𝑥𝑚𝑖𝑛)

𝑞𝛽
]

−(𝑞𝛽+1)

                                          

× {exp [−𝜆̅𝑃𝛥𝑡𝑃 (1 − 𝐶𝛽 [1 − (
𝑞𝛽

𝛽̅(𝑥0 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

])]} 𝑥𝑚𝑖𝑛 ≤ 𝑥0 ≤ 𝑥𝑚𝑎𝑥

,  

(3.28b) 

where 𝒗 = (𝑣𝜆 , 𝑣𝛽) is the coefficient of variance of 𝜆 and 𝛽, and 𝐶𝛽, as defined in Eq. 3.27c. 
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3.2.3 Uncertainty in determination of event size  

Uncertainty in event size measurement refers to errors that occur because of uncalibrated instruments, 

or when making use of qualitative assessments of the effect of an event on the environment. One way 

of dealing with the uncertainty of the event size is to assume that the observed size of an event (apparent 

event size) 𝑥 consists of the true size 𝑦 and an error 𝜀, such that 𝑥 = 𝑦 + 𝜀. The uncertainty in size 

measurement in this thesis is addressed by using hard-bound and soft-bound models utilising the 

convolution theorem.  

 

Assumption 14. The random variable 𝑋 refers to the apparent size of events, such that 𝑋 = 𝑌 ± 𝛦, 

where 𝑌 is the random true event size and 𝐸 is the random, stochastically independent error. The CDF 

for 𝑋 equals 

𝐹𝑋(𝑥) = 𝑃(𝑌 + Ε ≤ 𝑥),  

and the PDF of 𝑋 is  

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
.  

 

Following that the two random variables 𝑌 and Ε are independent (Tinti and Mulargia, 1985), with the 

respective PDFs of 𝑓𝑌(𝑦)  and 𝑔Ε(𝜀) . The CDF of 𝑋  is evaluated using the convolution theorem 

((𝑓 ∗ 𝑔)(𝑥)) and the Leibniz differentiation rule of an integral as 

𝐹𝑋(𝑥) = ∫ 𝑓𝑌(𝑦) [∫ 𝑔Ε(𝜀)𝑑𝜀
𝑥−𝑦

−∞

] 𝑑𝑦
∞

−∞

,  

𝑓𝑋(𝑥) = (𝑓 ∗ 𝑔)(𝑥) = ∫ 𝑓𝑌(𝑥 − 𝜀)𝑔𝐸(𝜀)𝑑𝜀

∞

−∞

= ∫ 𝑓𝑌(𝜀)𝑔𝐸(𝑥 − 𝜀)𝑑𝜀

∞

−∞

.  
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3.2.3.1 Hard-bound model  

Hard-bound models assume that the event size uncertainty is described as a uniform distribution 

𝑈𝑁𝐼𝐹(−𝛿, 𝛿). This is typically assumed in the instances of prehistoric data, where only a range for the 

event size can be provided. For the hard-bound models 𝛿 =
1

2
(𝑥𝑈 − 𝑥𝐿), where 𝑥𝐿 for the lower bound 

and 𝑥𝑈 for the upper bound of the apparent event size 𝑥.  

The hard-bound PDF of 𝑓𝑋(𝑥) follows from the convolution and equals 

𝑓𝑋(𝑥|𝛿) =
1

2𝛿
∫ 𝑓𝑌(𝑥 − 𝜀)𝑑𝜀

+𝛿

−𝛿

.  

 

For the interval 𝑥 ≥ 0, the support of the event size distribution, the equation updates to 

𝑓𝑋(𝑥|𝛿) =
1

2𝛿
[𝐹𝑌(𝑥 + 𝛿) − 𝐹𝑌(𝑥 − 𝛿)],  

such that 

𝑓𝑋(𝑥|𝛿) =
1

2𝛿
[𝐹𝑌(𝑥𝑈) − 𝐹𝑌(𝑥𝐿)]  𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈. (3.29) 

 

Using the general formula of Eq. 3.29, the chosen CDF and PDF can be updated to make provision for 

event size uncertainty. The updated CDF and PDF, when applying the shifted event size distributions 

(e.g. Eqs 3.6 and 3.16), with or without making provision for parameter uncertainty, reduce to 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝛿) =
1

2𝛿
∫𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝛿)𝑑𝑥, 

 

(3.30a) 
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𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝛿) = 

1

2𝛿
{

𝐹𝑌(𝑥 + 𝛿|𝑥𝑚𝑖𝑛, 𝛿) − 𝐹𝑌(𝑥𝑚𝑖𝑛 − 𝛿|𝑥𝑚𝑖𝑛, 𝛿) 𝑥𝑚𝑖𝑛 − 𝛿 ≤ 𝑥 ≤ 𝑥𝑈

𝐹𝑌(𝑥 + 𝛿|𝑥𝑚𝑖𝑛, 𝛿)  − 𝐹𝑌(𝑥 − 𝛿|𝑥𝑚𝑖𝑛, 𝛿) 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈;   𝑥𝐿 > 𝑥𝑚𝑖𝑛

. 
(3.30b) 

 

In practice, the cut-off of the lower part of the event size range is not as sharp as depicted in these 

equations. The transition between 𝑥 < 𝑥𝑚𝑖𝑛 and 𝑥 ≥ 𝑥𝑚𝑖𝑛 occurs more gradually, with 𝑥 < 𝑥𝑚𝑖𝑛 (i.e. 

𝑥𝑚𝑖𝑛 − 𝛿) still being recorded but not representing a complete set of event sizes. The equations are, 

therefore, normalised to start from 𝑥𝑚𝑖𝑛, where the researcher is sure that all the events have been 

recorded. This is done by dividing the PDF for 𝑥𝑚𝑖𝑛 ≤ 𝑥 by the corresponding normalising coefficient 

1 − 𝐹𝑌(𝑥𝑚𝑖𝑛|𝑥𝑚𝑖𝑛, 𝛿).  

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝛿) =
1

2𝛿
∫𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝛿)𝑑𝑥, (3.31a) 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝛿) = 

1

2𝛿
{

0 𝑥 < 𝑥𝑚𝑖𝑛
𝐹𝑌(𝑥 + 𝛿|𝑥𝑚𝑖𝑛, 𝛿) − 𝐹𝑌(𝑥 − 𝛿|𝑥𝑚𝑖𝑛, 𝛿)

1 − 𝐹𝑌(𝑥𝑚𝑖𝑛|𝑥𝑚𝑖𝑛, 𝛿)
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑎𝑛𝑑  𝑥 ≥ 𝑥𝑚𝑖𝑛

. 
(3.31b) 

 

 

For the shifted-truncated distribution as defined in Eqs 3.7, 3.17, 3.27 or 3.28, Eq. 3.31 yields 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝛿) =
1

2𝛿
∫𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝛿)𝑑𝑥, (3.32a) 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛿) = 

1

2𝛿

{
 
 

 
 

0 𝑥 < 𝑥𝑚𝑖𝑛

[
𝐹𝑌(𝑥 + 𝛿|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)  − 𝐹𝑌(𝑥 − 𝛿|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)

1 − 𝐹𝑌(𝑥𝑚𝑖𝑛|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛿)
]

𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈 𝑎𝑛𝑑
𝑥𝑚𝑖𝑛 ≤ 𝑥 < 𝑥𝑚𝑎𝑥 − 𝛿

[
1 − 𝐹𝑌(𝑥 − 𝛿|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛿) 

1 − 𝐹𝑌(𝑥𝑚𝑖𝑛|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛿)
] 𝑥𝑚𝑎𝑥 − 𝛿 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 + 𝛿

. 
(3.32b) 
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The relevant CDFs, with or without making provision for parameter uncertainty, are substituted into 

Eq. 3.32b to obtain the hard-bound event size distributions for the shifted-truncated distributions. The 

CDFs for Eq. 3.32b are obtained by solving the integral with numerical methods. 

 

3.2.3.2 Soft-bound model 

A second method to introduce the event size error 𝐸 is to assume that the boundaries of the error follow 

a continuous distribution, with a support for real numbers ℝ. The Gaussian distribution is used typically, 

as seen in Tinti and Mulargia (1985), who first introduced the soft-bound model for earthquake 

magnitudes by defining the error as 𝜀~𝑁(0, 𝜎𝑥
2). Let  

𝑔𝜎𝑥(𝜀) =
1

𝜎√2𝜋
𝑒
−
1

2
(
𝜀

𝜎𝑥
)
2

.  

 

The apparent new distribution for event size equals 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) = ∫ [𝑓𝑌(𝑦) ∫ 𝑔𝜎𝑥(𝜀)𝑑𝜀

𝑥−𝑦

−∞

] 𝑑𝑦

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

. (3.33) 

The CDF of the soft-bound model for the shifted-truncated exponential-gamma distribution (Eq. 3.28a) 

was derived by Ms. S. Verryn (personal communication, 2011) and is provided in the Appendix and 

Kijko et al. (2016) as 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) =
𝐶𝛽𝛽̅𝑞𝛽

𝑞𝛽+1

2𝜎𝑥
{𝐴 + 𝐵} 

𝐴 =
(𝑟1 + 𝑟2𝛼)

−𝑞𝛽

𝑟2𝑞𝛽
|
𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

, 

(3.34) 
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𝐵 = (
2

𝜋
)
1/2

∑
(−1)ℎ

2ℎℎ! (2ℎ + 1)

1

𝑏2ℎ+2

∞

ℎ=0

× ∑
(2ℎ + 1)! (−𝑟1)

𝑗(𝑟1 + 𝑟2𝛼)
2ℎ+1−𝑞𝛽−𝑗

(2ℎ + 1 − 𝑗)! 𝑗! (2ℎ + 1 − 𝑞𝛽 − 𝑗)

2ℎ+1

𝑗=0

|
𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

, 

in which 𝐶𝛽 = [1 − (
𝑞𝛽

𝑞𝛽+𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
)
𝑞𝛽
]
−1

 (Eq. 3.27c), 𝑟1 = 𝑞𝛽 + 𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) , 𝑟2 = 𝛽̅𝜎𝑥 ,            

𝛼 = 𝑞𝛽 + 𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) and 𝑏 = −𝛽̅𝜎𝑋. The derivations are available in the Appendix. The relevant 

PDF can be derived by differentiating Eq. 3.34 but, owing to its complexity, it is solved numerically.  

 

3.2.4 Uncertainty of event occurrence 

In some natural phenomena, the underlying, mechanical trigger of the event is sometimes questionable. 

This is particularly relevant to prehistoric and historical tsunami occurrences, as it can be difficult to 

distinguish between the eroded environmental effects of a tsunami and severe storm surges and floods. 

Earthquake datasets struggle to distinguish between triggered and induced events, and landslides can 

be caused by extreme rainfall or earthquakes. Some datasets have an additional variable that expresses 

the validity or quality of the event. For example, the Genesis and Impact of Tsunamis on European 

Coasts (GITEC) catalogue criteria (Tinti and Maramai 1996; Tinti et al., 2001) is a tsunami validity 

index for each observation ranging from 0, the event is considered extremely improbable, to 4, the event 

is considered a definite tsunami with probability near 1. 

The presence of uncertain and questionable event data with respect to the applied model can affect the 

likelihood function, leading to an erroneous assessment of the recurrence parameters. To consider the 

uncertainty associated with an event, the standard likelihood function is replaced with the weighted 

likelihood (WL) function defined in Section 3.2.1. The weighted maximum likelihood estimation 

(WMLE) is used widely in many branches of the sciences, particularly physics (e.g. Lyons, 1989). The 
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formalism of the WMLE extends Wald’s general principle of the maximum likelihood parameter 

estimation (Hu and Zidek, 2002; Markatou et al., 1998; Wang, 1992, 2001; Wang et al., 2004). In 

addition, the procedure preserves at least the first-order asymptotic properties of the classic likelihood 

function, leading to estimators with the usual asymptotic behaviour (Markatou et al., 1998; Wang, 

2006). 

The weighted likelihood function in the context of the above methodology is defined by introducing 

𝑤𝑗 ≡ 𝑤(𝑥𝑗) as the known weight of observation 𝑥𝑗. For example, the likelihood function 𝐿𝛽𝑖(𝛽̅|𝒙𝑖), in 

the instance of all the uncertainty types being accounted for, equals 

𝐿𝛽𝑖(𝜆̅, 𝛽̅|𝓘𝑰) ≡∏𝑓𝑋
i(𝑥𝑗|𝛽̅, 𝓘𝑰)

𝑤𝑗

𝑛𝑖

𝑗=1

.   (3.35) 

The weights range from [0, 1], where 1 is equivalent to 100% assurance of the validity of an event. The 

effect of questionable events in the assumed model is reduced. The background information matrix for 

Eq. 3.35 is defined as 𝓘𝐼 = (𝒙𝑖 , 𝒗𝒊, 𝑥𝑚𝑖𝑛
(𝑖)

, 𝑥𝑚𝑎𝑥) with 𝒗𝒊 = (𝑣𝜆𝑖 , 𝑣𝛽𝑖). 

The validity index in event datasets provides an opportunity to calculate the distribution of the most 

probable number of events in the dataset. For instance, if the researcher would like to distinguish 

between the number of tsunamis and storm surges, higher weights can be assigned to events that have 

evidence that a tsunami occurred. The probable number of tsunami events would, therefore, be equal or 

less than the total number of events in the dataset.  

Following this description, and under the assumption that 𝑤𝑗 < 1 , the probability that 𝑛 out of 𝑁 

events in the dataset occurred or equivalently the most probable number of events, takes the form of a 

binomial sum (Benjamin and Cornell, 2014) 
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𝑃( 𝑛 out of 𝑁 events in dataset occurred)

= [∏ 𝑤𝑘1

𝑛

𝑘1=1

∙ ∏ (1 − 𝑤𝑘2)

𝑁

𝑘2=𝑛+1

]

+ [(1 − 𝑤𝑛+1)∏(𝑤𝑘1)

𝑛+1

𝑘1=2

∙ ∏ (1 − 𝑤𝑘2)

𝑁

𝑘2=𝑛+2

]

+ ⋯[ ∏ 𝑤𝑘1

𝑁

𝑘1=(𝑁−𝑛)+1

∙ ∏ (1 − 𝑤𝑘2)

(𝑁−𝑛)

𝑘2=1

], 

(3.36) 

where 𝑗 = 1,… ,𝑁. The probability of all 𝑁 events in the dataset having a validity index 𝑤𝑗 = 1 equals 

𝑃(𝑁 events in dataset) =∏𝑤𝑗

𝑁

𝑗=1

, (3.37) 

for 𝑁 independent events in the dataset. The average and standard deviation of the most probable 

number of events are 

𝐸(𝑛 out of 𝑁 eventsoccurred ) =∑𝑤𝑗

𝑁

𝑗=1

, (3.38a) 

𝑆𝐷(𝑛 out of 𝑁 possible events occurred) = √∑𝑤𝑗(1 − 𝑤𝑗)

𝑁

𝑗=1

. (3.38b) 

The model parameters can be estimated in several ways. If the likelihood function of the data is known, 

the obvious choice is the WMLE. If any additional independent information about the model parameters 

is available, BI can replace WMLE.  
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3.3 Recurrence Parameter Estimation  

Several techniques can be applied to assess the model recurrence parameters 𝜆 and 𝛽. These include the 

least squares method (LS), method of moments (MM), maximum likelihood estimation (MLE), and 

Bayesian inference (BI). The LS method is probably the least applicable, as application of this procedure 

is valid only when the model error follows a Gaussian distribution. Furthermore, the LS procedure 

cannot deal adequately with sudden and extreme shifts to the ‘ecosystem’ of the phenomena under 

investigation (Holmes et al., 2008).  

The estimation process in this thesis is dictated by the use of likelihood functions to incorporate various 

types of data, and both MLE and BI are discussed. The different variations of the event size distributions 

can be applied to the likelihood functions. For illustration purposes, the shifted-truncated exponential-

gamma distributions are used. 

The likelihood functions for the 𝑠 instrumental sub-datasets (𝑖 = 1,… 𝑠), as applied to Poisson and 

shifted-truncated mixture distributions (Eqs 3.26 and 3.27a and b), with unknown model parameters 𝜆̅ 

and 𝛽̅, follows the definition in Eq. 3.19b  

𝐿𝜆𝑖(𝜆̅|𝓘𝜆𝑖) = 𝑐𝑜𝑛𝑠𝑡𝑖 (
1

𝜆̅𝑖𝛥𝑡𝑖 + 𝑞𝜆
)

𝑞𝜆

(
𝜆̅𝑖𝛥𝑡𝑖

𝜆̅𝑖𝛥𝑡𝑖 + 𝑞𝜆
)

𝑛𝑖

, 

with 

𝑐𝑜𝑛𝑠𝑡𝑖 = 𝜆̅(𝑥𝑚𝑖𝑛) [1 − 𝐹𝑋 (𝑥|𝑥𝑚𝑖𝑛
(𝑖) , 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽)]

𝑞𝜆
𝑞𝜆𝛤(𝑛𝑖 + 𝑞𝜆)

𝑛𝑖! 𝛤(𝑞𝜆)
, 

(3.39a) 

and 

𝐿𝛽𝑖(𝛽̅|𝓘𝛽𝑖) = [𝐶𝛽𝛽̅]
𝑛𝑖∏[1+

𝛽̅

𝑞𝛽
(𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛

(𝑖) )]

−(𝑞𝛽+1)
𝑛𝑖

𝑗=1

, (3.39b) 
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with, 𝓘𝜆𝑖 = (𝑛𝑖, Δ𝑡𝑖, 𝑣𝜆 , ), 𝓘𝛽𝑖 = (𝒙𝑖, 𝑥𝑚𝑖𝑛
(𝑖)

, 𝑥𝑚𝑎𝑥, 𝑣𝛽 , ), 𝑣𝜆 = 𝜎𝜆/𝜇𝜆, 𝑣𝛽 = 𝜎𝛽/𝜇𝛽, and 𝐶𝛽 is as defined 

in Eq. 3.27c. The derivations are available in the Appendix. 

The likelihood function for the shifted-truncated extreme prehistoric data taking into account parameter 

uncertainty is defined by substituting Eq. 3.28b into Eq. 3.19a, which equals 

𝐿𝑃(𝜆̅, 𝛽̅|𝓘𝑃) =∏

[
 
 
 
 
 

𝜆̅𝑃𝛥𝑡𝑃𝛽̅𝐶𝛽 [1 +
𝛽̅(𝑥0 − 𝑥𝑚𝑖𝑛)

𝑞𝛽
]

−(𝑞𝛽+1)

× {exp [−𝜆̅𝑃𝛥𝑡𝑃 (1 − 𝐶𝛽 [1 − (
𝑞𝛽

𝛽̅(𝑥0 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

])]}
]
 
 
 
 
 

,

𝑛𝑃

𝑗=1

 (3.40) 

with the 𝓘𝑃 = (𝒙𝑃 , 𝚫𝒕𝑃, 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝒗𝑃), and 𝒗𝑷 = (𝑣𝜆, 𝑣𝛽). The likelihood function for historical data 

is derived in a similar manner. 

 

3.3.1 Maximum likelihood estimation 

The maximum of the likelihood function is obtained by solving the system of two equations 
𝜕ℓ

𝜕𝜆̅
= 0 and 

𝜕ℓ

𝜕𝛽̅
= 0, where ℓ = 𝑙𝑛[𝐿(𝜽|𝓘)] with 𝜽 = (𝜆̅, 𝛽̅)

𝑇
. For large samples sizes, the MLE procedure has a 

number of desirable properties. Not only does it provide numerically precise estimates but also it 

facilitates easy model comparisons with the goodness-of-fit tests, such as the likelihood ratio test or 

Akaike information criterion (AIC). In addition, it has asymptotic properties under certain smoothness 

constraints, which include the estimator being asymptotically consistent and independent for the 

existence of a unique maximum for the likelihood function. Furthermore, the estimator will be 

asymptotically normally distributed for large sample sizes, with variances determined by the inverse of 

the Fisher information matrix 𝑰 . In other words, 𝜽̂𝑀𝐿𝐸~𝑁(𝜽, [𝑰(𝜃𝑀𝐿𝐸)]
−1
]. The other asymptotic 

properties of the MLE estimator include efficiency, thereby achieving the Cramér–Rao lower bound as 

the sample size of the dataset approaches infinity, and invariance, it being a minimax estimator (e.g. 

Davison, 2003; Chave, 2017).  
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3.3.1.1 Instrumental data with a single level of completeness 

Following the shifted event size distribution model for a single complete dataset, under the assumptions 

of iid and stationary datasets, Aki (1965) and Utsu (1965) derived estimates for earthquake recurrence 

parameters using both MLE and MM. Surprisingly, both estimators for 𝛽 are defined by exactly the 

same expression of  

𝛽̂ =
1

𝑥̅ − 𝑥𝑚𝑖𝑛
, (3.41) 

where 𝑥̅ = ∑𝑥𝑗/𝑛 and 𝑥𝑗  is the event-sizes in the dataset. Following the central limit theorem (e.g. 

Eadie et al., 1971), if 𝑛 is sufficiently large, the parameter 𝛽̂ in Eq. 3.41 asymptotically approaches the 

Gaussian distribution, i.e. 𝛽̂~𝑁(𝛽̅, 𝜎𝛽
2), with an estimated standard deviation equal to  

𝜎̂𝛽 = −(
𝜕2 ln 𝐿

𝜕𝛽2
)
−
1

2
= 𝛽̂/√𝑛. (3.42a) 

 

A slightly different, but more-accurate estimate of the standard deviation is (Zhang and Song, 1981) 

𝜎̂𝛽 =
𝛽̂𝑛

[(𝑛 − 1)(𝑛 − 2)
1

2]
 , (3.42b) 

which, for large 𝑛 is equivalent to the MLE variance 𝛽̂/√𝑛. The rate of occurrence in the time period 

Δ𝑡 equals  

λ̂ =
𝑛

Δ𝑡
. (3.42c) 

The equations above reflect the simplest case when the uncertainty in event-size is ignored.  
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The estimators for the long-term rate of occurrence 𝜆, for 𝑥𝑗 ≥ 𝑥𝑚𝑖𝑛, for the case where the uncertainty 

in event size is not ignored, is defined by Rhoades (1996). If Assumption 2 regarding the Poisson 

process holds, the number of events in the dataset exceeding a given event size is  

𝜆̂(𝑥) =
𝐸[#𝑋 > 𝑥]

𝛥𝑡
, (3.43a) 

where 𝐸[#𝑋 > 𝑥] is the expected value of the number of successes in 𝑛 binomial trials, such that 

𝜆̂(𝑥) =
∑ [1 − 𝐹𝑋(𝑥𝑗)]
𝑛
𝑗=1

𝛥𝑡
, (3.43b) 

with a variance of  

𝑣𝑎𝑟(𝜆̂(𝑥)) =
1

𝛥𝑡
∑[1 − 𝐹𝑋(𝑥𝑗)

2
]

𝑛

𝑗=1

. (3.43c) 

The same equations can be applied in instances where 𝐹𝑋(𝑥𝑗)  considers the uncertainty of both 

parameters and event sizes. 

 

3.3.1.2  Instrumental data with varying levels of completeness  

Maximisation of the instrumental part of the likelihood function Eq. 3.18 for an instance where no 

parameter or event size uncertainty is assumed provides the generalised Aki–Utsu 𝛽̂ -parameter 

estimator (Kijko and Smit, 2012) 

𝛽̂̅ = (
𝑟1

𝛽̂1
+

𝑟2

𝛽̂2
+⋯+

𝑟𝑠

𝛽̂𝑠
)
−1

, (3.44) 

where 𝑖 = 1,… , 𝑠, 𝑟𝑖 = 𝑛𝑖 𝑛⁄ ; 𝑛 = ∑ 𝑛𝑖
𝑠
𝑖  for ∀ 𝑥𝑖𝑗 ≥ 𝑥𝑚𝑖𝑛

(𝑖)
. In Eq. 3.44, the individual parameters 𝛽𝑖̂ are 

the Aki–Utsu estimators calculated for each individual sub-dataset using the Aki–Utsu estimate of        

Eq. 3.41. Equation 3.44 is generic and can be applied to various functional forms of the likelihood 
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functions, under condition that the likelihood function can be expressed as a multiplication of 

𝐿𝑖(𝜆)𝐿𝑖(𝛽). 

The functional form, where provision is made for incompleteness, parameter uncertainty, uncertainty 

in the event size determination, and uncertainty in event occurrence yields a non-linear likelihood 

function. The maximisation of such likelihood functions can be obtained only by the application of 

numerical methods and iterative procedures. 

 

3.3.1.3 Only extreme data 

For instances where either only extreme prehistoric or historical information is available, and no 

additional uncertainty is accounted for, the respective likelihood function is simplified considerably. 

The solution for the maximum likelihood estimates for extreme data is discussed in Kijko and Dessokey, 

(1987) and Kijko and Sellevoll (1989), and is done by maximising and solving the system of likelihood 

equations (e.g. Eq. 3.40). The maximum likelihood parameter estimates for the stationary shifted-

truncated distribution (Eq. 3.11b) are defined (Kijko and Dessokey, 1987) as 

{
 
 

 
 
1

𝜆̂
=
𝑥̅𝑃 − 𝛥𝑡𝑃𝒂̅̅ ̅̅ ̅̅ ̅

𝐴2 − 𝐴1
                

1

𝛽̂
=
𝛥𝑡𝑃𝑥𝑃𝒂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛥𝑡̅̅ ̅𝑃𝐴2𝑥𝑚𝑎𝑥

𝛥𝑡𝑃𝒂̅̅ ̅̅ ̅̅ ̅ − 𝛥𝑡̅̅ ̅𝑃𝐴2

, (3.45) 

with  

𝑥̅𝑃 =∑𝑥0𝑗

𝑛𝑃

𝑗=1

𝑛𝑃⁄ , 

𝛥𝑡̅̅ ̅𝑃 =∑𝛥𝑡𝑃𝑗

𝑛𝑃

𝑗=1

𝑛𝑃⁄ , 

(3.46) 
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𝛥𝑡𝑃𝒂̅̅ ̅̅ ̅̅ ̅ =∑𝑡𝑃𝑗𝑒
−𝛽𝑥0𝑗

𝑛𝑃

𝑗=1

𝑛𝑃⁄ , 

𝛥𝑡𝑃𝑥𝑃𝒂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑𝑡𝑃𝑗𝑥0𝑗𝑒
−𝛽𝑥0𝑗

𝑛𝑃

𝑗=1

𝑛𝑃⁄ , 

𝐴1 = 𝑒
−𝛽𝑥𝑚𝑖𝑛 , 

𝐴2 = 𝑒
−𝛽𝑥𝑚𝑎𝑥 , 

where 𝒂 is a column vector, with elements 𝑎(𝑥0𝑗) = 𝑒
−𝛽𝑥0𝑗 and 𝑗 = 1,… , 𝑛𝑃 . 

 

In the instance where 𝑥𝑚𝑎𝑥 → +∞ and Δ𝑡𝑃 is a constant, parameter estimates reduce to the maximum 

likelihood estimates of the first Gumbel distribution (Kimball, 1946). The inclusion of the different 

types of uncertainties reduces the model to a non-linear equation, the solution of which requires the 

application of iterative techniques.  

 

3.3.2 Bayesian inference 

The accuracy of the maximum likelihood estimates obtained by the maximisation of likelihood            

(Eq. 3.18) depends upon the quality of the observed dataset. Small datasets often do not yield reliable 

estimates for natural hazards, as they provide only a limited view of the characteristics of the physical 

process. By including prior information in the estimation process, the hazard estimates are improved 

and stabilised. 

Any information describing the natural process under review can be used as a priori information. A few 

typical examples of this is seen in seismology, which includes recurrence parameters for geologically 

similar areas or other geophysical information (Campbell, 1982, 1983; Dong et al., 1984; Papoulia et 

al., 2001; Nomura et al., 2011; Yazdani and Kowsari, 2013). Silva et al. (2017 and references therein) 

provide ideas for what can and is being used as prior information in extreme frequency flood analyses. 
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Patskoski and Sankarasubramanian (2018 and references therein) discuss various potential prior 

information that can be used in time-series-based hydrological studies, such as tree rings, observed 

annual maximum events, and sea surface temperature. These include, among others, the probable 

maximum flood discharge (Fernandes et al., 2010), expert judgement (Viglione et al., 2013), and 

climate covariates (Sun et al., 2014). Other geology-related hazards, such as tsunamis and landslides, 

can include prior information, such as seismotectonics (Geist and Uri, 2012), rainfall thresholds (Berti 

et al., 2012), and expert opinions (Aleotti and Chowdhury, 1999; Yazdani and Kowsari, 2013). 

Uninformative priors are popular also among different types of hazards (Lyubushin and Parvez, 2010; 

Yadav et al., 2013; Cooley et al., 2007). 

Following the Bayesian rule, the posterior distribution 𝑧(𝝍|𝓘) for the likelihood function of 𝐿𝑇𝑜𝑡𝑎𝑙 is 

constructed (Eq. 3.47), with a priori probability defined as 𝜋(𝝍), in which 𝝍 = (𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥)
𝑇

, the 

parameters 𝜆̅ and 𝛽̅  as defined in Eqs 3.39a, b and 3.40, and 𝓘 is the background information that 

denotes all the assumptions related to the particular investigation. In seismology, BI is performed 

typically directly on the shifted-truncated distribution, with the gamma distribution used often as a prior 

to account for parameter uncertainty. This distribution is a conjugate prior to both the Poisson and the 

exponential distributions, resulting in closed-from expressions. In this thesis, the parameter uncertainty 

is accounted for explicitly by using continuous mixture (compound) distributions. Additional 

information, independent of the dataset, is incorporated using prior functions and BI. These priors could 

be taken as uninformative, with 𝜋(𝝍) = 𝑐𝑜𝑛𝑠𝑡, when little or no information is available. Alternatively, 

following the law of large numbers and the central limit theorem, the choice of prior 𝜋𝛽(𝛽̅) for 𝛽̅ is the 

Gaussian distribution, with 𝛽̅~𝑁(𝜇𝛽 , 𝜎𝛽
2) (Aki, 1965; Shi and Bolt, 1982; Kijko and Graham, 1999). 

The mean rate of occurrence is a parameter that is specific to the region and not always known. An 

uninformative prior 𝜋𝜆(𝜆̅) for 𝜆̅ , in the form of a uniform distribution 𝑈𝑁𝐼𝐹[𝜆𝐴, 𝜆𝐵] (Dong et al., 

1984), is assigned. Similarly, an uninformative prior is assumed for the estimation of the maximum 

possible event size for the range 𝑈𝑁𝐼𝐹[𝑥𝑚𝑎𝑥
𝐴 , 𝑥𝑚𝑎𝑥

𝐵 ]. In Eq. 3.47 it is assumed that the prior information 

for 𝛽̅ and 𝜆̅ is independent. Alternatively, a dependent prior 𝜋(𝝍) can be assumed, as in Pisarenko et 
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al. (1996) that implemented uniform priors for𝜆̅, 𝑏̅, and 𝑥𝑚𝑎𝑥 that are constant on a parallelepiped (also 

see Pisarenko and Lyubushin, 1997; Lyubushin et al., 2002; Lyubushin and Parvez, 2010). Assuming 

that the prior information for the three recurrence parameters is independent, the joint prior distribution 

𝜋(𝝍) is defined as [𝜋𝜆(𝜆̅)𝜋𝛽(𝛽̅)𝜋𝑥𝑚𝑎𝑥(𝑥𝑚𝑎𝑥)]. The posterior distribution 𝑧(𝝍|𝓘) and its estimated 

mean 𝜇̂(𝝍|ℐ) and variance 𝜎̂2(𝝍|ℐ) are evaluated numerically, from the following formula  

𝑧(𝝍|𝓘) =

(
1

𝑥𝑚𝑎𝑥
𝐵 −𝑥𝑚𝑎𝑥

𝐴 ) (
1

𝜆𝐵−𝜆𝐴
) exp(−

(𝛽̅−𝜇𝛽)
2

𝜎𝛽
2 )𝐿𝑇𝑜𝑡𝑎𝑙(𝝍|𝓘)

∫∫ (
1

𝑥𝑚𝑎𝑥
𝐵 −𝑥𝑚𝑎𝑥

𝐴 ) (
1

𝜆𝐵−𝜆𝐴
) exp (−

(𝛽̅−𝜇𝛽)
2

𝜎𝛽
2 )𝐿𝑇𝑜𝑡𝑎𝑙(𝝍|𝓘)𝑑𝛽̅ 𝜆̅

. (3.47) 

 

A more detailed description of Bayesian inference can be found in the references such as Davison 

(2003) and Von der Linden et al. (2014). 

The likelihood functions that define the combination of prehistoric, historical, and instrumental data are 

non-linear and require a numerical estimation technique to estimate the parameters 𝜆̂̅ and 𝛽̂̅. Various 

techniques for the maximisation of functions can be employed, as described in Chapter 10 of Press et 

al. (1986). Methods for maximisation in a multi-dimensional instance include the downhill simplex 

method by Nelder and Mead (1965), as well as the direction-set methods. For the purpose of this thesis, 

the downhill simplex method is applied by solving the vector parameter 𝝍 = (𝜆̅, 𝛽̅, 𝑥𝑚𝑎𝑥)
𝑇
 

simultaneously. The estimation of parameter 𝑥𝑚𝑎𝑥 is discussed in Section 3.4 below. 

 

3.4 Maximum Possible Event Size 

The third parameter required in this methodology is the area-characteristic maximum possible event 

size 𝑥𝑚𝑎𝑥. This parameter is defined as the upper limit or largest possible event size that could occur in 

a specified region compared with 𝑥max
(𝑜𝑏𝑠)

, the maximum observed event size in a dataset. This upper 
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limit is introduced by truncating the event size distribution from the right. Currently, two schools of 

thought consider either a sharp or a soft truncation (Hamilton, 1967; Page, 1968; Cosentino et al., 1977; 

Stein and Hanks, 1998; Main and Burton, 1984, Kagan, 1991, 2002a, b). Sharp truncation of a 

distribution refers to the probability of 𝑥𝑗 > 𝑥𝑚𝑎𝑥 being equal to zero (𝑃(𝑋𝑗 > 𝑥max ) = 0). Several 

sharp truncation methods are discussed in Kijko (2004), Kijko and Singh (2011), Beirlant et al. (2017), 

and Vermeulen and Kijko (2017). Soft truncation refers to the assumption that the prevailing 

distribution decays at a faster rate than the assumed power law after point 𝑥𝑚𝑎𝑥 (Sornette and Sornette, 

1999; Pisarenko and Sornette, 2003). The finiteness of event sizes in terms of the dissipative nature of 

physical dynamic systems is discussed by several authors (e.g. Kagan, 1991, 1997, 2002 a, b; Main, 

1996; Sornette and Sornette, 1999; Vere-Jones et al., 2001; Kagan and Schoenberg, 2001; Pisarenko 

and Sornette, 2003; Bird and Kagan, 2004; Kagan, 2010; Pisarenko et al., 2008, 2014). The authors 

provide arguments for several soft truncations or potential decay, including the exponential and gamma 

distribution.  

The evaluation methods for 𝑥𝑚𝑎𝑥  can be classified into deterministic and probabilistic methods. 

Deterministic procedures focus on the empirical relationships between event sizes and the physical 

process of a specific natural hazard. In seismology, the physical processes that influence the size of an 

event include the location, size, and type of seismogenic region and the tectonic fault length (Wells and 

Coppersmith, 1994; Anderson et al., 1996), rate of seismic moment release (Papastamatiou, 1980; 

Anderson and Luco, 1983; WGCEP, 1995; Stein and Hanks, 1998; Field et al., 1999; McGarr, 1984), 

and rupture processes (Ward, 1997). For landslides, the size of an event is determined by local and 

regional geological, hydrological, soil and vegetation characteristics, and meteorological conditions 

(e.g. Guzzetti et al., 2008). As another example, factors such as the abundance of fuel, prevailing 

meteorological conditions, and fire suppression efforts determine the fire event size (e.g. Cumming, 

2001). Clearly, a large component of uncertainty is introduced in the deterministic assessment of the 

upper limit 𝑥𝑚𝑎𝑥, as the nature of the underlying physical processes of natural hazards is not always 

easy to formalise to construct an adequate mathematical model.  
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The probabilistic estimation procedures focus on assessing 𝑥𝑚𝑎𝑥 based solely on the statistical analysis 

of observed event history in the area of interest. These methods consist of the extrapolation of the event 

size relationship. The first procedures for the estimation of the end-points of the distributions were 

probably done by Robson and Whitlock (1964), Woodroofe (1972, 1974), Weiss and Wolfowitz (1973), 

and Hall (1982). Examples of its application in seismology can be seen in Dargahi-Noubary (1983), 

Kijko and Sellevoll (1989, 1992), Pisarenko (1991), and Pisarenko et al. (1996). The probabilistic 

methods to estimate 𝑥𝑚𝑎𝑥 can be classified into parametric, non-parametric estimators, the fit of a CDF 

to the observed event sizes, as well as EVT methods. If the frequency–event-size model is known and 

relatively simple, parametric procedures are used. These procedures include a deterministic procedure 

(Wheeler, 2009), the Tate–Pisarenko (Tate, 1959; Pisarenko et al., 1996; Kendall and Stuart, 1967), 

and the Kijko–Sellevoll methods (Cooke, 1979, Kijko, 2004). If some model anomalies are observed, 

such as a bi-, multi-modal, or non-linear frequency–event-size models or characteristic events, non-

parametric assessment methods can be applied. Examples of non-parametric procedures are a Gaussian 

kernel (Parzen, 1962; Kijko et al., 2001), order statistics (Cooke, 1979), the few largest events method, 

as described by Cooke (1980), and the Robson–Whitlock and Robson–Whitlock–Cooke procedures 

(Quenouille, 1956; Robson and Whitlock, 1964; Cooke 1979). If the functional form of the CDF 𝐹𝑋(𝑥) 

is known, 𝐿1 - and 𝐿2 - regression analyses can be performed, particularly when large outliers are 

observed or when the distribution of the residuals of the CDF follows a Gaussian distribution. Authors 

such as Nuttli (1981) and Fröhlich (1998) investigated extrapolation methods where the frequency–

event-size relation (in these instances the frequency–magnitude Gutenberg–Richter relation) are 

truncated at a pre-specified annual probability of exceedance. Particular interesting methods in EVT 

that could be applied are the methods by Alves and Neves (2014) and Alves et al. (2017), linear sums 

of extreme values, as defined by Cooke (1980), and an EVT standard maximum likelihood estimator 

(Coles, 2001, De Haan and Feirreira, 2007). Beirlant et al. (2017) estimated upper limits for the 

truncated generalised Pareto distribution (GPD) and the truncated Pareto distribution. The EVT 

methods follow a similar underlying structure to the method proposed by Kijko (2004) namely, the 

maximum estimated event size is equal to the observed maximum event size plus something extra.  
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One of the regularity conditions needed for the existence of the asymptotic properties of the maximum 

likelihood function is that the parameter space must be compact and the likelihood function must be 

twice continuously differentiable (LeCam, 1970; Davison, 2003). As the maximum possible event size 

𝑥𝑚𝑎𝑥  is one of the main parameters in the proposed likelihood function for the shifted-truncated 

distributions (e.g. Eq. 3.47), the MLE estimate of 𝑥𝑚𝑎𝑥 using 𝐿(𝝍) will result in the conditions of 

regularity being violated (Cheng and Traylor, 1995; LeCam, 1970; Eadie et al., 1971; Davison 2003). 

Intuitively, if 𝑥𝑚𝑎𝑥
(𝑜𝑏𝑠)

 is used in the evaluation range of the integral, the likelihood function will reach its 

maximum at 𝑥𝑚𝑎𝑥
(𝑜𝑏𝑠)

 and not at the required possible estimated maximum event size 𝑥𝑚𝑎𝑥 . Several 

generic procedures can provide solutions for 𝑥𝑚𝑎𝑥 . These procedures differ with respect to the 

underlying assumptions about the statistical model and/or the information available about natural hazard 

events. For the purpose of this thesis, the Kijko–Sellevoll methodology defined by Kijko (2004) and 

Kijko and Singh (2011) is applied.  

 

Assumption 15. A generic equation for maximum event size, is of the form 

𝑥𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥
(𝑜𝑏𝑠)

+ ∆𝑥, (3.48) 

with 𝛥𝑥 defined as a positive correction factor.  

 

Further, it is assumed that event sizes 𝑋𝑗  (𝑗 = 1,…𝑁) are iid random values, such that 𝑋𝑗 ≥ 𝑥𝑚𝑖𝑛 

(Assumption 4), and can be described by the PDF 𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) and CDF 𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥). The 

approximate variance of 𝑥𝑚𝑎𝑥 equals (Kijko and Graham, 1998; Kijko 2004) 

𝑣𝑎𝑟(𝑥𝑚𝑎𝑥) ≅ 𝜎𝑋
2 + 𝛥𝑥2, (3.49) 

with 𝜎𝑋
2 = 𝜎2 (𝑥𝑚𝑎𝑥

(𝑜𝑏𝑠)) the variance the maximum observed event size. The confidence intervals can be 

derived by assuming that 𝑧𝛼 is defined such that  
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[𝑥𝑚𝑎𝑥 ± 𝑧𝛼𝜎𝑥̂𝑚𝑎𝑥], (3.50) 

where 𝑥𝑚𝑎𝑥
(𝑜𝑏𝑠)

= 𝑀𝐴𝑋(𝑋𝑗), the maximum observed event size in the dataset. The correction factor 𝛥𝑥 

is a function of the applied model and systematically decreases as the time span of the dataset increases 

(Kijko et al., 2017). Following Cooke (1979), the correction factor 𝛥𝑥 is of the form  

𝛥𝑥 = ∫ {

0 𝑥 < 𝑥𝑚𝑖𝑛
[𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)]

𝑛 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥
1 𝑥 > 𝑥𝑚𝑎𝑥

.

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 (3.51) 

 Therefore, the estimator 𝑥𝑚𝑎𝑥 in Eq. 3.48 takes the form 

𝑥𝑚𝑎𝑥 = 𝑥𝑚𝑎𝑥
(𝑜𝑏𝑠)

+ ∫ [𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)]
𝑛𝑑𝑥

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, (3.52) 

with the term 𝑥𝑚𝑎𝑥 appearing on both sides of the equation. To estimate 𝑥𝑚𝑎𝑥, an iterative procedure 

is applied by using 𝑥𝑚𝑎𝑥
(𝑜𝑏𝑠)

 as a starting point. According to Cramér (1961), for large 𝑛  (𝑛 > 10), 

[𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)]
𝑛 ≅ 𝑒−𝑛[1−𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)]. This approximation provides a useful tool to obtain 

semi-analytical solutions for the 𝑥𝑚𝑎𝑥 (Kijko, 2004). 

Using Eq. 3.52, the upper limit 𝑥𝑚𝑎𝑥 can be assessed with reasonable accuracy when a large amount of 

data is available. When the available dataset is too small or the area under investigation is not prone to 

the particular type of natural phenomenon, the assessment will be unreliable. The above procedure for 

assessing the upper limit of the event size distribution can be applied only when the event size 

distribution is known or can be approximated with good accuracy. The smaller the event set the larger 

will be the likelihood that 𝑥𝑚𝑎𝑥  is underestimated (e.g. Chinnery, 1979; Bender, 1988). Therefore, 

improved accuracy of 𝑥𝑚𝑎𝑥  estimates can be achieved by including prehistoric and historical 

information and any other independent information using the Bayesian formalism (e.g. Coppersmith, 

1994; Kijko, 2012).  
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Other methods to increase the robustness of the maximum possible event size is to remove the bias in 

the estimation process of 𝑥𝑚𝑎𝑥 (Lasocki and Urban, 2011) or to apply Bayesian statistics by introducing 

additional information sources (e.g. Cornell, 1994). The methodology described by Cornell (1994) 

introduces additional bias, which is addressed in Kijko (2012). 

 

3.5 Hazard Estimates 

Natural hazard estimates are derived in terms of probabilities of exceedance (𝑃𝐸) and return periods, 

known also as the recurrence interval 𝑅 (e.g. Baker, 2013). Probabilities of exceedance represent the 

probability that a specific event size or larger events will occur within a specific time interval        

(𝑃(𝑋𝑗 ≥ 𝑥𝑗|Δ𝑡)). These probabilities are expressed usually in terms of an annual value 𝑃𝐸1  when 

investigating a period of one year, or the general 𝑃𝐸𝑚 when investigating a period of 𝑚 years. Return 

periods are the inverse of the annual probability of exceedance 1/𝑃𝐸1, i.e. an annual probability of 

exceedance of 10% gives a return period of 10 years.  

Hazard estimates should not be confused with prediction estimates. Prediction aims to identify a small 

and specific area and time window, where the likelihood of an event occurring is high. For this purpose, 

certain short-term triggers are monitored continuously. The aim of prediction is to serve as a form of 

early-warning system. Hazard estimates utilise past observations over decades to establish certain trends 

in the recurrence of events. The aim is to provide the engineering and insurance industries and disaster 

management centres with the necessary tools to develop infrastructure and financial instruments to 

alleviate the effects of natural phenomena when they do occur. 

The probabilities of exceedance and return periods are usually defined per industry. In seismology, it is 

customary to express official seismic hazard maps in terms of a 10% probability of exceedance in             

50 years. In insurance, the question often asked is what the 1–in–200 year loss event would be. This 
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value is required generally for solvency capital requirements and represents the amount of capital 

required to meet obligations to clients.  

The 1–in–200 year event is calculated (e.g. Baker, 2013) to be equivalent to an annual probability of 

exceedance 𝑃𝐸1 = 1/𝑅 of 0.5%, whereas the probability of exceedance in 𝑚 years is calculated as the 

complement of 𝑃𝐸1, i.e. the probability of no exceedance 𝑃𝐸0 with 

𝑃𝐸0 = (1 − 𝑃𝐸1)
𝑚. (3.53) 

Therefore, the probability of exceedance within 𝑚 years is 

𝑃𝐸𝑚 = 1 − (1 − 𝑃𝐸1)
𝑚, (3.54) 

so that the 10% probability of exceedance in 50 years is 

0.1 = 1 − (1 − 𝑃𝐸1)
50 

𝑃𝐸1 = 0.002105 

𝑅 =
1

𝑃𝐸1
= 475 𝑦𝑒𝑎𝑟𝑠. 

 

 

3.6 Model Comparison 

In Section 3.1 a principal model was defined where the frequency–event-size distribution closely 

follows a power law. Section 3.2 describes four types of uncertainty that are often associated with the 

hazard modelling of natural phenomena and how the principal model should be adapted to account for 

these uncertainties. This could yield up to 24 potential different models that can be evaluated with MLE 

and BI, as shown in Table 3.1.  
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TABLE 3.1. List of model variations that can be evaluated using maximum likelihood estimation (MLE) 

and/or Bayesian inference (BI). 

Model Acronym Model Description Number 

SDS 
Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛 
(M1) 

SDS_MAG 
Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛. Event sizes are uncertain. 
(M2) 

SDS_MOD 

Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛. The parameters of the applied distributions are 

uncertain. 

(M3) 

SDS_MAG_MOD 

Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛. Event sizes and the parameters of the applied 

distributions are uncertain. 

(M4) 

SDS_OCC 

Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛 . The uncertainty of event occurrence is 

introduced. 

(M5) 

SDS_MAG_OCC 

Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛. Event sizes are uncertain. The uncertainty of 

event occurrence is introduced. 

(M6) 

SDS_MOD_OCC 

Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛. The parameters of the applied distributions are 

uncertain. The uncertainty of event occurrence is introduced. 

(M7) 

SDS_MAG_MOD_OCC 

Single event dataset containing only instrumental data, with one level 

of completeness 𝑥𝑚𝑖𝑛. Event sizes and the parameters of the applied 

distributions are uncertain. The uncertainty of event occurrence is 

introduced.  

(M8) 

EXT Event dataset containing only extreme events. (M9) 

EXT _MAG 
Event dataset containing only extreme events. Event sizes are 

uncertain. 
(M10) 

EXT _MOD 
Event dataset containing only extreme events. The parameters of the 

applied distributions are uncertain. 
(M11) 

EXT _MAG_MOD 
Event dataset containing only extreme events. Event sizes and the 

parameters of the applied distributions are uncertain. 
(M12) 

EXT _OCC 

 

Event dataset containing only extreme events. The uncertainty of 

event occurrence is introduced. 
(M13) 

EXT _MAG_OCC 
Event dataset containing only extreme events. Event sizes are 

uncertain. The uncertainty of event occurrence is introduced. 
(M14) 
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EXT _MOD_OCC 

Event dataset containing only extreme events. The parameters of the 

applied distributions are uncertain. The uncertainty of event 

occurrence is introduced. 

(M15) 

EXT _MAG_MOD_OCC 

Event dataset containing only extreme events. Event sizes and the 

parameters of the applied distributions are uncertain. The uncertainty 

of event occurrence is introduced. 

(M16) 

LOC 
Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)

 . 
(M17) 

LOC_MAG 
Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)

. Event sizes are uncertain. 
(M18) 

LOC_MOD 

Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)
. The parameters of the applied distributions are 

uncertain. 

(M19) 

LOC_MAG_MOD 

Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)
. The event sizes and the parameters of the applied 

distributions are uncertain. 

(M20) 

LOC_OCC 

Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)
.  The uncertainty of event occurrence is 

introduced. 

(M21) 

LOC_MAG_OCC 

Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)
. The event sizes are uncertain. The uncertainty of 

event occurrence is introduced. 

(M22) 

LOC_MOD_OCC 

Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)
. The parameters of the applied distributions are 

uncertain. The uncertainty of event occurrence is introduced. 

(M23) 

LOC_MAG_MOD_OCC 

Event dataset containing the entire dataset with different levels of 

completeness 𝑥𝑚𝑖𝑛
(𝑖)
. The event sizes and the parameters of the applied 

distributions are assumed uncertain. The uncertainty of event 

occurrence is introduced. 

(M24) 

 

In any modelling process, the question is how well the chosen distribution fits the data. A secondary 

question is how different distributions compare with each other. Several techniques exist to test how 

well a distribution follows the data, e.g. Kolmogorov–Smirnov, Anderson–Darling tests, and 

likelihood-ratios. Methods to discriminate between distributions include the Akaike information 

criterion (AIC), consistent Akaike information criteria (CAIC), correct AIC (AICc), Bayesian 

information criterion (BIC), Deviance Information Criteria (DIC), and the Hannan–Quinn criterion (e.g. 
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Davison, 2003). These criteria are dependent on the underlying log likelihood function. Another popular 

method to investigate fitted models is sensitivity analyses through variance- and entropy analyses (e.g. 

Liu et al., 2004; Schorlemmer et al., 2007; Lam et al., 2017).  

Several authors, e.g. Clauset et al. (2009) applied the Kolmogorov–Smirnov test and likelihood ratios 

to power laws derived from empirical data. Deluca and Coral (2013) specifically investigated the use 

of the Kolmogorov–Smirnov test on non-truncated and truncated power law distributions. The authors 

also introduced an alternative way of using the test by generating multiple synthetic samples based on 

the estimates from the power law. The ensemble of the 𝑝-values was used subsequently to determine 

the appropriateness of the model.  

In addition, graphical tools such as residual analyses are useful, as they can help to visually pinpoint 

where a model appears to depart from the observations or where one model appears to outperform 

another in terms of agreement with the data. Alternative methods to compare models are the Fisher 

Information Criteria, sensitivity analyses in terms of how recurrence parameters and hazard estimates 

react with the various modelling options, and D-optimality that evaluates and minimises the confidence 

ellipsoid around the estimated parameters using the covariance matrix (e.g. Fedorov, 2013).   

All the above-mentioned methods of investigating goodness of fit require datasets that are complete, 

independent modelling parameters, and/or that the distributions are applied to the same underlying 

dataset. These methods can be used to compare models for a single, complete dataset with one 𝑥𝑚𝑖𝑛 

(SDS, models M1–M8) or to compare models containing only extreme data (EXT, models M9–M16). 

Once the data are divided into sub-datasets with different levels of completeness, or instrumental data 

are combined with prehistoric and historical data, the dataset is no longer single or complete (models 

M17–M24). In such instances, the recurrence model parameters 𝜆̂̅ and 𝛽̂̅ are also dependent on each 

other, as seen in Kijko and Sellevoll (1989). For the above stated reasons it is difficult to compare all 

24 possible models with standard goodness-of-fit techniques to determine which combination of input 

data and types of uncertainty would best describe the natural phenomena under investigation.  
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To investigate the contribution of observed information in a model, the log of the likelihood function is 

used to determine the Hessian information matrix (matrix of second derivatives) for 𝜽 = (𝜆̅, 𝛽̅)
𝑇

 

𝐽(𝜽) = −
𝜕2 log 𝐿(𝜽)

𝜕𝜽𝟐
, (3.55a) 

if it exists. This provides details on the relative quantity of information that each sub-dataset contributes 

to the parameter estimate, under the assumption that the model is correct and that the true value of the 

parameter is 𝜽. In the instance where the log likelihood function is the sum of 𝑚 components, the 

information matrix equals 

𝐽(𝜽) = −
𝜕2 log 𝐿(𝜽)

𝜕𝜽𝟐
=∑−

𝜕2 log 𝑓(𝑦𝑖; 𝜽)

𝜕𝜽𝟐

𝑚

𝑗=1

. (3.55b) 

The Fisher information matrix is defined by taking the expectation of the information matrix 𝐽(𝜽) 

𝐼(𝜽) = 𝐸 [−
𝜕2 log 𝐿(𝜽)

𝜕𝜽𝟐
], (3.56) 

with 𝐼(𝜽̂𝑀𝐿𝐸) representing the observed Fisher information matrix evaluated at the MLE estimate. For 

large sample sizes, the Fisher information matrix is both finite and positive definite. The inverse of the 

matrix subsequently serves as the variance-covariance matrix of 𝜽̂  in the asymptote. A variance-

covariance matrix 𝐃(𝜆̂̅, 𝛽̂̅) of the estimated 𝜆̂̅ and 𝛽̂̅ is calculated according to the formula by Edwards 

(1972) 

𝐃(𝜆̂̅, 𝛽̂̅) = −

[
 
 
 
 
𝜕2ℓ

𝜕𝜆̅2
𝜕2ℓ

𝜕𝜆̅𝜕𝛽̅

𝜕2ℓ

𝜕𝛽̅𝜕𝜆̅

𝜕2ℓ

𝜕𝛽̅2 ]
 
 
 
 
−1

, (3.57) 
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where derivatives are calculated at the point 𝜆̅ = 𝜆̂̅ and 𝛽̅ = 𝛽̂̅. The Fisher information matrix and 

subsequent covariance-matrix 𝐃(𝜆̂̅, 𝛽̂̅)  are used to calculate the percentage contribution of each 

individual dataset or prior information to the estimated parameters. 

The choice of model comparison is, in this instance, a function of what is considered reasonable given 

the input data, choice of distributions, and types of uncertainty. Each aspect of the modelling process 

should be evaluated on the grounds that it ‘makes sense’ in the context of the physical process and 

available data. 

 

3.7 Summary 

Chapter 3 introduced the statistical methodology of the generic model through a series of steps and 

assumptions. Each step is described in the respective sections. Section 3.1 provides a description of the 

principal model on the assumption that events are independent and identically distributed and can 

consist of prehistoric, historic and instrumental records. The shifted- and shifted-truncated variations 

on the principal model are introduced to account for small events not observed and a potential upper 

limit in the distribution. In Section 3.2, the principal model and its variations are extended to account 

for the data characteristics of incomplete event datasets, uncertainty in event size determination, 

uncertainty of the applied event occurrence models, and uncertainty of event occurrence. Parameter 

estimation is discussed in Section 3.3, with Section 3.4 concentrating on the assessment of the area-

characteristic maximum possible event size. Section 3.5 focusses on the calculation of the hazard 

estimates in terms of return periods and probabilities of exceedance. Model comparisons methods and 

their potential pitfalls as it relates to the methodology in Chapter 3 are briefly discussed in Section 3.6. 

Figure 1.4 in Section 1.5 provides a schematic illustration of the described methodology in this Chapter.  
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Chapter 4. Synthetic Data Example 

4 44 

The behaviour of the proposed methodology is evaluated using an earthquake dataset synthesised by 

using the Monte Carlo simulation to mimic typical prehistoric, historical, and instrumentally recorded 

earthquake events. The prehistoric data were generated using Eq. 3.28b substituted into Eq. 3.32b, as 

well as the historical data with the historical derivations of these equations. The individual instrumental 

datasets of the different levels of completeness were generated using Eq. 3.34 and visual cumulative 

method (Mulargia and Tinti, 1985). Each sub-dataset has different and decreasing LoC 𝑥𝑚𝑖𝑛
(𝑖)

 over time, 

and different event size errors. The apparent earthquake event sizes, in terms of moment magnitude 𝑀𝑊 

were generated for 𝛽  = 2.302 (𝑏  = 1), and a mean rate of occurrence for a LoC equal to 4, i.e.             

𝜆̅(𝑥𝑚𝑖𝑛=4) = 10 using Eq. 3.26. The chosen values for the parameters are observed typically in areas 

exhibiting tectonic seismicity. The choice of 𝜆̅(𝑥𝑚𝑖𝑛 = 4) = 10 is random. Parameter variation of 25% 

was introduced, as well as uniform event size errors for prehistoric and historical data and Gaussian 

errors for instrumental data. Table 4.1 provides the input for the generation of the data. The evaluated 

time periods were chosen to simulate the way earthquake data are observed usually. Each sub-dataset, 

therefore, has different and decreasing LoC 𝑥𝑚𝑖𝑛
(𝑖)

 and event size errors, as expected in an earthquake 

dataset.  

The recurrence parameter estimates 𝜆̂̅  and 𝛽̂̅  are calculated for 24 possible scenarios using both 

maximum likelihood estimation (MLE) and Bayesian inference (BI) to show the effect of each of the 

uncertainty steps included in the analysis (Table 4.2). This can be regarded also as an analysis of the 

sensitivity of the parameters to changes in the underlying data and the functional models applied. The 

independent priors 𝜋(𝛽̅) and 𝜋(𝜆̅) are restricted, respectively, to 𝑏̅~𝑁(1.0, 0.01) for 𝛽̅(= 𝑏̅ ln 10), 

and an uninformative prior for 𝜆̅. The choices for the priors follow the true global Gutenberg–Richter 

𝑏-parameter estimate for tectonic-active areas (El-Isa and Eaton, 2014) for 𝜋(𝛽̅), and the assumption 

of a lack of knowledge of the rate of occurrence in the region in question for 𝜋(𝜆̅). To assess the effect 
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of including the various epistemic and aleatory uncertainties on the recurrence parameter estimates 𝜆̂̅ 

and 𝛽̂̅, the parameter 𝑥𝑚𝑎𝑥 was set to 9.65 across all scenarios investigated. An analysis of the various 

datasets indicated a percentage variation of approximately 25%, and was included in the modelling 

process whenever MOD was included.  

TABLE 4.1. Synthetic earthquake magnitude dataset for the shifted-truncated exponential-gamma 

distribution with 𝑏 = 1 and 𝜆(𝑥𝑚𝑖𝑛 = 4) = 10.    

Input 
Prehistoric 

(𝑷) 

Historical 

(𝑯) 

Instrumental 1 

(𝒄𝟏) 

Instrumental 2 

(𝒄𝟐) 

Year start 100 000 BC 1500-01-01 1970-01-01 2001-01-01 

Year end 1 AD 1969-12-31 2000-12-31 2017-12-31 

Time periods Δ𝑡 5 000 years [50–2.5] years Annual Annual 

Level of completeness 𝑥𝑚𝑖𝑛
(𝑖)

 7.0 6.0 5.0 4.0 

Magnitude error 0.5 0.5 0.3 0.1 

Number of events 𝑛𝑖 20 20 42 161 

Maximum observed magnitude 𝑥𝑚𝑎𝑥
𝑜𝑏𝑠  9.53 8.84 7.78 6.5 

 

All results for parameter 𝛽̂̅ are discussed in terms of 𝑏̂̅ (𝛽̂̅ = 𝑏̂̅ ln 10), the power law exponent. This 

parameter is often used in the subsequent hazard assessments, e.g. calculation of peak ground 

acceleration (PGA) in seismology. The proposed methodology described in Chapter 3 was applied to 

a synthetic earthquake dataset. In testing the effects of the various types of uncertainty and estimation 

procedures, 48 model variations were investigated. The recurrence parameters 𝜆̂̅ and 𝑏̂̅ were estimated 

using MLE and BI, while keeping the maximum possible event size 𝑥𝑚𝑎𝑥 constant. The results for 

parameters 𝜆̂̅ and 𝑏̂̅ for each scenario are provided in Table 4.2. From this table, it is clear that the 

estimated 𝑏̂̅-parameter depends on the type of input information and the type of uncertainty taken into 

consideration. This table shows the percentage contribution of each type of dataset to the estimates of 

the two recurrence parameters. Figures 4.1 and 4.2 compares the estimates 𝑏̂̅ and 𝜆̂̅ for the modelled 

scenarios. Figures 4.3 to 4.5 show to which extent the estimates 𝜆̂̅ and 𝑏̂̅ rely on the respective input 

information. Figure 4.6 shows the comparison of the output for the estimated return periods.  
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TABLE 4.2. Output of the estimated earthquake recurrence parameters 𝜆̂̅ and 𝑏̂̅ according to the mixture-convolution occurrence and event size distributions for 

the shifted-truncated distribution with 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥. Return periods (R) are provided for event magnitude 8.0 𝑀𝑊. The assumed true Gutenberg–

Richter 𝑏̅-parameter is assumed equal to 1.0 and the true mean rate of occurrence for event size 6.0 𝑀𝑊 is 𝜆̅(𝑥 = 6.0) = 0.1.   

Scenario 
Estimation 

Method 

 Estimated Mean Rate 

of Occurrence 𝝀̂̅ for       

𝒙 = 𝟔. 𝟎  

Estimated  

𝒃̂̅-parameter 

Return 

Period (R) in 

Years for 

𝒙 = 𝟖. 𝟎 

Percentage Contribution (𝝀̂̅) Percentage Contribution (𝒃̂̅) 

PH H Inst Prior PH H Inst Prior 

SDS 
MLE 0.27 ± 0.03 0.70 ± 0.09 97.0 0 0 100 0 0 0 100 0 

BI 0.19 ± 0.02 0.84 ± 0.07 259 0 0 100 0 0 0 65.5 34.4 

SDS_MAG 
MLE 0.20 ± 0.03 0.83 ± 0.11 234.0 0 0 100 0 0 0 100 0 

BI 0.16 ±0.02 0.92 ±0.08 451.0 0 0 100 0 0 0 62.6 37.4 

SDS_MOD 
MLE 0.28 ± 0.08 0.72 ± 0.10 64.5 0 0 100 0 0 0 100 0 

BI 0.21 ± 0.06 0.87 ± 0.08 134.0 0 0 100 0 0 0 63.5 36.5 

SDS_MAG_MOD 
MLE 0.20 ± 0.06 0.88 ± 0.12 140.0 0 0 100 0 0 0 100 0 

BI 0.17 ± 0.05 0.95 ± 0.08 202.0 0 0 100 0 0 0 60.8 39.2 

SDS_OCC 
MLE 0.13 ±0.02 0.74 ±0.13 255 0 0 100 0 0 0 100 0 

BI 0.09 ± 0.02 0.91 ± 0.08 820.0 0 0 100 0 0 0 58.3 41.7 

SDS_MAG_OCC 

MLE 0.13 ± 0.02 0.74 ± 0.13 255.0 0 0 100 0 0 0 100 0 

BI 0.09 ± 0.02 0.91 ± 0.08 822.0 0 0 100 0 0 0 58.3 41.7 

SDS_MOD_OCC 
MLE 0.13 ± 0.04 0.77 ± 0.14 161.0 0 0 100 0 0 0 100 0 

BI 0.09 ± 0.03 0.93 ± 0.09 356.0 0 0 100 0 0 0 57.1 42.9 

SDS_MAG_MOD_OCC 
MLE 0.13 ± 0.04 0.77 ± 0.14 161.0 0 0 100 0 0 0 100 0 

BI 0.09 ± 0.03 0.93 ± 0.09 356.0 0 0 100 0 0 0 57.1 42.9 
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Scenario 
Estimation 

Method 

 Estimated Mean Rate 

of Occurrence 𝝀̂̅ for       

𝒙 = 𝟔. 𝟎  

Estimated  

𝒃̂̅-parameter 

Return 

Period (R) in 

Years for 

𝒙 = 𝟖. 𝟎 

Percentage Contribution (𝝀̂̅) Percentage Contribution (𝒃̂̅) 

PH H Inst Prior PH H Inst Prior 

EXT 
MLE 0.54 ± 0.13 1.41 ± 0.07 1220.0 24.7 75.3 0 0 86.6 13.4 0 0 

BI 0.38 ± 0.09 1.28 ± 0.06 954.0 23.1 76.9 0 0 70.2 18.2 0 11.5 

EXT _MAG 
MLE 0.25 ± 0.05 1.31 ± 0.07 1690.0 27 73 0 0 92.9 7.1 0 0 

BI 0.20 ± 0.04 1.21 ± 0.05 1330.0 25.3 74.7 0 0 69 17.3 0 13.7 

EXT _MOD 
MLE 0.47 ± 0.08 1.50 ± 0.0 685.0 21 79 0 0 50 50 0 0 

BI 0.32 ± 0.08 1.33 ± 0.07 596.0 16.9 83.1 0 0 64 20.8 0 15.2 

EXT_MAG_MOD 
MLE 0.26 ± 0.04 1.48 ± 0.0 1160.0 27.6 72.4 0 0 50 50 0 0 

BI 0.19 ± 0.04 1.28 ± 0.06 844.0 22.2 77.8 0 0 62.8 20.3 0 16.9 

EXT _OCC 
MLE 0.49 ± 0.16 1.43 ± 0.1 1450.0 23.4 76.6 0 0 85.2 14.8 0 0 

BI 0.28 ± 0.09 1.21 ± 0.07 968.0 20.4 79.6 0 0 61.5 21.7 0 16.8 

EXT_MAG_OCC 
MLE 0.22 ± 0.06 1.31 ± 0.1 1980.0 26.1 73.9 0 0 92.2 7.8 0 0 

BI 0.16 ± 0.04 1.17 ± 0.07 1340.0 23 77 0 0 59.3 21.7 0 19 

EXT_MOD_OCC 
MLE 0.41 ± 0.1 1.50 ± 0.00 783.0 20.2 79.8 0 0 50 50 0 0 

BI 0.22 ± 0.07 1.24 ± 0.08 629.0 13.7 86.3 0 0 55.8 24.1 0 20.2 

EXT_MAG_MOD_OCC 
MLE 0.23 ± 0.05 1.49 ± 0.0 1360.0 27 73 0 0 50 50 0 0 

BI 0.14 ± 0.04 1.20 ± 0.07 865.0 19.1 80.9 0 0 54.2 24.1 0 21.7 

LOC 
MLE 0.11 ± 0.01 0.97 ± 0.02 798.0 3.5 8.8 87.7 0 79.9 8.3 11.8 0 

BI 0.11 ± 0.01 0.97 ± 0.02 802.0 3.5 8.8 87.7 0 73.6 10.6 13.3 2.8 
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Scenario 
Estimation 

Method 

 Estimated Mean Rate 

of Occurrence 𝝀̂̅ for       

𝒙 = 𝟔. 𝟎  

Estimated  

𝒃̂̅-parameter 

Return 

Period (R) in 

Years for 

𝒙 = 𝟖. 𝟎 

Percentage Contribution (𝝀̂̅) Percentage Contribution (𝒃̂̅) 

PH H Inst Prior PH H Inst Prior 

LOC_MAG 
MLE 0.09 ± 0.01 1.00 ± 0.02 1110.0 4.1 8.7 87.2 0 75.8 11.9 12.3 0 

BI 0.09 ± 0.01 1.00 ± 0.02 1110.0 4.1 8.7 87.2 0 68.9 13.7 14.1 3.5 

LOC_MOD 
MLE 0.1 ± 0.02 1.09 ± 0.04 355.0 0.7 32.5 66.8 0 79.5 8.1 12.3 0 

BI 0.10 ± 0.02 1.08 ± 0.03 347.0 0.1 31.9 68 0 68.3 11.6 14.9 5.2 

LOC_MAG_MOD 
MLE 0.08 ± 0.02 1.16 ± 0.04 479.0 7.6 34.1 58.3 0 77.6 11 11.4 0 

BI 0.08 ± 0.01 1.14 ± 0.04 456.0 6.2 32.9 60.9 0 65 14.3 14.6 6.1 

LOC_OCC 
MLE 0.07 ± 0.01 0.92 ± 0.03 1030.0 3.4 8 88.6 0 77.5 7.3 15.2 0 

BI 0.07 ± 0.01 0.93 ± 0.03 1080.0 3.5 8 88.5 0 65.2 11.4 17.7 5.7 

LOC_MAG_OCC 
MLE 0.06 ± 0.01 0.94 ± 0.03 1270.0 3.9 7.9 88.2 0 75.1 9.6 15.3 0 

BI 0.06 ± 0.01 0.94 ± 0.03 1330.0 4 7.9 88.1 0 62 13.5 18 6.4 

LOC_MOD_OCC 
MLE 0.07 ± 0.02 1.07 ± 0.05 483.0 3.4 25.4 71.3 0 77.2 7 15.7 0 

BI 0.07 ± 0.01 1.05 ± 0.04 466.0 2.6 24.9 72.5 0 58.6 13.5 18.9 9 

LOC_MAG_MOD_OCC 
MLE 0.06 ± 0.01 1.08 ± 0.05 582.0 5.9 24.5 69.6 0 75.9 9.1 15 0 

BI 0.06 ± 0.01 1.06 ± 0.04 555.0 5 24 71.1 0 56.6 15.1 18.7 9.6 
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FIGURE 4.1. Estimated 𝑏̂̅-parameters per model, as defined in Table 3.1. The output from MLE (in blue) 

is compared with the output from BI (orange line), with a Gaussian prior 

𝜋(𝑏̅)~𝑁(1.0, 0.01).   

 

 

FIGURE 4.2. Estimated 𝜆̂̅-parameter per model, for an earthquake of magnitude 6.0 𝑀𝑊, as defined in 

Table 3.1. The output from MLE (in blue) is compared with the output from BI (orange 

line), with a uniform prior 𝜋(𝜆̅).    
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FIGURE 4.3. Percentage contribution per model (as defined in Table 3.1) of the various datasets to the 

Gutenberg–Richter 𝑏̂̅-parameter estimates using MLE.  

 

 

FIGURE 4.4. Percentage contribution per model (as defined in Table 3.1) of the various datasets to the 

Gutenberg–Richter 𝑏̂̅ -parameter estimates using BI, with a Gaussian prior 

𝜋(𝑏̅)~𝑁(1.0, 0.01). 
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Figure 4.5. Percentage contribution of each sub-dataset to the MLE (blue) and BI (orange) of the mean 

rate of occurrence 𝜆̂̅ per scenario. The uniform prior 𝜋(𝜆̅) has no effect on the estimates. 

 

 

FIGURE 4.6. Comparison of return periods for each sub-dataset, using maximum likelihood estimation 

(MLE) in (blue) and Bayesian inference (BI) in (orange) for a synthetic earthquake event 

size 𝑥 = 8.0 𝑀𝑊.     
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Figure 4.1 compares the MLE and BI estimation results for the 𝑏̂̅-parameter. With the introduction of 

the various combinations of parameter and earthquake magnitude uncertainty, the historical and 

prehistoric datasets start playing a role. The estimated 𝑏̂̅-parameters for the single datasets (SDS) are 

underestimated compared with the estimates from the extreme-only datasets (EXT). The combined 

datasets (LOC) yield estimates closer to the true value of 𝑏̅ = 1. With the inclusion of event size 

uncertainties (MAG) and parameter (MOD) uncertainties, the validity index (OCC) and prior 

information yield superior results compared with the MLE estimation for the SDS. In addition, the prior 

information stabilises the results from the EXT dataset, but the results from the MLE and BI for the 

LoC datasets are close. Event size uncertainty has a stronger effect on the estimates than does parameter 

uncertainty. The combination of the two types of uncertainties provides the best results using the SDS 

dataset but the worst results using the EXT dataset. The effect of the combination of uncertainty types 

on extreme data is carried over to the LoC datasets. The combination of event size uncertainty, 

parameter uncertainty, and validity index affect the SDS and extreme data in diverse ways, as well. This 

is carried over into the LOC datasets. From this simulation, it is clear that the choices made when 

building the model are crucial and the selection should be done with care.  

Figure 4.2 compares the MLE and BI estimates for rate of occurrence 𝜆̂̅ of earthquake event size           

𝑥 ≥ 6.0 𝑀𝑤 , with the true parameter equal to 𝜆̅(𝑥𝑚𝑖𝑛 = 6.0) = 0.1 . For the SDS models, 

overestimation of the true value 0.1 occurs. The introduction of a validity index has the most influence 

on the parameters and reduces the rate of occurrence for the SDS to being closer to the true value. 

Utilising only the extreme dataset (EXT) has a much larger overestimation effect than that observed in 

the SDS or the combined datasets with varying levels of completeness (the LOC models M17–M24 in 

Table 3.1). Here, the introduction of the weights has little to no effect. This is attributable possibly to 

the small likelihood of a large event being misclassified. For the extreme dataset, the event size 

uncertainty has the most effect on the estimates of the rate of occurrence. The models LOC, LOC_MAG, 

and LOC_MODEL have the closest estimates to the true value of 0.1. The introduction of the validity 

index results in a slight underestimation of the rate of occurrence, as does the introduction of the various 
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combinations of uncertainty. Overestimation of the rates of occurrence for SDS and EXT datasets 

results in the underestimation of return periods and, therefore, the overestimation of hazard. The slight 

underestimation of 𝜆̂̅ for the LOC datasets results in an overestimation of the return periods and the 

underestimation of the associated hazard. The introduction of prior information for the 𝑏̅-parameter has 

a slight effect on the estimates for 𝜆̂̅ for SDS and the EXT datasets. This effect is small for the LOC 

datasets. The relationship can change as the assumptions about the assumed uncertainties change. 

From this simulation, it appears that the introduction of model and event size uncertainties provides 

estimates quite close to the true assumed values. Conversely, the influence of the type of uncertainty 

introduced manifests more clearly in the return periods. The inclusion of the validity of events generates 

higher return periods, signifying a lower hazard. Uncertainty in size also increases the return period, 

but the inclusion of parameter uncertainty reduces the return period (i.e. increased hazard). The 

introduction of the validity of events (OCC models) practically halved the mean rate of occurrence, 

which could have a severe effect on hazard classifications. 

Figures 4.3 to 4.5 show the contribution of the various datasets to the MLE and BI estimates 𝜆̂̅ and 𝑏̂̅. 

The contribution of each dataset to the parameters depends on the type of uncertainty included and the 

estimation process used. For this synthetic earthquake example, prehistoric and historical data play a 

larger role in the estimation of 𝑏̂̅ compared with the more-recent instrumental data playing a larger role 

in the estimation process for 𝜆̂̅. The introduction of parameter uncertainty (MOD models) in the MLE 

results for the EXT dataset yields a contribution that is more even for prehistoric and historical data 

(Figure 4.3). The introduction of various types of uncertainty does not have a large effect on the 

percentage contribution of the combined LOC datasets. The contribution of prior information for BI 

(Figure 4.4) is the largest for the 𝑏̂̅ estimates based on SDS data and the smallest for the LOC datasets. 

The more uncertainty is introduced the larger is the role of the prior information in the estimation 

process.  
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As a flat prior is assumed, there is no difference in the percentage contribution of the information for 𝜆̂̅ 

between the MLE and BI estimation procedures, shown in Figure 4.5. As the two recurrence parameters 

were solved simultaneously, the assumed prior for 𝑏̅ had an indirect effect on 𝜆̂̅. In this example, the    

𝑏̂̅-parameter estimate relies heavily on the more-recent instrumental information, than on historical or 

complete information. The introduction of parameter uncertainty in the LOC dataset plays the main role 

in which dataset the estimation process would rely on the most. In such an instance, the process also 

relies on the historical information to help stabilise and improve the accuracy of the results.  

Figure 4.6 shows a comparison of the return periods for 𝑥 = 8.0 𝑀𝑊 for the MLE and BI estimates for 

the 48 models. The aim of this figure is to inspect the effects that different datasets, models, and 

estimation processes have on the return periods for large event sizes. The influence of a priori 

information on the return periods for the SDS dataset is larger than is that for the extreme or combined 

datasets. This is particularly true in instances where only the validity of the event and the validity of the 

event combined with event size error are used. The inclusion of prior information yields higher return 

periods compared with the MLE estimation process when applied to the SDS data and models, i.e. lower 

hazard. It has the opposite effect on the extreme dataset and models, providing higher hazard levels than 

those of the MLE estimates. The estimates from MLE and BI for the combined dataset LOC are quite 

close. When applying the extreme dataset, the return periods for large event sizes are larger compared 

with the return periods for the SDS dataset; however, combining the datasets seems to balance this out. 

This means that return periods are yielded that are larger compared with using a single dataset with a 

high level of completeness, and return periods are lower than when only extreme data are applied. This 

should provide a more realistic estimate of the hazard for the area under investigation. Interestingly, 

lower return periods (i.e. higher hazard) are observed with the inclusion of only parameter uncertainty 

and the combination of parameter and event size uncertainty, regardless of the type of dataset used. The 

same pattern is observed when the validity index is included. The type of dataset used, and the 

uncertainty included in the modelling process, therefore, has a notable effect on the hazard estimates.  
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Chapter 5. Real-World Applications 

5 5. 5 

The methodology described in Chapter 3 is applied to various datasets relating to the occurrence of 

natural hazards to illustrate how the proposed procedure can be adjusted to suit a particular dataset. 

Four examples are presented in the form of seismic hazard for the Ceres–Tulbagh region in South 

Africa, seismic hazard in Central Italy, tsunami hazard for regions in the Pacific Ocean, and hail hazard 

for Gauteng province, South Africa. The hail hazard example is extended to hail risk by applying the 

methodology to insured losses and incorporating the hail hazard estimates as a priori information. For 

each dataset, the input conditions and estimation process differ.  

 

5.1  Earthquakes 

The seismic hazard for the Ceres–Tulbagh region in South Africa is investigated using historical and 

instrumental data (Section 5.1.1). Estimates were derived using MLE14. The seismic hazard for Central 

Italy (Section 5.1.2) illustrates the inclusion of prehistoric, historical, and instrumental data15.  

The types of uncertainty considered in Section 5.1 are the incompleteness of data, event size 

(magnitude) uncertainty, and uncertainty of the parameters in the applied distributions (M12 in Table 

3.1). The shifted-truncated event size distributions for instrumental and historical data were used. The 

validity of occurrence was not considered.  

                                                           

14 The description of the analyses, tables, and discussion is provided below as it was published in the Bulletin of 

the Seismological Society of America (Kijko, Smit and Sellevoll, 2016). Minor amendments were made to the 

text, as seen in the references to ‘the authors’, ‘this paper’ instead of this thesis, ‘magnitude’ instead of event size, 

and ‘catalogue’ instead of event dataset. In the paper, the acronyms KS I, KS II, and KS III refer to the publications 

by Kijko and Sellevoll (1989), Kijko and Sellevoll (1992), and Kijko, Smit and Sellevoll (2016), respectively. 

15 The results were presented at the Extreme Value Theory Conference, 26–30 June 2017 by Smit, Kijko, and 

Stein. 
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5.1.1 Historical and instrumental data 

For the purpose of illustration, the proposed methodology is applied to the area that had experienced 

the strongest and most devastating earthquake in contemporary South African history. The                          

29 September 1969 𝑀𝑊  6.3 Ceres–Tulbagh event occurred approximately 100 km from the major 

metropolitan city of Cape Town (Green and Bloch, 1971; Green and McGarr, 1972; Kijko et al., 2003; 

Krüger and Scherbaum, 2014). Several buildings in the area suffered serious structural damage, which 

varied from the almost total destruction of old and poorly constructed buildings to large cracks 

appearing in better-constructed infrastructure. Twelve people were killed and many more injured. This 

event resulted in an insured loss of USD 7.4 million at the time of occurrence; however, the uninsured 

loss was approximately 3.5 times higher (Davies and Kijko, 2003). 

Reported seismicity in the vicinity of Cape Town dates back to 1620. The seismicity here is typical of 

an intraplate region and is characterised, compared with world standards, by low-level activity. The 

earthquakes are distributed randomly in space and time. Probably, the most common practice in seismic-

hazard analysis is that the maximum possible earthquake magnitude is estimated from the magnitude–

fault-length relationships (Wells and Coppersmith, 1994; Leonard, 2010; Stirling et al., 2013). The 

correlation between most of the observed earthquakes in South Africa and the surface expression of 

major geological features is generally not clear (Fernandez and Guzman, 1979 a,b; Brandt et al., 2005). 

The estimated maximum possible earthquake magnitude is, therefore, calculated by utilising the 

observed seismic-event catalogue.  

The seismic-event catalogue for South Africa, especially the historical catalogue, is highly incomplete 

because large parts of the country are sparsely populated, and the detection capabilities of the seismic 

network are not uniform (Saunders et al., 2008). The seismic-event dataset used in this study was 

compiled from several sources. After critical analysis of each of the data sources, the main contribution 

to pre-instrumentally recorded seismicity was that of Brandt et al. (2002). The instrumentally recorded 

events were selected mainly from the available catalogues provided by the Council for Geoscience, 



 

 

101 

 

Pretoria, South Africa, and the International Seismological Centre in Edinburgh, Scotland. For 

illustrative purposes, the dataset used in the present analysis spans the period 1 January 1751 to                      

31 January 2012 (see Section 1.7). The events were selected from within a circle, with a radius of 300 

km from the anticipated epicentre, which is the Ceres–Tulbagh earthquake (33.28ʹ S, 19.70 ʹ E) (Kijko 

et al., 2003). The seismic-event dataset was divided into an incomplete historical part, consisting of 

only the largest events (Table 5.1), and the complete instrumental part. It was assumed that earthquake 

magnitudes for the incomplete part of the dataset were determined with a standard error equal to 0.3 

magnitude units. The complete part of the dataset was divided further into three sub-datasets, each with 

different levels of completeness and assumed magnitude standard errors of 0.3, 0.2, and 0.1 (Table 5.2). 

The sub-datasets and their respective LoC were obtain using the visual cumulative method (Mulargia 

and Tinti, 1985). Based on several tests of the seismicity of the selected area, it was assumed that the 

uncertainty of the earthquake-model parameters was equal to 25%. This implied that the space–time 

variation of parameters 𝜆 and 𝛽, relative to their mean values, was equal to 0.25. Figure 5.1a depicts 

the mean return periods, and Figure 5.1b depicts the probability that a given magnitude would be 

exceeded at least once in any year for the selected area, as estimated by the proposed procedure                  

(KSS III, Kijko et al., 2016). Each graph also provides the calculated standard error for the calculated 

values.  

Three models were tested, namely KS I (magnitude and model uncertainties were ignored), KS II 

(model uncertainties were ignored), and KSS III, where both magnitude and model uncertainties were 

accounted for. KS 1 refers to LOC (M17) in Table 3.1, KS II to LOC_MAG (M18), and KSS III to 

LOC_MAG_MOD (M20). Table 5.3 provides the relevant estimated recurrence parameters for 𝜆 and 𝑏 

for all the models using the same datasets. The Kijko–Sellevoll–Bayes’ method was used to estimate 

𝑚̂𝑚𝑎𝑥, as described in Eq. 3.52 of Section 3.4. The estimated parameters are close in value, with the 

largest difference observed in the estimated maximum possible magnitude 𝑚̂𝑚𝑎𝑥 . Although KS II 

estimates 𝑚̂𝑚𝑎𝑥 as 7.8, it also has the largest associated error. Again, the return periods best illustrate 

the effect of uncertainty included in the data. For the same earthquake magnitude 𝑀𝑤 6.3 observed in 
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1969, the hazard return periods are estimated as 391 years for KS I, 492 years for KS II, and 353 years 

for KSS III. The model accounting for magnitude error only (KS II) provided the lowest hazard-

estimate, and the model accounting for both magnitude and model uncertainty provided the highest 

hazard. The 139-year difference between these two estimates can make a marked difference in how 

civil engineering industries design earthquake-proof structures in this region.  

 

Table 5.1. The largest earthquakes that occurred within a 300 km radius of the Ceres–Tulbagh 

earthquake epicentre. The catalogue starts on 1751/01/01 and ends on 1970/12/31. The 

standard error of earthquake magnitude determination, when applied, was assumed 0.3. 

Event Date Magnitude Event Date Magnitude 

1 1766/07/14 4.3 15 1950/09/30 5.5 

2 1809/12/04 6.3 16 1951/06/13 4.7 

3 1811/06/02 5.7 17 1952/01/28 5.4 

4 1819/04/14 4.3 18 1953/02/26 4.4 

5 1835/11/11 4.3 19 1957/09/30 4.2 

6 1857/08/14 5.0 20 1960/08/29 4.8 

7 1899/09/13 5.0 21 1963/08/27 5.0 

8 1902/05/28 4.3 22 1964/02/21 4.3 

9 1908/12/30 4.0 23 1965/09/28 4.3 

10 1911/07/06 4.0 24 1966/03/01 4.3 

11 1921/10/09 5.0 25 1967/06/16 4.3 

12 1926/08/11 4.0 26 1969/09/29 6.3 

13 1940/10/13 4.3 27 1970/04/14 5.7 

14 1941/10/23 4.3    

 

TABLE 5.2. Summary of the complete parts of the catalogues. 

Sub-

catalogue 
Start Date End Date 

Level of 

Completeness 

(Mw) 

Number 

of Events 

Standard Error of 

Earthquake 

Magnitude 

Determination 

1 1971/01/01 1990/12/31 4.0 7 0.3 

2 1991/01/01 1995/12/31 3.5 2 0.2 

3 1996/01/01 2013/01/31 3.0 29 0.1 
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TABLE 5.3. Estimated recurrence parameters for the Ceres–Tulbagh earthquake epicentre. The 

catalogue starts on 1751/01/01 and ends on 1970/12/31. 

Recurrence parameter estimates KS I KS II KS III 

Gutenberg–Richter𝑏-parameter 𝑏̂ = 0.8 ± 0.06 𝑏̂ = 0.9 ± 0.06 𝑏̂̅ = 0.9 ± 0.07 

Rate of occurrence 𝜆 (for 𝑥𝑚𝑖𝑛 = 3.0) 𝜆̂ = 1.8 ±  0.3 𝜆̂ = 1.7 ±  0.3 𝜆̅̂ = 1.8 ± 0.4 

Maximum possible magnitude 𝑚̂𝑚𝑎𝑥 7.0 ± 0.74 7.8 ± 1.5 6.9 ± 0.60 

Return period for 𝑚 = 6.3 391 years 492 years 353 years 

Probability of exceedance 𝑚 = 6.3 

1 year 

50 years 

100 years 

250 years 

 

0% 

10% 

20% 

50% 

 

0% 

10% 

18% 

40% 

 

0% 

13% 

24% 

50% 

 

To capture the effect of incorporated uncertainties in both the magnitude determination and the selected 

earthquake model, two comparisons were made. In the first comparison (Figure. 5.2), the differences 

were investigated between the estimates of the mean return periods according to KS I (magnitude and 

model uncertainties were ignored) and two respective alternative instances. These alternative instances 

are (1) only the uncertainty of the earthquake magnitude is taken into account (KS II), and (2) only the 

uncertainty of the earthquake-model parameters is considered. The purpose of such a comparison was 

to isolate and capture the effects of the two uncertainties. The comparison in Figure 5.2 of the classic 

instance (KS I), with the instance in which only magnitude uncertainties are considered, confirms the 

acknowledged fact that accounting for magnitude errors leads to an increase in return periods or, 

equivalently, to a decrease in seismic hazard (e.g. Tinti and Mulargia, 1985; Rhoades and Dowrick, 

2000; McGuire, 2004). The uncertainty of the earthquake-model has an opposite effect, namely it leads 

to a decrease in the return periods or, equivalently, an increase in seismic hazard.  
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(a) 

 

(b) 

FIGURE 5.1. a) The estimated mean return periods with the level of confidence per magnitude, and          

b) the probability that a given magnitude will be exceeded at least once in any year for         

KSS III (Kijko et al., 2016). Each graph also provides the calculated standard error for the 

calculated values. 
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FIGURE 5.2. Comparison between the individual effects of the magnitude uncertainties and the event 

occurrence model uncertainties on the mean return periods. The solid line shows KS I, 

when both the uncertainties are ignored. The dashed line captures the effect of magnitude 

uncertainties implemented in KS II, whereas the dotted line shows the effect of accounting 

for the parameter uncertainties as in KSS III. 

 

The second comparison (Figure 5.3) shows two estimates of the mean return periods according to         

KS I, when both magnitude and model uncertainties are ignored; as well as the same estimates as those 

obtained by KSS III, when both the magnitude and the event occurrence model uncertainties are 

considered. The increase in return periods, as a result of magnitude uncertainty, and the decrease in 

return periods, as an effect of the uncertainty of the earthquake occurrence model, average out to an 

overall decrease in return periods. Consequently, the calculated hazard levels increase, as the effect of 

introducing model uncertainty is stronger than is the effect of magnitude uncertainty. 
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FIGURE 5.3. Comparison of mean return periods calculated without accounting for magnitude and 

parameter uncertainties as per KS I (solid line), with return periods calculated taking into 

account the magnitude and parameter uncertainties as per KSS III (dashed line). The 

dashed line is a balance of the two opposite effects of the modelled uncertainties. 

 

Several additional aspects should be investigated in the future. These include (1) a more comprehensive 

investigation of the universal applicability of the above results to seismic hazard modelling in areas 

with different levels of seismic activity, (2) the sensitivity of the hazard parameters to different degrees 

of model uncertainty, (3) the effect of different distribution models of magnitude uncertainty, and (4) 

the relationship between magnitude uncertainty and uncertainty in the earthquake occurrence and event 

size models. 

 

5.1.2 Prehistoric, historical and instrumental Data 

To test the methodology on prehistoric, historical, and instrumental data, seismic events in Central Italy 

were used according to the ZS9 zones of the Working Group MPS (2004). Extreme prehistoric data 



 

 

107 

 

were obtained from Galli et al. (2008) and the historical and instrumental data from the European-

Mediterranean Earthquake Catalogue (EMEC, 201216; Grünthal and Wahlström, 2012). Figure 5.4 

shows the earthquake events used in the dataset, with Table 5.4 showing the input information. Here, 

the expected spatial bias of the prehistoric events in the dataset (red dots) is clearly visible.  

 

 

 

FIGURE 5.4. Earthquake events in Central Italy. Blue dots are the historical and instrumental events and 

the red dots the extreme prehistoric events. The red line denotes the boundaries of Central 

Italy ZS9 zone. 

 

                                                           

16 https://www.gfz-potsdam.de/en/section/seismic-hazard-and-stress-field/data-products-services/emec-

earthquake-catalogue/, last accessed 2019/01/25. 

https://www.gfz-potsdam.de/en/section/seismic-hazard-and-stress-field/data-products-services/emec-earthquake-catalogue/
https://www.gfz-potsdam.de/en/section/seismic-hazard-and-stress-field/data-products-services/emec-earthquake-catalogue/
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Five sub-datasets were created with levels of completeness 𝑥𝑚𝑖𝑛
(𝑖)

 ranging from 4.0 to 5.1. Uniform event 

size errors were assumed for the prehistoric and historical datasets, with a Gaussian error for the 

instrumental sub-datasets. Parameter variation was accounted for at a level of 25%. The maximum 

possible event size 𝑥𝑚𝑎𝑥  was estimated using the Kijko–Sellevoll–Bayes’ method, as discussed in       

Eq. 3.52 of Section 3.4.  

 

TABLE 5.4. Input information for the assessment of the recurrence parameters for the Central Italy 

earthquake event dataset. 

 
Extreme 

Prehistoric 
Historical Instr. 1 Instr. 2 Instr. 3 

Year start 18000 BC 1000 AD 1625 1891 1991 

Year end 999 AD 1624 1890 1990 2006 

LoC 𝑥𝑚𝑖𝑛
(𝑖)

  5.1 4.3 4.3 4.0 

Number of events 𝑛𝑖 22 25 139 306 93 

Magnitude standard error 0.5 0.5 0.5 0.3 0.1 

Observed maximum magnitude 𝑥𝒎𝒂𝒙
𝒐𝒃𝒔  

7.0 7.2 7.0 7.1 5.8 

 

The Gutenberg–Richter frequency–event-size shifted-truncated power law and MLE estimation are 

employed as they best address the availability and the quality of the data in this example The recurrence 

parameters are estimated with (example 1) and without (example 2) the prehistoric data (Table 5.5). 

Both examples made used the LOC_MAG_MOD model (M20 in Table 3.1), with example 2 dropping 

the prehistorical likelihood function from Eq. 3.18. Good 𝑏̂̅-estimates are obtained in both instances that 

are close to the theoretical Gutenberg–Richter 𝑏-parameter of 1 for tectonic-active areas. The estimate 

of the mean rate of occurrence 𝜆̂̅ for the level of completeness 𝑥𝑚𝑖𝑛 = 4.0 is not affected; however, the 

mean return periods of large event sizes are affected. For example, the return periods for event size 𝑥 =

7.0, for the estimate that considers prehistoric data (WPD), differ by 186 years from the estimate 
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ignoring the prehistoric data (WOPD), exhibiting a larger return period, i.e. smaller hazard. In this 

example, the extreme prehistoric dataset contributed 28% of the total information to the 𝑏̂̅-parameter 

estimate. In a subsequent test, however, this contribution dropped dramatically to almost 6% as the 

event size error increased. The instrumental datasets contributed the most to the rate of occurrence of 

the area. Where prehistoric data are not considered, the historical and instrumental data contribute 

equally to the 𝑏̂̅ parameter, but the contribution to 𝜆̂̅ from the instrumental data increases.  

 

TABLE 5.5. Seismic recurrence parameters for the earthquake event dataset of Central Italy, taking into 

account complete, historical, and extreme prehistoric data. WPD takes into consideration 

prehistoric data and WOPD excludes prehistoric data from the estimation process. 

 
Type of 

Dataset 

With or 

Without 

Prehistoric 

Data 

Estimated 

Mean Rate 

of 

Occurrence 

𝝀̂̅(𝒙𝒎𝒊𝒏 = 𝟒) 

Estimated 𝒃̂̅-

parameter 

Maximum 

Possible 

Magnitude 

(𝒙𝒎𝒂𝒙) 

Return 

Period for 

𝒙 = 𝟕. 𝟎 

Estimation  WPD 2.3 ± 0.3 1.11 ± 0.1 7.3 ± 0.5 611 years 

WOPD 2.3 ± 0.3 1.07 ± 0.05 7.4 ± 0.5 425 years 

Percentage 

contribution 

Extreme 

prehistoric 

data 

WPD 6.2% 28.8%   

WOPD 
    

Historical 

data 

WPD 17.8% 34.4%   

WOPD 18.1% 48.0%   

Instrumental 

data 

WPD 76.0% 36.8%   

WOPD 81.9% 52.0%   

 

Figure 5.5 provides a comparison of the return periods and probabilities of exceedance with prehistoric 

data (WPD) and without prehistoric data (WOPD). The return periods for larger event sizes are larger 

(i.e. lower hazard) when prehistoric data are included, and the same is true for the respective 

probabilities of exceedance for 1, 25, 50, and 100 years. 
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(a) 

 

(b) 

FIGURE 5.5. a) Return period and b) probabilities of exceedance for 1, 25, 50, and 100 years for 

earthquake event sizes between 4 and 8 for the earthquake event dataset of Central Italy, 

taking into account complete, historical, and extreme prehistoric data. 
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5.1.3 Discussion 

The methodology proposed in Chapter 3 was applied to seismic event datasets for the Ceres–Tulbagh 

area in the Western Cape Province, South Africa, as well as to Central Italy. In this section, only a 

selected number of combinations were tested. For the Ceres–Tulbagh example, MLE was applied to a 

combined dataset assuming no event size or parameter uncertainty, to a combined dataset with only 

event size uncertainty, and to a combined dataset with event size and parameter uncertainty. The 

example confirms the statements by Tinti and Mulargia (1985), Rhoades and Dowrick (2000), and 

McGuire (2004) that the inclusion of event size uncertainty yields longer return periods and, therefore, 

a decrease in seismic hazard. The inclusion of parameter uncertainty has the opposite effect, leading to 

an increase in seismic hazard.  

The investigation into the seismic hazard for Central Italy focused on the effect of prehistoric data on 

the estimated recurrence parameters and hazard estimates using MLE. In this example, there was no 

marked difference in the estimates of the mean rate of occurrence 𝜆̂̅ or the estimates of the Gutenberg–

Richter frequency–event-size 𝑏̂̅-parameter. The effect was, however, notable in the hazard estimates for 

large event sizes. By excluding the prehistoric data, smaller return periods and probabilities of 

exceedance were obtained, increasing the hazard. This could potentially lead to the overestimation of 

the hazard and associated risk for the investigated area.  

Proposed future research in the above regard is the inclusion of seismic prior information through BI, 

determining the effect for different distribution models in terms of event size uncertainty, and whether 

there would be a difference in the behaviour of the models when investigating areas with different levels 

of seismic activity (e.g. tectonic vs mining-related/-induced events). 
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5.2 Tsunami 

The tsunami hazard was investigated for three tsunamigenic regions in the Pacific Ocean, namely Japan, 

Kuril–Kamchatka, and the western coast of South America. Estimates were derived using historical and 

instrumental data and MLE17. In subsequent analyses, the validity of occurrence and prior information 

were introduced for the assessment of tsunami hazard for Japan18. 

 

5.2.1 Introduction 

Since 2004, four devastating tsunamis following major earthquakes have caused unprecedented 

destruction and loss of life. The events in Sumatra (2004), Japan (2011), and Chile (2010, 2015) have 

re-emphasised the need for comprehensive and accurate hazard assessment that considers both 

earthquakes and tsunamis. Earthquake hazard assessment procedures, both probabilistic and 

deterministic, are well defined and applied; however, until quite recently, the same could not be said 

about tsunami hazard assessment.  

Tsunamis can be generated by earthquakes, volcanogenic processes, submarine landslides, and 

meteorites. Among these, earthquakes with frequent occurrences generate the most destructive 

tsunamis, whereas the other processes have a much smaller probability of occurrence. Therefore, most 

current research is focussed primarily on assessing the tsunami hazard generated by earthquakes. 

In essence, the tsunami hazard for a specified area can be assessed in two ways, namely by deterministic 

and probabilistic procedures. Deterministic methodologies focus on a single event, usually the worst-

                                                           

17 The introduction, description of the analyses, tables, and discussion are provided below, as published in Pure 

and Applied Geophysics, Smit, Kijko and Stein (2017). The paper considered incompleteness of data, event size 

(tsunami intensity) uncertainty, and parameter (model) uncertainty. Minor amendments were made to the text, as 

seen in references made to ‘the authors’, ‘this paper’ or ‘this study’ instead of this thesis, ‘tsunami intensity instead 

of event size, and ‘catalogue’ instead of event dataset. 

18 The results were published in Smit, Stein and Kijko (2019). 
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case scenario, by modelling the resultant wave run-up height (or tsunami intensity). Wave run-up height 

refers to the far up (inland) the wave extended. Little or no emphasis is placed on the probability of 

such an event occurring (e.g. Tinti and Armigliato, 2003; Hébert et al., 2005; Paulatto et al., 2007; 

Lorito et al., 2008; Shaw et al., 2008; Wijetunge, 2014). Such an approach provides valuable 

information for disaster management agencies charged with response planning to minimise the potential 

effects. Recently, research has focused on assessing the deterministic tsunami hazard with the help of 

the worst-case credible tsunami scenario method (Tonini et al., 2011; Grilli et al., 2011; Harbitz et al., 

2012). This involves the development of an aggregated scenario based on several independently 

assessed deterministic scenarios. Probabilistic tsunami hazard assessment (PTHA), in turn, considers 

all possible earthquake scenarios (both locally and regionally) that could generate tsunamis of various 

intensities. Accordingly, this approach provides a comprehensive estimate of the total hazard that 

confronts a specific area (e.g. Geist and Parsons, 2006; Power et al., 2007; Thio et al., 2007, Sørensen 

et al., 2012; Brizuela et al., 2014). Determining the probability of occurrences and return periods is 

crucial for the risk mitigation processes of disaster management, engineering, and insurance companies. 

The disadvantage of PTHA through probabilistically assessing the occurrence of potential sources is 

that it requires extensive research and modelling to identify all the potential sources such as earthquakes, 

and to assess the hazard and the resultant wave propagation. Moreover, these models have to consider 

aleatory and epistemic uncertainties to prevent the underestimation of the tsunami hazard. Aleatory 

uncertainty refers to the natural stochastic nature, which is characteristic of the physical system, whereas 

epistemic uncertainty refers to the incompleteness of the information in the system. 

PTHA can be conducted using three distinct procedures. In the first procedure, PTHA comprises of 

computational analyses, which take into account the known and available information on the earthquake 

source parameters, as well as the propagation of waves, the recurrence rate, and the underlying 

uncertainties. This procedure generally follows the same route as standard probabilistic seismic hazard 

analysis (PSHA), as developed by Cornell (1968) and McGuire (1976). Examples of the application of 

this procedure are available in Lin and Tung (1982), Rikitake and Aida (1988), Ward and Asphaug 
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(2000), Downes and Stirling (2001), Ward (2001, 2003), Geist (2005), Geist and Parsons (2006), Liu 

et al. (2007), Burbidge et al. (2008), González et al. (2009), Power et al. (2007), Sørensen et al. (2012), 

and Brizuela et al. (2014). The steps followed in computational PTHA are the identification and 

characterisation of tsunamigenic source recurrences parameters. Such characterisation includes the 

estimation of the coastline-characteristic maximum possible earthquake magnitude, the creation of 

tsunamigenic scenario earthquake event catalogues based on identified sources, numerical propagation 

modelling, and the estimation of potential inundation. The results of all possible scenario events are 

subsequently combined to create tsunami hazard curves and maps. The techniques used to provide 

explicit provision for epistemic uncertainty in the PTHA include the use of a logic-tree approach, similar 

to that used for PSHA (Petersen et al., 2002; Annaka et al., 2007). 

A second procedure is based on Bayesian inferences (Grezio et al., 2010, 2012; Yadav et al., 2013; 

Tatsumi et al., 2014; Anita et al., 2015). This procedure allows the incorporation of all independent 

prior information pertaining to the tsunami hazard for a specified region. In this way, the knowledge of 

the physical nature of the process is combined with the likelihood of the process, based on historical 

event information. 

The third procedure focuses entirely on the empirical analysis of historical tsunami event records 

(Burroughs and Tebbens, 2005; Tinti et al., 2005; Burbidge et al., 2008). Accordingly, the assessment 

of the hazard can proceed without prior knowledge of the type or location of the process that triggered 

the tsunami. If sufficient data are available from tsunami catalogues, site-specific hazard curves can be 

developed or, alternatively, be used as regional a priori information relating to far-field tsunami-

generating sources (Geist and Parson, 2006). Using this procedure, the PTHA for an area can be 

assessed by means of stochastic modelling of the conditional probabilities of tsunami recurrence times 

(Orfanogiannaki and Papadopoulos, 2007) or by means of frequency–magnitude relationships 

(Soloviev, 1970; Rikitake and Aida, 1988; Tinti, 1993). Empirical methods, however, are highly 

dependent on the completeness and quality of the tsunami catalogue.  
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The major problem with the empirical modelling of tsunami intensity data is that it requires adequate 

historical and instrumental information for the tsunami run-up heights or intensity values. This problem 

is discussed in various studies, e.g. Burroughs and Tebbens (2005) and Anita et al. (2015). Moreover, 

small datasets can introduce high levels of uncertainty and bias to the results. The proposed procedure 

of the current example aims to solve this problem by applying methodology specifically designed to 

assess recurrence parameters for highly incomplete and uncertain datasets.  

The methodology proposed in this study is focused on the empirical assessment of the tsunami 

recurrence parameters for probabilistic tsunami hazard assessment, based on a methodology similar to 

that described by Kijko et al. (2016) for earthquakes (Chapter 3). These recurrence parameters are the 

mean tsunami activity rate (rate of occurrence) 𝜆 , the Soloviev frequency–intensity power law                  

𝑏-parameter, and the coastline-characteristic, maximum possible tsunami intensity 𝑖max . The three 

tsunami recurrence parameters are derived from tsunami catalogues by taking into consideration the 

incompleteness of the catalogue, uncertainty in the tsunami intensity determination, as well as the 

uncertainty associated with the applied tsunami occurrence and intensity models. The uncertainty in the 

parameters of the tsunami models is introduced by assuming that both the tsunami rate of occurrence 𝜆 

and the 𝑏-parameter are random variables, each described by the secondary mixing distribution, such 

as the gamma distribution. This approach results in the extension of the classic frequency–intensity 

Soloviev–Imamura relation and the Poisson distribution of the number of tsunamis with their mixture 

distribution counterparts (Benjamin, 1968; Campbell, 1982, 1983). This procedure is adapted for 

application to a tsunami event catalogue to assess the probabilities of exceedance for a specified tsunami 

intensity 𝑖, and the relevant return periods. 

Similar to earthquakes, the number of tsunami events observed is related to the intensity (size) of the 

events. Studies by Soloviev (1970), Houston et al. (1977, including references therein), Horikawa and 

Shuto (1983), Burroughs and Tebbens, (2005), and Geist and Parsons (2006) indicate that tsunami 

intensity can be described by a power law distribution in the format  
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𝑛(𝑖) = 𝑎10−𝑏𝑖, (5.1) 

where 𝑖 is the Soloviev–Imamura tsunami intensity, 𝑛(𝑖) is the number of tsunami events per annum, 

and 𝑎 and 𝑏 are defined as constants. Defining 𝛽 = 𝑏 ln(10) and 𝛼 = ln𝑎, Eq. 5.1 can be rewritten as  

𝑛(𝑖) = 𝑒𝛼−𝛽𝑖. (5.2) 

 

Empirical studies show that the tsunami intensity 𝑖 follows the same power law distribution as the 

earthquake magnitude 𝑚 in the instance where the applied scale of tsunami strength is one of the scales, 

as introduced by Sieberg (1927), Soloviev (1970), Ambraseys (1962), Papadopoulos and Imamura 

(2001), and Geist and Parsons (2006). Equation 5.2 is, therefore, equivalent to Eq. 2.2, and the classic 

Gutenberg–Richter frequency–magnitude relation log 𝑛(𝑚) = 𝑎 − 𝑏𝑚 (Gutenberg and Richter, 1942; 

1956), with 𝑚 indicating the earthquake magnitude. The power law defined in Eq. 5.1 is not the only 

model used to describe the distribution of tsunami intensity 𝑖. A comprehensive review and discussion 

of alternative tsunami size distributions were presented by Burroughs and Tebbens (2005) and Geist 

and Parsons (2006). The Soloviev (1970) scale is used in the current study as it is the standard intensity 

scale used in most tsunami event datasets. 

Regardless of the applied tsunami intensity scale, the intensity 𝑖 is linked with the average tsunami run-

up height ℎ along a coastline. For example, when the intensity 𝑖 is expressed in the units of the Soloviev 

scale (Soloviev, 1970), the value of 𝑖 is calculated from the average tsunami run-up height ℎ (in metres) 

along a coastline, as 

𝑖 = log2(√2ℎ). (5.3) 

 

It is assumed that the tsunami intensities 𝑖  occurring along a stretch of coastline are continuous, 

independent, random values distributed according to the power law (Eq. 5.1). Following, for example, 

Burroughs and Tebbens (2001, 2005), the PDF and the CDF of tsunami intensity take the same 

functional form as the CDF for earthquake magnitude (Page, 1968; Cosentino et al., 1977). The PDF 
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and CDF are, therefore, defined for intensity 𝑖 , for a minimum threshold parameter 𝑖𝑚𝑖𝑛,  and is 

truncated from the top by the coastline-characteristic maximum possible tsunami intensity 𝑖max , such 

that Eq. 3.11 (a and b) can be re-written by replacing event size 𝑥 with the tsunami intensity 𝑖.  

The tsunami occurrence model is defined based on the assumption that the temporal distribution of the 

tsunami events observed along a stretch of coastline can be modelled by a Poisson process (e.g. Geist 

and Parsons, 2006). This corresponds with a similar assumption for the temporal distributions of 

tsunami-generating processes, such as earthquakes (Cornell 1968; Lomnitz 1973; Gardner and Knopoff, 

1974; Cao and Gao, 2002), submarine landslides (Urlaub et al., 2013), volcanogenic processes 

(Dzierma and Wehrmann, 2010), and meteorites (Ward and Asphaug, 2000). Approximately 75% of 

the global recorded historical tsunamis are attributed to earthquakes (Gusiakov, 2009). The Poisson-

gamma distribution, as defined in Eq. 3.24, is applied to determine the mean rate of occurrence. The 

historic data were assessed using the historical derivation of Eq. 3.28b, substituted into Eq. 3.32b. The 

individual instrumental datasets of the different LoC were assessed using Eq. 3.34. 

 

5.2.2 Results 

The proposed methodology is applied to three tsunamigenic regions in the Pacific Ocean, namely Japan 

(JAP), Kuril–Kamchatka (K-K), and the western coast of South America (SAM). The international 

tsunami database used in this study (see Section 1.7) hosts global historical and instrumental tsunami 

observations for the period 47 BC to 2015, with the main intensity measurement being the Soloviev–

Imamura scale, ranging from -5 to 5. The boundaries for the identified tsunamigenic regions were used as 

provided in the NTL/ICMMG database. These boundaries, depicted in Figure 5.6, follow the zoning used 

in the NGDC map by Lockridge and Smith (1984) and Gusiakov (2005).  
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FIGURE 5.6. Positions of the three investigated tsunamigenic regions in the Pacific Ocean (modified 

after Gusiakov, 2005), being the source locations of the tsunamis for Japan (JAP), Kuril–

Kamchatka (K-K), and South America (SAM). 

 

The GITEC catalogue criteria (Tinti and Maramai, 1996; Tinti et al., 2001) were used to ensure that the 

data employed represented the best available information. This criterion assigns a validity index to each 

observation in the database, such that index value 0 indicates that the event is considered extremely 

improbable (probability near 0%), 1 is considered improbable (probability approximately 25%), 2 as 

questionable (probability approximately 50%), 3 as probable (probability approximately 75%), and 4 as a 

definite tsunami (probability near 100%). The final catalogues for the three identified regions contain only 

tsunami events with a validity index of 3 or higher. Events with no coordinates (latitude or longitude) or 

no intensity values were excluded. The final catalogues for Japan, Kuril–Kamchatka, and South America 

contain 214, 73, and 79 events, respectively. 
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In the first step, the historical and complete sub-catalogues were identified for each of the three regions. 

Each sub-catalogue and level of completeness were identified with the help of the visual cumulative 

method (Mulargia and Tinti, 1985). Provision was made for intensity errors of 0.5 and 0.1 units, 

respectively, for the historical and instrumental complete catalogues in each of the regions. Table 5.6 

provides the input parameters, as well as the estimated recurrence parameters based on the proposed 

procedure for probabilistic tsunami hazard assessment. 

 

TABLE 5.6. Probabilistic tsunami hazard assessment input parameters and estimated recurrence 

parameters. The parameter 𝒊𝒎𝒊𝒏  represents the level of completeness (LoC) and SE 

represents the standard error (assumed uncertainty) in the intensity estimation.   

  Japan 

(JAP) 

Kuril–Kamchatka 

(K-K) 

South America 

(SAM) 

Original number of events in 

identified zones 
214 73 79 

Dataset information 

Historical 

Period 684 AD to 1960 1737–1959 1513–1959 

Number of events 79 6 8 

LoC (𝑖𝑚𝑖𝑛
𝐻 ) 1.00 3.0 3.50 

Intensity SE 0.5 0.5 0.5 

Complete 

Period 1961–2011 1960–2009 1960–2015 

Number of events 40 21 8 

LoC (𝑖𝑚𝑖𝑛
(𝑖)

) −2.00 −0.5 2.0 

Intensity SE 0.1 0.1 0.1 

Observed maximum intensity  4.2 ± 0.1 4.0 ± 0.5 4.1 ± 0.1 

Estimated recurrence parameters 

Mean rate of occurrence (𝜆̅̂) 1.5 ± 0.4 0.3 ± 0.1 0.2 ± 0.1 

Frequency–intensity 𝑏̂̅-parameter 0.4 ± 0.04 0.2 ± 0.1 0.5 ± 0.2 

Coastline-characteristic maximum 

intensity 𝑖̂𝑚𝑎𝑥 

4.3 ± 0.2 4.2 ± 0.5 4.2 ± 0.2 

 

It was assumed that the uncertainty for the tsunami-model parameters was equal to an adjustable, arbitrary 

value of 25%, meaning that the space–time variation in the estimated recurrence parameters of 𝜆̂̅ and 𝛽̂̅ 
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(or equivalently the 𝑏̂̅-parameter) was 0.25. This 25% uncertainty follows from extensive investigations 

into the analogous parameters of earthquake occurrence models based on tectonic datasets across the 

globe. Figure 5.7 depicts the estimated mean return period, Figure 5.8 the annual probability of 

exceedance, and Figure 5.9 the probabilities of exceedance for 5, 10, and 25 years for various tsunami 

intensities. Figures 5.7 and 5.8 also provide the one standard deviation confidence intervals for the mean 

return periods and probabilities of exceedance. The values are calculated using the mean and standard 

deviations from the variance–covariance matrix. From a physical point of view, these confidence intervals 

reflect the uncertainty of the input data, as well as the uncertainty associated with the parameters in the 

applied distributions. Table 5.7 provides examples of the return period and probabilities of exceedance 

for each of the regions for 𝑖 ≥ 1.5 and 2.5 and for the time periods 1, 10, and 25 years. 

 

TABLE 5.7. Return period and probabilities of exceedance for Japan, Kuril–Kamchatka, and South 

America for intensities 𝑖 ≥ 1.5, 2.0, and 2.5 and for time periods 1, 10, and 25 years. 

Tsunami Intensity Recurrence variable JAP K-K SAM 

𝑖 ≥ 1.5 Return Period (yrs) 15 8 - 

 Prob. Exceedance (%): 1 year 7 11 - 

 Prob. Exceedance (%): 10 years 49 69 - 

 Prob. Exceedance (%): 25 years 80 94 - 

𝑖 ≥ 2.0 Return Period (yrs) 23 12 6 

 Prob. Exceedance (%): 1 year 4 8 15 

 Prob. Exceedance (%): 10 years 35 57 79 

 Prob. Exceedance (%): 25 years 65 87 97 

𝑖 ≥ 2.5 Return Period (yrs) 37 17 12 

 Prob. Exceedance (%): 1 year 3 6 8 

 Prob. Exceedance (%): 10 years 24 43 55 

 Prob. Exceedance (%): 25 years 48 75 86 
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 (a) 

 

 

(b) 

 

(c) 

 

FIGURE 5.7. The annual mean return period (in years) and its associated uncertainty for various tsunami 

intensities for a) Japan, b) Kuril–Kamchatka, and c) South America. The shaded area 

represents the one standard deviation confidence interval for the calculated values. 
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(a) 

 

(b) 

 

(c) 

 

FIGURE 5.8. The annual probability of exceedance and its associated uncertainty for various tsunami 

intensities for a) Japan, b) Kuril–Kamchatka, and c) South America. The shaded area 

represents the one standard deviation confidence interval for the calculated values. 
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(a) 

 

(b) 

 

(c) 

 

FIGURE 5.9. The probability of exceedance for 5, 10, and 25 years for various tsunami intensities for  

a) Japan, b) Kuril–Kamchatka, and c) South America. 
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The results obtained were compared with the 𝑏-parameter estimates obtained by Orfanogiannaki and 

Papadopoulos (2007). These authors investigated the regions of Japan, Kuril–Kamchatka, and South 

America by developing stochastic approaches to utilise observed earthquakes in order to assess the 

potential for tsunami generation. They investigated the probability of tsunami occurrence, firstly, by 

using conditional probabilities for tsunami occurrence as a function of time and, secondly, by obtaining 

the product of the conditional probabilities with the ratio of the number of earthquakes generating 

tsunamis and the total number of earthquakes by applying the total probability theorem. Orfanogiannaki 

and Papadopoulos (2007) utilised the database, as described in Gusiakov (2001), for the time periods 

1900 to 2000. Their 𝑏̂-parameters, obtained with the help of linear regression for the three regions of 

interest, are 0.34 for Japan, 0.56 for Kuril–Kamchatka, and 0.34 for South America. The associated 

estimated mean rates of occurrence 𝜆̂̅  for the three regions are 1.02 for Japan, 2.26 for Kuril–

Kamchatka, and 1.64 for South America. The results obtained for Japan are comparable to those 

obtained by Orfanogiannaki and Papadopoulos (2007), but not to those for Kuril–Kamchatka and South 

America. In addition, Orfanogiannaki and Papadopoulos (2007) and Koravos et al. (2015) investigated 

the tsunami hazard for these areas by calculating the conditional probabilities of occurrence for 

specified tsunami intensities. These values are not comparable to the probabilities of exceedance 

calculated in the present study.  

A question that immediately arises is what the difference will be between the results of the PTHA using 

the mixture distributions in comparison with the results provided by the same model when no 

uncertainty in the parameters of the models is taken into consideration. As a test, the data for Japan 

were applied to the defined mixture distributions (Poisson-gamma and exponential-gamma), as well as 

to the principal distributions of Poisson and exponential. Japan was chosen, as it is the dataset with the 

most observations to illustrate the effect of the validity index. The results are provided in Table 5.8. A 

noteworthy increase can be seen in the estimated parameters and probabilities of exceedance, as well 

as a substantial decrease in the return periods. The estimated hazard, therefore, increased when 

uncertainty regarding the parameters of the applied distributions was taken into consideration. 
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TABLE 5.8. Comparison of the model for Japan with and without the application of mixture distributions 

to account for uncertainty in the parameters of the applied distributions. 

Estimates 

With mixture 

distributions 

(WMD) 

Without mixture 

distribution 

(WOMD) 

Percentage increase 

(WMD-

WOMD)/WOMD 

Rate of occurrence  𝜆̅̂ = 1.5 ± 0.4 𝜆̂ = 0.9 ± 0.1 64% 

Frequency–intensity 𝑏-parameter 𝑏̂ = 0.4 ± 0.04 𝑏̂ = 0.34 ± 0.02 18% 

Coastline-characteristic maximum 

intensity 𝑖𝑚𝑎𝑥  

4.35 ± 0.17 4.35 ± 0.18 0% 

Return Periods 

𝑖 ≥ 1.5 

𝑖 ≥ 2.0 

𝑖 ≥ 2.5 

 

15 yrs 

23 yrs 

37 yrs 

 

19 yrs 

30 yrs 

50 yrs 

 

-24% 

-25% 

-25% 

Prob. of Exceedance: 1 year 

𝑖 ≥ 1.5 

𝑖 ≥ 2.0 

𝑖 ≥ 2.5 

 

7% 

4% 

3% 

 

5% 

3% 

2% 

 

24% 

24% 

25% 

Prob.of Exceedance: 10 years 

𝑖 ≥ 1.5 

𝑖 ≥ 2.0 

𝑖 ≥ 2.5 

 

49% 

35% 

24% 

 

40% 

28% 

18% 

 

17% 

20% 

22% 

Prob. of Exceedance: 25 years 

𝑖 ≥ 1.5 

𝑖 ≥ 2.0 

𝑖 ≥ 2.5 

 

80% 

65% 

48% 

 

73% 

56% 

40% 

 

10% 

14% 

18% 

 

To illustrate the effects of including the uncertainty of an event occurrence by using a validity index, as 

well as implementing Bayesian inference as the estimation method, these were incorporated into the 

assessment of the tsunami recurrence parameters for the Japan tsunami dataset. In the previous example 

(Smit et al., 2017), all the events with a validity index less than 3 were ignored. For comparison 

purposes, the dataset preparation followed the same process, with the exception that all events were 

included, regardless of the validity index. Table 5.9 shows the input information for the analysis used 

in this example, where the validity index and BI were used to estimate the recurrence parameters.             
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Table 5.10 provides a comparison between the estimated recurrence parameters using MLE estimation 

(Smit et al., 2017) that considered model uncertainty and tsunami intensity uncertainty, with the 

inclusion of the validity index, as well as the Bayesian estimates with the validity parameters. The 

maximum possible event size was assumed known as 𝑖𝑚𝑎𝑥 = 4.3 ± 0.2 (Table 5.6), as estimated in 

Smit et al. (2017). 

 

TABLE 5.9. Probabilistic tsunami hazard assessment input parameters for Japan. 

 

Smit et al. (2017) 

datasets. 

Excluding events with 

validity index ≤ 2. 

New datasets. 

Including all events. 

Historical Period  684 AD to 1960 684 AD to 1960 

Number of events 79 118 

LoC (𝑖𝑚𝑖𝑛
𝐻 ) 1.0 1.0 

Intensity SE 0.5 0.5 

Complete Period 1961–2011 1961–2011 

Number of events 40 43 

LoC (𝑖𝑚𝑖𝑛
(𝑖)

) -2.0 -2.0 

Intensity SE 0.1 0.1 

Observed maximum intensity 4.2±0.1 4.2±0.1 

Percentage variation 25 25 

a priori information for 𝑏̂̅-parameter mean None 0.34 

a priori information for 𝑏̂̅-parameter SE None 0.034 

Coastline-characteristic intensity (𝑖𝑚𝑎𝑥) 4.3±0.2 4.3±0.2 

 

The introduction of the validity index allows the use of more events in the estimation process compared 

with Smit et al. (2017), which ignored events with a small index. This, combined with the introduction 

of prior information, has a decreasing effect on the estimated return periods, which increases the hazard. 

In addition, both the validity index and the prior information have a decreasing effect on the expected 

probabilities of exceedance for the tsunami intensity sizes compared with the MLE estimates in Smit et 

al. (2017).  
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TABLE 5.10. Return periods and probabilities of exceedance for tsunami intensities 𝑖 ≥ 1.5, 2.0, and 

2.5, and percentage contribution of datasets to the estimates. Results are provided for the 

time periods 1, 10, and 25 years.   

Estimated recurrence parameters Smit et al. (2017) MLE Bayesian inference 

Model accounts for the following uncertainties: 

Model parameter uncertainties Yes Yes Yes 

Uncertainty in intensity size measurement Yes Yes Yes 

Uncertainty in the occurrence of events  No Yes Yes 

Estimation technique MLE MLE Bayesian inference 

Mean rate of occurrence (𝜆̅̂) 1.5 ± 0.4 2.4 ± 0.8 1.8 ± 0.4 

Frequency–intensity 𝑏̂̅-parameter 0.4±0.04 0.4 ± 0.05 0.4 ± 0.03 

𝒊 ≥1.5 

Return period 15 11 10 

Prob. exceedance 1 year 7 0 0 

Prob. exceedance 10 years 49 1 1 

Prob. exceedance 25 years 80 1 1 

𝒊 ≥2.0 

Return period 23 17 16 

Prob. exceedance 1 year 4 0 0 

Prob. exceedance 10 years 35 0 1 

Prob. exceedance 25 years 65 1 1 

𝒊 ≥2.5 

Return period 37 29 26 

Prob. exceedance 1 year 3 0 0 

Prob. exceedance 10 years 24 0 0 

Prob. exceedance 25 years 48 1 1 

% contribution 

Historical data to 𝑏̂̅-parameter 92.9 94.3 73.1 

Complete data to 𝑏̂̅-parameter 7.1 5.7 5.3 

a priori information to 𝑏̂̅-parameter 0 0 21.6 

Historical data to 𝜆̅̂ 98.5 94.9 98.5 

Complete data to 𝜆̅̂ 1.5 5.1 1.5 

a priori information to 𝜆̅̂ 0 0 0 
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The prehistoric, historical, and instrumental data play different roles, as observed for the simulated 

dataset. The historical dataset spans more than 1 000 years compared with 50 years for the assumed 

instrumental dataset. In this example, both estimates 𝜆̂̅ and 𝛽̂̅  rely heavily on the historical dataset 

(Figure 5.10) that is substantially larger than the instrumental dataset. In this instance, introducing the 

validity index and prior information not only increased the hazard estimates with short return periods 

but also decreased the probabilities of exceedance of the different tsunami intensities.  

 

 

FIGURE 5.10. Percentage contribution of each sub-dataset to MLE and BI estimates of the 𝑏̂̅-parameter 

taking into consideration the validity index associated with the Japan tsunami dataset.  

 

5.2.3 Discussion 

Considerable effort has been devoted over many years to assessing the tsunami hazard at vulnerable 

coastal areas, yet, large-scale uncertainty remains associated with the applied methodologies and 

research results. This uncertainty is attributable in part to the different generating mechanisms, ranging 

from near- and far-field earthquakes to submarine slumps and volcanoes. In addition, the bathymetry 
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of the affected local coastline influences the intensity and height of the tsunami wave, either increasing 

or reducing the force of the incoming wave. Ultimately, the small number of events in any tsunami 

catalogue increases the number of assumptions that have to be made in tsunami hazard assessment 

process.  

A methodology is presented to assess the coastline-characteristic tsunami hazard based on empirical 

catalogues. The methodology, originally defined in terms of probabilistic earthquake hazard 

assessment, is highly flexible, allowing for the transition to PTHA. It considers only the observed 

tsunami intensity and makes no assumptions about the source of the tsunami. The formalisms focus on 

assessing the tsunami recurrence parameters, the tsunami rate of occurrence 𝜆, and the Soloviev–

Imamura frequency–intensity power law 𝑏-parameter based on incomplete catalogues, the uncertainty 

in the tsunami intensity determination, as well as the uncertainty associated with the parameters of the 

applied tsunami occurrence and intensity models. The procedure explicitly allows for both aleatory and 

epistemic uncertainty by introducing mixture distributions, where the recurrence parameters are 

assumed to be random variables that can fluctuate. For this purpose, the gamma distribution was 

introduced as the mixing distribution in both the tsunami occurrence and the intensity distributions. The 

ability to view the recurrence parameters as random variables allows the user to define models that 

closely echo reality. As seen in Table 5.8, the exclusion of parameter uncertainty has a noteworthy 

effect on the estimated hazard, indicating that the simpler models can lead to the underestimation of the 

tsunami hazard for a region.  

Furthermore, the recurrence parameters 𝜆̂̅ and 𝛽̂̅ for Japan were estimated using the validity index and 

BI, while keeping the maximum possible tsunami intensity constant to that estimated in Smit et al. 

(2017). In the synthetic earthquake example (Chapter 4), the rate of occurrence prefers more-recent 

information compared with the power law parameter that is partial to extreme events to dictate its slope. 

More emphasis is placed on prior information, as more variation is explicitly accounted for. The 

opposite is observed when evaluating the tsunami dataset for Japan. Here, both 𝜆̂̅ and 𝛽̂̅ rely heavily on 

the historical dataset that is substantially larger than the instrumental dataset. In this instance, the 
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introduction of the validity index and prior information not only increased the hazard estimates with 

short return periods, but also decreased the probabilities of exceedance of different tsunami intensities. 

The examples used historical and complete catalogues, but prehistoric tsunami information can also be 

included in the analysis.  

It is safe to assume that the other parameters associated with tsunamis, such as the direction of the wave 

propagation and the local bathymetry, would affect the hazard estimates, resulting in locally adjusted 

site effects. The accuracy of the estimated recurrence parameters can be enhanced by incorporating 

these site effects by means of Bayesian statistics, similar to the procedure followed by Grezio et al. 

(2010, 2017) and Yadav et al. (2013). A posterior probability is created by combining physical 

knowledge of the tsunami process, as a priori probability, with the likelihood function 𝐿𝑇𝑜𝑡𝑎𝑙(𝝍).  

Several factors have to be considered when this proposed methodology is used. Firstly, the formalisms 

are dependent on the choice of LoC. This concern can be addressed potentially through the application 

of formalisms similar to those by Kijko and Smit (2017), who provide two new equations for the 

estimation of seismic recurrence parameters without using LoC. In addition, the uncertainty associated 

with the intensity error influences the derived recurrence parameters, as does the choice of uncertainty 

associated with the occurrence model. The choice of the frequency–intensity distribution could also 

affect the results, as these formalisms do not consider the local bathymetry conditions. Care has to be 

taken to ensure that a model is presented that is as objective as possible and, in addition, can 

accommodate the various uncertainties without severely over- or underestimating the hazard. 
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5.3 Hail 

This example examines both hail hazard and hail risk by using the defined methodology. Hail hazard is 

determined by using hail size estimates derived from ensemble HAILCAST modelling run on ERA-

ITERM re-analysis data (Dyson et al., unpublished). Hail risk is analysed using insured losses based on 

observed insurance claims from Momentum Short-Term Insurance Company (MSTI) in South Africa. 

This demonstrates how both the hazard and the risk can be described by the same recurrence parameters, 

and how the hazard results can serve as a priori information for risk. These next sections provide 

background information on both hail hazard and risk, assessments of the hail hazard for Gauteng 

province, South Africa, and the associated hail risk for vehicles.  

 

5.3.1 Introduction 

Hail is one of the largest single-event natural hazards and can cause extensive damage. Global 

cumulative insured losses often exceed USD 1 billion (Changnon, 2008; Gunturi and Tippet, 2017). 

Insured losses cover the damage to assets of residential and commercial infrastructure, agriculture, and 

vehicles. In some countries, as is the case in Australia, hailstorms contribute to the most frequent and 

largest natural catastrophe losses for the insurance industry (Eichner, 2015). Meteorologists, 

geographers, economists, and the engineering, construction, and agriculture sectors are among the 

industries that can benefit from understanding hail frequency and characteristics (Punge and Kunz, 

2016). Each of these industries continuously tries to understand the underlying phenomena but also to 

design and plan for their respective economic safety and profitability. Agriculture is typically the most 

susceptible to hail, even with smaller size events, as entire crops can be wiped out during a single storm 

and loss of livestock can occur. Severe convective storms can cause notable economic damage to 

property and, in rare instances, severe injuries and even the loss of human life. The economic losses 

can be crippling, e.g. as with the events of 8–10 June 2014 over the northern parts of France, and the 

central and western parts of Belgium, with the insured losses amounting to 2.3 billion Euro. During the 
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same year, an event was recorded in Brisbane, Australia, that caused damage of AUD 1.35 billion. 

References to these and other insured losses related to hailstorms can be found in publications such as 

Munich Re (Eichner, 2015) and Punge and Kunz (2016). 

Hailstorms are high-energy, convective weather systems mostly associated with thunderstorms, 

although the reverse is not necessarily true. Ice crystals form because of the freezing of moist vapour 

(rain) caught in strong updrafts during the storm. As the storm updrafts continue, the ice crystals 

accumulate more ice, with irregular-shaped hailstones being formed (Punge and Kunz, 2016). Once 

these stones are heavy enough to overcome the updrafts, the hailstones will start dropping to Earth. In 

many instances, these hailstones will melt before reaching the ground, becoming raindrops again. As 

convective storms are continuously moving, an elongated footpath of hail is formed. Changnon et al. 

(2009) and references therein provide a review of the formation of hail and hailstorms and their 

occurrence in the USA, whereas Punge and Kunz (2016) present a review of hail in Europe.  

Several factors can affect the type of damage that a hailstorm can cause. These include the frequency 

and size of the stones (diameter), kinetic energy, ground wind speed, the amount of hail per measured 

area (volume), the shape of the hailstones, and the physical properties of the source of impact (Webb et 

al., 2009; Changnon et al., 2009; Punge et al., 2014, and references therein). A combination of these 

factors determines the intensity of the storm. The volume of the hailstones and the ground wind speed 

during the storm are difficult to measure and vary greatly between locations. Detailed studies are 

required on these two factors, and they are rarely included in hail hazard analyses.  

The closely correlated factors of size and kinetic energy are strong indicators of the type of damage that 

can be expected (e.g. Leigh, 1998; Punge et al., 2014). The TORRO (the Tornado and Storm Research 

Organization) Hail Intensity Scale19 introduced by Webb et al. (1986) and revised by Sioutas et al. 

(2009), provides a good indication of the type of damage that can be associated with various hail sizes 

                                                           

19 http://www.torro.org.uk/hscale.php; last accessed 2018/721. 

http://www.torro.org.uk/hscale.php;
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and kinetic energy. In addition, the TORRO scale can be modified slightly to reflect the effect of hail 

on the building materials of a particular country. Table 5.11, as presented in Webb et al. (2009, Table 

1), serves as an example of this scale that was developed to reflect hail damage observed in Britain. 

 

TABLE 5.11. TORRO Hail Intensity Scale (Webb et al., 2009). 

Level 
Intensity 

Category 

Typical Hail 

Diameter (mm)a 

Probable Kinetic 

Energy (J-m2) 
Typical Damage Effects 

H0 Hard hail 5–9 (pea) 0–20 No noticeable damage 

H1 
Potentially 

damaging 
10–15 (moth ball) >20 Slight general damage to fruit, crops 

H2 
Significantly 

damaging 

16–20 (marble, 

grape) 
>100 

Significant general damage to fruit, 

crops, vegetation 

H3 Severe 21–30 (walnut) >300b 

Severe general damage to fruit, 

crops, damage to glass and plastic 

structures, paint and wood scored 

H4 Severe 
31–40 (pigeon egg> 

squash ball) 
>500c 

Widespread glass damage, vehicle 

bodywork damage 

H5 Destructive 
41–50 (golf 

ball>pullet egg) 
>800 

Extensive destruction of glass, 

damage to tiled roofs, significant risk 

of injuries 

H6 Destructive 
51–60 (chicken 

egg) 
 

Bodywork of grounded aircraft 

dented, brick walls pitted 

H7 Destructive 
61–75 (tennis 

ball>cricket ball) 
 

Severe roof damage, risk of serious 

injuries 

H8 Destructive 
76–90 (large 

orange> soft ball) 
 Severe damage to aircraft bodywork 

H9 
Super 

hailstorms 
91–110 (grapefruit)  

Extreme structural damage. Risk of 

severe or fatal injuries to person 

caught in the open. 

H10 
Super 

hailstorms 
>110 (melon)  

Extreme structural damage. Risk of 

severe or fatal injuries to persons 

caught in the open. 

 aApproximate range (typical maximum size in bold), since other factors (e.g. number and density of hailstones, hail 

fall speed, and surface wind speeds) affect severity. For non-spheroidal hailstones, the diameter refers to the mean 

of the coordinates. 
bVinet (2001) noted that kinetic energies > 300 J-m2 were associated with total crop losses in France 
cFraile et al. (2003) indicated that "very severe" hailfalls were those with kinetic energy >500 J-m2 and/or maximum 

hail size > 30 mm in diameter. 
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More-specific intensity scales can be developed, e.g. an intensity–susceptibility index for various crops 

(e.g. Changnon et al., 2009). This is a varying index, which describes the effect on crops from hail 

impact, based on the point in time in the lifespan of the plant, as well as the point in time of the hail 

season (Changnon, 1967; Changnon and Stout, 1967; Olivier and Van Rensburg, 1992). These indices 

are dependent on the type of crops and hail climatology of the area under investigation.  

Hail hazard is expressed often as the number of incidences, or hail frequency, in a specific area over a 

predefined time period. This includes reviews of spatial variability in annual and seasonal patterns. Hail 

frequencies can be based on point or area relationships. Point relationships focus only on the point of 

measurement, whereas area relationships consider the entire affected area. This is done by using 

hailstrips, a narrow area with high winds and high amount of hailstones; hailstreaks, an area with 

continuous spatial and temporal coverage of hailstones; and hailswathes, an area where two or more 

hailstreaks are observed within a certain distance and time (Changnon et al., 2009).  

Over the years, several sources for hail observations have been used in an effort to establish hail hazard 

or climatologies and their links to insurance claims (e.g. Leigh and Kuhnel, 2001; Sander et al., 2013; 

Changnon, 2008; Brown et al., 2015; Allen et al., 2017). These include using insurance data, national 

weather spotter services, specialised field campaigns (e.g. Changnon et al., 2009, p 12), hailpad 

observations, and observations from weather stations (Allen et al., 2017 and references therein). 

Hailpads20 are useful in identifying the location, hail size, and kinetic energy at the moment of impact. 

Establishing such a network, however, is expensive and problems could be encountered, such as hailpad 

saturation, identification of the hail shapes, drag, and spatial incompleteness. Using insurance data to 

supplement hail observational data can be complicated. The focus of the industry is often on the overall 

cumulative losses of a given portfolio in a specific period of time and less on the loss from a single 

hailstorm. This can lead to fewer events being counted than are observed in meteorological terms. 

Moreover, these datasets are subject to low spatial and temporal resolution, incompleteness, and 

                                                           

20 https://definedterm.com/hailpad/286788, last accessed 2019-05-26. 

https://definedterm.com/hailpad/286788
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heterogeneous observational systems (Punge and Kunz, 2016). Furthermore, reporting bias exists, as 

small hail occurrences can go unreported owing to lack of equipment or low population density at the 

location of the event (Allen and Tippett, 2015; Allen et al., 2015). 

The lack of reliable observational data has led to the development of alternative methods to estimate 

hail climatologies, assisting researchers in understanding the characteristics of hail for future 

predictions. These methods rely on using proxy data from remote sensing instruments of numerical 

weather prediction systems. Weather radars are popular because of their high spatial and temporal 

resolution (e.g. Punge and Kunz, 2016), and can give some indication of hail events. Numerical weather 

prediction systems are used to build hail climatologies based on atmospheric conditions. Since the early 

years of the current century, climatologists have employed parameters from re-analysis data combined 

with observed hail events to develop area-specific hail climatologies (e.g. Brooks et al., 2003, 2007; 

Allen and Karoly, 2014; Dyson et al., unpublished). 

Applied methodologies for assessing hail climatologies focus mainly on hail frequency analyses (e.g. 

Punge and Kunz, 2016) that characterise an area according to the number of hail event days in a month 

or a year. Several authors have attempted to link hail occurrences and size with other environmental 

factors by using synoptic composites and station proximity analyses. Other methods include models, 

such as HAILCAST, Regional Climate models (RCM), or Poisson regression (e.g. Allen et al., 2015). 

Kunz and Puskeiler (2010) combined 3D/2D radar, lightning, radio sounding, and insurance data to 

identify hailstorm tracks and they evaluated the hazard using EVT and generalised Pareto distributions 

to assess the return periods. By applying the Gumbel I distribution to observations from US hail reports, 

Allen et al. (2017) developed spatial hazard maps for the continental US, consisting of hail event size 

return intervals for grid sizes of 1∘ × 1∘. The applied dataset is homogenised for the entire US and only 

complete information, with hail sizes larger or equal to 25 mm (1 inch) was used. Smaller event sizes 

that could have a detrimental effect on agricultural crops and vegetation were ignored. The events used 

were for the period 1979 to 2013, and historical information between 1955 and 1978 was ignored 

because of spatial and temporal incompleteness.  
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Distributions used in modelling the maximum hail size per storm appear to differ based on the 

measurement techniques. These include the exponential and power law probability distribution 

functions, inverse Rayleigh, and the gamma distribution (Punge and Kunz, 2016). Large uncertainty is 

associated with choosing the type of distribution to use because of the various types of data uncertainty, 

whether observational or derived from empirical ensemble models. 

 

5.3.2 Hail hazard  

South Africa has both summer and winter rainfall regions. In the austral summer rainfall season 

(October–March), convective thunderstorms are an almost daily occurrence, usually a single event 

lasting less than one hour over any particular location (Visser and Van Heerden, 2000). Hail events are 

observed typically for the months September to December (Pienaar et al., 2015) over the Highveld of 

South Africa. This region includes the densely populated Gauteng province. Most of the severe and 

damaging events occur in the late afternoons or early evenings. On 1 November 1985, a severe hailstorm 

struck Pretoria CBD and surrounding areas. Collapsed roofs, damage to vehicles, and the windows of 

buildings were observed, with a total estimated financial loss of ZAR 400 million (unadjusted) 

(Terblanche, 1985; Caellum, 1991; Grobler, 2001). Recent severe hail events in Gauteng include the 

hailstorms in 2012 and 2013 that wreaked havoc on motorists and infrastructure, with financial losses 

in excess of ZAR 2 billion (±  USD 160 million). The loss resulting from the hailstorm on                           

27 November 2013 was double that suffered in Edenvale (Greater Johannesburg region) from the 

hailstorm of 2012 (ZAR 1 million). The hailstorm events in 2013 were severe, causing power 

disruptions and extensive damage to buildings, houses, and vehicles (AON, 2014; PWC 2014), with the 

event of 28 November 2013 described as ‘the single worst insurance event in South Africa’s history’ 

(PWC, 2014). Upon further investigation, Pienaar et al. (2015) found significant circulation pattern 

anomalies in the atmospheric properties observed during the 2012 and 2013 hail seasons compared with 

the period 1979–2011. Such anomalies could potentially serve as warnings of higher frequencies of 

damaging hail events during a particular season. 



 

 

137 

 

Similar to the rest of the world, South Africa has a lack of reliable hail observations. The South African 

Weather Service (SAWS) that maintains official hail information, has a limited number of manned 

stations able to record hailfall at or close to the station. Moreover, event sizes are only recorded when 

the diameter is larger than 5 mm. Such lack of observations obviously makes the development of a hail 

climatology particularly difficult. The format of the currently observed hail climatological data 

precludes the successful application of the methodology described in Chapter 3. 

In an attempt to build a hail climatology for the period 1979–2017 over South Africa, (Dyson et al., 

unpublished) used the HAILCAST model first developed for South Africa by Poolman (1992) and later 

updated by Brimelow et al. (2002) for Canada. The HAILCAST model is a one-dimensional coupled 

model using a steady-state cloud model and a time-dependent hail-growth model. HAILCAST 

conducted ensembles of frequency and maximum hail size diameters using ERA-ITERM pseudo–

proximity soundings over South Africa at a resolution of 0.75°.  

The hail hazard is analysed using four grid points 339, 339, 367, and 368 that covers Gauteng. These 

grid points were provided by the HAILCAST model. The grid points were not combined due to 

topographical changes in Gauteng that can influence the recurrence parameters. The hail size used for 

analysis consists of the mean hail size over the ensemble data for each day. All events of size less than 

1 cm were discarded, as it is difficult to distinguish between hail and ice rain for such small sizes. At 

this stage, the raw ensemble data were not available to assess the standard deviation of the mean hail 

size predicted by the model. The ensemble data for a single grid point was analysed and yielded a mean 

standard deviation of 𝜎𝑥 = 0.1 cm for hail size events. It was, therefore, assumed that the event size 

uncertainty could be modelled using the Gaussian distribution, with a mean equal to the observed event 

size and standard deviation of 0.1 cm. Analysing the log of the cumulative frequency of event sizes 

yielded a percentage variation in the data of approximately 5% at each grid point. The shifted-truncated 

distribution was applied that takes into account a single dataset, with parameter and event size 

uncertainty (M4 in Table 3.1). 
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Table 5.12 provides the input parameters for the four grid points, as depicted in Figure 5.11. For this 

example, it was assumed that there was no prior information available and MLE was used to estimate 

the recurrence parameters. The Kijko–Sellevoll–Bayes method was used to estimate the maximum 

possible hail size. The estimated parameters are provided in Table 5.13. Figure 5.12 provides the 

cumulative frequency–event-size behaviour, return period, and probabilities of exceedance for 5, 10, 

and 20 years for each of the four grid points. 

A discussion of the results is available in Section 5.3.4. In the next section, the results of the probabilistic 

hail hazard assessment will be used as a priori information in the assessment of the probabilistic hail 

risk for the same grid points in Gauteng. 

 

 

FIGURE 5.11. Map of Gauteng with the centroids of the grid points used in the HAILCAST model. The 

hail hazard is determined for each of these grid points. Grid 338 is the bottom left quadrant, 

grid 339 the bottom right, grid 367 the top left quadrant, and grid 368 the top right. The 

locations of incurred insurance losses at suburb level are shown in purple. 
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TABLE 5.12. Probabilistic hail hazard assessment input parameters for Gauteng, South Africa, based on 

ensemble HAILCAST data for the period 1979/06/10 to 2016/12/31. 

 Grid 338 Grid 339 Grid 367 Grid 368 

GPS centre points [-26.25, 27.75] [-26.25, 28.5] [-25.5, 27.75] [-25.5, 28.5] 

Number of events 951 976 556 525 

LoC (in cm) 1.0  1.0 1.0 1.0 

Hail size SE* (in cm) 0.1 0.1 0.1 0.1 

Observed maximum hail size (in cm) 7.59±0.1 7.53±0.1 6.72±0.1 6.3±0.1 

Percentage variation 5 5 5 5 

* SE represents the standard error. 

 

TABLE 5.13. Estimated probabilistic hail hazard recurrence parameters for Gauteng, South Africa, 

based on ensemble HAILCAST data for the period 1979/06/10 to 2016/12/31. 

Estimated parameters Grid 338 Grid 339 Grid 367 Grid 368 

Mean rate of occurrence 𝜆̅̂(𝑥𝑚𝑖𝑛 = 1.0 cm) 25.3 ± 1.5 26.0 ± 1.5 14.8 ± 1.0 14.0 ± 1.0 

Power law parameter 𝑏̂̅ 0.37 ± 0.01 0.39 ± 0.01 0.48 ± 0.02 0.42 ± 0.02 

Estimated maximum possible hail size 𝑥̂𝑚𝑎𝑥 7.92 ± 0.34   7.93 ± 0.41   7.77 ± 1.05   6.63 ± 0.34 
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FIGURE 5.12. Graphical representation of the hail hazard estimates by cumulative frequency–event-size behaviour, return period, and probabilities of 

exceedance for 5, 10, and 20 years for each of the four grid points over Gauteng, South Africa.  
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5.3.3 Hail risk 

A secondary dataset, consisting of individual hail-related losses for the period 2007 to 2017 was 

obtained from a South African insurance company. The information provided by the insurer contains 

the approximate geospatial coordinates, at the suburb level, of the location of the insured entity during 

the hailstorm, the occurrence date, the incurred loss, as well as the liable excess of the insured. 

A Bayesian vehicle hail-risk model was developed for Gauteng province, incorporating the information 

generated in Section 5.3.2. The incurred loss amounts were adjusted with the yearly average consumer 

price index (CPI), with a baseline of December 2016. The CPI index was obtained from Statistics South 

Africa (StatsSA)21. The loss information per individual vehicle was summarised as a daily loss amount. 

The methodology defined in Chapter 3 was applied to assess the empirical annual distribution of 

observed losses. This facilitated the assessment of the required recurrence parameters, namely the mean 

rate of occurrence (expected loss) 𝜆̅, the power law parameter 𝑏̅, and the maximum possible hail losses 

𝑥𝑚𝑎𝑥. 

The four zones identified for the hail hazard (Figure 5.11) were not used, as there was not enough loss 

information to provide reliable results per zone. The weighted average and standard deviation of the   

𝑏̅-parameter, as calculated for the hail hazard (Section 5.3.2), was derived as 0.4 and 0.04, respectively. 

These values were used as a priori information for the estimation of the 𝑏̂̅-parameter for hail risk.   

The insured population can typically be divided into two groups according to their ‘attitude toward 

insurance’ or the likelihood of instituting a claim after a loss has occurred. It is observed often that the 

larger a loss is the less is the difference in customer behaviour; however, with small losses, this 

difference is rather evident. One way that insurers induce clients to participate in risk management, is 

offering reward programmes and/or excesses (contribution to claims), which are designed to persuade 

                                                           

21 http://www.statssa.gov.za/?page_id=1854&PPN=P0141, last accessed 2019/09/15. 

http://www.statssa.gov.za/?page_id=1854&PPN=P0141
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clients to think twice before pursuing a claim. It is, therefore, assumed that not all the possible damage 

from hailstorms is reported to insurance companies, particularly when the losses are relatively small. 

Accordingly, a single LoC of ZAR 0.1 million was introduced. The maximum observed annual loss 

was ZAR 7.3 million in 2012. Because of the large range of the financial losses over a short time period, 

an event size error of ZAR 0.5 million was assumed. This value was obtained using the visual 

cumulative method (Mulargia and Tinti, 1985). Little variation was observed in the data over the time 

period, and a total of 10% parameter variation was included. All the claims related to the events in the 

dataset were paid out by the insurer; therefore, each event was assigned a validity index of 1. The 

possibility of false claims and fraud was not considered. The input parameters for the assessment of the 

risk are provided in Table 5.14 and the results of the risk assessment in Table 5.15. The results of the 

MLE are also provided for comparison purposes. A comparison of estimated mean rate of occurrence 

of hail risk for vehicles is provided in Figure 5.13. The return period and probabilities of exceedance 

for 5, 10, and 20 years for the hail risk estimates are provided in Figure 5.14. 

 

TABLE 5.14. Probabilistic hail risk assessment input parameters for Gauteng, South Africa, based on 

financial loss information for vehicles from MSTI for the period 2007/01/01 to 

2017/12/31. 

Input Gauteng 

Number of events 28 

LoC R0.1 million 

Hail size SE R0.5 million 

Observed maximum hail size R7.3 million 

% variation 10% 

Mean of a priori information for 𝑏̂̅ 0.4 

Standard deviation of a priori information for 𝑏̂̅ 0.04 
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TABLE 5.15. Estimated probabilistic hail risk recurrence parameters for Gauteng, South Africa, based 

on financial loss information for vehicles from MSTI for the period 2007/01/01 to 

2017/12/31. 

Estimated parameters MLE BI 

Mean rate of occurrence 𝜆̅̂(𝑥𝑚𝑖𝑛  =  ZAR 0.1 million) 2.2 ± 0.5 2.2 ± 0.5 

Power law parameter 𝑏̂̅ 0.55 ± 0.12 0.42 ± 0.04 

Estimated maximum possible hail size 𝑥̂𝑚𝑎𝑥 9.9 ± 2.6    8.2 ± 0.9    

Percentage contribution to 𝑏̂̅-parameter   

           Hail hazard a priori information 0  46.5  

           Financial loss information from insurer 100  53.5  

 

 

FIGURE 5.13. Comparison of estimated mean rate of occurrence of hail risk for vehicles in Gauteng by 

MLE and BI.  
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(a) 

 

(b) 

FIGURE 5.14. Graphical representation of the hail risk estimates by (a) return period and                                         

(b) probabilities of exceedance for 5, 10, and 20 years for Gauteng, South Africa. 
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5.3.4 Discussion 

Sections 5.3.2 and 5.3.3 demonstrate how both hail hazard and hail risk can be assessed using the 

generic methodology defined in Chapter 3.  

Four grids points in the HAILCAST ensemble dataset were used to assess the hail hazard for Gauteng. 

The data in all four grids points demonstrate a power law behaviour when investigating the cumulative 

frequency–event-size relationship (Figure 5.12). As the ensemble dataset can also be viewed as 

synthetic data, is the dataset is considered a complete event set. This single dataset, therefore, 

contributed 100% to the assessment of both estimates 𝜆̂̅ and 𝑏̂̅. Minimal variation can be seen in the 

power law behaviour, except for large event sizes. The sharp decline in the cumulative frequency for 

large events supports the introduction of an upper limit in the modelling process.   

The hail hazard estimates were generated using MLE under the assumption that no prior information 

was available. The estimated recurrence parameters have a relatively small standard deviation, with the 

estimated maximum possible event sizes close to the maximum observed. Sensitivity analyses were 

performed by varying the percentage variation in the model parameters, as well as the event size errors. 

Accounting for uncertainty in the recurrence parameters did not change the estimated annual rate of 

exceedance for event sizes in the instance where the event size error did not change. On the other hand, 

the event size error had the largest effect on the recurrence parameters. The middle range of event sizes 

was the most sensitive, resulting in the underestimation of the mean rate of occurrence 𝜆̂̅ .   

The estimates 𝜆̂̅ and 𝑏̂̅ (Table 5.13) indicate that behaviour of the recurrence parameters for 338 and 

339 are similar, and the behaviour for 367 and 368 are similar. There is, however, a difference between 

the southern and northern grid points, most likely attributable to topographical changes. The return 

periods and probabilities of exceedance for the four grid points are very similar (Figure 5.13), with the 

grid point over Pretoria exhibiting slightly lower return periods for higher event sizes.  
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A small sample of the incurred vehicle hail losses for a South African insurance company was used to 

demonstrate how the proposed methodology could be used to assess financial risk. Only incurred losses 

𝑥 ≥ ZAR 0.1 million were analysed using MLE and BI. Through Bayesian inference, the hail hazard 

𝑏-parameter was used as a priori information in the assessment of the 𝑏-parameter of hail risk. The 

power law parameter estimate 𝑏̂̅ from the hail hazard assessment was used as a priori information to 

constrain the risk assessment results. The introduction of the prior information reduced the estimate 

value of the risk power law parameter, as well as its associated standard error (Table 5.15). Because of 

the small number of events used in the analyses, the hail hazard prior contributed 46.5% of the 

information used in the estimation process. This resulted in a reduction in the 𝑏̂̅-parameter compared 

with the MLE risk estimates. The estimated maximum possible hail loss 𝑥𝑚𝑎𝑥 and standard error were 

also reduced.  

Figure 5.13 illustrates the estimated mean rate of occurrence 𝜆̂̅ for vehicle hail risk in Gauteng when 

applying BI and MLE. The estimated values for MLE were lower compared with the Bayesian 

estimates, thereby yielding a higher estimated return period. Figure 5.14 provides the return periods and 

probabilities of exceedance for 5, 10, and 20 years. The return periods for MLE are higher compared 

with those of BI. For instance, the maximum observed loss 𝑥𝑚𝑎𝑥
𝑜𝑏𝑠  = ZAR 7.3 million yields a return 

period of 78 years for MLE and 56 years for BI. The hail risk estimates using BI are, therefore, higher 

but with a lower maximum possible event size.  

Future research could include analyses of the hail hazard over smaller grid sizes to account for spatial 

and temporal dependencies related to the topography. Additional investigations can be conducted to 

obtain more historical information on severe hailstorms or the application of other event-size 

distributions such as the generalized Pareto distribution. The loss results provided are applicable only 

to the portfolio of the particular insurer and are based on a small dataset. Additional hail loss information 

across the market will be required to build a representative hail risk model for South Africa. It is also 

important to note that these risk estimates are dependent on external factors, such as vehicle cost and 
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inflation. Regular adjustments should be made to ensure that the estimates remain in agreement with 

the economic realities. 
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6 6 

Chapter 6. Remarks and Conclusions 

“No mathematical tricks can replace data.” Andrzej Kijko 

This thesis presents a generic and flexible methodology for the probabilistic modelling of any type of 

natural hazard based on empirical data, aleatory and epistemic uncertainty, and prior information. The 

methodology combines a non-homogeneous Poisson process with the relevant natural hazard power 

law describing the relationship between the cumulative frequency and the measurement sizes of the 

events. Explicit provision is made for highly incomplete and uncertain data, the inclusion of prehistoric, 

historical, and prior information to stabilise and improve the accuracy of the results, uncertainties in 

size measurement, uncertainty in the parameters of the applied distributions when events are non-

homogeneous or weakly dependent, as well as a means to provide for the uncertainty (validity) of the 

occurrences in the dataset. Both maximum likelihood estimation (MLE) and Bayesian inference (BI) 

are used to estimate the recurrence parameters 𝜆 and 𝑏 (𝛽). In addition, an existing methodology to 

assess the maximum possible event size 𝑥𝑚𝑎𝑥 is discussed. The presented work is a natural expansion 

of the work by Kijko and Dessokey (1987) and Kijko and Sellevoll (1989; 1992) that developed efficient 

techniques for the optimal assessment of the area-characteristic seismic hazard parameters by 

considering incomplete datasets and uncertainty in earthquake magnitudes. The new proposed 

methodology builds on this foundation by describing how any physical distribution power law observed 

in nature could be utilised in this framework, how to account for parameter uncertainty, i.e. weak 

dependencies in the data, and how to account for uncertainty related to the validity of the events in the 

dataset.  

The methodology is discussed in terms of a power law that describes the underlying physical 

characteristics of natural hazards. Extreme prehistoric and historical distributions are defined using the 

same power law as defined for the instrumental datasets that are more complete. As the precision of 

measurement instrumentation generally increases over time, increasingly smaller events are included in 
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such datasets. Therefore, to account for the varying levels of completeness between the prehistoric, 

historical, and instrumental datasets, sub-datasets are created, allowing for the employment of the 

additive property of likelihood functions to combine the datasets. In addition, it allows for the estimation 

of single parameter estimates for 𝜆 and 𝑏 by using MLE and BI. 

In instances where the data are perfectly independent and identically distributed, the probabilistic hazard 

assessment of these parameters is relatively easy using the analytical formulas. Natural event datasets, 

however, often exhibit patterns and some dependencies between the observed events. Furthermore, the 

event size measurements can be questionable. In some instances, particularly in prehistoric and 

historical datasets, the validity of an event can be questioned. 

To address the concerns listed above, three types of additional uncertainty are introduced into the 

modelling framework to account for the knowledge gaps that occur often in natural hazard datasets. The 

convolution theorem is used to introduce event size errors and mixture distributions to allow for 

deviations from the strict requirements of the Poisson process and exponential distribution. These 

methods, and employing the likelihood functionality, facilitate the direct introduction of data 

characteristics particular to each of the prehistoric, historical, and instrumental datasets. Using the 

weighted likelihood function to account for the validity of an event is an effective tool to ensure that 

the rates of occurrence and return periods are not overestimated.  

To test the versatility of the methodology, it was applied to a synthetic earthquake dataset, two real 

earthquake datasets, one from South Africa and the other from Central Italy, a tsunami dataset for 

tsunamigenic regions in the Pacific Ocean, ensemble hail event data, and vehicle hail insurance loss 

data from South Africa. The results for each specific example are discussed in depth in the respective 

subsections of Chapters 4 and 5. Therefore, only general observations from the thesis will be discussed 

in points 1 to 14 listed below. 

1. Physical distribution power laws are used often in natural hazard studies to describe the 

relationship between the cumulative frequency and the event size. The proposed methodology 



 

 

151 

 

employs this characteristic to define a framework for probabilistic natural hazard assessment 

that not only allows the researcher to choose from different power law equations but also to 

account for different types of data uncertainty. 

2. Defining the hazard in terms of power laws and likelihood functions allows different types of 

data to be combined, as well as to account for potential time gaps in the datasets. 

3. The parameter estimates for 𝑏 (𝛽 = 𝑏 ln 10) depend on the level of completeness parameter 

𝑥𝑚𝑖𝑛 . Unfortunately, no single method exists to assess 𝑥𝑚𝑖𝑛  accurately and it remains a 

subjective parameter. The choice of 𝑥𝑚𝑖𝑛 can have a noteworthy effect on the estimates. This 

aspect is not discussed in this thesis; however, refer to De Witt (2013) and Kijko and Smit 

(2017).  

4. Prehistoric and historical information can be unreliable or not available. If the researcher feels 

that too much emphasis is being placed on these datasets, the methodology allows the user to 

reduce their contribution by using a validity index or, alternatively, to continue with only 

instrumental data. 

5. The inclusion of different types of data uncertainty should be done prudently and with a 

thorough understanding of the data and the underlying physical mechanics that is the driving 

force of the specific natural hazard. 

6. The type of uncertainty included in the analyses must be a function of the data. Consideration 

of the event size uncertainty usually has an opposite effect on the estimates compared with 

parameter uncertainty. By accounting for both, the combined effect will always be less than 

the largest effect of the two separately. 

7. Utilising only a single event dataset with a medium to high level of completeness, or only 

extreme data, can result in under- or overestimation of the recurrence parameters and 

subsequent hazard estimates. Considering small and large events in the analyses affects the 

hazard estimates, especially in instances where only a single dataset or only extreme events 

are used. Including prior information can help to stabilise and improve the accuracy of the 

results.  
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8. The creation of sub-datasets allows the researcher to use more observations. In the synthetic 

example in Chapter 4, sub-setting the datasets leads to results that are more stable compared 

with the single complete and extreme datasets. Using prior information for sub-datasets yields 

BI estimates similar to MLE estimates. 

9. The estimation process for the rate of occurrence 𝜆 relies more on the most-recent instrumental 

data, except where the historical or prehistoric datasets contain substantially more events over 

a longer period of time (as seen in Section 5.2). In comparison, the power law parameter            

𝑏-estimates always rely more on the provided prehistoric and historical information. 

10. The percentage contribution that prior information makes to the estimation of both the 

recurrence parameters is a function of the type and amount of uncertainty included in the 

modelling process. 

11. The estimates for the recurrence parameters 𝜆 and 𝑏 are obtained simultaneously. This results 

in dependencies between the parameters when multiple datasets are used. If only prior 

information is assumed for one parameter, it will affect the second parameter indirectly without 

making an explicit contribution. 

12. The inclusion of the validity index as an indicator of the uncertainty associated with occurrence 

affects only the mean rate of occurrence and the return periods. In some instances, it could 

even provide a rate of occurrence estimate equivalent to half of that when the index is not 

included. This is a salient feature, as it translates directly to the hazard estimates. 

13. Traditional model comparison techniques require using a single, complete dataset and 

independent model parameters. It is, therefore, difficult to compare the effectiveness and fit of 

the models between a single dataset (SDS), an extreme dataset (EXT), or multiple datasets 

with varying levels of completeness (LOC) using standard techniques.  

14. As is demonstrated in Section 5.3.3, the methodology can also be applied for natural hazard 

risk assessment. In this section, the financial risk recurrence parameters and risk estimates are 

based on an insurance loss dataset. This reiterates the versatility of the methodology discussed 

in the thesis.   
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Chapter 7. Future Research 

As stated in Section 1.5, natural hazard and risk assessment is a wide research field. The methodology 

discussed in this thesis provides a generic framework that can be used to build more complex models. 

Three general themes that can be investigated are: 

1. Data and parameter dependencies. Future research into data and parameter dependencies can 

focus on accounting for strong spatial- and/or temporal dependencies in the data, e.g. using max-

stable processes or copulas when modelling extreme events; removing the subjective level of 

completeness parameter 𝑥𝑚𝑖𝑛 from the model; and obtaining an improved understanding of the 

dependencies between the recurrence parameters when using multiple sub-datasets in the 

modelling process. 

2. Parameter estimation and model comparisons. Investigations can focus on alternative 

extreme, heavy-tail, semi-parametric, or non-parametric distributions applicable within the 

modelling framework; potential bi-model behaviour in the frequency–event-size relationship; 

the effect of different types of numerical methods on parameter estimates; developing non-

central confidence intervals, where a penalty is built into the confidence intervals for either over- 

or underestimation (Chave, 2017); and developing a model comparison methodology that is not 

dependent on the same underlying dataset to be used, or on the independence of parameters. 

3. New applications. The generic nature of the methodology can be tested on non-natural event 

datasets, including other financial risks and vulnerabilities governed by a frequency–event-size 

relationship. This opens up the possibility to extend this methodology to a multi-hazard and risk 

framework that would include the assessment of hazards and/or risks that occur simultaneously 

or as the result of a previous event, as well as their potential interrelated effects22.    

                                                           

22 http://www.interactinghazards.com/defining-multi-hazard, last accessed 2018/09/28. 

http://www.interactinghazards.com/defining-multi-hazard
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Appendix: Proofs of Equations 

Equation 3.5a and b. 

Following the definition of the cumulative distribution function,  

𝐹𝑋(𝑋 > 𝑥) = 1 − 𝐹𝑋(𝑋 ≤ 𝑥). 

Assuming 𝑒𝛼 in Eq. 2.3 is a constant, 𝑛𝑋≥𝑥 = 𝑒
−𝛽(𝑥−0) and 𝑛𝑇𝑂𝑇 = 𝑒

−𝛽(𝑥−𝑥) such that 

𝐹𝑋(𝑋 ≤ 𝑥) =  1 − 𝐹𝑋(𝑋 > 𝑥) 

= 1 −
𝑒−𝛽(𝑥−0)

𝑒−𝛽(𝑥−𝑥)
. 

𝐹𝑋(𝑥) = 1 − 𝑒
−𝛽𝑥. (3.5a) 

𝑓𝑋(𝑥) =
𝑑

𝑑𝑥
𝐹𝑋(𝑥). 

𝑓𝑋(𝑥) = 𝛽𝑒
−𝛽𝑥. (3.5b) 

▄ 

 

Equation 3.6a and b. 

𝐹𝑋(𝑋 > 𝑥|𝑥 ≥ 𝑥𝑚𝑖𝑛) = 1 − 𝐹𝑋(𝑋 ≤ 𝑥|𝑥 ≥ 𝑥𝑚𝑖𝑛). 

Assuming 𝑒𝛼 in Eq. 2.3 is a constant, 𝑛𝑋>𝑥|𝑥≥𝑥𝑚𝑖𝑛  = 𝑒
−𝛽(𝑥−𝑥𝑚𝑖𝑛) is defined on the interval [𝑥,∞) and 

𝑛𝑇𝑂𝑇|𝑥≥𝑥𝑚𝑖𝑛 = 𝑒
−𝛽(𝑥𝑚𝑖𝑛−𝑥𝑚𝑖𝑛) = 1 defined on the interval [𝑥𝑚𝑖𝑛,∞) such that 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛) =  1 − 𝐹𝑋(𝑋 > 𝑥|𝑥 ≥ 𝑥𝑚𝑖𝑛) = {
0                            𝑥 < 𝑥𝑚𝑖𝑛
1 − 𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛) 𝑥 ≥ 𝑥𝑚𝑖𝑛

. (3.6a) 

𝑓𝑋(𝑥) =
𝑑

𝑑𝑥
𝐹𝑋(𝑥|𝑥min) 

𝑓𝑋(𝑥) = {
0 𝑥 < 𝑥min

𝛽𝑒−𝛽(𝑥−𝑥min) 𝑥 ≥ 𝑥min
. (3.6b) 

▄ 
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Equation 3.7a and b. 

The shifted-truncated exponential distribution is derived by normalising the conditional PDF of the 

shifted exponential distribution derived in Eq. 3.6a. 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =

{
 

 
0 𝑥 < 𝑥𝑚𝑖𝑛

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛)

𝐹𝑋(𝑥𝑚𝑎𝑥|𝑥𝑚𝑖𝑛)
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

0 𝑥 > 𝑥𝑚𝑎𝑥

. 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) = {
𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛 )

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛 )
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

0 𝑥 < 𝑥𝑚𝑖𝑛 𝑎𝑛𝑑 𝑥 > 𝑥𝑚𝑎𝑥

. (3.7b) 

 

The conditional CDF of the normalised, shifted-truncated exponential distribution equals 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =  ∫ 𝑓𝑋(𝑢)

𝑥

𝑥𝑚𝑖𝑛

𝑑𝑢 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =  ∫ {
𝛽𝑒−𝛽(𝑢−𝑥𝑚𝑖𝑛 )

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)

0                                 

  

𝑥

𝑥𝑚𝑖𝑛

𝑑𝑢 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =
𝛽𝑒𝛽𝑥𝑚𝑖𝑛

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
(
−1

𝛽
) (𝑒−𝛽𝑢⌋

𝑥𝑚𝑖𝑛

𝑥
) 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =

{
 

 
0                                                        𝑥 < 𝑥𝑚𝑖𝑛
−𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛) + 𝑒−𝛽(𝑥𝑚𝑖𝑛−𝑥𝑚𝑖𝑛)

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

1                                                        𝑥 > 𝑥𝑚𝑎𝑥

 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥) =

{
 

 
0                                 𝑥 < 𝑥𝑚𝑖𝑛
1 − 𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

1                                  𝑥 > 𝑥𝑚𝑎𝑥

 

or alternatively as 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =
1 − 𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)

1 − 𝑒−𝛽(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
×
𝑒−𝛽𝑥𝑚𝑖𝑛

𝑒−𝛽𝑥𝑚𝑖𝑛
 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥) =
𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥

𝑒−𝛽𝑥𝑚𝑖𝑛 − 𝑒−𝛽𝑥𝑚𝑎𝑥
. (3.7a) 

▄ 
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Equations 3.9a and b. 

Following Assumption 8, the extreme distribution for prehistoric data is defined. 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) = 𝑃(𝑋 ≤ 𝑥0). 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) = 𝑃[𝑋1 ≤ 𝑥0]𝑃[𝑋2 ≤ 𝑥0]⋯ [𝑋𝑛𝑃 ≤ 𝑥0]. 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) = 𝐹𝑋1(𝑥0)𝐹𝑋2(𝑥0)⋯𝐹𝑋𝑛𝑃

(𝑥0). 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) = [𝐹𝑋(𝑥0)]

𝑛𝑃 . (3.9a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0) =

𝑑

𝑑𝑥0
𝐹𝑋
𝑀𝐴𝑋(𝑥0), 

𝑓𝑋
𝑀𝐴𝑋(𝑥0) = 𝑛𝑃[𝐹𝑋(𝑥0)]

𝑛𝑃−1𝑓𝑋(𝑥0). (3.9b) 

▄ 

 

Equation 3.13. 

Following Assumption 9,  

𝑃(𝑋𝑗 ≤ 𝑥0|Δ𝑡) = 𝑃𝑁𝑃(𝑛𝑃)[𝐹𝑋(𝑥0)]
𝑛𝑃 , 

and the theorem of total probability (Cramer, 1961), the conditional CFD for extreme events 𝑥0 in a 

specific time interval Δ𝑡 are defined as 

𝐹𝑋
𝑀𝐴𝑋(𝑥0) = 𝑃(𝑁𝑃 = 0)[𝐹𝑋(𝑥0)]

0 + 𝑃(𝑁𝑃 = 1)[𝐹𝑋(𝑥0)]
1 +⋯, 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡) = ∑ 𝑃𝑁𝑃(𝑛𝑃)[𝐹𝑋(𝑥0)]

𝑛𝑃

∞

𝑛𝑃=0

. (3.13) 

▄ 

 

Equation 3.14 a and b. 

Following Eqs 3.8 and 3.13, 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃) = ∑ (

𝑒−𝜆𝑃Δ𝑡𝑃(𝜆𝑃Δ𝑡𝑃)
𝑛𝑃

𝑛𝑃!
) [𝐹𝑋(𝑥0)]

𝑛𝑝

∞

𝑛𝑃=0

. 

Let Λ = 𝜆𝑃Δ𝑡𝑃𝐹𝑋(𝑥0) such that 
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𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡) = ∑ (

𝑒−𝜆𝑃Δ𝑡𝑃Λ𝑛𝑃

𝑛𝑃!
)

∞

𝑛𝑃=0

, 

where 

∑
Λ𝑛𝑃

𝑛𝑃!

∞

𝑛𝑃=0

= 𝑒Λ. 

Then 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃) = 𝑒

−𝜆𝑃Δ𝑡𝑃𝑒Λ, 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃) = 𝑒

−𝜆𝑃Δ𝑡𝑃𝑒𝜆𝑃Δ𝑡𝑃𝐹𝑋(𝑥0), 

𝐹𝑋
𝑀𝐴𝑋(𝑥0|Δ𝑡𝑃) = 𝑒

−𝜆𝑃Δ𝑡𝑃[1−𝐹𝑋(𝑥0)]. (3.14a) 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡𝑃) =

𝑑

𝑑𝑥0
𝐹𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡𝑃) 

= 𝑒−𝜆𝑃Δ𝑡𝑃(1−𝐹𝑋(𝑥0))
𝑑

𝑑𝑥0
(−𝜆𝑃Δ𝑡𝑃(1 − 𝐹𝑋(𝑥0))). 

𝑓𝑋
𝑀𝐴𝑋(𝑥0|𝛥𝑡) = 𝜆𝑃Δ𝑡𝑃𝑓𝑋(𝑥0)𝑒

−𝜆𝑃Δ𝑡𝑃(1−𝐹𝑋(𝑥0)). (3.14b) 

▄ 

 

Equation 3.24. 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) = ∫ 𝑃𝑁(

∞

0

𝑛|𝜆, Δ𝑡)𝑓Λ(𝜆)𝑑𝜆 

∫
𝑒−𝜆Δ𝑡(𝜆Δ𝑡)𝑛

𝑛!
[
𝜆𝑞−1𝑝𝑞𝑒−𝑝𝜆

Γ(𝑞)
]𝑑𝜆

∞

0

 

=
1

𝑛! Γ(𝑞)
∫ 𝑒−𝜆Δ𝑡(𝜆Δ𝑡)𝑛(𝜆𝑞−1𝑝𝑞𝑒−𝑝𝜆)𝑑𝜆

∞

0

 

=
1

𝑛! Γ(𝑞)
∫ 𝑒−𝜆Δ𝑡𝜆𝑛(Δ𝑡)𝑛(𝜆𝑞−1𝑝𝑞𝑒−𝑝𝜆)𝑑𝜆

∞

0

 

=
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)
∫ 𝑒−𝜆Δ𝑡𝜆𝑛+𝑞−1𝑒−𝑝𝜆𝑑𝜆

∞

0

. 
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Let  

𝑢 = 𝜆𝑞+𝑛,  𝑑𝑢

𝑑𝜆
= (𝑞 + 𝑛)𝜆𝑞+𝑛−1, 

𝑑𝑢

(𝑞 + 𝑛)𝜆𝑞+𝑛−1
= 𝑑𝜆, 

and set the lower boundary equal to 𝑎(= 0) and upper boundary equal to 𝑏(= ∞). Then 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)
∫ 𝑒−𝜆Δ𝑡𝜆𝑛+𝑞−1𝑒−𝑝𝜆

𝑑𝑢

(𝑞 + 𝑛)𝜆𝑞+𝑛−1

𝑢(𝑏)=∞

𝑢(𝑎)=0

 

=
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)(𝑞 + 𝑛)
∫ 𝑒−𝜆(Δ𝑡+𝑝)𝑑𝑢

∞

0

 

=
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)(𝑞 + 𝑛)
∫ 𝑒−(Δ𝑡+𝑝)𝑢

1
𝑞+𝑛
𝑑𝑢

∞

0

. 

Let  

𝑣 = (Δ𝑡 + 𝑝)𝑞+𝑛𝑢, 𝑑𝑣

𝑑𝑢
= (Δ𝑡 + 𝑝)𝑞+𝑛, 

𝑑𝑣

(Δ𝑡 + 𝑝)𝑞+𝑛
= 𝑑𝑢. 

Then 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)(𝑞 + 𝑛)
∫

𝑒−𝑣
1

𝑞+𝑛

(Δ𝑡 + 𝑝)𝑞+𝑛
𝑑𝑣

𝑣(𝑢(𝑏))=∞

𝑣(𝑢(𝑎))=0

 

=
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫ 𝑒−𝑣

1
𝑞+𝑛
𝑑𝑣

∞

0

 

Let  

𝑦 = 𝑣
1

𝑞+𝑛, 𝑑𝑦

𝑑𝑣
=
𝑣

1

𝑞+𝑛
−1

𝑞 + 𝑛
, 

(𝑞 + 𝑛)𝑑𝑦

𝑣
1

𝑞+𝑛
−1

= 𝑑𝑣, 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫

(𝑞 + 𝑛)𝑒−𝑦𝑑𝑦

𝑣
1

𝑞+𝑛
−1

𝑦(𝑣(𝑢(𝑏)))=∞

𝑦(𝑣(𝑢(𝑎)))=0

 

=
(Δ𝑡)𝑛𝑝𝑞

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫
(𝑞 + 𝑛)𝑒−𝑦𝑑𝑦

(𝑦)1−𝑞−𝑛

∞

0
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=
(Δ𝑡)𝑛𝑝𝑞(𝑞 + 𝑛)

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫
𝑒−𝑦𝑑𝑦

𝑦1−𝑞−𝑛

∞

0

 

=
(Δ𝑡)𝑛𝑝𝑞(𝑞 + 𝑛)

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫
𝑒−𝑦𝑑𝑦

𝑦1−𝑞−𝑛

∞

0

 

=
(Δ𝑡)𝑛𝑝𝑞(𝑞 + 𝑛)

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫ 𝑦𝑞+𝑛−1𝑒−𝑦𝑑𝑦

∞

0

 

=
(Δ𝑡)𝑛𝑝𝑞(𝑞 + 𝑛)

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
∫ 𝑦𝑞+𝑛−1𝑒−𝑦𝑑𝑦

∞

0

 

=
(Δ𝑡)𝑛𝑝𝑞(𝑞 + 𝑛)

𝑛! Γ(𝑞)(𝑞 + 𝑛)(Δ𝑡 + 𝑝)𝑞+𝑛
Γ(𝑛 + 𝑞). 

 

Plug in the solved integrals ∫
𝑒−𝑣

1
𝑞+𝑛

(Δ𝑡+𝑝)𝑞+𝑛
𝑑𝑣

∞

0
 to obtain the 

The Poisson-gamma distribution with gamma hyper-parameters 𝑝𝜆 and 𝑞𝜆, equal to 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑝𝜆
Δ𝑡 + 𝑝𝜆

)
𝑞𝜆
(

Δ𝑡

Δ𝑡 + 𝑝𝜆
)
𝑛

. (3.24) 

▄ 

 

Equation 3.26. 

Following from Eqs 3.24 and 3.25 

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) ≡ 𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑝𝜆
Δ𝑡 + 𝑝𝜆

)
𝑞𝜆
(

Δ𝑡

Δ𝑡 + 𝑝𝜆
)
𝑛

 

=
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑞𝜆

𝜆̅

Δ𝑡 +
𝑞𝜆

𝜆̅

)

𝑞𝜆

(
Δ𝑡

Δ𝑡 +
𝑞𝜆

𝜆̅

)

𝑛

 

=
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(
𝑞𝜆

𝜆̅
×

𝜆̅

𝜆̅𝛥𝑡 + 𝑞𝜆
)

𝑞𝜆

(
Δ𝑡𝜆̅

Δ𝑡𝜆̅ + 𝑞𝜆
)

𝑛
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𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑣𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑞𝜆

𝜆̅𝛥𝑡 + 𝑞𝜆
)

𝑞𝜆

(
Δ𝑡𝜆̅

Δ𝑡𝜆̅ + 𝑞𝜆
)

𝑛

. (3.26) 

▄ 

 

Equation 3.27a, b, and c. 

First, the mixture distribution for the shifted CDF is derived, as defined in Eq. 3.6a. It is normalised to 

provide the CDF of the shifted-truncated CDF is according to Eq. 3.7a. Using Eq. 3.6a, the gamma-

exponential distribution equals 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝛽̅, 𝑣𝛽) = ∫[1 − 𝑒
−𝛽(𝑥−𝑥𝑚𝑖𝑛)] [

𝛽𝑞𝛽−1𝑝𝑞𝛽𝑒−𝑝𝛽𝛽

Γ(𝑞𝛽)
] 𝑑𝛽

∞

0

 

=
𝑝
𝛽

𝑞𝛽

𝛤(𝑞𝛽)
∫[1 − 𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)]𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑑𝛽

∞

0

 

=
𝑝
𝛽

𝑞𝛽

𝛤(𝑞𝛽)
∫[𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽 − 𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)]𝑑𝛽.

∞

0

 

Apply linearity of integrals 

=
𝑝
𝛽

𝑞𝛽

𝛤(𝑞𝛽)
[∫ 𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑑𝛽

∞

0

−∫[𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)]𝑑𝛽

∞

0

]. 

Solve 𝐴 = ∫ 𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑑𝛽
∞

0
. 

Let 

𝑢 = 𝛽𝑞𝛽 , 𝑑𝑢

𝑑𝛽
= 𝑞𝛽𝛽

𝑞𝛽−1, 
𝑑𝑢

𝑞𝛽𝛽
𝑞𝛽−1

= 𝑑𝛽, 

and set the lower boundary equal to 𝑎(= 0) and upper boundary equal to 𝑏(= ∞). Then 

𝐴 = ∫ 𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽
𝑑𝑢

𝑞𝛽𝛽
𝑞𝛽−1

𝑢(𝑏)=∞

𝑢(𝑎)=0

 

=
1

𝑞𝛽
∫ 𝑒−𝑝𝛽𝑢

1
𝑞𝛽
𝑑𝑢

∞

0

. 

Let  
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𝑣 = 𝑝𝑞𝛽𝑢, 𝑣

𝑝𝑞𝛽
= 𝑢, 

𝑑𝑣

𝑑𝑢
= 𝑝𝑞𝛽 , 

𝑑𝑣

𝑝𝑞𝛽
= 𝑑𝑢, 

then 

𝐴 =
1

𝑞𝛽
∫ 𝑒

−𝑝𝛽(
𝑣

𝑝
𝑞𝛽
)

1
𝑞𝛽
𝑑𝑣

𝑝𝑞𝛽

𝑣(𝑢(𝑏))=∞

𝑣(𝑢(𝑏))=0

 

=
1

𝑞𝛽𝑝
𝑞𝛽
∫ 𝑒−𝑣

1
𝑞𝛽
𝑑𝑣

∞

0

. 

Let  

𝑦 = 𝑣
1

𝑞𝛽 , 
𝑑𝑦

𝑑𝑣
=
1

𝑞𝛽
𝑣

1

𝑞𝛽
−1
, 

(
𝑞𝛽

𝑣
1

𝑞𝛽
−1
)𝑑𝑦 = 𝑑𝑣, 

then 

𝐴 =
1

𝑞𝛽𝑝𝛽
𝑞𝛽

∫ 𝑒−𝑦 (
𝑞𝛽

𝑣
1

𝑞𝛽𝑣−1
)𝑑𝑦

𝑦(𝑣(𝑢(𝑏)))=∞

𝑦(𝑣(𝑢(𝑎)))=0

 

=
1

𝑞𝛽𝑝𝛽
𝑞𝛽
∫ 𝑒−𝑦 (

𝑞𝛽

𝑦𝑦−𝑞𝛽
)𝑑𝑦

∞

0

 

=
𝑞𝛽

𝑞𝛽𝑝𝛽
𝑞𝛽
∫ 𝑦−(−𝑞𝛽+1)𝑒−𝑦𝑑𝑦

∞

0

 

=
1

𝑝
𝛽

𝑞𝛽
∫ 𝑦𝑞𝛽−1𝑒−𝑦𝑑𝑦

∞

0

 

A =
1

𝑝
𝛽

𝑞𝛽
Γ(𝑞𝛽). 

Solve: 𝐵 = ∫ [𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)]𝑑𝛽.
∞

0
 

Let 

𝑢 = 𝛽𝑞𝛽 , 𝑑𝑢

𝑑𝛽
= 𝑞𝛽𝛽

𝑞𝛽−1, 
𝑑𝑢

𝑞𝛽𝛽
𝑞𝛽−1

= 𝑑𝛽. 

Substitute in 𝑢 
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𝐵 = ∫ [𝛽𝑞𝛽−1𝑒−𝑝𝛽𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)]
𝑑𝑢

𝑞𝛽𝛽
𝑞𝛽−1

𝑢(𝑏)=∞

𝑢(𝑎)=0

 

=
1

𝑞𝛽
∫[𝑒−𝑝𝛽𝛽𝑒−𝛽(𝑥−𝑥𝑚𝑖𝑛)]𝑑𝑢

∞

0

 

=
1

𝑞𝛽
∫ [𝑒−𝑝𝛽𝑢

1
𝑞𝛽
𝑒−𝑢

1
𝑞𝛽(𝑥−𝑥𝑚𝑖𝑛)] 𝑑𝑢

∞

0

 

=
1

𝑞𝛽
∫ [𝑒𝑢

1
𝑞𝛽(𝑥𝑚𝑖𝑛−𝑥−𝑝𝛽)] 𝑑𝑢

∞

0

. 

Let 

𝑣 = (𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
𝑢, 𝑑𝑣

𝑑𝑢
= (𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)

𝑞𝛽 , 
𝑑𝑣

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
= 𝑑𝑢, 

then 

𝐵 =
1

𝑞𝛽
∫ [𝑒

𝑣

(𝑥𝑚𝑖𝑛−𝑥−𝑝𝛽)
𝑞𝛽

1
𝑞𝛽(𝑥𝑚𝑖𝑛−𝑥−𝑝𝛽)

]
𝑑𝑣

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽

𝑣(𝑢(𝑏))=∞

𝑣(𝑢(𝑎))=0

 

𝐵 =
1

𝑞𝛽(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
∫ [𝑒𝑣

1
𝑞𝛽
] 𝑑𝑣

∞

0

. 

Let 

𝑦 = −𝑣
1

𝑞𝛽 , 
𝑑𝑦

𝑑𝑣
= −

1

𝑞𝛽
𝑣

1

𝑞𝛽
−1
, 

−𝑞𝑑𝑦

𝑣
1

𝑞𝛽𝑣−1
= 𝑑𝑣, 

then 

𝐵 =
1

𝑞𝛽(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽

∫ 𝑒−𝑦
−𝑞𝛽𝑑𝑦

𝑣
1

𝑞𝛽𝑣−1

𝑦(𝑣(𝑢(𝑏)))=∞

𝑦(𝑣(𝑢(𝑎)))=0

 

=
𝑞𝛽

𝑞𝛽(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
∫ 𝑒−𝑦

𝑑𝑦

(−(𝑦)𝑞𝛽)
1

𝑞𝛽(−1)(𝑦)−𝑞𝛽

∞

0

 

=
1

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
∫ 𝑒−𝑦

𝑑𝑦

(𝑦)1−𝑞𝛽

∞

0
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=
1

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
∫ 𝑦𝑞𝛽−1𝑒−𝑦𝑑𝑦

∞

0

 

=
1

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
∫ 𝑦𝑞𝛽−1𝑒−𝑦𝑑𝑦

∞

0

 

𝐵 =
1

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
Γ(𝑞𝛽). 

Combining equations 𝐴 and 𝐵 into 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝛽̅, 𝑣𝛽) =
𝑝
𝛽

𝑞𝛽

𝛤(𝑞𝛽)
[
1

𝑝
𝛽

𝑞𝛽
Γ(𝑞𝛽) −

1

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
Γ(𝑞𝛽)] 

=
𝑝
𝛽

𝑞𝛽
Γ(𝑞𝛽)

𝛤(𝑞𝛽)
[
1

𝑝
𝛽

𝑞𝛽
−

1

(𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽)
𝑞𝛽
] 

= [
𝑝
𝛽

𝑞𝛽

𝑝
𝛽

𝑞𝛽
− (

𝑝𝛽

𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽
)

𝑞𝛽

]. 

The shifted exponential-gamma distribution is, therefore, defined as 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = [1 − (
𝑝𝛽

𝑥𝑚𝑖𝑛 − 𝑥 − 𝑝𝛽
)

𝑞𝛽

] 

= [1 − (

𝑞𝛽

𝛽̅

𝑥𝑚𝑖𝑛 − 𝑥 −
𝑞𝛽

𝛽̅

)

𝑞𝛽

] 

= [1 − (

𝑞𝛽

𝛽̅

𝛽̅(𝑥𝑚𝑖𝑛−𝑥)−𝑞𝛽

𝛽̅

)

𝑞𝛽

] 

= [1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑖𝑛 − 𝑥) − 𝑞𝛽
)

𝑞𝛽

]. 

The function is normalised with 𝐶𝛽, such that 

𝐶𝛽[𝐹𝑋(𝑥𝑚𝑎𝑥|𝛽) − 𝐹𝑋(𝑚𝑚𝑖𝑛|𝛽)] = 1 

𝐶𝛽 [[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

] − [1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑖𝑛 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]] = 1 
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𝐶𝛽 [[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

] − [1 − (
𝑞𝛽

𝑞𝛽
)

𝑞𝛽

]] = 1 

𝐶𝛽 =
1

1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽

 

𝐶𝛽 = [1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

]

−1

. (3.27c) 

Therefore, the exponential-gamma distribution for the shifted-truncated frequency–event-size function 

equals 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = 𝐶𝛽 [1 − (
𝑞𝛽

𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽
)

𝑞𝛽

] 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 . (3.27a) 

 

Equation 3.27a can be defined also in terms of the 𝑝 parameter as 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = [1 − (
𝑝𝛽

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 + 𝑝𝛽
)

𝑞𝛽

]

−1

[1 − (
𝑝𝛽

𝑥 − 𝑥𝑚𝑖𝑛 + 𝑝𝛽
)

𝑞𝛽

], 

as seen in Eqs 10 and 11 in Kijko et al. (2016). 

 

The PDF of the shifted-truncated exponential-gamma distribution equals 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) =
𝑑𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽)

𝑑𝑥
 

=
𝑑

𝑑𝑥
{
[1 − (

𝑞𝛽

𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
]

[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
]

} 

=

[
𝑑

𝑑𝑥
[−(

𝑞𝛽

𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
]]

[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
]

 

=

−𝑞𝛽 [
𝑑

𝑑𝑥
[(

1

𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)] 𝑞𝛽 (

𝑞𝛽

𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽−1

]

[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
]
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=

−𝑞𝛽
2 (

𝑞

𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽−1

(
𝑑

𝑑𝑥
(𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽)

(𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽)
2 )

[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
]

 

=
𝑞𝛽𝛽̅ (

𝑞

𝛽̅(𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽

[1 − (
𝑞𝛽

𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)+𝑞𝛽
)
𝑞𝛽
] (𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽)

, 

that simplifies to 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = 𝐶𝛽𝛽̅ [1 +
𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛)

𝑞𝛽
]

−(𝑞+1)

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥. (3.27b) 

▄ 

 

Equation 3.34. 

Derivation provided by S. Verryn (2011) 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) = ∫ 𝑓𝑌(𝜁) [ ∫
1

𝜎𝑥√2𝜋
exp (−

𝜖2

2𝜎𝑥
2)𝑑𝜀

𝑥−𝜁

−∞

] 𝑑𝜁

𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

, 

can be reduced to 𝐺𝑋(𝑥) = ∫ 𝑓𝑋(𝜁)𝛷 (
𝑥−𝜁

𝜎𝑥
) 𝑑𝜁

𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

 

Assume that  

𝛷 (
𝑥 − 𝜁

𝜎𝑥
) =

1

√2𝜋
∫ exp (−

𝑢2

2
)

𝑥−𝜁

𝜎𝑥

−∞

𝑑𝑢, 

where 𝛼 =
𝑥−𝜁

𝜎𝑥
, such that 

Φ(𝛼) =
1

√2𝜋
∫ exp (−

𝑢2

2
)𝑑𝑢

𝛼

−∞

 

=
1

2
{1 + 𝑒𝑟𝑓 (

𝛼

√2
)} 

=
1

2
{1 + (

2

𝜋
)
1 2⁄

[𝛼 −
𝛼3

2 ∙ 1! 3
+

𝛼5

22 ∙ 2! 5
−

𝛼7

23 ∙ 3! 7
+⋯]}. 

Let Δ = 𝛼 −
𝛼3

2∙1!3
+

𝛼5

22∙2!5
−

𝛼7

23∙3!7
+⋯. 
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Then 𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) can be re-written as 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑝𝛽 , 𝑞𝛽) = −
1

𝜎𝑥
∫ 𝑓(𝑥 − 𝛼𝜎𝑥)𝛷(𝛼)𝑑𝛼

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

 

= −
1

𝜎𝑥
(𝐶𝛽𝛽̅𝑞𝛽

𝑞𝛽+1
) ∫ (𝑞𝛽 + 𝛽̅(𝑥 − 𝛼𝜎𝑥 − 𝑥𝑚𝑖𝑛))

−𝑞𝛽−1𝛷(𝛼)𝑑𝛼

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

 

= −
1

𝜎𝑥
(𝐶𝛽𝛽̅𝑞𝛽

𝑞𝛽+1) ∫ [(𝑞𝛽 + 𝛽̅(𝑥 − 𝛼𝜎𝑥 − 𝑥𝑚𝑖𝑛))
−𝑞𝛽−1] [

1

2
{1 + (

2

𝜋
)
1 2⁄

[𝛥]}] 𝑑𝛼

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

 

= −
1

2𝜎𝑥
(𝐶𝛽𝛽̅𝑞𝛽

𝑞𝛽+1)

{
 
 

 
 

∫ [(𝑞𝛽 + 𝛽̅(𝑥 − 𝛼𝜎𝑥 − 𝑥𝑚𝑖𝑛))
−𝑞𝛽−1]𝑑𝛼

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

 

                                  +(
2

𝜋
)
1 2⁄

∫ [(𝑞𝛽 + 𝛽̅(𝑥 − 𝛼𝜎𝑥 − 𝑥𝑚𝑖𝑛))
−𝑞𝛽−1]𝛥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

𝑑𝛼}, 

= −
1

2𝜎𝑥
(𝐶𝛽𝛽̅𝑞𝛽

𝑞𝛽+1
)

{
 
 

 
 

∫ (𝑟1 + 𝑟2𝛼)
−𝑞𝛽−1𝑑𝛼

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

+(
2

𝜋
)
1 2⁄

∫ [(𝑟1 + 𝑟2𝛼)
−𝑞𝛽−1]𝛥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

𝑑𝛼

}
 
 

 
 

, 

where 𝑟1 = 𝑞𝛽 + 𝛽̅(𝑥 − 𝑥min), 𝑟2 = −𝛽̅𝜎𝑥  and  𝐶𝛽 = (1 − (
𝑞𝛽

𝑞𝛽+𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
)
𝑞𝛽
)
−1

. 

Now ∫
𝛼𝑤

(𝑟1+𝑟2𝛼)
𝑢 𝑑𝛼 =

1

𝑟2
𝑤+1∑

𝑤!(−𝑟1)
𝑗(𝑟1+𝑟2𝛼)

𝑤−𝑢−𝑗+1

(𝑤−𝑗)!𝑗!(𝑤−𝑢−𝑗+1)
,𝑤

𝑗=0  

therefore, 

∫ (𝑟1 + 𝑟2𝛼)
−𝑞𝛽−1 [𝛼 −

𝛼3

2 ∙ 1! 3
+

𝛼5

22 ∙ 2! 5
−

𝛼7

23 ∙ 3! 7
+ ⋯]𝑑𝛼

𝑥−𝑥max
𝜎𝑥

𝑥−𝑥min
𝜎𝑥

 

and 

∫ (𝑟1 + 𝑟2𝛼)
−𝑞𝛽−1𝑑𝛼

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

𝑥−𝑥𝑚𝑖𝑛
𝜎𝑥

= −
1

𝑟2𝑞𝛽
(𝑟1 + 𝑟2𝛼)

−𝑞𝛽|
𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥
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yields 

= ∑
(−1)ℎ

2ℎ ∙ ℎ! (2ℎℎ!)

∞

ℎ=0

1

𝑟2
2ℎ+2

∑
(2ℎ + 1)! (−𝑟1)

𝑗(𝑟1 + 𝑟2𝛼)
2ℎ+1−𝑞𝛽−𝑗

(2ℎ + 1 − 𝑗)! 𝑗! (2ℎ + 1 − 𝑞𝛽 − 𝑗)

2ℎ+1

𝑗=0

|
𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

. 

The final result is 

𝐹𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽) =
𝐶𝛽𝛽̅𝑞𝛽

𝑞+1

2𝜎𝑥
{𝐴 + 𝐵}                                                                                                     

𝐴 =
(𝑟1 + 𝑟2𝛼)

−𝑞𝛽

𝑟2𝑞𝛽
|
𝑥−𝑥min
𝜎𝑥

𝑥−𝑥max
𝜎𝑥

 

𝐵

= (
2

𝜋
)
1 2⁄

∑
(−1)ℎ

2ℎℎ! (2ℎ + 1)

∞

ℎ=0

1

𝑏2ℎ+2
∑

(2ℎ + 1)! (−𝑟1)
𝑗(𝑟1 + 𝑟2𝛼)

2ℎ+1−𝑞𝛽−𝑗

(2ℎ + 1 − 𝑗)! 𝑗! (2ℎ + 1 − 𝑞𝛽 − 𝑗)

2ℎ+1

𝑗=0

|
𝑥−𝑥𝑚𝑖𝑛

𝜎𝑥

𝑥−𝑥𝑚𝑎𝑥
𝜎𝑥

 

(3.34) 

in which 𝐶𝛽 = [1 − (
𝑞𝛽

𝑞𝛽+𝛽̅(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
)
𝑞𝛽
]
−1

 (Eq. 3.27c), 𝑟1 = 𝑞𝛽 + 𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) , 𝑟2 = 𝛽̅𝜎𝑥 ,            

𝛼 = 𝑞𝛽 + 𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛) and 𝑏 = −𝛽̅𝜎𝑋. 

▄ 

 

Equation 3.39a. 

Following Eq. 3.26  

𝑃𝑁(𝑛|𝜆̅, Δ𝑡, 𝑝𝜆, 𝑞𝜆) =
Γ(𝑛 + 𝑞𝜆)

𝑛! Γ(𝑞𝜆)
(

𝑞𝜆

λ̅Δ𝑡 + qλ
)

𝑞𝜆

(
Δ𝑡𝜆̅

Δ𝑡𝜆̅ + 𝑞𝜆
)

𝑛

, 

the likelihood function for 𝜆𝑖 is defined as 

𝐿𝜆𝑖(𝜆̅|𝓘𝜆𝑖) =
Γ(𝑛𝑖 + 𝑞𝜆)

𝑛𝑖! Γ(𝑞𝜆)
(

𝑞𝜆

λ̅iΔ𝑡𝑖 + qλ
)

𝑞𝜆

(
λ̅iΔ𝑡𝑖

λ̅iΔ𝑡𝑖 + 𝑞𝜆
)

𝑛𝑖

, 

for 𝓘𝜆𝑖 = (𝑛𝑖, Δ𝑡𝑖, 𝑣𝜆). Since different levels of completeness are defined for each of the sub-datasets 

(𝑖 = 1,… 𝑠 ), the likelihood function 𝐿𝜆𝑖  must be normalised to a single 𝜆 . This is done by using      
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Identity 1, 𝜆̅(𝑖) = 𝜆̅(𝑥𝑚𝑖𝑛)[1 − 𝐹𝑋(𝑥)], where 𝑥𝑚𝑖𝑛 is the smallest, known level of completeness. The 

likelihood function for 𝐿𝜆𝑖 for 𝑖 = 1,… , 𝑠 is, therefore, defined as 

𝐿𝜆𝑖(𝜆̅|𝓘𝜆𝑖) = 𝜆̅(𝑥𝑚𝑖𝑛)[1 − 𝐹𝑋(𝑥)]
Γ(𝑛𝑖 + 𝑞𝜆)

𝑛𝑖! Γ(𝑞𝜆)
(

𝑞𝜆

λ̅iΔ𝑡𝑖 + qλ
)

𝑞𝜆

(
λ̅iΔ𝑡𝑖

λ̅iΔ𝑡𝑖 + 𝑞𝜆
)

𝑛𝑖

, 

or alternatively as 

𝐿𝜆𝑖(𝜆̅|𝓘𝜆𝑖) = 𝑐𝑜𝑛𝑠𝑡𝑖 (
1

λ̅iΔ𝑡𝑖 + qλ
)

𝑞𝜆

(
λ̅iΔ𝑡𝑖

λ̅iΔ𝑡𝑖 + 𝑞𝜆
)

𝑛𝑖

, 

with 

𝑐𝑜𝑛𝑠𝑡𝑖 = 𝜆̅(𝑥𝑚𝑖𝑛)[1 − 𝐹𝑋(𝑥)]
𝑞𝜆
𝑞𝜆Γ(𝑛𝑖 + 𝑞𝜆)

𝑛𝑖! Γ(𝑞𝜆)
. 

Assuming that the shifted-truncated exponential-gamma distribution defined in Eq. 3.27a is applied to 

describe the event size distribution, 𝐿𝜆𝑖(𝜆̅|𝓘𝜆𝑖) equals 

 

𝐿𝜆𝑖(𝜆̅|𝓘𝜆𝑖) = 𝑐𝑜𝑛𝑠𝑡𝑖 (
1

λ̅iΔ𝑡𝑖 + qλ
)

𝑞𝜆

(
λ̅iΔ𝑡𝑖

λ̅iΔ𝑡𝑖 + 𝑞𝜆
)

𝑛𝑖

 

with 

𝑐𝑜𝑛𝑠𝑡𝑖 = 𝜆̅(𝑥𝑚𝑖𝑛) [1 − 𝐹𝑋 (𝑥|𝑥𝑚𝑖𝑛
(𝑖)

, 𝑥𝑚𝑎𝑥, 𝛽̅, 𝑣𝛽)]
𝑞𝜆
𝑞𝜆Γ(𝑛𝑖 + 𝑞𝜆)

𝑛𝑖! Γ(𝑞𝜆)
. 

(3.39a) 

▄ 

 

Equation 3.39b. 

Following the PDF of Eq. 3.27b 

𝑓𝑋(𝑥|𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝛽̅, 𝑣𝛽) = 𝐶𝛽𝛽̅ [1 +
𝛽̅(𝑥 − 𝑥𝑚𝑖𝑛)

𝑞𝛽
]

−(𝑞𝛽+1)

   𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥, 

with 𝐶𝛽 = [1 − (𝑞𝛽/(𝛽̅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑞𝛽))
𝑞𝛽
]
−1

, the likelihood function for the shifted-truncated 

gamma-exponential event size distribution equals 
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𝐿𝛽𝑖(𝛽̅|𝓘𝛽𝑖) =∏𝐶𝛽𝛽̅ [1 +
𝛽̅ (𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛

(𝑖)
)

𝑞𝛽
]

−(𝑞𝛽+1)

,

𝑛𝑖

𝑗=1

 

𝐿𝛽𝑖(𝛽̅|𝓘𝛽𝑖) = [𝐶𝛽𝛽̅]
𝑛𝑖∏[1+

𝛽̅ (𝑥𝑖𝑗 − 𝑥𝑚𝑖𝑛
(𝑖) )

𝑞𝛽
]

−(𝑞𝛽+1)

,

𝑛𝑖

𝑗=1

 (3.39b) 

for 𝓘𝛽𝑖 = (𝒙𝑖, 𝑥𝑚𝑖𝑛
(𝑖)

, 𝑥𝑚𝑎𝑥, 𝑣𝛽 , )  and 𝑣𝛽 = 𝜎𝛽/𝜇𝛽. 

▄ 

 

 


