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Abstract

Euler-based local piston theory (LPT) has received significant interest in recent literature.
The method utilizes a simple, algebraic relation to predict between perturbation pressures
directly from local surface deformation and from the local fluid conditions obtained from
a steady Euler solution. Early applications of Euler-based LPT to simple, non-interfering
geometries and flows yielded the accurate (< 5% error) prediction of unsteady pressures
at orders-of-magnitude lower computational expense compared to unsteady CFD. These
successes led to the broader application of Euler-based LPT to more complex scenarios, such
as full-vehicle geometries and interference flows. However, a degradation in the prediction
accuracy was noted. This motivated the present work, in which the suitability of Euler-based
LPT as an aeroprediction method for slender bodies with aeroelastic effects is assessed.

An extensive and thorough review of the literature revealed that no investigation into
higher-order terms in the pressure equation of LPT had been made. More significantly, the
mathematical basis for LPT had yet been developed. Finally, no controlled numerical investi-
gation into the application of Euler-based LPT under aerodynamic interference associated
with cruciform control surfaces on slender bodies could be found in the literature.

The present work addresses the above gaps in the literature. The first is addressed analyti-
cally, and shows that second-order LPT provides a non-zero contribution to aerodynamic
stiffness. To address the second gap, a derivation of LPT from the 3D unsteady Euler equa-
tions is presented, with an in-depth discussion of the required assumptions. A number of
significant conclusions regarding the validity of Euler-based LPT are drawn. It is argued that
the method will be in significant error when applied in regions involving, amongst others,
viscous boundary-layers, concentrated vorticity, transonic or embedded subsonic flows, sharp
curvature, wing-body junctions, subsonic leading-edges, wing-tips, and trailing-edges. Fur-
thermore, it is argued that Euler-based LPT will be in error when applied to mode-shapes of
deformation involving localized bending and camber or point-local deformations. Finally, it
is stressed that an algebraic pressure equation in LPT cannot account for flowfield interaction,
which may be significant in the aforementioned scenarios. These conclusions are supported
by a numerical investigation performed in the present work, which addresses the third gap in
the literature.
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Nomenclature

Roman Symbols

a dimensional speed of sound in the fluid, or cylinder radius

AR aspect ratio

c chord length

c1, c2, c3 coefficients in piston-theory pressure equation

Cl rolling-moment coefficient about the x-axis

Cl(W ) rolling-moment coefficient about the x-axis of the wing in isolation

Cl(W (B)) rolling-moment coefficient about the x-axis of the wing in the presence of the body

Cm pitching-moment coefficient about the y-axis

CN normal-force coefficient

CNB , CN(B) normal-force coefficient of the body in isolation

CNB(W ), CN(B(W )) increment to body normal-force coefficient due to wing interference

CNF force-coefficient normal to the control fin

CNW , CN(W ) normal-force coefficient of the wing in isolation

CNW (B), CN(W (B)) normal-force coefficient of the wing in the presence of the body

Cp pressure coefficient

Cpcyl pressure coefficient based on the un-perturbed reference pressure in cylinder

CY side-force coefficient
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CY (W ) side-force coefficient of the wing in isolation

CY (W (B)) side-force coefficient of the wing in the presence of the body

d body diameter or transverse length

e dimensional specific internal-energy of the fluid

FN normal force

FY side force

h dimensional specific-enthalpy of the fluid

K hypersonic similarity parameter, K = M∞δ

k reduced frequency of oscillation, k = ωc
V∞

k reduced frequency

KB body carryover-factor

KW wing carryover-factor

L body length

Mc crossflow Mach number

Mcyl un-perturbed Mach number in cylinder

M∞ freestream Mach number

pm local mean-steady pressure in cylinder

MN Mach number normal to the leading edge

n̂ unit normal-vector of the local structural surface following a perturbation

ni i-th component of the surface unit normal-vector

p fluid pressure

pcyl un-perturbed reference pressure in cylinder

q∞ freestream dynamic pressure

Re Reynolds number
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rN nose radius

s dimensional specific-entropy of the fluid

sm wing semi-span or span of single panel

T fluid temperature

t dimensional time

vi i-th component of the dimensional fluid-velocity vector

Vb velocity vector of the local structural surface

Vb velocity vector of local body surface

vBi i-th component of the local dimensional surface-velocity vector

Vcyl velocity vector of cylinder advection

Vf velocity vector of the local flow

V∞ dimensional freestream velocity

Vm velocity vector of the local mean steady flow

Vm velocity magnitude of the local mean-steady flow

w downwash velocity

x global body axis in Chapter 5

xi i-th dimensional spatial-coordinate

xCP x-location of the centre-of-pressure

xre f x-location of the moment-reference centre

y global “horizontal” axis in Chapter 5

z global “vertical” axis in Chapter 5

zCP z-location of the centre-of-pressure

Greek Symbols

α angle of attack
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αc inclination of the body axis to the freestream velocity vector

αN angle of attack normal to the leading edge

β shock angle measured from the reference axis (typically the body axis)

δ body slenderness ratio, flow turning angle, or local surface inclination to the freestream;
out-of-plane deflection in Chapter 5

δi j Krönecker delta

εi j fluid rate of deformation tensor

Γ fluid circulation

γ ratio of specific heats

Λ sweep angle

µ Mach angle, or dynamic viscosity

ω (circular) frequency of oscillation

φ roll angle, azimuth, or perturbation velocity potential

ρ fluid density

τ thickness-to-chord of ratio of a lifting surface, or more generally, a small parameter
with τ ≪ 1

θ cylinder orientation relative to advection direction in generalized piston theory

Acronyms / Abbreviations

BC boundary condition

CFD computational fluid dynamics

CPT classical piston theory

DLM coublet-lattice method

DNS direct numerical simulation

DOF degree of freedom



Nomenclature xxxi

d
dt material derivative

FV FSM free vortex / feeding-sheet pair method

FV M free vortex method

LES large-eddy simulation

LHS left-hand side

LPT local piston theory

MDD multi-disciplinary design

MDO multi-disciplinary optimization

MV DV M multi-vortex discrete vortex method

NS Navier-Stokes

PDE partial differential equation

PNS parabolized Navier-Stokes

RANS Reynolds-averaged Navier-Stokes

RHS right-hand side

ROM reduced-order model

SA Spalart-Allmaras

SBLI shock / boundary-layer interaction

SDT small-disturbance theory

T SD transonic small-disturbance

T SL yhin shear-layer





Chapter 1

Introduction

Advances in computing power have historically enabled previously high-fidelity compu-
tational methods to find industrial use where they were once considered “prohibitively
expensive” [1]. A prime example of this is the application of numerical solvers to solving the
Reynolds-averaged Navier-Stokes (RANS) equations. While the time required to obtain a
solution may still be perceived as prohibitively expensive for preliminary design, the resolu-
tion of the solution (whether physical or temporal) has increased drastically. This introduces
the notion of the trade-off between computational cost and the fidelity of the physical (or
mathematical) model.

A broad range of mathematical models for aerodynamic analysis (aeroprediction methods)
exists today. These methods span the spectrum of computational expense and physical
fidelity [2]. Many of the computationally inexpensive methods are rooted in mathematical
approximations to the physics describing the flow [3]. These approximations often exploit
some known feature of the geometry considered, such as a small ratio of body lengths [4].
This introduces the class of geometries known as slender bodies. A particularly broad range
of prediction methods – many of which are semi-empirical – is intended for aerodynamic
analysis and preliminary design of slender bodies [5, 6]. The majority of engineering-level
(approximate, computationally inexpensive) aeroprediction methods for slender bodies are
based in steady flows. While this renders them useful for preliminary design, it restricts the
broader application of the methods.

As noted earlier, advances in computing power have over time rendered more computa-
tionally expensive methods feasible for use earlier in the design cycle. The associated intro-
duction of higher modelling fidelity has facilitated the implementation of multi-disciplinary
design (MDD) and optimization (MDO) [7]. This is particularly significant for slender
bodies, which are susceptible to aeroelastic effects at high speeds [8]. While the cost of
computational fluid dynamics (CFD) has significantly decreased, its use for MDD / MDO
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early in the design cycle is still broadly considered computationally expensive. This has
fueled significant interest in developing various reduced-order models (ROMs) [9–11]. These
retain a high fidelity of prediction, while often being orders-of-magnitude less computation-
ally expensive. This is of crucial importance and value in control system design. Engineers
require a description of the variation in aerodynamic loading over a broad parameter space in
order to design appropriate control laws. The large parameter space dictates that the ROM
must supply aerodynamic information rapidly. Meanwhile, the application (namely, stability
and control of the vehicle) requires that the aerodynamic information supplied by the ROM
be accurate.

Reduced-order models vary significantly in their implementation. Most are a-posteriori
reductions, in which a database of existing high-fidelity solutions are required. From this
database, various numerical methods may be adopted to construct the ROM. While the
computational cost associated with the use of the ROM is insignificant, the cost required
to obtain (or generate) the necessary database of high-fidelity solutions is certainly not
insignificant [12]. It should also be considered that a large number of solutions may be
required for the database in order for the ROM to be constructed.

Approximate mathematical models of the governing physics of a flow may be viewed
as a-priori ROMs [13]. This is in the sense that the approximation is made independent of
(or prior to) an existing solution. One such method has gained significant interest in recent
literature on aeroelastic analyses in supersonic / hypersonic flows. Local piston theory (LPT)
utilizes an existing mean-steady flow solution, and provides a computationally inexpensive
model for predicting unsteady aerodynamic pressures about this reference solution [14]. The
method has yielded excellent prediction accuracy in simple flow and geometry scenarios
at computational costs several orders-of-magnitude less than what would be required by
unsteady CFD [14]. This renders the method particularly suitable for aeroelastic analysis
and optimization [15]. The promising results of early applications of the method led to its
further application to increasingly complex geometries and flows [12, 16–19]. However, this
was typically accompanied by a degradation in the prediction accuracy [16].

1.1 Thesis

The recent trends in the literature on CFD-based LPT noted above prompted the following
two-pronged research question:

• Can the application of Euler-based LPT to a slender-body geometry with aerodynamically-
interfering, elastically-deforming control surfaces be justified from a theoretical or
mathematical basis?
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• Is Euler-based LPT in its present form suitable as an aeroprediction method for this
class of flows / geometry?

The thesis put forward is that Euler-based LPT may be derived from the 3D unsteady
Euler equations provided that appropriate ratios of directional perturbation-magnitudes and
gradients exist in the flow. It is further posited that a derivation of LPT from the Euler
equations will inform the prediction shortcomings of LPT that have been noted in the
literature.

1.2 Outline

The outline of the present work is as follows. A broad overview of the physics typical of
slender-body aerodynamics is given in Section 2.1. This is followed by a review of the
prediction methods broadly used for slender bodies in Section 2.2. These establish the
context for CFD-based LPT as an aeroprediction method, as summarized in Section 2.3.
The focus is then shifted to literature relating to piston theory as a whole in Chapter 3. A
conceptual introduction to the method in Section 3.1 is followed by a thorough review of
historical developments to the method in Section 3.2. The latter establishes the recent trends
in the literature and identifies a number of gaps. One such gap, specifically dealing with
the role of higher-order pressure-equation terms in LPT, is addressed in Section 3.3. The
other gap in the literature, namely the lack of a mathematical basis for LPT, is addressed in
Chapter 4. Following a general development, the derivation of LPT from the 3D unsteady
Euler equations is presented in Section 4.6. This is followed by an in-depth discussion
of the scenarios under which Euler-based LPT is expected to break down in Sections 4.7
and 4.8. The mathematical basis is supplemented by a numerical investigation into the
controlled application of Euler-based LPT to a slender body with control-surfaces subjected
to aeroelastic deformation in Chapter 5. The key conclusions of the present body of work are
presented in Chapter 6, with the novel contributions to the field listed in Chapter 7.





Chapter 2

Review of Slender Body Aerodynamics

Aerodynamics is an integral component to flight vehicle design, impacting diverse activities
and disciplines. These include, but are not limited to, vehicle flight dynamics, performance,
and structural design. The range of flight conditions that slender flight vehicles may operate
in leads to diverse fluid dynamic features being encountered. Aeroprediction aims to replicate
the physics that will be encountered in flight by the final design. The flow features and
associated physics will be broadly referred to as slender body aerodynamics, and are the
subject of Section 2.1. Flow features will be broadly categorized by the component of the
flight vehicle that gives rise to them, namely as body-specific, wing-specific, and general
flow features.

The range of prediction methods available to the engineer will be the focus of Sec-
tion 2.2. These methods vary in their approach to modelling slender body aerodynamics,
their complexity and the computational effort required in using them, and in their ability to
accurately reproduce the physics encountered in practice (which will be referred to as the
fidelity of the method). An overview of broadly-used prediction methods for slender body
aerodynamics will be given, with the methods grouped into the commonly-used categories of
"engineering-level", "intermediate", and "advanced" methods. These categories broadly refer
to the increasing complexity and computational expense of the methods. Where appropriate,
the differences in mathematical (and physical) modelling of the methods will be emphasized.

The reader that is familiar with the particulars of slender-body aerodynamics and related
aeroprediction methods will be familiar with the content of Sections 2.1 and 2.2. For such
readers, the abridged contextualization of piston theory in Section 2.3 may be of greater
interest, as it motivates the current research and development in piston theory. This lays the
basis for the detailed overview of piston theory and its variants in Chapter 3.
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2.1 Experimental Observations

Extensive literature is available providing detailed overviews of slender body aerodynamics
in general, as well as in-depth reviews of specific flow phenomena. The aim of this section
is to provide at most an introductory overview of typical flow features that are encountered
and which must be considered in aeroprediction. Examples include of flow features cov-
ered include: the development of curved shocks and associated entropy wakes; shock /
boundary-layer interaction; transition and separation of the boundary-layer; the formation
and breakdown of vortical structures; the local effect of aerodynamic interference between
wings and bodies; interaction between upstream flow structures and control surfaces. To this
end, this section provides a curation of figures from texts dedicated to visualization of flow
phenomena [20, 21] and to providing a detailed overview of slender body aerodynamics [22],
with the figures located at the end of each subsection.

It is worth noting that the underlying physics – viscosity, turbulence, flow rotationality,
and compressibility (manifested as shock waves) – giving rise to the flow features to be
discussed here is by no means particular to slender bodies. Rather, it is the vehicle geometry,
which acts as the boundary conditions to the physics, which gives rise to their particularity.
This section therefore loosely categorizes flow features by the vehicle component giving
rise to them, and briefly notes the influence of the component geometry and of various flow
conditions. The section opens with consideration of body-specific flow features, continues
with wing-specific features, and closes with flow features not specific to the individual vehicle
components.

2.1.1 Body-Specific Features

Flight vehicles come in a broad range of geometric configurations, such as distinct wing-body
configurations, blended-wing bodies, lifting bodies, and more. The distinction between com-
ponents may become blurred, particularly in the case of hypersonic vehicles featuring a high
degree of component blending. In this text, the term “body” will refer to the predominantly
axisymmetric or tubular portions of the flight vehicle, which will be distinct from typically
planar “wings”. The focus of this subsection will be on the body-specific flow features
encountered, with the key parameters governing them introduced where appropriate. Varying
degrees of interaction between flow features occur; however, the individual flow features
will be introduced so far as possible in isolation, with their interactions noted in due course.
The features and flowfield will be discussed in the broad categories of body shocks, the body
boundary-layer, and body-shed vortices.
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Body Shocks

The flowfield around a body and the extent of the flowfield varies significantly from subsonic
through to hypersonic speeds. An illustration of some of the changes is given in Fig. 2.1 [23]
for a sharp-nosed body. A significant point to note in the transonic regime (depicted in the
figure by M∞ < 1 and M∞ > 1) is the importance of shock / boundary-layer interaction (SBLI)
in determining the flowfield structure. Also depicted are the appearance of a bow shock at
the nose, a recompression shock near the base, and the decrease of the lateral extent of the
flowfield at hypersonic speeds (denoted M∞ ≫ 1). These features as encountered in practice
are illustrated in a series of shadowgraph images curated by Van Dyke [20]. The presence
of Mach waves are typically quite clear in these images. Often noted in the images is the
interaction between the bow shock and Mach waves incident from the body. The interaction
leads to a curvature of the bow shock and reflection of the Mach waves. The reflected Mach
waves influence the pressure distribution on the aft-body, as shown by the gradual pressure
recovery along a similar body in Fig. 2.2 [24]. The interaction between incident waves and
the bow shock is more visible in Fig. 2.3 [20], which shows the flow around a sphere at
hypersonic speeds. Detail A clearly shows the reflected wave.

Figure 2.3 further serves to introduce both the role of bluntness and some features of
hypersonic flows. The bluntness of the sphere causes the bow shock to detach from the body
surface. This occurs because the rate of flow-turning required by the high inclination of the
surface to the flow is too great. The deceleration caused by turning the flow into itself results
in a rise in pressure which, when large enough, forces the shock off of the surface. The
shock strength results in a region of subsonic flow between the bow shock and the body in
the vicinity of the stagnation point; the transition to supersonic flow is seen by the onset of
Mach waves at detail B. Detail C highlights the growth of the boundary-layer, which leads to
shock-induced separation further aft, and serves as an example of SBLI at hypersonic speeds.

Aerodynamic heating at hypersonic speeds will typically result in blunting occurring
on sharp-nosed bodies. This has both structural-thermal and aero-thermal causes. In the
structure, corners and regions with small radii act as temperature-concentration areas. In
the fluid, heat transfer is proportional to the rate of change of velocity along the boundary-
layer edge [25], which is a function of the surface curvature. Hayes and Neumann [26]
note stagnation-point heat-transfer models of q̇ ∝ r−0.5

N for laminar flows and q̇ ∝ r−0.2
N for

turbulent flows, both clearly showing that heat transfer is reduced by a larger nose blunting-
radius. In this sense, a degree of bluntness is unavoidable and is characteristic of bodies
which fly at these speeds. Figure 2.4 [27] interprets the flowfield around a blunt-faced body,
with the features clearly illustrated; prominent are the mixed subsonic-supersonic flow in the
vicinity of the stagnation point, and pronounced curvature of the bow shock. The effect of the
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degree of blunting is shown in Fig. 2.5 for a series of power-law nose shapes at hypersonic
speeds. For the sharpest nose, shown in Fig. 2.5a, it is seen that the bow shock lies close
to surface of the body. As the Mach number is increased in the hypersonic range, the bow
shock will approach a limiting shape and position, with a corresponding freeze in certain
nondimensional flow properties in the flowfield behind the shock. This is known as the Mach
independence principle [28]. As the degree of blunting is progressively increased, increases
are noted in the shock standoff distance, the bow shock curvature, and the lateral extent of
the flowfield aft of the nose.

Curvature of the bow shock sets up an entropy gradient in the flow immediately aft of
the shock. The nomenclature for this portion of the flow is shown in Fig. 2.6a [27]; the
portion of the outer, inviscid flowfield affected by this entropy gradient and the associated
flow rotationality is termed the entropy wake, while a portion of the rotational flow aft of the
bow shock is convected along the body surface and is termed the entropy layer. The effect of
the entropy wake on steady aerodynamic charateristics downstream of the nose is shown in
Fig. 2.6b [26]. The entropy wake also plays a significant role on the unsteady aerodynamic
characteristics of bodies, with Fig. 2.7 [29] showing the destabilizing effect of nose blunting
on the pitching damping of a cone; accounting for the entropy wake (denoted “embedded
Netwonian”) when using inviscid Newton-Busemann theory is shown to given improved
correspondence to experiment, highlighting the role of the inviscid entropy wake.

A component of the influence of blunting on pitch damping is due to the change of
shock curvature (and subsequently, the flowfield properties behind the bow shock) with body
incidence. Much of the rest of the overview of body-specific features deals with incidence-
related features. As is seen in the Schlieren images of a tangent-ogive cylinder shown in
Fig. 2.8 [30], both the Mach number and angle-of-attack play a role in determining the shock
shape and flowfield features, typically in the form of the parameter Mc = M∞ sinα , termed
the crossflow Mach number. It is seen that as the crossflow Mach number increases, the
lateral extent of the flowfield on the windward side of the body decreases, with the bow shock
lying close to the body surface. As the body incidence approaches the semi-vertex angle of
the nose, the bow shock on the leeward side becomes progressively weaker, with the lateral
extent of the leeward flowfield being noticeably larger than the windward extent.

A particularly important characteristic of slender bodies is that they typically (disregard-
ing the transonic regime) produce perturbations which have significantly smaller gradients in
the axial direction than in the crossflow directions [25, 27]. This allows the three-dimensional
flowfield to be visualized as a two-dimensional crossflow which changes with a parameter
relating the axial position of the crossflow plane – typically, this parameter is expressed as a
time variable [27]. Significant attention will be given to this method of interpreting the flow
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at a later stage, while at present it will simply be referred to as the crossflow analogy. Here, it
will be used to aid in interpreting the effects of the crossflow Mach number on flow features
related to slender bodies at incidence.

Figure 2.9 [20] depicts the flowfield around a sphere through a range of Mach numbers.
In using the visualization of flow around a sphere to interpret flows around cylindrical bodies,
it is important to recall that the three-dimensionality of the sphere flow provides a pressure
relief, which results in a shorter standoff distance of the bow shock and a smaller adverse
pressure gradient; the latter results in later boundary-layer separation and crossflow shock
formation. With this in mind, the images of Fig. 2.9 may be interpreted with the freestream
Mach number understood as the crossflow Mach number. Turning to Fig. 2.9a, it is seen
that SBLI is an important feature of the flow, with boundary-layer separation observed
to occur around the equator and resulting in a lambda crossflow-shock forming. As the
freestream Mach number increases to supersonic speeds, as in Fig. 2.9b, a detached bow
shock is observed on the sphere. When using the sphere-to-cylinder interpretation, it should
be recalled that the bow shock produced by the nose may lie close to the body (as seen in
Fig. 2.8i) and be the equivalent to the sphere bow-shock. Boundary-layer separation is again
observed in the region of the equator with oblique shocks forming at the separation point.
The flow features remain essentially similar as the Mach number is increased, as in Fig. 2.9c,
with the bow-shock standoff distance decreasing; the position of the crossflow shock and
boundary-layer separation is not significantly affected. These images serve to underscore the
importance of the boundary layer at incidence, which is the topic of the following subsection.

Body Boundary Layer

As was noted in the previous subsection, SBLI may play a significant role in the flow structure
near the surface of slender bodies. This is also true for slender bodies at slight incidence,
as depicted for a body at α ≈ 2° in Fig. 2.10 [27]. Detail A shows the point of laminar-
to-turbulent transition of the windward boundary layer; the corresponding increase in the
thickness of the boundary layer results in a shock forming, which is seen to impinge on the
flare. Hayes and Probstein [27] note that laminar separation of the boundary layer occurs
on the leeside at detail B, a significantly earlier axial station than the transition point on the
windward side. The region of separated flow is seen to blanket the leeside of the flare. As was
noted previously in conjunction with the entropy wake, these flow features have an impact on
both steady and unsteady aerodynamic characteristics of the body. Figure 2.11 [28] serves
to distinguish between the entropy wake, which is largely inviscid, and the entropy layer,
which has been noted [27] to be ingested by the viscous boundary layer. The interaction
between the boundary layer, the entropy layer, and the shock layer at hypersonic speeds,
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while potentially significant, is beyond the scope of this overview. Figure 2.10 [27] has
hinted at the importance of the state of the boundary layer in determining the flowfield
structure, in particular due to SBLI at supersonic and hypersonic speeds. The overview in this
subsection will first focus on boundary-layer related influences on slender body aerodynamics
at near-zero influence. As the incidence is increased, separation of the boundary layer leads
to the formation of body-shed vortices. As a consequence, the influence of the boundary
layer at incidence will be considered at the end of this subsection.

Figure 2.12 [29] clearly illustrates a number of the trends noted earlier. In particular,
Fig. 2.12a demonstrates the impact of the state of the boundary layer (through the Reynolds
number Re) on the pitch damping, the pitch stiffness, and base pressure of a sharp cone
for small perturbations about zero incidence. The effect of incidence on the leeward and
windward locations of boundary-layer transition is shown in Fig. 2.12b, with the inset
depicting the impact on the flowfield through SBLI.

The extensive collection of data discussed in [29] also covers the influence of the body
shape on boundary-layer related effects. This is a broad topic, and will not be discussed
here. It is merely noted that the nose shape and body length may significantly affect the
dynamic aerodynamic characteristics of the body. This may occur due to the influence of the
geometry on the bow shock, on the generation of an entropy layer and entropy wake, and on
the boundary layer.

All of the above are often illustrated for near-zero incidence. The influence of flow
incidence should also be considered. Figure 2.13 [31] depicts the influence of increasing
flow incidence on the regions of laminar, transitional, and turbulent boundary-layer states
on slender bodies with sharp and blunt noses. It is immediately evident that blunt-nosed
bodies show significantly less variation in the location of boundary-layer transition, while
also exhibiting a narrow laminar corridor between the nose and the aft-body on the windward
side. On the other hand, the slender body with the tangent-ogive nose demonstrates a more
varied spectrum of boundary-layer state distributions, with a larger laminar region observed
on the windward side. This translates into a broader variation in surface flow patters and on
separation characteristics.

As when considering flow features related to body shocks, the crossflow analogy may
be utilized as an aid in understanding variations of the body boundary-layer with incidence.
The transition to turbulence along cylindrical aft bodies may then be interpreted in terms of
flows around two-dimensional cylinders, as depicted in Fig. 2.14 [31]. For such flows, the
crossflow Reynolds number, computed using the crossflow velocity and body diameter, is one
of the characteristic parameters of the flow. As the flow incidence in increased, the crossflow
Reynolds number increases, and the transition point shifts closer to the windward meridian,
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as was noted in Fig. 2.13. The influence of the crossflow Mach number on the sensitivity of
the flowfield to the boundary-layer state is depicted through the crossflow drag-coefficient in
Fig. 2.14b. The boundary-layer state is seen to have an important influence until Mc ≈ 0.5.
Around this crossflow Mach number, acceleration of the flow through transonic speeds
around the cylinder results in a crossflow-shock developing on the body near an azimuth of
φ ≈ 90°, which essentially forces transition at the shock location.

The boundary-layer on a slender body, however, is not two-dimensional, and three-
dimensional effects play a significant role. This is demonstrated by the complexity of the
surface-flow patterns on a tangent-ogive nose and their variation with incidence as depicted
in Fig. 2.15 [32]. It is noted that at sufficiently low incidence (in this case, α ≤ 10° at
M∞ = 0.25) laminar separation may occur without the formation of vortices over the nose.
However, as the incidence increases, the complexity of the surface flow increases, with
laminar, transitional, and turbulent, and secondary separation of the boundary layer occurring
– these features are noted in the surface-flow patterns available at 20°. This flow-pattern
complexity extends to the three-dimensional flow away from the surface, with the axial
velocity component playing a role in the structure and stability of the flow structures formed.
An example of the three-dimensional flow forming around the tangent-ogive nose is given in
Fig. 2.16 [29], clearly showing the formation of primary and secondary vortices.

Body-Shed Vortices

The variation in surface-flow patterns and the three-dimensional flow structure with increasing
incidence, introduced in Figs. 2.15 and 2.16, may be categorized into four different vortex-
shedding regimes for slender bodies, as in Fig. 2.17 [31]. As depicted in Fig. 2.17a, these
include:

• A vortex-free regime at low incidence, in which a region of reduced velocity exists on
the leeside,

• Symmetrical vortex shedding, in which separation from the body feeds a vortex sheet
which rolls into a primary vortex core on either side of the body, with the vortex cores
positioned symmetrically about the incident flow vector,

• Asymmetrical vortex shedding, under which the vortex strength and position is asym-
metric, with the dominant vortex side alternating down the length of the body,

• Cylinder-like alternate shedding of vortices, in which a vortex-street forms behind the
body.
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As noted earlier, the relative strength of the axial velocity component (manifested as the
flow incidence) clearly plays a role in the structure of the flow resulting from boundary-layer
separation. The transition between vortex-shedding regimes is influenced by a number of
factors as detailed in [31], including the level of freestream turbulence, the body surface
roughness and geometrical asymmetries, Reynolds number, and Mach number, and as a
consequence does not exist as a hard boundary, as shown in Fig. 2.17b [33]. It is further
noted that the regime of vortex shedding may vary down the length of the body if the body is
sufficiently long.

The onset of asymmetrical vortex shedding represents an important phenomenon for the
design of slender bodies, as the vortex shedding is unsteady and complex. This is in contrast
to the steady symmetric vortices that develop at lower incidences. In the case of sharp cones,
the angle-of-attack at which the onset of asymmetrical shedding occurs may be correlated to
the cone semi-vertex angle, as in Fig. 2.18 [31]. The correlation is extended to tangent-ogive
noses by using the semi-apex angle in place of the cone’s semi-vertex angle. For somewhat
blunted noses, an approximate correlation of α ≈ 4.2D/L is suggested in [31] for the onset
of asymmetric vortices from the tail of the body. Asymmetrical vortex shedding is highly
sensitive to a number of parameters, notably including the nose geometry, Reynolds number,
turbulence, and the crossflow Mach number. The dependency on the above is typically
non-trivial, as illustrated in [31, 34], and is not discussed further in the present overview.

The difference in the vortex-shedding structures between the asymmetrical and symmet-
rical regimes is highlighted in Fig. 2.19 [24]. It shows the single vortex feeding-sheet and
primary vortex core of the symmetrical regime contrasted with the alternating sheets and
cores of the asymmetrical regime. The continuity of the feeding sheet in the symmetrical
shedding regime translates to a growth in the strength of the vortex down the length of the
body. The vortex strength increases with angle-of-attack. The vortex structure and strength
influences the structure of the crossflow, with typical streamlines shown in Fig. 2.20. As
noted earlier, the state of the body boundary-layer also has an influence of the flowfield
structure. Variations in the two-vortex system are shown in Fig. 2.20a [35] and the connection
of the separation points is shown in Fig. 2.20b [24].

The flow features discussed thus far have particular significance for the integration of
aerodynamic control surfaces or stabilizers, as may be anticipated from Fig. 2.21 [24].
Depicted is what would essentially be an interferential sidewash distribution on a leeside
control surface. The stability of these flow structures is a further consideration, with the
breakdown of the body-shed vortices depicted in Fig. 2.22 [36] for both symmetrically and
asymmetrically shed vortices. In closing the overview of body-specific features, a short
summary of some of the key parameters associated with these features is given below.
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Key Parameters

The roles of body-geometric and aerodynamic parameters have been noted in the context of
specific flow features thus far. Here, the focus will be shifted to some of the key parameters,
with mention made of the flow features they influence. While the body-geometric and
aerodynamic parameters were previously noted in isolation (for example, through considering
the influence of Mach number in shaping the flowfield around a given body), the present
emphasis will be chiefly on similarity parameters, such as the crossflow Mach number and
the hypersonic similarity parameter.

The extent of nose bluntness has been seen to have a significant impact on the structure of
the flowfield in the vicinity of the nose, particularly through the formation of a detached bow
shock: associated are the entropy gradient of the curved shock, as well as large flow gradients
and the existence of mixed subsonic-supersonic regions. It has also been seen that the degree
of nose bluntness has an influence on the lateral extent of the flowfield aft of the nose, while
the entropy gradient has an influence on the dynamic characteristics of the aft-body. The nose
bluntness may be expressed in terms of the ratio of the blunting radius to the body diameter,
rN/D, with values of rN/D < 0.5 representing, e.g., spherically-blunted ogives and cones,
and values of rN/D > 0.5 representing blunt-faced bodies, such as the power-law bodies in
Figs. 2.5c and 2.5d. This is detailed in [37]. The effective slenderness of the nose, as far as
vortex shedding is concerned, may be expressed in terms of the semi-apex angle θA, with the
similarity parameter for vortex shedding being tanα/ tanθA as described in [31].

Similarity for a hypersonic slender body at incidence is given by δ cotα , where δ = D/L
is the body slenderness ratio, and by Mc, as shown in [27]. It is noted that for a cone,
the similarity parameters tanα/ tanθA and δ cotα are reciprocal. For a body at near-zero
incidence, the hypersonic similarity parameter may be taken as M sinθA. The hypersonic
similarity parameter, as mentioned previously, is the key parameter relating the lateral extent
of the flowfield between the body and the bow shock at supersonic to hypersonic speeds. At
transonic speeds, the transonic similarity parameter plays a similar role, while there is some
dependence on the axial variation of the body cross-section, as described in [38].

The crossflow Mach number, Mc, not only influences the lateral extent of the windward
flowfield, but also influences the formation of crossflow-shocks near the maximum lateral
extent of the body, as seen in Fig. 2.9 [20]. This influences the location of boundary-layer
transition and the formation of body-shed vortices. Significantly, the crossflow Mach number
also represents the extent of the influence of the leeside flow structures, with the vacuum
pressures being neared for Mc > 1 and wake perturbations not reaching the body. Conversely,
at Mc < 0.4, the leeside flow structures are dominated by boundary-layer effects, and the
role of body-shed vortices are significant. This was demonstrated in [31] through Fig. 2.14.



14 Review of Slender Body Aerodynamics

For these subsonic crossflow Mach numbers, the roles of the crossflow Reynolds number,
ReD = ρV∞Dsinα/µ , and freestream turbulence are key parameters in defining the flow, as
described in [31].

The slenderness ratio of the body, δ = D/L, impacts the relative strength of lateral and
axial perturbations, which defines extent to which three-dimensional effects may be accurately
interpreted by means of the crossflow analogy, as noted in [27]. It has also been seen to
influence the onset of asymmetrical vortex shedding and vortex breakdown. Significantly,
the slenderness ratio plays a role in the similarity of unsteady effects, such as those due
to the entropy wake, through the Strouhal number for vortex shedding, Sh = fV D/V∞ sinα

(where fV is the shedding frequency), and the reduced frequency for pitching motions,
k = qL/V∞ cosα (where q is the pitching rate). The roles of these parameters in unsteady
effects are described in [27, 37].

Another important parameter cross-sectional shape of the body and its axial variation
along the aft-body. This has not been covered in detail here, as most slender-body-type
flow features are adequately introduced by axisymmetric bodies with constant cross-section.
The cross-sectional shape and its variation does have an influence on all three categories
of body-specific features that have been discussed. For example, the influence of the body
cross-section on the bow shock is central to the design of waveriders. Non-axisymmetric
bodies exhibit crossflow characteristics (with particular emphasis on vortex shedding) which
are sensitive to parameters such as sideslip [24, 39], axial variations in cross-section [24],
and changes in the cross-sectional radius of curvature [24]. As the ratio of of the cross-
sectional dimensions increases, the realm of slender wings and blended wing-bodies is
approached, and the categorization of the related flow-features as “body-specific” becomes
an issue of semantics due to similarity of the features to those exhibited by “wings” and
full-configuration flight vehicles.
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Fig. 2.1 Body shock development with increasing Mach number for a tangent-ogive [23].

Fig. 2.2 Influence of wave-reflection from the bow shock on the aft-body axial pressure
distribution along a tangent-ogive cylinder at M∞ = 1.6 at zero incidence [24].
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B
C

A

Fig. 2.3 Bow-shock wave-reflection and the development of supersonic flow behind the bow
shock over a sphere at M∞ = 7.6 [20].

(a) Visualization (b) Interpretation

Fig. 2.4 Blunt-body flowfield interpretation [27].
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(a) a = 3/4 (b) a = 1/2

(c) a = 1/3 (d) a = 1/10

Fig. 2.5 Effect of nose bluntness on bow-shock shape for power-law (r = xa) bodies at
M∞ = 8.8 [20].

(a) Nomenclature [27] (b) Flare pressure distribution [26]

Fig. 2.6 Influence of strong shock-curvature and the associated entropy wake on steady
pressure distributions downstream.
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Fig. 2.7 Influence of nose blunteness and the entropy wake on pitch damping of a 10°
semi-vertex angle cone at M∞ = 6.85 [29].
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(a) M∞ = 2.0, α = 6° (b) M∞ = 2.5, α = 6° (c) M∞ = 3.0, α = 6°

(d) M∞ = 2.0, α = 15° (e) M∞ = 2.5, α = 15° (f) M∞ = 3.0, α = 15°

(g) M∞ = 2.0, α = 25° (h) M∞ = 2.5, α = 25° (i) M∞ = 3.0, α = 25°

Fig. 2.8 Asymptotic behaviour of the windward bow-shock shape with increasing Mach
number for a tangent-ogive cylinder [30].
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(a) M∞ = 0.86

(b) M∞ = 1.53

(c) M∞ = 4.01

Fig. 2.9 Flowfield around a sphere at increasing Mach numbers [20].
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B A

Fig. 2.10 Slender body flowfield at M∞ = 9.8 at slight incidence [27].

Fig. 2.11 Simplified hypersonic flowfield structure for slender bodies at incidence [28].
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(a) Effect of Reynolds number on pitch-damping, pitch-stiffness, and base
pressure

(b) Effect of incidence on transition location

Fig. 2.12 Effect of boundary-layer state on the aerodynamic characteristics of a 10° semi-
vertex angle cone at M∞ = 5 around α = 0° [29].
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Fig. 2.13 Effect of nose shape on the incidence-variation of boundary-layer transition down
the length of slender bodies [31].



24 Review of Slender Body Aerodynamics

(a) Reynolds number variation

(b) Mach number variation

Fig. 2.14 Drag coefficient of a 2D cylinder as a function of boundary-layer transition and
Mach number [31].
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Fig. 2.15 Surface flow visualization on a 3.5 caliber tangent ogive at a transitional Reynolds
number depicting boundary-layer transition regime variation with incidence [32]; M∞ = 0.25,
Re = 0.8×106. The following abbreviations are used: L – laminar; LS – laminar separation;
TR – transition; TRS – transitional separation; T – turbulent; TS – turbulent separation; SS
– secondary separation; R – reattachment, CI – crossflow instability, δS – angle between
streamline tangent and meridianal line.
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Fig. 2.16 Crossflow structures associated with boundary-layer separation regimes on a 3.5
caliber tangent ogive at a transitional Reynolds number [29]; M∞ = 0.55, Re = 0.8×106,
α = 40°. The following abbreviations are used: LS – laminar separation; TR – transition;
TRS – transitional separation; TS – turbulent separation; SS – secondary separation; R –
reattachment.
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(a) Three-dimensional structure [31] (b) Approximate regime bounds [33]

Fig. 2.17 Vortex-shedding regimes for slender pointed bodies.

Fig. 2.18 Asymmetric-shedding onset-incidence variation with Mach number for sharp
cones [31].
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(a) Symmetrical shedding (b) Asymmetrical shedding

Fig. 2.19 Difference in three-dimensional vortical structures [24].

(a) Variation with separation type [35]. The
following abbreviations are used: LS – lami-
nar separation; TRS – transitional separation;
TS – turbulent separation; SS – secondary
separation; R – reattachment; B – bubble-type
region.

(b) Connection of primary and secondary sep-
aration points [24]

Fig. 2.20 Crossflow streamlines for symmetric vortex structures.
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Fig. 2.21 Crossflow downwash distribution along the symmetry plane for a tangent-ogive
cylinder undergoing symmetric vortex shedding [24].

(a) Symmetric shedding (b) Asymmetric shedding

Fig. 2.22 Breakdown of vortices shed from a tangent-ogive cylinder in a water tunnel [36].
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2.1.2 Wing-Specific Features

The overview of flow features specific to the wings will be restricted to the context of
typical geometries found on slender bodies. Due to the high speeds (M∞ > 1) associated with
typical applications, the wings encountered in practice vary from very-low aspect ratio strakes
(AR= 0.01∼ 0.05) through to relatively high aspect ratios (for the application) of AR= 2∼ 3,
and are typically of rectangular, triangular, trapezoidal, or “double-delta / cranked” planform.
A qualitative comparison of the planforms is given in [8]. Other parameters of the wing
profile, such as thickness, camber, and leading-edge bluntness, depend on the application:
hypersonic vehicles typically featuring thicker wings with rounded leading-edges due to
wing-body blending and considerations of aerodynamic heating; missiles, on the other hand,
typically feature thin, symmetrical profiles with chamfered leading-edges. While leading-
edge roundness does have an impact on the aerodynamic characteristics of the wing and
on the structure of the flowfield, the majority of the flow features will be discussed in the
context of sharp leading-edges. Due to the degree of influence of the wing planform (and
leading-edge Mach number) on the character of flows around wing-like surfaces, the overview
will categorize the flow features encountered according to planform type. The overview
will introduce the majority of flow features in the context of delta wings, will introduce the
differences observed for other planforms, and will summarize some of the key parameters
associated with the features. The focus will largely be on leeside flows, which exhibit more
complex flow structures.

Delta-Wing Features

The typical evolution of the flowfield with increasing Mach number around a two-dimensional
airfoil at near-zero incidence, depicted in Fig. 2.23 [23], has limited relevance in the context
of wing-components of slender bodies. This due to the extent to which vortical structures
dominate the definition of the leeside flowfield when the wings are at incidence, as well
as due to the extent of the surface subjected to end-effects as a consequence of the low
aspect-ratio. Nevertheless, it is of worth to note that SBLI may still play a role in defining
the flow structure, and indeed other interactions, such as shock-vortex interactions, are of
importance.

A significant feature of the leading-edge sweep, ΛLE , of delta wings is the formation
of vortices shed from the leading-edge when the wing is at incidence. Separation of the
boundary layer from the sharp leading-edge results in a sheet of rotational separated flow,
which rolls up into a primary vortex core, as is seen in Fig. 2.24a [20]. These vortices have a
significant influence on the structure of the crossflow flowfield, as depicted in Fig. 2.24b [40].
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Also seen in Fig. 2.24b is the onset of vortex breakdown and its impact on the order of the
crossflow .The breakdown of the leading-edge vortices, much like their formation, is another
significant feature of flows around wings at incidence, as it has the potential to influence a
significant portion of the planform, as shown in Fig. 2.25a [20]. Two types of breakdown
occur, as shown in Fig. 2.25b [33]. The sudden onset of the “bubble-type” breakdown is
typical of vortex-shock interactions.

The breakdown of both symmetric and asymmetric vortices shed by bodies was shown
to be a feature of slender-body flows earlier in Fig. 2.22. As was noted in closing the
overview of body-specific flow features, similarity in flow features is to be expected when
“body” and “wing” components become geometrically similar. This is seen to be true when
considering highly-swept delta wings. In particular, it is seen in [34] that the incidence
at which asymmetrical vortex shedding occurs in subsonic flows may be correlated to the
slenderness of both cones and highly-swept wings. However, the difference between slender-
body and delta-wing flows becomes more notable as the sweep-angle decreases, as seen
by how asymmetrical vortex shedding is prevented* by the onset of vortex breakdown [41].
This hints at the significance of vortex breakdown in considering wing-specific flow features.
The impact of the leading-edge sweep angle on the onset-incidence of vortex breakdown is
shown in Fig. 2.26 [41]. It shows the progression of the breakdown location up the chord. It
is notable that relatively rapid progression with α is seen over the aft portion of the wing,
and that the breakdown behaviour is sensitive to the dynamic viscosity of the fluid. As seen
in Fig. 2.26b, the freestream Mach number also has an influence on the onset of vortex
breakdown, although the sensitivity to Mach number is affected by the leading-edge sweep
(as reflected through aspect-ratio in Fig. 2.26b).

With vortex-breakdown seen to dominate the relatively higher-incidence subsonic flows,
the attention will shift to flow features occurring in the absence of vortex breakdown – namely,
to the formation and structure of stable, symmetric vortices at subsonic and supersonic speeds.
A typical structure of the leeside flowfield at subsonic flows is shown in Fig. 2.27. The vortices
shed from the leading-edge is seen to create extra suction on the leeside surface, manifested
as a nonlinear increment to the loading-curve for the wing, as shown in Fig. 2.27a [41].
Figure 2.27b [42] illustrates the structure of a two-vortex system, in which separation at the
leading-edge (denoted S1 in the figure) leads to the formation of the primary feeding-sheet
(Σ1), which rolls into the primary vortex core. Due to symmetry, the flow reattaches along the
centreline (A2), with the vortices inducing spanwise flow, which separates (S2) into a feeding

*It is important to note that this is in the absence of sideslip, which would destroy the overall symmetry of
the flowfield and result in the starboard and port leading-edges having different effective sweep angles.
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sheet (Σ2) for the secondary vortex core. The two-vortex system is one of a number [42] of
flowfield structures which may occur on the leeside in subsonic flows.

The two-vortex system may also be noted in supersonic flows. This is due to the
leading-edge of the delta-wing lying inside the bow shock produced by the apex. As a
consequence, the same conical structure of the flow is observed. This introduces one
of the key parameters characterizing delta-wing flows – the leading-edge-normal Mach
number, MN = M∞ cosΛLE

(
1+ sin2

α tan2 ΛLE
)1/2

– which is accompanied by the leading-
edge-normal angle of attack, αN = arctan(tanα/cosΛLE). These parameters are central to
determining the structure of the leeside flowfield. An example of their role and the difference
between subsonic leading-edges (MN < 1) and supersonic leading-edges (MN > 1) is given in
Fig. 2.28 [41]. The existence of attached leeside flows is noted for near-zero incidences, with
a shock present on the leeside in the case of supersonic leading-edges. The previously-seen
two-vortex system is noted in Fig. 2.28a, while Fig. 2.28b introduces another mechanism of
vortex generation through shock-induced separation.

A range of leeside flowfield structures exist, with Fig. 2.29a [35] depicting the boundaries
between them, and Fig. 2.29b [41] depicting the variation of the windward flow structure
with the same parameters. It is to be noted that the boundaries between flow-structure types
are affected by leading-edge bluntness. Referring to the sharp-edged flows of Fig. 2.29a, it is
noted that leeside flows with no separation are only observed at essentially zero-incidence, or
for low-incidence (αN < 15°) at supersonic leading-edge Mach number. The broad spectrum
for which shocks and separation are observed underscores the role of SBLI for delta-wing
flows. The flow structures depicted in Fig. 2.29a are considered as follows:

• At low incidences of αN < 15°, the classical two-vortex system is observed at approx-
imately MN < 0.3, with no shocks observed on the leeside. As MN is increased, the
leeside flow-structure changes. At higher subsonic MN , a separation bubble is observed
at the wing edge, reattaching further inboard. No shocks or distinct vortex cores
are noted. At supersonic MN in this range of αN , the separation bubbles are absent.
Separation-free expansion occurs around the wing edge. The inboard flow induced
by this expansion passes through a shock, which is attached to the wing surface. No
separation-bubble observed behind the shock,

• As αN is increased from ≈ 15° at supersonic leading-edge Mach numbers, the inboard
shock induces a separation bubble behind the shock. As the incidence is increased
further, the separation bubble is seen to originate at the wing edge. A shock is observed
to occur above the separation bubble. At even higher incidences, a primary vortex core
and its feeding-sheet are observed shocks are observed on the leeside of the vortex
core,
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• The aforementioned classical-vortex structure with leeside shocks is observed even
for subsonic MN , provided the incidence is sufficiently high (αN > 30°). As MN is
reduced, the leeside flow structure becomes shock-free again.

The broader interpretation of these structures is given in Fig. 2.29b. The transition from
conical flow around the leading-edge to supersonic expansion as MN increases is highlighted.
The transition from a detached to an attached bow-shock on the windward side at sufficiently
high MN is also noted. This relative simplicity in the windward flowfield is reflected in
Fig. 2.30 [3]. It depicts the constant-pressure regions on the windward surface for MN > 1.

While the leeside flowfield has been seen to exhibit more complex flow structures, the
contribution of the leeside surface to the overall loading on the wing diminishes as the
freestream Mach number increases. This is shown through numerous figures in [41]. This
has a number of consequences. Leeside features such as vortices and vortex breakdown have
progressively less influence on the integrated loads for the lifting surface. The windward
loading-contribution is influenced in part by the aspect ratio of the surface. It may be
noted [41] that an incidence exists at which a crossover occurs in the dominant factor
determining the loading slope. Below this incidence, the load-slope is largely governed
by aspect-ratio effects, with the slope generally decreasing with increasing Mach number.
Above this incidence, the increased strength of the bow shock dominates aspect-ratio effects,
and the load-slope is seen to increase with Mach number. The actual incidence at which the
change in dominant contribution occurs is a function of the wing planform, as noted in [41].
These remarks regarding the windward-leeward contribution split hold true for the range of
planforms and aspect ratios considered here.

Other Wing Planforms and Features

Rectangular planforms are commonly used as stabilizers in slender-body configurations,
and exhibit somewhat different structures and behaviour to delta-wing planforms. Of the
more notable changes is that to the leeside flow structure, as separation occurs not only
at the leading-edge, but also at the tip. This results in non-trivial flow structures being
observed, as illustrated in Fig. 2.31 [41]. Another notable change in the flow structure
is shown in Fig. 2.32 [3], which underscores the changes brought about by end-effects
and the lack of leading-edge sweep. End-effects are particularly important due to the low
aspect-ratios typically encountered in the application of slender-body configurations, with
end effects impacting progressively larger portions of the wing as the aspect ratio is reduced,
as illustrated in Fig. 2.33 [3]. The absence of leading-edge sweep and the associated reduced
pressure-relief has a notable influence on the onset of vortex-breakdown. This is typically
manifested through a earlier onset of vortex-breakdown as the aspect-ratio is increased [41].
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This is also reflected in the earlier breakdown (relative to the delta-wing case) observed at
transonic speeds in [41]. At supersonic speeds, however, the overall loading trends for an
AR = 1 rectangular wing are seen to be similar to those of a delta-wing, with somewhat
greater Mach-sensitivity noted in the low-incidence loading slope [41].

Another commonly encountered planform is the trapezoidal wing, or clipped-delta wing,
which may be viewed as an intermediate stage between rectangular and delta wings, as
seen in the loading-curve in Fig. 2.34a [41]. Unsurprisingly, trapezoidal wings exhibit
a combination of delta-wing and rectangular-wing features, as demonstrated through the
mixture of conical-flow and tip-effected regions illustrated in Fig. 2.34b [23]. The trends
observed for trapezoidal wings thus do not differ remarkably from those seen for rectangular
or delta wings. The differences (in particular, the earlier onset of vortex breakdown and
more pronounced Mach-sensitivity of low-incidence windward loading-slope) observed
in [41] are attributable to the higher aspect-ratio of the AR = 2 wing. The double-delta or
cranked wing configuration, on the other hand, effectively acts as a trapezoidal wing with
improved vortex-breakdown characteristics. This is due to the influence of the vortex shed
from the highly-swept strake. It induces a spanwise flow on the main wing which increases
its effective sweep, as shown in Fig. 2.35a [41]. Interaction between the strake-shed vortex
and the leading-edge vortex of the main wing, as shown in Fig. 2.35b [43], acts to delay
the onset of vortex breakdown. This interaction between flow structures is an example of
positive interference, which features prominently in the overview of full-vehicle features in
the following subsection.

Key Parameters

Wing geometry has been seen (consider Figs. 2.28, 2.29, 2.31 and 2.35) to play a notable
role in determining the qualitative characteristics of flow features, particularly in the case of
leeside flows. The role of a number of parameters in defining the flow structure is not readily
expressed in terms of similarity parameters – particular examples include the influence of
leading-edge bluntness on the leeside structures and the influence of aspect-ratio on the
loading-variation due to vortex breakdown [41]. Other parameters, such as the Reynolds
number, play a relatively smaller role in determining the structure of the flowfield (except
in the case of vortex breakdown). This is because structure-defining features, such as the
location of flow separation or shocks, are determined more strongly by the geometry and
Mach number. The role of sideslip in driving asymmetry of the flowfield is outside the scope
of the introductory overview of flow features given here.

The leading-edge sweep angle, freestream Mach number, and freestream angle-of-attack
have been seen to influence the flow through the key similarity parameters of the leading-
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edge-normal Mach number, MN =M∞ cosΛLE
(
1+ sin2

α tan2 ΛLE
)1/2

, and the leading-edge-
normal angle-of-attack, αN = arctan(tanα/cosΛLE). The role of these parameters in defin-
ing leeside and windward flow structures has been prominently featured in this overview. In
the case of delta wings with no trailing-edge sweep, the leading-edge sweep angle and the
aspect-ratio of the wing are interdependent, and MN and αN may be formulated in terms of
AR.

More generally, the wing aspect-ratio acts as a measure of the effective slenderness of the
wing, and enters both transonic and hypersonic similarity parameters, as detailed in [27, 44].
The transonic similarity parameters are given [44] as: χT =

(
1−M2

∞
)
/
[
(γ +1)M2

∞δ
]2/3,

where γ and δ is the maximum thickness-to-chord ratio of the wing; the transonic aspect-ratio
similarity parameter ÃR =

[
(γ +1)M2

∞δ
]1/3AR; the transonic (small) incidence parameter

α̃ = α/δ . The hypersonic similarity parameters [27] are seen to be simpler in form, and
are given as: K = M∞δ ; the thickness-relative aspect ratio δ/AR; the hypersonic incidence
parameter δ cotα .

Fig. 2.23 Airfoil shock development with increasing Mach number [23].
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(a) Filaments of the feeding sheet and primary vortex
core [20]

(b) Primary vortex crossflow struc-
ture and vortex breakdown [40]

Fig. 2.24 Visualization of subsonic flow over delta wings at incidence.

(a) Visualization of breakdown [20] (b) Breakdown types [33]

Fig. 2.25 Vortex breakdown over delta wings in subsonic flow.



2.1 Experimental Observations 37

(a) Influence of leading-edge sweep

(b) Influence of Mach number

Fig. 2.26 Progression of chordwise-position of vortex-breakdown over delta wings in subsonic
flows [41].
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(a) Crossflow flow structures, pressure distribution, and normal
force contribution [41]

(b) Detailed description of crossflow structures [42]

Fig. 2.27 Vortex development for sharp-edged delta wings in subsonic flow.
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(a) Subsonic leading-edge (b) Supersonic leading-edge

Fig. 2.28 Difference in leeward delta-wing flow structures between subsonic and supersonic
leading-edge flows [41].
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(a) Classification of leeward structures [35]

(b) Progression of windward shock position [41]

Fig. 2.29 Variation of sharp-edged delta-wing flow structures with leading-edge normal Mach
number and incidence.
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Fig. 2.30 Regions of non-constant pressure on the windward surface of a delta wing with
supersonic leading edges [3].

Fig. 2.31 Leeward flow structures of a low aspect-ratio rectangular wing at incidence at
subsonic Mach numbers [41].
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Fig. 2.32 Regions of non-constant pressure on the windward surface of a rectangular wing
with supersonic leading edges [3].

(a) AR = 3.0

(b) AR = 1.6 (c) AR = 0.6

Fig. 2.33 Illustration of variation of regions of influence due to end-effects with wing aspect-
ratio at M∞ = 1.4 [3].
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(a) Effect of taper ratio on the wing normal-
force curve and center-of-pressure location;
AR = 1, M∞ = 2.16 [41]

(b) Regions of influence on a trapezoidal wing
with supersonic leading edges [23]

Fig. 2.34 Trapezoidal wings as a transition between rectangular and delta wings.

(a) Effect of strake-vortex on wing
flow [41] (b) Example of vortex interaction [43]

Fig. 2.35 Vortex interaction on a double-delta (or straked) wing.
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2.1.3 Full-Vehicle Features

Aerodynamic interference, or the interaction of flowfields associated with vehicle compo-
nents, is a characteristic feature of full-vehicle configuration aerodynamics. As illustrated
in Fig. 2.36 [41], favourable interference yields improved aerodynamic characteristics. Fig-
ure 2.36a demonstrates how vortex interactions due to the adddition of a strake may delay the
onset of vortex breakdown over the wing, yielding a more linear loading curve; Fig. 2.36b
demonstrates that, for a similar configuration, the contribution due to interference may be
highly nonlinear.

This is to be expected, as significant changes to the component-alone flowfields may
occur, with complex interactions including SBLI and shock-shock interactions taking place.
An example of the impact of wing-components on the flowfield around the body surface is
given in Fig. 2.37 [21]. The impact of the windward-surface shock from the port-side fin on
the body’s surface flow is evident, as is the presence of separation on the leeside. Slightly
higher, the flow-turning due to the shock from the upper fin is seen on the body surface, which
hints at the complex interactions which would occur further downstream of the fin-section
shown. The complexity of the surface flows extends to the flowfield, as suggested even by
the simplified physics of the computed inviscid flowfield shown in Fig. 2.40 [45], and as
seen in the visualization [21] of the crossflow structure behind a “×” configuration finned
slender-body at incidence, which depicts the interaction of the body-shed and wing-shed
vortices.

The impact of these flowfield interactions on the loading of the components and of the
full-vehicle is usually the quantity of interest, with the contributions generally expressed [46]
as

CN =CNB +CNW (B) +CNB(W )
, (2.1)

where in the interest of simplicity, the expression assumes the configuration is limited a single
wing-set, and where CN is the normal-force coefficient of the full-vehicle configuration, CNB

is that of the body-alone (for the body in isolation), CNW (B) is the normal-force coefficient of
the wing in the presence of the body, and CNB(W ) is the increment to the body-load due to
interference from the wing. For clarity, these terms are depicted in Fig. 2.38. The interference
is often expressed in terms of so-called carryover factors, namely through

CN =CNB +(KW +KB)CNW , (2.2)

where CNW is the normal-force coefficient of the wing in isolation, KW is the wing carryover-
factor for the body at zero incidence, and KB is the body carryover-factor for zero fin
deflection. The variation of carryover factors with the diameter-to-span ratio of the wing-
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body combination as predicted by slender body theory is shown in Fig. 2.39 [3]. The positive
interference on the wing-force is seen to disappear (KW → 1) in the case of a vanishingly
small body. As the wing span is decreased to the limiting case of strakes, it is seen that both
the body-force and wing-force are enhanced, with KW → 2 and KB → 2. The normal forces
here are defined to lie in the plane defined by the vertical fins of a “+” configuration fin-set,
with the angle-of-attack similarly defined to lie in this plane.

Turning to Fig. 2.42 [45] it is seen that the addition of a tail to a slender body has a
stabilizing effect (reflected in the aft shift in center-of-pressure location) which varies with
both incidence and Mach number, and has in impact on the overall normal-force realized.
Significantly, the increment to the normal-force is seen to diminish with increased Mach
number in Fig. 2.42b. It may be seen in Fig. 2.43 [46] that the variation of the wing
carryover-factor may be correlated by the crossflow Mach number, expressed in terms of
the body-incidence αc as Mc = M∞ sinαc. The positive interference on the wing-load from
the body is seen in Fig. 2.43b to steadily diminish at subsonic-crossflows, with the wing-
load being diminished by the body’s influence at transonic-crossflows and asymptoting to
a constant in the supersonic-crossflow range. The impact of the crossflow Mach number
on the overall load-increment due to interference on a typical finned slender-body is shown
in Fig. 2.44a [46]. The trend of diminishing contribution with increasing Mc is repeated,
both for the “+” configuration (a roll angle of φ = 0°) and for a roll angle of φ = 40°
(close to the “×” configuration). A notable difference is that the overall contribution due to
interference in the “×” configuration approaches zero, and does so by Mc ≈ 0.4; this is also
seen for the body-load increment in Fig. 2.44b and the wing-load increment in Fig. 2.44c.
From the latter, it is seen that the wing-load contribution to the overall normal-force that is
influenced by the body is less sensitive to roll-angle at supersonic-crossflows. This suggests
the diminished influence of body vortices on interference. Conversely, the influence of the
wing on the body-load increment is visibily more sensitive to the roll-angle and remains so at
supersonic-crossflows. This suggests that the body-load increment is largely due to the fins
creating a flow-shadow on the leeside and an over-pressure on the windward side in the “+”
configuration by restricting the three-dimensional pressure relief the body would experience
without fins; the rotation of the fins through to the “×” orientation restricts the body-flow to
a lesser extent. This serves to introduce the roll angle as a significant parameter influencing
the full-configuration flow features and interference.

The impact of component-integration has thus far been introduced in the context of
its effect on the normal-force of the full-vehicle configuration (and contributions towards
it). However, its effect on control-surface aerodynamics is of particularly great importance.
Reduced control effectiveness and the variation of aerodynamic derivatives, as may result
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from aerodynamic interference or aeroelastic effects, impacts the design requirements placed
on the control surfaces, control actuators, and the control law. These are of significant
consequence in the case of missile design, due to the degree of interaction between sub-
systems and the sensitivity of the overall system design to sub-system changes [7]. With this
in mind, the remainder of the overview will focus on the impact of full-vehicle configuration
flow features and their impact on control-fin loading. This will typically be interpreted
through the fin-normal force coefficient, CNF , which is oriented normal to the control surface.

The previous remarks regarding windward over-pressure and leeside shadowing in the
context of wing-body interference are now revisited in the context of control-fin effectiveness.
Figure 2.45 [46] shows the variation with crossflow Mach number of control-effectiveness
for the windward and leeward control-fins in the “+” configuration, expressed as the ratio
of the fin-normal force at incidence to that at zero-incidence for a deflected fin, both in the
presence of the body. In both cases, it is noted that the crossflow Mach number is a similarity
parameter. It is seen that the effectiveness of the leeward fin is progressively reduced due to
shadowing by the body, with the load-ratio asymptoting to zero at supersonic-crossflows;
conversely, the effectiveness of the windward fin is enhanced. A fairly smooth variation of the
fin-normal loading with roll angle is observed in Fig. 2.46a [46], with a nearly linear variation
with deflection angle over the majority of the windward side. The data points of Fig. 2.46a
may be correlated by the equivalent angle-of-attack method [47], taking into account the
variation of the body-alone flowfield averaged over the space spanned by the undeflected fin,
as in shown Fig. 2.46b [46]. This shows that the scaling of fin control-effectiveness is due to
the flowfield of the body. Notably, poor correlation is obtained for roll angles lying within
approximately 35° of the leeward meridian [46]. This suggests the variation in fin-normal
loads in this region may not be attributed solely to variations in the local flow properties, and
that the interaction between the fin and body flowfields must be accounted for.

As is seen from the variation of fin-normal loads with Mach number for the undeflected
fin, shown in Fig. 2.47 [45], this interaction is likely with the body-shed vortices. This is
particularly evident at the lower crossflow Mach number of Mc = 0.35 in Fig. 2.47b, with
a reversal in the force direction noted at a roll angle of approximately φ ≈ 35° away from
the leeward meridian. The same trend is noted for fins of a different planform at a crossflow
Mach number of Mc = 0.73, as seen in Fig. 2.48 [45]. Also seen is the effect of fin deflection
on the fin-vortex interaction, with a shift noted in the roll angle at which the local loading
peaks are observed.

In closing, it is noted that more general interactions with upstream flow structures occur.
Figure 2.49 [45] shows the impact on rolling moment characteristics of interaction between
tail fins and canard-shed vortices, highlighting the impact of aerodynamic interference on
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control design. A further example of control-related interactions is given in Fig. 2.50 [21]. It
depicts shock-induced breakdown of the canard-shed vortex and the subsequent interactions
which occur. The vortex breakdown changes the shock structure, strength, and the down-
stream flowfield. The role of further interactions, such as SBLI between various geometric
components, and of lateral control jets is outside the scope of the present overview.

Key Parameters

The complexity of many of the interactions observed on full-vehicle configurations renders
the identification of key parameters difficult. It may be broadly observed that the Mach
number plays a key role in defining the zones of influence of upstream structures, while the
vehicle geometry (and its inclination to the flow) interacts with the Mach number to determine
which components are embedded in these regions of influence, as noted in [48]. This is partly
observed in the diminishing of the carryover-factors that is observed with increasing Mach
number, as the zones of influence between the body and wing are reduced. In the case of
comparitavely local wing-body interference, as occuring over the span of a single wing-set,
the ratio of the body diameter to the tip-to-tip span, D/sm, plays a significant role [3] in
determing the interference factors. As may be expected from the overview of wing-alone
flow features, the aspect ratio is also significant, with very-low aspect ratio wings [30] or
strakes exhibiting different interference trends to control fins. The slenderness-ratio of the
body, D/L, relative placement of the wing-sets, crossflow Mach number, fin deflection, and
roll angle have all been seen to be important parameters in fin-vortex interaction and indeed
local wing-body carryover. The characterization of full-vehicle configuration load-variation
and interference factors in terms of these parameters is the realm of aeroprediction methods,
particularly of empirical and semi-empirical methods.
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(a) Configuration 1 (b) Configuration 2, M∞ = 0.2

Fig. 2.36 Enhancement of wing-body lift through interaction with a strake-vortex at subsonic
speeds [41].

Fig. 2.37 Example of the influence of fins on the body surface flow at supersonic speeds [21].
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CN

CNB +CNB(W )

CNW (B)

CNB

CNW

Fig. 2.38 Nomenclature for interference terms.

Fig. 2.39 Variation of carryover factors with diameter-to-span ratio as predicted by slender
body theory [3].
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(a) Crossflow velocity (b) Pressure contours

Fig. 2.40 Computed inviscid crossflow flowfield for a finned slender body at M∞ = 3.7,
α = 7.8° [45].

Fig. 2.41 Body and wing vortices in the crossflow plane behind a fin-section in the “×”
configuration [21].
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(a) M∞ = 2 (b) M∞ = 4.5

Fig. 2.42 Lifting characteristics of a finned slender body at supersonic speeds [45].

(a) Effect of freestream Mach number (b) Correlation by crossflow Mach number

Fig. 2.43 Compressibility effects on positive interference on wing lift for a finned slender
body [46].
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(a) Total interference

(b) Interferential increment to body load

(c) Interferential increment to wings load

Fig. 2.44 Effect of roll angle on the variation of interference factors with crossflow Mach
number for a finned slender body; AR = 0.5, λ = 0.5 [46].
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Fig. 2.45 Effect of incidence on the fin-normal force as a function of crossflow Mach number
for a fin deflection of δ = 20° [46].
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(a) Variation of fin-normal force

(b) Correlation of the control effectiveness parameter by the equivalent
angle-of-attack method

Fig. 2.46 Control-fin effectiveness at a crossflow Mach number of 1.54 for the model from
Fig. 2.45 as a function of roll angle and fin deflection [46].
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(a) M∞ = 4.5, α = 20°

(b) M∞ = 2, α = 10°

Fig. 2.47 Variation of fin-normal force with roll angle and Mach number [45].
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Fig. 2.48 Effect of fin deflection on the variation of fin-normal force with roll angle; M∞ = 3.5,
α = 12° [45].
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Fig. 2.49 Effect of interaction between canard-shed flowfield and tail fins on rolling moment
as a function of incidence; horizontal canards have antisymmetric deflections of δ = 5° [45].

Fig. 2.50 Interaction of canard-shed vortices with a downstream shock and the subsequent
vortex breakdown and shock-reduction [21].



58 Review of Slender Body Aerodynamics

2.2 Broadly-Used Prediction Methods

2.2.1 Introduction

The aerodynamic characteristics of a flight vehicle have broad influence [7] on the vehicle’s
flying characteristics and overall design, with some examples of full-vehicle aerodynamic
features introduced in Section 2.1.3. The design of various vehicle sub-systems (e.g., control
system, structure, and air-breathing propulsion) requires information about the vehicle aero-
dynamics, as discussed in [7, 8]. More detailed information about the vehicle aerodynamics
is required [8, 49] as the design progresses and matures. This is illustrated in Fig. 2.51. The
requirements [30] placed on aeroprediction methods as the design matures are outlined in
Table 2.1 [50]. Aeroprediction methods are typically grouped [51] into three categories:

• “Engineering level”,

• “Intermediate-level”,

• “Advanced-level’.

These categories roughly correspond to the three tiers of requirements noted in Table 2.1, but
do not have a strict definition.

Design StageTier 1 Tier 2 Tier 3 Tier 4

I

II

III

II

III

I — Aerodynamic information required

— Cost of re-design

— Extent of allowable changes

Fig. 2.51 Typical tiered-development design cycle.

In the early stages of the design cycle, in particular during conceptual design, a large
number of configurations may be investigated and the time- and computational-cost of aero-
prediction must be kept low. Typically [52], “engineering-level” prediction methods are
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used in the early stages of the design, so named due to the simplicity of the methods and
the often limited detail of information they provide. This category of methods encompasses
methods based in interpolation from experimental databases (empirical methods), approx-
imate analytical models which are supplemented by or derived from experimental trends
(semi-empirical methods), as well as approximations to higher-order analytical models. This
is detailed in [50, 52, 53].

As the design matures, more detailed aerodynamic information is required [8, 49], as may
be provided by “intermediate-level” prediction methods. These methods are intermediate
in the sense of providing more detail than engineering-level methods at lower time- and
computational-cost than “advanced-level methods”, which are typically computational fluid
dynamics (CFD) codes that provide accurate, detailed information but are computationally
expensive [50]. Intermediate-level methods consist of higher-order approximate models and
are often supplemented by semi-empirical methods [50].

The different categories of aeroprediction methods represent the trade-off taking place
between the computational cost (which is proportional to the time-cost) of the methods and
the fidelity of the methods. In the present context, the fidelity of a model refers to its ability
to reproduce the physics observed experimentally, rather than the accuracy of the integrated
loads predicted by the model. This trade-off between physics and computational cost is
depicted for analytical models in Fig. 2.52 [1]. A number of intermediate models are omitted,
such as thin-layer [54] Reynolds-averaged Navier-Stokes (RANS) and the transonic small-
disturbance potential equation [55]. More detail on approximations to the Navier-Stokes
(NS) equations is given in [56].

For the purposes of this review, the primary factor that will be used in determining the
category into which a prediction method falls will be computational cost. Empirical and
semi-empirical methods are inherently low-cost, as they typically involve interpolation from
an existing database or the use of simple algebraic equations. These methods do not typically
provide details about the pressure distribution on the vehicle or about the flowfield. For
these reasons, they are categorized as engineering-level methods. In categorizing analytical
methods, the computational cost may be considered a function of the complexity and number
of equations to be solved. The categorization is thus made based on the extent of spatial
discretization required by the methods:

• Methods based in linear potential flows, or requiring at most boundary-discretization
(panel methods) are thus categorized as engineering-level methods. Examples include
slender body theory [3], the doublet-lattice method [57], first-order shock-expansion
theory [58], Newtonian impact theory [27], and piston theory [59],
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Fig. 2.52 Trade-off between physics fidelity and computational cost in analytical methods [1].

• Nonlinear inviscid methods requiring at most 2D field-discretization are considered
intermediate-level methods. Examples include slender-body approximations such as
hypersonic small-disturbance theory [27] and Sychev’s [4] method for large-incidence
hypersonic flows. The transonic small-disturbance theory [44] and the full potential
equation [44], as well as CFD augmented by local piston theory [14, 18], will also be
considered intermediate-level methods,

• Methods requiring 3D field-discretization are considered advanced-level methods. This
encompasses various simplifications to the Navier-Stokes equations, such as thin-layer
and parabolized RANS, and the Euler equations. These methods are described in [56].

The notable exceptions to the categorization rule are 3D nonlinear potential flows and CFD
augmented by local piston theory. The first is categorized as an intermediate-level method
due to the reduced number of equations and variables [44] relative to Euler and Navier-Stokes
methods. The second is considered such due to the reduced cost of perturbation modelling
relative to full unsteady CFD [14].

It is to be noted that the aeroprediction methods that will be listed in the following
sections have been implemented in a range of prediction codes and analysis software. Various
extensions and modifications to the basic methods are not covered, and the particulars of the
methods are not entered into in great detail. Methods dealing with axial-force prediction
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are not considered due to the negligible role axial-force plays in aeroelastic phenomena.
The purpose of the review is to give an overview of common methods used and of their
capabilities, with the view of identifying gaps in current modelling capabilities. The spectrum
of methods will be approached starting with advanced-level methods, as intermediate-level
and engineering-level analytical methods are in many cases mathematical simplifications of
advanced-level methods. This is depicted in Fig. 2.53.

Fig. 2.53 Relationship between analytical methods of different fidelities [44].

2.2.2 Advanced-Level Methods

To accurately replicate physical flow features in a computational environment, mathematical
models must be used that correctly describe the dominant flow physics. As was noted
in the overview of Section 2.1, slender bodies often exhibited complex flow structures.
Shock-waves, SBLI, turbulence, boundary-layer separation, and vortices were seen to play
important roles in defining the flowfield. Of the spectrum of aeroprediction methods available,
advanced-level methods offer the highest modelling fidelity and greatest detail. The methods
considered here include the

• Reynolds-averaged Navier-Stokes equations,

• Euler equations,
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• Euler equations with boundary-layer interaction.

While greater fidelity is possible with more advanced methods such as Large-Eddy Simula-
tion [60, 61] (LES) and Direct Numerical Simulation [61] (DNS), these methods are seldom
used in a design environment due to having a restrictively high computational cost. The
methods outlined here are essentially control-volume-based models. Other advanced-level
methods, such as the Lattice-Boltzmann method [62], are not covered here. The Lattice-
Boltzmann method in particular has not been applied as widely as RANS, due in part to
the lack of consensus on a consistent approach to modelling supersonic flows, as described
in [62].

Viscous Formulations

The Reynolds-averaged Navier-Stokes equations will be the highest-fidelity aeroprediction
method covered in this overview. The inherent assumptions in the model are that the fluid
may be considered a continuum, and that the effects of turbulence may be averaged over
time. Of the various aeroprediction methods covered here, RANS-based methods have the
distinguishing feature of explicitly modelling viscosity and turbulence. The RANS equations
will be introduced in the context of the general Navier-Stokes equations. The unsteady NS
equations in Cartesian coordinates are quoted from [63] below as

Continuity:
∂ρ

∂ t
+

∂ρvi
∂xi

= 0 , (2.3)

Momentum: ρ
∂vi
∂ t

+ρv j
∂vi
∂x j

=
∂Ti j

∂x j
, (2.4)

Energy: ρ
de
dt

=−
∂q j

∂x j
+Ti j

∂vi
∂x j

, (2.5)

Surface BC: vi = vBi , (2.6)

where p is the fluid pressure, ρ is the fluid density, vi is the i-th component of the fluid
velocity vector, vBi is the i-th component of the local velocity-vector of the surface, xi is the
i-th spatial coordinate, t is time, e is the specific internal energy of the fluid, qi is the i-th
component of the fluid heat-flux vector, and Ti j is the Cauchy stress tensor. The material
derivative is denoted d

dt , with
d
dt

=
∂

∂ t
+ vi

∂

∂xi
. (2.7)

The equations as they are written are unclosed, and require a constitutive equation to relate
fluid shears to stresses and an equation of state. If the fluid is assumed to be Newtonian, then
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the Cauchy stress tensor Ti j may be written in the notation of [63] as

Ti j =

(
−p+λC

∂vk
∂xk

)
δi j +2µεi j , (2.8)

where λC is the non-shear component of the coefficient of bulk viscosity, µ is the dynamic
viscosity of the fluid, δi j is the Krönecker delta, and εi j is the fluid rate of deformation tensor.
Aris [63] writes the rate of deformation tensor and the first two invariants of the Cauchy
stress tensor as

εi j =
1
2

(
∂vi
∂x j

+
∂v j

∂xi

)
, (2.9)

∂εi j

∂x j
=

1
2

∇2vi +
1
2

∂

∂xi

∂v j

∂x j
, (2.10)

ΘC = ∑
i

εii =
∂vi
∂xi

, (2.11)

ΦC =
1
2 ∑

i ̸= j

(
εii ε j j − εi j ε ji

)
, (2.12)

where ΘC is the first invariant of the Cauchy stress tensor (which is equal to the divergence of
fluid velocity), and ΦC is the second invariant of the Cauchy stress tensor. Aris [63] notes that
the rate at which internal forces do work in the fluid, Ti j

∂vi
∂x j

, may be split into a reversible

interchange with strain energy, −p∂vi
∂xi

, and an irreversible dissipation by viscous forces via
ϒ, written as

Ti j
∂vi
∂x j

=−p
∂vi
∂xi

+ϒ , (2.13)

ϒ = (λC +2µ)Θ2
C −4µΦC , (2.14)

where ϒ is the viscous dissipation function.

Alternative formulations of the NS momentum equation, Eq. (2.4), may be obtained by
using Eqs. (2.9) and (2.10) in the derivative of Eq. (2.8) and substituting into Eq. (2.4). It is
common to see formulations in which it is implicitly assumed that µ and λC may be taken
as constants. Two formulations of the momentum equation are presented below with this
assumption:

Laplacian form: ρ
∂vi
∂ t

+ρv j
∂vi
∂x j

=− ∂ p
∂xi

+(λC +µ)
∂

∂xi

∂v j

∂x j
+µ∇2vi , (2.15)
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Vorticity form: ρ
∂vi
∂ t

+ρv j
∂vi
∂x j

=− ∂ p
∂xi

+(λC +2µ)
∂

∂xi

∂v j

∂x j
−µεi jk

∂ωk
∂x j

, (2.16)

where ωi is the fluid vorticity vector. In cases where it is not admissible to assume constant µ

and λC, as in hypersonic flows with large temperature gradients and chemistry, an alternative
formulation must be obtained by appropriate differentiation of Eq. (2.8), as shown in [64].

A number of alternative formulations of the NS energy equation, Eq. (2.5), may be
obtained through applying assumptions about the equation of state and the heating conduction
law. Without invoking these assumptions, the energy equation may be expressed in the
following forms:

Internal energy form: ρ
de
dt

=−p
∂vi
∂xi

− ∂q
∂xi

+ϒ , (2.17)

Enthalpy form: ρ
dh
dt

=
∂ p
∂ t

− ∂q
∂xi

+ϒ , (2.18)

Entropy form: ρT
ds
dt

=− ∂q
∂xi

+ϒ , (2.19)

where h is the specific enthalpy of the fluid, s is the specific entropy of the fluid, and T is
the fluid temperature. Since the viscous dissipation function always has a value of ϒ ≥ 0,
as shown in [63], Eq. (2.19) clearly shows that a flow can only be isentropic (ds

dt = 0) in the
absence of viscosity and heat transfer.

The equations introduced thus far represent the general unsteady NS equations. The
Reynolds-averaged formulation of the NS equations is essentially similar, and will not be
entered into in great detail as they are covered extensively in literature, such as [64–66]. The
essence of the RANS formulation lies in splitting the flow variables into two components:

• An ensemble-averaged component (denoted by a barred quantity), e.g. v̄i,

• A component representing the turbulent fluctuation about the average value (denoted
by a dashed quantity), e.g. v′i.

The fluid velocity, for example, would then be written as vi = v̄i + v′i. This splitting of
variables is done for each flow quantity, and the resulting equations are ensemble averaged.
Terms in the equations which are linear in fluctuating variables disappear when the ensemble
average is taken, as it is assumed that the mean of the fluctuating quantities is zero by
definition. The result is that the form of the general NS equations is retained for ensemble-
averaged quantities. Additional nonlinear turbulent-fluctuation terms appear, which are
interpreted as turbulent-stress terms.
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The introduction of new variables (specifically, the turbulent-fluctuation terms) in the
RANS formulation renders the equations unclosed. To close the equations, a turbulence
model is required that relates the turbulent flow variables to the averaged flow variables. An
extensive range of turbulence models are available, which will not be covered in this overview.
Examples of prominent turbulence models used for external aerodynamic flows include the
Spalart-Allmaras (SA) model [67–69], the k-ε model[70], and the k-ω model [71, 72].
Turbulence models are essentially semi-empirical, with recommended coefficients in the
equations determined by correlation of the models to experimental data. The RANS equations
themselves are limited in their modelling fidelity of highly separated or highly unsteady
flows, as noted in [73]. Such flows, as may occur at very high angles of attack (α = O(90°)),
are better modelled by LES. This is due to the ability of LES to model coherent instantaneous
turbulent structures, which are important in these flows, as discussed in [73]. The successes
and shortcomings of RANS-based methods in replicating experimental flows associated with
slender bodies are covered in detail in [35, 74].

The remainder of the analytical methods that will be considered may be viewed as
progressively more extensive approximations to the NS equations. Two approximations
to the NS equations which retain viscosity are the so-called thin shear-layer (TSL) and
the parabolized Navier-Stokes (PNS) formulations. Both approaches involve assumptions
about the relative importance of various directional gradients of the viscous stress terms.
In the TSL formulation, it is assumed [64] that all turbulent and viscous shear-stress terms
involving gradients tangential to the surface may be neglected. In the resulting TSL-NS
equations, viscous terms only appear as velocity-derivatives normal to the surface. As
noted by Hirsch [64], the final formulation is similar to the boundary-layer approximation,
as viscous diffusion parallel to the surface is neglected. The main difference between
the boundary-layer formulation and the TSL approximation is that the latter retains the
momentum equation normal to the surface, and thus permits a viscous surface-normal
pressure-gradient within the shear-layer.

Hirsch [64] notes that the PNS approximation differs from the TSL formulation in two
key ways:

• PNS applies only to the steady-state formulation of the NS equations,

• Surface-tangential transverse shears are not neglected.

The main assumption of the PNS approximation is that a dominant flow direction exists, and
that diffusion of momentum and energy in that direction may be neglected. As a result, no
viscous terms involving streamwise derivatives appear, and the PNS equations are first-order
in the streamwise direction. As noted by Hirsch [64], the streamwise spatial-variable may
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then be viewed as a pseudo-time variable, with the equations solved as an unsteady problem
in the transverse plane. This mathematical interpretation of a steady 3D flow as an unsteady
2D flow was introduced in Section 2.1 as the viscous crossflow analogy. The mathematical
interpretation will be elaborated on in Section 2.2.3 in the context of 2D inviscid methods.
Moore [50] suggests that the TSL approximation is suitable for “moderate” separation, while
the PNS formulation is limited to “small” separation. This is because flow reversal in the
dominant streamwise direction would mean that the viscous gradients in this direction would
be comparable to the transverse gradients [64], violating the underlying assumption of the
PNS approximation.

Inviscid Formulations

The next level of simplification of the RANS equations is given by the Euler equations. This
is achieved through neglecting the contribution of viscosity. The resulting Euler equations
are given by

Continuity:
∂ρ

∂ t
+

∂ρvi
∂xi

= 0 , (2.20)

Momentum: ρ
∂vi
∂ t

+ρv j
∂vi
∂x j

= 0 , (2.21)

Energy: ρ
de
dt

= 0 , (2.22)

Surface BC: vini = vBini , (2.23)

where ni is the i-th component of the unit normal-vector to the surface boundary. Comparing
the equations to Eqs. (2.3) to (2.6), it is noted that the right-hand-side (RHS) terms, which
arise due to viscosity and heat conduction, are set to zero. This changes the set of equations to
first-order partial differential equations (PDE), in contrast to the second-order Navier-Stokes
equations. The surface boundary condition (BC) is also changed. A slip velocity now exists
at the surface, while no velocity is permitted normal to the surface. This is termed the
non-permeability condition, the non-penetration condition, or the flow tangency condition.
The reduction in the mathematical complexity of the equations to be solved, as well as the
reduction in the number of equations to be solved (with the turbulence models no longer
being required) leads to a reduction in computational cost relative to the NS equations.

The lack of viscosity has an important influence of the flowfield structure that is modelled.
This is manifested through differences how flow rotationality is modelled. The vorticity-form
of the NS momentum equation, Eq. (2.16), highlights the interplay between viscosity and
rotationality. Viscosity between adjacent fluid layers transforms transverse velocity gradients
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into rotationality. Momentum may thus be transferred into rotationality. However, in an
inviscid formulation (such as the Euler equations), rotationality can only be created by
an entropy gradient as is generated by a variation in shock-wave strength (due to shock
curvature, for example). This has significant implications for vortex formation. In viscous
flows, vortices may be shed from the body surface through separation of the boundary
layer. Rotationality inside the boundary layer is convected through the vortex sheet. In
inviscid flows, vortex formation from the surface boundary may occur through one of two
mechanisms:

• Crossflow shocks, which generate an entropy gradient near the surface,

• Accumulation of rotationality through the entropy-layer, as is produced by a curved
bow-shock.

The lack of viscosity also has implications for the persistence of flow structures. The lack of
viscous dissipation means that perturbations propagate without losing energy, and are thus
modelled as persisting indefinitely. The differences in flow-feature modelling between Euler
and RANS methods are qualitatively illustrated in Fig. 2.54 [35]. It depicts the parameter
space of delta-wing flows for which Euler and RANS codes give similar modelling of
primary flow structures. As is noted by [35], Euler codes are not able to model secondary
flow-structures such as secondary vortices (which arise from boundary-layer separation along
the inboard surface) or shock-induced boundary-layer separation. At intermediate incidence
for supersonic leading-edges, modelling of the vortical and separated flow structures was
noted by [35] to be sensitive to the boundary-layer model used.

As an intermediate approximation to the NS equations, the Euler equations may be
coupled to boundary-layer equations. Such methods are termed “Euler equations with
boundary-layer interaction” in this overview. A typical implementation is weak coupling of
the equations. In this approach, an initial Euler solution is used as the edge conditions for the
boundary-layer equations. The boundary-layer displacement thickness is then computed and
used to displace the computational boundary for the Euler problem. Euler / boundary-layer
coupled methods allow skin-friction and the boundary-layer thickness to be estimated, but do
not resolve the flow within the boundary layer. The variation of flow variables is thus obtained
for an inviscid flow around a modified geometry of “equivalent thickness”. These methods are
of limited use in cases of significant boundary-layer separation, and are thus typically more
suited to geometries at near-zero incidence. The development of boundary-layer interactive
Euler methods suitable for slender bodies at incidence is detailed in [65].
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Fig. 2.54 Delta-wing flows for which Euler and RANS codes give similar modelling (shaded
areas) of primary flow structures [35].

2.2.3 Intermediate-Level Methods

The remainder of the prediction methods considered are inviscid formulations, and involve
further approximations to the Euler equations to reduce their computational cost. As was
noted in Section 2.2.1, the intermediate-level category of prediction methods is mostly
composed of nonlinear, inviscid formulations which required at-most 2D field discretization.
The prediction methods in this category may be grouped into:

• Small-parameter approximations,

– Unsteady analogy [75–77],

– Hypersonic small-disturbance theory [27, 77, 78],

– Sychev’s method [4],
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• Reduced-order perturbation modelling,

– Euler-based local piston theory [14],

– NS-based local piston theory [18],

– Potential-flow perturbations to higher-fidelity solutions, as implemented in the
ZAERO software suite [79]

• Nonlinear potential flows,

– Full potential equation [44],

– Transonic small-disturbance equation [44],

• Distributed-vorticity vortex modelling [24]

These represent different approximation philosophies. Small-parameter approximations are
based in non-dimensionalization of the Euler equations. The methods covered here seek
a non-dimensionalization which is uniformly valid throughout the flowfield. When one of
the parameter groups in the resulting equations is significantly smaller than the others, it is
typically neglected in a small-parameter approximation and the equations are simplified. In
this sense, these methods involve assumptions regarding the relative importance of directional
gradients. The unsteady analogy is a central component of these methods, and will be covered
in depth before considering the methods categorized as small-parameter approximations.

The second philosophy is termed “reduced-order perturbation modelling”. The essence
of this approach lies in decoupling the mean-steady flow and variations about it. The mean-
steady flow is solved using a high-fidelity model, while a computationally-inexpensive
approximate method is used to model perturbations about the mean-steady conditions. This
assumes that there is no interaction between the steady and the unsteady physics. This
approximation is termed dynamic or time-linearization [80]. The steady solution is used as
the starting conditions for the perturbation modelling, and is not updated after perturbations
take place. Additional assumptions regarding neglected gradients may be made after the
dynamic linearization in order to further simplify the equations.

“Reduced-order perturbation modelling” is not to be confused with so-called “a-posteriori
reduced-order modelling”. The former involves an a-priori approximation to the governing
equations that is independent of the solution to the equations. In the latter, a reduced-order
representation of the dynamical system is constructed from an ensemble of solutions to the
full equations. The computational cost required to obtain the ensemble of solutions is one of
the main disadvantages of a-posteriori reduced-order models (ROMs). Typically, the larger
the solution set is, the greater the confidence in the accuracy of the ROM will be. However,
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once the ROM is constructed, it offers high-fidelity modelling at very low computational cost.
In this sense, a-posteriori ROMs straddle the space between advanced-level and intermediate-
level prediction methods. They will not be considered further in this overview of prediction
methods, as they do not explicitly model the flow physics in their formulation. Examples of
a-posteriori ROM approaches include

• Proper orthogonal decomposition [9],

• Kriging surrogates [10],

• Dynamic mode decomposition [11].

The third approximation philosophy that will be considered involves restricting the flow
kinematics. In particular, it is assumed that the flow is irrotational, which allows the velocity
vector to be expressed as the gradient of a single scalar-field. This is the potential flow
approximation. It reduces the computational cost by reducing the number of variables to
be solved for. This approximation philosophy does not explicitly place assumptions on the
geometry or perturbations involved. The assumption of irrotationality imposes restrictions
on entropy generation as through shock-waves. Potential flow models involving “entropy
corrections” [81] attempt to address this shortcoming in the presence of shock waves. Further
approximations to the potential flow equations may be, such as neglecting certain directional
derivatives or assuming small disturbances.

The final group of intermediate-level prediction methods consists of vortex-modelling
methods which utilize multiple discrete vortex elements. Methods of this type are include
panel-type methods as well as “vortex cloud” [24] or “multi-discrete-vortex” [30, 82] models.
A detailed overview of methods in this category is given in [82]. The approximation
philosophy of this category of methods lies in modelling the kinematics of vortical flows in
an otherwise inviscid fluid through the use of irrotational vortices. The computational cost of
methods in this category vary, depending on whether a boundary-layer model is implemented
and on the number of discrete vortex elements modelled. They are categorized as intermediate-
level prediction methods here due to their significantly higher computational cost relative
to single-vortex methods. As noted in [82], the computational cost of multi-vortex methods
rises according to O

(
N2), where N is the number of vortex elements modelled.

The progressively more severe approximations to the Euler equations which are made
in developing intermediate-level methods results in a reduction in the broad applicability of
the methods. This is illustrated in Fig. 2.55 from [81]. It shows the approximate validity
regions of various inviscid methods for modelling a circular cone at zero incidence. For this
case, the Euler equations represent the exact solution. The narrow region of applicability of
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linear potential-flow methods demonstrates the importance of nonlinear terms in modelling
large perturbations. Similarly, the importance of entropy losses as hypersonic speeds are
approached is illustrated by the limits of full-potential methods. The parameter space
for which mixed subsonic-supersonic regions exist is denoted as “transonic flow”. The
influence of viscosity may become dominant in these flows, and so the region represents the
approximate limits of inviscid methods in general.
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Fig. 2.55 Approximate regions of method applicability for circular cones at zero inci-
dence [81].

Small-Parameter Approximations

The reduction in computational cost achieved by these methods stems from two sources:

• The elimination of one velocity component as a variable,

• The reduction in spatial dimensions requiring discretization from 3D to 2D.

The second source is essentially a by-product of the elimination of the velocity component
in the reduced direction. This is demonstrated as follows. If the velocity component v1

is expressed in perturbation form as v1 =V1 (1+ ε1 u∗1), where V1 is a constant reference
velocity and ε1 u∗1 is the nondimensional perturbation velocity, then the following may be
observed regarding advection:

vi
∂

∂xi
=V1 (1+ ε1 u∗1)

∂

∂x1
+∑

i̸=1
vi

∂

∂xi
,



2.2 Broadly-Used Prediction Methods 73

=V1
∂

∂x1
+∑

i̸=1
vi

∂

∂xi
+V1 ε1 u∗1

∂

∂x1
. (2.24)

The advection in the x1 direction is thus split into a contribution due to advection at a constant
speed V1 and a contribution due to perturbations to that speed. This may be exploited
through considering a Galilean transformation to a frame moving at a constant speed V1 . The
relationship between variables in the frames are given as

tG = t , (2.25)

x1(G) = x1 −V1 t , (2.26)

xi(G) = xi for i ̸= 1 , (2.27)

where the subscript “(G)” denotes variables in the Galilean frame, and with the following
transformations applying to partial derivatives taken in the respective frames:

∂

∂ tG
=

∂

∂ t
+V1

∂

∂x1
, (2.28)

∂

∂xi(G)

=
∂

∂xi
. (2.29)

This essentially demonstrates that spatial gradients in the direction of frame convection are
perceived as temporal gradients in the convected frame. This is the essence of what is referred
to as “pseudo-time” or an “alternative time variable” [76] in some literature on the unsteady
analogy, and also sheds light on why it is named the “unsteady” analogy. Returning to the
introduction of a nondimensional perturbation velocity ε1 u∗1, it is seen that the material
derivative may be written as

d
dt

=
∂

∂ t
+V1

∂

∂x1
+∑

i̸=1
vi

∂

∂xi
+V1 ε1 u∗1

∂

∂x1
,

=
∂

∂ tG
+∑

i ̸=1
vi

∂

∂xi
+V1 ε1 u∗1

∂

∂x1
. (2.30)

As a final preparation to demonstrating the reduction from a 3D to a 2D spatial set of
equations, it is noted that where the derivative of v1 is taken, it reduces to the derivative of
the perturbation:

∂v1
∂xi

=V1
∂ (1+ ε1 u∗1)

∂xi
,
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=V1
∂ε1 u∗1

∂xi
. (2.31)

Substituting for vi and Eqs. (2.24), (2.28), (2.30) and (2.31) into the Euler equations of
Eqs. (2.20) to (2.23), it may be shown that the perturbation form is given by

Continuity:
∂ρ

∂ tG
+

∂ρvi
∂xi

=−V1
∂ρε1 u∗1

∂x1
for i ̸= 1 , (2.32)

Momentum 1: ρV1
∂ε1 u∗1

∂ tG
+ρV1 v j

∂ε1 u∗1
∂x j

=−ρV1
2
ε1 u∗1

∂ε1 u∗1
∂x1

for j ̸= 1 ,

(2.33)

Momentum 2,3: ρ
∂vi
∂ tG

+ρv j
∂vi
∂x j

=−ρV1 ε1 u∗1
∂vi
∂x1

for i, j ̸= 1 , (2.34)

Energy: ρ
∂e
∂ tG

+ρvi
∂e
∂xi

=−ρV1 ε1 u∗1
∂e
∂x1

for i ̸= 1 . (2.35)

The equations have been arranged with terms involving derivatives in x1 placed on the RHS.
The LHS of the equations then involve only time derivatives in the Galilean frame and spatial
derivatives in the plane normal to x1. For the sake of brevity, the plane normal to x1 will be
referred to as the crossflow plane, and x1 will be referred to as the convected direction. It
is noted that the RHS of the momentum and energy equations represents the x1-advection
by perturbations of velocity components and energy. The RHS of the continuity equation
represents the x1-gradient of perturbation momentum. If these RHS terms are neglected in
favour of the remaining terms, the Euler equations are reduced to unsteady equations in the
crossflow plane and involve only v2 and v3 as velocity variables. This is the mathematical
basis of the unsteady analogy. The unsteady analogy thus assumes that:

• The contribution to momentum divergence from convected-direction terms is negligible
relative to crossflow terms. In other words, the predominant changes to mass-flow
occur in the crossflow plane,

• The advection of scalar quantities in the convected-direction is negligible relative to
their advection in the crossflow plane.

These two assumptions reduce to the physical interpretation that if a flow direction exists in
which a body generates significantly weaker perturbations (in comparison to the remaining
directions), the 3D flow around the body may be treated as 2D flow in a plane convected in
that direction. This gives rise to the unsteady analogy also being known as the “law of plane
sections” [77].
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The two methods that will be covered in the category of small-parameter approximations
are hypersonic small-disturbance theory [27, 77, 78] and Sychev’s method [4] for high
incidences. Both of these methods rely on a slender-body assumption, with δ ≡ D/L ≪ 1,
and assume hypersonic flow such that M∞δ ≥ 1. Both methods reduce the Euler equations to
2D unsteady equations in a crossflow plane, with the direction for the Galilean transform
defined by the body axis. The methods will not be outlined in great detail, as the essence
of the approach lies in the unsteady analogy that was detailed above. Moreover, a general
approach in reducing the Euler equations will be developed in the following chapter, which
will be shown to reduce to the two methods depending on the non-dimensionalization used. A
range of other small-parameter approximations for specific scenarios, such as slightly-blunted
cones, are reviewed in [27].

Hypersonic small-disturbance theory (SDT) is essentially a small angle-of-attack method,
with α ≤ δ . It assumes that axial perturbations are of an order O(δ ) smaller than lateral
perturbations. In the nomenclature of Eqs. (2.32) to (2.35), this is equivalent to assuming
that ε1 u∗1 = O

(
δ 2) while v2/V1 = O(δ ). Neglecting terms of the order O

(
δ 2) results in a

first-order approximation to the Euler equations. The approximation may be interpreted by
the unsteady analogy, with the convected plane swept along the body axis. In fact, for the
small incidences considered, the error in considering the plane to be convected in the direction
of the freestream is of the order of the neglected terms. The development and accuracy of
hypersonic SDT is covered in detail in [78, 83], with a more detailed order-of-magnitude
analysis of the various terms given in [77]. As noted by Van Dyke [83], the theory may
be extended to supersonic Mach numbers through replacing M∞ in similarity parameters
by the factor

√
M2

∞ −1 from linearized supersonic flow theory. Van Dyke notes that this
allows the lower-limit of validity of hypersonic SDT to be extended from 1/M∞δ = O(1) to
approximately M∞δ ≥ 0.3.

Sychev [4] adopted a similar approach in treating the hypersonic slender-body problem
for large incidences. A characteristic feature of Sychev’s analysis is that the assumption of
relatively-smaller axial perturbations is dropped, with the requirement reduced to ε1 u∗1 =

O(δ ). This is in conjunction with an assumption that the body is slender in its largest
lateral dimension such that δ ≪ 1 applies. It is further assumed that M∞δ ≥ 1 and that
Mc = M∞ sinα ≫ 1. Neglecting terms of order O

(
δ 2) allows the axial-perturbation of

velocity to be eliminated from the equations for larger perturbations than in hypersonic SDT.
The application of the unsteady analogy sees the convected plane swept down the axis of
the body. The resulting equations are governed by two similarity parameters: δ cotα and
M∞ sinα . Sychev noted that the resulting high-incidence theory agreed with small-incidence
SDT theory in the range α = O(δ ), and developed the theory for up to α ≈ 90°.
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The similarity between hypersonic SDT and Sychev’s method drew the attention of
various researchers [84–86] in investigating the limits of validity of Sychev’s formulation.
Hemsch [85] found that Sychev’s similarity parameters successfully correlated experimental
results for smooth bodies and sharp wings well outside of the theoretical validity bounds
put forward by Sychev. In particular, it was noted that correlation was successful at all
crossflow Mach numbers, provided that the axial flow was supersonic. It was also observed
that correlation was successful even for rectangular wings of aspect ratios up to AR = 4. This
led Barnwell [84] to revisit the mathematical formulation of Sychev. Barnwell suggested
that as no explicit assumptions regarding Mach number were made in obtaining the nearfield-
form of the equations, their form should govern the nearfield inviscid flows at all Mach
numbers. Consideration of the bow shock led Barnwell to suggest that Sychev’s requirement
of M∞ sinα ≫ 1 may be relaxed to M∞ sinα > 1.

Voevodenko and Panteleev [86] investigated the accuracy of Sychev’s method relative to
solutions to the full Euler equations. They demonstrated that Sychev’s method is an accurate
approximation to the Euler equations for a wide range of crossflow Mach numbers and wing
sweep angles. Significantly, Voevodenko and Panteleev investigated the accuracy in pressure
distribution prediction, allowing regions in which Sychev’s method is inaccurate to be identi-
fied. It was observed that the error was greatest in the vicinity of the wing edges. Another
significant outcome of the investigation was the establishment of the approximate regions of
validity of Sychev’s theory. The conditions under which Sychev’s theory reduces to other
aerodynamic formulations, such as hypersonic SDT and strip theory, were identified. Finally,
it was noted that for flows in which the leading-edge shocks detached (while remaining
attached at the apex of the wing), Sychev’s method was invalid within the entropy layer, but
could be applied outside of it.

Reduced-Order Perturbation Modelling

As was noted in the introduction to Section 2.2.3, the methods that will be considered in this
category do not include a-posteriori ROMs. Consideration will be limited to methods which
explicitly model the flow physics. Particular attention will be given to methods utilizing local
piston theory (LPT). This is due to the increased interest in Euler-based LPT [14] in recent
literature and due to ongoing work to extend LPT [18]. Greater attention will be given to the
development and context of LPT in Chapter 3.

Local piston theory has become a popular method for the reduced-order modelling of
perturbations to Euler solutions of supersonic flows. It has been shown to offer order-of-
magnitude reductions in the computational cost of predicting unsteady aerodynamic loads,
as compared to the cost of unsteady Euler solutions [87]. This is cost reduction is by virtue
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of the formulation for pressure in LPT, which is given by

pu = ps +ρsasw , (2.36)

where the subscript “u” denotes values associated with unsteady perturbations, the subscript
“s” associates terms with the mean steady flow solution, a is the speed of sound in the fluid,
and w is the downwash velocity on the piston face. This latter quantity is related to the
surface in motion through

w =−Vs · n̂+Vb · n̂ , (2.37)

where Vb is the local velocity vector of the structural surface, Vf is the local fluid velocity at
the surface in the mean steady flow, and n̂ is the unit normal vector of the local structural
surface following a perturbation. LPT thus provides a direct algebraic relationship between
the local fluid pressure at the surface and the local motion of the surface. The resulting
model for pressure perturbations on the structural surface is computationally inexpensive and
physically intuitive.

For the purposes of determining the onset of aeroelastic instability, it is typically sufficient
to consider small perturbations about the mean steady position. Most literature showcasing
the application of LPT focuses on small perturbations to relatively simple geometries, such
as airfoils and isolated lifting surfaces [14]. For these cases, LPT has shown to accurately
predict unsteady loads, typically within 5% of the full unsteady Euler results [14]. The
perturbations produced in the conditions considered in such literature correspond to subsonic
piston-downwash Mach numbers (w/as < 1). This is in line with the assumption in the
original piston-theory formulation that piston motion does not produce shocks [88]. The
application of higher-order formulations of the pressure equation Eq. (2.36) in the context of
LPT (as would be necessary when w/as = O(1)) have not been noted in literature.

The successes of Euler-based LPT in modelling unsteady inviscid flows about simple
geometries have led to its application to more complex scenarios. These include inviscid
hypersonic flow around a highly-swept, low aspect-ratio wing-body configuration [16] and
the use of LPT to model perturbations to RANS solutions [18]. In the application to the full
vehicle configuration of [16], the only modification to Euler-based LPT was in the definition
of the downwash term of Eq. (2.37) to include both transverse velocity components on the
body. Significantly worse agreement between Euler-based LPT and the full Euler solution
was noted, with up to 27% error observed in the prediction of flutter dynamic-pressure [16].

Liu et al [18] developed a method to extend the application of LPT to mean steady
solutions obtained from the RANS equations. The essence of the method lies in identifying
the effective thickness of the body due to momentum displacement of the boundary layer.
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This effective shape is then used in place of the physical body geometry in the inviscid
LPT equations of Eqs. (2.36) and (2.37). Local fluid quantities used in LPT, such as the
fluid density and speed of sound, are taken at the effective shape. The procedure of the
method and of similar previous work will be discussed in detail in Chapter 3. A significant
shortcoming of the method proposed by [18] is that the parameters used in the procedure
for effective shape determination must be tuned using an ensemble of unsteady RANS
solutions. Application of the method to an airfoil and to two slender waverider configurations
was demonstrated [18]. Within the range of parameters for which the model was tuned,
RANS-based LPT provided good prediction of loading trends for the airfoil. The relative
error for the normal-force coefficient was typically within 5% of unsteady RANS, while the
pitching-moment coefficient was typically predicted within 15%. The prediction accuracy
was seen to suffer somewhat when the model was applied to airfoils of a thickness different
to that of the tuning-model. Nevertheless, better correlation with the unsteady RANS results
was obtained that than offered by LPT applied at the physical airfoil surface.

A significant outcome of the study by Liu et al [18] was the variation in accuracy when
applied to two waverider configurations. When applied to the first configuration (elliptical
cross-section), noticeably better prediction of the pitching-moment coefficient was obtained
by LPT applied at the effective shape, as shown in Fig. 2.56. This is in contrast to the results
obtained for a similar waverider configuration with a different cross-section. Prediction
of the pitch-damping of the second configuration by the method of Liu et al [18], denoted
“VLPT”, is seen to be in nearly comparable error as LPT applied at the physical surface
of the waverider, as demonstrated in Fig. 2.57. This strongly suggests that the accuracy of
the method is dependent on correct tuning of the parameters. This serves to support the
conclusion from similar work using classical piston theory by [13] that the effect of viscosity
on aeroelastic behaviour cannot be reliably captured using effective shape corrections.
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(a) Normal-force coefficient (b) Pitching-moment coefficient

Fig. 2.56 Variation in amplitudes of loading coefficients for an elliptical cross-section wa-
verider undergoing harmonic pitching; M∞ = 20, altitude of 60km, k = 0.0915, ∆α = 1° [18].

Fig. 2.57 Variation in pitch-damping coefficients for a waverider undergoing harmonic
pitching; M∞ = 15, altitude of 55km [18].
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Dynamic linearization was adopted extensively in the development of methods in the
ZAERO suite of software [79]. Methods developed for transonic aeroelastic analysis were
based in the transonic small-disturbance (TSD) potential flow equations. The common thread
in the various methods employed consisted of splitting the velocity potential function into a
mean steady contribution, φ0, and an unsteady contribution, φ1. Surface oscillations were
assumed to be sufficiently small that the governing equations were linearized in terms of
φ1, while allowing nonlinearity in φ0. A range of methods for the solution of the nonlinear
mean-steady flow were proposed, including an transonic equivalent-strip theory [89] and the
use of steady CFD [79]. The unsteady problem was then solved using panel methods for the
linear potential flow problem in φ1. Better accuracy in the unsteady pressures was obtained
through this approach than through the use of steady downwash-correction or force-correction
matrices, as detailed in [79]. It was also noted that a significant reduction in computational
cost could be achieved relative to full nonlinear potential flow codes, potentially up to an
order of magnitude [89].

Nonlinear Potential Flows

Methods based in the full potential equation or the transonic small-disturbance equations
typically require 3D field discretization. Nevertheless, they are categorized as intermediate-
level methods here due to the reduction in computational cost that they offer relative to the
Euler equations. This is achieved by expressing the velocity vector as the gradient of a scalar
function known as the velocity potential:

V ≡ ∇Φ . (2.38)

This reduces the number of velocity variables to be solved for from 3 to 1, but it also places a
restriction on the kinematics of the flow. In particular, the flow is defined to be irrotational
and isentropic. The full potential equation may be expressed in a number of forms, two of
which will be given below. The vector form is given by [44] as

Potential: a2∇2Φ−V ·∇
(
V 2/2

)
− ∂V 2

∂ t
− ∂ 2Φ

∂ t2 = 0 , (2.39)

Speed of sound: a2 = a2
∞ +

γ −1
2

(
V 2

∞ −V 2 −2
∂Φ
∂ t

)
, (2.40)

Pressure: p = p∞

(
a2

a2
∞

) γ

γ−1

, (2.41)
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where V 2 = ∇Φ ·∇Φ is the square of the local flow speed. The component form of Eq. (2.39)
in Cartesian coordinates will be given below in order to highlight the terms neglected in the
TSD approximation and in the linear potential flow equation. A perturbation potential φ is
introduced, such that

Φ ≡V∞x+φ , (2.42)

in terms of which Eq. (2.39) may be written as

[
(
a2

∞ −V 2
∞
)
− (γ −1)

(
eV∞φx +

eφ 2
x

2
+

φ 2
y

2
+

φ 2
z

2
+φt

)]
φxx 2(V∞ +φx)φxt

[
a2

∞ − (γ −1)

(
V∞φx +

φ 2
x
2

+
eφ 2

y

2
+

φ 2
z

2
+φt

)]
φyy = +2φyφyt (2.43)

[
a2

∞ − (γ −1)

(
V∞φx +

φ 2
x
2

+
φ 2

y

2
+

eφ 2
z

2
+φt

)]
φzz +2φzφzt

−2(V∞ +φx)φyφxy −2(V∞ +φx)φzφxz −2φyφzφyz +φtt

where subscript notation denotes partial differentiation and e ≡ (γ +1)/(γ −1). The RHS of
the equation consists of unsteady terms, while the LHS consists of spatial velocity gradients.
The successive approximations to the full potential equation and their validity are treated in
greater detail in Chapter 3. The boundary conditions may be written as

Ft +∇Φ ·∇F = 0 at F(x,y,z, t) = 0 , (2.44)

∇Φ =V∞ at r → ∞ , (2.45)

where F(x,y,z, t) = 0 is the function representing the surface of the body of interest, and
the farfield boundary condition in supersonic flows is changed to the Sommerfeld radiation
condition.

The nonlinearity of the full potential equation permits the formation of discontinuities
in the flow. However, energy is not conserved across the discontinuity, and the jumps do
not correspond to physical shock waves. A comparison between the isentropic “shocks”
and physical shocks is given in [90]. In contrast to the modelling of physical shocks by
the Euler equations, the discontinuities in the nonlinear potential equation do not give rise
to rotationality. The significance of differences in physics-modelling between the Euler
equations, the full potential equation, and the linear potential equation was illustrated in
detail for a variety of bodies in [81]. An example of the increments between flow models is
given in Fig. 2.58 from [81].

The following trends are noted from Fig. 2.58:
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Fig. 2.58 Illustration of the role of nonlinear increments to the linear potential flow model.
Large disturbance increment: linear to full potential; entropy increment: full potential to
Euler [81].

• The effect of adding nonlinear potential terms is denoted “large disturbance increment”.
These terms typically increase the magnitude of the pressure coefficient, leading to an
increase in the integrated forces,

• The effect of accounting for entropy jumps at shocks (and the associated flow rota-
tionality) is denoted ‘entropy increment”. As noted in [81], the effects of entropy on
the pressure distribution is typically limited to the windward side of the body in flows
with separation. Correctly modelling energy conservation by accounting for entropy
jumps is seen to decrease the pressure magnitude relative to the isentropic full potential
model. This is also manifested as a decrease in the magnitude of integrated forces,

• Pittman [81] notes that when integrating the pressure distribution predicted by inviscid
methods, the contributions from inaccuracies on the leeside may cancel out, yielding
good agreement with experiment in the integrated forces. This is illustrated by the
hatched regions in Fig. 2.58 which are approximately equal in area.

The shortcomings in the full potential equation illustrated above led to the development
of “entropy corrections” to potential flow formulations for slender bodies. The method
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is outlined in [81]. Its essence lies in using the Rankine-Hugoniot equations with a bow-
shock-fitting solution procedure. This allows the entropy jump across the bow shock to
be modelled correctly. The entropy jump is then used in a correction to the body-surface
pressures. The rationale behind the approach is that for conical flows, streamlines from
the shock approach the body along radial lines and are entrained into an entropy layer near
the surface. Entropy conserved along streamlines and the variation in pressure through the
entropy layer is assumed negligible. This forms the basis for entropy jumps at the shock to
be project radially to the body surface for use in the pressure-correction formula.

Further approximations may be made to full potential equation, with non-dominant
nonlinear terms in Eq. (2.43) omitted as required. The motivation behind this is to further
reduce the computational cost by reducing the number of terms in the equation. A number of
different approximations may be made, resulting in a variety of formulations existing under
the moniker of the “transonic small disturbance” (TSD) equation. Bendiksen [55] gives a
thorough derivation of unsteady transonic similarity parameters with aeroelastic applications
in mind. The derivation is based in an asymptotic development of the unsteady full potential
equation. The reduction of the analysis to a number of notable transonic approximations is
demonstrated, with the implicit assumptions in these approximations clarified [55]. For the
sake of illustration, the form of the TSD equation with minimum complexity, derived from
first principles in [91], is given here as

[(
a2

∞ −V 2
∞
)
− (γ +1)V∞φx

]
φxx +a2

∞φyy +a2
∞φzz = 2V∞φxt +φtt , (2.46)

with the dominant nonlinear term assumed to be (γ +1)V∞φxφxx. As discussed by Bendik-
sen [55], certain unsteady terms must be retained despite their smallness, as their contribution
cumulatively becomes of first-order importance over time in unsteady problems. The accu-
racy of the TSD equations in unsteady transonic flows are limited. This is due in part to the
small-disturbance assumption, and in part due to the importance of viscosity in the transonic
regime [44].

Distributed-Vorticity Vortex Modelling

A variety of formulations exist within the category of multi-vortex discrete vortex models.
The variety rises from the differences in approaches to answering the following questions,
quoted from [82], associated with the development and shedding of vortices:

• How is separation to be defined?

• Where are the separation lines?
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• What is the rate of shedding of vorticity?

• How does the separating stream surface leave the body?

• What conditions should be satisfied at the separation lines?

• What is the relationship between the Kutta condition and separation from a smooth sur-
face (both for steady and unsteady flows about interacting or non-interacting bodies)?

Sarpkaya [82] gives a detailed overview of the different approaches used to model the shed
vortices and vortex sheets. Consequently, the mathematical details of these methods will not
be entered into here. A representative example of the practical adaptation and application
of these methods is given by Tuling [30], who extended the methods to flows about slender
bodies with strakes. In reviewing computational methods with vortices for three-dimensional
flows, Sarpkaya [82] notes that the methods may be categorized as follows:

• Two-dimensional models utilizing the unsteady analogy,

– Multi-discrete-vortex models [24, 30],

– Vortex-segment methods [92],

– Panel methods [93]

• Fully three-dimensional models,

– Vortex-lattice models [94],

– Panel methods [95],

where so-called “two-vortex models” [82] or “single concentrated vortex” models [30] are not
included here, as they are categorized as engineering-level methods in the present overview.
In the above methods, vorticity is typically introduced into the interior of the flowfield at
separation points along the body surface. This is either through the introduction of discrete
vortices (as in multi-discrete-vortex models) or through the growth of line-vortex segments
(as in vortex-segment, vortex-lattice, and panel methods). Illustrations of these methods are
given in Figs. 2.59 and 2.60.

All these methods require specification of the location of separation lines. A variety of ap-
proaches may be adopted. These include empirical specification, solution of a boundary-layer
model with semi-empirical separation criteria. As noted by Sarpkaya [82], determination
of the separation points (when they are not fixed by sharp edges) is non-trivial, and often
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(a) Multi-discrete-vortex models [24] (b) Vortex-segment methods [82]

Fig. 2.59 Typical 2D methods employed in distributed-vorticity modelling of vortical flows.

approximate at best. Unsteady flows present a particular challenge in the definition of separa-
tion points and also impacts the definition of vorticity production. A detailed discussion on
these challenges is given in [82].

Other modelling difficulties arise in the various methods. Examples include the mutual-
orbiting tendency of discrete vortices, and solution sensitivity to panelling [82]. Tuling [30]
also demonstrates the numerical sensitivity of multi-discrete-vortex methods to the number
of vortex elements modelled. None of the methods are able to model vortex breakdown.
Sarpkaya [82] concluded that existing vortex-modelling methods were not able to accurately
capture the complex, unsteady phenomena of high-incidence aerodynamics. In refining the
methods, additional physics would be required to model the interaction of vortices with
other flight vehicle components and with transient vortex behaviour in adverse pressure
gradients [82]. As noted by [96], methods for distributed-vorticity modelling of vortical
flows have been widely implemented despite these difficulties.
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(a) Vortex-lattice models [94] (b) Panel models [82]

Fig. 2.60 Typical 3D methods employed in distributed-vorticity modelling of vortical flows.
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2.2.4 Engineering-Level Methods

This category of prediction methods is characterized by the low computational cost of the
methods. The emphasis is typically on predicting integrated loads or sectional loads (e.g.
an axial load distribution). Engineering-level methods may be broadly sub-categorized into
analytical methods and semi-empirical or empirical methods. A broad range of analytical
engineering-level prediction methods are available. The low computational cost of these
methods is largely due to the relative simplicity of the mathematical equations to be solved.
Where solutions are not available in closed-form, they require discretization of at-most the
boundary of the field-problem. The majority of these methods have a theoretical basis in
linearized potential flows, as is evident in the following list of methods that will be covered:

• Concentrated-vorticity vortex modelling

– Free vortex / feeding-sheet pair method [82, 97, 98],

– Free vortex method [30, 99],

• Linear potential flows:

– Slender body theory [100, 101] and strip theory [27, 100],

– Panel methods [79, 102],

• Local-inclination methods:

– Newtonian impact theory [25, 27],

– Classical piston theory [88, 103],

– Van Dyke’s second-order theory [104],

– First-order shock-expansion theory [58],

– Donov’s theory [105].

A range of prediction codes extensively utilizing experimental databases exist, with prominent
examples including:

• Missile DATCOM [5],

• Naval Surface Warfare Center’s Aeroprediction Code [6],

• Items in the ESDU database [106, 107],

• Codes from Nielsen Engineering and Research including MISL3 [108], MISDL [109],
and their previous versions [51],
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• In-house codes, such as ONERA’s MISSILE [110] code,

• Supersonic / Hypersonic Arbitrary Body Program (SHABP) code [48].

The codes employ a mix of analytical, semi-empirical, and empirical methods, with propri-
etary experimental databases being used. A thorough overview of the various semi-empirical
methods available is outside the scope of this section, and only the following representative
methods will be introduced:

• Viscous-crossflow analogy [111–113],

• Equivalent angle-of-attack method [46, 47].

The methods are typically limited to predicting the integrated forces over components or the
vehicle, and do not provide the pressure distribution.

Concentrated-Vorticity Vortex Modelling

One of the chief distinctions between the methods of this category and distributed-vorticity
vortex modelling methods is that the former do not attempt to model the vortex feeding-sheets.
Instead, the distributed vorticity is represented by a single, concentrated vortex. Many of the
same modelling questions as were raised in Section 2.2.3 apply. Once again, methods in this
category differ in their approaches to answering these questions. Particular distinctions arise
in the approach to modelling the rate of vorticity production (shedding) and in the treatment
of separation points. Two significant concentrated-vorticity vortex modelling methods will be
outlined here. A high-level comparison of the modelling approaches between these methods
and a representative multi-vortex method [24] will also be made.

The first method considered is referred to here as the “free vortex / feeding-sheet pair”
method (FVFSM), but is also known as the “NACA vortex model” [97], Bryson’s [98]
method, the “two-vortex model” [82], and the “single concentrated vortex model” [30]. The
number of names by which the conceptual model is referred to is indicative of the extensive
adaptation and application of the method, which is fuelled by the relative simplicity of the
model [82]. The elements modelled in the method are depicted for a delta wing in Fig. 2.61
from [97].

The method models shed vorticity using line vortices of varying strength that are con-
nected to the separation lines by feeding sheets. These are represented in the crossflow plane
by irrotational vortices and cuts of vanishingly small vorticity [82]. The defining feature of
the method is that the net force acting on each vortex / feeding-sheet pair is assumed to be
zero [98]. The force experienced by the concentrated vortex, iρΓ(W1 − σ̇1), is balanced by
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Fig. 2.61 Depiction of the modelling approach of the free vortex / feeding-sheet pair
model [97].

an equal and opposite force acting on the feeding sheet, iρΓ̇(σ1 −σ0), as noted by [82]. This
leads to the following relation between the vortex motion and vorticity production:

σ̇1 +(σ1 −σ0)
Γ̇
Γ
=W1 , (2.47)

where Γ is the circulation of the vortex, σ is the complex variable in the crossflow plane,
W1 is the complex crossflow velocity vector at σ1 leaving out the velocity induced by the
vortex itself, dot notation denotes time differentiation, subscript 0 denotes the separation
point, subscript 1 denotes the concentrated vortex, and i is the imaginary number.

When the method is applied to cylinders, the vortex is initially shed from pre-defined
separation points at a distance from the surface of 0.05a% (where a is the cylinder radius)
along a line at 30° to the cylinder-tangent at the separation point. This is to avoid the
mathematical saddle-point at the separation point [98]. A further discussion of this decision
and alternatives is given in [82]. With the (initial) position of the vortex known, its strength
is determined by enforcing the Kutta condition such that the surface-tangential velocity at
the separation point is zero. For a symmetrical two-vortex system, this leads to the following
expression for the circulation:

Γ
2πaV∞ sinα

=
(σ1 −σ0)(σ̄1 − σ̄0)(σ1 +σ0)(σ̄1 + σ̄0)

(σ1σ̄1 −a2)(σ1 + σ̄1)
, (2.48)

where an overbar denotes the complex conjugate, and from which it is evident that the
circulation is a function only of the position of the vortex. The position of the separation
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points, σ0 and σ̄0, are assumed to be stationary. Differentiating Eq. (2.48) yields the relation
between Γ̇, σ̇1, and σ1 required to enforce the Kutta condition. Substituting for Γ and Γ̇ from
Eq. (2.48) (and its differentiated counterpart) into Eq. (2.47) yields a nonlinear first-order
differential equation for the vortex position σ1, as noted by Bryson [98]. In other words,
simultaneously enforcing the Kutta condition and requiring a force-free vortex / feeding-
sheet pair closes the system of equations and defines the vortex trajectory. A consequence
of this is that the vortex is not advected by the local flow velocity (stated otherwise, the
vortex is not a streamline), except in the limiting case of Γ̇ = 0. Various authors [30, 82, 98]
have noted non-physical behaviour of the vortices associated with the vortices returning
to the body and with Γ̇ < 0. In spite of this non-physical behaviour developing over time,
good agreement with experiment was noted for the initial development of the vortices, with
t < 2.5d/V∞ sinα , where d is the cylinder diameter [98]. Tuling [30] noted that the method
yielded good accuracy for slender bodies with strakes at low angles of attack, with α < 4°.
The cross-sectional load experienced by the body is given by the vortex impulse theorem [3]
as

dFN

dx
− i

dFY

dx
= ρ∞V∞

d
dx

[
j=1

∑
N

Γ j

(
σ j −

a2

σ̄ j

)]
, (2.49)

where FN is the normal force, FY is the side force, and N is the total number of vortices (in
both the left and right planes). In the free vortex / feeding-sheet model, the cross-sectional
load is an implicit result of the vortex dynamics.

This is in contrast with the formulation of the free vortex method (FVM) developed
in [99] and extended to slender bodies with strakes by Tuling [30]. The loading predicted
by the vortex impulse theorem may be split into a contribution from vortex motion and a
contribution from circulation growth:

ρ∞V∞
d
dx

[
j=1

∑
N

Γ j

(
σ j −

a2

σ̄ j

)]
=

dFI

dx
+

dFV

dx
, (2.50)

where, as noted in [99], FI is the loading arising from inviscid effects, and FV is the loading
associated with viscous structures such as the feeding sheet through Γ̇:

dFI

dx
= ρ∞V∞

j=1

∑
N

Γ j
d
dx

[(
σ j −

a2

σ̄ j

)]
, (2.51)

dFV

dx
= ρ∞V∞

j=1

∑
N

dΓ j

dx

(
σ j −

a2

σ̄ j

)
. (2.52)
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The philosophy of the FVM is to prescribe the viscous cross-sectional loading, using empirical
or semi-empirical methods such as Jorgensen’s [113] crossflow method. From Eq. (2.52) it is
seen that this defines the change in circulation of the discrete vortex, dΓ

dx , if the vortex positions
are already known. The FVM assumes that the discrete vortices themselves experience no
net force, and they are thus advected by the local fluid velocity [30, 99]. The vortex tracking
equation for this case is given below for comparison to the more complex formulation of the
FVFSM given by Eqs. (2.47) and (2.48):

σ̇ j =Wj , (2.53)

where as before, Wj is the complex velocity vector at the j-th vortex. Together with a
prescription for dFV

dx from another method, Eqs. (2.52) and (2.53) close the system of equations
for the vortex shedding and tracking. The Kutta condition is not enforced, as it is not required
for equation closure. Tuling [30] notes that the free vortex method requires external input for
the starting conditions. In light of the accuracy of the free vortex / feeding-sheet pair method
for short nondimensional times, Tuling [30] recommends its use to generate the starting
conditions for the FVM.

The FVFSM and FVM both model the shedding and viscous feeding of only two vortices.
It should be noted that other vortices advected from upstream may be included in the vortex
tracking scheme of the FVM. However, the circulation of these upstream vortices is modelled
as remaining constant, as their feeding sheets are not included in the formulation of the
FVM [99]. These methods are now compared to a representative multi-vortex discrete vortex
method (MVDVM) [24]. This is a distributed-vorticity vortex modelling method, in which
discrete potential vortices of constant circulation are shed from separation points at each time
step. These are termed nascent vortices. The model described by [24] utilizes a boundary-
layer model, with separation being predicted from semi-empirical separation criteria for a
flat plate. The criteria are described as a critical pressure coefficient Cp at which separation
occurs:

Laminar: C0.5
p

(
ξ

dCp

dξ

)
= 0.087sinα , (2.54)

Turbulent: Cp

(
ξ

dCp

dξ

)0.5(
Reξ ×10−6

)−0.1
= 0.35sinα , (2.55)

where ξ is the distance along the surface from the stagnation point. The velocity at the edge
of the boundary layer at the separation point, Ve, is used to define the rate of circulation
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production as

Γ̇ =
V 2

e
2

. (2.56)

This is used to define the strength of the nascent vortex shed at each time step. The Kutta
condition is then used to position the nascent vortex [24]. Vortices are modelled as being
advected by the local fluid velocity. Cross-sectional loads are obtained by integrating
the pressure distribution at the surface. These modelling approaches are summarized and
compared to the concentrated-vorticity vortex modelling methods in Table 2.2.

Linear Potential Flows

The linear potential equation is expressed below in vector form in an Eulerian frame as

a2
∞∇2Φ =

∂ 2Φ
∂ t2 , (2.57)

with comparison to the full potential formulation of Eq. (2.39) showing that the linear poten-
tial equation is rooted in a small-disturbance assumption. This is also clear by comparing the
Cartesian component form for the perturbation potential below with Eq. (2.43):

(
a2

∞ −V 2
∞
)
φxx +a2

∞φyy +a2
∞φzz = 2V∞φxt +φtt , (2.58)

from which it is clear that all second-order perturbation terms are discarded in the linear
formulation. The surface boundary condition of Eq. (2.44) is often linearized to be applied
on some intermediate surface, such as the thickness plane of a wing rather than on the wing
surface itself. The linear potential equation is equivalent to the classical wave equation in an
earth-fixed frame with a moving body.

A limited number of closed-form solutions to the linear potential equation are known,
such as potential flow around a cylinder or sphere. These have been extended to more
practical shapes of interest, such as airfoils, through the use of mathematical transforms.
These transforms map the geometry of interest in the physical space onto a cylinder in the
computational space. The known solution in the computational space is then mapped back
to a solution in the physical space. Other closed-form solutions include those for conical
flow (as for a delta-wing) and for various slender-body assumptions (thin-airfoil theory and
slender-body flows). In these methods, a continuous distribution of basic potential-flow
elements (such as velocity sources and sinks) is . These solutions are covered in detail
in [100].

An important subset of potential-flow solutions lie in slender body theory. A detailed
mathematical development of slender body theory is given in [3, 100]. Only the salient
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points and results will be covered here. These will be outlined for a steady axisymmetric
flow for brevity. The extension to general three-dimensional bodies is treated in [3, 100].
The development utilizes asymptotic expansions of the velocity potential Φ in outer-flow and
inner-flow regions as follows:

Φo =V∞x+V∞εφ
o
1 (x,r)+V∞ε

2
φ

o
2 (x,r)+ . . . , (2.59)

Φo =V∞x+V∞εφ
i
1(x, r̄)+V∞ε

2
φ

i
2(x, r̄)+ . . . , (2.60)

where superscript “o” denotes the outer expansion, “i” denotes the inner expansion, and
numerical subscripts denote the order of perturbation potential φ . The non-dimensionalization
used for the inner expansion is given by

r̄ = r/ε , (2.61)

where ε is a small parameter used to non-dimensionalize the description of the body surface
R(x) as

R(x) = εR̄(x) . (2.62)

Through substitution of the above expansions into the nonlinear steady potential equation and
matching the inner and outer asymptotic expansions, it is shown in [100] that φ o

1 = φ i
1 = 0 is

required, and that the nonlinear potential equation reduces to the following equations:

Outer expansion:
(
a2

∞ −V 2
∞
)
φ

o
2xx +

1
r

φ
o
2r +φ

o
2rr = 0 , (2.63)

V∞ lim
r→0

(rφ
o
2r) = R̄R̄x , (2.64)

Inner expansion: φ
i
2r̄r̄ +

1
r̄

φ
i
2r̄ = 0 , (2.65)

Surface BC: φ
i
2r̄(x, R̄) = R̄x , (2.66)

Surface pressure: cp =−ε
2

[
2

φ i
2x

V∞
+

(
φ i

2r̄
)2

V 2
∞

]
+O

(
ε

4 ln(ε)
)
. (2.67)

It is evident that the above equations are linear in the perturbation potentials. The outer
expansion is simply the 3D linear potential equation, while the inner expansion is the
incompressible wave equation in the crossflow plane. Ashley and Landahl [100] note that
the equations may be written in terms of a single nondimensional perturbation, introducing

ϕ ≡ ε
2
φ

o
2 /V∞ , (2.68)
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with the outer expansion equations Eqs. (2.63) and (2.64) and the surface pressure Eq. (2.67)
being written as

Outer expansion:
(
1−M2

∞
)
ϕxx +

1
r

ϕr +ϕrr = 0 , (2.69)

lim
r→0

(2πrϕr) = Sx(x) , (2.70)

Surface pressure: cp =−
(
2ϕx +ϕ

2
r
)
+O

(
ε

4 lnε
)
, (2.71)

where S(x) ≡ πR2(x) is the cross-sectional area of the body of revolution. In the case of
axisymmetric flows, the boundary conditions must be applied on the actual body surface due
to the singularity of the expression for ϕr at r = 0. Ashley and Landahl [100] note that in the
inner region, the following solution is obtained for the nondimensional perturbation potential:

ϕ ≈ 1
2π

Sx(x) lnr+g(x) , (2.72)

where the first term represents the effect of local flow divergence in the crossflow plane
due to the rate of change of the body cross-sectional area, and the function g(x) accounts
for Mach number effects and upstream / downstream influence. Ashley and Landahl [100]
provide the following expressions for g(x) for bodies with a sharp nose (Sx(0) = 0), with the
additional assumption of Sx(L) = 0 in subsonic flows:

M∞ < 1 : g(x) =
Sx(x)
2π

ln

√
1−M2

∞
2

− 1
4π

∫ x

0
Sxx(x1) ln(x− x1)dx1

+
1

4π

∫ L

x
Sxx(x1) ln(x1 − x)dx1 , (2.73)

M∞ > 1 : g(x) =
Sx(x)
2π

ln

√
M2

∞ −1
2

− 1
2π

∫ x

0
Sxx(x1) ln(x− x1)dx1 , (2.74)

where x1 is a running variable. The influence from upstream and downstream enters through
the integrals. It is to be noted that in this derivation, it was assumed that the body is
sufficiently smooth. Investigation of the relation for ϕ in Eq. (2.72) shows that for terms such
as ϕxx to be well defined, the body must be smooth such that Sx(x) is at least C2-continuous.

The essence of slender body theory in separating the 3D flow problem into a compressible
non-lifting problem and an incompressible crossflow problem has been widely exploited.
Typical exploitations make use of conformal mappings to transform the body cross-section
to a cylinder or flat plate in the computational plane [3, 100]. Analytical solutions for
incompressible cylinder or plate flow are then transformed back to the physical plane to give
the crossflow solution around the body cross-section. Slender body theory is the basis for
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the Pitts-Nielsen-Kaattari [101] method for computing wing-body interference. The normal
force predicted for a representative wing-body configuration is given by [3] as

FN

q∞
= 2παs2

m

(
1− a2

s2
m
+

a4

s4
m

)
, (2.75)

where FN is the total normal force including the inviscid forebody loads, a is the radius of
the body, sm is the semi-span of the wing at the trailing edge (including the body radius), and
q∞ = ρ∞V 2

∞/2 is the freestream dynamic pressure. As noted in [100], this equation contains
as special cases the normal force predicted by slender body theory of a body in isolation as

FNB

q∞
= 2πa2

α , (2.76)

where the normal force is due to the inviscid force arising from changes in body cross-
sectional area. Equation (2.75) also contains the normal force predicted by slender body
theory of a wing alone as

FNW

q∞
= 2πα(sm −a)2 , (2.77)

where (sm −a) is the exposed semi-span of wing panel. Integration of the pressure on
the wing panels and substitution of Eq. (2.77) gives the following relation for the wing
carryover-factor, quoted from [3] as

KW ≡
FNW (B)

FNW

,

=
1

π(λ −1)2

[
π

2

(
λ 2 −1

λ

)2

+

(
λ 2 +1

λ

)2

sin−1(
λ 2 −1
λ 2 +1

)− 2
(
λ 2 −1

)

λ

]
, (2.78)

where λ = sm/a is the span-to-diameter ratio. The body carryover-factor is then found as

KB =

(
1+

a
sm

)2

−KW . (2.79)

The modification of these parameters for various wing shapes and afterbody lengths is
described in [3, 101].

The approach adopted in the development of slender body theory may be adapted to thin
wings of high aspect ratio. In the resulting non-dimensionalization, the small parameter is
1/AR, and the 3D flow problem is reduced to 2D flow in the incidence plane. This reduction
is known as strip theory [27].
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The linearity in terms of the velocity potential of Eqs. (2.57) and (2.58) allows the solution
of the flow around a body to be constructed from a summation of the solutions to elementary
flow elements, such as velocity potential sources, sinks, doublets, irrotational vortices, and
uniform flow. This is implicitly utilized in the solutions to slender body theory presented
above, in which a line of source elements of continuously-varying strength was used. It is
more obviously used through the use of discrete elementary flow elements, as is the case in
panel methods. These have already been introduced for lifting flows in Fig. 2.60. The class
or application of panel methods which will be considered engineering-level methods here
is restricted to panel methods which do not require panelling of the wake. This essentially
restricts the consideration to

• Non-lifting panel methods, such as velocity-potential sink-source methods for bodies,

• Lifting panel methods based in the acceleration-potential formulation, such as the
doublet-lattice method (DLM).

The latter is particularly useful in unsteady flows, as has been broadly adopted in aeroelastic
analysis codes for wing-like surfaces. An example of its adoption is in the ZONA51 code,
which has been implemented in Nastran, and the ZONA7U and other codes within the
ZAERO suite of software [79]. Due to its broad implementation, a brief overview of the
essence of the method is given here. A full description of the mathematics and key equations
of the method is found in [102].

The key in the development of the doublet-lattice method lies in the linearity in terms of
φ of the potential equation Eq. (2.58) and the use of the linearized pressure equation. The
latter is obtained from Eqs. (2.40) and (2.41) as

p− p∞ ≈−ρ∞(φt +V∞φx) , (2.80)

where as before, φ is the perturbation velocity-potential. As noted by Blair [102], the
linearity of Eq. (2.58) in terms of φ leads to the equation holding the same form if the
velocity-potential φ is replaced by the acceleration-potential ψ , which is defined as

ψ ≡ dφ

dt
= φt +V∞φx ≈ (p− p∞)/ρ∞ . (2.81)

Since the same mathematical potential equation holds for both ψ and φ , it follows that
the elementary flows will have the same mathematical form [102]. This gives rise to the
existence of an acceleration-doublet, or through Eq. (2.81) equivalently a pressure-doublet,
as the counterpart to the elementary velocity-doublet flow.
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The typical procedure of velocity-potential panel methods is to first solve for the velocities
(through φ and its boundary conditions at the surface). The pressure is the calculated as a
consequence of φ and its gradients. The DLM circumvents this through directly relating
the pressure difference on the lifting surface to its downwash boundary-conditions. To
accomplish this, an inverse relation to that of Eq. (2.80) is developed, in which the velocity-
potential is expressed as an integral of the pressure-differential. Since an inviscid wake
cannot support a force, the pressure-differential across the wake is identically zero. In this
way, the DLM removes the necessity of panelling the wake behind an inviscid-lifting wing.
The mathematical relation between the downwash at the surface and the pressure distribution
over the lifting surface, and the resulting definition of the kernel function, may be cast in
different forms. The general form adopted in [79] is quoted below as

w(x0,y0,z0) =
β

2Eπ

∫∫

wing
∆Cp(x,y,z)exp(−ikβξ )K̄(ξ ,η ,ζ )dS , (2.82)

where ∆Cp is the difference in pressure coefficient between the upper and lower surfaces of
the wing, w is the downwash velocity, and K̄ is the kernel function, with the rest of the terms
defined by

K̄ =−
∫

ξ

X
exp(ikτ/β )

∂ 2K
∂n2 dτ , (2.83)

K =





exp(−iλR)
R , for M∞ < 1

cos(λR)
R , for M∞ > 1

, (2.84)

E =





4, for M∞ < 1

2, for M∞ > 1
, (2.85)

X =




−∞, for M∞ < 1
√

η2 +ζ 2, for M∞ > 1
, (2.86)

λ =
kM∞

β
, (2.87)

β =
√

|1−M2
∞| , (2.88)

k =
ωLre f

V∞
, (2.89)

R =
√

ξ 2 +µη2 +µζ 2 , (2.90)

ξ =
x− x0

βLre f
, (2.91)
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η =
y− y0

Lre f
, (2.92)

ζ =
z− z0

Lre f
, (2.93)

µ =





1, for M∞ < 1

−1, for M∞ > 1
, (2.94)

where n denotes the surface-normal direction, and subscript “0” denotes the fixed point which
is influenced by the surrounding doublet sheet.

In the numerical solution of the DLM, the wing surface is discretized into panels located
on its thickness-plane. An acceleration-potential doublet line is placed along the 0.25c of
each panel. The influence of these doublet lines is calculated at collocation points, located at
the mid-span of each panel at the 0.75c chordwise station. As noted by Blair [102], the use
of numerical values of 0.25c and 0.75c is empirical, having no mathematical basis. Further
details on the integration of the kernel function and on best practices for panelling may be
found in [79, 102]. An example of mixed panelling, with acceleration-potential doublets
along the wing surface and velocity-potential sources on body-like surfaces, is shown in
Fig. 2.62 from [79].

Fig. 2.62 A mixture of DLM panels and velocity-source panels used in modelling a wing
with a tip-tank [79].

An advantage of panel methods, including the DLM, is that the 3D flow and the influence
of panels on one another is correctly modelled. An inevitable disadvantage of panel methods
lies in their basis in linear potential flows. This leads to a degradation in their accuracy at
high supersonic and hypersonic speeds. This was partially addressed in the ZONA7U code,
in which the influence coefficients from the kernel function were supplemented by nonlinear
thickness terms computed from piston theory [79].
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Local-Inclination Methods

The surface discretization implemented in panel methods may also be used in a range of
engineering-level methods which predict the local surface pressure as a function of the
inclination of the surface. An immediate advantage of these methods is their conceptual and
mathematical simplicity. The aerodynamic influence coefficient matrix, which describes the
influence of panels on one another, is rendered a sparse matrix. For purely local methods
such as Newtonian impact theory [27], piston theory [88, 103], and Van Dyke’s [104]
second-order potential theory for planar flows, the matrix becomes diagonal. This decreases
the computational cost of constructing and inverting the matrix, and renders the methods
computationally cheaper than panel methods which produce non-sparse influence matrices.
Methods such as first-order shock-expansion theory [58] and and Donov’s theory [105]
require the conditions behind the leading-edge shock to be determined. Thereafter, the
methods have a local character. The methods covered here are all based in supersonic flows.

Newtonian impact theory provides surface pressure prediction for hypersonic speeds
and is particularly useful for blunt-body flows. A detailed overview of various cases and
extensions of the method is given in [27]. Only the simpler formulations, which are local-
inclination methods, will be noted here. The method is based in the assumption that fluid
particles which impact the body surface lose all momentum normal to the surface, while
maintaining their momentum tangential no the surface. The loss in normal momentum is
reflected as an increase in the surface pressure. The resulting equation for the pressure
coefficient on the surface is given by [27] as

Cp =Cp(max) sin2
δ , (2.95)

where δ is the local inclination of the surface to the freestream, and Cp(max) takes on different
values depending on the formulation of Newtonian theory used, as detailed by

Cp(max) =





2, Newtonian

2
γM2

∞

[(
γ+1

2 M2
∞

) γ

γ−1
(

γ+1
2γM2

∞−γ+1

) 1
1−γ −1

]
, Modified Newtonian

(2.96)

where so-called Modified Newtonian theory typically defines Cp(max) as the pressure coef-
ficient behind a normal shock. Other formulations of Modified Newtonian shock theory
developed for cones, ogives, hemispheres, and wings are defined by different expressions
for Cp(max) and are detailed in [114]. These are empirical relations. Further extensions to
Newtonian theory account for the structure of the shock layer and for centrifugal effects
due to body curvature [25, 27]. In doing so, the local nature of the method is lost. As noted
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by [25], the prediction accuracy of these extensions is often lower than that provided by the
simpler empirical relations. Finally, it is noted that the simpler form of Newtonian theory
outlined above is for steady flows. The method may be applied to quasi-steady flows, as
done in [115], without losing the local character. An extension to unsteady flows, as detailed
in [27], increases the complexity of the method and destroys its local character. As noted
by [27], the underlying assumptions of Newtonian theory are best approximated in the limit
of M∞ → ∞ for near-zero density flows. Under these conditions, the shock layer lies close to
the surface of a blunt body.

Piston theory is another method originally developed for hypersonic flows [88, 103]. In
contrast to Newtonian theory, it is intended for slender profiles. A detailed overview of the
development of piston theory and its various formulations and extensions is reserved for
Chapter 3. The use of piston theory as in reduced-order perturbation modelling was described
in Section 2.2.3 and was referred to as local piston theory (LPT). The use of piston theory to
calculate the overall loading (without a background solution) is referred to here as classical
piston theory (CPT). The mathematical formulation of CPT is essentially similar to that of
LPT introduced in Eqs. (2.36) and (2.37). The downwash is given as

w =−V∞ · n̂+Vb · n̂ , (2.97)

where n is the local unit normal vector of the surface. By comparison with Eq. (2.37), it is
evident that CPT models perturbations (both steady and unsteady) relative to the freestream,
while LPT models perturbations relative to the local mean steady flow. The pressure equation
due to Lightill’s [88] original formulation of piston theory is given up to third-order as

pu = p∞ + γ p∞

[(
w
a∞

)
+

γ +1
4

(
w
a∞

)2

+
γ +1

12

(
w
a∞

)3
]
. (2.98)

It is briefly noted here that the first-order term in the pressure equation may also be derived
from linear potential flow theory. The differences in theoretical bases that provide a piston-
theory-like pressure equation will be discussed in Section 2.2.3 along with the adaptation
required to apply piston theory to panels and shells. It is also noted here that CPT due to
Lighthill, due to its local nature, does not account for upstream flow history. This renders it
an effectively quasi-steady method.

An equation similar to Eq. (2.98) was obtained by Van Dyke, rooted in his second-order
potential flow theory for supersonic flows [104]. The essence of the second-order theory
is an iteration procedure. The nonlinear potential equation is separated with linear terms
on the LHS and nonlinear terms on the RHS. The first-order solution is obtained by setting
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the RHS to zero and solving the linearized potential flow equation. The first-order potential
function, having been solved for, is then used to define the RHS terms of the second-order
potential equation. In this manner, the second-order problem is cast as an equivalent first-
order problem with non-zero sources. A number of closed-form solutions were obtained by
Van Dyke [104] using the theory. Of particular interest was the solution obtained for plane
flow over a smoothly curved wall. The resulting second-order equation for the pressure at
the surface of the wall may be cast as

pu = p∞ + γ p∞

[
M∞
m∞

(
w
a∞

)
+

(γ +1)M4
∞ −4m2

∞
4m4

∞

(
w
a∞

)2
]
, (2.99)

where m∞ =
√

M2
∞ −1. The downwash w may be defined as in CPT by Eq. (2.97). While Eq. (2.99)

was developed for a steady flow, its extension to quasi-steady flows is given through the
body-motion term in Eq. (2.97). The results for bodies of revolution, as well as the procedures
required to treat bodies with corners, are detailed in [104].

First-order shock-expansion theory assumes that the flow behind the bow shock of a
body or airfoil is turned isentropically [27, 58]. The reflection from the bow shock and
shear layers of Mach waves generated by the body is neglected. This neglect of interaction
renders the method a local-inclination method, with only the conditions behind the bow
shock being required in addition to the local inclination. A detailed exposition of the method,
its assumptions, and of extensions to second-order shock-expansion theory is given in [27].

Donov’s [105] theory for flow past supersonic airfoils with leading-edge shocks may
be seen as the final step in the progression of increasingly rigorous developments of local-
inclination methods covered thus far. The development utilizes the method of character-
istics [25] in solving the Euler equations. In so doing, Donov developed an expression
for the pressure distribution on the surface an airfoil with an attached leading-edge shock.
The treatment accounted for reflection of Mach waves from the leading-edge shock and for
rotationality generated by the curvature of the bow shock. The equation for the pressure
distribution is given below as

p = p∞ +q∞
[
a1δ (x)+a2δ

2(x)+a3δ
3(x)+a4δ

4(x)
]
+∆pe +O

(
δ

5
)
, (2.100)

where δ (x) is the local surface inclination at a distance x from the leading-edge, and q∞ =

γ p∞M2
∞/2 is the freestream dynamic pressure. The expression up to the term ∆pe models

the contribution to pressure due to isentropic effects, while ∆pe is the contribution due to
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entropy-effects generated by the leading-edge shock. This latter term is given by

∆pe = q∞
[
a1eδ

3(0)+a2eδ
4(0)+a3eδ

3(0)δ (x)
]
+∆prot , (2.101)

∆prot =q∞
[
a4exδ

3(0)δx(0)
]
, (2.102)

where ∆prot is the component associated with flow rotationality, and δx is the rate of change
of inclination. The coefficients ai are given here up to third order as

a1 =2m−1
∞ , (2.103)

a2 =m−4
∞

(
2−2M2

∞ +
γ +1

2
M4

∞

)
, (2.104)

a3 =m−7
∞

[
4
3
−2M2

∞ +
5
3
(γ +1)M4

∞ +
2γ2 −7γ −5

6
M6

∞ +
γ +1

6
M8

∞

]
, (2.105)

with the reader referred to [105, 116] for higher-order coefficients. The coefficients aie

associated with non-isentropic contributions are described in [105, 116]. Only the coefficient
a1e, which is associated with a third-order term, is given here as

a1e =
M6

∞m−7
∞

2

[
γ2 −7γ +2

3
+

(γ +1)2

8
M2

∞

]
− (γ +1)

6
M4

∞m−3 . (2.106)

It is noted that for thin airfoils, the expression remains a local-inclination method up to
third-order. The method was developed for steady flows. As the non-isentropic effects only
enter from third-order, an extension to quasi-steady flows at second-order follows directly as
in the case of Van Dyke’s second-order theory.

Viscous-Crossflow Analogy

One significant semi-empirical method which is widely used is the viscous crossflow analogy
(also known as the impulsive-flow analogy), originally developed for isolated bodies of
revolution by Allen [117] and matured by Allen and Perkins [111]. The method considers
the 3D flow around a slender body to be equivalent to an impulsively-started 2D flow in
the crossflow plane, with the crossflow plane swept down the body at a speed equal to the
axial component of the freestream velocity. The viscous drag experienced by the analogous
cross-sectional shape is interpreted as a viscous normal-force in the 3D representation. This
viscous component is added to the inviscid normal-force that is generated by axial variation
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in the cross-sectional area. The normal force was given as

CN =
SB

Sre f
sin2α cos

α

2
+ηCdc

Sp

Sre f
sin2

α , (2.107)

where Sre f is the reference area, Sp is the planform area of the body, SB is the area of the base,
Cdc is the crossflow drag coefficient of the 2D cross-section, and η is the ratio of crossflow
drag coefficient of a finite-length cylinder to that of a 2D (infinite-length) cylinder, also
known as the crossflow drag proportionality factor. The first term on the right-hand side of
the equation is the essentially-linear inviscid contribution, while the second term is the semi-
empirical modelling of the nonlinear contribution due to viscosity. The pitching-moment
coefficient was given as

Cm =

[
V −SB

(
L− xre f

)

SLre f

]
sin2α cos

α

2
+ηCdc

Sp

Sre f

(
xre f − xc

Lre f

)
sin2

α , (2.108)

where V is the volume of the body, xre f is the axial location of the moment reference centre,
Lre f is the reference length, and xc is axial location of planform-area centroid. Jorgensen
extended the method to bodies with non-circular cross-sections [112] and bodies with
wings [113], and also provided an adjustment [113] for crossflow Mach number effects on
the η . The equations in the extension of Jorgensen remain essentially similar, with the effect
of non-circular cross-section accounted for by slender-body theory in the inviscid terms and
by Newtonian-impact theory in the viscous terms. It was noted that end-effects on the viscous
term become negligible at supersonic-crossflow Mach numbers, with η = 1.

The viscous crossflow analogy was utilized by Ortell [118] in formulating a semi-
empirical model for the normal force of highly-swept wings of low aspect ratios at supersonic
speeds. The method utilized a correction factor κ to adjust the predicted normal-force, with
κ determined empirically from a large experimental database. The resulting equation for the
wing-alone normal-force was given as

CNW

κ
=CNα(W )

α +Cdc

SW

Sre f
sin2

α , (2.109)

in which Cdc is the crossflow drag coefficient for a 2D cylinder, CNα(W )
is the linear lift-slope

of the wing, and SW is the wing planform area. The similarity to the viscous crossflow
formulation for bodies-alone is obvious. Ortell applied the same formulation (using the same
definition of κ) to wing-body combinations, utilizing the slender-body values for wing-body
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interference and nose-lift, giving the total normal-force for the wing-body combination as

CN

κ
=
(
KW (B)+KB(W )

)
CNα(W )

α
SW

Sre f
+2α

SN

Sre f
+Cdc

SW

Sre f
sin2

α , (2.110)

where SN is maximum cross-sectional area of the nose. The method was found to compare
favourably with other semi-empirical methods [119] for wing-alone (with separate models
for upper-surface and lower-surface normal force) and wing-body normal-force prediction,
as well as to experiment.

Equivalent Angle-of-Attack Method

A range of semi-empirical methods for estimating full-vehicle characteristics and interference
factors also exist, as detailed in [30, 46]. The most widely used method is the equivalent
angle-of-attack method [46, 47]. The method is considered a semi-empirical method here
for two reasons. Firstly, the authors of the method recommend the use of empirical or
semi-empirical methods to determine component-alone loads [46]. Secondly, the basis for
the method is heuristic, with confidence in the method having been established through its
successful application in practice [46]. The method is considered [46] a nonlinear extension
of the classical method of Pitts-Nielsen-Kaattari [101], and as such, will receive greater
attention. An overview of the method follows, with greater detail available in [46, 47].

The essence of the equivalent angle-of-attack method lies in equating the loads produced
by an isolated fin-set to those produced by a fin-set integrated on the vehicle. It is assumed
that the aerodynamic interference on the integrated fin-set may be expressed as an equivalent
angle-of-attack at which the isolated fin-set produces the same load. The concept is illustrated
in Fig. 2.63. This is expressed as

CNW (B)(αc,φ ,δ ) =CNW

(
αeq
)
, (2.111)

where αeq is the equivalent angle of attack, αc is the incidence of the body centerline,
φ is the roll angle, and δ is the fin deflection. In applying the method, the equivalent
angle-of-attack is calculated from known (or estimated) quantities. The overall load on
the vehicle-integrated fin-set is then estimated from a model for the wing-alone load curve.
The extension to nonlinearity, particularly at high angle-of-attack, is achieved by utilizing a
nonlinear load-curve for the wing-alone, such as provided an empirical database [46].

As noted in [46], the wing-loads must be considered separately to body-loads when
computing the equivalent angle-of-attack. The component build-up formulation for the
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Fig. 2.63 Illustration of the equivalent angle-of-attack concept.

overall normal-force on the vehicle was given in Eq. (2.1), and is repeated here:

CN =CNB +CNW (B) +CNB(W )
. (2.112)

The linear representation for the wing-load as a function of fin deflection and body influence
for zero bank angle is given by [46] as

CNW (B) = (KW αc + kW δ +∆αv)
∂CNW

∂α
, (2.113)

where ∆αv is the equivalent upwash generated over the fin-set by upstream vorticity, and
kW =

[
CNW (B)/CNW

]
αc=0,δ ̸=0

is known as the wing-deflection factor. The equivalent angle-

of-attack for in the linear representation for zero roll is then

αeq = KW αc + kW δ +∆αv . (2.114)

The more general linear formulation accounts for fin-on-fin interference in kW through the
introduction of the control-effectiveness parameter Λ ji and for roll angle φ . The nomenclature
is elaborated on in [46], with the formulation for a “+” configuration expressed as

αeq = α̂eq +
4

∑
j=1

Λ jiδ j , (2.115)
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α̂eq = KW αc cosφi +
2

AR
Kφ α

2
c sin2φi +∆αv(i) , (2.116)

where α̂eq is the equivalent angle-of-attack without fin deflection, and Kφ is an interference
factor accounting for sideslip. The linear representation, in which angles-of-attack are
summed, is not recommended [46] for incidences above αc > 20°. At higher incidences,
Hemsch [46] recommends summing the induced velocities, giving

tan α̂eq = KW tanαc cosφi +
2

AR
Kφ tanαc sinαc sin2φi + tan∆αv(i) . (2.117)

It is noted that in the absence of fin-deflection, fin deflection, and upstream vorticity, the
above equation gives

KW =
tan α̂eq

∣∣
φ=δ=0

tanαc
, (2.118)

which is to be used to compute KW in the equivalent angle-of-attack method. Hemsch [46]
notes that a number of methods for determining ∆αv may be employed, with the most
common being to use strip-theory approximate the equivalent angle-of-attack due to vorticity.
That is to say, ∆αv(i) ≈ ᾱv(i), where

ᾱv(i) =
1

SF

∫ sm

a
αv(i)(r,φ)c(r,φ)dr , (2.119)

where c is the chord at station (r,φ), SF is the planform area of fin i, a is the radius of
the body, sm is the radial position of the fin-tip, and αv(i) is the local downwash on the fin.
The method was extended [120] to account for variations in the local flowfield, as caused
by strong vorticity or an entropy gradient. This was achieved by averaging the variation
in the local dynamic pressure and Mach number over the exposed span of the fin. The
average dynamic pressure q̄ was used to scale the normal-force coefficient obtained from the
wing-alone loading-curve for the average Mach number M̄:

q̄ =
1

sm −a

∫ sm

a
q(r,φ)dr , (2.120)

M̄ =
1

sm −a

∫ sm

a
M(r,φ)dr , (2.121)

CNF(B) =
q̄(φ)
q∞

cNW

(
αeq,M̄(φ)

)
. (2.122)
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The relative successes and shortcomings of this method were highlighted in Fig. 2.46b and
discussed in Section 2.1.3. In particular, it was noted that good correlation was achieved
by the method, although it was unable to account for fin-vortex interactions with the body
vortices. The equivalent angle-of-attack method remains widely used as an engineering-level
method, and has been implemented in Missile DATCOM [5] and the APC [6] prediction
codes.

2.3 Summary

The methods outlined in Sections 2.2.2 to 2.2.4 are representative of the spectrum of methods
available for slender body aeroprediction. A high-level summary and comparison of the
methods is given in Tables 2.3 and 2.4. The purpose of this summary is to highlight the
niche which is filled by reduced-order perturbation modelling methods. The methods in
Table 2.3 are listed in a descending order of fidelity. This is accompanied by a decrease
in the relative computational cost of obtaining a time history of loading. The progression
of cost reduction is not monotonic. It is seen that reduced-order perturbation modelling
methods are less expensive than full-potential solvers, despite having higher fidelity. In fact,
in certain cases the accuracy of loading prediction by CFD-based LPT has been within 5%
of values obtained by full unsteady Euler solutions [14]. This underscores the chief merit of
reduced-order perturbation modelling methods: they offer significant cost-reduction while
maintaining accurate prediction.

In the case of CFD-based LPT, this accuracy has only been demonstrated for relatively
simple geometries without aerodynamically interfering components. This hints at the limita-
tions of LPT. It is seen to stand out in Table 2.3 as the only method in which perturbations are
modelled as local, as opposed to influencing the surrounding flowfield. Since the propagation
of perturbations is not modelled, they do not persist in time, and the method is effectively
quasi-steady. Only the perturbation pressure at the surface (which is related to the perturba-
tion downwash Mach number) is computed. Other fluid properties are not modelled directly.
While these approximations are the source of LPT’s significant cost reduction, they may be
expected to limit the applicability of the method in interference flows. The importance of
interference in slender body aerodynamics has been highlighted in Section 2.1.3.

The quasi-steady and local-perturbation limitations of CFD-based LPT may be addressed
by modelling perturbations to the mean-steady CFD solution as linear potential flows. This
was implemented in the ZAERO suite of software, with panel methods used to model the
unsteady perturbations around a mean-steady solution [79]. An additional advantage offered
by linear potential perturbations is their applicability in subsonic flows. This is in contrast
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to the supersonic domain of LPT. The implementation in [79] was developed as a dynamic
linearization of the TSD equations. It may be expected that the method could similarly be
extended to higher-order formulations.

The limits dynamic linearization places on the magnitude of unsteady perturbations may
be circumvented through a higher-order formulation. Sychev’s [4] method and hypersonic
SDT [27, 77, 78] allow for accurate modelling of interference and the propagation of pertur-
bations under conditions in which linear potential flows break down. However, this step in
modelling fidelity is accompanied by a significant increase in the relative computational cost
of obtaining loading histories. This increased cost obstructs the application of the methods in
early stages of the design cycle.

On the other hand, the engineering-level methods of Table 2.4 are constrained to prelimi-
nary design due to their lower fidelity. With the exception of some methods, such as slender
body theory and linear potential flows, engineering-level methods offer little insight into
the flowfield structure and physics. The methods are also largely quasi-steady or steady in
nature. Semi-empirical methods in particular are limited in modelling perturbations caused
by deforming geometry. This has places obvious limitations on the use of these methods in
aeroelastic analysis.

In this sense, CFD-based LPT truly is an intermediate-level method. It marries the low
computational cost of approximate engineering-level methods with the fidelity of advanced-
level methods. In the progression from engineering-level to higher-fidelity methods, it offers
the greatest increase in fidelity at the lowest cost increment amongst comparable intermediate-
level methods. The affordability it offers allows for high-fidelity aeroelastic analysis earlier
in the design cycle.

With the context of piston theory as a valuable reduced-cost aeroprediction method thus
established, the attention will be turned to the literature available on the method.



110 Review of Slender Body Aerodynamics

Table
2.3

Sum
m

ary
ofinterm

ediate-and
advanced-levelaeroprediction

m
ethods.

M
ethod

V
iscous?

R
otation?

Shock
capture?

Steady?
Influence?

Predicted
quantities

D
iscret.

required
C

om
p.

cost 1
M

ach
range

Separation
m

odelled?
N

avier-Stokes
Y

es
Y

es
Y

es
N

o
3D

A
ll

3D
field

H
igh

A
ll

Y
es

E
uler

w
ith

B
L

interaction
Y

es
Y

es
Y

es
N

o
3D

A
ll

3D
field

H
igh

A
ll

Y
es

E
uler

N
o

Y
es

Y
es

N
o

3D
A

ll
3D

field
H

igh
A

ll
N

o
H

ypersonic
SD

T
N

o
Y

es
Y

es
N

o
3D

A
ll

2D
field

H
igh

H
ypersonic,

α
≪

1
N

o

Sychev’s
m

ethod
N

o
Y

es
Y

es
N

o
3D

A
ll

2D
field

H
igh

H
ypersonic,

M
sin

α
>

1
N

o

C
FD

-based
linearpotential
perturbations

N
o

2
N

o
N

o
N

o
3D

A
ll

3D
field

/
surface

L
ow

/
m

oderate
Subsonic,
supersonic

N
o

C
FD

-based
L

PT
N

o
2

Y
es

N
o

Q
uasi

L
ocal

p,M
3D

field
/

surface
L

ow
/

m
oderate

Supersonic,
hypersonic

N
o

Full
potential

equation
N

o
N

o
Y

es 3
N

o
3D

A
ll

3D
field

M
oderate

Subsonic,
transonic,
supersonic

N
o

Transonic
SD

T
N

o
N

o
Y

es 3
N

o
3D

A
ll

3D
field

M
oderate

Transonic
N

o
D

istrib.
vort.

m
odelling

N
o

N
o

N
o

Y
es

3D
A

ll
Surface

M
oderate

Subsonic,
supersonic

Y
es

1
R

elative
costofcom

puting
a

tim
e-history

ofloading.
2

Perturbations
are

inviscid.
3

E
nergy

notconserved.



2.3 Summary 111

Ta
bl

e
2.

4
Su

m
m

ar
y

of
en

gi
ne

er
in

g-
le

ve
la

er
op

re
di

ct
io

n
m

et
ho

ds
.

M
et

ho
d

V
is

co
us

?
R

ot
at

io
n?

Sh
oc

k
ca

pt
ur

e?
St

ea
dy

?
In

flu
en

ce
?

Pr
ed

ic
te

d
qu

an
tit

ie
s

D
is

cr
et

.
re

qu
ir

ed
C

om
p.

co
st

M
ac

h
ra

ng
e

Se
pa

ra
tio

n
m

od
el

le
d?

C
on

ce
nt

ra
te

d
vo

rt
ic

ity
m

od
el

lin
g

N
o

N
o

N
o

Y
es

3D
A

ll
A

xi
al

2
L

ow
/

m
od

er
at

e
Su

bs
on

ic
,

su
pe

rs
on

ic
Y

es

Sl
en

de
r

bo
dy

th
eo

ry
N

o
N

o
N

o
Q

ua
si

3D
A

ll
A

xi
al

3
L

ow
Su

bs
on

ic
,

su
pe

rs
on

ic
N

o

L
in

ea
r

po
te

n-
tia

lfl
ow

pa
ne

ls
N

o
N

o
N

o
N

o
3D

A
ll

Su
rf

ac
e

L
ow

/
m

od
er

at
e

Su
bs

on
ic

,
su

pe
rs

on
ic

N
o

N
ew

to
ni

an
th

e-
or

y
N

o
N

o
N

o
Q

ua
si

L
oc

al
p

Su
rf

ac
e

L
ow

H
yp

er
so

ni
c

N
o

C
la

ss
ic

al
pi

st
on

th
eo

ry
N

o
N

o
N

o
Q

ua
si

L
oc

al
p,

M
Su

rf
ac

e
L

ow
Su

pe
rs

on
ic

,
hy

pe
rs

on
ic

N
o

V
an

D
yk

e’
s

O
( δ

3)
th

eo
ry

N
o

N
o

N
o

Q
ua

si
L

oc
al

p,
M

Su
rf

ac
e

L
ow

Su
pe

rs
on

ic
,

hy
pe

rs
on

ic
N

o

FO
SE

T
N

o
Y

es
N

o
Q

ua
si

L
oc

al
A

ll
Su

rf
ac

e
L

ow
Su

pe
rs

on
ic

,
hy

pe
rs

on
ic

N
o

D
on

ov
’s

th
eo

ry
N

o
Y

es
N

o
Q

ua
si

L
oc

al
p,

M
Su

rf
ac

e
L

ow
Su

pe
rs

on
ic

,
hy

pe
rs

on
ic

N
o

V
is

co
us

cr
os

s-
flo

w
an

al
og

y
Y

es
1

Y
es

1
N

o
Q

ua
si

L
oc

al
ly

2D
Fo

rc
es

A
xi

al
3

L
ow

Tr
an

so
ni

c
Y

es
1

E
qu

iv
al

en
t

A
oA

m
et

ho
d

Y
es

1
Y

es
1

N
o

Y
es

3D
Fo

rc
es

A
xi

al
2

L
ow

Su
bs

on
ic

,
su

pe
rs

on
ic

Y
es

1

1
O

nl
y

as
an

in
cr

em
en

tt
o

th
e

in
te

gr
at

ed
fo

rc
es

.
2

C
ro

ss
-s

ec
tio

n
di

st
ri

bu
tio

n
an

d
vo

rt
ex

co
re

.
3

C
ro

ss
-s

ec
tio

n
di

st
ri

bu
tio

n.





Chapter 3

Review of Piston Theory

The content of this chapter draws extensively from previous publications of the author [59,
87, 116, 121–123], which have been reproduced and adapted here with permission from
the respective copyright holders. Section 3.1 will introduce a generalized formulation for
piston theory applicable to airfoils, and includes material from [59, 121]. The conceptual
basis and generalized equations are introduced, and a discussion on the validity and accuracy
of piston theory is given. Section 3.2 will detail significant milestones in the development
of piston theory, and also draws from [59, 121]. The review leads to a discussion on the
theoretical validity bounds of the linear potential flow basis for piston theory. This is
addressed in [116, 121], but has not been included in the present work for the sake of brevity.
Section 3.3 will discuss the significance of higher-order terms in piston theory, and includes
material from [122, 123]. Finally, a summary of the material presented on piston theory is
given in Section 3.4.

3.1 Introduction

The term “piston theory” has primarily been used to describe a pressure-downwash rela-
tionship of a particular form. A variety of methods yield a similar local relationship. As a
result, the same term “piston theory” has been applied to methods with differing underlying
assumptions. These methods will be introduced in Section 3.2 as historical developments to
piston theory. The similarity of the methods will be highlighted by interpreting them in terms
of a generalized formulation for piston theory developed by the author [59] and presented
here in Section 3.1. The generalized formulation was largely inspired by earlier work on
piston theory by Rodden et al [124] and Liu et al [125].
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3.1.1 Conceptual Representation

The conceptual basis of piston theory lies in the unsteady analogy, previously introduced in
Section 2.2.3. The unsteady analogy, also referred to as the law of plane sections [77], has its
roots in Hayes’ hypersonic similitude for slender bodies [75]. A graphical representation of
the concept is given in Fig. 3.1. Consider a slender body moving at a constant velocity of
V∞ relative to a stationary reference frame. Suppose a laser-sheet is set up in the reference
frame in a plane normal to the body velocity. As the body passes through the sheet, it traces
its cross-sectional shape in the plane of the sheet. Spatial variation in the body cross-section
is perceived as a time-dependent deformation and motion of the cross-section in the plane of
the sheet. This is time-dependent velocity of the cross-section is denoted w(t) in Fig. 3.1.

V∞

V∞

Time t1

Time t2

“Cylinder”

Time t1

Time t2

“Piston”

w(t1)

w(t2)

w(t1)

w(t2)

Fig. 3.1 Visual representation of the unsteady analogy and the arising piston / cylinder
terminology.

The extension of this physical analogy to fluid flow gives rise to terminology employed
in piston theory. In place of the laser sheet, a “fluid slab” (Lighthill [88]) or “plane section”
(Il’yushin [77]) of fluid is considered. The motion of the cross-sectional shape is interpreted
as a two-dimensional “piston” expanding and contracting in the “cylinder” that is the plane
section of fluid.

The thought experiment up to this point captures the essence of the physical intepretation
behind the small-parameter approximation methods introduced in Section 2.2.3. In both
Sychev’s [4] method and hypersonic SDT [27, 77, 78], a three-dimensional fluid flow is
reduced to flow in the two-dimensional advected plane. The differences in interpretation are
associated with the alignment of the plane. Classically, hypersonic SDT has considered the
plane to be advected in the direction of the mean body velocity. Sychev’s method considers
the plane to be advected down the longest axis of the body.
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The above two methods are inherently formulated as two-dimensional field-type problems.
This is in contrast to piston theory, which has a local, algebraic formulation. Early develop-
ments of piston theory, as due to Lighthill [88], considered flow about a two-dimensional
body which was reduced to a one-dimensional piston problem through the unsteady analogy.
While this is conceptually equivalent to the interpretation for three-dimensional bodies, the
mathematical formulation is different. The distinction between the definitions of the “fluid
slab” is depicted in Fig. 3.2. It should be noted that hypersonic SDT and Sychev’s method
have advection definitions similar to that depicted for slender body theory in Fig. 3.2.

Slender body theory

Strip theory

Piston theory

Slab advection
direction

Fig. 3.2 Distinction between fluid slab definition in piston theory, strip theory, and slender-
body-type theories. Advection direction is denoted by arrows.

The discussion thus far has been based in a stationary frame with an initially undisturbed
plane section of fluid. This is the basis of classical piston theory. Perturbations to the fluid
are produced due to the physical shape and motion of the body, and hence the physical
interpretation is intuitive. The essence of local piston theory is in modelling perturbations
relative to the mean steady flow. Physical interpretation by means of visualization follows
less directly in this case. If the mean steady flow is considered, the variation in body shape
must cause no effective piston motion. This may be realised through aligning the cylinder
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normal to the local body surface at each axial station. Effectively, the inclination of the
cylinder changes as the cylinder is advected down the length of the body.

An alternative visualization, which was used in developing the generalized formulation
of [59], is achieved by changing from a stationary reference frame to one moving at the mean
body velocity V∞. This is essentially a change from an earth-fixed frame with a moving body
(which will also be referred to as the Galilean frame) to a wind-tunnel frame (which will be
referred to as the Eulerian frame). Rather than having the body pass through a single slab
of fluid initially at rest, separate instantaneous fluid slabs are locally advected at each axial
position in the wind-tunnel frame.

Wind-tunnel frameEarth-fixed frame

Unperturbed fluid velocity

Body velocity (total)

Body velocity (dynamic)

Body velocity (mean steady)

V∞

V∞

Fig. 3.3 Distinction between the earth-fixed frame and wind-fixed frame visualizations in
classical piston theory.

Using the Eulerian frame, the cylinder orientation remains constant (aligned normal to
V∞) at each station in CPT. On the other hand, LPT requires that the cylinder be oriented
normal to the local mean-steady body surface. With the conceptual basis of piston theory
thus established and the Eulerian visualization defined, the generalized formulation of piston
theory for arbitrary cylinder orientation may be introduced.
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3.1.2 Generalized Downwash Equation

In the context of the piston-cylinder analogy, downwash will be defined as the relative
velocity of the piston face in the direction of the cylinder orientation. The wind-tunnel frame
will be used in formulating the generalized downwash equation. This requires the relative
motion of the cylinder (as it is advected) to be correctly accounted for. The nomenclature
used is defined in Fig. 3.4. Suppose that the body is mounted in a wind-tunnel operating
at the equivalent mean-steady velocity of the body. The body is attached to a mount which
allows for dynamic motion Vb of the body. At any instant in time, let the unit normal vector
to the body surface at a point of interest be denoted n̂. Let the unit vector normal to the mean
steady surface at the same point be denoted n̂m. These quantities are independent of the
cylinder definition.

n̂ l̂c

t̂c

Vb

Vcyl ∥ ξ

∥ ν

∥ x

δ
θ

ψ

ζ

ξ

ν

x

Wind-tunnel frame

Local surface tangent

Vcyl:
Vb:

ξ :
ζ :
ν :
x:

Velocity of cylinder advection
Body velocity (dynamic)
Cylinder transverse axis
Cylinder longitudinal axis
Direction of cylinder advection
Body axis

n̂:

l̂c:
t̂c:
ψ:

θ :

δ :

Surface normal after deformation
Cylinder-longitudinal unit vector
Cylinder-transverse unit vector
Advection angle relative to body axis
Cylinder orientation relative to advection
Surface inclination relative to advection

Fig. 3.4 Nomenclature associated with the generalized formulation of piston theory.

Let the cylinder (representing a slab of fluid) be advected at a velocity Vcyl in a direction
inclined an angle ψ as measured from the body axis. Suppose that the slab of fluid is not in
fact oriented normal its the direction of advection. The angle by which the fluid slab deviates
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from being normal to the advection direction is denoted θ , and is termed the “cylinder
orientation”. The inclination of the instantaneous local surface tangent to the direction of
cylinder advection is denoted δ .

The downwash equation is derived here for an arbitrary cylinder orientation θ and
advection direction ψ . The cylinder-bound coordinates ξ and ζ , with associated direction
vectors t̂c and l̂c will be used. Let the surface of the body be described by ζ = ζb(ξ ). The
downwash is then defined by

w ≡ dζb

dt
=
(
Vb −Vcyl

)
· l̂c −

(
Vb −Vcyl

)
· t̂c tan(δ −θ) , (3.1)

=Vcyl
sinδ

cos(δ −θ)
+
(
Vb · l̂c

)
−
(
Vb · t̂c

)
tan(δ −θ) , (3.2)

where V 2
cyl = Vcyl ·Vcyl, the velocity of the piston face relative to a stationary cylinder is

given by
(
Vb −Vcyl

)
, and (δ −θ) is the deviation of the local surface tangent from being

normal to the cylinder. Following the approach in [59], the downwash may be split into two
components as

wc ≡
(
Vb −Vcyl

)
· l̂c , (3.3)

wa ≡ −
(
Vb −Vcyl

)
· t̂c tan(δ −θ) , (3.4)

where wc is the component due to advection down the length of the cylinder, and wa is the
downwash component arising from cylinder-normal advection. Alternatively, the approach
of [122] may be adopted, splitting the downwash into a fluid-velocity term w f and a body-
velocity term wb as

w f ≡ −Vcyl ·
[
l̂c − t̂c tan(δ −θ)

]
, (3.5)

wb ≡ Vb ·
[
l̂c − t̂c tan(δ −θ)

]
. (3.6)

For completeness, it is noted here that the following relationship may be shown:

[
l̂c − t̂c tan(δ −θ)

]
=

n̂
cos(δ −θ)

. (3.7)

The use of the nomenclature Vcyl and the term “velocity of cylinder advection” is deliberate.
The definition of downwash in piston theory arises purely due to relative motion of the piston
down the length of the cylinder. It is directly related to the motion of cylinder frame, rather
than to the fluid velocity. As a result, the cylinder-longitudinal component of the actual local
fluid velocity will generally differ from the piston-theory-defined downwash. Similarly, the
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component of the actual fluid velocity in the cylinder-normal direction will not necessarily
be equal to the component of the frame (cylinder) velocity in that direction.

3.1.3 Generalized Pressure Equation

The use of the term “piston theory” to describe a particular downwash-pressure relationship
has been noted earlier. Rodden et al [124] proposed a generalized pressure equation in which
different theories were distinguished by the coefficients they contribute to the equation. This
approach was extended by the author in [59] to include LPT. As has been noted earlier, the
underlying difference between CPT and LPT is in the reference conditions which are being
perturbed. These will be referred to as “cylinder conditions”, with quantities denoted by a
subscript “cyl”. The generalized pressure equation put forward in [59] is then written up to
third-order in downwash Mach number as

p
pcyl

= 1+ γ

[
c1

(
w

acyl

)
+ c2

(
w

acyl

)2

+ c3

(
w

acyl

)3
]
, (3.8)

where γ is the ratio of specific heats, and the coefficients ci are defined by the method yielding
the pressure relation. It is common to see the equation cast in terms of the pressure coefficient
Cp. For the generalized formulation, this is written as

Cp =Cpcyl +

(
pcylM2

cyl

p∞M2
∞

)
2

M2
cyl

[
c1

(
w

acyl

)
+ c2

(
w

acyl

)2

+ c3

(
w

acyl

)3
]
, (3.9)

where Mcyl =Vcyl/acyl is the Mach number of the cylinder frame-advection referenced to the
local fluid conditions in the cylinder, and Cpcyl is the pressure coefficient of the local cylinder
conditions, given by

Cpcyl =
pcyl − p∞
1
2γ p∞M2

∞
. (3.10)

The quantity Cpcyl is essentially the coefficient of the gauge-pressure of the cylinder conditions
relative to freestream conditions.

The distinctive feature of Eq. (3.8) is that it provides an algebraic relationship between
the local surface geometry and the fluid pressure at the surface. The downwash relation of
Eq. (3.1) is similarly local and algebraic. This offers substantial reduction in computational
cost for aerodynamic (and by extension, aeroelastic) analysis. It may be seen from the
equations that acceleration and time do not enter into the formulation. The quasi-steady,
local nature of piston theory has the disadvantage of neglecting the following features:

• Propagation (and lag) of upstream perturbations,
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• Interaction with surrounding flow features,

• Acceleration-induced pressures.

3.1.4 Considerations of Validity Bounds

Piston theory has thus far been presented on a heuristic level, with appeals to analogies
and with a number of implicit assumptions. This raises the question of the validity bounds
within which these assumptions and analogies hold, and in which piston theory is an effective
aeroprediction method. A rigorous treatment of this topic requires a mathematical basis
from which piston theory is derived. The work of Il’yushin [77] and Goldsworthy [126] in
defining the error in the assumptions will be introduced in Section 3.2. The work of other
authors in quantifying validity bounds on the results of piston theory may be found along
with a framework for estimating the validity of the linear potential flow basis in [116, 121].
The purpose of the present section is to introduce the considerations of a validity analysis
from a physical perspective.

The basic requirements in deriving piston theory from a higher-order flow model are as
follows:

• The spatial dimension of the equations describing the flow must be reduced to one,

• The one-dimensional field problem must have an algebraic, surface-local solution.

The physical interpretation of these requirements is essentially that contributions to the local
surface pressure must be dominated by the local inclination or motion of the surface. Within
the context of the piston-cylinder analogy, the following assumptions are made:

1. The cylinder (plane section) represents a control mass of fluid,

(a) The cylinder advection velocity represents the fluid velocity prior to perturbations
due to piston motion,

(b) Piston motion causes an in-plane fluid velocity perturbation at the boundary of
the control mass,

2. Plane sections of fluid remain plane,

(a) The fluid velocity normal to the plane section is constant throughout the plane,

(b) Piston motion causes no out-of-plane fluid velocity perturbations,

3. The flow in one plane section is independent of flow in other plane sections,
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(a) There is no out-of-plane propagation of perturbations,

4. Perturbations produced by the piston at time t do not interfere (interact with or reflect
off of) any previous or subsequent perturbations.

Assumptions 1 through 3 above are also applicable to the unsteady analogy as used in
hypersonic SDT [27, 77, 78] and Sychev’s [4] method. However, these methods omit
assumption 4, which is required to obtain a surface-local algebraic solution to the reduced
field problem. Assumption 4 essentially addresses the question of in-plane interference,
perturbation propagation, and time-history of the flow.

The sources of error in the piston theory are then essentially related directly to the validity
of the assumptions listed above. Potential sources of error include:

• Disagreement between the chosen cylinder orientation and the actual direction of
minimum flow gradients,

– An example of this is the improvement obtained by moving from CPT [88] to
LPT [14] and to Bird’s [127] formulation when considering wedge flow,

• Significant variation in the out-of-plane velocity down the length of the cylinder. This
may be due to

– Strong body curvature (essentially non-slender portions of the body),

– Strong shock curvature (which results in an entropy wake),

– A boundary-layer (although this could be limited to a small region close to the
surface),

• Out-of-plane velocity perturbations and pressure gradients being comparable to their
in-plane counterparts. This occurs when

– Low supersonic Mach numbers are approached,

– The component of the surface normal in the streamwise direction increases (larger
deflections),

• Non-negligible interference due to geometry or flow features.

An illustration of how the prediction accuracy of LPT varies with Mach number is given
in Figs. 3.5 to 3.10. The figures are concerned with the variation of ∂Cp

∂α
and ∂ 2Cp

∂α2 over the
parameter space of M∞ and α for flow on the compression surface of a flat plate. The values
∂Cp
∂α

and ∂ 2Cp
∂α2 represent the linear and quadratic aerodynamic stiffness, respectively. The
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exact values are obtained from the oblique shock equations, and are shown in Figs. 3.5
and 3.6. A sharp increase in in the gradient is noted for both the linear and quadratic stiffness
terms as shock detachment is approached. The values obtained using LPT are shown in
Figs. 3.7 and 3.8. Distinct differences in the topology of the parameter space between the
exact solution and LPT prediction are noted. In particular, LPT predicts much more mild
gradients in the limit of shock detachment. It also fails to reproduce the more complex
topology of ∂ 2Cp

∂α2 observed at M∞ > 3. The relative error in LPT prediction is shown in
Figs. 3.9 and 3.10. It is noted that the linear stiffness may be predicted within 10% over a
wide range of the parameter space. In contrast, the quadratic stiffness prediction is accurate
only within a small band where the oblique shock is weak. Both stiffness terms are in gross
error in the limit of M∞ < 2 and as shock detachment is approached.

The reasons for these inaccuracies may be understood within the context of the assump-
tions listed above. As the shock detachment angle is approached, the local Mach number at
the surface of the flat plate decreases into the low supersonic range, eventually becoming
subsonic. The variation of local Mach number has been superimposed over the relative
error in linear stiffness prediction in Fig. 3.11. The correlation is clear. The assumption
that out-of-plane perturbations are negligible relative to in-plane perturbations becomes
increasingly accurate outside of hypersonic flows. It is therefore not surprising that as the
local Mach number approaches Mcyl ≈ 1.7, the prediction error from LPT is in the range of
10% ∼ 20%. Similarly, Figs. 3.12 and 3.13 show the relative error in linear stiffness with
the angle between the shock and the surface and its gradient, respectively. The hypersonic
assumptions in the unsteady analogy imply the assumption that the shock lies close to the
body. As the shock detachment angle is approached and the local Mach number is lowered,
the angle between the body and the shock increases. This correlates with the degradation
in LPT accuracy, as seen in Fig. 3.12. The role of the gradient ∂ (β−α)

∂α
, where β is the

shock angle and (β −α) is the angle between the body and the shock, may be understood as
follows. The fluid conditions at the shock are determined by the Rankine-Hugoniot equations,
in which β is a key parameter. The surface boundary-condition is essentially driven by α

through the non-penetration condition. If the change in the relative angle between the body
and the shock for a given perturbation to α is small, the change in the cylinder approximation
is minimal, and the pressure perturbation is dominated by the surface boundary condition.
The correlation of accurate LPT predictions in the lower-α band with small ∂ (β−α)

∂α
is shown

in Fig. 3.13.
The illustration of LPT inaccuracies for a flat plate is informative, but gives no insight

into the role of body or shock curvature on LPT accuracy. A treatment of their roles is not
within the scope of the present section.
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Fig. 3.5 Exact value of ∂Cp/∂α for the compression surface. Contours of [rad−1].
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Fig. 3.9 Relative error in LPT prediction of ∂Cp/∂α for the compression surface.
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3.2 Historical Developments

Piston theory has a long history that is marked by independent developments, varied the-
oretical bases, and extensions to the basic method. The significant works in the literature
on piston theory are summarized here. The generalized formulation of [59] introduced in
Section 3.1 will be used to draw attention to differences in their approaches. These works
will not be introduced in chronological order. Instead, they will be introduced in the context
of their contribution to piston theory. This will cover

• CPT as a heuristic method in planar flows,

• The introduction of a generalized formulation for the pressure equation, thereby
including other methods under the label of “piston theory”,

• The extension of CPT to supersonic piston downwash,

• The derivation of CPT from three-dimensional flow equations,

• The extension of CPT to include upstream influence and unsteadiness,

• The extension of piston theory to non-planar flows,

• The introduction of LPT as a heuristic method and early applications,

• The recognition of LPT as a special case in hypersonic SDT for flow over a wedge,

• The application of LPT as a perturbation to solutions obtained by CFD.

This will effectively summarize the current body of knowledge related to piston theory.

3.2.1 CPT as a Heuristic Method in Planar Flows

Early publications associated with the establishment of “piston theory” include the seminal
works of Lighthill [88] and of Ashley and Zartarian [103]. These are among the most
widely-cited works in the literature on piston theory. Piston theory is introduced in these
works on the basis of a physical analogy. It is presented as a heuristic method, with greater
focus placed on application of the method to practical problems. This trades off a deeper
understanding of the limitations of the method and of its origin. In the review of piston
theory by Ashley and Zartarian [103], the method is applied to a range of problems, including
three-dimensional geometries. No serious consideration is made of the error in applying
the method outside its theoretical validity. The heuristic approach to piston theory set forth
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in these papers has persisted in the majority of widely-cited works on the method, and has
influenced the development and application of LPT. This section will give a brief overview
of CPT and its introduction in the literature as a heuristic method for planar flows.

The pressure-downwash relation which is at the core of CPT was introduced by Lighthill [88].
In the context of generalized piston theory, with reference to Fig. 3.4 and Eqs. (3.2) and (3.8),
the formulation is characterized by the following definitions:

c1 = 1 , (3.11)

c2 =
γ +1

4
, (3.12)

c3 =
γ +1

12
, (3.13)

θ = 0° , (3.14)

Vcyl = V∞ , (3.15)

pcyl = p∞ . (3.16)

These definitions are common between the publications of Lighthill [88] and of Ashley
and Zartarian [103]. Slight differences in their perspective on the limits within which CPT
applies arise due to the greater development of the work that had taken place by the time
of publication [103]. A more significant difference is that the original development by
Lighthill [88] did not suggest the application of the method to three-dimensional problems.
The salient points of these two publications will be introduced before moving on to the work
of Bird [127].

Lightill [88] based his development on Hayes’ [75] development of the unsteady analogy
for hypersonic flows. Lighthill reasoned that for M∞ ≥ 4, thin airfoils would produce:

• Streamwise velocity perturbations an order of magnitude smaller than transverse
velocity perturbations,

• Streamwise flow gradients an order of magnitude smaller than transverse flow gradients,

thereby setting up conditions for which Hayes’ unsteady analogy would be accurate. Lighthill
noted that a mathematical treatment of the error in the analogy was developed by Goldswor-
thy [126], citing that the error is of the order O

(
1/M2

∞
)
. While Goldsworthy’s [126] devel-

opment assumed that M∞δ = O(1), Lighthill enforced the assumption that M∞δ < 1. This is
an important distinction, as it influenced the subsequent definition of the pressure equation,
as well as delayed the extension of CPT to supersonic piston downwash. Accounting for the
contribution due to steady effects through δ and due to unsteady oscillations through the
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reduced frequency k and the nondimensional amplitude of oscillation A, Lighthill expressed
the validity limit of CPT as

M∞δ +AM∞k < 1 . (3.17)

Lighthill [88] remarked that this provided the advantage of allowing the pressure equation
for a one-dimensional simple wave driven by a piston to be employed, given as

p
p∞

=

(
1+

γ −1
2

w
a∞

) 2γ

γ−1

, (3.18)

which holds for isentropic flow down the cylinder. Lighthill [88] argued that the advantage
of enforcing the subsonic piston downwash condition was that the surface pressure would
then depend only on the instantaneous surface velocity. He noted that if the piston produced
an initial shock (as occurs at the leading edge), this would enter into the pressure-downwash
relation at downstream axial stations. While noting that this could be accounted for using
shock-expansion theory, Lighthill argued that this was unnecessary. This was because
the relative accuracy of expanding Eq. (3.18) up to third-order in the downwash Mach
number was within 6% of the shock-expansion pressure prediction. Regarding the third-
order coefficient in the pressure equation, Lightill reasoned that the difference between the
isentropic and non-isentropic coefficients was within the error bound of the piston-theory
approximation itself, and proceeded to use the isentropic coefficients defined in Eqs. (3.11)
to (3.13). Lighthill concluded his presentation of the method with an application to oscillating
airfoils. A generalization of Lighthill’s application is given in Section 3.3.

The review of applications of CPT by Ashley and Zartarian [103] noted the use of the
term “piston theory” to describe the local pressure-downwash relation which is generalized
as Eq. (3.8). It was noted that a variety of aeroprediction methods yield this type of relation.
The review included mention of methods prior to Lighthill’s [88] work as well as subsequent
developments such as that by Landahl [128]. This allowed a broader consideration of the
validity limits of CPT to be made. Ashley and Zartarian [103] maintained Lighthill’s [88]
assumption of subsonic piston downwash. They identified the approximate bounds of validity
as M∞ > 2.5 with M∞δ < 1, while noting usable results from CPT at Mach numbers as low
as M∞ = 2. Ashley and Zartarian [103] also cited the validity limits of other developments as
requiring one of the following

M2
∞ ≫ 1 kM2

∞ ≫ 1 k2M2
∞ ≫ 1 , (3.19)

in addition to the subsonic piston downwash limitation of Eq. (3.17). No alteration was made
to the cylinder or coefficient definitions given in Eqs. (3.11) to (3.16). With regards to the
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condition k2M2
∞ ≫ 1, Ashley and Zartarian [103] speculated that CPT might be applied at

subsonic Mach numbers provided that the reduced frequency k is very large. This was echoed
by Dowell [129], with the further hypothesis that CPT could be used for the prediction of
farfield pressures in aeroacoustics.

A significant feature of the publication by Ashley and Zartarian [103] was in its stance
on three-dimensional applications. While noting that the approximate errors associated
with Landahl’s [128] formulation did not apply in three-dimensional flows, Ashley and
Zartarian [103] suggested that CPT may be used for such flows regardless. They subsequently
showcased the application of CPT to a range of practical problems, including flutter of finite
wings and panel flutter. The application to finite wings gave no definition of wing geometry,
and no remarks were made on the extent of three-dimensional effects.

The interpretation of CPT due to Bird [127] is marked by a return to the foundations for
CPT as laid out by Hayes [75] and Goldsworthy [126]. Bird [127] noted that special cases
of planar flow exist in which the two-dimensional steady flow equations may be identically
transformed to one-dimensional unsteady equations without approximation. The particular
examples that were cited were the case of an oblique shock over a wedge and a Prandtl-Meyer
expansion around a sharp corner. Bird noted that for these cases, a flow direction existed in
which no velocity gradient was generated throughout the flowfield. In the oblique shock case,
this direction was along the shock wave. Bird remarked that the governing equations could
then be interpreted as one-dimensional unsteady through considering the “cylinder” to be
oriented normal to the direction of zero velocity-gradient, with the piston velocity defined by
the surface boundary condition. With reference to Fig. 3.4 and Eq. (3.2), the formulation is
characterized by the following definitions:

θ = β , (3.20)

Vcyl = V∞ , (3.21)

where β is the shock angle. It was noted that this transform was valid for any supersonic
Mach number or deflection, provided that the flowfield remained supersonic throughout.
Noting that the angle between the shock and the wedge β −δ could be approximated by the
freestream Mach angle µ , Bird went on to show that the piston downwash could be expressed
as

w
a∞

≈ M∞
sinδ

cos µ
≈ M2

∞√
M2

∞ −1
sinδ . (3.22)

Bird [127] offered this result as an explanation for the improved results obtained by CPT
when the downwash definition of Eq. (3.4) as empirically changed as follows:
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• For large deflections, tanδ is replaced by sinδ ,

• At low supersonic Mach numbers, M∞ is replaced by M2
∞√

M2
∞−1

.

As noted by Bird [127], the latter is a reflection of Van Dyke’s [130] unified supersonic-
hypersonic similarity law. While establishing that the governing equations reduce to one-
dimensional unsteady, Bird [127] offered no suggestion for a closed-form expression for
the pressure at the surface. Nonetheless, his result gives valuable physical insight into the
approximations inherent in the unsteady analogy and in piston theory. Specifically, it allows
for differences in the formulation between CPT and LPT, as well as between the use of tanδ

and sinδ to be critically understood. To this end, the work of Bird [127] largely informed the
development of generalized piston theory in [59] in terms of arbitrary cylinder orientation.

3.2.2 Generalized Formulation for Pressure Equations

The fact that a “piston theory” pressure relationship could be obtained from different aeropre-
diction methods was noted by Ashley and Zartarian [103]. This was also noted by Morgan et
al [131], who reviewed a number of aeroprediction methods suitable for flutter prediction at
high supersonic Mach numbers. Among the methods reviewed were

• Van Dyke’s [104] second-order potential flow theory,

• Landahl’s [128] second-order method,

• Lighthill’s [88] CPT formulation,

• The tangent-wedge method [48].

Morgan et al [131] noted that under certain circumstances, the methods gave very similar
predictions, and were similar in their mathematical formulation. This was elaborated on
by Rodden et al [124], who developed a generalized formulation for the CPT pressure
equation. The equation was essentially similar to Eq. (3.9). However, the formulation did not
account for local cylinder conditions, despite citing the work of Morgan et al [131] which
contained this suggestion. Nonetheless, the formulation of Rodden et al [124] is significant
in having introduced the idea of different “formulations” of a common piston theory through
the coefficients c1, c2, and c3. The work of Rodden et al [124] originally only included
coefficients due to Lighthill [88] and Van Dyke [104]. However, an extension of CPT’s
application to swept wings was made.

The formulation of Rodden et al [124] was expanded on by Liu et al [125] in developing
a hybrid method based on CPT / linear theory. Liu et al [125] noted that the generalized



3.2 Historical Developments 133

formulation also encapsulated the works of Donov [105], Busemann [132], Linnell [133],
Carafoli [134], and Kahane and Lees [135]. The majority of these developments were based
in the method of characteristics. Greater detail on the development of Donov is given in
[116, 121]. These works were included through appropriate definition of the coefficients c1,
c2, and c3. In terms of generalized piston theory, these are all formulations of CPT, with
θ = 0°, Vcyl = V∞, and pcyl = p∞. The form of Eq. (3.9) is adapted here to account for the
contribution due to the leading-edge shock as

Cp =
2

M2
∞

[
c1M∞δ (x)+ c2M2

∞δ
2(x)+ c3M3

∞δ
3(x)−d3M3

∞δ
3(0)

]
, (3.23)

where δ is the local flow-turning angle at the airfoil surface, x = 0 is the leading edge, the
coefficients c1, c2, and c3 fulfil the same role as in Eq. (3.9), and the coefficient d3 accounts
for the contribution of the leading-edge shock. For isentropic flows with no leading-edge
shock, d = 0. A generalized form of the coefficients c1, c2, c3, and d3 developed by the
various authors is given by

c1 =
M
m

, (3.24)

c2 =
M4(γ +1)−4m2

4m4 , (3.25)

c3 =
1

12Mm7

(
e8M8 + e6M6 + e4M4 + e2M2 + e0

)
, (3.26)

d3 =
(γ +1)
96Mm7

(
f8M8 + f6M6 + f4M4

)
, (3.27)

where m =
√

M2
∞ −1. Some disagreement in the correct definition of the terms in the c3

coefficient arose, largely due to algebraic or typographical errors in various publications.
This was discussed by Jones [136], who provided a derivation of the coefficients to correct
those given by Busemann [132]. Jones [136] noted that similar corrections had also been
made by other authors, including Laitone [137]. The terms as derived by Jones [136] are in
agreement with the terms as derived by Donov [105], and are quoted below as

e0 = 8 , (3.28)

e2 = −12 , (3.29)

e4 = 10(γ +1) , (3.30)

e6 = 2γ
2 −7γ −5 , (3.31)

e8 = γ +1 , (3.32)
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f4 = 8 , (3.33)

f6 = 4(γ −3) , (3.34)

f8 = 5−3γ . (3.35)

The unification of these different methods under a common formulation and terminology
of “piston theory” is beneficial from the standpoint of computational implementation. An
unfortunate consequence is that this hides the underlying theoretical bases for the various
methods, which informs a deeper understanding of the limitations of the methods. This is
reflected in the misconception often noted in the literature that piston theory is limited to
subsonic piston downwash.

3.2.3 Extension to Supersonic Piston Downwash

The early development of piston theory due to Lighthill [88] was originally based in the
assumption of subsonic piston downwash in order that the isentropic pressure relation may be
used to a good approximation. While Lighthill [88] noted that a shock-expansion approach
could be utilized to account for the leading-edge shock, he deemed it undesirable from the
standpoint of the formulation simplicity. The unintended consequence of this was that a
misconception developed in the literature that “piston theory” as a whole is inherently limited
to subsonic piston downwash. The later recognition that a number of different methods yield
a pressure-downwash relationship which may be described as “piston theory” facilitated the
extension of CPT to supersonic piston downwash. The extension is associated with a number
of different names, which are introduced in this section.

The various treatments of supersonic piston downwash extension may be distilled into
two categories:

• Extensions based in the hypersonic, small-angle approximation to the oblique shock
equations. The majority of works fall into this category,

• Empirically derived formulations.

The term “strong-shock piston theory” is used by the majority of authors to describe the
resulting formulations. The terminology is typically associated with Miles [138]. The
development of Miles [138] falls into the first category of treatments. The basis for this
category lies in an approximation to the relation between the oblique shock angle β , surface
angle δ , and undisturbed Mach number M∞. An exposition of this approximation is given by
Anderson [25] and is not repeated here. The essence lies in assuming that β and δ are small
such that trigonometric functions of the angles may be simplified by small angle assumptions.
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These assumptions are based on the premise of slender bodies in hypersonic flows, essentially
written as δ ≪ 1 and M2

∞ ≫ 1. At this point, if it is assumed that M2
∞β 2 ≫ 1, then the

shock relations reduce to their hypersonic limit form. If this assumption is not made, then a
relationship between β and δ may be derived in terms of the hypersonic similarity parameter
K = M∞δ . This relationship may be written as

β

δ
=

γ +1
4

+

√(
γ +1

4

)2

+
1

K2 . (3.36)

Substitution of the above relation into the equation for the pressure ratio across an oblique
shock yields

p
p∞

= 1+ γK2


γ +1

4
+

√(
γ +1

4

)2

+
1

K2


 . (3.37)

The result is an equation describing the surface pressure on a wedge which creates an oblique
shock. The pressure is a function purely of the hypersonic similarity parameter based on
the surface inclination. The engineering-level aeroprediction method which utilizes this
pressure relation is known as the tangent-wedge method [48]. The same equation has also
been referred to as “Ghosh’s piston theory” [139] in a number of articles on oscillating bodies
in hypersonic flows. It has also been dubbed “strong shock piston theory”. The extension of
the oblique-shock result to a piston-theory formulation is facilitated by the result that

w
a∞

= M∞δ , (3.38)

within the context of the small-angle approximations which the development is based in. It is
remarked here for completeness that the square-root in Eq. (3.37) may be expanded in series
form. Truncating the resulting series at third order results in the familiar form of Eq. (3.8).
The resulting formulation may be described by generalized piston theory (with reference to
Fig. 3.4 and Eqs. (3.2) and (3.8)) using the following definitions:

c1 = 1 , (3.39)

c2 =
γ +1

4
, (3.40)

c3 =
(γ +1)2

32
, (3.41)

θ = 0° , (3.42)

Vcyl = V∞ , (3.43)
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pcyl = p∞ . (3.44)

The difference between the third-order coefficient of the tangent-wedge formulation in
Eq. (3.41) and of Lighthill’s isentropic formulation in Eq. (3.13) was noted by Lightill [88].
Lighthill remarked that the difference could be considered negligible. Nevertheless, the basis
from which the tangent-wedge formulation of Eq. (3.37) was derived does not assume that
M∞δ < 1, and thereby gave a basis for applying CPT to supersonic (and indeed hypersonic)
piston downwash Mach numbers.

For completeness, a brief note is included on the works of Ghosh [139–141]. With the ex-
ception of [140], these were heuristic applications of CPT, with the defining feature being the
use of Eq. (3.37) in place of a power-series in w/a∞. In the downwash equation of Eq. (3.2),
the resulting tanδ was replaced by sinδ , as is typical of treatments involving large deflections.
In a later development, Ghosh [142] implemented the downwash formulation of Bird [127]
for wedges, as described by Eqs. (3.20) and (3.21).

The second category of supersonic piston downwash extensions is defined by the devel-
opment of Raymond [143]. Raymond cited an empirically determined relationship between
the pressure coefficients due to expansion Cp(e) and due to compression Cp(c) in the form of

Cp(e)+Cp(c) = (γ +1)δ 2 . (3.45)

The empirical relation was determined for two-dimensional hypersonic flows. The pressure
coefficient due to expansion was defined by Raymond [143] to be that given by isentropic
expansion. In terms of the pressure, this relation is given in Eq. (3.18). Raymond [143] noted
that for M∞ > 1.4, this could be approximated to within 4% by the pressure coefficient at
vacuum, and thus adopted

Cp(e) =− 2
γM2

∞
. (3.46)

By substituting Eq. (3.46) into the empirical relation of Eq. (3.45), Raymond [143] approxi-
mated the pressure coefficient due to compression as

Cp(c) =
2

γM2
∞
+(γ +1)δ 2 , (3.47)

or in terms of the pressure,
pc

p∞
= 2+

γ(γ +1)
2

K2 . (3.48)
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In terms of generalized piston theory, the formulations differs from that in Eqs. (3.39) to (3.44)
by assuming that M∞δ > 1 and adopting the following coefficients:

c1 = 0 , (3.49)

c2 =
γ +1

2
, (3.50)

c3 = 0 . (3.51)

A departure from the generalized piston theory formulation is noted in Eq. (3.48), which
predicts a pressure ratio of pc/p∞ = 2 for the case of δ = 0. However, given the limitation
of Eq. (3.48) to flows for which M∞δ > 1, this is not a concern. For flows of M∞δ < 1,
Raymond [143] recommended the isentropic pressure relation of Eq. (3.18), which would be
equivalent to Lighthill’s [88] piston theory formulation.

3.2.4 Derivation of CPT from Three-Dimensional Flow Equations

The developments presented thus far were rooted in planar flows. The use of the piston-theory
pressure relation was motivated heuristically in some works, as in that by Lighthill [88].
In others, such as the work of Donov [105], it was arrived at by mathematical rigour. The
unifying basis for these works is the application – whether heuristically or rigorously – of
the unsteady analogy. This leads to the reduction of the two-dimensional flow problem to a
one-dimensional formulation. The application of the unsteady analogy to three-dimensional
flows to arrive at a piston theory formulation is considered here. More specifically, works
rooted in a mathematical treatment will be considered. Three key works will be discussed,
namely

• Il’yushin’s [77] initial development of the law of plane sections for slender bodies at
high Mach numbers (the unsteady analogy) and its reduction to piston theory,

• The review of various hypersonic similitudes by Hayes and Probstein [27] and the
reduction of these to piston theory,

• The development of a three-dimensional formulation of Dowell and Bliss’ [144]
“extended piston theory” by Aravinth et al [145]. This work will be discussed in the
context of similar work in Section 3.2.5.

The work of Il’yushin [77] is an important early development of piston theory. Unfortu-
nately, it received limited attention in Western literature due in part to its delayed publication,
as discussed by Hayes and Probstein [27]. Il’yushin [77] developed the law of plane sections
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for slender bodies from an order-of-magnitude analysis. This included an analysis of the
order of the error in the method. The application of the method to a range of geometries was
demonstrated, which included

• Finite lifting surfaces,

• Cones, ogives, and cylinders,

• General plane profiles (with the special case of a wedge also considered).

The mathematical development of Il’yushin [77] will not be reproduced here. It will be
revisited as a special case of the development in Chapter 4. However, some remarks on the key
points in the development will be made here. Among the key assumptions in the development
was that the inclination of the surface to the freestream, τ , was small such that τ ≪ 1. This
allowed both slender bodies and thin wings to be considered. This also renders the analysis
an essentially small-incidence hypersonic SDT formulation. The fundamental parameter
resulting from Il’yushin [77] subsequent analysis was found to be the hypersonic similarity
parameter K = M∞τ . Il’yushin showed that the error in applying the law of plane sections
to reduce a three-dimensional flow to a two-dimensional flow in a plane perpendicular to
the freestream was O

(
τ2 +M−2

∞
)
. Il’yushin further demonstrated that the law of plane

sections could be applied with an equal degree of accuracy in the spanwise direction as
in the axial direction. This required the axial and spanwise rates of change of the surface
slopes to be O(τ) smaller than the rate of change in the thickness direction. The result was
that the three-dimensional flow formulation could be reduced to a one-dimensional piston
problem. Il’yushin noted the breakdown of these underlying assumptions in the vicinity
of the wing-tips, in which case the two-dimensional crossflow-plane formulation would be
required. In essence, Il’yushin [77] thereby demonstrated the conditions for piston theory to
be applied in non-planar flows.

Il’yushin [77] offered a physical interpretation of the law of plane sections in terms of a
piston and cylinder analogy. This was exploited in adopting a Lagrangian approach in several
of the analytical solutions obtained by Il’yushin [77]. The approach in these solutions was
to start with the reduced one-dimensional formulation, and to then consider the boundary
conditions at both the body and the shock. Closed-form solutions were thus obtained for
both the linearized range of M∞τ ≪ 1 and the hypersonic range of M∞τ = O(1). Among the
solutions recovered were

• First-order piston theory for linearized supersonic flows of M∞τ ≪ 1,

• The oblique-shock solution of Eq. (3.44) for wedge flows,
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• The isentropic solution of Eq. (3.16) for shock-free flows,

• An approximate solution for cones and ogives at zero incidence in the form of

p
p∞

=
γ p∞

2
K2

√
1−K2

ln

(
1+

√
1−K2

1−
√

1−K2

)
(3.52)

• A solution for airfoils with attached shocks including the effect of wave reflections
from the shock.

In summary, these results demonstrated the mathematically rigorous application of the law of
plane sections (and by extension, formulations of piston theory) to both planar and non-planar
flows, with both subsonic and supersonic piston downwash Mach numbers being considered.

Hayes and Probstein [27] provided a review of a range of hypersonic similitudes. The
correlation between the similitudes and the limiting processes required for their reduction
was discussed, and is depicted in Fig. 3.14. The nomenclature of Hayes and Probstein [27]
as been retained for this figure. It should be noted that in the case of flattened bodies (those
subjected to τ → 0), the parameter α is to be interpreted as a yaw angle. The figure also
depicts the orientation of independent fluid slabs in each similitude. It may be noted that
in similitudes associated with strip theory, fluid slabs are oriented parallel to the freestream
velocity. This is consistent with neglecting spanwise derivatives. Similarly, in similitudes
associated with classical hypersonic SDT, fluid slabs are perpendicular to the freestream
velocity. This is consistent with neglecting streamwise gradients. Finally, the similitude of
Sychev [4] is seen to orient the fluid slabs perpendicular to the axis of body slenderness. The
differences in the nuances of the similitudes were discussed by Hayes and Probstein [27], and
will not be repeated here. However, it is noted here that the development due to Sychev [4]
generally permits larger perturbations than the other similitudes.

The “yawed wing” similitude of Fig. 3.14 is elaborated on in Fig. 3.15. The similitudes
all apply to the same geometry and its orientation to the flow. It is noted that the reduction
to piston theory is accomplished by neglecting derivatives in both the x and y directions.
This is equivalent to applying both the strip theory approximation and the hypersonic SDT
approximation simultaneously. The only remaining directional derivative in the governing
flow equations is that in the thickness direction, and the equations may be interpreted as
one-dimensional unsteady. Hayes and Probstein [27] provided a comparison of the error in
the methods of Fig. 3.15, which has been reproduced in Table 3.1.
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Fig. 3.15 Correlation of hypersonic similitudes for yawed wings with independent fluid slabs.
Adapted from Hayes and Probstein [27].
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Table 3.1 Comparison of yawed-wing hypersonic similitudes depicted in Fig. 3.15. Adapted
from Hayes and Probstein [27].

Approach Direction of neglected derivative Error parameter

Sychev Axial τ2δ 2

Piston theory Axial, spanwise τ2

Hypersonic SDT Streamwise (M∞) τ2(sin2
α +δ 2 cos2 α

)

Strip theory Binormal to M∞ and thickness direction τ2(cos2 α +δ 2 sin2
α
)

Hayes and Probstein [27] also gave a brief, heuristic discussion on the validity of applying
the similitudes (including piston theory) to unsteady flows. The scenario generated for the
discussion is depicted in Fig. 3.16. It was assumed that unsteady disturbances were generated
by the body which varied smoothly both spatially and in time. The parameter λ was
introduced as a characteristic length of the spatial distribution of disturbances, and can be
associated with a wavelength of this distribution. The unsteadiness of the disturbances was
characterized by a frequency f and an associated maximum lateral velocity of the body, v.
The unsteady equivalent of the thickness ratio was introduced as the ratio of v to the steady
freestream velocity V∞. This ratio was represented by τ . The space within which the effect
of unsteady disturbance propagation was felt was defined as τc, where c is the axial scale of
the steady flow.

Axial scale of steady flow, c

Axial scale of unsteady disturbance, λ

Earth-fixed frame, time t0

V∞
x

Maximum lateral
velocity, v

Frequency, f

Spatial scale of diffraction, τc

v
V∞

= O(τ)

Fig. 3.16 Characterization of unsteady disturbance propagation in the heuristic argument of
similitude application in unsteady flows due to Hayes and Probstein [27].

Within this framework, Hayes and Probstein [27] noted that the unsteady disturbances
at a point could be viewed as a travelling wave with velocity f λ . It was then argued that
Hayes’ [75] hypersonic equivalence (the unsteady analogy) would apply provided that the
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local Mach number in the unsteady flow was sufficiently high. This was expressed as

|V∞ − f λ | ≫ a∞ , (3.53)

where a∞ is the speed of sound in the freestream. Reasoning that the flow was hypersonic,
and hence M∞τ = O(1), Hayes and Probstein [27] gave the first condition for the unsteady
analogy to hold in unsteady flows as

τ ≪
∣∣∣∣1−

f λ

V∞

∣∣∣∣ , (3.54)

which may be viewed as an alternative form of Eq. (3.17). The author notes that the ratio
of the propagation wave speed to the freestream velocity in Eq. (3.54), given by f λ/V∞, is
essentially similar to the typical definition of the reduced frequency k. In this light, Eq. (3.54)
provides a restriction on the effective amplitude of oscillation through τ for a given reduced
frequency. It is seen that a higher degree of unsteadiness (whether through a higher temporal
frequency of oscillation or a shorter spatial wavelength) places a more stringent requirement
on the effective perturbation strength than simply τ ≪ 1. This is reflected in the second-order
smallness assumption used for the oscillation amplitude in McIntosh’s [146] development of
oscillating wedges, which is treated in Section 3.2.8.

Hayes and Probstein [27] further argued the flow within the first wavelength of distur-
bances is primarily a transient one, and that the unsteady analogy was valid for this flow. The
second condition for the validity of the unsteady analogy applied to unsteady flows about
finite bodies was given as

τ ≪ λ

c
, (3.55)

which essentially requires the scale of local transience due to diffraction (τc) to be smaller
than the scale of global transience associated with the distribution of disturbances (λ ). Hayes
and Probstein [27] noted the implicit assumption in the analysis that the axial scale of the
steady flow c was of the order of the body length. A brief extension of the argument to the
unsteady application of strip theory was also given, and is not repeated here.

The derivation of CPT (in a sense) from the three-dimensional flow equations is also
possible without requiring the application of the unsteady analogy and strip theory. This was
recently accomplished by Aravinth et al [145]. The resulting pressure formulation contains
first-order CPT is a special case. The method is based in linear potential flows, and accounts
for upstream influence and unsteadiness. It will be discussed in the context of similar methods
in the following section.
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3.2.5 Accounting for Upstream Influence and Unsteadiness in CPT

In reviewing the contributions to piston theory according to the categories used in this chapter,
a certain amount of overlap is inevitable. In particular,

• Several methods which account for upstream influence and unsteadiness are treated in
Section 3.2.8. This is due to the author’s emphasis on these methods containing LPT
as a special case,

• A number of methods treated in Section 3.2.6 also account for upstream influence
and unsteadiness. However, the author chooses to emphasize the contribution of these
methods to the application of piston theory to non-planar flows.

With this caveat, the emphasis of the present section will be on works with a potential flow
basis which contain CPT as a special case. These methods typically account for upstream
influence and the time history of the flow through integral terms. The resulting pressure
formulation does not have the strictly self-influenced form typically associated with piston
theory. However, the leading terms in the formulation are self-influenced and may be
associated with piston theory. This has led to the use of descriptors such as “extended piston
theory” being applied to the methods. A final introductory remark is offered that the majority
of the methods reviewed here are based in linearized potential flows, making them amenable
to solution by frequency-domain methods. The majority of the works are associated with
panel-flutter problems. The methods reviewed may be loosely grouped as follows:

• Methods based in exact linearized potential flows, such as the work of Chueshov
et al [147], the numerous works of Vedeneev [148–158], and that of Garrick and
Rubinow [159],

• Methods based in series-expansion approximations to exact formulations, such as
Landahl’s [128] method and the various formulations of “extended piston theory”
associated with Dowell and Bliss [144], Dowell and Ganji [160] and Aravinth et
al [145],

• Methods based in an a low-frequency piston-theory approximation to the exact lin-
earized potential flow model, such as the works of Dugundji [161], Dowell and
Voss [162], and Fung [163].

The predominant use of potential flow models for aerodynamic modelling in panel flutter
studies was discussed by Dowell [164]. Dowell [164] noted the importance of accounting for
three-dimensionality and unsteadiness in the flow, and noted that quasi-steady methods (such
as piston theory) omit these.
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Methods Based in Exact Solutions

The role of the unsteadiness (and upstream influence) in panel flutter was clarifed by
Chueshov et al [147], who considered the exact linearized potential theory and its reduction
to piston theory. Their treatment is aimed at a mathematically-oriented audience, and will
not be reproduced here. Chueshov et al [147] noted that the governing aeroelastic equations
for the plate may be written with the aerodynamic terms representing a forcing function to
the structural system. These aerodynamic terms consist of “piston-theoretic” self-influenced
terms and of a second term-grouping. The piston-theoretic terms are quasi-steady, depending
only on the instantaneous dynamics of the structure. The latter term-grouping accounts for
the time-history of the flow of upstream perturbations. Chueshov et al [147] posited that a
time exists such that the behaviour of the flow may be captured by a delayed aerodynamic
forcing. In this light, the second term-grouping was referred to as a delay term. This results
in a phase-shift in the aerodynamic loading, which may be interpreted as a change in the
effective aerodynamic stiffness (in-phase loads) and damping (out-of-phase loads). Chueshov
et al [147] noted that an inverse-proportionality exists between the delay term and the Mach
number of the flow for “sufficiently large” supersonic Mach numbers. Thus, in the limit of
hypersonic flow, the contribution of the delay term could be neglected and the reduction to
quasi-steady piston theory could be achieved. Chueshov et al [147] noted that the “extended
piston theory” of Dowell and Bliss [144] could be interpreted as an approximation to the
delay term, expressed as an asymptotic expansion in inverse Mach number. Also noted was
the widespread use of piston-theory formulation due a low-frequency approximation to the
exact linearized potential flow, which will be discussed shortly.

The importance of accounting for unsteadiness and upstream influence in panel flutter is
emphasized in the works of Vedeneev [148–158]. The majority of these works utilize exact
linearized potential flow solutions. Such a solution in planar flows is given in dimensional
form by Garrick and Rubinow [159] as

φ(x, t) = − 1
m∞

∫ x

0
w(ξ , t)D1(ξ ,x)dξ , (3.56)

p = p∞ −ρ∞

(
∂φ

∂ t
+V∞

∂φ

∂x

)
, (3.57)

where m∞ =
√

M2
∞ −1, w is the downwash, and D1(ξ ,x) represents the effect of delay in

propagation (to the point in consideration at x) of disturbances produced at ξ . These are
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given for sinusoidal motion z = z̄exp(iωt) as

w(ξ , t) =
∂ z
∂ t

+V∞
∂ z
∂ξ

=

[
iω z̄(ξ )+V∞

∂ z̄(ξ )
∂ξ

]
exp(iωt) , (3.58)

D1(ξ ,x) = exp
(
−ik∗

ξ
M∞

)
J0

(
k∗

ξ

)
, (3.59)

k∗
ξ
=

ω(x−ξ )

V∞

M∞
m2

∞
, (3.60)

where J0 is the Bessel function of the first kind with order 0, and k∗
ξ

has been introduced as a
shorthand. Vedeneev [151] noted that this may also be written as

p(x, t) = p∞ +ρ∞a∞
M∞
m∞

w(x, t)+
ρ∞ω

m2/3
∞

∫ x

0
w(ξ , t)D2(ξ ,x)dξ , (3.61)

where w(x, t) is the local instantaneous downwash at the point of interest, w(ξ , t) is the down-
wash at the point ξ at which perturbations were created upstream, and D2(ξ ,x) represents
the effect of delayed propagation of these upstream perturbations, and is given by

D2(ξ ,x) = exp
(
−ik∗

ξ
M∞

)[
iJ0

(
k∗

ξ

)
+M∞J1

(
k∗

ξ

)]
, (3.62)

where J1 is the Bessel function of the first kind with order 1, and k∗
ξ

has been defined in
Eq. (3.60). Vedeneev [151] thus showed the relation between the exact linearized potential
flow solution and CPT. Consider the first two terms on the RHS of Eq. (3.61). Comparison of
these terms with Eq. (3.8) shows that this is equivalent to a first-order CPT with a coefficient
due to Van Dyke, as given in Eq. (3.24). Comparison of Eq. (3.58) and Eqs. (3.3) and (3.4)
shows that the downwash definition is unaltered. The integral term on the RHS of Eq. (3.61)
has been noted to account for upstream influence and delay, and is the “delay term” referred
to by Chueshov et al [147]. Thus it is shown that first-order CPT may be derived from a
potential flow basis if the influence of upstream perturbations and unsteadiness is neglected.
A similar approach was adopted by Algazin and Kiiko [165], who provided the following
alternative formulation:

p(x, t) = p∞ +ρ∞a∞
M∞
m∞

wA(x, t)−
ρ∞M∞ω2

m5
∞

∫ x

0
z(ξ , t)D3(ξ ,x)dξ , (3.63)

where the downwash definition has been changed to wA(x, t) and a new delay function
D3(ξ ,x) is introduced. These may be found by manipulation of the formulation of Algazin
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and Kiiko [165] as

wA(x, t) =
(

M2
∞ −2

M2
∞ −1

)
∂ z(x, t)

∂ t
+V∞

∂ z(x, t)
∂x

, (3.64)

D3(ξ ,x) = exp
(
−ik∗

ξ
M∞

)[M2
∞ +2
M∞

J0

(
k∗

ξ

)
−2iJ1

(
k∗

ξ

)
− M∞

2
J2

(
k∗

ξ

)]
, (3.65)

where J2 is the Bessel function of the first kind of order 2, and k∗
ξ

has been defined in
Eq. (3.60). The downwash definition provided by Algazin and Kiiko [165] in Eq. (3.64) is
associated with the phrase “low-frequency piston theory”, and will be treated in the third
category of works in Section 3.2.5.

The importance of the physics contained in the delay term is clearly emphasized in the
various of works of Vedeneev [148–158]. In particular, Vedeneev [151, 152] compared the
linear CPT approximation with the full potential formulation in considering flutter of an
infinite-width panel of finite chord. Vedeneev used the classical downwash formulation of
Eq. (3.58). Vedeneev then showed that linear CPT in this form can only predict coupled-
mode flutter. Using the exact linearized potential flow formulation of Eq. (3.61), Vedeneev
showed that single-mode flutter was possible at Mach numbers of M∞ < 1.7. Comparing
the results, Vedeneev noted that the single-mode flutter was a “higher-frequency” flutter
mode in comparison to the “lower-frequency” coupled-mode flutter predicted by piston
theory. Vedeneev [152] noted that the low-frequency downwash formulation of Eq. (3.64)
also predicts single-mode instability for Mach numbers of M∞ <

√
2. However, he remarked

that the formulation is overly simplistic, as all modes are modelled as becoming unstable at
the same time (once M∞ <

√
2). A detailed discussion may be found in [151, 152].

For completeness, a brief note is made on some of Vedeneev’s subsequent works [153–
156]. These methods do not directly treat piston theory, and are rooted in small-disturbance
linearizations of the Navier-Stokes equations, as described by Lees and Lin [166]. However,
their relation to piston theory may be deduced from the foregoing discussion on the role of
unsteadiness, upstream influence, and the law of plane sections. A significant feature of these
works of Vedeneev [153–156] is the extension of inviscid panel-flutter analysis to viscous
flows. The mathematical details of these works and their formulation of the pressure equation
will not be entered into here. It will merely be noted that the pressure equation is cast as the
inverse of a sum involving inviscid and viscous contributions. The analysis lends itself to
various asymptotic approximations. A number of such simplifications are considered in [154].
The effect of the boundary later on coupled-mode and single-mode panel flutter is explored
in [155]. The analysis is extended to larger boundary-layer thicknesses in [156]. Due to these
works not directly involving piston theory, they are not treated further in Section 3.2.9.
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In essence, the delay of upstream propagations as described by Eqs. (3.60) to (3.62) may
significantly change the effective aerodynamic stiffness and damping. The “delay term” in
the pressure loading is seen to be a (non-trivial) function of the freestream Mach number
M∞, the frequency of the unsteadiness ω , and of the upstream geometry. The essence of
most “extensions” to and various formulations of piston theory lies in developing a simpler,
approximate formulation of the delay term. Methods which approach this using series-
expansion approximations are covered in the following category, with a number of methods
also covered in Section 3.2.6. Methods which forego an attempt to model the delay term and
rely on a low-frequency approximation to the exact linear potential solution will briefly be
noted in the final category of Section 3.2.5.

Methods Based in Series-Expansion Approximations

An important distinction arises between the methods that will be reviewed in this subsection:

• The “extended piston theory” of Dowell and Bliss [144], as well as its further treatment
by Dowell and Ganji [160] and its extension to three-dimensional flows by Aravinth
et al [145], is based in the linearized (in terms of thickness) potential flow equation
of Eq. (2.58). To emphasize this, the full potential function Φ may be written as an
expansion in powers δ , where δ is a measure of the thickness. The linear (in terms of
thickness) truncation is then Φ =U∞x+φ +O

(
δ 2), where φ =O(δ ). This essentially

mirrors Eq. (2.42). The method assumes simple harmonic motion,

• The method of Landahl [128] is based in Van Dyke’s [104] successive-approximation
approach in reducing the full nonlinear potential equation of Eq. (2.43). The full
potential may be written as Φ = U∞x+ϕ +ψ +O

(
δ 3), with ϕ = O(δ ) and ψ =

O
(
δ 2). As a result, Landahl’s [128] method is nonlinear (second-order) in thickness.

The method does not assume simple harmonic motion.

Despite this difference, there are underlying similarities between the methods of Dowell
and Bliss [144] and of Landahl [128]. The chief similarity is in expanding the potential
function as a series in some power in order to yield a solution involving simpler functions
than those present in the exact linear potential solution of Eq. (3.56). With these introductory
remarks completed, the attention will now be shifted to the particulars of each method.
For brevity, two-dimensional forms of the methods will be considered. It is to be noted
that Landahl’s [128] development was originally for three-dimensional flows, while the
development of Dowell and Bliss [144] was initially limited to two-dimensional flows.

As was noted earlier, the method due to Dowell and Bliss [144] is rooted in linear
potential flows. Simple harmonic motion is assumed, such that the linear perturbation
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potential may be written φ(x,z, t) = φ̄(x,z)exp(iωt) and the downwash may similarly be
written w(x,z, t) = w̄(x,z)exp(iωt). The governing equation for the flow is then

φ̄zz −
[(

M2
∞ −1

) ∂ 2

∂x2 +2i
M∞ω

a∞

∂

∂x
− ω2

a2
∞

]
φ̄ = 0 , (3.66)

with the boundary condition at the surface written as

∂φ

∂ z

∣∣∣∣
z=0

= w ≡ ∂ z
∂ t

+V∞
∂ z
∂x

. (3.67)

Appyling the Laplace transform with respect to the streamwise coordinate x, these may be
written in the frequency domain in terms of the Laplace variable s as:

∂ 2

∂ z2 L
{

φ̄
}
−µ

2L
{

φ̄
}
= 0 , (3.68)

∂

∂ z
L
{

φ̄
}
= L {w̄} , (3.69)

where µ is introduced as a shorthand, and essentially represents the streamwise derivatives
of the flow in the Laplace domain. Its definition is

µ
2 ≡

(
M2

∞ −1
)
s2 +2i

M∞ω

a∞
s− ω2

a2
∞
, (3.70)

where s is the Laplace variable. As is shown in [167], the solution for the potential function
at the surface of the body may be found as

φ̄(x,0) =−
∫ ∞

0
w̄(ξ )L −1

{
1
µ

}
dξ , (3.71)

where L −1 represents the inverse Laplace transform. The pressure at the body surface is
then given by Eq. (3.57).

As is discussed in [167], analytical inversion of 1/µ in the above equation leads to the
exact solution for linear potential flows, which involves Bessel functions. It has already
been presented in Eq. (3.56). The various formulations of “extended piston theory” are
characterized by their approaches to representing 1/µ as an expansion series. These are
detailed in the publication by Dowell and Bliss [144], with further elaboration given by
Dowell and Ganji [160]. The philosophy behind the representation of 1/µ as an expansion
series is to approximate a single “difficult” computation as a series of “simpler” computations.
This is reflected in the resulting cumbersome, yet simple formulations associated with
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“extended piston theory”. The full forms of the “extended piston theory” formulations will
not be given, and the coefficients will not be repeated here. The reader interested in the
lengthy algebraic definitions is referred to the publication by Dowell and Ganji [160].

The three expansion approaches presented by Dowell and Bliss [144] and by Dowell and
Ganji [160] include expansion in powers of:

• ω−1: as noted by Dowell and Bliss [144], this expansion requires the reduced frequency
to be sufficiently large than 1. Expanding

1
µ
=

a∞
iω

[
1− 2iM∞a∞s

ω
+

(
M2

∞ −1
)

4M2
∞

(
2iM∞a∞s

ω

)2
]− 1

2

, (3.72)

the perturbation pressure is obtained from [160] in the form of

p̄ = ρ∞a∞

[
w̄− 1

2

(a∞
ω

)2 ∂ 2w̄
∂x2 − iM∞

(a∞
ω

)3 ∂ 3w̄
∂x3 + . . .

]
. (3.73)

This may be compared to high-frequency CPT in the form of p̄ = ρ∞a∞w̄. The
additional terms are corrections which account for the deviation from the limit of
ω → ∞. It is seen that the additional terms involve the local downwash. Thus, the
high-frequency approximation does not account for upstream influence. However, the
presence of terms such as ∂ 2w̄

∂x2 suggests that some acceleration effects due to short
wavelengths of periodic vibrations are modelled.

• M−2
∞ : also termed an “inverse Rayleigh-Janzen method” by Landahl [128], this involves

the expansion of

1
µ
=

1
M∞

[(
s+

iω
V∞

)2

− s2

M2
∞

]− 1
2

. (3.74)

As demonstrated by Dowell and Ganji [160], for small reduced frequencies such that
k ≪ 1, the perturbation pressure takes the simplified form of

p̄ = ρ∞a∞
M∞
m∞

[
w̄− iω

m∞
M∞

(
1

M2
∞
+

3
2M4

∞
+ . . .

)∫ x

0

w̄(ξ )
V∞

dξ

]
, (3.75)

This may be compared to high-Mach CPT in the form of p̄= ρ∞a∞
M∞
m∞

w̄. The additional
terms are corrections which account for the deviation from the limit of M∞ → ∞. It is
seen that the additional terms account for upstream influence through the integral term.
This upstream influence is proportional to M−2

∞ , and diminishes in the limit of high
Mach numbers. This leads to the locally-influenced form of CPT.
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• ω

sV∞
: essentially an expression for the reduced frequency based on the local distance

from the leading-edge, this involves the expansion of

1
µ
=

1
m∞s

[
1+

M2
∞

m2
∞

(
2iε + ε

2)
]− 1

2

, (3.76)

where ε = ω

sV∞
becomes the local reduced frequency after inversion to the physical

domain. The perturbation pressure is presented in a variety of forms by Dowell and
Ganji [160]. It is presented here as

p̄ = ρ∞a∞
M∞
m∞

L −1{(1+ iB1ε +B2ε
2 + iB3ε

3 + . . .
)
L (w̄)

}
, (3.77)

where the coefficients Bi are functions of Mach number alone, and are defined in the
publication by Dowell and Ganji [160]. The inversion of the expression in Eq. (3.77)
leads to a lengthy series of terms. These involve correction terms of the form:

–
(

ω

V∞

)n
CnIn−1, where In−1 represents n− 1 successive integrals with respect to

the streamwise variable and the coefficients Cn are functions of the Mach number
only,

–
(

ω

V∞

)n
Bnxn−1, where x is the streamwise coordinate as measured from the leading

edge.

Nonetheless, it is worth noting that if the expression is truncated such that terms in
O
(
ε2) are discarded, the remaining expression may be written as

p̄(x)= ρ∞a∞
M∞
m∞

{[(
M2

∞ −2
M2

∞ −1

)
iω z̄(x)+V∞

∂ z̄(x)
∂x

]
−
[
− 1

m2
∞

iω z̄(0)+V∞z̄(0)δ (x)
]}

,

(3.78)
where δ (x) is defined such that z̄(x)δ (x) represents the maximum inclination of the
local surface to the freestream. Comparison of the first bracketed term shows the
equivalence of the formulation to the “low-frequency” piston theory formulation of
Eq. (3.64). Inspection of the second bracketed term shows that it is concerned with
the change in conditions at the leading-edge. This latter consideration is typically
neglected in CPT, with the exception being formulations such as that by Fung [163],
who accounts for the − 1

m2
∞

iω z̄(0) term.

While the full form of the pressure equation obtained by expansion in powers of
reduced frequency is not shown here, the significance of the additional terms relative
to “low-frequency” piston theory is evident. The additional terms are corrections
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which account for the deviation from the limit of k → 0. As the reduced frequency
is increased, higher-order terms in ε are required to improve the approximation to
the exact linear solution. These additional terms involve the propagation of upstream
perturbations.

The attention is now turned to the nonlinear (in terms of thickness) method of Lan-
dahl [128]. As stated earlier, the basis of Landahl’s [128] method lies in Van Dyke’s [104]
second-order theory for supersonic potential flows. A brief overview of key steps in the
development will be given to highlight the differences between Landahl’s [128] method and
other “extended piston theories” such as that of Dowell and Bliss [144].

The perturbation potential function φ of in the full nonlinear potential equation of
Eq. (2.43) is to be replaced by ϕ +ψ . Here, ϕ = O(δ ) is the first-order (in thickness) pertur-
bation potential, and ψ = O

(
δ 2) is the second-order (in thickness) perturbation potential.

For the sake of clarity, the surface boundary condition of Eq. (2.44) will be elaborated on.
Consider an surface defined such that

z = δh(x,y, t) , (3.79)

represents the body surface. Within the context of the piston-cylinder analogy, a point on the
surface of the body will produce the following apparent downwash in a cylinder oriented
along the z-axis:

w = δ (ht +V∞hx) . (3.80)

However, the non-permeability condition at the surface yields the following full surface
boundary condition:

φz(x,y,δh, t) = (V∞ +φx)δhx +φyδhy +δht . (3.81)

Following the development due to Landahl [128], if the z-component of fluid velocity at the
surface is expressed as a Taylor series about z = 0, then the following second-order relation
is obtained:

φz(x,y,0, t) = δw+δ (hxφx +hyφy −hzφzz)

∣∣∣∣
z=0

. (3.82)

The relation for the pressure coefficient Cp may similarly be expressed up to second-order,
following Landahl’s [128] development, as

Cp = − 1
V 2

∞

[
2(φt +V∞φx)−M2

∞(φt +V∞φx)
2 +
(
φ

2
x +φ

2
y
)]

z=0
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− δ 2

V 2
∞

[
w2 +2h

(
V∞

∂

∂x
+

∂

∂ t

)2

h

]
, (3.83)

The full nonlinear governing equation of Eq. (2.43) is not repeated here. At this point,
Landahl [128] substituted φ = ϕ +ψ into Eqs. (2.43), (3.82) and (3.83). Grouping terms in
O(δ ) results in the following first-order (in thickness) problem:

Governing:
(
1−M2

∞
)
ϕxx +ϕyy +ϕzz −

2M∞
a∞

ϕxt −
1

a2
∞

ϕtt = 0 , (3.84)

Surface BC: ϕz(x,y,0, t) = w . (3.85)

Thus, the linearized potential equation in terms of ϕ is recovered at O(δ ). Grouping terms
in O

(
δ 2) results in the following second-order (in thickness) problem:

Governing:
(
1−M2

∞
)
ψxx +ψyy +ψzz −

2M∞
a∞

ψxt −
1

a2
∞

ψtt =

(γ −1)
a2

∞
(ϕt +V∞ϕx)(ϕxx +ϕyy +ϕzz)+

(
∂

∂ t
+V∞

∂

∂x

)(
ϕ

2
x +ϕ

2
y +ϕ

2
z
)
,

(3.86)

Surface BC: ψz(x,y,0, t) = (hxϕx +hyϕy −hϕzz)z=0 . (3.87)

This highlights the essense of Van Dyke’s [104] second-order theory. The full nonlinear
potential equation, at O

(
δ 2), may be considered as a linear potential equation in terms of

the second-order potential ψ , with the RHS of the equation representing additional source
terms. These source terms are defined in terms of the first-order potential ϕ . Thus, solving
the first-order (in thickness) problem renders these terms known quantities, and allows for
the second-order potential to be solved. Inspection of the surface boundary condition shows
that the perturbations to the fluid velocity only begin to contribute from the second-order
problem onwards.

The essence of Landahl’s [128] method lies in the procedure adopted to solve the first-
order and second-order potential problems. The first-order (in thickness) problem is identi-
cally a linear problem in ϕ . The application of Laplace transforms to obtaining the linear
potential ϕ has been reviewed in the proceeding methods. It is reiterated here that the exact
Laplace inversion yields the exact solution to the linear potential ϕ , which involves the Bessel
function. Various approximations to the inversion were reviewed in the context of the work
by Dowell and Ganji [160]. Landahl’s [128] approach to the solution of the first-order (in
thickness) potential equation is essentially equivalent to the expansion in powers of M−2

∞
treated by Dowell and Ganji [160].
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However, the application of Van Dyke’s [104] method renders the second-order (in
thickness) problem linear (in terms of ψ) as well. With the first-order solution known, this
allows the second-order solution to be found using similar Laplace transform approaches.
Landahl’s [128] approximation to the exact potentials ϕ and ψ is given by the following
expansions:

ϕ =
δ

M∞

(
ϕ1 +

ϕ2

M2
∞
+

ϕ3

M4
∞

)
+ . . . , (3.88)

ψ = δ
2
(

ψ1 +
ψ2

M2
∞

)
+ . . . , (3.89)

which is seen to be an expansion in powers of M−2
∞ . Thus, Landahl’s [128] method involves

two physically different approximations:

• An expansion of the total potential φ in powers of thickness δ , yielding φ = δ (. . .)+

δ 2(. . .)+O
(
δ 3). This is needed to transform the nonlinear problem into two linear

problems,

• An expansion of the first- and second-order (in thickness) potential functions in powers
of M−2

∞ , as described in Eqs. (3.88) and (3.89). This is allows the solution to be
expressed as a sum of simpler computations,

Landahl [128] applied the expansions of Eqs. (3.88) and (3.89) to the pressure coefficient
as well, and correlated terms to the solutions obtained for the potential functions ϕ and ψ .
Landahl’s [128] nomenclature for the pressure-coefficient expansion is described by

Cp =
δ

M∞


C(ϕ)

p1 +
C(ϕ)

p2

M2
∞

+
C(ϕ)

p3

M4
∞


+δ

2


C(ψ)

p1 +
C(ψ)

p2

M2
∞


+O

(
δ

M7
∞
+

δ 2

M4
∞

)
, (3.90)

in which the terms C(ϕ)
pn denote the contribution from the first-order thickness problem (hence

ϕ) and from the n-th term in the expansion in powers of M−2
∞ . In this sense, n = 1 represents

the M∞ → ∞ approximation, with higher n extending the model to lower Mach numbers.
Similarly, terms in the form of C(ψ)

pn represent the contribution associated with nonlinear
thickness. Considering that first-order CPT has been shown to be the limit of the linear
potential solution as M∞ → ∞, it is not surprising that Landahl’s [128] method recovers
second-order CPT in the same limit. In Landahl’s [128] notation,

C(ϕ)
p1 = 2w , (3.91)
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C(ψ)
p1 =

(
γ +1

2

)
w2 , (3.92)

which may be compared to Lighthill’s coefficients in Eqs. (3.11) and (3.12) with due consid-
eration of the definition of Eq. (3.90). The corresponding terms for n > 1 are not repeated
here, and may be found in the publication of Landahl [128]. These are integro-differential
terms which account for the delay in propagation of upstream disturbances.

In closing, it is remarked that the implementation of Van Dyke’s [104] method to render
the second-order (in thickness) problem linear could be used to extend the “extended piston
theories” of Dowell and Bliss [144] and Aravinth et al [145] to second-order in thickness.
Alternatively, the methods of the latter authors could be used to extend Landahl’s [128]
method to arbitrary reduced frequencies.

Methods Using “Low-Frequency” Piston Theory

Finally, it is noted in closing that the “low-frequency” form of linear CPT derived from a
linear potential flow basis has been widely adopted by various authors in panel flutter studies.
Variations in the formulation are slight, with the basic formulation (as used by Dugundji [161]
and by Dowell and Voss [162], among numerous others) given as

p = p∞ +ρ∞a∞
M∞
m∞

{(
M2

∞ −2
M2

∞ −1

)
∂

∂ t
+V∞

∂

∂x

}
z(x,y, t) , (3.93)

where z is the thickness-direction displacement of the surface, and m∞ =
√

M2
∞ −1. This

may be compared to Eq. (3.8). It is seen that Eq. (3.93) is equivalent to a first-order CPT
pressure formulation with a first-order coefficient c1 due to Van Dyke, as in Eq. (3.24). This
is suggestive of its validity at lower supersonic speeds than a formulation using Lightill’s
coefficient, as in Eq. (3.11). Further comparison of Eq. (3.93) to Eqs. (3.3) and (3.4) shows
that the downwash definition is altered. While the stiffness-related term (Eq. (3.4), or V∞

∂ z
∂x )

is unchanged, the damping-related term has been modified. The form due to Eq. (3.93) may
be interpreted as having a reduced effective damping, which is seen to become negative for
M∞ <

√
2.

A slight variation is noted in the formulation of Fung [163], who accounts for the
contribution from the leading-edge of the panel through

p = pinner +ρ∞a∞
M∞
m∞

{(
1

M2
∞ −1

)
∂

∂ t

}
z(0,y, t) , (3.94)
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where pinner is the pressure on the inner field of the plate, given by Eq. (3.93), and the second
term gives the contribution from the leading-edge boundary of the plate.

3.2.6 Extension to Non-Planar Flows

The extension of piston theory to non-planar geometries and flows was accomplished by
a variety of approaches. These range from empirical applications of strip theory, through
to more mathematically rigorous developments. The extension of linear CPT to three-
dimensional flows as achieved through potential-flow methods by Landahl [128] and by
Aravinth et al [145] has been noted in Section 3.2.5. The potential-flow basis has also
been used to extend the method to axisymmetric flows, as will be discussed shortly. Non-
planar flows are of fundamental interest, as most geometries of engineering interest exhibit
regions of non-uniform, non-planar flows. Some of the notable efforts towards extending the
application of piston theory to such flows may thus be categorized according to the geometry
considered:

• Works concerned with flutter of cylindrical shells and axisymmetric flows, such as
those by Leonard and Hedgepeth [168], Krumhaar [169, 170], and Ghosh [140],

• Works concerned with the flutter of finite, flat panels, such as those by Vedeneev [148,
158],

• Works in which upstream influence on finite wings is accounted for rigorously, such as
those by Landahl [128], Aravinth et al [145], Liu and Hui [171], and Liu et al [125],

• Works in which upstream influence on finite wings is account for heuristically, such as
those by Chen [172] and Wang [173],

• Works in which strip theory is applied to finite wings, such as those by Chen [174],
Yang and Song [175], and Ghosh [141].

As was noted in Section 3.2.5, a certain amount of overlap is inevitable in discussing the
contributions to piston theory according to the categorizations used in Section 3.2. In
particular, a number of works discussed in Sections 3.2.5 and 3.2.8 are rooted in a three-
dimensional basis. The focus of the present section, however, will be on the variety of
approaches adopted towards extending piston theory to non-planar flows.

Cylindrical Shells and Axisymmetric Flows

A parallel to the treatment of methods with a potential-flow basis in Section 3.2.5 may
be drawn here. The exact solution to the linear-potential problem for axisymmetric flow
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down the axis of an infinite cylindrical shell was given by Leonard and Hedgepeth [168].
A depiction of a portion of the representative geometry is given in Fig. 3.17. No reduction
or correlation to piston theory was made. In determining the exact solution, Leonard and
Hedgepeth [168] assumed that the deflection of the shell, which will be denoted z(x,θ , t),
was given in the form of

z(x,θ , t) = Re{z̄exp(−iNxx)exp(iωt)cosNθ θ} , (3.95)

where z̄ is the complex amplitude of the shell displacement, ω is the frequency of oscilla-
tion, Nx is the longitudinal wave number, and Nθ is the number of full waves around the
circumference of the section. It is to be noted that a slightly different nomenclature for
z(x,θ , t) is adopted here than that depicted in Fig. 3.17. Leonard and Hedgepeth [168] gave
the corresponding perturbation pressure as

p(x,θ , t) = RN2
x Re{ p̄z̄exp[−i(Nxx−ωt)]} , (3.96)

p̄ = −ρ∞a2
∞F(M∞ − k,RNx,Nθ )+ρia2

i Fi(a∞k/ai,RNx,Nθ ) , (3.97)

where R is the radius of curvature of the panel in the circumferential direction, and the
subscript “i” denotes quantities associated with any fluid contained within the cylindrical
shell. The reduced frequency k = ω

Nxa∞
may also be interpreted as the Mach number of axial

travelling waves. The functions F and Fi are given by Leonard and Hedgepeth [168] as

F(ξ ,RNx,n) =





ξ 2 Kn(ζ )
ζ K′

n(ζ )
, |ξ |< 1

ξ 2 H( j)
n (z)

zH ′
n
( j)(z)

, with j =





1 for RNxξ > 0

2 for RNxξ < 0
, |ξ |> 1

(3.98)

Fi(ξ ,RNx,n) =





ξ 2 In(ζ )
ζ I′n(ζ )

, |ξ |< 1

ξ 2 Jn(z)
zJ′n(z)

, |ξ |> 1
(3.99)

where ζ = |RNx|
√

1−ξ 2, z = |RNx|
√

ξ 2 −1, Jn is the Bessel function of the first kind,
H( j)

n is the Hankel function of the first or second kind, and In and Kn are modified Bessel
functions of the first and second kinds, respectively. The n in the subscript of these functions
denotes the order of the Bessel functions, and is equal to Nθ . The primed functions denote
the derivative of the function with respect to the entire argument of the function.
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z

θ

R(x,θ)
x

Vcyl =
V∞

Advected cylinder

z(x,θ , t) = Asx(x)sθ (θ)exp(iωt) , sx(x) = sin(Nxx) or cos(Nxx)
sθ (θ) = sin(Nθ θ) or cos(Nθ θ)

Fig. 3.17 Illustration of the configuration considered in Krumhaar’s [169] method, with
equivalent piston-theory cylinder shown.

A significant simplification of the exact result of Leonard and Hedgepeth [168] was
achieved by Krumhaar [169, 170]. Krumhaar introduced the notation

M1 = M∞ − ω

Nxa∞
, (3.100)

M2 = M∞ +
ω

Nxa∞
, (3.101)

to denote the Mach number of the flow relative to downstream-travelling and upstream-
travelling waves due to vibrations in the surface. This may be correlated to ξ in the notation
of Eqs. (3.98) and (3.99). Krumhaar [169, 170] used the asymptotic form of the Hankel
functions in the limit of |RNx|

√
ξ 2 −1 → ∞ to obtain a series representation of the functions.

Special attention was given to the case of |M1|> 1, |M2|> 1, as Krumhaar [169, 170] found
that the asymptotic form of the exact solution could be correlated to CPT for this case. In
terms of Eq. (3.98), this corresponds to |ξ | > 1. The resulting expression for the exact
perturbation pressure (in the asymptotic limit) was given as
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in which the first term-grouping is the linear term in CPT. Krumhaar [169, 170] remarked
that the second term grouping represented “correction terms” to the linear CPT term. The
remaining terms were noted to tend to zero if at least one of the following parameters tended
to ∞: |M∞|, R, ω , or |Nx|. The correction terms were defined by
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It is worth noting that the correction terms do not involve integrals, and are effectively
corrections to the downwash definition. The lack of integrals stems from the assumption
of Leonard and Hedgepeth [168] of an infinitely long cylinder with sinusoidally varying
displacement. It is also noted that the circumferential wave number only enters the correction
terms through terms of O

(
1/R2). Krumhaar [169, 170] remarked that for large values of

Nθ , with Nθ ≤ 20 often considered in shell flutter, these higher-order terms may become
important. Krumhaar [169, 170] considered the asymptotic behaviour of the correction terms
in various limits. It is repeated here that the limits are considered simultaneously with the
conditions
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The results have been summarized in Table 3.2. Krumhaar’s [169, 170] analysis for cylindri-
cal shells with axial flow showed that:

• Linear CPT is the asymptotic form of the exact linearized potential-flow solution in
the limit of one of the following:
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– High Mach number and low cross-stream curvature, with M∞ → ∞ and R → ∞,

– High temporal frequency of oscillations and low cross-stream curvature, with
ω → ∞ and R → ∞,

• Linear CPT with an additional damping term, as described in Eq. (3.110), is the
asymptotic form of the exact linearized potential-flow solution in the limit of one of
the following:

– High Mach number, with M∞ → ∞,

– High temporal frequency of oscillations, with ω → ∞,

This form of CPT is often referred to as “piston theory with curvature correction”,

• The “low-frequency” form of CPT previously discussed in Section 3.2.5, together
with the aforementioned “curvature correction term” is the asymptotic form of the
exact linearized potential-flow solution in the limit of large axial wave number, with
Nx → ∞. The resulting equation is given in Eq. (3.111). This may be interpreted as a
low spatial-frequency, or a large axial wavelength of displacements. It is noted that
reduction to Eq. (3.93) is achieved by taking the additional limit of R → ∞,

• Substantial corrections to linear CPT are required if the only limit considered is that of
non-axisymmetric flow as R → ∞. This is reflected in the form of Eq. (3.112).

Similarly substantial corrections to linear CPT are required if the relative Mach numbers M1

or M2 are subsonic. These scenarios are considered in [170].

Finally, the extension of piston theory to axisymmetric flows about quasi-cones by
Ghosh [140] is considered. The application of the law of plane sections to slender quasi-
cones at zero incidence and the subsequent derivation of pressure relations by Il’yushin [77]
has already been noted in Section 3.2.4. Ghosh [140] essentially extends the analysis to
non-slender quasi-cones. Ghosh [140] shows that in a space-fixed coordinate system initially
aligned with the body surface at t = 0, the 2D unsteady Euler equations may be reduced to
1D unsteady equations along the axis normal to the body surface at t = 0. This reduction is
accurate to O(ε tanδ ) for axisymmetric flows, where the angle between the shock and the
body is β −δ =O(ε) with ε ≪ 1. Ghosh [140] estimates that these conditions hold provided
that the Mach number behind the shock is Mm ≥ 2.5. In essence, this is an axisymmetric
application of the unsteady analogy, with the conico-annular cylinder defined normal to the
generating ray of the cone at t = 0. This is illustrated in Fig. 3.18. The pressure relation
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Vcyl = V∞

Advected conico-annular cylinder

Fig. 3.18 Illustration of the configuration considered in Ghosh’s [140] piston theory for
cones.

given by Ghosh [140] for axisymmetric flow over the quasi-cone is repeated below as
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Mp ≡
w
a∞

= M∞ sinδ . (3.114)

Flat Plates of Finite Width

A thorough introduction to historical developments in aerodynamic modelling of panel flutter
is given by Vedeneev in [158]. Vedeneev noted the shortcomings of piston theory, particularly
for M∞ <

√
2. In particular, the existence of single-mode flutter could not be predicted by

CPT. However, Vedeneev [158] also noted that series-expansion approximations to the exact
linear-potential solution, such as the “extended piston theory” of Dowell and Bliss [144]
and of Ganji and Dowell [176], correctly predicted the single-mode flutter phenomenon.
Vedeneev [158] also gave a review of the application of higher-fidelity aerodynamic models.
Vedeneev applied the exact 3D linear-potential formulation to finite aspect-ratio rectangular
plates and compared the solution to that obtained by CPT. Marked improvement in the linear
CPT prediction was obtained at M∞ < 4 through the use of Van Dyke’s coefficient as per
Eq. (3.24) in place of Lighthill’s coefficient of Eq. (3.11). The modified results were accurate
down to M∞ = 2 for AR > 1. Accurate predictions at lower Mach numbers were obtained
only for higher aspect ratios. Nonetheless, the piston theory models could not replicate the
single-mode flutter which dominates at M∞ <

√
2.
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In this sense, Vedeneev [158] essentially demonstrated that CPT may be applied to finite
plates, provided the Mach number is sufficiently removed from M∞ =

√
2, and provided the

aspect ratio of the plate is sufficiently higher than 1. As these bounds are approached, more
exact aerodynamic methods are required. The application of the 3D extended piston theory
due to Aravinth et al [145] is expected to correctly predict the occurence of single-mode
flutter, and may be viewed as an alternative to exact linear-potential flow formulations (such
as that due to Vedeneev [158]).

Finite Wings

A variety of justifications for the application of piston theory (in one form or another) to
finite wings may be encountered in the literature. Representative works in this category may
be classed as

• Works which rigorously account for three-dimensional influence. “Rigorous” in the
present sense means that the account of 3D influence is theoretically consistent or
mathematically justified. These works may be further categorized as works in which

– Piston theory is a special case of higher-fidelity methods in uniform-flow regions.
The work of Liu and Hui [171] is representative of this approach,

– A potential-flow basis is used, with CPT as the leading term in a series accounting
for upstream influence. The works of Landahl [128] and of Aravinth et al [145]
are representative,

– Potential-flow computations are supplemented by CPT to provide nonlinear
thickness effects. This is the modelling philosophy behind the ZONA7U software
developed by Liu et al [125],

• Works in which piston theory computations are heuristically adjusted for 3D effects in
the flow. Representative works include the methods of Chen [172] and Wang [173],

• Works in which strip theory is applied to allow the use of two-dimensional methods.
The majority of works which apply piston theory to non-planar flows adopt this
approach. Representative works include those of Yang and Song [175], Chen [174],
and Ghosh [141].

The work of Liu and Hui [171] is a small-disturbance theory for oscillating delta wings with
attached shocks. The underlying assumptions in the development are essentially similar to
other theories of Hui [177] as presented in Section 3.2.8. In particular, it is assumed that the
reduced frequency k and amplitude ε of oscillation are both small, such that k, ε ≪ 1. The
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resulting formulation is linear both in amplitude and frequency. The mathematical treatment
and the closed-form results are lengthy, and are presented in [171]. Here, it will only be
noted that separate formulations arise in uniform-flow and in conical-flow regions. Such
regions are depicted in Fig. 3.19. Within the uniform-flow regions, Hui’s [177, 178] theory
for oscillating wedges applies. As is discussed in Section 3.2.8, this contains LPT as a special
case when the reflection of acoustic waves from the bow shock is neglected. In this sense,
the work of Liu and Hui [171] provides an additional mathematically-based justification for
the application of piston theory in uniform-flow regions of finite wings.

M∞
α

M∞
α

x

x

y

y

Fig. 3.19 Illustration of uniform-flow regions (hatched areas) and approximate Mach cones
on the windward side of finite wings.

The method of Landahl [128] was rooted in a 3D potential flow formulation, and has
been discussed in Section 3.2.5. Similarly, the basis for the method of Aravinth et al [145]
is a linear-potential flow formulation which is simply a three-dimensional interpretation of
the methods of Dowell and Bliss [144] and of Ganji and Dowell [176]. These latter methods
have been discussed in Section 3.2.5.

The modelling philosophy of Liu et al [125] in developing ZONA7U is now considered.
The linear potential formulation was adopted in modelling 3D upstream influence on the
finite wing. The resulting aerodynamic-influence-coefficient matrix is supplemented by an
additional matrix accounting for nonlinear thickness effects. In the notation of Liu et al [125],
this is written as

([D]+ [E])
{

∆Cp
}
= {wb} , (3.115)
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where
{

∆Cp
}

is the vector of total lifting pressures between the lower and upper surfaces of
the wing, {wb} is the vector of unsteady downwash (essentially equivalent to Eq. (3.6)), [D] is
the aerodynamic-influence-coefficient (AIC) matrix from linear potential flow, and [E] is the
AIC matrix accounting for nonlinear thickness effects. As noted by Liu et al [125], the latter
matrix may be obtained from a variety of methods. One suggested method is the application
of strip theory and of the perturbed Euler characteristic method of Chavez and Liu [179]
(itself a numerical implementation of Hui’s [177, 178] theory for oscillating wedges). In this
case, [E] contains strip-wise upstream influence. The practical implementation in ZONA7U
uses third-order CPT to generate the supplementary matrix. Because CPT does not account
for upstream influence, [E] is a diagonal matrix of self-influenced terms in this case. In
this sense, the work of Liu et al [125] uses CPT as an extension to nonlinear thickness
for an underlying three-dimensional linear potential flow model. While the supplemental
application of CPT borders on heuristic, the account of three-dimensionality by the linear
potential base-solution is rigorous.

A number of methods adopt a more heuristic approach to modelling 3D influence in the
application of piston theory. Chen 1989 [172] used the Hui’s [177] 2D theory for oscillating
wedges as a base method for computing pressures with an account of stripwise upstream
influence. This is applied to rectangular wings of finite span. As expected from Fig. 3.19,
good prediction was obtained within the uniform-flow portion of the wing. The three-
dimensionality at the wing tips was accounted for by Chen 1989 [172] through a pressure
scaling-factor. This may be defined as

PSF(x,y) =
P3D(x,y)
P2D(y)

, (3.116)

where PSF is the scaling factor, P3D is the pressure predicted by 3D linear supersonic theory,
and P2D is the pressure in the uniform-flow region of the wing as predicted by 3D linear
supersonic theory. This pressure-scaling factor was used to adjust the pressure predicted by
Hui’s [177] method (which contains LPT as a special case). This may be written as

PChen(x,y) = PSF(x,y)PHui(x,y) . (3.117)

A similar approach was adopted by Wang [173]. Wang’s definition of the pressure-scaling
factor differed somewhat, and may be written as

PSF(x,y) =
P3D(x,y)

˜P3D(y)
, (3.118)
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where P3D is the pressure predicted from linear supersonic theory, and ˜P3D is a stripwise
weighted-average of the conical flow pressure. The definition of ˜P3D differs for subsonic
and supersonic leading-edges, and is given in the original publication by Wang [173]. The
pressure prediction from CPT was then adjusted by the pressure-scaling factor to heuristically
account from three-dimensionality as

PWang(x,y) = PSF(x,y)PCPT (x,y) . (3.119)

Finally, as mentioned earlier, in a wide range of works, strip theory is applied in order to
apply 2D methods to finite wings. This has been applied to both CPT, as by Ghosh [141], as
well as LPT, as by Yang and Song [175] and by Chen [174]. This is not discussed further
here.

3.2.7 LPT as a Heuristic Method

The first suggestion to use the local mean-steady fluid state for the definition of cylinder
conditions in Eq. (3.8) was made by Morgan et al [131]. This suggestion was made in
the context of theoretical considerations of flutter at “extreme” Mach numbers. Morgan
et al [131] noted that the “local flow piston theory” presented the possibility of studying
mean angle-of-attack effects on the flutter boundary. The theoretical case study considered
by Morgan et al [131] was a 4% thickness double-wedge airfoil within the Mach range of
3 ≤ M∞ ≤ 10. The mean-steady solution was obtained using the oblique-shock relations.
The difference between “local flow piston theory” and CPT was considered to be small, and
no further consideration was given to the method. Furthermore, it is unclear whether the
downwash equation was updated to reflect the local cylinder advection speed as in Eq. (3.2).
Nevertheless, the work of Morgan et al [131] may be considered the first formulation of LPT
based in heuristic reasoning. Morgan et al [131] also considered the possibility of using
Newtonian flow to model the blunted leading edges of airfoils, with a transition to CPT over
the portion of the airfoil for which the piston downwash was subsonic. This suggestion was
similarly based in heuristic reasoning. The use of local cylinder conditions in piston theory,
with the conditions determined behind an oblique shock, has also been referred to as the
“Miles’ [138] strong shock piston theory” by a number of authors. In this sense, it may also
be considered a development of LPT as a heuristic method.

In its early history, the spectrum of applications to which LPT was applied was typically
amenable to solution using other engineering-level aeroprediction methods. In this context,
LPT did not offer significant savings in computational cost, and the method did not find
wide application in the literature. A number of examples of its early application may be
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noted. LPT was typically used as a perturbation to a mean-steady solution obtained using
the first-order shock-expansion method. One examples of this is the work of Yates and
Bennett [115].The formulation of Yates and Bennett is significant four respects:

• The cylinder orientation was defined as normal to the local mean-steady surface
(referring to Fig. 3.4, ψ = ψm and δm = 0, where subscript “m” refers to the mean-
steady conditions and ψm is the inclination of the local mean-steady surface relative to
the body axis),

• The downwash velocity as defined in Eq. (3.2) utilized the local mean-steady velocity
Vm,

• The perturbation pressure coefficient correctly accounted for dynamic-pressure scaling
through the factor qm/q∞ in Eq. (3.9),

• The use of mm =
√

M2
m −1 in place of Mm was investigated and the connection to a

local-flow formulation of Van Dyke’s [104] second-order theory was made.

The significance of these points is not to be underestimated, as they are evidence of a lucid
understanding of LPT. Some later applications of LPT using mean-steady solutions from
CFD do not account for the dynamic-pressure scaling in the pressure-coefficient, and simply
adopt a blanket replacement of freestream conditions with local mean-steady conditions [13].
Furthermore, Yates and Bennett [115] consider a first-order coefficient other than that due
to Lighthill [88] and consider a quasi-steady application of Van Dyke’s [104] second-order
theory. It was noted by Yates and Bennett [115] that in the limit of shock detachment, LPT
based on Lighthill’s [88] coefficients predicted substantially different flutter trends compared
to LPT based on Van Dyke’s [104] first-order coefficient. This was explained by the factor of
1/mm → ∞ in Van Dyke’s coefficient, while 1/Mm → 1 in Lighthill’s coefficient as shock
detachment was approached. Finally, Yates and Bennett [115] recognized that while CPT
was not valid (under the assumption of subsonic piston downwash) for the case-studies
considered, the LPT formulation was.

Chen and Cao [180], following the development of Yates and Bennett [115], developed
an essentially similar LPT. The chief difference lies in the definition of the cylinder as normal
to the mean-steady chordline in the formulation due to Chen and Cao [180]. However, the
method similarly accounts for dynamic pressure scaling and models the downwash as a
perturbation to the mean velocity. First-order shock-expansion theory is used for the mean-
steady flow. The method is once again compared to CPT due to Lighthill [88] and to Van
Dyke’s [104] second-order theory. It is also compared to the more exact theory of Hui [181].
Excellent agreement is obtained with Hui’s [181] method over the parameter space of M∞, δ ,
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and α0, where δ is the semi-angle of the wedge and α0 is the mean-steady angle of attack.
Poor modelling is obtained immediately prior to shock detachment. Poor modelling is also
obtained for α0 > 5° when M∞ < 2, and for approximately α0 > 10 at M∞ > 5. This may be
expected due to the role of wave reflection in these cases, which is not modelled in the LPT
due to Chean and Cao [180] but is accounted for in Hui’s [181] method. Overall, significant
improvement in the prediction by LPT was noted over CPT due to Lighthill [88] and due to
Van Dyke [104].

3.2.8 LPT as a Special Case of Hypersonic SDT

Various analyses based in the hypersonic perturbation equations include LPT as a special
case. These analyses were typically concerned with the loads on oscillating wedges or quasi-
wedges [139, 142, 146, 178, 179, 181–185], cones or quasi-cones [140] or wings and general
three-dimensional bodies [86, 141, 171, 177]. Most of these analyses were mathematically
rigorous developments. However, as their focus was not on developing piston theory, they are
treated in the present section. In these works, LPT is found to be a special case of the more
general solutions obtained. This special case considers the limit of negligible reflection of
Mach waves from the bow shock produced by the body. The resulting LPT is termed “strong
shock piston theory” by a number of authors. A number of differences are noted between
the various analyses. These will briefly be discussed in the text that follows. The common
ground between the works is that the reference cylinder conditions being perturbed in the
LPT formulation are those in the mean-steady flow behind the bow shock. The analyses may
be loosely grouped into three categories:

• Analyses based in perturbations relative to the freestream. These typical utilize the
classical hypersonic SDT assumptions [27, 83, 83]. The x-axis is aligned with the body
axis and perturbations relative to the freestream variables are considered. Examples
include the works of [86, 146, 182],

• Analyses based in perturbations relative to the mean-steady flow behind the bow shock
for a wedge-like surface. The x-axis is aligned with the mean-surface tangent of the
body surface. It is typically assumed that deviations of the body surface from the
approximating mean-steady wedge (whether due to deformation of the surface, rigid
body motion, or due to the body not being a wedge) are small. Examples include the
works of [140, 171, 177–179, 185],
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• Analyses based in a heuristic application of LPT on the basis of the above two cat-
egories. Examples include the works primarily due to Ghosh [139, 141, 142] an
Orlik-Rückemann [183, 184].

Analyses Based in Perturbations Relative to the Freestream

The first developments were due to Appleton [182] and McIntosh [146]. The development of
Appleton [182] utilized the hypersonic SDT assumptions (referred to as the “piston theory
model” in the development) to apply the unsteady analogy to an oscillating slender wedge
in hypersonic flow. The treatment aimed to account for the effect of wave reflection from
the bow shock on the pitch stiffness and damping. However, a number of errors arose in the
development, as discussed by Orlik-Rückemann [184]. The same problem was treated by
McIntosh [146]. The treatment of McIntosh [146] is illustrated in Fig. 3.20. McIntosh [146]
also invoked the classical hypersonic SDT assumptions, while allowing for unsteady flow. In
particular, the assumptions included that

• The inclination of the bow shock to the freestream was given by β =O(τ), with τ ≪ 1
being a small parameter,

• The inclination of the wedge surface to the freestream was given by δ = O(τ),

• Streamwise perturbations to the freestream velocity were O
(
τ2),

• Transverse velocity perturbations v were O(τ),

• The amplitude of oscillation A was O
(
τ2),

• The reduced frequency of oscillation k was O(1).

The Euler equations were non-dimensionalized, with the governing equations truncated to
terms up of O(τ). Harmonic perturbations about the spatially-invariant mean-steady wedge
flow were considered. This allowed the time-derivatives of variables to be expressed through
the parameter k, with the remaining independent variables being the spatial coordinates.
A similar treatment of the boundary conditions at the surface and at the shock was given.
Transformation of the variables allowed the equations to be expressed as a wave-type problem
with a general solution given by characteristics. The mathematical detail of the solution
of the characteristic equation is given in [146], and is not repeated here. The result of the
analysis was that the fluid variables at any given point in the flow between the body surface
and the bow shock were described by an infinite series. This series summed the contributions
due to perturbations along the characteristics passing through the point of interest. It thereby
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Fig. 3.20 Illustration of the configuration considered in McIntosh’s [146] method, with
equivalent piston-theory cylinder shown.

accounted for the reflection and attenuation of characteristics from the bow shock (and body
surface). This was described in terms of an attenuation factor λ and a reflection coefficient Γ.
Adapting McIntosh’s [146] expressions to the present nomenclature gives

λ =

(
ρmam
ρ∞a∞

)(
K2

β
+1
)
−2K3

β(
ρmam
ρ∞a∞

)(
K2

β
+1
)
+2K3

β

, (3.120)

Γ = −
M∞(β −δ )− am

a∞

M∞(β −δ )+ am
a∞

, (3.121)

where Kβ = M∞β is the hypersonic similarity parameter based on the bow-shock angle, a
is the speed of sound, and subscript “m” denotes the mean-steady values behind the bow
shock. As noted by McIntosh [146], these parameters are zero in the limit of a Mach wave,
and tend to positive values less than 1 in the limit of Kβ → ∞ for γ = 1.4. The significance
of the zero-limit for weak shocks, in particular λ → 0, follows from McIntosh’s [146] result
for the pressure at a point in the fluid, given in the present nomenclature as:

p = pm −ρmamV∞Aexp{ikt̃}
[

f ∗w(C1)+
∞

∑
n=1

(−λ )n f ∗w(Γ
nC1)+

∞

∑
n=1

(−λ )n f ∗w(Γ
nC2)

]
,

(3.122)
where the following have been introduced for brevity:

t̃ =V∞t − x , (3.123)

C1 = − V∞
am

[
z−
(

vm +am

V∞

)
x
]
, (3.124)
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C2 =
V∞
am

[
z−
(

vm −am

V∞

)
x
]
, (3.125)

f ∗w(x) = exp(ikx)Dx fw(x) , (3.126)

Dx fw(x) = ik fw(x)+
∂ fw(x)

∂x
, (3.127)

where fw = O(1) is the non-dimensional function describing the mode-shape of the wedge
oscillation or deformation, C1 is associated with left-running characteristics (which appear
to come from the surface), C2 is associated with right-running characteristics (which appear
to come from the shock), and A is the amplitude of oscillation. The first term in the brackets
represents the contribution along characteristic lines due to the closest point on the body
surface. The second term represents the contribution, along the same characteristic line, from
surface points further upstream. These contributions have been reflected off of the shock,
and hence involve the attenuation factor λ and the reflection coefficient Γ. The index n in
the series corresponds to the number of times the contribution has been reflected off of the
shock. The third term represents the contribution along the characteristic line incident from
the shock of upstream surface points. It is immediately evident by comparison of Eq. (3.122)
and Eq. (2.36) that the LPT is obtained when the reflection of waves off the bow shock is
identically zero (through λ = 0). This allows the pressure to be a function of only the local
surface behaviour. However, it is noted that the formulation due to McIntosh [146] defines
the downwash as V∞A, as opposed to VmA in LPT. From the above, McIntosh [146] gave the
differential pressure coefficient for a wedge oscillating about zero incidence as

CP(L)−CP(L) = 4βAexp{ikV∞t}
[

2γK2
β
− (γ −1)

2+(γ −1)K2
β

]1/2[
Dx fw(x)

+2exp{−ikx}
∞

∑
n=1

(−λ )n exp{ikΓnx}Dx fw(Γnx)

]
. (3.128)

It may be shown from the oblique shock relations that

ρmam

ρ∞a∞
= Kβ

[
2γK2

β
− (γ −1)

2+(γ −1)K2
β

]1/2

. (3.129)

It is noted here that Orlik-Rückemann [184] gave a closed-formed approximation of the
above results by developing the method in terms of a power-series in ik and neglecting terms
of O

(
k2). McIntosh [146] proceeded to compare Eq. (3.128) with that predicted by piston

theory. The comparison and discussion that followed included CPT, a heuristic extension
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to LPT, and the correlation with Miles’ [138] strong-shock piston theory. The heuristic
extension to LPT by McIntosh [146] was rooted in the reasoning that the mean-steady flow
behind the wedge could be regarded as an equivalent freestream. The mean-steady wedge
surface could then be treated as a flat plate, and the resulting small perturbations could then
be modelled using CPT to perturb the new cylinder conditions. For ease of comparison with
Eq. (3.128), the (full isentropic) CPT result was given as

CP(L)−CP(L) =
4β

Kβ

Aexp{ikV∞t}
[

1+
(

γ +1
2

)
Kδ

]
Dx fw(x) , (3.130)

where Kδ = M∞δ is the hypersonic similarity parameter based on the mean-steady surface
slope δ . The extension of LPT due to McIntosh [146] resulted in the following formulation:

CP(L)−CP(L) = 4βAexp{ikV∞t}
[

2γK2
β
− (γ −1)

2+(γ −1)K2
β

]1/2

Dx fw(x) , (3.131)

which was termed “corrected piston theory”. McIntosh [146] provided a numerical illustration
of prediction differences between CPT, “corrected piston theory”, and the full unsteady
hypersonic SDT solution. It was shown that LPT provided significant improvements over
CPT in the prediction of the normal-force stiffness and damping. However, neither method
could capture the phase-shift with Kβ in the unsteady loading that was predicted by the full
theory. This is a direct consequence of upstream perturbations and lag being disregarded
in point-function formulation of piston theory. The error associated with the results due to
McIntosh [146] is O

(
β 2), where β is the shock angle.

McIntosh’s [146] method was used by Bailie and McFeely [186] in a study of the
flutter of wedge-mounted panels in hypersonic flow. A number of parameters were studied,
including the role of the distance of the panel from the leading edge and the length of the
panel. These parameters were particularly important in determining the portion of the panel
subjected to the reflection of acoustic waves off of the shock wave. This may be heuristically
understood by picturing a panel of fixed length at various axial stations in Fig. 3.20. The
conclusion reached by Bailie and McFeely [186] was that for the purposes of panel flutter,
the interaction of acoustics waves (as generated by panel vibration) with the bow shock could
be neglected. The resulting shock-expansion / LPT approach yielded high accuracy in panel
flutter analyses. It is important to note that these conclusions were reached with the caveat of
small wave-number and limited panel length.
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Analyses Based in Perturbations Relative to the Mean Steady Flow

An extension to thicker wedges and lower Mach numbers was achieved by Hui [177, 178].
Hui [177] developed a hypersonic SDT for oscillating caret wings. The development consid-
ered perturbations about the mean-steady design conditions. The x-axis was aligned with
the mean-steady surface along the centerline. The adaption of this method to wedges, as in
Hui [178], is illustrated in Fig. 3.21. The key assumptions of the development were that

• All perturbations about the mean-steady conditions, as well as the angular amplitude
of oscillations, were of order O(ε), with ε ≪ 1,

• The reduced frequency of oscillation k was small, such a power-series for dependent
variables in powers of ik could be truncated after O(k),

• The caret-wing design was such that at mean-steady conditions, the y- and z-components
of velocity were identically zero,

• The bow shock was attached to the leading-edges at the mean-steady conditions.

x

z
Vm

Vcyl = Vm
Advected cylinder

(β −δ )

Fig. 3.21 Illustration of the configuration considered in Hui’s [178] method, with equivalent
piston-theory cylinder shown.

The resulting method was thus first-order in both perturbation smallness ε and reduced
frequency k. It is remarked here that the method of Hui [177] was extended to higher powers
in ik by Yang and Chen [187]. Yang and Chen [187] found good agreement in the method
with CPT and Van Dyke’s [104] second-order theory for wedge semi-angles of 5°. The
mathematical details of the results of Hui’s [177] analysis will not be entered into, as the
development did not consider a reduction to LPT. However, three key conclusions from
Hui‘s [177] are repeated here:
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• A small, steady perturbation in pitch did not change the two-dimensionality of the
flowfield,

• Unsteady perturbations in pitch (i.e., oscillations) produced a three-dimensional effect
on the flowfield,

• The resulting development for wedges included the work of McIntosh [146] as a
slender-wedge case, and yielded excellent agreement with exact results for wedges of
arbitrary thickness (up to shock detachment) for Mm ≥ 2.

While Hui [177] was not concerned with LPT, these conclusions may be interpreted in
the context of LPT. In particular, the consideration of perturbations to the mean steady
conditions (as done in LPT), resulted in better prediction and a broader range of application
then when considering perturbations to the freestream (as done in CPT). To facilitate this,
alignment of the axes with the mean-steady surface is beneficial (this has implications for
the cylinder orientation). Finally, it is emphasized that unsteady perturbations produce a
three-dimensional effect, which is not modelled by LPT. For completeness, a number of
works related to or expanding on Hui’s [177] SDT are noted here. Hui [178] examined
the unsteady interaction of Mach waves and a strong bow shock for wedge flows. The
subsequent analysis utilized a perturbation series in powers of M−2

m , truncated at O
(
M−2

m
)
.

The resulting formulation was valid for general reduced frequency k. This may be compared
to the original development of Hui [177], which was exact in Mm, but valid up to the first
order in O(k). The work of Hui [178] was later expanded upon by Hui and Hamilton [185].
They extended the perturbation series to higher-order terms in M−2

m . These higher-order
terms were shown to improve prediction accuracy when Mm < 2. The original method of
Hui [177] was applied to oscillating double-wedge airfoils by Hui [181], with a misprint
in Hui [177] also being corrected. Chavez and Liu [179] utilized the theory of Hui [177]
as the basis for a computational method named the Perturbed Euler Characteristics (PEC)
method. Finally, the work of Liu and Hui [171] in applying Hui‘s [177] theory to oscillating
delta wings with attached leading-edge shocks is noted. The conclusions drawn by Liu and
Hui [171] may once again be interpreted in the context of LPT. They noted that the method of
Hui [177] could be used to account for rotationality produced by the shock provided A ≪ B,
where

• A is the effect of interaction between the unsteady wedge flow and the mean-steady
flow. In this context, “wedge flow” refers to the portion of the delta-wing flow upstream
of the Mach cone through the wing apex,

• B is the unsteady flow contribution from the wedge flow region alone.
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This may be interpreted in the context of LPT as follows. The reduction from a 3D flow
to a 2D approximation requires that the unsteady interaction with the mean-steady 3D flow
be negligible compared to the unsteadiness in the 2D plane. The further reduction from a
2D representation to a 1D representation with wave reflection off the shock is subject to
similar considerations. Finally, reduction to LPT requires these reflections to be neglected.
In summary, if the interaction between boundary unsteadiness and the mean-steady flow is
not negligible, LPT will not be valid.

Analyses Based in Large-Incidence Methods

Finally, LPT may be considered as a special case of large-incidence hypersonic theory. Such
a treatment is found in the work of Voevodenko and Panteleev [86]. They consider the
application and validity bounds of Sychev‘s [4] theory in the context of delta wings of a
variety of aspect ratios. They showed that the method yields accurate prediction even for
wings of relatively low sweep angles (numerical results were obtained for sweep angles as low
as 30°) and moderate aspect ratio (AR = O(1)). As noted by Voevodenko and Panteleev [86],
when the method is applied to wings of non-small aspect ratio, it is required that the density
ratio between the freestream and the windward flow be assumed a small parameter. This
is achieved as a consequence of α = O(1) or M2

∞ sin2
α ≫ 1. While Voevodenko and

Panteleev [86] did not consider an analytical modelling of wave reflection from the shock,
the physics is captured in the numerical solution of Sychev’s [4] equations. Voevodenko
and Panteleev [86] showed that in the case of steady flow past a wedge, with the x axis
aligned with the wedge surface, Sychev’s [4] method reduces the flow to the problem of a
1D plane shock. Voevodenko and Panteleev [86] expressed the resulting surface pressure as
a power-series in ρ∞/ρ , which is assumed to be a small parameter ε ≪ 1. The expression for
the pressure is given as

p
p∞

=
2γ

γ +1
M2

n(1− ε)−2 − γ −1
γ +1

, (3.132)

ε =
ρ∞
ρ

=
γ −1
γ +1

+
2

(γ +1)M2
n
, (3.133)

Mn = M∞ sinδ (≈ K) , (3.134)

where δ is the inclination of the wedge surface to the freestream and K is the hypersonic
similarity parameter based on δ . This may be compared to the exact oblique shock equation,
given as

p
p∞

=
2γ

γ +1
M2

n

(
sin2

β

sin2
δ

)
− γ −1

γ +1
, (3.135)



176 Review of Piston Theory

with the same definition for Mn. With Voevodenko and Panteleev [86] having aligned the
x-axis with the wedge surface, the similarity of the method to the works of Hui [177] may be
seen. The extension to LPT could be achieved by through neglecting wave reflection at the
shock, as was noted in the discussion by McIntosh [146]. Voevodenko and Panteleev [86]
noted that the error in the high-incidence formulation was O

(
ε2), which is essentially similar

to O
(
1/M2

∞ sin2
α
)

or O
(
K−2).

3.2.9 Application of Piston Theory to Viscous Flows

Piston theory has also been used to model unsteady aerodynamics in viscous flows. The
majority of approaches rely on interpreting viscous effects as geometric changes to an
equivalent inviscid flow. In treating static viscous-inviscid interactions, the boundary-layer
displacement thickness δ ∗ is used to define an “effective shape” for the inviscid flow. In
dynamic viscous-inviscid interactions, the dynamic response of the displacement thickness
dδ ∗
dt is used to modify the effective piston downwash. The present section will give a brief

overview of representative works in the application of piston theory to viscous flows, which
may be broadly categorized as

• Approaches which model perturbations (whether due to viscous interaction or other-
wise) as equivalent wedges embedded in a mean-steady flow, as due to Ericsson [188],

• Approaches which utilize a higher-order inviscid method, of which LPT is a special
case, as due to Orlik-Rückemann [183] and Hui and East [189],

• Approaches which use CFD to compute the mean-steady viscous flow, and which
neglect dynamic viscous interaction, as due to McNamara et al [13] and Liu et al [18].

Ericsson [188] considered the effects of viscous and elastic perturbations on the unsteady
aerodynamics of airfoils. These perturbations were modelled as small wedges embedded in
the mean-steady flowfield. The first-order truncation of the tangent-wedge pressure equation
(or equivalently, first-order piston theory) was used to model the pressure increment due to
the perturbation. Ericsson [188] modelled the surface pressure due to static perturbations as

p = pe

(
1+

∆pv(s)

pe

)
, (3.136)

∆pv(s)

pe
= γKv = γMe

dδ ∗

dx
, (3.137)

where pe is the pressure at the boundary-layer edge (as computed for inviscid flow), ∆pv(s) is
the increment due to static viscous effects, and Kv is the local hypersonic similarity parameter
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based on the equivalent wedge angle due to viscous effects. The comparison of Eqs. (3.136)
and (3.137) with the first-order truncation of Eq. (3.8) clearly shows the piston-theory
application. A laminar boundary layer was assumed, and the following relationship used in
defining the static viscous-inviscid interaction:

Me
dδ ∗

dx
= Bχ̄ , (3.138)

χ̄ = M3
e

√
C∗

Rex
, (3.139)

B = B1 +
B2

M2
e
, (3.140)

where Rex is the Reynolds number based on fluid properties at the boundary-layer edge at a
distance x from the wedge leading-edge, χ̄ is the viscous-interaction similarity parameter,
and the variables B1, B2, C∗ are defined as functions of γ , the wall temperature Tw, Te, the
Prandtl number Pr, and Me in the original work of Ericsson [188]. It is noted here that
Ericsson gave a closed form expression for Me as a function of γ and the inviscid pressure
ratio pe/p∞. The inviscid pressure ratio was computed using the tangent-wedge equation,
given in Eq. (3.37), based on the physical wedge shape. This summarizes the methodology
of Ericsson [188] in using piston theory to model static viscous interaction. His approach to
modelling dynamic viscous interaction was essentially similar. The dynamic perturbation
equivalent to Eq. (3.137) was given as

∆pv(d)

pe
= γMe

1
Ve

dδ ∗

dt
, (3.141)

where Ve is the fluid velocity at the boundary-layer edge and ∆pv(d) is the increment due to
dynamic viscous effects. The term 1

Ve
dδ ∗
dt essentially represents the angle of the equivalent

wedge due to the dynamic response of the boundary-layer displacement thickness to oscilla-
tions. It was assumed by Ericsson [188] that this response occurred instantaneously for the
reduced frequencies typically associated with structural motions at hypersonic speeds. This
led to the further relationship between the boundary-layer response and the surface-normal
velocity of the surface V⊥ due to oscillations

dδ ∗

dt
=

∂δ ∗

∂θ

∂

∂ t

(
V⊥
V∞

)
, (3.142)
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where θ is the change in inclination of the wedge due to oscillations. Ericsson gave the
boundary-layer response to static changes in inclination as

1
x

dδ ∗

dθ
=−

dCp(e)

dθ

∆pv(s)

pe

(
pe

p∞

)− 3
2 M2

∞
Me

[(
3
4
− B2

BM2
e

)
G1 +G2 +

1
4

]
, (3.143)

where ∆pv(s) is the pressure increment due to static viscous effects, and where G1 and G2

are functions of γ , pe/p∞, and Me and are defined in Ericsson’s original paper [188]. Erics-
son [188] noted that the boundary-layer displacement thickness decreased when subjected
to compressive oscillations. He noted that this had a “cushioning effect” which decreased
the piston effectiveness. Ericsson [188] successfully used the same principle of embedded
equivalent edges to model the pressure increment due to various non-viscous perturbations.

A similar approach was used earlier by Orlik-Rückemann [183]. The inviscid pressure
loading on the wedge was computed using McIntosh’s [146] piston theory (with wave
reflections from the bow shock neglected). The effect of static viscous interaction on the
inviscid pressure was computed using a semi-empirical model. This model was based in
flat-plate boundary layer theory, with Orlik-Rückemann [183] demonstrating its extension
to wedges. The resulting formulation for the surface pressure, including static viscous
interaction, may be written as

p
p∞

=
pinv

p∞

pvis

pinv
, (3.144)

pinv = pm +ρmamV∞θp , (3.145)
pvis

pinv
= E + f0G0dχ̄ , (3.146)

where pinv is the inviscid pressure, pvis/pinv is the pressure scaling due to static viscous
interaction, θp is the perturbation to the surface inclination due to motion of the wedge, and
the variables in Eq. (3.146) are defined in the paper of Orlik-Rückemann [183]. It is noted
here that E ≈ 1, f0 accounts for scaling of the flat-plate constant G0, and d accounts for the
wall temperature. To account for dynamic viscous interaction, Orlik-Rückemann [183] noted
that the effective piston downwash must be adjusted for the boundary-layer response. The
resulting formulation for the surface pressure, accounting for both static and dynamic viscous
interaction, may be written as

p =
pvis

pinv

[
pm +ρmam

(
V∞θp +

dδ ∗

dt

)]
. (3.147)
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Orlik-Rückemann [183] provided expressions for the boundary-layer response dδ ∗
dt in both

the strong interaction and weak interaction regimes. It is noted here that these expressions are
a function of dKθ

dt , where Kθ is the hypersonic similarity parameter based on the inclination
of the wedge to the freestream.

The methods developed by Orlik-Rückemann [183] and Ericsson [188] both utilized first-
order piston theory in their analysis. However, the approach towards modelling the viscous
interaction differed. Nonetheless, neither method accounted for unsteady inviscid reflections
from the bow shock or the impact of this on the boundary layer. Orlik-Rückemann [183]
proposed that this could be accounted for by including McIntosh’s [146] reflection terms
in Eq. (3.145). The spirit of this suggestion was realized by Hui and East [189]. Hui and
East [189] used a first-order coupling between the inviscid and viscous flows, with the
solution procedure as follows:

• The unsteady inviscid flow for an oscillating wedge, including the effect of wave
reflections, was computed using Hui’s [177, 178] theory,

• The boundary layer corresponding to the unsteady inviscid flow past the physical
wedge was calculated. This determined a new, unsteady effective shape,

• First-order coupling was achieved by using the effective shape as the new geometry in
an inviscid computation by Hui’s [177, 178] theory.

This methodology accounts for the static and dynamic interaction between the inviscid and
viscous flows, with wave reflection due to both accounted for. The neglect of wave reflections
would reduce the theory to a special case of LPT applied to viscous interaction.

Finally, the recent application of piston theory to mean-steady viscous flows computed
by CFD is considered [13, 171]. The methods which will be covered are essentially similar.
The differences are chiefly associated with the method used to define the effective shape.
McNamara et al [13] consider the application of Euler-based LPT and of CPT to a mean-
steady flow computed using the Navier-Stokes equations. The approach is described in
Section 3.2.10. They also consider the use of effective shape corrections to the application of
CPT. Two methods are considered to compute the effective shape:

• A semi-empirical relation for the laminar displacement-thickness on flat plates,

• Using CPT to correlate the viscous pressure gradient to an effective boundary-layer
slope.

McNamara et al [13] note that the two methods yield notably different effective shapes
for a double-wedge airfoil at hypersonic speeds. The laminar flat-plate relation provides
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only a slight increase in thickness, which is fairly insensitive to the Mach number. The
CPT-correlation method predicts an effective shape which is notably thicker on the aft portion
of the double-wedge, and is more sensitive to the freestream Mach number. The effect on the
flutter boundary differs between the two methods. This led McNamara et al [13] to conclude
that the effective-thickness approaches examined were not a reliable means of accounting for
viscous interaction. It is reiterated here that no dynamic viscous interaction was modelled.

Liu et al [18] developed an approach for estimating the effective shape from CFD
computations. LPT was then applied about this effective shape using local flow conditions
along the shape. The defining feature of the work of Liu et al [18] is the method for effective
shape determination. Liu et al [18] posited that a effective shape could be determined as the
locus of a limiting value of vorticity in the flow. This was based in the reasoning that the
boundary layer is a region of high vorticity. Noting that the laminar boundary-layer thickness
on a flat-plate in the strong viscous interaction regime had the following proportionality,

δ
∗ ∝ M1/2

∞ Re−1/4
1 x3/4 . (3.148)

Liu et al [18] defined an effective-shape shape coefficient Ce f f such that the outer inviscid
flow was defined by

|ξ |<Ce f f
Vx∞

M1/2
∞ Re−1/4

1 x3/4
, (3.149)

where Vx∞ is the x-component of the freestream velocity, and Re1 is the Reynolds number
based on a unit length. A given value of Ce f f essentially determines the effective shape
for a given mean-steady Navier-Stokes solution. The effective-shape coefficient Ce f f was
determined as a function of the viscous interaction parameter by minimizing the error between
unsteady Navier-Stokes solutions and the LPT solution for a given value of Ce f f . In this
sense, the relationship between Ce f f and χ̄ is tuned for a given geometry and parameter-space
of flow parameters. Liu et al [18] subsequently examined the application of the method to a
variety of airfoil thicknesses and flow incidences. The method yielded improved prediction
of aerodynamic forces over LPT. The application of the method to slender waveriders was
also considered, with similar improvement over LPT noted.

3.2.10 CFD-based LPT as a Heuristic Method

Formulations

As noted in the earlier section on LPT as a heuristic method, the initial problems to which LPT
was applied could also be solved by other engineering-level aeroprediction methods. This
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meant that LPT did not offer significant savings in computational cost. The value of LPT as
a perturbation method for computational cost-reduction in CFD was only recognized towards
the 1990s. One of the early examples of CFD-based LPT is the work of Hunter [190, 191].
Hunter used piston theory to model both steady and unsteady perturbations about a mean-
steady Euler solution. The local mean-steady conditions were used as the cylinder reference
conditions, with the cylinder oriented normal to the local mean-steady surface tangent. This
may be described in the context of generalized piston theory as

θ = 0° , (3.150)

Vcyl = Vm , (3.151)

pcyl = pm . (3.152)

The downwash definition used by Hunter was based on the projection of fluid and body
velocities onto the surface normal following deformation. This may be written in the
nomenclature of Fig. 3.4 as

w = (Vb −Vm) · n̂ , (3.153)

where n̂ is the unit normal vector following a deformation or displacement, Vb is the velocity
vector of the body due to motion, and Vm is the mean-steady fluid velocity vector at the
surface. It may be noted that Vm · n̂m = 0, where n̂m is the unit normal vector to the mean-
steady surface. It should also be noted that this downwash definition results in tanδ being
replaced by sinδ . Hunter [190, 191] investigated the application of the so-called “piston-
perturbation method” to axisymmetric cone flows, deforming panels in the presence of shock
interaction, hypersonic glide vehicles, and a vehicle with a conical body and swept wing of
moderate aspect ratio. Hunter [190, 191] noted excellent agreement in the results compared
with full unsteady Euler computations. It is noted here that Hunter utilized the full-form of
the isentropic pressure equation as given in Eq. (3.18).

The formulation of LPT put forward by Zhang et al [14] is fundamentally similar to
that due to Hunter [190]. The sole difference is that the pressure relation is given by the
first-order truncation of Eq. (3.8). Zhang et al [14] considered the application of LPT to
circular-arc airfoils, a NACA 0012 airfoil, and to a trapezoidal-planform fin. Once again,
excellent correspondence with full unsteady Euler results was obtained. It is to be noted that
a number of publications detailing the development and application of LPT in China in the
early 1990s are available in Chinese, including papers on Euler-based LPT [192]. However,
it is the publication by Zhang et al [14] that generated significant attention and renewed
interest in CFD-based LPT in English-language literature. Since this publication of Zhang et
al [14], CFD-based LPT has been widely adopted and applied to a number of engineering
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problems. The formulation of LPT has generally remained unchanged, with few exceptions
found in the literature. These will be briefly noted here, along with examples of applications.

The suitability of a number of aeroprediction methods for hypersonic aeroelasticity were
investigated by McNamara et al [13]. LPT was one of the methods considered, along with
a method referred to as “static flow approximation with piston theory correction.” The
implementation of LPT by McNamara et al [13] utilized the following equations for the
downwash and the local pressure coefficient:

w =
∂Z(x, t)

∂ t
+Vm

∂Z(x, t)
∂x

, (3.154)

Cp =
2

M2
m

[
c1

(
w
am

)
+ c2

(
w
am

)2

+ c3

(
w
am

)3
]
, (3.155)

where Z(x, t) describes the chordwise distribution of transverse displacement, and
Lighthill’s coefficients as per Eqs. (3.11) to (3.13) were used for c1, c2, and c3. While
the downwash equation is correct for airfoils of negligible thickness thickness, the equation
used by McNamara et al [13] for the pressure coefficient is in error. This may be seen by
comparison with Eq. (3.9). The formulation of McNamara et al [13] seen in Eq. (3.155) is
arrived at by a blanket replacement of freestream quantities with local flow quantities in a
CPT formulation. This results in the dynamic pressure scaling and reference pressure offset
in Eq. (3.9) being omitted.

The “static flow approximation with piston theory correction” used by McNamara et
al [13] is a CPT / CFD hybrid method. The modelling approach replaces the purely advective
contribution (through terms involving ∂Z

∂x with no coupling with ∂Z
∂ t ) to the CPT pressure

equation with the mean-steady pressure computed by CFD. In essence, CPT is used to model
damping terms, while steady CFD is used to model stiffness terms. Good correlation between
this method, LPT, and full unsteady CFD was noted [13].

Applications

The application of CFD-based LPT in literature generally adopts the formulation due to
Zhang et al [14]. A broad range of engineering problems have been studied with the method.
Some examples include

• Full vehicle aerodynamic analysis,

– Shi et al [16] used Euler-based LPT to determine the flutter boundaries of a
conical body with a highly-swept, low-wing delta wing, depicted in Fig. 3.22.
The geometry represents an interesting application case for LPT, as aerodynamic
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interference plays an important role at low incidences for the configuration. The
flutter boundary predicted by LPT was in worse agreement with full unsteady Eu-
ler results than is typically reported of LPT in the literature. This was particularly
true for the tail flutter mode at low incidences. It may be expected that interaction
between the leeside flow features and the tail aerodynamics occurs under these
conditions, as discussed in Section 2.1.3,

– Yan et al [17] used Euler-based LPT as their unsteady aerodynamic method in a
dynamic flight-stability study of hypersonic vehicles. The coupling between rigid
and elastic modes was considered. No reference values from full unsteady CFD
were reported to assess the accuracy of LPT. The geometry considered is shown
in Fig. 3.23. This is also an interesting application case for LPT, as it represents a
geometry of practical interest in general flight vehicle design,

– Liu et al [18] used LPT with a correction for the effective shape computed from
Navier-Stokes results. The method is discussed in Section 3.2.9. The method was
applied to a pair of waveriders. Generally good agreement was obtained with
full unsteady Navier-Stokes results, with an improvement noted over Euler-based
LPT. The waverider geometries are shown in Fig. 3.24,

– Dreyer et al 2017 [12] used two variants of LPT in their full-vehicle aerody-
namic analysis. The first method was a NS-based local-flow implementation
of the “static-flow approximation with piston theory correction” method due to
McNamara et al [13]. The effective shape was estimated a-priori by the use of
an approximate relation for the turbulent boundary-layer height on a flat plate.
The second method utilized the same LPT approximation, but used local-flow
quantities computed by first-order shock-expansion theory. These LPT imple-
mentations were compared to full unsteady NS solutions. It was found that the
NS-based LPT implementation gave better agreement with the full solution. The
highest error in the LPT implementations was noted in the region of the aft-body
fins. Dreyer et al [12] attributed the error to flow interactions in this region, as
may be expected from Section 2.1.3. Dreyer et al [12] noted significant savings
in computational cost when using the LPT implementations. The computational
cost of an unsteady prediction by LPT was estimated at 0.01% of the cost by
unsteady CFD.

• Design parameter-space studies,

– Zhang et al [15] used Euler-based LPT to model the change in aerodynamic
characteristics produced by deviations in airfoil shape from a reference NACA
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0012 profile. A steady Euler solution was obtained for the reference profile (and
wing). Euler-based LPT about this reference solution provided an extremely low-
cost aerodynamic method in an airfoil-shape optimization study. Zhang et al [15]
compared the computational cost of optimization by LPT versus optimization by
Euler solution. It was found that optimization by LPT required 0.01% of the time
needed for optimization by Euler solution. The aerodynamics of the optimized
shape were re-evaluated using steady Euler CFD. The error between the predicted
(by LPT) and Euler force-coefficients for the optimized shape were within 1%
for the lift coefficient and within 5% for the pitching-moment coefficient.

• Panel-flutter studies,

– Yang et al [193] used Euler-based LPT to model the static and dynamic aeroelas-
ticity of curved panels. The pressure formulation used the first-order coefficient
c1 due to Van Dyke [130], as given in Eq. (3.24), in order to extend the analy-
sis to lower supersonic Mach numbers. The definition of c1 was based on the
local mean-steady Mach number, and is given as c1 = Mm/mm. The downwash
formulation was equivalent to that due to Chen and Cao [180], with the cylinder
defined normal to the mean-steady chordline.

• Shock-panel interaction studies,

– Gogulapati et al [194, 195] investigate the modelling of shock-impingement
and SBLI in the context of 3D panel flutter. An experimental investigation is
also conducted. The computational investigation utilizes NS-based LPT for the
aerodynamic modelling. It is not clear from the publication [194] where in
the flowfield local quantities are evaluated. No comparison to unsteady CFD
is provided, but reasonable agreement is noted between NS-based LPT and
experiment,

– Brouwer and McNamara [19] expanded on the work of Gogulapati et al [194].
Brouwer and McNamara [19] investigated the use of a broad range of compu-
tational methods. Their implementation of “CFD enriched piston theory” is a
local-flow variant of the “static-flow approximation with piston theory correction”
due to McNamara et al [13] applied at an effective thickness computed using the
CPT-correlation method of McNamara et al [13]. Both these latter methods have
been discussed in Sections 3.2.9 and 3.2.10. The fluid-structure interaction of
both a 2D panel and a 3D panel was investigated. Good correspondence with
full unsteady Navier-Stokes results was obtained by the NS-based LPT variant
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for the steady load component. Similarly good correspondence was obtained
with full unsteady Euler results for unsteady load component. Brouwer and
McNamara [19] demonstrated the significant savings in computational achiev-
able by piston theory. The time required by the NS-based LPT implementation
to compute the necessary time-history of response was 0.03% of that required
unsteady CFD in the 2D case. Similarly, 0.14% of the time was needed in the 3D
case.

It is remarked here that the trend in recent literature on CFD-based LPT has been towards
the application of LPT to increasingly complex engineering problems. The examples of full-
vehicle analysis, viscous mean-steady flows, and shock-panel interaction may be considered
representative of this trend. However, the application to more complex physics has not been
accompanied or informed by a mathematical consideration of the validity of such application.
This stands in contrast to earlier investigations, such as those discussed in Sections 3.2.8
and 3.2.9, which are typically more mathematically rigorous and conscious of the limitations
of the analysis. This trend motivated the study of the mathematical basis of LPT presented in
Chapter 4 of the present work.

Fig. 3.22 Full vehicle geometry considered by Shi et al [16].
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Fig. 3.23 Full vehicle geometry considered by Yan et al [17].

Fig. 3.24 Full vehicle geometry considered by Liu et al [18].

Fig. 3.25 Full vehicle geometry considered by Dreyer et al [12].
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3.3 Significance of Higher-Order Formulations

As has been noted in Section 3.2, pressure relations [128, 144] have been developed which
extend beyond the frame cast by the generalized piston-theory pressure relation of Eq. (3.8)
or Eq. (3.9). In particular, these relations account for upstream influence and unsteadiness, as
discussed in Sections 3.2.5 and 3.2.8. Mathematically, these involve non-local downwash
terms. These “extended piston theories” may be considered a higher-order formulation than
generalized piston theory in the sense of perturbation propagation. They have already been
discussed in Section 3.2.5, and will not be discussed further here. Generalized piston theory
is essentially zeroth-order in perturbation propagation, while the “extended piston theories”
include non-zero propagation terms.

The generalized pressure relation of Eq. (3.8) or Eq. (3.9) is nonlinear in the downwash-
Mach number, w/acyl . In this sense, a piston-theory formulation involving

(
w/acyl

)2 or(
w/acyl

)3 may be considered a “higher-order” formulation relative to linear (first-order)
piston-theory. These “higher-order” contributions are due to nonlinear local-downwash terms.
Thus, the formulations represent an extension to higher-order pressure equation in terms of
local effects. They will be discussed in Sections 3.3.1 and 3.3.2.

The content of Sections 3.3.1 and 3.3.2 draws significantly from previous publications of
the author (from [122] and [123], respectively), which have been reproduced and adapted
here with permission from the respective copyright holders. The physical significance of
the contribution from higher-order local downwash terms may be effectively illustrated by
two simple case studies. The first (Section 3.3.1) will consider a more general airfoil shape
in order to highlight the impact of geometry on pressure modelling in CPT. The second
(Section 3.3.2) will consider a flat plate at incidence in order to highlight inherent modelling
differences between CPT and LPT.

3.3.1 Higher-Order Local Effects in CPT

Consider a general airfoil, as depicted in Fig. 3.26, with a surface described by the equation
z = za(x), where x is the coordinate along the chordline. Let the subscripts “U” and “L” be
used for the upper and lower airfoil surfaces respectively. Suppose the airfoil thickness has a
thickness distribution described by the function zt(x) and a camber distribution described by
zc(x). The equations for the lower and upper surfaces are then given by

zL = zc − zt , (3.156)

zU = zc + zt . (3.157)



188 Review of Piston Theory

Let the airfoil chordline be inclined at an incidence of α to the freestream. Adopting the
CPT formulation of θ = 0, the equivalent tanδ to be used in Eq. (3.2) may be found from
first principles. Expressing the result in the nomenclature of Eq. (3.5), it is found that for the
lower and upper surfaces that

w f (L) =V∞

(
tanα − ∂ zL

∂x

1+ ∂ zL
∂x tanα

)
, (3.158)

w f (U) =V∞

(
∂ zU
∂x − tanα

1+ ∂ zU
∂x tanα

)
. (3.159)

By introducing the approximations that ∂ zL
∂x tanα ≪ 1 and ∂ zU

∂x tanα ≪ 1, the following linear
relationships are obtained:

w f (L) =V∞

(
∂ zt

∂x
− ∂ zc

∂x
+ tanα

)
, (3.160)

w f (U) =V∞

(
∂ zt

∂x
+

∂ zc

∂x
− tanα

)
. (3.161)

Further introducing the nomenclature

wt =V∞
∂ zt

∂x
, (3.162)

wc =V∞
∂ zc

∂x
. (3.163)

wi =V∞ tanα , (3.164)

x

Vcyl = V∞

ξ

zU(x)

zL(x)

z

ζ

α

Advected cylinder

V∞

Fig. 3.26 Airfoil considered in the illustration of higher-order local effects in CPT.



3.3 Significance of Higher-Order Formulations 189

as the contributions to downwash due to the thickness distribution, the camber distribution,
and incidence, respectively, allows Eqs. (3.160) and (3.161) to be rewritten as

w f (L) = wt −wc +wi , (3.165)

w f (U) = wt +wc −wi . (3.166)

It is clear from the above equations that the downwash term due to thickness, wt , is symmet-
rical. “Symmetry” in this context is intended to mean that the term has the same sign for
both upper- and lower-surface cases. This is in contrast to the camber- and incidence-related
contributions wc and wi, which give anti-symmetrical contributions. An expression for the
downwash contribution due to body motion, wb, is not offered here. However, it is noted that
wb in general will not give symmetrical contributions.

Symmetry and anti-symmetry may be exploited in taking the difference between lower-
and upper-surface contributions. For compactness in the following equations, the differencing
operator ∆U

L is introduced and defined as follows:

∆U
L (XY )≡ XLYL −XUYU . (3.167)

In this notation, the following may be shown:

∆U
L
(
w f
)
= 2(−wc +wi) , (3.168)

∆U
L
(
w2

f
)
= 4wt(−wc +wi) , (3.169)

∆U
L

(
w3

f

)
= 6w2

t (−wc +wi)+6
(
−wcw2

i +wiw2
c
)
+2
(
−w3

c +w3
i
)
. (3.170)

Recalling that the downwash has contributions due to steady flow, w f , and due to body
motion, wb, the total downwash w may be written as:

∆U
L (w) = ∆U

L (wb)+∆U
L
(
w f
)
, (3.171)

∆U
L
(
w2)= ∆U

L
(
w2

b
)
+2∆U

L
(
wbw f

)
+∆U

L
(
w2

f
)
, (3.172)

∆U
L
(
w3)= ∆U

L
(
w3

b
)
+3∆U

L
(
w2

bw f
)
+3∆U

L
(
wbw2

f
)
+∆U

L

(
w3

f

)
. (3.173)

These equations will be utilized when considering the difference between upper- and lower-
surfaces pressure coefficients. With reference to Eq. (3.9) and Fig. 3.4, the chordwise
distribution of normal-force coefficient may be written as

∂CN

∂x
=

2
M2

∞
∆U

L

{[
c1

(
w
a∞

)
+ c2

(
w
a∞

)2

+ c3

(
w
a∞

)3
]

cos(ψ +δ )

}
. (3.174)
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To obtain greater insight into the role of the higher-order terms, some simplifying assumptions
will now be introduced to the case study. For example, if a symmetrical airfoil is considered,
then wc = 0 and ∆U

L [cos(ψ +δ )] = 0. This then leads to the expression

∂CN

∂x
=

2
M2

∞
cos(ψ +δ )

[
c1

a∞
∆U

L (w)+
c2

a2
∞

∆U
L
(
w2)+ c3

a3
∞

∆U
L
(
w3)
]

(3.175)

for which Eqs. (3.168) to (3.173) are available for substitution. The lifting load on the airfoil
is then seen to be a function of the downwash contributions due to thickness and incidence
(with camber having been assumed to be zero). The following conclusions regarding first-
and higher-order terms in CPT applied to steady flows may then be made:

• From Eq. (3.168) it is seen that first-order CPT does not model any thickness effects
on the steady lifting load. Only linear contributions from incidence and camber are
modelled,

• From Eq. (3.169) it is seen that second-order CPT models a linear scaling due to
thickness effects on the contributions from incidence and camber. This is essentially a
linear coupling with thickness,

• From Eq. (3.170) it is seen that third-order CPT introduces nonlinear thickness scaling
of linear camber and incidence contributions. Cubic contributions from camber and
incidence are modelled. Finally, third-order terms are introduced for the nonlinear
coupling between incidence and camber effects.

The extension of these considerations to unsteady flows may be carried out through con-
sideration of Eqs. (3.171) to (3.173). Some simplification is possible in the special case of
anti-symmetrical contributions due to body motion. That is to say, wb(U) =−wb(L) = wd . As
noted from Eqs. (3.6) and (3.7), this case may be realised for a flat plate, such that n̂U =−n̂L.
In this case, wt = 0. The following conclusions may then be drawn regarding first- and
higher-order terms in CPT applied to flows with body motion:

• From Eq. (3.171) it is seen that first-order CPT does not model any coupling between
the steady flow and the contribution due to body motion,

• From Eq. (3.172) it is seen that second-order CPT models a linear coupling between
the steady flow and the contribution due to body motion. For the special case of
anti-symmetric wb, the linear-coupled term would be a linear scaling of wd due to
thickness effects. However, in order to realize anti-symmetric wd , it is effectively
required that wt = 0. Thus, there is in practice little or no coupling between the steady
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and unsteady downwash contributions. The nonlinear contribution due to body motion
is effectively zero due to anti-symmetry of wd . From the point of view of damping, this
suggests that second-order CPT offers no substantial contribution over first-order CPT,

• From Eq. (3.173) it is seen that third-order CPT introduces a non-zero, uncoupled con-
tribution from body motion. Coupling between the steady and unsteady contributions
is also introduced.

From the discussion thus far, it is evident that first-order piston theory is entirely linear, with
no coupling between geometrical (or physical) sources of downwash. The significance of
higher-order terms describing local effects in CPT lies in coupling these sources. Second-
order CPT offers minimal coupling between thickness effects and incidence or damping-
related terms. It is only from third-order and higher that nonlinear coupling and nonlinear
uncoupled contributions due to thickness, incidence, and damping-related terms occur.

3.3.2 Higher-Order Local Effects in LPT

Consider a flat plate inclined at an angle of α to the freestream, as shown in Fig. 3.27.
Suppose that a mean-steady solution is available at αm, and that LPT is applied in modelling
a perturbation of α̃ relative to αm. For the purposes of this case study, the following
assumptions are made with reference to Eq. (3.2):

• No dynamic effects occur (Vb = 0),

• The cylinder is oriented normal to its advection direction (θ = 0◦).

ξ , x

Vcyl = Vm

z(x)

zm(x)

ζ , z

αm

Advected cylinder

V∞

n̂
n̂mα̃

Fig. 3.27 Flat plate considered in the illustration of higher-order local effects in LPT.

The resulting definition of terms in generalized piston theory that will be used in Eqs. (3.2)
and (3.9) is given in Table 3.3. Subscripts “U” refer to the upper (expansion) surface,
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subscripts “L” refer to the lower (compression) surface, and subscripts “m” refer to the
mean-steady solution. In this case study, the mean-steady solution will be obtained using
the Prandtl-Meyer and oblique shock relations for expansion and compression, respectively.
Results obtained using these relations will be termed the “exact solution”. Lighthill’s [88]
coefficients for piston theory will be used for illustration.

Table 3.3 Definition of generalized piston-theory terms in case-study 2.

Term LPT CPT

Vcyl Vm V∞
θ 0◦ 0◦

ψ α̃ αm + α̃

δ −ψ −ψ

wU −Vm(U) tan α̃ −V∞ tan(αm + α̃)

wL Vm(L) tan α̃ V∞ tan(αm + α̃)

(p,V,a,M)cyl(U) (p,V,a,M)m(U) (p,V,a,M)∞
(p,V,a,M)cyl(L) (p,V,a,M)m(L) (p,V,a,M)∞

The physical significance of the second- and higher-order terms in LPT will be illustrated
through consideration of the aerodynamic pitch-stiffness of the flat plate. Suppose that the
normal-force coefficient of the plate is written as a Taylor series about the mean-steady
solution:

CN =CN(αm)+
∂CN

∂α

∣∣∣∣
α=αm

α̃ +
∂ 2CN

∂α2

∣∣∣∣
α=αm

α̃
2 + . . . . (3.176)

The aerodynamic stiffness may then be considered to have a linear component ∂CN
∂α

and
nonlinear stiffness components given by higher-order derivatives. The above equation may
also be expressed in terms of the pressure coefficient on the upper and lower surfaces through
substitution of the relation CN =Cp(L)−Cp(U). Furthermore, it is noted that the expression
may be written in terms of derivatives with respect to α̃ , seeing that α = αm + α̃ yields
∂α

∂α̃
= 1. With this in mind, we may write the normal force as predicted by piston theory as

CN = ∆U
L (Cp)

∣∣∣∣
α̃=0

+ ∆U
L

(
∂Cp

∂ α̃

)∣∣∣∣
α̃=0

α̃ + ∆U
L

(
∂ 2Cp

∂ α̃2

)∣∣∣∣
α̃=0

α̃
2 + . . . (3.177)

From the above it is clear that the derivatives of the pressure coefficient predicted by piston
theory with respect to changes in incidence will be important. These may be obtained through
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differentiation of Eq. (3.9) as

∂Cp

∂ α̃
=

2pcyl

p∞M2
∞

(
c1

acyl

∂w
∂ α̃

+
2c2w
a2

cyl

∂w
∂ α̃

+
3c3w2

a3
cyl

∂w
∂ α̃

)
, (3.178)

∂ 2Cp

∂ α̃2 =
2pcyl

p∞M2
∞

{
c1

acyl

∂ 2w
∂ α̃2 +

2c2

a2
cyl

[
w

∂ 2w
∂ α̃2 +

(
∂w
∂ α̃

)2
]
+

3c3

a3
cyl

[
w2 ∂ 2w

∂ α̃2 +2w
(

∂w
∂ α̃

)2
]}

,

(3.179)

It is noted that when taking the derivative, piston theory assumes the cylinder reference
conditions are invariant with piston motion. The terms (p,V,a,M)m in LPT are assumed to
be a function of αm, but not of α̃ . Differentiating the downwash terms as defined in Table 3.3
and substituting into the above gives

∂Cp

∂ α̃
=

2pcyl

p∞M2
∞ cos2 ψ

(
∓c1Mcyl +2c2M2

cyl
tanψ

cos2 ψ
∓3c3M3

cyl
tan2 ψ

cos2 ψ

)
, (3.180)

∂ 2Cp

∂ α̃2 =
4pcyl

p∞M2
∞ cos2 ψ

{
∓c1Mcyl tanψ +

c2M2
cyl

cos2 ψ

(
2sin2

ψ +1
)

∓
3c3M3

cyl tanψ

cos2 ψ

(
sin2

ψ +1
)
}

, (3.181)

where the upper sign in ∓ is associated with the upper surface, and ψ is defined in Table 3.3.
Taking the difference between the lower and upper surfaces and evaluating at α̃ = 0, it is
found that for CPT:

∆U
L (Cp)

∣∣∣∣
α̃=0

= ∆U
L
(
Cp(CPT )

)
, (3.182)

∆U
L

(
∂Cp

∂ α̃

)∣∣∣∣
α̃=0

=
4

M2
∞ cos2 αm

(
c1M∞ +3c3M3

∞
tan2 αm

cos2 αm

)
, (3.183)

∆U
L

(
∂ 2Cp

∂ α̃2

)∣∣∣∣
α̃=0

=
8

M2
∞ cos2 αm

{
c1M∞ tanαm +

3c3M3
∞ tanαm

cos2 αm

(
sin2

αm +1
)}

, (3.184)

while the results for LPT are given by:

∆U
L (Cp)

∣∣∣∣
α̃=0

= ∆U
L
(
Cp(exact)

)
, (3.185)

∆U
L

(
∂Cp

∂ α̃

)∣∣∣∣
α̃=0

=
2c1

p∞M2
∞

[
(pM)(exact)L +(pM)(exact)U

]
, (3.186)



194 Review of Piston Theory

∆U
L

(
∂ 2Cp

∂ α̃2

)∣∣∣∣
α̃=0

=
4c2

p∞M2
∞

∆U
L

[(
pM2)

(exact)

]
, (3.187)

A comparison of Eqs. (3.182) to (3.184) and of Eqs. (3.185) to (3.187) provides valuable
insight into the fundamental modelling differences between CPT and LPT. Firstly, the
difference in definition of cylinder conditions, of ψ , and in Eqs. (3.182) and (3.185) highlights
the role of piston theory as a perturbation method. From the above, the role of LPT as a
perturbation relative to an existing solution is evident. It’s successful application at higher
incidences (or for blunter airfoils) than CPT, as illustrated in [14], is understood as LPT
modelling small perturbations α̃ about a large αm. For the same incidence, CPT must model
a larger perturbation of αm + α̃ .

Moving to the linear aerodynamic stiffness as defined by Eqs. (3.183) and (3.186), further
insights are obtained. It is noted that in both CPT and LPT, the second-order term makes
no contribution in the flat-plate case. The role of second-order piston theory in introducing
thickness-coupling was illustrated in the previous case study. Importantly, it is seen here
that CPT has a linear-stiffness contribution from the third-order term. In LPT, only the
first-order term affects the linear stiffness. This difference is important, as it shows that poor
aeroprediction by linear LPT for vanishingly small perturbations cannot be improved by the
application of a higher-order LPT. Another difference is in the dependence of the stiffness
term on M∞ and αm. In CPT, this dependence is purely a function of the local geometry and
M∞. It is seen that in LPT, the dependence is less explicit. Instead, the local linear-stiffness
term is dependent on the local mean-steady solution. In the case of CFD-based LPT, this
mean-steady solution will account for the effect of shock waves and three-dimensionality in
the steady flow.

The first nonlinear stiffness term introduced is given by Eqs. (3.184) and (3.187), and is
essentially a quadratic-stiffness term. Once again, it is noted that the second-order CPT term
makes no contribution in the flat-plate case. This is in contrast with the LPT modelling. The
quadratic-stiffness term as modelled by LPT receives contributions from only the second-
order LPT term. The difference in dependence on M∞ and αm is as discussed for the
linear-stiffness term. The non-zero contribution from the second-order term is by virtue
of the cylinder conditions differing between the upper and lower surfaces at non-zero αm.
This marks a fundamental modelling difference between LPT and CPT: improvement on the
first-order result requires an extension to third-order when using CPT, while an improvement
is already obtained at second-order when using LPT.

An interpretation of the physical significance of the contribution from the second-order
LPT term follows from consideration of Eqs. (3.176) and (3.187). The representation of
the normal-force coefficient as a Taylor-series expansion about the mean-steady solution
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emphasizes the perturbation nature of LPT. The computational cost associated with the
method is concentrated almost entirely in obtaining the mean-steady solution. In performing
parameter studies, it is therefore desirable to utilize the same mean-steady solution as much as
is allowable. As with any approximation or Taylor-series, the accuracy of the approximation
diminishes with distance α̃ from the unperturbed state. The approximation accuracy may
be improved by higher-order terms in the Taylor expansion. This is essentially the function
or utility of second-order LPT, as noted from Eq. (3.187). It allows LPT to be applied for
greater perturbations about the mean-steady solution than first-order LPT.

To illustrate this, the flat-plate case study is examined for a nominal freestream Mach-
number of M∞ = 3. The exact mean-steady solutions are obtained using the oblique-shock
equations for the lower (compression) surface and using the Prandtl-Meyer relation for
the upper (expansion) surface. When applying piston theory to the expansion surface, a
lower-limit on pressure was enforced. Pressures lower than vacuum pressures were not
permitted. This is the sole source of difference between first-order and second-order CPT in
the results which are shown below. A comparison of the prediction of CN by CPT and by
LPT is given in Fig. 3.28. In Fig. 3.28b, LPT has been applied about a nominal mean-steady
solution denoted by a solid circle. A comparison of LPT to exact solutions is given for
the normal-force coefficient derivatives in Fig. 3.29. Similar comparisons are given for the
pressure-coefficient derivatives for the lower- and upper-surfaces in Figs. 3.30 and 3.31,
respectively. In assessing the accuracy of LPT, the considerations given in the section on
validity bounds at the end of Section 3.1 apply, and are not repeated here.
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Fig. 3.28 Prediction of normal-force coefficient for a flat-plate at M∞ = 3.
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Fig. 3.29 Prediction of normal-force coefficient derivatives by LPT for a flat-plate at M∞ = 3.
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Fig. 3.30 Prediction of pressure-coefficient derivatives by LPT for the compression surface
of a flat-plate at M∞ = 3.
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Fig. 3.31 Prediction of pressure-coefficient derivatives by LPT for the expansion surface of a
flat-plate at M∞ = 3.
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3.4 Summary

The presentation of material in this chapter is intended to give the reader a comprehensive
overview of piston theory. A summary of the material may be centred around three topics:

• The variety of theoretical bases and of formulations associated with the term “piston
theory”,

• The limits of validity of piston theory and of the approximations it is based in,

• Recent trends and gaps in the literature relating to the application or extension of piston
theory.

3.4.1 Theoretical Bases and Formulations of Piston Theory

A conceptual introduction to piston theory was given in Section 3.1. From the outset, it was
noted that the term “piston theory” was associated with a number of methods yielding an
algebraic relationship between the local downwash and the local fluid pressure. The physical
analogy – in particular, the unsteady analogy – giving rise to the terminology of “piston” and
“cylinder” was introduced in Section 3.1.1. Generalized formulations for the downwash and
pressure expressions were introduced in Sections 3.1.2 and 3.1.3, respectively. While these
formulations do not encompass all varieties of expressions associated with “piston theory”,
they do encapsulate the majority of point-local, planar formulations of both CPT and LPT. A
more in-depth foray into the extensive literature associated with piston theory was made in
Section 3.2. The purpose of Section 3.2 was two-fold:

• To give a high-level overview of historical developments and extensions to the method.

This serves to showcase the extensive developments that have already been accom-
plished. It is the author’s intention to bring attention to these previous developments in
order that they may inform the future application of and developments to piston theory.
Further discussion on this point is given in Section 3.4.3.

• To highlight the variety of formulations which are associated with the phrase “piston
theory”.

It is the author’s intention to bring attention to the broad variety of theoretical bases
(with associated limitations and assumptions) which yield a “piston-theory”-type
pressure-downwash relationship. An appreciation of these origins of the method serves
to simultaneously:
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– Remove unnecessary restrictions to the method. One example of a typically em-
ployed restriction of this type is in limiting piston theory to subsonic downwash,

– Promote better-informed application of the method. Attention is brought to
implicit assumptions in the method which are often disregarded when applying
the method. Examples include the assumption of negligible spanwise gradients
(through an implicit invocation of strip theory) when applying piston theory to
finite wings.

An abridged summary of the formulations introduced in Section 3.2 is given in Tables 3.4
and 3.5. It is to be noted that all methods in the list require upstream influence to be neglected
in order to obtain a strictly self-influenced pressure-downwash relation. Retaining upstream
influence results in a range of so-called “extended piston theories”. The use of δ in Tables 3.4
and 3.5 denotes the nondimensional thickness, β is the angle of the bow shock, and ε = β −δ .

3.4.2 Limits of Validity of Piston Theory

A variety of theoretical bases for piston theory is noted in Tables 3.4 and 3.5. Broadly
speaking, the bases may be categorized as those involving:

• The application of the unsteady analogy,

• Various small-disturbance formulations,

• Potential flows,

It may be noted that linear potential flows serve as the basis for a significant number of the
formulations which account for upstream influence, unsteadiness, or for the non-planar nature
of the flow. In these formulations, the unsteady analogy is not invoked. Thus, the underlying
assumptions of these methods differ from those based in hypersonic SDT formulations. The
variety of theoretical bases therefore represents a variety of limits of validity of the resulting
methods. A detailed treatment of the limits of validity of the broad range of formulations is
not within the scope of the present work. However, some summarized remarks relating to the
validity of these bases are offered below.

An introductory discussion on the validity limits of formulations employing the unsteady
analogy was given in Section 3.1.4. The validity of the law of plane sections essentially
hinges on the gradients of fluid properties being significantly smaller in the direction of plane
advection than in the remaining directions. This condition typically arises as a consequence
of body slenderness. To further reduce the governing equations to one dimension requires
the resulting crossflow plane to similarly be dominated by a single direction. This illustrates
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the failure of piston theory in the proximity of wing-tips and when applied to cylinders with
significant crossflow.

The underlying assumptions in the SDT methods were introduced along with the methods
themselves in Section 3.2, with emphasis on the methods in Sections 3.2.4 and 3.2.8. The
assumptions are largely similar to those governing the application of the law of plane sections.
The variety of methods introduced in Section 3.2.8 vary in their assumptions regarding flow
unsteadiness and body slenderness. It is typically required that the bow shock lie close to the
body (such that the Mach number behind the shock is approximately Mm > 2.5). Furthermore,
small reduced frequencies and amplitudes of oscillation are typically invoked. The reduction
of the formulations to a piston theory form requires the reflection of acoustic waves off of
the bow shock to be neglected.

A discussion of the validity of the linear potential flow basis in the steady limit may
be found in other works of the author [116, 121]. An extension of the analysis to unsteady
flows is outside the scope of the present work. It was shown in [116, 121] that the linear
truncation of the pressure equation is valid for approximately M∞δ < 0.2. A framework
for estimating the significance of nonlinear terms in the full potential equation was also
presented in [116, 121].

Finally, the physical significance of second-order and third-order terms in piston theory
was discussed in Section 3.3. No previous consideration of higher-order terms in LPT has
been noted in the literature. The consideration of these terms in Section 3.3.2 demonstrated
the potential for extending the validity of LPT predictions to larger deviations about the
mean-steady flow solution.

3.4.3 Trends and Gaps in the Literature

The review of historical developments to piston theory in Section 3.2 was structured by
the thematic contributions made, rather than chronologically. Nonetheless, a clear trend
emerges when considering the recent renewed interest in CFD-based LPT, as discussed in
Section 3.2.10. Following the successes of Euler-based LPT as applied to airfoils and to a
wing-alone configuration [14], LPT has been applied to progressively more complex flows
and geometries.

Examples include the application of Euler-based LPT to hypersonic vehicles by Shi
et al [16] and by Yan et al [17]. The geometries were depicted in Figs. 3.22 and 3.23,
respectively. It is clear from the geometries that regions of significant three-dimensionality in
the flow will be present. It is thus not surprising that noticeably less accurate aeroprediction
was reported by Shi et al [16] than is typical of Euler-based LPT when applied to simpler
flows [14].
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Recent literature has also shown an increase in the application of LPT relative to a viscous
mean-steady solution obtained using the RANS equations (NS-based LPT). The applications
have included wing-alone prediction [13, 18], full-vehicle aeroprediction [12, 18], and a
variety of SBLI studies on panels [19, 194, 195].

The above applications of LPT have been heuristically justified as valid for “small
perturbations”. However, no justification has been offered for the application of LPT to three-
dimensional flows. Similarly, in the application to viscous mean-steady flows have implicitly
assumed that no viscous-inviscid interaction occurs. This reflects an unfortunate consequence
of the extent of the body of literature utilizing piston theory: many historical extensions
and accomplishments are overlooked. In particular, many of the historical developments to
extend piston theory to

• Supersonic downwash,

• Accounting for upstream influence and unsteadiness,

• Non-planar flows,

• Viscous flows,

are overlooked in recent literature. This is reflected in the recent works on NS-based
LPT, which do not consider the previous accomplishments of Ericsson [188] and Orlik-
Rückemann [183] (with other works noted in Section 3.2.9) towards accounting for viscous-
inviscid interaction in piston theory. It is the author’s intention in Chapter 3 to bring attention
to these often-overlooked works which have served to further piston theory as a method.
These works provide valuable insight towards further extending the method.

The review of Section 3.2 has also served to identify a gap in the existing literature on
piston theory. The vast majority of applications of CFD-based LPT have been heuristically
justified. The identification of first-order LPT as a special case of inviscid hypersonic small-
disturbance formulations in Section 3.2.8 serves to move the theoretical basis for LPT from
the realm of “heuristic” towards “rigorous”. Nonetheless, a general derivation or treatment
of LPT (akin to that of CPT in Section 3.2.4) is noticeably absent in the literature. Such a
derivation would serve to:

• Inform the application of Euler-based LPT to complex geometries and flows,

• Lay a foundation for the rigorous development of NS-based LPT,

• Inform future extensions to LPT,

Such a derivation from the three-dimensional Euler equations is the topic of Chapter 4.





Chapter 4

Mathematical Basis for Piston Theory

4.1 Introduction

The present chapter focusses predominantly on a unified treatment of the mathematical bases
of classical piston theory (CPT) and local piston theory (LPT). It is an extension of the
author’s work originally presented in [196]. The context for and relevance of this work is
presented in Section 4.1.1. An outline of the approach adopted in the development is given
in Section 4.1.2. This is followed by the development of the general basis in Sections 4.2
to 4.4, the derivation of CPT in Section 4.5, and the derivation of LPT in Section 4.6.
The mathematics is followed by a discussion of the derivations and their implications in
Section 4.7. The chapter closes with a summary in Section 4.8.

4.1.1 Context and Relevance

An extensive review of the myriad of mathematical formulations of disparate bases that are
referred to as “piston theory” was given in Sections 3.2 and 3.4. A summary of gaps and cur-
rent trends in the literature surrounding piston theory was similarly given in Section 3.4. One
of the significant gaps identified was the absence of mathematical basis for (or development
leading to) local piston theory.

Particularly lucid insight into the mathematical basis for CPT may be found in the original
development of Il’yushin [77] and in the categorization of CPT by Hayes and Probstein [27].
These treatments deal with the derivation of CPT from a 3D steady Euler formulation.
However, these works have been largely overlooked in recent literature, with greater attention
given to the engineering application of piston theory and to heuristic extensions of the
method. The unfortunate consequences of this have been discussed in Section 3.4. The
recent resurgence of interest in piston theory, including in CPT [144, 145, 160], presents an
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opportunity to revisit the mathematics behind the method and to gain a deeper understanding
into its limitations.

The same opportunity is presented for LPT. However, a significant difference is that
no mathematical basis for LPT has been previously been presented in the literature. The
generalized formulation of piston theory developed by the author in [59] highlighted the
similarities and key differences between CPT and LPT through treatment from a common,
generalized basis. This same philosophy is adopted in the present chapter. The derivation of
LPT from the Euler equations is intended to provide a deeper understanding of LPT. It is the
author’s intention that this would serve to guide the application and development of further
extensions to LPT. Furthermore, the mathematical basis would shed light on shortcomings in
current formulations and applications of LPT [12, 16, 18, 19, 194, 195].

4.1.2 Approach to the Development

As noted in the introduction, the present chapter is an extension of the author’s work
originally presented in [196]. It also follows the spirit of the author’s previous work in [59]
in approaching both CPT and LPT from a common, generalized basis. The basic philosophy
of the derivation lies in:

1. Presentation of a generalized non-dimensional formulation of the governing equations,

(a) Identifying the general non-dimensional parameters of the governing equations
and boundary conditions,

(b) Identifying appropriate reference values for the non-dimensionalization as a
function of the fluid state and geometry,

2. Case-specific development,

(a) Specification of un-perturbed and perturbation quantities and reference values,

(b) Determining the conditions required for reduction from a 3D to a 1D formulation,

(c) Truncation of the development at a desired order of accuracy.

The roadmap for the development and its presentation is as follows:

• Section 4.2 will be concerned with Step 1 of the derivation philosophy in the context
of total-value quantities. (In this context, “total-value” is to be understood as including
both the un-perturbed and perturbation values.) The dimensional Euler equations
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and the boundary conditions will be introduced in a variety of forms. A general
non-dimensionalization will also be introduced,

• Section 4.3 will be concerned with Step 1 of the derivation philosophy in the context
of perturbation quantities. The perturbation form of the Euler equations and boundary
conditions will be introduced. A general non-dimensionalization for the perturbation
form will be developed,

• Section 4.4 will introduce the considerations surrounding appropriate reference values
for the non-dimensionalization. A discussion of reference values for flow gradients
will be offered. This will conclude Step 1 of the derivation philosophy,

• The derivation of CPT from the non-dimensional perturbation form of the Euler
equations will be presented in Section 4.5, which largely follows Step 2 of the derivation
philosophy:

– The specification of the reference values and perturbations will be given in Sec-
tion 4.5.1. The derivation which will follow is similar to that due to Il’yushin [77],
and conceptually follows the interpretation of CPT due to Hayes and Prob-
stein [27],

– The reduction from a 3D to a 2D formulation will be presented in Section 4.5.2,

– The further reduction to a 1D formulation will be presented in Section 4.5.3,

– The development will close in Section 4.5.4 with a discussion on the reduction to
an algebraic relation between the surface-pressure and surface geometry.

• The derivation of LPT from the non-dimensional perturbation form of the Euler
equations will be presented in Section 4.6. Essentially the same process will be
followed as in Section 4.5,

Due to the volume of mathematics that is to be presented, minimal attention will be devoted
to introductory remarks regarding the mathematics. The author recommends the works
of [63, 64, 66, 197–202] for exposition of the mathematics, notations, and underlying fluid
mechanics. Where convenient, Einstein summation notation will be introduced and a tensor
form will be used.

4.1.3 Conceptual Introduction

The present section provides an introductory discussion surrounding non-dimensionalization,
scaling analysis, and perturbation analysis / asymptotic development.
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Non-Dimensionalization and Scaling Analysis

Non-dimensionalization in its essence is a transformation of variables from their physical
quantities to purely numerical quantities. This is accomplished through describing the
physical quantities as a fraction of some representative reference values. This may be written
as

XN =
X
XR

, (4.1)

where X is the variable described by its physical value, XR is the reference value for the
variable, and XN is the variable described its non-dimensional value. The aim of the non-
dimensionalization is to normalize the ranges of different variables X , such that XN = O(1)
for all the variables. This is essentially a scaling operation on the variables (and coordinates),
and (in the context of asymptotic methods) has been described as “using a mathematical
microscope” [201]. The result of non-dimensionalization is a mathematical description of
the physics in which all scale-related terms appear in dimensionless parameter-groups that
characterize the numerics of the phenomenon. This allows for two activities:

• It facilitates the comparison of physical phenomena with different scales or of different
conditions. From a mathematical point of view, two different physical scenarios are
equivalent if the dimensionless parameters describing the physics are the same between
the scenarios. While the comparison of different physical flows is not of interest in the
present work, the dimensionless parameter-groups describing the physics of the flow
are,

• It facilitates the comparison of the different mathematical terms describing the physics
of a given phenomenon. The aforementioned dimensionless parameter-groups accen-
tuate the numerical (non-dimensional) magnitude of their companion terms (which
are O(1)). Comparison of the relative magnitudes of these groups allow for “smaller”
mathematical terms to be neglected, as they make a negligible (in relative terms)
contribution to the non-dimensional mathematical problem.

The latter of the two activities may be referred to as relative-magnitude analysis or scaling
analysis. The non-dimensional parameter-groups that arise from the non-dimensionalization
are often governing parameters of the physics, and are associated with non-dimensional
numbers such as the Reynolds number, Mach number, reduced frequency, and more.

The use of scaling analysis in developing approximate mathematical models may be
associated with the development of the boundary-layer equations, the Euler equations, the
transonic small-disturbance form of the potential flow equation, and the linear potential
equation. Further examples of scaling analysis with particular emphasis on fluid-structure
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interaction may be found in [197–200]. Non-dimensionalization and scaling-analysis form a
core component of perturbation analysis or asymptotic development.

Extent of Validity of Non-Dimensionalization

In practice, it is typical that the reference value XR used for non-dimensionalization is treated
as a constant. In the absence of coordinate-scaling, the result is that the non-dimensional
variable XN has the same temporal and spatial variation as the dimensional variable X , albeit
scaled by the constant XR. This emphasizes the difference between XN = 1 and XN = O(1).
The non-dimensionalization does not eliminate the variation of the variable XN , and regions
of XN ≪ 1 may still occur. This raises the question of regions (or extent) of suitability (or
validity) of a particular non-dimensionalization.

This is perhaps most intuitive through considering the introduction of coordinate scaling
in order to render gradients O(1). It is known that in viscous flows, large flow gradients
exist within a small distance from the surface of the body. Outside of this region, much
small gradients are observed. The first region (the boundary layer) requires a different
non-dimensionalization to that of the second (the inviscid “outer” flow).

The need for different non-dimensionalizations may arise either from the physics of the
flow or from the introduction of small perturbations or parameters into the mathematical
description of the flow. Some examples of flow features (or regions) which give rise to the
need for a separate non-dimensionalization local to the region are:

• Entropy layers,

• Boundary layers,

• Regions of mixed subsonic / supersonic flows.

A non-dimensionalization which is valid throughout the entire domain of interest is termed
“uniformly valid”. When regions requiring different non-dimensionalizations exist in the
full fluid domain, the “full solution” must be obtained by “stitching together” solutions
from the various “domains of validity” in their region of overlap. This is the essence of
the method of matched asymptotic expansions [201, 202]. In scenarios where different
non-dimensionalizations are required, with complete (spatial) overlap of their domains of
validity, the method of multiple scales [201] is used, in which scaled coordinates associated
with each scale are introduced.
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Perturbations and Asymptotic Developments

The essence of perturbation methods / asymptotic developments is in introducing a (math-
ematically) small deviation from a known solution or reference state / formulation. The
expansion of the total variables into (known) un-perturbed variables and a series of (small)
perturbation variables offers the possibility of a simpler mathematical formulation of the
physical problem in terms of perturbation variables. This simplicity is typically achieved
through truncating the expansion at some order of relative smallness. The neglect of (rel-
atively) smaller terms emphasizes the connection between perturbation analysis, scaling
analysis, and non-dimensionalization. An example of the use of perturbation methods to
arrive at a mathematically simpler description of the physics is hypersonic SDT [78].

The introduction of the artificially small parameter opens the possibility of disparate
scales and non-dimensionalizations being required, as well as the mathematical nature
of the problem being altered. An example of the latter is the elimination of all second-
order differential terms in the NS equations when viscosity is treated as vanishingly small
(resulting in the first-order Euler equations). For non-zero viscosity, different physics (and
non-dimensionalizations) act in different domains of the fluid.

4.2 General Equations

The starting point for the development is a general non-dimensionalization of the Euler
equations. This will be extended to the body and shock boundary-conditions. The non-
dimensionalization will begin with the equations in dimensional form. Following the
introduction of reference quantities, additional terms will be introduced to describe non-
dimensional groups. The nomenclature associated with the present chapter is expanded on in
Section 4.2.1.

4.2.1 Nomenclature

Noting that reference values are also dimensional, the relationship between dimensional,
reference, and non-dimensional values of a quantity is given by

X = XRXN , (4.2)

where X is the dimensional value of the quantity, XR is the reference value, and XN is the
non-dimensional value of the quantity. A definition of the nomenclature surrounding terms
in the governing equations is given in Tables 4.1 to 4.3.
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Where convenient, different reference frames will be used to define or derive various
quantities. Broadly speaking, use will be made of the following categories of frames:

• E – an inertial frame translating at a uniform velocity relative to an earth-fixed frame.
This relative velocity is equal to the mean steady translational velocity of the moving
body of interest. For a rigid, non-rotating, non-accelerating body, E appears stationary
relative to a body-fixed frame. The frame E shall be called the Eulerian frame,

• G – an inertial frame translating at a uniform velocity relative to E . Relative to a
body-fixed frame on a rigid, non-rotating, non-accelerating body, G appears to translate
with uniform velocity. The frame G shall be called the Galilean frame, as it is obtained
by performing a Galilean transform on E ,

• A – a locally-defined Cartesian frame adapted to an arbitrary surface. The frame
is defined by a triad of orthogonal unit vectors, one of which is coincident with the
instantaneous local surface-normal unit vector. The frame definition is thus local both
in a spatial and temporal sense,

• F – a convected frame (material coordinates), attached to a fluid particle moving
through space. In particular, a Frenet-Serret frame is defined for the particle.

The reference frames (with the exception of G ) are depicted in Fig. 4.1.

Table 4.1 Nomenclature of vectors.

Quantity Dimensional Reference Non-dimensional

Velocity V — —

Unit normal-vector — — n̂
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Table 4.2 Nomenclature of scalars and components.

Quantity Dimensional Reference Non-dimensional

Spatial gradients ∂

∂xi

1
Li

,
1

LR

∂

∂ξi

Temporal gradients ∂

∂ t
1
tR

∂

∂ tN

Fluid density ρ ρR ρN

Fluid pressure p pR pN

Adiabatic exponent — — γ

Specific enthalpy h hR hN

Specific entropy s sR sN

Fluid velocity vi Ui , UR ui

Speed of sound a aR aN

Normal-velocity of shock G — —

Frame velocity wi — —

Unit normal-vector — — ni

Table 4.3 Nomenclature of total-quantity form non-dimensional parameters.

Quantity Definition Associated with

kt LR
UR tR

Time-derivatives

kx i with i = 1, 2, 3 LRUi
LiUR

Spatial-derivatives

kui with i = 1, 2, 3 Ui
UR

Mean flow direction

kbi with i = 1, 2, 3 Ubi
UR

Body translational velocity

k f
pR

ρRU2
R

Momentum-equation pressure gradient

ka
pR

ρRa2
R

Energy-equation pressure gradient
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Stationary frame

Moving frame

G

E

Ashock

Abody

F

X(U)

X(D)

ê1

ê3
ê2

ê1

ê2

ê3

B
(
x1,x2,x3

)
= 0

S
(
x1,x2,x3

)
= 0

t̂b

n̂b

b̂b

t̂s

b̂s

n̂s

T̂

B̂N̂

Fig. 4.1 Illustration of reference frames used.
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The general definition of the adapted frame A will be narrowed for the purposes of the
present work. In particular, the following specifications will be made regarding orientation
of the adapted frame A and the nomenclature surrounding it:

• Let the basis vectors of the Eulerian frame E be given as êi. Attention is drawn to a
distinction in nomenclature:

– Vectors are typeset in boldface, while components are not,

– êi denotes the i-th direction vector in the coordinate basis of the Eulerian frame
E ,

• The adapted frame A is defined by the triad of mutually orthogonal unit vectors t̂, b̂,
n̂. The use of a subscript “s” or “b” will distinguish (where necessary) between the
adapted frame A on the shock surface and on the body surface, respectively,

• By definition, n̂ is the instantaneous, local unit normal-vector to the surface to which
the frame A is adapted. If the surface is described by a function A(xi, t) = 0, then

n̂ ≡
3

∑
i=1

niêi , (4.3)

n̂ ≡ ∇A
|∇A| , (4.4)

It will be the convention to orient n̂ into the fluid when A is adapted to the body, and
into the pre-shock domain when A is adapted to the shock,

• To define the orientation of the frame A , b̂ will be defined to lie in the plane normal to
ê1. In other words,

b̂ ≡
3

∑
i=2

biêi , (4.5)

b̂ · ê1 ≡0 , (4.6)

• The final orientation of the adapted frame A will be given by orienting the remaining
surface-tangential unit-vector t downstream, such that

t̂ ≡
3

∑
i=1

ti êi , (4.7)

t̂ · ê1 ≥0 , (4.8)
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The following transformation between the oriented adapted-frame A and the Eulerian
frame E may then be found:




t̂
n̂
b̂


=




ζ23 −n1n2
ζ23

−n1n3
ζ23

n1 n2 n3

0 − n3
ζ23

n2
ζ23







ê1
ê2
ê3


 , (4.9)

where
ζ23 ≡

√
n2

2 +n2
3 =

√
1−n2

1 . (4.10)

The transformation matrix between frames, as well as the components of the unit normal-
vector n̂, may be more conveniently expressed in terms of two angles:

• The angle between the unit normal-vector n̂ and the positive x3 axis, which will be
defined by the symbol η :

cosη ≡ n̂ · ê3 , (4.11)

This angle may be loosely interpreted as the “thickness angle” for a wedge with its
thickness mid-plane oriented normal to ê3. The angle has the range η = [0, π] in
radians.

• The angle between the projection of n̂ onto the x1x2-plane and the −x1 axis, which
will be defined by the symbol λ :

cosλ ≡− n12 · ê1∣∣n12 · ê1
∣∣ , (4.12)

where n12 ≡ n1ê1 + n2ê2, and the angle is defined as positive for rotations about e3.
This angle may be loosely interpreted as the “sweep angle” for a wedge with its
thickness mid-plane oriented normal to ê3. The angle has the range η = [−π, π] in
radians. The portion of the range

[
−π

2 ,
π

2

]
is associated with inclination of n̂ along the

−x1 axis (upstream).

In terms of these angles, the transformation between the oriented adapted-frame A and the
Eulerian frame E of Eq. (4.9) is written as




t̂
n̂
b̂


=




cosη
√

1+χ2 −χ sinη cosλ√
1+χ2

+ sinη cosλ√
1+χ2

−sinη cosλ −sinη sinλ cosη

0 − 1√
1+χ2

− χ√
1+χ2







ê1
ê2
ê3


 , (4.13)

where χ ≡ tanη sinλ .
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4.2.2 Governing Equations

The following key assumptions will be made throughout the course of the development:

1. The fluid is assumed to be inviscid everywhere in the fluid domain,

2. The equation of state of an ideal gas will be assumed,

3. The flow is assumed to be adiabatic,

4. Gravitational and buoyant forces are neglected,

5. The fluid is assumed to be of homogeneous composition, with chemical reactions
neglected.

The Euler equations will thus govern the physics of the flow throughout the entire domain.
The Euler equations may be presented in a variety of alternative yet equivalent forms and
notations. They may also be expressed in a variety of reference frames. Some of these are
explored below.

Dimensional Form in the Eulerian Frame

Of particular interest in the present work is the tensor form given by Aris [63] in the Eulerian
frame E , which is valid in both Cartesian and curvilinear coordinate frames:

Continuity:
∂ρ

∂ t
+ vm

ρ;m +ρvm
;m = 0 , (4.14)

Momentum:
∂vi

∂ t
+ vmvi

;m +
1
ρ

gim p;m = 0 , (4.15)

Energy:
∂ p
∂ t

+ vm p;m +ρvm
;ma2 = 0 , (4.16)

where Einstein summation notation has been used, indices in the upper position denote
components of contravariant vectors, indices in the lower position denote components of
covariant vectors, and the “;” notation denotes the covariant derivative. The tensor gi j is the
metric tensor of the coordinate basis.

The particular form of the energy equation in Eq. (4.16) was shown in [203] to not require
the assumption of an ideal gas. The energy equation in particular has a number of alternative
forms, two of which are given below (also is tensor form in the Eulerian frame E ):

Energy:
∂ s
∂ t

+ vms;m = 0 , (4.17)
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Energy:
∂ p
∂ t

−ρvm
∂vm

∂ t
−ρvmvlvm

;l +ρa2vm
;m = 0 . (4.18)

Dimensional Form in the Galilean Frame

Following Aris’ [63] treatment of the convected derivative of tensors in curvilinear space,
the following definitions of the time derivative can be written in a frame which is conducted
with velocity wi relative to the Eulerian frame E :

For a scalar f :
δ f
δ t

=
∂ f
∂ t

+wm f;m . (4.19)

For a contravariant vector vi:

δvi

δ t
=

∂vi

∂ t
+wmvi

;m − vmwi
;m . (4.20)

For a covariant vector ui:

δvi
δ t

=
∂vi
∂ t

+wmvi;m + vmwm
;i . (4.21)

where derivatives of the form δ

δ t are time-derivatives in the Galilean frame G .

Upon substitution of the above expressions into the Euler equations in the Eulerian frame
E , given by Eqs. (4.14) to (4.16), we obtain the Euler equations in the Galilean frame G as:

Continuity:
δρ

δ t
+(vm −wm)ρ;m +ρvm

;m = 0 , (4.22)

Momentum:
δvi

δ t
+(vm −wm)vi

;m +
1
ρ

gim p;m =−vmwi
;m , (4.23)

Energy:
δ p
δ t

+(vm −wm)p;m +ρa2vm
;m = 0 , (4.24)

The energy equation may once again be combined with the momentum equation to give
the alternative form of the energy equation as

1
ρ

δ p
δ t

− (vl −wl)
δvl

δ t
− (vl −wl)(v

m −wm)vl
;m + vm

;ma2 = (vl −wl)v
mwl

;m , (4.25)

where the terms appearing on the right-hand-side of the equations, involving vmwi
;m, may be

interpreted as the directional derivative of the frame-convection vector (wi) in the direction
of the local fluid velocity (vm).
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Non-Dimensional Form in Cartesian Coordinates

The Euler equations are now non-dimensionalized in the Eulerian frame E in a Cartesian
coordinate basis. This is done for the simplicity of illustration and interpretation offered by
the Cartesian system. Most notably:

• The metric tensor gi j does not vary throughout the coordinate space,

• No distinction needs to be made between covariant and contravariant components of
vectors,

• No distinction needs to be made between partial differentiation and covariant differen-
tiation.

The analysis which follows in the remainder of Chapter 4 may be extended to non-Cartesian
coordinate systems. However, this is outside the scope of the present work.

With the preliminaries regarding the selection of coordinate system completed, the
attention is turned to the dimensional form of the Euler equations in the Eulerian frame E in
Cartesian coordinates, which may be written in tensor form as

Continuity:
∂ρ

∂ t
+ vmρ,m +ρvm,m = 0 , (4.26)

Momentum:
∂vi
∂ t

+ vmvi,m +
1
ρ

p,i = 0 , (4.27)

Energy:
∂ p
∂ t

+ vm p,m +ρa2vm,m = 0 , (4.28)

where “,” notation denotes partial differentiation. It is noted that vm,m denotes the divergence
of velocity, while terms of the form vmX,m denote the advection of the quantity or tensor X .

A final preliminary step will be taken before introducing the non-dimensionalization
by writing out the equations in component from with consistent notation for spatial and
temporal partial derivatives. Terms will be arranged according to the coordinates w.r.t. which
derivatives are taken:

Continuity:
∂ρ

∂ t
+ v1

∂ρ

∂x1
+ρ

∂v1
∂x1

+ v2
∂ρ

∂x2
+ρ

∂v2
∂x2

+ v3
∂ρ

∂x3
+ρ

∂v3
∂x3

= 0 , (4.29)

Momentum:
∂vi
∂ t

+ v1
∂vi
∂x1

+ v2
∂vi
∂x2

+ v3
∂vi
∂x3

+
1
ρ

∂ p
∂xi

= 0 , (4.30)

Energy:
∂ p
∂ t

+ v1
∂ p
∂x1

+ρa2 ∂v1
∂x1

+ v2
∂ p
∂x2

+ρa2 ∂v2
∂x2

+ v3
∂ p
∂x3

+ρa2 ∂v3
∂x3

= 0 .

(4.31)
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The nomenclature of the non-dimensionalization will follow Eq. (4.2) and Table 4.2. In
the total-quantity form of the equations, reference values XR for non-dimensionalization are
chosen such that

XN =
X
XR

= O(1) , (4.32)

with the explicit assumption that gradients are non-dimensionalized using characteristics
lengths Li and a characteristic time tR such that

∂

∂xi
=

1
Li

∂

∂ξi
with

∂

∂ξi
= O(1) , (4.33)

∂

∂ t
=

1
tR

∂

∂ tN
with

∂

∂ tN
= O(1) , (4.34)

where some abuse of notation has been committed to relay the idea that non-dimensional
gradients are O(1). The implicit assumption in the above is that the gradients of all variables
X may be appropriately non-dimensionalized using the same scale Lt or tR. The validity of
this approach is questionable where variables have different scales of gradients. An example
of this would be comparing the variation of v1 and p in the surface-normal direction in a
boundary-layer, or in constant-density flows. The present analysis may readily be extended
through the addition of ad-hoc “switching” parameters (in essense similar to the Kronecker
delta) to re-scale the non-dimensionalization of particular terms. This is outside the scope of
the present development.

With the understanding that reference quantities are chosen such that the total value
(including the mean and the perturbation) of fluid quantities is non-dimensionalized to O(1),
the following total-quantity form of the generally non-dimensionalized Euler equations is
obtained:

Continuity:

(
ρR

tR

)
∂ρN

∂ tN
+

(
ρRU1

L1

)
u1

∂ρN

∂ξ1
+

(
ρRU1

L1

)
ρN

∂u1
∂ξ1

+

(
ρRU2

L2

)
u2

∂ρN

∂ξ2
+

(
ρRU2

L2

)
ρN

∂u2
∂ξ2

+

(
ρRU3

L3

)
u3

∂ρN

∂ξ3
+

(
ρRU3

L3

)
ρN

∂u3
∂ξ3





= 0 , (4.35)



220 Mathematical Basis for Piston Theory

Momentum:

(
Ui
tR

)
∂ui
∂ tN

+

(
Ui U1

L1

)
u1

∂ui
∂ξ1

+

(
Ui U2

L2

)
u2

∂ui
∂ξ2

+

(
Ui U3

L3

)
u3

∂ui
∂ξ3





=−
(

pR

ρRLi

)
1

ρN

∂ pN

∂ξi
, (4.36)

Energy:

(
pR

tR

)
∂ pN

∂ tN
+

(
pRU1

L1

)
u1

∂ pN

∂ξ1
+

(
ρRa2

RU1
L1

)
ρNa2

N
∂u1
∂ξ1

+

(
pRU2

L2

)
u2

∂ pN

∂ξ2
+

(
ρRa2

RU2
L2

)
ρNa2

N
∂u2
∂ξ2

+

(
pRU3

L3

)
u3

∂ pN

∂ξ3
+

(
ρRa2

RU3
L3

)
ρNa2

N
∂u3
∂ξ3





= 0 . (4.37)

In the above equations, the non-dimensional term-groupings are of O(1). The rela-
tive magnitude of terms comes from the term-groupings in parentheses preceding each
group of non-dimensional terms. The above equations may be manipulated to highlight the
fundamental non-dimensional groups or characteristic parameters of the equations as below:

Continuity:

(
LR

UR tR

)
∂ρN

∂ tN
+

(
LRU1
L1UR

)
u1

∂ρN

∂ξ1
+

(
LRU1
L1UR

)
ρN

∂u1
∂ξ1

+

(
LRU2
L2UR

)
u2

∂ρN

∂ξ2
+

(
LRU2
L2UR

)
ρN

∂u2
∂ξ2

+

(
LRU3
L3UR

)
u3

∂ρN

∂ξ3
+

(
LRU3
L3UR

)
ρN

∂u3
∂ξ3





= 0 , (4.38)

Momentum:

(
LR

UR tR

)
∂ui
∂ tN

+

(
LRU1
L1UR

)
u1

∂ui
∂ξ1

+

(
LRU2
L2UR

)
u2

∂ui
∂ξ2

+

(
LRU3
L3UR

)
u3

∂ui
∂ξ3





=−
(

pR

ρRU2
R

U2
R

U2
i

LRUi
LiUR

)
1

ρN

∂ pN

∂ξi
,

(4.39)



4.2 General Equations 221

Energy:

(
pR

ρRa2
R

LR
UR tR

)
∂ pN

∂ tN
+

(
pR

ρRa2
R

LRU1
L1UR

)
u1

∂ pN

∂ξ1
+

(
LRU1
L1UR

)
ρNa2

N
∂u1
∂ξ1

+

(
pR

ρRa2
R

LRU2
L2UR

)
u2

∂ pN

∂ξ2
+

(
LRU2
L2UR

)
ρNa2

N
∂u2
∂ξ2

+

(
pR

ρRa2
R

LRU3
L3UR

)
u3

∂ pN

∂ξ3
+

(
LRU3
L3UR

)
ρNa2

N
∂u3
∂ξ3





= 0 .

(4.40)

Following the introduction of the non-dimensional parameters defined in Table 4.3, these
may be condensed into the following form, with the explicit term descriptions dropped in
favour of the k-notation:

Continuity:

(kt)
∂ρN

∂ tN
+(kx1)

[
u1

∂ρN

∂ξ1
+ρN

∂u1
∂ξ1

]

+(kx2)

[
u2

∂ρN

∂ξ2
+ρN

∂u2
∂ξ2

]

+(kx3)

[
u3

∂ρN

∂ξ3
+ρN

∂u3
∂ξ3

]





= 0 , (4.41)

Momentum:

(kt)
∂ui
∂ tN

+(kx1)u1
∂ui
∂ξ1

+(kx2)u2
∂ui
∂ξ2

+(kx3)u3
∂ui
∂ξ3





=−
(

k f kx i

k2
ui

)
1

ρN

∂ pN

∂ξi
, (4.42)

Energy:

(kakt)
∂ pN

∂ tN
+(kakx1)u1

∂ pN

∂ξ1
+(kx1)ρNa2

N
∂u1
∂ξ1

+(kakx2)u2
∂ pN

∂ξ2
+(kx2)ρNa2

N
∂u2
∂ξ2

+(kakx3)u3
∂ pN

∂ξ3
+(kx3)ρNa2

N
∂u3
∂ξ3





= 0 . (4.43)

These may be further condensed through re-introduction of the summation-notation as

Continuity: (kt)
∂ρN

∂ tN
+(kxm)

[
um

∂ρN

∂ξm
+ρN

∂um
∂ξm

]
= 0 , (4.44)

Momentum: (kt)
∂ui
∂ tN

+(kxm)um
∂ui
∂ξm

=−
(

k f kx i

k2
ui

)
1

ρN

∂ pN

∂ξi
, no sum on i (4.45)
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Energy: (kakt)
∂ pN

∂ tN
+(kakxm)um

∂ pN

∂ξm
+(kxm)ρNa2

N
∂um
∂ξm

= 0 . (4.46)

This is the final variation considered of the non-dimensional total-quantity form of the
Euler equations in a Cartesian basis in the Eulerian frame E . It is repeated here that for
the total-quantity form, the reference values for non-dimensionalization are chosen such
that, e.g., pN = p

pR
= O(1). Components of velocities and gradients are individually non-

dimensionalized by, for example, ui =
vi
Ui

= O(1), while comparison between components is
facilitated by the reference value UR.

4.2.3 Shock Boundary Conditions

The shock boundary conditions are strictly-speaking compatibility relations for the dis-
continuity in the fluid. The final “outer boundary” of the fluid domain lies “outside” the
shock and has an influence in defining the shock structure and fluid properties behind the
shock. An interpretation of boundary conditions and permissible prescription of physical
and numerical conditions based on characteristics, as put forward in Chapters 16 and 19
of [66], is challenging when applied to shocks. It is noted that the Mach-number of the
flow downstream of the shock boundary, normal to the shock surface, is subsonic. As a
consequence, the shock boundary acts as a subsonic inlet of sorts. This places restrictions on
the physical boundary conditions which may be prescribed. Without dwelling on this point,
it is noted that the equations governing the shock prescribe the necessary relations between
the primitive variables (ρ , p, and V) as a function of the upstream fluid state and of the shape
and orientation of the shock surface.

The view of the shock relations as compatibility conditions internal to the fluid domain is
reinforced by the derivation of the Rankine-Hugoniot equations in Chapter 2 of [64]. It is
noted that the discontinuities in fluid gradients (C1 and higher) exist across the shock, and
so the Euler equations can only be satisfied in an integral sense (C0). This is clearly shown
through the transformation from the differential form of the Euler equations in [64] as

∂U
∂ t

+∇ ·F = 0 , (4.47)

to the integral form of
∂

∂ t

∫∫∫

V
UdV +

∫∫

S
F ·dS , (4.48)
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which, for a moving shock surface described by Σ(xi, t) = 0 may be written (for a vanishingly
small control volume) as

[F](S) ·∇Σ+[U](S)
∂Σ
∂ t

, (4.49)

In the above, U = {ρ,ρV,ρE} is the vector of conservative variables (H being the total
internal energy), and F = {ρV,ρVV+P,ρVH} is the flux vector (P being the stress tensor
and H being the total enthalpy). Furthermore,

[X ](S) ≡ X(D)−X(U) , (4.50)

Is the notation for the jump in a quantity X across the shock from its upstream value X(U)

to its downstream value X(D). Equation (4.49) is the general form of the Rankine-Hugoniot
equations, which describe the relationship between fluid properties downstream and upstream
of the shock surface.

It is emphasized that the Rankine-Hugoniot equations provide compatibility conditions
for the zeroth-derivative in the fluid variables as a function of the shock orientation (through
∇Σ) and of the shock translational velocity (through ∂Σ

∂ t ) in the Eulerian frame E . While
further insight may be gained into flow gradients through consideration of the shock shape
(curvature) and rotational velocity, a discussion of these points is reserved for Section 4.4.
For the present purposes, it is sufficient to note that the Rankine-Hugoniot equations provide
compatibility relations for the jump in zeroth-derivatives of fluid variables at the interior of
the fluid domain. While it has been stressed that the shock surface is not strictly the exterior
boundary of the fluid, it is convenient in the present work to consider it as the “boundary”
with associated boundary conditions for the portion of the fluid domain bounded by the body
surface and the shock surface.

With these extensive preliminaries aside, the attention may be turned to the shock relations
themselves. No derivation of the relations will be offered, as this has been covered extensively
in the literature. The relations may be expressed in a variety of forms and notations. The
following nomenclature is associated with the shock relations:

• The total-quantity form of the velocity of the fluid relative to the Eulerian frame E is
given by Vf,

• The total-quantity form of the (translational) velocity of the shock surface relative to
the Eulerian frame E is given by Vs,

• The total-quantity form of the fluid velocity relative to the shock surface is then given
by

Vr = Vf −Vs , (4.51)
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• The unit-vector normal to the instantaneous shock surface is given by n̂. It is repeated
here that n̂ is oriented into the pre-shock domain,

• The relative-velocity of the fluid normal to the shock surface is then denoted by w,
with

w ≡ (Vf −Vs) · n̂ . (4.52)

Note that w < 0 denotes an inflow into the post-shock domain.

The present work will first introduce the shock relations in a dimensional form used in a
number of works on curved shocks [203–205]:

[ρ](S) = ρ(U)σ , (4.53)

[Vf]
(S) =− σ

1+σ
w(U)n̂ , (4.54)

[p](S)
σ

1+σ
ρ(U)w

2
(U) , (4.55)

σ =
2
(

w2
(U)−a2

(U)

)

2a2
(U)

+(γ −1)w2
(U)

, (4.56)

For the purposes of the present work, it is preferable to express these variables without the
shock-jump notation [X ](S). The variables downstream of the shock are then found as

ρ(D) = ρ(U)(1+σ) , (4.57)

Vf(D) = Vf(U)−
σ

1+σ
w(U)n̂ , (4.58)

p(D) = p(U)+
σ

1+σ
ρ(U)w

2
(U) , (4.59)

The following remarks are made regarding the shock relations and the outlook for their
further application:

• As expected, it is evident from Eq. (4.58) that only the shock-normal component of the
fluid velocity is changed by the shock, with the tangential components unchanged,

• For a stationary (in the Eulerian frame E ) shock surface, Vs = 0 and consequently that
w(U) = Vf(U) · n̂.

The maximum value of w(U) is then w(U) =
∣∣Vf(U)

∣∣ and is achieved for a normal shock.
It follows that

∣∣w(U)

∣∣<
∣∣Vf(U)

∣∣ for oblique shocks.
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However, for the shock to exist in the first place, it is required that
∣∣w(U)

∣∣≥ a(U), i.e.
that the upstream shock-normal Mach-number be greater than or equal to 1.

As a result, the following bound for
∣∣w(U)

∣∣ exists for a stationary shock:

a(U) ≤
∣∣w(U)

∣∣≤
∣∣Vf(U)

∣∣ ,

• The following relations may be shown:

1+σ =
γ +1

2m2
⊥+(γ −1)

, (4.60)

σ

1+σ
=

2
γ +1

(
1−m2

⊥
)
, (4.61)

m2
⊥ ≡

a2
(U)

w2
(U)

, (4.62)

where m⊥ may be interpreted as the inverse of the shock-normal relative Mach-number.
It may be shown that m⊥ → 1 is the limit of the shock becoming a Mach wave
(infinitesimal shock), while m⊥ → 0 is the hypersonic limit of shock strength. The
corresponding limits of σ are found:

Mach-wave limit: m⊥ → 1 , σ → 0 , (4.63)

Hypersonic limit: m⊥ → 0 , σ → 2
γ −1

. (4.64)

Consequently, it is seen that the expressions in Eqs. (4.60) and (4.61) remain bounded
and are O(1) or at worst O

(
γ+1
γ−1

)
in the limit of hypersonic shocks.

• For the purposes of piston theory, the chief domain of interest will be that bounded by
the body surface and the shock surface. As the “downstream” quantities X(D) are thus
of chief interest, their subscript will be dropped in the development which follows.

The shock relations may then be written in a non-dimensional form by forming ratios of
dimensional quantities. It is stressed that the form of the equation presented here is an inherent
non-dimensionalization, rather than an independent or general non-dimensionalization as has
been performed up until this point. The justification for the non-dimensionalization may be
found in the above remarks. Equations (4.57) to (4.59) then become:

ρ

ρ(U)
= (1+σ) , (4.65)
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V∣∣V(U)

∣∣ = V̂(U)−
σ

1+σ

w(U)∣∣V(U)

∣∣ n̂ , (4.66)

p

ρ(U)

∣∣V(U)

∣∣2 =
1

γM2
(U)

+
σ

1+σ

w2
(U)∣∣V(U)

∣∣2 , (4.67)

4.2.4 Body Boundary Conditions

Within the inviscid framework of the Euler equations, the boundary conditions applied at the
body surface are limited to the non-permeability condition. No further a-priori definition of
the surface pressure, density, or tangential velocities may be given (in the direct problem).
This is explained in detail in Chapters 16 and 19 of [66]. Specifically, the zero normal-
velocity specification is associated with a characteristic propagating into the fluid domain.
The characteristic originating from the fluid domain effectively determines the remaining
primitive variables (ρ , p, and tangential velocity components) at the body surface.

With this in mind, the following definitions apply in outlining the body boundary condi-
tions:

• The total-quantity form of the velocity of the fluid relative to the Eulerian frame E is
given by Vf,

• The total-quantity form of the (translational) velocity of the body surface relative to
the Eulerian frame E is given by Vb,

• The total-quantity form of the fluid velocity relative to the body surface is then given
by

Vr = Vf −Vb , (4.68)

• The unit-vector normal to the instantaneous body surface is given by n̂.

With this nomenclature, the non-permeability condition is written

Vr · n̂ = 0 , (4.69)

or in terms of dimensional components,

(v1 − vb1)n1 +(v2 − vb2)n2 +(v3 − vb3)n3 = 0 , (4.70)

where the subscript “b” is used to denote body velocities. The introduction of reference
values allows the above to be rendered non-dimensional. It is noted that the components of



4.3 Perturbation Equations 227

the unit vector n̂ are already non-dimensional. The non-dimensional total-quantity form of
the non-permeability condition at the body surface may then be written compactly using the
summation convention and non-dimensional parameters of Table 4.3 as

(nm)[(kum)um − (kbm)ubm] = 0 . (4.71)

4.3 Perturbation Equations

As in Section 4.2, the treatment of the perturbation form of the governing equations will begin
with the equations in dimensional form. Following the introduction of reference quantities
for non-dimensionalization, additional terms will be introduced to describe non-dimensional
groups. The nomenclature associated with the present section is expanded on in Section 4.3.1.

4.3.1 Nomenclature

The previous nomenclature of Section 4.2.1 is carried through to the present development,
with some additions to distinguish between un-perturbed and perturbation quantities. As
before, the relationship between dimensional, reference, and non-dimensional values of a
quantity is given by

X = XRXN , (4.72)

The following nomenclature is adopted for perturbations:

X = X̄ + X̃ , (4.73)

where X is the total-value of the quantity of interest, X̄ is its un-perturbed value, and X̃ is the
perturbation-value of quantity. A more detailed description of the non-dimensionalization
and its associated nomenclature is given in Tables 4.4 and 4.5.
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Table 4.4 Nomenclature of non-dimensionalization of perturbation-form variables.

Quantity Dimensional Reference Non-dimensional

Density: total ρ = ρ̄ + ρ̃ ρR ρN = O(1)

Density: un-perturbed ρ̄ ρ̄R ρ̄N = O(1)

Density: perturbation ρ̃ ρ̃R ρ̃N = O(1)

Pressure: total p = p̄+ p̃ pR pN = O(1)

Pressure: un-perturbed p̄ p̄R p̄N = O(1)

Pressure: perturbation p̃ p̃R p̃N = O(1)

Velocity: total vi = v̄i + ṽi Ui ui = O(1)

Velocity: un-perturbed v̄i Ū i, ŪR ūi = O(1)

Velocity: perturbation ṽi Ũ i ũi = O(1)

Speed of sound: total a = ā+ ã aR aN = O(1)

Speed of sound: un-perturbed ā āR āN = O(1)

Speed of sound: perturbation ãN ãN ãN = O(1)
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Table 4.5 Nomenclature of perturbation form non-dimensional parameters.

Quantity Definition Associated with

k̄t L̄R
ŪRt̄R

Time-derivatives

k̄x i with i = 1, 2, 3 L̄RŪ i
L̄iŪR

Advection

k̄Li with i = 1, 2, 3 L̄R
L̄i

Spatial gradients

k̄ui with i = 1, 2, 3 Ū i
ŪR

Mean un-perturbed flow direction

k̄bi with i = 1, 2, 3 Ūbi
ŪR

Un-perturbed body translation velocity

k̄ f p̄R

ρ̄RŪ2
R

Momentum-equation pressure gradient

k̄a p̄R

ρ̄Rā2
R

Energy-equation pressure gradient

εt t̃R

t̄R

Relative magnitude of perturbation time-scale

εLi with i = 1, 2, 3 L̃i
L̄R

Relative magnitude of perturbation length-scale

εui with i = 1, 2, 3 Ũ i
ŪR

Relative magnitude of velocity perturbation

εbi with i = 1, 2, 3 Ũbi
ŪR

Relative magnitude of body-velocity perturbation

ερ ρ̃R

ρ̄R

Relative magnitude of density perturbation

εp p̃R

p̄R

Relative magnitude of pressure perturbation

εa ãR

āR

Relative magnitude of perturbation to a
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As a final preliminary, consider the previous relations developed for transformation
between the oriented adapted-frame A and the Eulerian frame E in Eq. (4.13). These
equations will be used with η̄ and λ̄ to describe the oriented-frame adapted to the un-
perturbed surface ¯A . The adapted-frame will be described by the triad of orthogonal
unit-vectors ¯̂t, ¯̂n, ¯̂b.

The un-perturbed triad of ¯A is then considered fixed to the surface. The surface is then
perturbed. Translation of the point at which the frame ¯A was adapted has no effect on the
orientation of the frame ¯A in the global Eulerian-frame E . However, rotation of the surface
does. The following definitions are made, with an accompanying illustration in:

• Considered perturbations to the orientation of the surface as arising from a rotation θ̃r

about an axis r̂,

• The orientation of the axis of rotation r̂ relative to the global Eulerian-frame E is
described in terms of ηr and λr by

r̂ =
[
−sinηr cosλr −sinηr sinλr cosηr

]



ê1
ê2
ê3


 , (4.74)

• Rotation of the frame adapted to the un-perturbed surface ( ¯A ) by the rotation vector
θ̃rr̂ results in a new triad of orthogonal unit-vectors describing a frame A ∗. The new
triad is denoted t̂∗, n̂∗, b̂∗,

• It is noted that n̂∗ remains perpendicular to the perturbed surface. However, t̂∗ and b̂∗

do not necessarily meet the orientation conditions of b̂∗ · ê1 = 0. The rotated frame A ∗

may be further rotated about n̂∗ to meet the orientation conditions set out in Eqs. (4.6)
and (4.8). In the present work, however, this is unnecessary,

• The active rotation of the un-perturbed triad ¯̂t, ¯̂n, ¯̂b is described through Rodrigues’
rotation formula, which is written for the unit normal-vector below:

n̂∗ =
(
cos θ̃r

) ¯̂n+
(
sin θ̃r

)(
r̂× ¯̂n

)
+
(
1− cos θ̃r

)(
r̂ · ¯̂n
)
r̂ , (4.75)

It is noted here that r̂ · ¯̂n ̸= 0 will result in a “shearing” or “spin” of the surface about its
normal. Of greater practical interest in the present application is the group of rotations
such that r̂ · ¯̂n = 0, which may be interpreted as pure “plate-bending” about ¯̂b and ¯̂t.

• The effect of surface-rotation on the triad of the adapted-frame ¯A may be described in
terms of perturbation vectors t̃, ñ, b̃. It should be noted that the perturbation vectors
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ê1

ê3

ê2

λ

η

n̂

n̂∗

¯̂n

r̂

θ̃r ñ

¯̂n

δ s

S
(
x1,x2,x3, t

)
= 0

S
(
x1,x2,x3, t +δ t

)
= 0

Gs ≡ lim
δ t→0

δ s
δ t

V̂s = Gsn̂s

Fig. 4.2 Illustration of the orientation angles for the surface-adapted normal and definition of
the frame adapted to the perturbed shock surface.

are not unit-vectors. The following definitions apply for the perturbation vectors:

t̃ = t̂∗− ¯̂t =
3

∑
i=1

t̃ iêi , (4.76)

ñ = n̂∗− ¯̂n =
3

∑
i=1

ñiêi , (4.77)

b̃ = b̂∗− ¯̂b =
3

∑
i=1

b̃iêi , (4.78)

The use of Rodrigues’ rotation formula as in Eq. (4.75) allows the components of
perturbation vectors to be written in the form of:

ñ1 = (r2n̄3 − r3n̄2)sin θ̃r −
(
1− cos θ̃r

)[
n̄1 −

(
r̂ · ¯̂n
)
r1
]
, (4.79)

ñ2 = (r3n̄1 − r1n̄3)sin θ̃r −
(
1− cos θ̃r

)[
n̄2 −

(
r̂ · ¯̂n
)
r2
]
, (4.80)

ñ3 = (r1n̄2 − r2n̄1)sin θ̃r −
(
1− cos θ̃r

)[
n̄3 −

(
r̂ · ¯̂n
)
r3
]
, (4.81)

The above considerations and equations allow the similar relationships to be derived for the
perturbations to ¯̂t and ¯̂b following a rotation of θ̃r about the axis r̂. However, this is not
required for the purposes of the present work.
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4.3.2 Governing Equations

Dimensional Form in Cartesian Coordinates

A similar progression may be followed for the perturbation form of the Euler equations
in the Eulerian frame E as was followed in Section 4.2.2. The first step towards the final
non-dimensionalized perturbation form is the introduction of the perturbation form into
Eqs. (4.29) to (4.31). The use of component-notation will become cumbersome due to the
number of terms introduced. Thus, Einstein summation notation will be re-introduced. The
corresponding dimensional perturbation form of the Euler equations is given by:

Continuity:
∂ (ρ̄ + ρ̃)

∂ t
+(v̄m + ṽm)

∂ (ρ̄ + ρ̃)

∂xm
+(ρ̄ + ρ̃)

∂ (v̄m + ṽm)

∂xm
= 0 , (4.82)

Momentum:
∂ (v̄i + ṽi)

∂ t
+(v̄m + ṽm)

∂ (v̄i + ṽi)

∂xm
=− 1

ρ̄ + ρ̃

∂ (p̄+ p̃)
∂xi

, (4.83)

Energy:
∂ (p̄+ p̃)

∂ t
+(v̄m + ṽm)

∂ (p̄+ p̃)
∂xm

+(ρ̄ + ρ̃)(ā+ ã)2 ∂ (v̄m + ṽm)

∂xm
= 0 . (4.84)

If it is assumed that:

• The un-perturbed variables are known a-priori,

• The un-perturbed variables are a solution to the Euler equations,

then the above perturbation form of the equations may be further simplified and the un-
perturbed solution may be filtered out. The nonlinear terms in the equations provide coupling
between the known un-perturbed solution and the unknown perturbation problem. At present,
no assumptions will be made regarding perturbation smallness and no linearization will be
performed. Any arrangement of terms is possible, with the following arrangement used to
emphasize physical interpretation and to facilitate later non-dimensionalization:

Continuity:
[

∂

∂ t
+ v̄m

∂

∂xm

]
ρ̃

︸ ︷︷ ︸
C1

+ ρ̃
∂ v̄m
∂xm︸ ︷︷ ︸
C2

+ ṽm
∂ ρ̄

∂xm
+ ρ̄

∂ ṽm
∂xm︸ ︷︷ ︸

C3

+
∂ (ρ̃ ṽm)

∂xm︸ ︷︷ ︸
C4

= 0 , (4.85)

Momentum:

(ρ̄ + ρ̃)

[
∂

∂ t
+ v̄m

∂

∂xm

]
ṽi

︸ ︷︷ ︸
M1

+ ρ̃

[
∂

∂ t
+ v̄m

∂

∂xm

]
v̄i

︸ ︷︷ ︸
M2

+(ρ̄ + ρ̃)ṽm
∂ ṽi
∂xm︸ ︷︷ ︸

M3

+(ρ̄ + ρ̃)ṽm
∂ v̄i
∂xm︸ ︷︷ ︸

M4





=− ∂ p̃
∂xi︸ ︷︷ ︸

M5

, (4.86)
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Energy:

[
∂

∂ t
+ v̄m

∂

∂xm

]
p̃

︸ ︷︷ ︸
E1

+ ṽm
∂ p̃
∂xm

+ ṽm
∂ p̄
∂xm︸ ︷︷ ︸

E2

+(ρ̄ + ρ̃)(ā+ ã)2 ∂ ṽm
∂xm︸ ︷︷ ︸

E3

+(ρ̄ + ρ̃)(ā+ ã)2 ∂ v̄m
∂xm

− ρ̄ ā2 ∂ v̄m
∂xm︸ ︷︷ ︸

E4





= 0 . (4.87)

An interpretation of the labelled groups follows:

• Terms in the continuity equation of Eq. (4.85):

– C1 – temporal derivative of perturbation density in a frame advected by the
background un-perturbed flow,

– C2 – perturbation outflow due to a density perturbation over the un-perturbed
velocity field,

– C3 – perturbation outflow due to a velocity perturbation over the un-perturbed
density field,

– C4 – perturbation outflow due to purely perturbation terms,

– It is noted here that terms C1 and C2 together represent (by the Reynolds transport
theorem [63]) the net perturbation mass-flux out of a fluid packet advected by
the un-perturbed background flow. The remaining terms C3 and C4 may then be
interpreted as “source” terms which arise due to distortion of the fluid packet
by the perturbation velocity. This interpretation arises from the manipulation of
Eq. (4.85) by means of the Reynolds transport theorem [63] into the form

δ

δ t
mean

∫∫∫
ρ̃dV =−

∫∫∫
∂

∂xm
[(ρ̄ + ρ̃)ṽm]dV , (4.88)

where δ

δ t
mean

is the material derivative in the background un-perturbed flow.

• Terms in the momentum equation of Eq. (4.86):

– M1 – inertial forces due to the advection by the background un-perturbed flow of
velocity perturbations,

– M2 – inertial forces due to the advection by the background un-perturbed flow of
density perturbations over the background un-perturbed velocity field,
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– M3 – inertial forces due to the self-advection of velocity perturbations,

– M4 – inertial forces due to the advection by the perturbation velocity of the
background un-perturbed velocity field,

– M5 – perturbation pressure gradient.

• Terms in the energy equation of Eq. (4.87):

– E1 – temporal derivative of perturbation pressure in a frame advected by the
background un-perturbed flow,

– E2 – work done against pressure gradients by the perturbation velocity,

– E3 – elastic energy stored in the fluid due to perturbations to the fluid dilation,

– E4 – elastic energy stored in the fluid due to perturbations to the thermodynamic
state of the fluid over the background un-perturbed dilation.

Two preliminary, forward-looking remarks are offered regarding the definition of the un-
perturbed variables:

• If uniform freestream conditions are taken as the un-perturbed solution (X̄ = X∞), then
all derivatives of un-perturbed terms will be rendered zero (∂ X̄

∂ t = ∂ X̄
∂xi

= 0). This will
be encountered in CPT,

• If perturbations are taken about a mean-steady solution X̄ = Xmean(xi), then time-
derivatives of the mean-steady terms will be will be rendered zero (∂ X̄

∂ t ). However,
whether spatial derivatives (∂ X̄

∂xi
) will be zero or non-zero depends on the mean-steady

solution. This will be encountered in LPT.

Non-Dimensional Form in Cartesian Coordinates

A key difference in the non-dimensionalization of the perturbation form of the equations is
that different reference scales must be used for derivatives of un-perturbed and of perturbation
quantities. The nomenclature of the non-dimensionalization will follow Table 4.4. The
reference values for both un-perturbed and perturbation quantities are chosen such that the
non-dimensional variables are O(1). This is explicitly written as

X̄N =
X̄
X̄R

= O(1) and X̃N =
X̃
X̃R

= O(1) . (4.89)
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Similarly, the explicit assumption is made that gradients are non-dimensionalized using
characteristics lengths and times such that

∂ X̄
∂xi

=
X̄R

L̄i

∂ X̄N

∂ξi
with

∂ X̄N

∂ξi
= O(1) , (4.90)

∂ X̃
∂xi

=
X̃R

L̃i

∂ X̃N

∂ξi
with

∂ X̃N

∂ξi
= O(1) , (4.91)

∂ X̄
∂ t

=
X̄R

t̄R

∂ X̄N

∂ tN
with

∂ X̄
∂ tN

= O(1) , (4.92)

∂ X̃
∂ t

=
X̃R

t̃R

∂ X̃N

∂ tN
with

∂ X̃
∂ tN

= O(1) . (4.93)

The previous caveat regarding comparable gradients / scales for all flow variables made on
Page 219 applies here as well.

It should be noted in the above that no explicit transformation of coordinates is attempted
in the present work. In fact, the same nomenclature of tN and ξi is used to describe “non-
dimensional” coordinates when dealing with either un-perturbed or perturbation quantities.
This is justified by the requirement that separate reference scales be used such that ∂

∂ tN
=O(1)

and ∂

∂ξi
= O(1) (abuse of notation aside) holds true for both un-perturbed and perturbation

quantities. In summary: multiple scales may exist, with distinction between them being made
through the reference values, and not through the introduction of new coordinates.

With these preliminaries in mind, the non-dimensional perturbation form of the Euler
equations in a Cartesian basis in the Eulerian frame E is found by the introduction of
reference values and non-dimensional variables into Eqs. (4.85) to (4.87). This is done, with
the following non-dimensional groups formed:

C:

(
ρ̃R

ρ̄R

)[(
t̄R

t̃R

L̄R
ŪRt̄R

)
∂

∂ tN
+

(
L̄R
L̃m

Ūm

ŪR

)
ūm

∂

∂ξm

]
ρ̃N

+

(
ρ̃R

ρ̄R

L̄RŪm

L̄mŪR

)
ρ̃N

∂ ūm
∂ξm

+

(
L̄R
L̄m

Ũm

ŪR

)
ũm

∂ ρ̄N

∂ξm

+

(
L̄R
L̃m

Ũm

ŪR

)
ρ̄N

∂ ũm
∂ξm

+

(
ρ̃R

ρ̄R

L̄R
L̃m

Ũm

ŪR

)
∂ (ρ̃N ũm)

∂ξm





= 0 , (4.94)
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M:

(
Ũ i
ŪR

)[
ρ̄N +

(
ρ̃R

ρ̄R

)
ρ̃N

][(
t̄R

t̃R

L̄R
ŪRt̄R

)
∂

∂ tN
+

(
L̄R
L̃m

Ūm

ŪR

)
ūm

∂

∂ξm

]
ũi

+

(
Ū i
ŪR

ρ̃R

ρ̄R

)
ρ̃N

[(
L̄R

ŪRt̄R

)
∂

∂ tN
+

(
L̄RŪm

L̄mŪR

)
ūm

∂

∂ξm

]
ūi

+

(
L̄R
L̃m

Ũm

ŪR

Ũ i
ŪR

)[
ρ̄N +

(
ρ̃R

ρ̄R

)
ρ̃N

]
ũm

∂ ũi
∂ξm

+

(
L̄R
L̄m

Ũm

ŪR

Ū i
ŪR

)[
ρ̄N +

(
ρ̃R

ρ̄R

)
ρ̃N

]
ũm

∂ ūi
∂ξm

+

(
L̄R
L̃i

p̃R

p̄R

p̄R

ρ̄RŪ2
R

)
∂ p̃N

∂ξi





= 0 , (4.95)

E:

(
p̃R

p̄R

p̄R

ρ̄Rā2
R

)[(
t̄R

t̃R

L̄R
ŪRt̄R

)
∂

∂ tN
+

(
L̄R
L̃m

Ūm

ŪR

)
ūm

∂

∂ξm

]
p̃N

+

(
L̄R
L̃m

Ũm

ŪR

p̃R

p̄R

p̄R

ρ̄Rā2
R

)
ũm

∂ p̃N

∂ξm

−
(

L̄RŪm

L̄mŪR

)
ρ̄N ā2

N
∂ ūm
∂ξm

+

(
L̄R
L̄m

Ũm

ŪR

p̄R

ρ̄Rā2
R

)
ũm

∂ p̄N

∂ξm

+

(
L̄R
L̃m

Ũm

ŪR

)[
ρ̄N +

(
ρ̃R

ρ̄R

)
ρ̃N

][
ā2

N +

(
2

ãR

āR

)
āN ãN +

(
ã2

R

ā2
R

)
ã2

N

]
∂ ũm
∂ξm

+

(
L̄RŪm

L̄mŪR

)[
ρ̄N +

(
ρ̃R

ρ̄R

)
ρ̃N

][
ā2

N +

(
2

ãR

āR

)
āN ãN +

(
ã2

R

ā2
R

)
ã2

N

]
∂ ūm
∂ξm





= 0 .

(4.96)

This cumbersome notation is replaced by k and ε notation as defined in Table 4.5, with
some terms rearranged:

C:

(
ερ

)[( k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
ρ̃N

+

(
εum

εLm

)
ρ̄N

∂ ũm
∂ξm

+

(
ερεum

εLm

)
∂ (ρ̃N ũm)

∂ξm

+
(
ερ k̄xm

)
ρ̃N

∂ ūm
∂ξm

+
(
εumk̄Lm

)
ũm

∂ ρ̄N

∂ξm





= 0 , (4.97)
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M:

(εui)
[
ρ̄N +

(
ερ

)
ρ̃N
][( k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
ũi

+

(
εuiεum

εLm

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũm

∂ ũi
∂ξm

+
(
ερ k̄ui

)
ρ̃N

[(
k̄t
) ∂

∂ tN
+
(
k̄xm
)
ūm

∂

∂ξm

]
ūi

+
(
k̄Lmεumk̄ui

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũm

∂ ūi
∂ξm





=−
(

εpk̄ f

εLi

)
∂ p̃N

∂ξi
, (4.98)

E:

(
εpk̄a

)[( k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
p̃N

+

(
εumεpk̄a

εLm

)
ũm

∂ p̃N

∂ξm

+

(
εum

εLm

)[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũm

∂ξm

−
(
k̄xm
)
ρ̄N ā2

N
∂ ūm
∂ξm

+
(
k̄Lmεumk̄a

)
ũm

∂ p̄N

∂ξm

+
(
k̄xm
)[

ρ̄N +
(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ūm

∂ξm





= 0 . (4.99)

The above equations are the perturbation form of the non-dimensional Euler equations in
the Eulerian frame E as expressed in a Cartesian basis. The definition of the array of non-
dimensional parameters is given in Table 4.5. A short discussion of the perturbation approach
and the non-dimensional parameters will now be given in the context of the above equations:

• Regarding perturbations: the initial assumption on Page 232 is repeated here that the
un-perturbed variables are known a-priori and are a solution to the Euler equations.
The un-perturbed variables will be loosely referred to as the “un-perturbed solution” in
the discussion which follows,

• It is noted that the nonlinear terms in the Euler equations lead to coupling between
the un-perturbed solution and the perturbation problem. However, the equations
describing the perturbation problem are not entirely equivalent to the Euler equations
with perturbation-quantities in place of total-quantities. Additional terms are present.

However, the coupling between the un-perturbed solution and the perturbation problem
also results in de-coupling between perturbation variables. This is seen quite clearly
in the continuity equation as described in Eq. (4.97). Furthermore, it is noted that the
differential-order of the equations is preserved. The coupling between the un-perturbed
solution and the perturbation problem thus results in zeroth-order differential terms
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in the perturbation quantities appearing. In other words, algebraic (as opposed to
differential) terms in the perturbation variables appear.

The above considerations point towards the prospect of significant simplification of the
mathematical problem describing perturbation quantities. The possibility (and validity)
of this simplification is governed by the relative magnitude of terms in Eqs. (4.97)
to (4.99),

• Correct specification of reference values for non-dimensionalization renders all terms
in Eqs. (4.97) to (4.99) which are not surrounded in round-parentheses O(1). This
is to say, the magnitude of terms is represented by the non-dimensional groupings in
parentheses.

The individual terms in the dimensionless groupings may be associated with various
physical interpretations, some of which are offered below:

– Generally speaking, terms in ε indicate the magnitude of perturbation quantities
relative to their un-perturbed reference values. Typically, ε ≪ 1 indicates “small”
perturbations.

An important exception requiring more careful interpretation lies with εL and εt .
These denote the relative magnitude of length- and time-scales. However, the
magnitude of gradients is inversely proportional to these scales. This is why the
terms appearance as ε

−1
L and ε

−1
L in the equations. In this sense, a small εL ≪ 1

implies large perturbation gradients compared to the un-perturbed reference
gradients,

– εt indicates that the time-derivative of a perturbation quantity is being considered,

– εLi indicates that the spatial gradient in the xi-direction of a perturbation quantity
is being considered,

– If terms in ε may be considered “smallness parameters” for perturbations relative
to un-perturbed reference values, then terms in k̄ indicate the relative magnitude
of different terms in the un-perturbed solution. Comparison of the magnitudes
of different k̄ allow the relative importance of physical mechanisms in the un-
perturbed solution to be assessed,

– k̄t indicates the order-of-magnitude of unsteady terms relative to terms involving
advection / dilation in a reference-direction (typically the axial or freestream
direction) in the un-perturbed solution,

– k̄x i indicates the order-of-magnitude of advection / dilation in the xi-direction rel-
ative to advection / dilation in a reference-direction in the un-perturbed solution,
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– k̄ui indicates the order-of-magnitude of velocity in the xi-direction relative to
velocity in a reference-direction in the un-perturbed solution. Setting UR equal to
the magnitude of the velocity vector results in k̄ui becoming the direction cosine
in the xi-direction,

– k̄ f indicates the order-of-magnitude of pressure gradients in the xi direction
relative to inertial terms in a reference-direction in the un-perturbed solution,

– k̄a indicates the order-of-magnitude of terms associated with work done against
pressure gradients relative to terms associated with energy stored due to dilation.

• The coupling which appears in Eqs. (4.97) to (4.99) between terms in ε and terms in k̄
has significant implications for the simplification of the governing equations. Notably,
it may arise that small perturbations through ε ≪ 1 will not be sufficient to render
terms negligible due to the (possible) existence of a coupled k̄ ≫ 1. Conversely, the
situation may arise where due to k̄ ≪ 1, a simplification is possible even for relative
large perturbations such that ε = O(1).

The above discussion points highlight the value of the non-dimensional form of the perturbation-
form of the Euler equations. The determination of appropriate reference values for non-
dimensionalization – and interpretation of when this non-dimensionalization becomes invalid
– is central to the derivation of CPT and LPT from Eqs. (4.97) to (4.99). This is the topic of
Section 4.4.

4.3.3 Shock Boundary Conditions

The Rankine-Hugoniot equations of Eqs. (4.57) to (4.59) must apply across the shock surface
during and following perturbations to the surface and to the fluid conditions either side of the
shock.

Perturbations to flow variables are dictated by the Rankine-Hugoniot equations them-
selves, rather than by their derivatives. In the general case, perturbations may arise from
changes to the shock orientation, changes to the upstream conditions, and from changes to
downstream conditions. In the present work, the following simplifying assumptions are made
for the purposes of obtaining illustrative results:

• The upstream flow variables are assumed to remain un-perturbed. In the perturbation
nomenclature of the present work, this may be expressed as

X̃ (U) = 0 , (4.100)

X(U) = X̄ (U) , (4.101)
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• As a consequence, perturbations to the upstream shock-normal relative-velocity arise
solely due to rotation of the shock or due to perturbations to the shock translation
velocity in the Eulerian frame E . This results in the following:

Vr(U) = V̄r(U)− Ṽs , (4.102)

n̂∗ = ¯̂n+ ñ , (4.103)

w(U) = Vr(U) · n̂∗ . (4.104)

The following perturbation form of the upstream shock-normal velocity is then intro-
duced:

w(U) = w̄(U)+ w̃(U) , (4.105)

w̄(U) =
(
V̄f(U)− V̄s

)
· ¯̂n , (4.106)

w̃(U) =
(
V̄f(U)− V̄s

)
· ñ− Ṽs ·

( ¯̂n+ ñ
)
. (4.107)

• The square of the shock-normal relative-velocity appears throughout the Rankine-
Hugoniot equations, and will be treated in the following perturbation form:

w2
(U) = w̄2

(U)+ ϕ̃ , (4.108)

ϕ̃ = 2w̄(U)w̃(U)+ w̃2
(U) . (4.109)

• In order to relate perturbations in flow variables directly to the causal perturbations, it is
assumed that

∣∣w̃(U)

∣∣≪
∣∣w̄(U)

∣∣. This allows for expressions of the type
[
w̄(U)+ w̃(U)

]−1

to be expanded as a power series in w̃(U) and for the series to be truncated after
O
(
w̃(U)

)
.

• A similar assumption is made regarding ϕ̃ . Namely, it is assumed that |ϕ̃| ≪
∣∣∣w̄2

(U)

∣∣∣,
to allow for series expansions in ϕ̃ . In order to maintain a consistent accuracy between
expressions, these series will also be truncated after O

(
w̃(U)

)
. This results in the

following approximation:

ϕ̃ = 2w̄(U)w̃(U)+O
(

w̃2
(U)

)
. (4.110)

These preliminaries may be utilized in deriving the perturbation form of the shock relations
of Eqs. (4.57) to (4.59). The perturbation relative-velocities have been defined in Eqs. (4.107)
and (4.109), while the perturbation normal-vector ˜̂n is defined by the relations Eqs. (4.79)
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to (4.81). By introducing perturbations into Eqs. (4.57) to (4.59) and discarding terms
in O

(
w̃2
(U)

)
, and following extensive algebraic manipulation, the following equations are

obtained:

ρ̃

ρ̄
=

[
1−
(

γ −1
2

)
σ̄

](
4

γ +1

)
w̃(U)

w̄(U)
, (4.111)

Ṽ =−
(

σ̄

1+ σ̄

)
w̄(U)ñ−

[
1−
(

γ +1
4

)(
σ̄

1+ σ̄

)](
4

γ +1

)
w̃(U)

( ¯̂n+ ñ
)
, (4.112)

p̃
p̄
=

[
1+
(

γ −1
2

)(
σ̄

1+ σ̄

)]−1( 4γ

γ +1

)
w̃(U)

w̄(U)
, (4.113)

with the terms clarified in Eqs. (4.56), (4.79) to (4.81), (4.106) and (4.107). It is reiterated
that σ̄ may be interpreted as the small deviation of the shock from the limit (σ̄ → 0) of a
vanishingly weak shock. The above results may be re-written in terms of m̄2

⊥ to describe
“small” deviations from the hypersonic limit (m̄⊥ → 0) by use of the relations

σ̄ =

(
2

γ −1

)
 1− m̄2

⊥
1+
(

2
γ−1

)
m̄2
⊥


 , (4.114)

σ̄

1+ σ̄
=

(
2

γ +1

)(
1− m̄2

⊥
)
, (4.115)

where m̄2
⊥ is defined by the use of un-perturbed quantities in Eq. (4.62).

4.3.4 Body Boundary Conditions

The non-permeability condition must apply at the body surface during and following pertur-
bations to the surface and to the surface-bound fluid conditions.

It is noted here that derivatives (both temporal and spatial) of the non-permeability
condition are valid. These yield terms relating flow gradients to surface curvature and the
angular velocity of the surface. A specific example is given in Chapter 19 of [66], in which
a relation between the surface-normal pressure-gradient, density, tangential velocity in the
surface, and the radius of curvature of the body is obtained. It is noted here that the derivative
of the non-permeability condition provides some insight into the origin of gradients in the
flow variables, but offers no insight into the perturbation magnitude of the variables.

Perturbations to flow variables are dictated by the non-permeability condition itself,
rather than its derivative. In the present work, perturbations to both the flow variables and
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to the surface-velocity and -orientation are permitted. The latter two encapsulate surface
translation and rotation, respectively. Perturbations to the surface orientation have already
been described in terms of perturbation vectors t̃, ñ, b̃ to the un-perturbed oriented adapted-
frame ¯A in Section 4.3.1. Perturbations were considered as arising from rotation of the
body surface through an angle θ̃r about a rotation axis r̂, with the resulting components of
perturbation vectors being of the form of Eqs. (4.79) to (4.81). These relations will be used
in the non-permeability condition applied to the body-surface following perturbations to the
flow variables and the surface position:

Vr · n̂∗ = 0 , (4.116)

where n̂∗ is the normal to the body surface following perturbations and Vr is the velocity of
the fluid relative to the body (in total-quantity form following perturbations). These vectors
may be described in terms of their un-perturbed and perturbation contributions as

Vr = V̄r + Ṽr =
(
V̄f − V̄b

)
+
(
Ṽf − Ṽb

)
, (4.117)

n̂∗ = ¯̂n+ ñ . (4.118)

Noting that the un-perturbed solution V̄r · ¯̂n = 0 is filtered out, Eq. (4.116) may be in vector
form written as

V̄r · ñ+ Ṽr ·
( ¯̂n+ ñ

)
= 0 . (4.119)

This may be further expressed in component form as

(v̄m − v̄bm)ñm +(ṽm − ṽbm)(n̄m + ñm) = 0 . (4.120)

Focusing on the perturbation-velocity of the fluid (as the perturbed orientation of the surface
and the surface velocity will generally be prescribed), this may be rearranged to

(n̄m + ñm)ṽm = (n̄m + ñm)ṽbm − (v̄m − v̄bm)ñm . (4.121)

At this point, non-dimensionalization may be performed through substitution of the ap-
propriate reference values. It is repeated here that the normal-vector components are non-
dimensional. However, it is stressed that while ¯̂n=O(1), the components may be of disparate
orders. They are thus treated in the same manner as reference quantities and are included in
the term-groupings describing the relative magnitude of terms. It is thus found that

(
Ũm
)
(n̄m + ñm)ũm =

(
Ũbm

)
(n̄m + ñm)ũbm − (ñm)[(Ūm)ūm − (Ūbm)ūbm] . (4.122)
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The introduction of the non-dimensional parameters from Table 4.5 allows the equation to be
written as

(εum)(n̄m + ñm)ũm = (εbm)(n̄m + ñm)ũbm − (ñm)
[(

k̄um
)
ūm −

(
k̄bm
)
ūbm
]
. (4.123)

4.4 Reference Quantities and Non-Dimensionalization

The present section aims to introduce a framework for selecting appropriate reference values
in non-dimensionalizing the governing equations and boundary conditions. The development
will open with a discussion on the determination of flow gradients in Section 4.4.1. Sec-
tion 4.4.2 will define the control parameters used in the non-dimensionalization. The main
body of the framework is presented in Appendix A. Section A.1 will focus on parameter
definition for the un-perturbed solution. A number of representative cases will be consid-
ered in Section A.2. Definition of perturbation parameters will be treated in Section A.3.
This will be followed by results of the scaling analysis in Section A.4. This will allow the
developments of Sections 4.5 and 4.6 to focus on the reduction of the 3D equations to 1D.

4.4.1 Flow Gradients

The Rankine-Hugoniot equations effectively prescribe the jump in C0 (zeroth-derivative)
quantities across the shock front as a function of

• The local shock orientation,

• The local translational velocity of the shock surface,

• The local pre-shock flow quantities.

Derivatives of the boundary conditions remain valid. The first-derivatives (spatial or tem-
poral) of the Rankine-Hugoniot equations prescribe first-order gradients of post-shock flow
quantities as a function of

• The local shock curvature,

• The rotational velocity of the local shock surface,

• Gradients of pre-shock flow quantities.

As will be seen in the subsequent development, scaling analysis of the Rankine-Hugoniot
equations results in a number of control variables or parameters which must be known a-priori.
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This number increases when considering derivatives of the Rankine-Hugoniot equations.
Obtaining closed-form expressions for the post-shock fluid gradients for the general case of
curvature and pre-shock quantities, while possible, is an algebraically cumbersome procedure.
Varied approaches to the above, and indeed varied results, are noted in the literature [203–
210]. A thorough review of the existing literature on unsteady curved shocks and of the
inconsistencies therein is outside the scope of the present work.

Similar consideration of the flow-tangency condition at the body surface shows that deriva-
tives of the boundary conditions will enforce a relationship between streamline curvatures at
the body surface. No further consideration of this is made in the present work.

No rigorous basis for assumed magnitudes of flow gradients is offered in the present
work. However, a number of heuristic considerations may be made. The following points are
made regarding flow past a delta wing with its planform in the ê1ê2 plane:

• Relative magnitudes of directional gradients arising from infinitesimal perturbations
may be estimated from Mach waves in the local flow. For flow directed along the ê1
direction, this yields the approximation (for an infinitesimal perturbation at a point)
that

L̃3
L̃1

= O

(
L̃2
L̃1

)
= O

(
1√

M2 −1

)
, (4.124)

where M is the local Mach number of the flow,

• A vortex line oriented along the ê1 direction would (locally) induce the relative magni-
tudes of

L̄2 = O(L̄3) , (4.125)

• Planar flow (with spanwise variations being negligble) would be described by

L̄3 ≪ L̄2 and L̄1 ≪ L̄2 , (4.126)

• Finally, it is noted that perturbation gradients may vary substantially from gradients
in the un-perturbed flow. Examples of physical scenarios in which this would be
encountered include (but are not limited to):

– Perturbations of short wavelength in comparison to the characteristic length of
the steady flow,

– Perturbations of high temporal frequency or short, violent perturbations.

As no concrete framework is offered in the present for quantifying relative magnitudes of
flow gradients, they will be treated as parameters in the subsequent scaling analysis.
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4.4.2 Definition of Control Parameters and Coordinates

A large array of non-dimensional parameters is noted in the perturbation equations of
Section 4.3. It is the aim of Section 4.4 to define appropriate reference quantities for non-
dimensionalization using a minimum number of control parameters which must be known
or specified a-priori. The following quantities are assumed known and defined as control
parameters:

• It is assumed that all un-perturbed quantities are known a-priori:

– The orientations and velocities of un-perturbed surfaces are known,

– The un-perturbed flow quantities are known,

• Perturbations to surface orientations are defined as control parameters:

– The rotation angle θ̃r and the axis of rotation r̂ are specified for both the body
and for the shock,

• Perturbations to surface velocities are defined as control parameters:

– The perturbation velocity of the body surface Ṽb and the perturbation velocity of
the shock surface Ṽs are specified,

Finally, for the purpose of interpretation and discussion, it will be assumed that ê1 is aligned
with the body axis or the chordwise direction, and that the planform of lifting surfaces lies in
the ê1ê2 plane.

4.5 Classical Piston Theory

The present section will demonstrate the application of the scaling analysis framework
presented in Section 4.4 and Appendix A to deriving CPT from the perturbation form of the
Euler equations outlined in Section 4.3. The development to be presented here will utilize
the k and ε notation defined in Table 4.5. Justification for the orders of magnitude adopted
may be found in Appendix A in the development leading up to Tables A.8 to A.13. These
tables may also be used to extend the analysis to other combinations of Mach number, sweep,
and incidence.
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4.5.1 Specification of Perturbation and Non-Dimensionalization

Definition of Un-Perturbed Solution

The essence of CPT is modelling perturbations relative to the undisturbed freestream. As-
suming a uniform, steady freestream, the following un-perturbed solution is defined:

ρ̄ → ρ∞ , (4.127)

¯̂V → V̂∞

[(
1− sin2

α − sin2
β
) 1

2 ê1 − sinβ ê2 + sinα ê3

]
, (4.128)

p̄ → p∞ , (4.129)

ā → a∞ , (4.130)

where α is the angle of attack and β is the side-slip angle. The above suggest an obvious
choice of reference values for the un-perturbed solution. The un-perturbed solution is
associated with the absence of a shock wave. This essentially requires the body to be a
zero-thickness plane aligned with the freestream, leading to

¯̂nb · V̂∞ = 0 (4.131)

defining the unperturbed unit normal-vector at the body boundary. Similarly, V̄b = 0. The
absence of a bow shock is equivalent to taking the limit of a Mach wave, leading to

¯̂ns · V̂∞ =− 1
M∞

, (4.132)

defining the unperturbed unit normal-vector at the “shock” boundary. Further definitions of
shock-related terms in the Mach limit include

V̄s = 0 , (4.133)
w̄(U)∣∣V̄(U)

∣∣ →− 1
M∞

, (4.134)

σ̄ → 0 , m̄2
⊥ = 1 , (4.135)

The assumption of a uniform and steady freestream leads to the following:

∂ X̄
∂xi

= 0 , (4.136)

∂ X̄
∂ t

= 0 , (4.137)
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where X̄ is any of the fluid quantities in the freestream. This assumption leads to significant
simplification of Eqs. (4.97) to (4.99), (4.111) to (4.113) and (4.123). The simplified Euler
equations then become:

C:

(
ερ

)[( k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
ρ̃N +

(
εum

εLm

)
ρ̄N

∂ ũm
∂ξm

+

(
ερεum

εLm

)
∂ (ρ̃N ũm)

∂ξm





= 0 , (4.138)

M:
(εui)

[
ρ̄N +

(
ερ

)
ρ̃N
][( k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
ũi

+

(
εuiεum

εLm

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũm

∂ ũi
∂ξm





=−
(

εpk̄ f

εLi

)
∂ p̃N

∂ξi
, (4.139)

E:

(
εpk̄a

)[( k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
p̃N +

(
εumεpk̄a

εLm

)
ũm

∂ p̃N

∂ξm

+

(
εum

εLm

)[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũm

∂ξm





= 0 . (4.140)

The perturbation form of the shock boundary-conditions become:

ρ̃

ρ̄
=−

(
4

γ +1

)
M∞

w̃(U)∣∣V̄(U)

∣∣ , (4.141)

Ṽ∣∣V̄(U)

∣∣ =−
(

4
γ +1

)
w̃(U)∣∣V̄(U)

∣∣
( ¯̂n+ ñ

)
, (4.142)

p̃
p̄
=−

(
4γ

γ +1

)
M∞

w̃(U)∣∣V̄(U)

∣∣ , (4.143)

where it is worthwhile noting that
p̃
p̄
= γ

ρ̃

ρ̄
, (4.144)

which is consistent with a series expansion of the isentropic relation

p
p̄
=

(
ρ

ρ̄

)γ

(4.145)

for small density perturbations. This serves as a reminder that the perturbation form of the
shock equations presented in this work were derived with the assumption that w̃(U) ≪ w̄(U).
This is clearly not satisfactory for perturbations from a shock-free reference solution in
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hypersonic flows (as are typically encountered when applying piston theory). Instead, the
total-quantity form of the shock equations as presented in Section 4.2.3 is recommended.
The following equations adapted from Eqs. (A.18) and (A.20) to (A.24) may be used, which
are essentially similar to Eqs. (4.53) to (4.56):

ρ̃

ρ∞
= σ , (4.146)

ṽ1
V∞

=

(
σ

1+σ

w(U)

V∞

)
sinηs cosλs , (4.147)

ṽ2
V∞

=

(
σ

1+σ

w(U)

V∞

)
sinηs sinλs , (4.148)

ṽ3
V∞

=

(
σ

1+σ

w(U)

V∞

)
cosηs , (4.149)

p̃
p∞

=

(
σ

1+σ

)
γM2

∞
w2
(U)

V 2
∞

. (4.150)

ã
a∞

=

[
1+ p̃/p∞

1+σ

] 1
2

−1 , (4.151)

The body boundary condition becomes:

(εum)(n̄m + ñm)ũm = (εbm)(n̄m + ñm)ũbm −
(
k̄um
)
(ñm)ūm . (4.152)

Scaling Analysis

Scaling analysis on the above simplified equations is facilitated by the tabulated scaling
analysis of:

• ñ in Table A.5,

• ¯̂n+ ñ in Table A.6,

•
w̃(U)

|V̄(U)| in Table A.7.

For the shock boundary conditions, the existing results of Appendix A may be adapted for
use in the present section as follows:

• The un-perturbed quantities such as p̄ in Appendix A are post-shock quantities. Denote
these values as X ,
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• These may be interpreted as total-value quantities for the purposes of the present
section,

• The un-perturbed fluid quantities – in the sense of the present section – are the
freestream quantities, as described in Eqs. (4.127) to (4.130). Denote these quan-
tities Y ,

• Let the perturbation fluid quantities – in the sense of the present section – be denoted
Z. These may then be found from the results of Appendix A by

Z = X −Y . (4.153)

The scaling obtained using the above adjustment will remove the assumption of small
w̃(U).

It is emphasized that Eqs. (4.141) to (4.143) or their nonlinear equivalents in Eqs. (4.146)
to (4.151), are intended to provide informed estimates for reference values ρ̃R, Ũ i, p̃R, and
ãR. This in turn leads to estimates for the corresponding ε parameters.

Numerical analysis of Eqs. (4.146) to (4.151) shows that the following scaling applies:

ρ̃

ρ∞
= σ = O

(
Kβ −1

Kβ

)
, (4.154)

σ

1+σ
= O(σ) = O

(
Kβ −1

Kβ

)
, (4.155)

p̃
p∞

=

(
2γ

γ +1

)(
K2

β
−1
)
= O

(
K2

β
−1
)
, (4.156)

ã
a∞

= O
(
Kβ −1

)
, (4.157)

Kβ ≡ M∞
w(U)

V∞
, (4.158)

An example of the application of the above to scaling analysis for a low-sweep delta
wing at low incidence is demonstrated in Table 4.6. These set of conditions are associated
with earlier developments of classical piston theory such as that due to Lighthill [88] (who
assumed 2D flow) and that due to Il’yushin [77]. In Table 4.6, M∞ and M∞τ (through Kβ

from Eq. (4.158)) have been left as parameters, although it must be noted that Kβ ≥ 1 is
required for the existence of a shock wave. This may be interpreted as a minimum required
Mach number M∞ for the assumed shock angles included in

w(U)

V∞
, as outlined in Table A.4.
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Table 4.6 Scaling analysis non-dimensional parameters for CPT, case code λ0-α0-η0 with
r̂ =−ê2, τθ = O(τ).

Quantity X O(X) or O(X1 ) O(X2 ) O
(
X3
)

w(U)

V∞
O(τ)

Kβ O(M∞τ)

k̄t ≡ 0

k̄x i O
(

L̄R
L̄1

)
O
(

τ
L̄R
L̄2

)
O
(

τ
L̄R
L̄3

)

k̄Li O
(

L̄R
L̄1

)
O
(

L̄R
L̄2

)
O
(

L̄R
L̄3

)

k̄ui O(1) O(τ) O(τ)

k̄bi ≡ 0 ≡ 0 ≡ 0

k̄ f O
(

1
M2

∞

)

k̄a O(1)

k̄t
εt

O
(

L̄R
V∞t̃R

)

εLi O
(

L̃1
L̄R

)
O
(

L̃2
L̄R

)
O
(

L̃3
L̄R

)

εui O
(

Kβ−1
Kβ

τ2
)

O
(

Kβ−1
Kβ

τ3
)

O
(

Kβ−1
Kβ

τ

)

εbi O
(

Ũb1
V∞

)
O
(

Ũb2
V∞

)
O
(

Ũb3
V∞

)

ερ O
(

Kβ−1
Kβ

)

εp O
(

K2
β
−1
)

εa O
(
Kβ −1

)
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Reference values estimated from the above will be valid locally to the point at which
they are determined. No attempt is made here to demonstrate the uniform validity of a
non-dimensionalization throughout the domain bounded by the bow shock and the body
surface. Indeed, a number of scenarios are to be expected in which a non-dimensionalization
based on reference values at a given point on the shock surface will not be uniformly valid:

• Flows with regions of strong shock curvature or disparate orders of shock inclination,

• Flows in which flow quantities and directions vary significantly between the shock and
the body surface. Examples of this include:

– Flows about finite bodies at very high incidence,

– Flows with detached shocks.

Finally, it is recalled that CPT is essentially a one-dimensional model of the flow equations.
The derivation of CPT from the Euler equations therefore hinges on eliminating two of the
three unknown velocities as variables (in the present study, ũ1 and ũ2). Advection by means
of known, steady velocities in the neglected directions (through ū1

∂

∂ξ1
and ū2

∂

∂ξ2
) may be

interpreted as time-variation in an advected frame, and thus does not affect the physical
interpretation of the system as one-dimensional (and unsteady) in the ξ3 -direction.

As a closing remark, it is noted that different approaches to the neglect of velocity
components may be adopted. The approach adopted in the present section will be as follows:

• Equations will be multiplied by a non-dimensional smallness parameter (if required)
such that the largest order of any given term grouping in the equation is O(1),

• Thereafter, the equation will be truncated to terms of a given order of smallness. In
the present work, terms which are O

(
τ2) with τ ≪ 1 will be discarded, resulting in an

first-order theory.

4.5.2 Reduction to 2D

3D Equations

For slender bodies, a typical reduction to a 2D is achieved through neglecting ũ1 relative to
the crossflow velocities ũ2 and ũ3. Examples of this include classical hypersonic SDT [27]
and the high-incidence theory of Sychev [4]. The application of 2D methods to 3D wings
is typically facilitated through the invocation of strip theory, in which spanwise variations
through ũ2 are neglected.
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In the present work, the reduction from 3D to 2D will be demonstrated through the neglect
of ũ1. This will facilitate comparison with classical hypersonic SDT [27] and Ilyushin’s [77]
theory. The derivation which follows is demonstrated for case code λ0-α0-η0 with r̂ =−ê2,
τθ = O(τ), with the definition of non-dimensional parameters given in Table 4.6. The case
is defined by the following physical characteristics:

• A thin wing (sinηb = O(τ) with τ ≪ 1),

• Low sweep (sinλb = O(τ)),

• Small incidence (sinα = O(τ)),

• A shock inclination of the order of the same order as the body surface or incidence
(sinηs = O(τ)),

• Perturbations which arise due to a change in incidence or due to pure bending (r̂ =
−ê2),

• Small perturbations in incidence (τθ = O(τ)).

The adaptation of the derivation to different physical scenarios (such as to high incidence,
in order to derive Sychev’s [4] theory) is achieved by the specification of appropriate case
parameters. A framework for this has been provided in Appendix A.

Substituting the non-dimensional parameters from the scaling analysis of Table 4.6 into
Eqs. (4.138) to (4.140) and expanding the summation notation to explicit coefficients in
the parentheses, the following form of the Euler equations is obtained after some algebraic
manipulation:

C:

[(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
ρ̃N

+

(
τ

2, τ
3 L̃1

L̃2
, τ

L̃1
L̃3

)
ρ̄N

∂ ũm
∂ξm

+

(
Kβ −1

Kβ

)(
τ

2, τ
3 L̃1

L̃2
, τ

L̃1
L̃3

)
∂ (ρ̃N ũm)

∂ξm





= 0 , (4.159)

M:

[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

][(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
ũi

+

(
Kβ −1

Kβ

)(
τ

2, τ
3 L̃1

L̃2
, τ

L̃1
L̃3

)[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũm

∂ ũi
∂ξm

+

(
L̃1
L̃i

V∞

Ũ i

Kβ

(
Kβ +1

)

M2
∞

)
∂ p̃N

∂ξi





= 0 , (4.160)
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E:

[(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
p̃N

+

(
Kβ −1

Kβ

)(
τ

2, τ
3 L̃1

L̃2
, τ

L̃1
L̃3

)
ũm

∂ p̃N

∂ξm

+

(
1

K2
β
+Kβ

)(
τ

2, τ
3 L̃1

L̃2
, τ

L̃1
L̃3

)[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũm

∂ξm





= 0 .

(4.161)

Similarly, the boundary condition at the body surface becomes

(
Kβ −1

Kβ

)(
τ

2, τ
4, 1
)
ũm =

(
Ũb1

V∞
, τ

Ũb2

V∞
,

1
τ

Ũb3

V∞

)
ũbm −

(
1, 0, τ

2)ūm . (4.162)

The perturbation velocity components at the shock boundary are found from Eqs. (4.147)
to (4.149) and (4.155) with

w(U)

V∞
estimated from Table A.7:

ṽ1
V∞

= O

((
Kβ −1

)

Kβ

τ
2

)
, (4.163)

ṽ2
V∞

= O

((
Kβ −1

)

Kβ

τ
3

)
, (4.164)

ṽ3
V∞

= O

((
Kβ −1

)

Kβ

τ

)
. (4.165)

The post-shock velocity-component scaling above was used to defined εui in Table 4.6.

Requirements for Reduction to 2D

As stated in Section 4.5.1, the approach adopted here in neglecting ũ1 requires that

• The largest order of any given term grouping in the equation is O(1),

• Terms in ũ1 must be of smallness O
(
τ2) or smaller.

These steps will be applied on a per-equation basis as follows:

• Continuity, through Eq. (4.159):
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– The equation as written is normalized with terms involving steady advection in
the x1 direction being O(1). Specifically, it is assumed that:

ū1
∂ ρ̃N

∂ξ1
= O(1) (4.166)

and that it has a coefficient of 1. In normalizing terms relative to ū1
∂

∂ξ1
, it has

been implicitly assumed that local time variations through ∂

∂ tN
are at most of the

same order as steady advection terms through ū1
∂

∂ξ1
. This may be expressed

explicitly as: (
L̃1

V∞t̃R

)
≤ O(1) , (4.167)

– Using the normalization above, the following terms involving ũ1 are found in the
continuity equation:

(
τ

2)
ρ̄N

∂ ũ1
∂ξ1

, (4.168)
(

Kβ −1
Kβ

τ
2
)

∂ ρ̃N ũ1
∂ξ1

, (4.169)

It is seen that both these terms may be neglected in favour of ū1
∂ ρ̃N
∂ξ1

at any Kβ

without any further assumptions.

• Momentum in the x2 direction, through Eq. (4.160):

– The equation as written is normalized with terms involving steady advection
in the x1 direction being O(1). However, due to the smallness of ṽ2, this leads
to magnification of the pressure-gradient term. An improved normalization is
obtained by normalizing relative to the pressure-gradient term. In particular, it is
assumed that

∂ p̃N

∂ξ2
= O(1) (4.170)

and that it has a coefficient of 1. This is achieved through multiplying Eq. (4.160)

by
(

L̃2
L̃1

M2
∞

Kβ(Kβ+1)
εu2

)
throughout. This results in the following form of the
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momentum equation:

(
Kβ −1
Kβ +1

)
[ρ̄N ]

[(
τ

L̃2
V∞t̃R

)
∂

∂ tN
+

(
τ

L̃2
L̃1

, τ
2, τ

2 L̃2
L̃3

)
ūm

∂

∂ξm

]
ũi

+

( (
Kβ −1

)2

Kβ

(
Kβ +1

)
)
[ρ̃N ]

[(
τ

L̃2
V∞t̃R

)
∂

∂ tN
+

(
τ

L̃2
L̃1

, τ
2, τ

2 L̃2
L̃3

)
ūm

∂

∂ξm

]
ũi

+

( (
Kβ −1

)2

Kβ

(
Kβ +1

)
)(

τ
3 L̃2

L̃1
, τ

4, τ
2 L̃2

L̃3

)[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũm

∂ ũi
∂ξm

+
∂ p̃N

∂ξi





= 0

(4.171)

– Using the normalization above, the following term involving ũ1 is found in the
momentum equation:

( (
Kβ −1

)2

Kβ

(
Kβ +1

) L̃2
L̃1

τ
3

)[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũ1

∂ ũ2
∂ξ1

. (4.172)

In order to neglect this term relative to ∂ p̃N
∂ξ2

, it is required that

( (
Kβ −1

)2

Kβ

(
Kβ +1

) L̃2
L̃1

τ

)
≤ O(1) , (4.173)

which is satisfied at any Kβ if L̃2
L̃1

≤ O
(
τ−1).

It is of interest to note that if L̃2
L̃1

= O(τ) and L̃2
L̃3

= O(1), the momentum equation
would yield

∂ p̃N

∂ξ2
= 0+O

(
τ

2) , (4.174)

which immediately suggests that strip-theory will be a suitable approximation for
the low-sweep lifting surface considered. Alternatively, for L̃2

L̃1
= O(1), it is seen

that steady advection of the perturbation velocity ũ2 would remain.

• Momentum in the x3 direction, through Eq. (4.160):

– The equation as written is normalized with terms involving steady advection in
the x1 direction being O(1). In particular, it is assumed that

ρ̄N ū1
∂ ũ3
∂ξ1

= O(1) (4.175)
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and that it has a coefficient of 1. This normalization results in the pressure-
gradient term appearing as

(
L̃1
L̃3

τ
Kβ +1
Kβ −1

)
∂ p̃N

∂ξ3
, (4.176)

which will be O(1) if
(
Kβ −1

)
= O(1) and L̃3

L̃1
= O(τ), which are typical for

hypersonic flow.

– Using the normalization above, the following term involving ũ1 is found in the
momentum equation:

(
Kβ −1

Kβ

τ
2
)[

ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũ1

∂ ũ3
∂ξ1

. (4.177)

It is seen that this term may be neglected relative to ρ̄N ū1
∂ ũ3
∂ξ1

at any Kβ without
any further assumptions.

• Energy, through Eq. (4.161):

– The equation as written is normalized with terms involving steady advection in
the x1 direction being O(1). In particular, it is assumed that

ū1
∂ p̃N

∂ξ1
= O(1) (4.178)

and that it has a coefficient of 1.

– Using the normalization above, the following terms involving ũ1 are found in the
energy equation:

(
Kβ −1

Kβ

τ
2
)

ũ1
∂ p̃N

∂ξ1
, (4.179)

(
τ2

K2
β
+Kβ

)
[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũ1

∂ξ1
, (4.180)

It is seen that both these terms may be neglected in favour of ū1
∂ p̃N
∂ξ1

at any Kβ

without any further assumptions.

• Body boundary condition, through Eq. (4.162):
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– The equation as written is normalized with the steady un-perturbed velocity in
the x1 direction being O(1). In particular, it is assumed that

ū1 = O(1) (4.181)

and that it has a coefficient of 1. Under this normalization, the upper bound of
terms in the equation will be O(1) provided that Ũb3

V∞
≤ O(τ).

– Using the normalization above, the following term involving ũ1 is found in the
body boundary condition:

(
Kβ −1

Kβ

τ
2
)

ũ1 . (4.182)

It is seen that this term may be neglected relative to ū1 at any Kβ without any
further assumptions.

Summary

The above process has been summarized in Table 4.7. It may be seen that beyond the inherent
assumptions of the case definition given on Page 252 (and the implicit assumption on Mach
number of Kβ ≥ 1), no further assumptions are required to reduce the 3D formulation to a
2D formulation.

4.5.3 Reduction to 1D

2D Equations

Essentially the same procedure is to be followed as in the reduction from 3D to 2D. The
Euler equations have the following form after the reduction from 3D to 2D:

C:

∑
m={1,2,3}

[(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
ρ̃N

+ ∑
m={2,3}

(
τ

3 L̃1
L̃2

, τ
L̃1
L̃3

)
ρ̄N

∂ ũm
∂ξm

+ ∑
m={2,3}

(
Kβ −1

Kβ

)(
τ

3 L̃1
L̃2

, τ
L̃1
L̃3

)
∂ (ρ̃N ũm)

∂ξm





= 0 , (4.183)
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Table 4.7 Summary of requirements for 3D to 2D reduction of CPT for case code λ0-α0-η0
with r̂ =−ê2, τθ = O(τ).

Equation Normalized term Neglected term(s) Requirements

Continuity

Eq. (4.159)
ū1

∂ ρ̃N

∂ξ1
ρ̄N

∂ ũ1
∂ξ1

,
∂ ρ̃N ũ1

∂ξ1

None

Momentum in x2

Eq. (4.160)
∂ p̃N

∂ξ2
[. . .]ũ1

∂ ũ2
∂ξ1

L̃2

L̃1
≤ O

(
τ
−1)

Momentum in x3

Eq. (4.160)
ρ̄N ū1

∂ ũ3
∂ξ1

[. . .]ũ1
∂ ũ3
∂ξ1

None

Energy

Eq. (4.161)
ū1

∂ p̃N

∂ξ1
ũ1

∂ p̃N

∂ξ1
, [. . .]

∂ ũ1
∂ξ1

None

Body boundary

Eq. (4.162)
ū1 ũ1 None

M:

∑
m={1,2,3}

[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

][(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
ũi

+ ∑
m={2,3}

(
Kβ −1

Kβ

)(
τ

3 L̃1
L̃2

, τ
L̃1
L̃3

)[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũm

∂ ũi
∂ξm

+

(
L̃1
L̃i

V∞

Ũ i

Kβ

(
Kβ +1

)

M2
∞

)
∂ p̃N

∂ξi





= 0 ,

(4.184)

E:

∑
m={1,2,3}

[(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
p̃N

+ ∑
m={2,3}

(
Kβ −1

Kβ

)(
τ

3 L̃1
L̃2

, τ
L̃1
L̃3

)
ũm

∂ p̃N

∂ξm

+ ∑
m={2,3}

(
1

K2
β
+Kβ

)(
τ

3 L̃1
L̃2

, τ
L̃1
L̃3

)[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũm

∂ξm





= 0 .

(4.185)
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Similarly, the boundary condition at the body surface becomes

∑
m={2,3}

(
Kβ −1

Kβ

)(
τ

4, 1
)
ũm = ∑

m={1,2,3}

{(
Ũb1

V∞
, τ

Ũb2

V∞
,

1
τ

Ũb3

V∞

)
ũbm −

(
1, 0, τ

2)ūm

}
.

(4.186)
It is stressed that the equations are 2D in terms of the (unknown) perturbation velocities
ũm (with m = {1,2}). The appearance of three (known) un-perturbed velocity components
through ūm (with m = {1,2,3}) does not affect the two-dimensionality of the perturbation
problem.

Requirements for Reduction to 2D

Essentially the same reduction procedure is adopted. It is now required that

• The largest order of any given term grouping in the equation is O(1),

• Terms in ũ2 must be of smallness O
(
τ2) or smaller.

These steps will again be applied on a per-equation basis. Due to the same normalization
being used as in the reduction from 3D to 2D, step 1 is not repeated here.

• Continuity, through Eq. (4.183):

– Using the normalization relative to ū1
∂ ρ̃N
∂ξ1

, the following terms involving ũ2 are
found in the continuity equation:

(
τ

3 L̃1
L̃2

)
ρ̄N

∂ ũ2
∂ξ2

, (4.187)
(

τ
3 L̃1

L̃2

Kβ −1
Kβ

)
∂ ρ̃N ũ2

∂ξ2
, (4.188)

In order to neglect both these terms in favour of ū1
∂ ρ̃N
∂ξ1

at any Kβ , it is required
that

L̃2
L̃1

≥ O(τ) . (4.189)

• Momentum in the x3 direction, through Eq. (4.184):

– Using the normalization relative to ρ̄N ū1
∂ ũ3
∂ξ1

, the following term involving ũ2 is
found in the momentum equation:

(
τ

3 L̃1
L̃2

Kβ −1
Kβ

)[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũ2

∂ ũ3
∂ξ1

. (4.190)
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In order to neglect this term in favour of ρ̄N ū1
∂ ũ3
∂ξ1

at any Kβ , it is required that

L̃2
L̃1

≥ O(τ) . (4.191)

• Energy, through Eq. (4.185):

– Using the normalization relative to ū1
∂ p̃N
∂ξ1

, the following terms involving ũ2 are
found in the energy equation:

(
τ

3 L̃1
L̃2

Kβ −1
Kβ

)
ũ2

∂ p̃N

∂ξ2
, (4.192)

(
τ3

K2
β
+Kβ

L̃1
L̃2

)
[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũ2

∂ξ2
, (4.193)

In order to neglect both these terms in favour of ū1
∂ p̃N
∂ξ1

at any Kβ , it is required
that

L̃2
L̃1

≥ O(τ) . (4.194)

• Body boundary condition, through Eq. (4.186):

– Using the normalization relative to ū1, the following term involving ũ2 is found
in the body boundary condition:

(
Kβ −1

Kβ

τ
4
)

ũ2 . (4.195)

It is seen that this term may be neglected relative to ū1 at any Kβ without any
further assumptions.

Summary

The above process has been summarized in Table 4.8. It may be seen that beyond the inherent
assumptions of the case definition given on Page 252 (and the implicit assumption on Mach
number of Kβ ≥ 1), the only further assumption required for reduction from 3D to 1D is

O(τ)≤ L̃2
L̃1

≤ O
(
τ
−1) . (4.196)
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Table 4.8 Summary of requirements for 2D to 1D reduction of CPT for case code λ0-α0-η0
with r̂ =−ê2, τθ = O(τ).

Equation Normalized term Neglected term(s) Requirements

Continuity

Eq. (4.183)
ū1

∂ ρ̃N

∂ξ1
ρ̄N

∂ ũ2
∂ξ2

,
∂ ρ̃N ũ2

∂ξ2

L̃2

L̃1
≥ O(τ)

Momentum in x3

Eq. (4.184)
ρ̄N ū1

∂ ũ3
∂ξ1

[. . .]ũ2
∂ ũ3
∂ξ2

L̃2

L̃1
≥ O(τ)

Energy

Eq. (4.185)
ū2

∂ p̃N

∂ξ2
ũ2

∂ p̃N

∂ξ2
, [. . .]

∂ ũ2
∂ξ2

L̃2

L̃1
≥ O(τ)

Body boundary

Eq. (4.186)
ū1 ũ2 None

1D Equations

The final form of the 1D Euler equations resulting from the scaling analysis is:

C:

∑
m={1,2,3}

[(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
ρ̃N

+

(
τ

L̃1
L̃3

)
ρ̄N

∂ ũ3
∂ξ3

+

(
Kβ −1

Kβ

)(
τ

L̃1
L̃3

)
∂
(
ρ̃N ũ3

)

∂ξ3





= 0 , (4.197)

M:

∑
m={1,2,3}

[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

][(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
ũ3

+

(
Kβ −1

Kβ

)(
τ

L̃1
L̃3

)[
ρ̄N +

(
Kβ −1

Kβ

)
ρ̃N

]
ũ3

∂ ũ3
∂ξ3

+

(
L̃1
L̃3

τ
Kβ +1
Kβ −1

)
∂ p̃N

∂ξ3





= 0 ,

(4.198)
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E:

∑
m={1,2,3}

[(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm

]
p̃N

+

(
Kβ −1

Kβ

)(
τ

L̃1
L̃3

)
ũ3

∂ p̃N

∂ξ3

+

(
1

K2
β
+Kβ

)(
τ

L̃1
L̃3

)[
ρ̄N +

(
ερ

)
ρ̃N
][

ā2
N +(2εa)āN ãN +

(
ε

2
a
)
ã2

N
] ∂ ũ3

∂ξ3





= 0 .

(4.199)

Similarly, the boundary condition at the body surface becomes

(
Kβ −1

Kβ

)
ũ3 = ∑

m={1,2,3}

{(
Ũb1

V∞
, τ

Ũb2

V∞
,

1
τ

Ũb3

V∞

)
ũbm −

(
1, 0, τ

2)ūm

}
. (4.200)

It is seen that only the x3 component of the perturbation velocity occurs in the equations
through ũ3. The un-perturbed velocity is seen to only appear together with the time derivative.
The equations as written are formulated in the Eulerian frame E . A transformation to a
Galilean frame G advected by the local steady un-perturbed velocity V̄ will result in the time
derivative in the Galilean frame being written as

∂

∂ tG
N
=

(
L̃1

V∞t̃R

)
∂

∂ tN
+

(
1, τ

L̃1
L̃2

, τ
L̃1
L̃3

)
ūm

∂

∂ξm
, (4.201)

which is seen to occur in Eqs. (4.197) to (4.199) and emphasize the reduction of the Euler
equations from 3D unsteady to 1D unsteady, with the perturbation velocities ũ1 and ũ2 being
eliminated from consideration.

4.5.4 Reduction to Algebraic Form

The reduction of the Euler equations to a 1D unsteady formulation are the foundation for
piston theory. As has been noted in Section 3.2, a number of piston theories are formulated
to account for the propagation and persistence of perturbations within the advected 1D
“cylinder”. This corresponds to a solution for the unsteady 1D field problem formulated by
the 1D Euler equations derived above in Section 4.5.3. The most widespread interpretation
(or association) of CPT, however, is of the formulation in which an algebraic relationship
exists between the surface pressure and the surface velocity or inclination. For ease of
reference, the generalized pressure equation for this formulation of piston theory of Eq. (3.8)
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is repeated here as:

p
pcyl

= 1+ γ

[
c1

(
w

acyl

)
+ c2

(
w

acyl

)2

+ c3

(
w

acyl

)3
]
, (4.202)

where w is the downwash as introduced in various forms in Section 3.1.2. As noted previously
in Section 3.1.2: the definition of downwash in piston theory arises purely due to relative
motion of the piston down the length of the cylinder. It is directly related to the motion of
cylinder frame, rather than to the fluid velocity. The implications of this distinction for the
accuracy of the piston theory analogy were discussed at length in Section 3.1.4. As illustrated
in the case study of Section 3.3.1, and indeed as adopted in Section 4.5.1, CPT defines the
“cylinder conditions” to be the un-perturbed freestream conditions. In the nomenclature of
the present section, Eq. (4.202) may thus be adapted to read

p̃
p∞

= γ

[
c1

(
w
a∞

)
+ c2

(
w
a∞

)2

+ c3

(
w
a∞

)3
]
, (4.203)

Solutions to the 1D unsteady field problem posed by the Euler equations typically make
use of characteristics, as detailed in [146, 184, 211]. The resulting solutions account for the
reflection of waves off the bow shock, and thus an account of the time-history of the flow is
made. Such solutions do not yield an algebraic, point-local relationship between the pressure
and instantaneous surface motion. In order to arrive at a relation similar to Eq. (4.203), it
is necessary that the influence of incoming (relative to the body surface) characteristics be
neglected (thereby neglecting all influence and interaction with the surrounding fluid). This
is perhaps most clearly evident in the results of McIntosh [146], which were discussed in this
work in the context of Eq. (3.122). Indeed, this assumption was also made by Il’yushin [77]
when demonstrating the application of the law of plane sections to 2D sections of arbitrary
shape.

4.6 Local Piston Theory

The present section will illustrate the adaptation of the method of Section 4.5 to deriving the
mathematical basis for LPT. The presentation will focus on the general procedure rather than
on specific cases of application. The scaling analysis framework of Appendix A may be used
for the latter.
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4.6.1 Specification of Perturbation and Non-Dimensionalization

Definition of Un-Perturbed Solution

The essence of LPT is modelling perturbations relative to an existing non-trivial solution to
the Euler equations. Typically, LPT has been applied to perturbations about a mean-steady
reference solution. Furthermore, it is typically assumed that the perturbations about the mean
solution are small. In the nomenclature and terminology of the present work:

ρ̄ = ρm , (4.204)
¯̂V = V̂m , (4.205)

p̄ = pm , (4.206)

ā = am , (4.207)

where the subscript m denotes terms from the mean-steady reference solution to the Euler
equations. For non-trivial geometries or flows, the above fluid quantities will vary spatially,
while the assumption of a “mean-steady” reference solution renders them time-invariant:

∂ X̄
∂xi

̸= 0 , (4.208)

∂ X̄
∂ t

= 0 , (4.209)

where X̄ is any of the fluid quantities from the mean-steady reference solution.

Inspection of the perturbation form of the Euler equations from Eqs. (4.97) to (4.99)
shows that Eqs. (4.208) and (4.209) do not offer any inherent simplification of the equations.
Time-derivatives of the un-perturbed solution appear alongside other terms un-perturbed
terms, which together constitute the Euler equations for the un-perturbed flow. Thus, time-
derivatives of the un-perturbed solution “fall out” from the perturbation form of the Euler
equations without requiring a “mean-steady reference” assumption that leads to Eq. (4.209).
However, the adoption of a mean-steady assumption for the un-perturbed solution means that
only spatial variations need to be considered in selecting reference values which would yield
uniformly valid non-dimensionalization. For a time-dependent un-perturbed solution, the
non-dimensionalization of the un-perturbed fluid quantities may not be uniformly valid in
time.
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Scaling Analysis

As noted in the introduction, the presentation of Section 4.6 will focus on the general
procedure of reducing the Euler equations to a 1D unsteady form. No attempt will be made
here to quantify non-dimensional parameters or groups. Nonetheless, the scaling analysis
framework of Appendix A may be used to this end for perturbation terms. The scaling
an un-perturbed terms and of gradients will depend on the particular application under
consideration.

As in the case of CPT, the derivation of LPT from the Euler equations hinges on eliminat-
ing two of the three unknown velocities as variables. In the present study, ũ1 and ũ2 will be
eliminated. A further difference between CPT and LPT arises when considering advection
by un-perturbed velocities (through ū1

∂

∂ξ1
and ū2

∂

∂ξ2
):

• In CPT, the un-perturbed velocities were spatially (and temporally) invariant. Thus,
a Galilean transform would be uniformly valid, and the advection by un-perturbed
velocities could be interpreted as a time-derivative in the advected frame,

• In LPT, the un-perturbed velocities are generally spatially-variant. Thus, a Galilean
transform (and the subsequent interpretation of additional time-variation) would only
be locally valid. More generally, the terms associated with un-perturbed advection
may be regarded as source terms in a globally-advected frame.

The questions of the range of validity of non-dimensionalizations and of successive local-
applications of LPT are not addressed in the present work, and remain open avenues for
future investigation.

The approach adopted in the Section 4.5 for neglecting velocity components will be
repeated here:

• Equations will be multiplied by a non-dimensional smallness parameter such that the
largest order of any given term grouping in the equation is O(1). The appropriate term
for normalization will arise from the particular application. However, the normalized
term will be assumed in the present demonstration,

• Thereafter, the equation will be truncated to terms of a given order of smallness. Once
again, the present demonstration will only highlight the parameters involved, rather
than attempt to quantify them by scaling analysis.
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4.6.2 Reduction to 2D

3D Equations

As noted in Section 4.6.1, the specification of reference values in LPT does not lead to any
inherent simplification of the Euler equations (or boundary conditions) as in the case of
LPT. Thus, the 3D equations of interest are given by Eqs. (4.97) to (4.99), (4.111) to (4.113)
and (4.123), which are not repeated here.

Requirements for Reduction to 2D

As stated in Section 4.6.1, the approach adopted here in neglecting ũ1 requires that

• The largest order of any given term grouping in the equation is O(1),

• Terms in ũ1 must be of smallness O
(
τ2) or smaller.

These steps will be applied on a per-equation basis as follows:

• Continuity, through Eq. (4.97):

– It is assumed here that terms involving steady advection in the x1 direction are
O(1). Specifically, it is assumed that:

ū1
∂ ρ̃N

∂ξ1
= O(1) (4.210)

and that it has a coefficient of 1. This normalization may be achieved by multi-
plying through the equation by a common factor of

εL1

ερ k̄u1

(
=

ρ̄R

ρ̃R

L̃1
L̄R

ŪR

Ū1

)
, (4.211)

– Using the normalization above, the following terms involving ũ1 are found in the
continuity equation:

(
εu1

ερ k̄u1

)
ρ̄N

∂ ũ1
∂ξ1

[
=

(
ρ̄R

ρ̃R

Ũ1
Ū1

)
ρ̄N

∂ ũ1
∂ξ1

]
, (4.212)

(
εu1

k̄u1

)
∂ (ρ̃N ũ1)

∂ξ1

[
=

(
Ũ1
Ū1

)
∂ (ρ̃N ũ1)

∂ξ1

]
, (4.213)

(
εu1εL1k̄L1

ερ k̄u1

)
ũ1

∂ ρ̄N

∂ξ1

[
=

(
ρ̄R

ρ̃R

L̃1
L̄1

Ũ1
Ū1

)
ũ1

∂ ρ̄N

∂ξ1

]
, (4.214)
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• Momentum in the x2 direction, through Eq. (4.98):

– As in Section 4.5, normalization will be done relative to the pressure-gradient
term. In particular, it is assumed that

∂ p̃N

∂ξ2
= O(1) (4.215)

and that it has a coefficient of 1. This is achieved through multiplying Eq. (4.98)
by a common factor of

(
εL2

εpk̄ f

) (
=

L̃2
L̄R

ρ̄RŪ2
R

p̃R

)
, (4.216)

– Using the normalization above, the following terms involving ũ1 are found in the
momentum equation:

(
εL2εu1εu2

εL1εpk̄ f

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ũ2
∂ξ1

{
=

(
L̃2
L̃1

ρ̄RŨ1Ũ2
p̃R

)
[. . .]ũ1

∂ ũ2
∂ξ1

}
,

(4.217)
(

εL2k̄L1εu1k̄u2

εpk̄ f

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ū2
∂ξ1

{
=

(
L̃2
L̃1

ρ̄RŨ1Ū2
p̃R

)
[. . .]ũ1

∂ ū2
∂ξ1

}
,

(4.218)

• Momentum in the x3 direction, through Eq. (4.98):

– As in Section 4.5, normalization will be done relative to terms involving steady
advection in the x1 direction. In particular, it is assumed that

ρ̄N ū1
∂ ũ3
∂ξ1

= O(1) (4.219)

and that it has a coefficient of 1. This is achieved through multiplying Eq. (4.98)
by a common factor of

(
εL1

k̄u1εu3

) (
=

L̃1
L̄R

Ū2
R

Ū1Ũ3

)
, (4.220)
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– Using the normalization above, the following terms involving ũ1 are found in the
momentum equation:

(
εu1

k̄u1

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ũ3
∂ξ1

{
=

(
Ũ1
Ū1

)
[. . .]ũ1

∂ ũ3
∂ξ1

}
,

(4.221)
(

εL1k̄L1εu1k̄u3

k̄u1εu3

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ū3
∂ξ1

{
=

(
L̃1
L̄1

Ũ1
Ū1

Ū3
Ũ3

)
[. . .]ũ1

∂ ū3
∂ξ1

}
,

(4.222)

• Energy, through Eq. (4.99):

– As in Section 4.5, normalization will be done relative to terms involving steady
advection in the x1 direction. In particular, it is assumed that

ū1
∂ p̃N

∂ξ1
= O(1) (4.223)

and that it has a coefficient of 1. This is achieved through multiplying Eq. (4.99)
by a common factor of

(
εL1

k̄u1εpk̄a

) (
=

L̃1
L̄R

ŪR

Ū1

ρ̄Rā2
R

p̃R

)
, (4.224)

– Using the normalization above, the following terms involving ũ1 are found in the
energy equation:

(
εu1

k̄u1

)
ũ1

∂ p̃N

∂ξ1

{
=

(
Ũ1
Ū1

)
ũ1

∂ p̃N

∂ξ1

}
, (4.225)

(
εu1

k̄u1εpk̄a

)[
ρ̄N +

(
ερ

)
ρ̃N
]
[. . .]

∂ ũ1
∂ξ1

{
=

(
Ũ1
Ū1

ρ̄Rā2
R

p̃R

)
[. . .]

∂ ũ1
∂ξ1

}
,

(4.226)
(

εu1εL1k̄L1

k̄u1εp

)
ũ1

∂ p̄N

∂ξ1

{
=

(
L̃1
L̄1

Ũ1
Ū1

p̄R

p̃R

)
ũ1

∂ p̄N

∂ξ1

}
, (4.227)

• Body boundary condition, through Eq. (4.123):

– It is assumed that terms involving the dot product ¯̂Vr·ñ are O(1), and that the
remaining terms in the equation are bound by the same order. Under this assump-
tion, no further normalization is required,
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– If the above normalization hold, the following term involving ũ1 is found in the
body boundary condition:

(εu1)(n̄1 + ñ1)ũ1

{
=

(
Ũ1
ŪR

(n̄1 + ñ1)

)
ũ1

}
. (4.228)

Summary

The above process has been summarized in Table 4.9. The choice of terms relative to
which the equations have been normalized was motivated to facilitate direct comparison
of the results to those of Table 4.7 and the derivation of CPT in Section 4.5. Beyond
the assumption that the normalized term has the largest coefficient (that being 1) of all
the terms in its equation, the results presented in Table 4.9 are entirely general. This is
meant in the sense that no assumptions have been made regarding the reference values
for non-dimensionalization. By extension, no assumptions have been made regarding the
un-perturbed (or perturbation) Mach number, flow angles, and gradients.

It is evident from Table 4.9 that a variety of requirements arise for the reduction from a
3D to a 2D perturbation formulation. However, it is also noted that the ratio Ũ1

Ū1
appears in

the majority of the requirements. The basic requirement of

Ũ1
Ū1

≤ O
(
τ

2) (4.229)

is seen in the requirements for reduction of the continuity equation to a 2D formulation. It is
a commonly known approximation in linearized supersonic flows that for a small turning
of the flow by O(τ), the streamwise velocity perturbation will be of the order O

(
τ2), while

transverse perturbations will be of the order O(τ). Thus, it may be expected that this
basic requirement would be satisfied for small perturbations to the surface inclination when
applying LPT. An exploration of the scenarios in which the influence of parameters such as
impose more stringent requirements for the reduction to a 2D formulation is an open research
question. It is expected that this will inform the application of LPT outside of the classical
realm of “small perturbations in hypersonic flows”. However, such a broad consideration
of general cases – while facilitated by the present mathematical framework – is outside the
scope of the present work.
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Table 4.9 Summary of requirements for 3D to 2D reduction of LPT.

Equation Normalized term Neglected term(s) Requirements

ρ̄N
∂ ũ1
∂ξ1

ρ̄R

ρ̃R

Ũ1
Ū1

≤ O
(
τ

2)

Continuity

Eq. (4.97)
ū1

∂ ρ̃N

∂ξ1

∂ (ρ̃N ũ1)

∂ξ1

Ũ1
Ū1

≤ O
(
τ

2)

ũ1
∂ ρ̄N

∂ξ1

ρ̄R

ρ̃R

L̃1
L̄1

Ũ1
Ū1

≤ O
(
τ

2)

Momentum in x2

Eq. (4.98)

∂ p̃N

∂ξ2

[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ũ2
∂ξ1

[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ū2
∂ξ1

L̃2

L̃1

ρ̄RŨ1Ũ2
p̃R

≤ O
(
τ

2)

L̃2

L̃1

ρ̄RŨ1Ū2
p̃R

≤ O
(
τ

2)

Momentum in x3

Eq. (4.98)
ρ̄N ū1

∂ ũ3
∂ξ1

[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ũ3
∂ξ1

[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ1

∂ ū3
∂ξ1

Ũ1
Ū1

≤ O
(
τ

2)

L̃1
L̄1

Ũ1
Ū1

Ū3

Ũ3
≤ O

(
τ

2)

ũ1
∂ p̃N

∂ξ1

Ũ1
Ū1

≤ O
(
τ

2)

Energy

Eq. (4.99)
ū1

∂ p̃N

∂ξ1

[
ρ̄N +

(
ερ

)
ρ̃N
]
[. . .]

∂ ũ1
∂ξ1

Ũ1
Ū1

ρ̄Rā2
R

p̃R
≤ O

(
τ

2)

ũ1
∂ p̄N

∂ξ1

L̃1
L̄1

Ũ1
Ū1

p̄R

p̃R
≤ O

(
τ

2)

Body boundary

Eq. (4.123)

(
ñmk̄um

)
ūm (n̄1 + ñ1)ũ1

Ũ1
ŪR

(n̄1 + ñ1)≤ O
(
τ

2)
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4.6.3 Reduction to 1D

Requirements for Reduction to 2D

The now-familiar process may be extended to the reduction of the Euler equations to a 1D
formulation:

• Continuity, through Eq. (4.97):

– Using the normalization of Eq. (4.210), the following terms involving ũ2 are
found in the continuity equation:

(
εL1εu2

ερεL2k̄u1

)
ρ̄N

∂ ũ2
∂ξ2

[
=

(
ρ̄R

ρ̃R

L̃1
L̃2

Ũ2
Ū1

)
ρ̄N

∂ ũ2
∂ξ2

]
, (4.230)

(
εL1εu2

εL2k̄u1

)
∂ (ρ̃N ũ2)

∂ξ2

[
=

(
L̃1
L̃2

Ũ2
Ū1

)
∂ (ρ̃N ũ2)

∂ξ2

]
, (4.231)

(
εL1k̄L2εu2

ερ k̄u1

)
ũ2

∂ ρ̄N

∂ξ2

[
=

(
ρ̄R

ρ̃R

L̃1
L̄2

Ũ2
Ū1

)
ũ2

∂ ρ̄N

∂ξ2

]
, (4.232)

• Momentum in the x3 direction, through Eq. (4.98):

– Using the normalization relative of Eq. (4.219), the following terms involving ũ2

are found in the momentum equation:

(
εL1εu2

εL2k̄u1

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ2

∂ ũ3
∂ξ2

{
=

(
L̃1
L̃2

Ũ2
Ū1

)
[. . .]ũ2

∂ ũ3
∂ξ2

}
,

(4.233)
(

εL1k̄L2εu2k̄u3

k̄u1εu3

)[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ2

∂ ū3
∂ξ2

{
=

(
L̃1
L̄2

Ũ2
Ū1

Ū3
Ũ3

)
[. . .]ũ2

∂ ū3
∂ξ2

}
,

(4.234)

• Energy, through Eq. (4.99):

– Using the normalization relative of Eq. (4.223), the following terms involving ũ2

are found in the energy equation:

(
εL1εu2

εL2k̄u1

)
ũ2

∂ p̃N

∂ξ2

{
=

(
L̃1
L̃2

Ũ2
Ū1

)
ũ2

∂ p̃N

∂ξ2

}
, (4.235)

(
εL1εu2

εL2k̄u1εpk̄a

)[
ρ̄N +

(
ερ

)
ρ̃N
]
[. . .]

∂ ũ2
∂ξ2

{
=

(
L̃1
L̃2

Ũ2
Ū1

ρ̄Rā2
R

p̃R

)
[. . .]

∂ ũ2
∂ξ2

}
,

(4.236)
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(
εL1k̄L2εu2

k̄u1εp

)
ũ2

∂ p̄N

∂ξ2

{
=

(
L̃1
L̄2

Ũ2
Ū1

p̄R

p̃R

)
ũ2

∂ p̄N

∂ξ2

}
,

(4.237)

• Body boundary condition, through Eq. (4.123):

– Using the normalization relative of Section 4.6.2, the following term involving
ũ2 is found in the body boundary condition:

(εu2)(n̄2 + ñ2)ũ2

{
=

(
Ũ2
ŪR

(n̄2 + ñ2)

)
ũ2

}
. (4.238)

Summary

The above process has been summarized in Table 4.10. The normalization has been conducted
using the same terms as in the 3D to 2D reduction process for consistency. This facilitates
comparison with Table 4.9. This emphasized in the final column of Table 4.10, which shows
the additional requirements for reduction to 1D if the corresponding base requirements (found
in Table 4.9) for reduction to 2D have been met.

The additional requirements for reducing the equations to a 1D formulation are seen to
consistently require the following relations:

L̃1
L̃2

Ũ2
Ũ1

≤ O(1) or
L̄1
L̄2

Ũ2
Ũ1

≤ O(1) . (4.239)

These requirements offer significant insight into the types of perturbations which allow the
reduction to a 1D formulation. This will be illustrated through a brief example.

Consider a flat plate, with a point on the plate subjected to a localized out-of-plane
deformation. The small deformation is considered such that it produces infinitesimal fluid
perturbations which propagate along the Mach cone emanating from the point. Under these
circumstances, the typical scaling analysis of perturbation velocities in supersonic flow are
O
(
Ũ2
)
= O

(
Ũ3
)

and O
(
Ũ1
)
= O

(
τŨ2

)
. The assumption that the ratio of gradients may

be characterized by the Mach angle leads to the scaling L̃1
L̃2

= O(cot µ), with µ being the
local Mach angle. Alternatively, this may be written in terms of the local Mach number
M as L̃1

L̃2
= O

(√
M2 −1

)
. The result is that for the localized, point-perturbation, the ratio

appearing in the reduction requirements has the scaling of

L̃1
L̃2

Ũ2
Ũ1

= O
(

τ
−1
√

M2 −1
)
. (4.240)
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While it may appear that this could satisfy the requirement of ≤O(1) for
(
M2 −1

)
=O

(
τ2),

for such a transonic Mach number, the assumed scaling of O
(
Ũ1
)
= O

(
τŨ2

)
would no

longer be valid. As a consequence, it is shown that a reduction to a 1D formulation is not
mathematically consistent when considering localized deformations. An extension of this
line of thought shows that a reduction to a 1D formulation requires that perturbations in the
x2 direction must vary at least as slowly as perturbation in the x1 direction if they are of
comparable magnitude. If the velocity perturbations Ũ2 are larger than Ũ1, then the variation
L̃2 needs to be slower (through larger L) than L̃1 by a proportional amount. This suggests that
a reduction to a 1D formulation will be valid (in the context of lifting surfaces) for smooth
spanwise-distributed deformations. This would correspond to mode-shapes free of localized
bending or twist.

Table 4.10 Summary of additional requirements for 2D to 1D reduction of LPT.

Equation Normalized term Neglected term(s) Additional requirements

ρ̄N
∂ ũ2
∂ξ2

L̃1

L̃2

Ũ2

Ũ1
≤ O(1)

Continuity

Eq. (4.97)
ū1

∂ ρ̃N

∂ξ1

∂ (ρ̃N ũ2)

∂ξ2

L̃1

L̃2

Ũ2

Ũ1
≤ O(1)

ũ2
∂ ρ̄N

∂ξ2

L̄1
L̄2

Ũ2

Ũ1
≤ O(1)

Momentum in x3

Eq. (4.98)
ρ̄N ū1

∂ ũ3
∂ξ1

[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ2

∂ ũ3
∂ξ2

[
ρ̄N +

(
ερ

)
ρ̃N
]
ũ2

∂ ū3
∂ξ2

L̃1

L̃2

Ũ2

Ũ1
≤ O(1)

L̄1
L̄2

Ũ2

Ũ1
≤ O(1)

ũ2
∂ p̃N

∂ξ2

L̃1

L̃2

Ũ2

Ũ1
≤ O(1)

Energy

Eq. (4.99)
ū1

∂ p̃N

∂ξ1

[
ρ̄N +

(
ερ

)
ρ̃N
]
[. . .]

∂ ũ2
∂ξ2

L̃1

L̃2

Ũ2

Ũ1
≤ O(1)

ũ2
∂ p̄N

∂ξ2

L̄1
L̄2

Ũ2

Ũ1
≤ O(1)

Body boundary

Eq. (4.123)

(
ñmk̄um

)
ūm (n̄2 + ñ2)ũ2

Ũ2

Ũ1

(n̄2 + ñ2)

(n̄1 + ñ1)
≤ O(1)
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ā N
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Equations (4.241) to (4.243) have been rearranged such that all terms involving gradients
from the un-perturbed (mean-steady) solution appear on the right-hand-side. With this
arrangement, the left-hand-sides of the equations have the same form as the total-quantity
form or un-perturbed form of the Euler equations, given in Eqs. (4.44) to (4.46). However,
here the equations are in terms of perturbation variables, and are limited to variations of these
variables in only the x3 direction. It is noted that in Eqs. (4.241) to (4.243), time-derivatives
on the left hand-side appear in the form of

∂

∂ tG
N
=

[(
k̄t

εt

)
∂

∂ tN
+

(
k̄um

εLm

)
ūm

∂

∂ξm

]
, (4.244)

with an obvious parallel to Eq. (4.201). The derivative above may be interpreted as a
time-derivative in a Galilean frame advected by the local un-perturbed velocity through
ūm. Furthermore, it is noted that dilation of the perturbation velocity through ∂ ũ3

∂ξ3
is always

accompanied by the total-quantity density through
[
ρ̄N +

(
ερ

)
ρ̃N
]
.

The form in which Eqs. (4.241) to (4.243) are emphasizes the differences between
CPT and LPT. With CPT modelling perturbations relative to a uniform freestream, the
right-hand-sides of the equations become zero. In LPT, the right-hand-side terms do not
disappear. Instead, they are interpreted as source terms arising out of the steady gradients of
the un-perturbed (mean-steady) solution.

4.6.4 Reduction to Algebraic Form

A comparison of Eqs. (4.241) to (4.243) with Eqs. (4.197) to (4.199) shows that not only
has the field-type problem been maintained, but now source terms have been included. As
discussed above, these source terms are associated with gradients in the background (un-
perturbed) flow. A reduction of this formulation to an algebraic relationship as associated
with CFD-based LPT requires (much like in the case of CPT) surface-incident characteristics
to be neglected. While many of the same considerations made in Section 4.5.4 apply here, a
more in-depth and general discussion of the requirements to derive an algebraic-relation-type
LPT is the focus of the following section, and in particular of Section 4.7.4.

4.7 Discussion

The present section will discuss a number of elements that are core to the derivation of both
CPT and LPT from the 3D Euler equations, as developed in this chapter. Broadly speaking,
the topics discussed may be categorized as being centred on
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• Considerations surrounding the mathematical consistency of the assumptions required
for the reduction to a 1D algebraic formulation,

• Implications for the practical application of existing Euler-based LPT.

Such a distinction is largely synthetic. This is because the elements which affect the mathemat-
ical consistency will be sources of error in the modelling – this will have direct implications
for the application of the method. Nevertheless, for the sake of presentation, Section 4.7
will be dedicated to the discussion surround the mathematical considerations. A distillation
of this discussion, with emphasis on the implications for practical application of existing
Euler-based LPT will be presented in Section 4.8.

The present discussion will be structured around the core elements influencing the
reduction of the 3D unsteady field problem to a 1D algebraic relation. These include

• The uniform validity of a chosen non-dimensionalization,

• The role of mean-steady gradients in the flow,

• The role of relative perturbation magnitudes and gradients,

• The neglect of flowfield interaction by means of surface-incident characteristics.

4.7.1 Uniform Validity of Non-Dimensionalizations

An introduction to the discussion surrounding the uniform validity of a given non-dimensionalization
was given in Section 4.1.3. Two key assumptions have been made in the development of the
mathematical basis in the present chapter. Namely, it has been assumed that:

• Reference values XR, with their un-perturbed and perturbation equivalents of X̄R and
X̃R, respectively, have been chosen such that the resulting non-dimensionalization is
uniformly valid throughout the flowfield bound by the body and the bow shock,

• Temporal and spatial gradients of all fluid variables may be non-dimensionalized
using common reference values of tR and LR, respectively. The same applies to the
un-perturbed and perturbation equivalents.

The first assumption may be loosely rephrased as “the reference values are appropriate
everywhere,” while the second may be rephrased as “one gradient-scale fits all variables.”
Violation of the first assumption directly leads to a layer-type problem, with common
examples being boundary-layer or entropy-layer flows. Violation of the second assumption
relates more to the present mathematical development, and necessitates the introduction of a
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greater number of distinct reference values LR associated with particular variables. This has
been discussed in the context of the assumption on Page 219. The discussion of Section 4.7.1
will focus primarily on scenarios in which the first assumption is violated, and in which a
layer-type problem arises.

A number of layer-type problems may arise. The following are considered here:

• A “globally-embedded” inner layer, such as the boundary-layer on a sharp airfoil, as
depicted in Fig. 4.3,

• A “locally-embedded” inner layer, such as the subsonic region of the inviscid flow
which exists near the nose of blunted bodies, as depicted in Fig. 4.4.

The use of the terms “global” and “local” in this context refers to the portion of the physical
space of interest over which the inner-layer is embedded.

L3(outer)

L3(inner)

Inner region
Outer region

L3(inner) ≪ L3(outer)

Fig. 4.3 Globally-embedded viscous boundary-layer.
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Outer region
M > 1

Inner region
M ≤ 1

Fig. 4.4 Locally-embedded subsonic inner-layer.

Globally-Embedded Inner Layers

The distinction between layers in the fluid domain typically arises due to the existence of
regions of disparate gradient scales – LR(inner) and LR(outer) – where for a boundary-layer
type problem, LR(inner) ≪ LR(outer). This suggests that the existence of

• Localized large second-derivatives of fluid quantities (e.g. due to viscosity), or

• Moderate second-derivatives of fluid quantities acting throughout the fluid domain (e.g.
due to large shock- or surface-curvature),

will lead to a layer-type problem. As noted in Section 4.1.3, the solution of layer-type
problems is facilitated by the method of matched asymptotic expansions [201, 202]. The
solution obtained from the matched asymptotic expansions will introduce a coupling between
the mathematics (and physics) of the inner region and of the outer region. However, in
the context of LPT, it must be considered that the reduction to a 1D formulation – whether
algebraic or not – may not be valid in both the inner and outer regions.
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This has been recognized in a number of works relating to hypersonic SDT in the
literature, as reviewed in Sections 3.2.6, 3.2.8 and 3.2.9. Particular attention is drawn to

• The work of Liu and Hui [171] on oscillating delta wings. The 2D method for
oscillating wedges of Hui [177, 178] is valid within the “outer region” defined by
uniform-flow regions on the wing. This is illustrated in Fig. 3.19 for both delta and
rectangular wings. The “inner” region is defined by extent of the Mach cone emanating
from the delta-wing apex (or the wing-tips of the rectangular wing). Within the “inner”
region, the flow is governed by the 3D Euler equations, and the reduction to the simpler
2D method is not valid,

• The work of Hui and East [189] on the stability derivatives of sharp wedges in viscous
hypersonic flows. Again, the method of Hui [177, 178] is valid within the inviscid outer
region, and is coupled to a viscous model in the inner region of the boundary-layer,

• The work of Orlik-Rückemann [183] and of Ericsson [188] in developing piston-
theories with account of inviscid-viscous interaction due to the boundary layer.

For the purposes of the present discussion, particular emphasis will be placed on the inner
region of the viscous boundary-layer. As has been illustrated in Section 4.6, the derivation
of LPT from the 3D Euler equations requires velocity perturbations in the streamwise and
spanwise direction to be neglected. Thereafter, a 1D unsteady field problem is obtained by
means of a Galilean transform. The persistence of upstream propagations may be modelled
by retaining the field-type formulation. However, as the flow is supersonic, perturbations
occurring downstream of the instantaneous fluid slab under consideration have no effect on
that slab. This is not the case in the viscous inner region. The flow within the boundary-layer
may in fact be subsonic, in which case perturbations occurring downstream of the point in
consideration may well propagate upstream. This may be summarized as follows:

• In isolation, the outer inviscid flow allows downstream perturbations to be ignored,
which results in a reduction to a 1D unsteady formulation. This may be further
simplified to obtain an algebraic relation of LPT,

• When coupled to the viscous inner region, downstream perturbations influence the
instantaneous outer solution upstream of those perturbations. Thus, a 2D (or 3D)
unsteady formulation is required to determine the boundary conditions of the outer
inviscid flow.
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Locally-Embedded Inner Layers

The present discussion will consider “locally-embedded inner layers” by virtue of:

• Mach number (subsonic regions embedded in a supersonic outer flow),

• Curvature,

• Concentrated vorticity.

An example of the first of these has been depicted in Fig. 4.4. In the absence of a viscous
boundary-layer, embedded subsonic regions in a supersonic freestream as depicted will arise
as a consequence of one of the following:

• The freestream Mach number is in the transonic range, and adverse pressure gradients
along the body surface result in the formation of a normal shock at the surface. This
commonly occurs on airfoils in the transonic range,

• The angle by which the oncoming flow must be turned by the body is sufficiently great
that

– The attached oblique shock approaches detachment, and an embedded subsonic
region is formed behind the attached shock,

– The bow shock detaches from the body, with an embedded subsonic region
spanning a portion of the space between the detached shock and the body.

More generally, this may be attributed to “bluntness.”

Classical piston theory is established as method rooted in hypersonic flows around slender
profiles. It has historically been applied with the implicit understanding that it is not valid
for blunted profiles. The present mathematical basis provides clearer insight into the role of
the Mach number (and of bluntness) in influencing the validity (and accuracy) of both CPT
and LPT. The momentum and energy equations of Eqs. (4.45) and (4.46) are seen to involve
the dimensionless parameters k f and ka, respectively. For ease of reference, the definition of
these parameters is repeated below:

k f =
pR

ρRU2
R
, ka =

pR

ρRa2
R
. (4.245)

It is recalled here that the selection of the reference values such as pR is to be guided such
that the dimensional quantities (p) are appropriately non-dimensionalized (pN = O(1)).
While the appropriate definition of pR is dependent on the application (slender-body flows
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versus blunt-body flows), it is noted that whether pR = p∞ or pR = ρ∞U2
∞, the square of

the freestream Mach number M2
∞ will appear in either k f or ka. The Mach number thus

essentially affects the scaling of:

• The pressure-gradient in the momentum equation through k f ,

• The pressure-gradient in the energy equation through ka.

However, the Mach number has a less visible yet very significant influence on the relative
magnitudes of velocities and gradients through terms such as Ū3

Ū1
and L̄3

L̄1
. The reduction to a 1D

formulation required by LPT depends on streamwise gradients (and perturbation velocities)
being on order of magnitude smaller than gradients in the thickness direction. However, as
the local Mach number decreases into the transonic range, streamwise gradients become
increasingly significant, while gradients in the thickness direction become of secondary
importance. Similar considerations apply to the perturbation velocities. In the subsonic
regime, perturbations propagate in all directions, and the length scales L̄i may become
comparable. It is clear that the above circumstances relating to transonic and embedded
subsonic regions will not allow a uniformly valid reduction to 1D to be performed. While
it may be possible to obtain a significantly simplified approximate model of the flow in the
inner region, it cannot be reasonably expected that LPT (which is valid in the supersonic /
hypersonic outer-layer) may be accurately applied in the subsonic / transonic inner-layer.

Locally-embedded inner-layers may also arise due to strong curvature. Particular attention
is given at present to curvature in the crossflow plane, as associated with wing-body junctions
and wing-tips. This has been illustrated in Fig. 4.5. The inner-layers arising from curvature
in the crossflow plane are defined by

• The order of magnitude of relevant reference length-scales L̄R,

• The relative magnitude of crossflow gradients, with O(L̄2) = O
(
L̄3
)
.

The first of the above alludes to the overall higher magnitude of flow gradients which
may be observed in the vicinity of the curvature. This may affect the validity (locally)
of even a 2D reduction of the 3D Euler equations, as noted in the works of Voevodenko
and Panteleev [86]. The second point, namely that O(L̄2) = O

(
L̄3
)
, states that the flow

is inherently two-dimensional, and that gradients in one of the crossflow directions may
not be neglected in favour of gradients in the other direction. This directly opposes the
requirement of neglecting one crossflow direction to arrive at the 1D formulation, as has been
shown in Section 4.6.3 and Table 4.10. The failure of CPT in the vicinity of wing-tips by
this mechanism has long been understood, having been recognized by Il’yushin [77] in his
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Inner region

Outer region

LR(inner)

LR(inner) ≪ LR(outer)

LR(outer)

Fig. 4.5 Locally-embedded inner-layers due to curvature.

original development. The extended of this breakdown to LPT is made here. In closing, it is
remarked that in a viscous formulation, regions of high curvature will typically be associated
with the development (or separation from the surface) of a viscous inner-layer.

This leads to the final type of locally-embedded layer considered in the present discussion.
The separation of a viscous boundary-layer – in the context of slender body aerodynamics
– is typically associated with the development and shedding of vortices. Regions of strong
crossflow curvature are also sources of vortex development. It is thus unsurprising that
regions of concentrated vorticity may also be characterized by

• The order of magnitude of relevant reference length-scales L̄R,

• The relative magnitude of crossflow gradients, with O(L̄2) = O
(
L̄3
)
.

The interpretation of these regions as locally-embedded inner-layers distinct from the overall
crossflow domain is tied to the strength and range of influence of the vortical structure. An
example of regions of concentrated vorticity interpreted as locally-embedded inner-layers is
illustrated in Fig. 4.6. This is of particular interest in the application of Euler-based LPT to
control surfaces on slender bodies. It is possible that the strength of the vortices, together
with their proximity to the control surfaces, results in a globally-embedded (in the crossflow
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Outer region

LR(inner)

LR(inner) ≪ LR(outer) LR(outer)

Fig. 4.6 Locally-embedded inner-layers due to concentrated regions of vorticity.

plane) inner-layer in which the reduction to a 1D formulation is not possible. This scenario
is of further interest in raising the following questions:

• How do the control-surface perturbations considered (Section 4.7.3) influence the
validity of a reduction to a 1D formulation?

• Is the neglect of flowfield interaction (Section 4.7.4) is a valid approximation?

A precursory numerical investigation into these questions is conducted in Chapter 5.

4.7.2 Mean-Steady Gradients

With the role of (a lack of) uniform validity in affecting the reduction from a 3D formulation
to a 1D formulation thus addressed, the attention turns to the role of gradients in the un-
perturbed (mean-steady) flow. Here it will be assumed that the non-dimensionalization is in
fact uniformly valid.

The appearance of mean-steady gradients in the 3D Euler equations of Eqs. (4.97) to (4.99)
has been interpreted in Section 4.6.3 as additional source-terms in an Euler formulation in
terms of perturbation variables. This was clearly shown for the 1D reduced-formulation in
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Eqs. (4.241) to (4.243). The reduction to the 1D formulation requires terms of the form

ũ1
∂ ρ̄N

∂ξ1
, ũ2

∂ ρ̄N

∂ξ2
, (4.246)

ũ1
∂ ū2
∂ξ1

, (4.247)

ũ1
∂ ū3
∂ξ1

, ũ2
∂ ū3
∂ξ2

, (4.248)

ũ1
∂ p̄N

∂ξ1
, ũ2

∂ p̄N

∂ξ2
, (4.249)

be neglected in favour of the terms listed in Tables 4.9 and 4.10. Above, terms on the
left-hand-side (involving ũ1) are associated with the reduction to a 2D formulation, while
those on the right are associated with a further reduction to 1D. It is noted here that the
existence of particularly prominent un-perturbed gradients may affect the normalization
of the equations in the scaling analysis conducted in Sections 4.6.2 and 4.6.2. Thus, the
discussion will not offer direct requirements on terms such as L̄1

L̄2
.

The first scenario considered will be a slender axisymmetric body at incidence to the
flow, such as a yawed cylinder. It is assumed that the reduction to a 2D formulation through
the neglect of ũ1 is valid, and that L̄1 gg1. The framework developed in the present work has
been presented in a Cartesian coordinate system, but may readily be extended to curvilinear
coordinate system, as was done in an earlier development of the framework by the author
in [196]. In essence, the elimination of ũ1 results in the reduction to an unsteady crossflow
formulation. Considering an inviscid flow, it is noted that in the vicinity of the body surface,
the mean-steady flow gradients in the radial and circumferential directions (or in x2 and x3

in the Cartesian formulation) will be of comparable orders of magnitude. This is written in
the present notation as O(L̄2) = O

(
L̄3
)
. A reduction to a 1D formulation would thus not be

possible under these circumstances.

An alternative approach reaching the same conclusion may be taken by considering
Eqs. (4.246), (4.248) and (4.249). Under an established crossflow, the mean-steady gradients
∂ ρ̄N
∂ξ2

, ∂ ū3
∂ξ2

, and ∂ p̄N
∂ξ2

are expected to have coefficients which are O(1). Neglecting terms these
terms in ũ2 in favour of corresponding terms in ũ3 would require that ũ2 ≪ ũ3, which is an
unlikely scenario.

Further scenarios in which prominent gradients in the mean-steady flow affect the validity
of a reduction to a 1D perturbation problem may be considered. Closely related to the
crossflow scenario introduced above is the case of a strong vortex in close proximity to a
control surface. As has been discussed before, the vortical flow would be characterized by
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O(L̄2) = O
(
L̄3
)
. The validity of a reduction to a 1D formulation under deformations of the

control surface such that Ũ2 ≪ Ũ3 and L̃2 ≫ L̃3 is an open research question of interest.
A final scenario considered is in the application of LPT to a mean-steady solution with

a significant mean-steady streamwise-gradient, as would occur in the vicinity of blunted
leading-edges or noses. Such a gradient would affect the validity of discarding terms in ũ1.
The limits of validity of applying LPT in blunted regions is another open research question of
interest. The mathematical basis for LPT developed in the present work serves as a starting
point for future work to address these questions.

4.7.3 Relative Magnitudes of Perturbation Velocities and Gradients

The role of the relative magnitudes of

Ũ1
Ũ2

,
Ũ2
Ũ3

, (4.250)

L̃1
L̃2

,
L̃2
L̃3

(4.251)

have already been introduced in the preceding discussions. In particular, the role of surface
deformations in defining the above relative magnitudes has been noted. The role of these
ratios in allowing a reduction to a 2D or a 1D formulation has been emphasized in Tables 4.9
and 4.10.

A discussion of the role of the local Mach number in defining the ratios for localized point-
perturbations has been made in the summary of Section 4.6.3 in the context of Table 4.10.
The discussion, while relevant to the present discussion, is not repeated in detail here. Only
the key conclusions are noted. The first is that

• A reduction to a 1D formulation is not permissible if O
(
L̃2 = O

(
L̃3
))

and O
(
Ũ2 = O

(
Ũ3
))

.
This is the case for localized point-perturbations.

An extension of the above to more general deformations may be made by the following
heuristic:

• The deformation at any point has a streamwise inclination such that it causes an
infinitesimal fluid perturbation which propagates along local characteristics. This is
used along with the local Mach number to estimate L̃1

L̃3
and Ũ3

Ũ1
,

• The spanwise-gradient of the streamwise inclination ( ∂n1
∂ξ2

in the present notation) is

assumed to be representative of the relationship L̃1
L̃2

.
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Using the above and the requirements of Table 4.10, the following conclusion may be reached
regarding the influence of mode-shapes on the reduction to a 1D formulation:

∂n1
∂ξ2

Ũ2
Ũ1

≤ O(1) . (4.252)

This result was stated in Section 4.6.3 as follows: perturbations in the x2 direction must vary
at least as slowly as perturbation in the x1 direction if they are of comparable magnitude.

4.7.4 Neglect of Flowfield Interaction

The final element to be discussed regarding assumptions required to obtain an algebraic
pressure-relation in LPT is the influence of the interior of the fluid domain on perturbation
values at its boundary (on the body surface).

The reduction to a 1D unsteady field-type formulation gives rise to the piston-cylinder
analogy. The assumption in Il’yushin’s [77] development of CPT is that the piston drives a
shock into an otherwise uniform, stationary fluid. A physical interpretation of LPT requires
some caution. In LPT, any infinitesimally small element of the 1D “slab” of fluid bound
between the body and the shock is advected by the local mean-steady (un-perturbed) fluid
velocity at that point in space. However, this advection velocity varies throughout the space.
This gives rise to the following questions:

• Do plane fluid sections remaining plane as they are advected by the mean-steady
background flow?

• What is the spatial extent of validity of a constant advection-velocity approximation?

The variation of other mean-steady fluid also represents a hurdle to a direct physical analogy.
Even if the constant advection-velocity approximation is made in order to obtain a plane
cylinder with constant orientation to the body, the un-perturbed thermodynamic quantities
of the fluid will vary spatially. In the piston-cylinder analogy, this is equivalent to having a
non-uniform captive fluid in the cylinder.

In this light, the discussion surrounding the neglect of flowfield interaction will be made
from the reference point of the 3D flow, with an approximate association made between the
advected-time and the streamwise coordinate tangential to the surface of the body. The term
“flowfield interaction” as used in the present work refers collectively to the following:

• The change in the fluid state at a point on the body surface arising from perturbations
produced at an upstream point (i.e. upstream influence). The upstream influence will
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be considered as arriving along surface-incident characteristics, which may have the
following sources:

– Direct impingement of surface-generated characteristics from other points on the
body surface,

– Impingement by surface-generated characteristics from other points on the body
surface that have been reflected off of shocks or vortices (or entropy gradients, in
general),

– Impingement (direct or by reflection) of characteristics associated with perturba-
tions generated at the interior of the fluid or at the shock boundary.

• Mutual interference between established mean-steady flow-structures (with particular
emphasis on body-shed vortices) and the deforming body surface.

The discussion will focus on

• Flow scenarios in which flowfield interaction is not negligible,

• The possibilities for accounting for flowfield interaction in LPT.

Flows With Significant Flowfield Interaction

The question of whether flowfield interaction may be neglected is closely related to the
previously-discussed influences on the reduction to a 1D formulation. As was noted in
Section 4.7.1, the existence of a layer-type problem leads to coupling between the solutions
at the interface between the layers. The scenario of a viscous boundary-layer will be used for
illustration. In the moderate- or strong-interaction regime, the solution of the inner-layer may
significantly influence the adjacent outer-layer. In this case, the neglect of surface-incident
characteristics is an unacceptable approximation, as these modify the boundary conditions to
the inner-layer and consequently alter the solution of the outer-layer significantly.

The scenario above of the viscous boundary-layer related to globally-embedded inner-
layers. The presence of locally-embedded inner layers (such as embedded subsonic regions
or regions of concentrated vorticity) may also significantly the validity of neglecting surface-
incident characteristics. An important factor in considering their influence is the proximity
of these embedded inner-layers to the surface under consideration. If the embedded regions
are sufficiently distant from the surface, the surface-generated characteristics that reflect off
of the embedded regions may be weak. Furthermore, reflections might not return to the body
surface by virtue of a short streamwise-length of the surface of interest. However, if the
embedded regions are in close proximity to the surface of interest, the flowfield interaction
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may have a significant role in determining the fluid pressure at the surface. In this scenario,
surface-incident characteristics may not be negligible (and more generally, a reduction to 1D
might also be inappropriate).

These arguments extend to cases in which significant mean-steady gradients exist in the
flow. In particular, the existence of a non-negligible entropy-gradient in the mean-steady
flow (as arising from shock curvature) or of vortices in the mean-steady flow will result in
the reflection of surface-generated characteristics.

In closing, it is recalled that the present definition of “flowfield interaction” includes
changes to the fluid pressure at a point on the surface by direct impingement of surface-
generated characteristics from other points on the body surface. This is more commonly
referred to as “upstream influence”, and is important both generally and for geometries with
aerodynamically interfering surfaces.

Accounting for Flowfield Interaction

A rigorous account of flowfield interaction in LPT was made for the special case of inviscid
flow over a planar wedge by McIntosh [146], Hui [178], and Orlik-Rückemann [184]. The
spatially-invariant background (mean-steady) flow between the shock wave and the wedge
surface renders the 2D field-type problem amenable to solution by characteristics. The
application of characteristics to solving the 1D field-type problem in the context of CPT may
be noted in the works of Il’yushin [77] and of Lin et al [211]. Both of these works also deal
with scenarios in which (to within a valid approximation) the background (un-perturbed)
solution is spatially uniform (having no gradients). The extension of LPT to account for
non-negligible gradients in the mean-steady flow and for the associated flowfield interaction
is outside the scope of the present work.

The works of Orlik-Rückemann [183] and of Ericsson [188] in accounting for viscous-
inviscid interaction may be considered analytical formulations of a “viscous CPT”. The
extension of these methods to CFD-based LPT holds the potential for improved modelling
fidelity over non-interactive effective-shape formulations of RANS-based LPT. This extension
is outside the scope of the present work.

Finally, it is noted that the potential-flow-based methods of Landahl [128] and of “ex-
tended piston theory” [144, 145, 160] account for the upstream influence and propagation of
perturbations within the context of CPT (with a uniform un-perturbed solution). It is posited
that an LPT-esque method could be developed from a linearized (for small perturbations)
form of the perturbed Euler equation. In this method, the mean-steady (un-perturbed) solution
would be obtained from CFD, while perturbations would be solved for using an approximate



4.8 Summary 289

method (for example, using a linear potential flow assumption). Such an extension of LPT is
outside the scope of the present work.

4.8 Summary

The present chapter demonstrated the derivation of both CPT and LPT from a common,
generalized basis rooted in the 3D unsteady Euler equations. As noted in Section 4.1.2, the
intention of this was to

• Address the gap in the literature surrounding the mathematical basis for LPT,

• Provide a deeper understanding of LPT with the goal of

– Better understanding shortcomings of current formulations and applications of
LPT [12, 16, 18, 19, 194, 195],

– Guiding the application and development of further extensions to LPT.

The derivation was based in a scaling analysis of the perturbation form of the Euler equations.
The interpretation of CPT as a special case of the 1D steady Euler equations for slender bodies
was informed by the original development of piston theory by means of the law of plane
sections due to Il’yushin [77]. The motivation for a generalized non-dimensionalization
and scaling analysis with no a-priori assumptions on incidence came from Sychev’s [4]
derivation of high-incidence theory for a 2D application of the law of plane sections. The
possibility of extending this to a 1D formulation to achieve piston theory was informed
by the categorization of approximate methods by Hayes and Probstein [27]. Finally, the
opportunity to develop the mathematical basis for LPT using the above was informed by the
recognition of a common generalized formulation for CPT and LPT in the author’s previous
work [59, 196].

The perturbation form of the Euler equations from which the derivation originates was
introduced in Section 4.3. A brief discussion on the selection of appropriate reference
quantities for non-dimensionalization was given in Section 4.4, with a framework for this
selection being presented in Appendix A. This was followed by a demonstration of this
framework through deriving CPT from the perturbation form of the Euler equations for
the classical case of a thin wing with low sweep in Section 4.5. The same procedure was
followed to illustrate the equivalent derivation of LPT from the 3D Euler equations for the
general case in Section 4.6. A discussion surrounding the mathematical requirements to
obtain an algebraic LPT relation of the form of Eq. (3.8) was presented in Section 4.7.
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To close this chapter, a distillation of the discussion of Section 4.7, with an emphasis on
the implications for the practical application of LPT, is presented here. The following key
conclusions are drawn:

• LPT is expected to be in significant error when applied to:

– Transonic flows and flows with embedded subsonic regions,

– Surfaces immersed in an entropy layer or viscous boundary-layer (in the context
of Euler-based LPT), particularly in strong-interaction cases,

– Surfaces in close proximity to shock-waves, vortices, strong entropy-gradients,
or other aerodynamically-interfering surfaces,

– Surfaces in close proximity to regions of sharp curvature, such as

* Blunted noses,

* Wing-tips,

* Trailing-edges,

* Subsonic leading-edges,

* Wing-body junctions.

– Mode-shapes of deformation involving regions of localized bending or camber,
or point-local deformations,

• Extensions to LPT are proposed to be developed with consideration of the mathematical
basis developed in Chapter 4 to account for:

– Non-negligible mean-steady flow gradients through inclusion as an additional
source term as outlined in Eqs. (4.241) to (4.243)

– Flowfield-interaction and upstream-influence by reduction to a reduced-order
linear-perturbation method.

A precursory numerical investigation into the application of the Euler-based LPT (without
extensions) to a control surface in an aerodynamically-interfering flow with regions of
concentrated vorticity, as is typical of slender-body applications, is conducted in Chapter 5.
The mathematical basis for LPT developed in the present chapter will inform the interpretation
of the results of the numerical study.



Chapter 5

Application of Euler-Based Local Piston
Theory to Static Control Deformations

The content of this chapter draws extensively from a previous publication of the author [212],
which has been reproduced and adapted here with permission from the copyright holder.

5.1 Introduction

The purpose of the present chapter is to illustrate the application of Euler-based LPT to
aeroprediction of slender-body-type vehicles subject to aeroelastic deformations. The physi-
cal flow features typical of these geometries have been reviewed in Chapter 2. The utility
of Euler-based LPT relative to other aeroprediction methods was discussed in Sections 2.2
and 2.3. Previous examples of the application of Euler-based LPT to full-vehicle geome-
tries were given in Section 3.2.7. It was noted that the justification for the application of
Euler-based LPT in these cases of interference flows was heuristic. No prior systematic
investigation of the error in LPT in these flows has been noted in the literature. The present
chapter aims to address this gap in the literature incrementally. Discussion of the results of
the investigation will be informed by the mathematical basis for Euler-based LPT developed
in Chapter 4. An outline of the material presented in this chapter follows.

Section 5.1.1 will introduce the slender-body vehicle geometry considered in the present
study. Motivation for the geometry definition will be provided. The elastic modes of
deformation of the control surfaces will be introduced. Section 5.1.2 will introduce the
reference data available for the body-alone case. Section 5.1.3 will define the parameter
space considered in the present study. Section 5.1.4 will introduce the numerical solver
and methods used. A description will also be given of the LPT implementation and the
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coefficients used. Finally, Section 5.1.5 will define the numerical grids used in the mesh-
independence studies performed for the body-alone and wing-alone cases. This will conclude
the introductory material of Section 5.1.

Section 5.2 will present the results of body-alone case. The mesh-independence study
will be described in Section 5.2.1. Section 5.2.2 will introduce the results for the body-alone
computations. The purpose of the body-alone case is to verify the OpenFOAM solver against
ANSYS Fluent. In addition, the body-alone case serves to validate the fidelity of the physics
modelled by the Euler equations. This is done through comparison of the Euler solutions to
reference data from Tuling [30]. The data of Tuling [30] includes both RANS computations
and experimental data. A discussion of the results will follow in Section 5.2.2.

The application of Euler-based LPT in predicting the aerodynamic pressure on a statically
deformed wing (control surface) is demonstrated in Sections 5.3 and 5.4. These sections
share a similar structure. Section 5.3 will introduce the wing-alone case, with the mesh-
independence study discussed in Section 5.3.1. The results of the LPT application will be
discussed in Sections 5.3.2 and 5.3.3. A general discussion of the wing-alone results will be
given in Section 5.3.4. The full-vehicle case will be covered in Section 5.4. The results will
be presented in Sections 5.4.1 and 5.4.2. Specific focus on aerodynamic interference is given
in Sections 5.4.3 and 5.4.4. A summary discussion of the full-vehicle results will be given in
Section 5.4.5.

Finally, a conclusive discussion of the numerical study of this chapter will be presented
in Section 5.5.

5.1.1 Geometry and Structural Modes

Aerodynamic interference on bodies of revolution with cruciform aerodynamic controls has
been studied extensively. Correspondingly, a large body of literature including experimental
data exists for this category of slender-vehicle geometry. This motivated the selection of the
geometry for the computational study in the present chapter. The slender-vehicle geometry
used is depicted in Fig. 5.1.

The body of the vehicle corresponds directly to that used in a recent computational and
experimental study by Tuling [30]. The results of Tuling’s [30] study have been used as the
reference data for the present work and are presented in Section 5.1.2. The body consists of
a 3-calibre (3D) tangent-ogive nose followed by a 16D cylindrical afterbody. The physical
dimensions given in Fig. 5.1 are those of the computational model of Tuling [30]. The
experimental model was scaled by 31.25%.
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1520 mm
240 mm

∅ 80 mm

Fig. 5.1 Full-vehicle geometry definition.

The geometry of the control surfaces (which will interchangeably be referred to as wings
throughout this chapter) is defined in Fig. 5.2a. The wing geometry definition was governed
by two considerations:

• Selection of a low aspect-ratio planform representative of control surfaces typical of
this class of slender vehicle,

• Geometry definition which would allow sufficient deformation to exhibit flowfield
interaction.

The first consideration dictated the planform specification. The second consideration was
a driving factor in the wing thickness specification. A wing thickness of 0.5 mm was used.
While this thickness is not useful for practical implementation, it allows thickness effects to
be isolated from the computational aerodynamic study. The material specification for the
computation of the mode shapes and frequencies is as follows:

• Young’s modulus: 73.1 GPa,

• Poisson’s ratio: 0.33,

• Density: 2780 kgm−3.

The resulting natural modes of the control surfaces are defined in Table 5.1. The mode-
shapes are depicted in Figs. 5.2 and 5.3. Modal displacements were defined by the maximum
out-of-plane deformation, δ . The red symbols in Figs. 5.2 and 5.3 denote points of maximum
(positive and negative) out-of-plane deformation. Displacements in the positive y-direction
are denoted by solid lines. The greatest displacement occurs at the wing tip. The modal
properties were determined using a clamped boundary condition at the wing root. Mode
shapes were computed using quadrilateral finite elements based in Mindlin-Reissner plate
theory. Verification against equivalent QUAD4 elements in MSC Nastran was performed.
While only static deformations were considered in the subsequent analysis, higher-order
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mode-shapes (such as the second-bending mode) were also considered for static aerodynamic
prediction, despite typically being associated with dynamic deformations. This was in order
to assess the accuracy of LPT when applied to localized deformations.

Table 5.1 Control-surface elastic modes.

Tip deflection / % Tip twist / ◦

δ δ

Mode Frequency / Hz Description 5 mm 10 mm 5 mm 10 mm

1 72.43 First bending 6.0 12 -0.5 -1.0
2 298.4 First torsion 0.45 0.91 -12.3 -23.5
3 403.8 Second bending -5.6 -11 -1.4 -2.7
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(b) Mode 1: first bending

Fig. 5.2 Control-surface geometry definition and first elastic mode.
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(b) Mode 3: second bending

Fig. 5.3 Second and third elastic control-surface modes.

5.1.2 Reference Data and Nomenclature

As previously noted, the results of the computational and experimental investigation of
Tuling [30] have been chosen as the reference data for the present work. The investigation of
Tuling [30] included the aforementioned body-alone geometry of Section 5.1.1, as well as
the integration of strakes along the length of the afterbody. Only the body-alone results will
be considered here.

The parameter space considered by Tuling [30] spanned the incidence-range of 0° ≤
α ≤ 25°, with a freestream Mach set of M∞ = [2.0, 2.5, 3.0]. The difference in freestream
conditions used in experiment and used in numerical simulations is noted in Tables 5.2
and 5.3, respectively. Tuling [30] noted that the boundary layer is expected to be turbulent
across the parameter space for both experimental and numerical results for the Reynolds
numbers used. The uncertainties associated with the experimental results of interest are
shown in Table 5.4. The uncertainties are small enough that error bars in subsequent plots
of the data are not noticeable, and have hence been omitted. It is noted that mesh- and
turbulence-model independence was demonstrated by Tuling [30], and that the RANS results
presented were obtained using a Spalart-Allmaras [67–69] model.
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Table 5.2 Experimental stagnation and freestream conditions in the study of Tuling [30]

Pressure / kPa Temperature / K

M∞ p0 p∞ T0 T∞ V∞ / ms−1 q∞ / kPa ReD

2.03 180.5 22.02 301.0 167.2 518.4 64.6 5.80×105

2.5 293.5 17.18 301.0 133.8 579.5 75.2 7.40×105

3.0 490.0 13.34 301.0 107.5 623.4 84.0 9.56×105

Table 5.3 Computational stagnation and freestream conditions in the study of Tuling [30]

Pressure / kPa Temperature / K

M∞ p0 p∞ T0 T∞ V∞ / ms−1 q∞ / kPa ReD

2.0 129.0 16.49 288.0 160.0 507.1 46.16 1.33×106

2.5 129.0 7.55 288.0 128.0 567.0 33.03 9.11×105

3.0 129.0 3.51 288.0 102.9 609.9 22.12 8.20×105

Finally, before the reference data is discussed, the nomenclature used to describe forces
and moments is introduced in Fig. 5.4. The x-axis is aligned with the body axis. The mid-
plane of the undeformed leeside control surface lies within the xz-plane, with z > 0. Similarly,
the starboard control surface lies within the xy-plane, with y > 0. The freestream velocity
vector lies in the xz-plane, as no sideslip is assumed. This defines the global coordinate
system, in which forces and moments are to be defined. Force-coefficients along the z-axis
are denoted CN , while force-coefficients along the y-axis are denoted CY . As axial forces are
typically not of importance in aeroelastic studies involving out-of-plane deformations, these
have not been considered in the present study. The moment reference centre is located on the
body axis at a distance xre f = 9.5D from the nose. Moments about the x-axis are denoted Cl ,
while moments about the y-axis are denoted Cm. The location of the centre-of-pressure is
measured as xCP in calibres from the origin at the nose.

The nomenclature introduced is for forces in the global coordinate system. It should
be noted that the use of the phrase “normal-force coefficient” to describe CN is consistent
when considering the body-alone case. However, when considering forces acting on the
leeside control surface, it is CY which is oriented normal to the control surface. The global
nomenclature will not be adapted when considering loads on the control surface.
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Table 5.4 Uncertainties in the experimental data in the study of Tuling [30]

M∞ = 2.0 M∞ = 2.5 M∞ = 3.0

M∞ 9.82 ×10−3 1.26 ×10−2 1.69 ×10−2

α / ◦ 0.163 0.168 0.181
q∞ / kPa 0.358 0.715 1.179
CN 5.32 ×10−2 8.06 ×10−2 1.26 ×10−1

Cm 4.84 ×10−2 7.83 ×10−2 1.37 ×10−1

CN

CY

Cm

Cl

y

z

x

xre f =
9.5D

M∞

α

Fig. 5.4 Nomenclature definition for global coordinate system, forces, and moments.
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The results of interest to the present work from Tuling’s [30] investigation are reproduced
in Figs. 5.5 to 5.10. The chief quantities of interest are the normal-force coefficient CN , the
pitching-moment coefficient Cm, and the location of the centre-of-pressure xCP. Figure 5.5
shows these quantities as obtained from experiment for the body-alone case over the M∞-
α parameter space. Figure 5.6 shows the corresponding data obtained from the RANS
computations. Inspection of the normal-force coefficient trends in Figs. 5.5a and 5.6a shows
no a-typical behaviour, with good correspondence between experimental and computational
trends. More interesting features are noted in the pitching-moment trends of Figs. 5.5b
and 5.6b and in the centre-of-pressure trends of Figs. 5.5c and 5.6c. The following remarks
are made regarding Cm:

• The experimental data in Fig. 5.5b show a Mach-dependence over the parameter space.
This includes the linear range of Cm at approximately α < 8°. The onset of nonlinearity
in the Cm-α curves is associated with the progression of body-shed vortex development.
It is noted that when M∞ sinα is used as the independent variable, the curves collapse
to a single curve for M∞ sinα ≤ 0.45. Thereafter, the data for M∞ = 2.0 follows a
similar pattern to that seen in Fig. 5.5b,

• The numerical data in Fig. 5.6b suggest no Mach-dependence in the linear range of
the curves (for approximately α ≤ 10°). This stands in contrast to the experimental
observations of Fig. 5.5b. Consequently, if M∞ sinα is used as the independent variable,
the curves do not collapse to a single curve. This will be discussed shortly in the context
of xCP,

• Direct comparison of the experimental and RANS results at each Mach number is de-
picted in Figs. 5.7b, 5.8b and 5.9b. It is seen that despite the aforementioned difference
in Mach-dependence modelling, good correspondence in Cm between experiment and
computation is obtained at α ≤ 5°. Significant differences are observed for α > 10°, in
particular at M∞ = 3.0. This is related to the poorer prediction in CN noted for this case
at α > 10°. Tuling [30] posited that this may be related to poorer numerical prediction
of the dynamic pressure loss across the bow shock.

The following remarks are made regarding xCP:

• The experimental data in Fig. 5.5c show a non-trivial variation of xCP over the parameter
space. This is also noted if M∞ sinα is used as the independent variable. Tuling [30]
concluded that the notable shifts in xCP observed at α > 10° are associated with
changes to the vortex topology. At α = 15°, it was observed that the shed vortex-sheet
rolled into a single vortex over the length of the body at M∞ = 2.0. However, at
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M∞ ≥ 2.5, the first vortex was shed from the body, leading to the development of a
second vortex-sheet further down the length of the body. This latter structure was
observed at all Mach numbers for α > 20°,

• The numerical data in Fig. 5.6c show significantly less variability in xCP, with more
monotonic trends predicted. Greater Mach- and incidence-dependence is noted at
α > 10°,

• As before, direct comparison of the experimental and RANS results at each Mach
number is depicted in Figs. 5.7c, 5.8c and 5.9c. These figures have been included
for completeness. However, greater insight is obtained by plotting the data using
M∞ sinα as the independent variable. The resulting plots are shown in Fig. 5.10. It
is immediately evident that the non-monotonic shifts in xCP observed at M∞ = 2.0
and M∞ = 2.5 occur at M∞ sinα < 0.5. This is also the parameter space for which the
worst agreement between RANS and experiment in xCP is noted. Excellent agreement
is typically achieved at M∞ sinα > 0.5. This is to be expected, as M∞ sinα ≈ 0.5
represents the onset of the crossflow-shock on the body surface. This forcibly sets the
boundary-layer separation position. Below this crossflow Mach-number, Reynolds-
number effects dominate the cylinder crossflow-drag coefficient and boundary-layer
separation. This has been noted in Fig. 2.14. It is noted that the RANS computations
of Tuling [30] assumed a fully turbulent boundary-layer. Comparison of the RANS
predictions at various Mach numbers in Fig. 5.10d shows that this leads to the curves
collapsing to a single function of M∞ sinα . While the experimental data at M∞ = 3.0,
Re = 9.56×10−5 support this trend, the data at lower Mach and Reynolds numbers
show significant differences at M∞ sinα < 0.5. It may thus be concluded that the exper-
imental data for M∞ = 2.0 and M∞ = 2.5 at M∞ sinα < 0.5 are Reynolds-dependent.
This may be a factor in the disparate Mach-dependence of Cm at α ≤ 10° between
experiment and computation.

In the discussion of the reference data thus far, two reoccurring “boundaries” in the parameter
space may be noted. The first boundary is noted at α = 10°. Associated with this boundary
were the observations that:

• The prediction in Cm from RANS suggested Mach-independence at α ≤ 10°,

• Changes in the shed-vortex topology were observed by Tuling [30] at α > 10°.

The second boundary is related to the first, and is at M∞ sinα ≈ 0.5. This boundary is notable
in that:
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• It marks the onset of the crossflow-shock at the body surface,

• The experimental data exhibit Reynolds-dependence for M∞ = 2.0 and M∞ = 2.5 at
crossflow Mach-numbers M∞ sinα ⪅ 0.5.

The transition in the shed vortex topology to multiple vortex shedding noted at α > 10°
largely motivated the decision to restrict the parameter space of the present study to α ≤ 10°.
It is noted that at M∞ = 3.0, the approximate boundary of M∞ sinα ≈ 0.5 is reach when
α ≈ 9.6°. Thus, when comparing the results of the present study to the experimental data of
Tuling [30], it should be considered that the experimental data exhibit Reynolds-dependence.
The same dependency does not arise when comparing the results of the present study to the
RANS computations of Tuling [30] for α ≤ 10°.

A discussion of the body-alone vortex-shedding and vortex trajectories is not made here,
as it is presented in Tuling’s [30] work. Only the approximate positions of the vortex cores
at selected parameter points is noted. At M∞ = 2.0, α = 10°, the vortex core at x = 14.5D
is located at approximately y ≈ 0.3D, z ≈ 0.8D. At M∞ = 3.0, α = 10°, the vortex core at
x = 14.5D is located at approximately y ≈ 0.4D, z ≈ 0.8D. The vertical positions correspond
to approximately the mid-span of the leeside control-surface. Significant changes in the
vertical and lateral positions of the vortex core further down the length of the body were not
noted.
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Fig. 5.5 Reference data: body-alone experimental results from Tuling [30].
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304 Application of Euler-Based Local Piston Theory to Static Control Deformations

0 5 10 15 20 25
α / ◦

0

1

2

3

4

5

6

7

C
N

M∞ = 2.5

RANS
Exp.

(a) Normal-force coefficient

0 5 10 15 20 25
α / ◦

0

1

2

3

4

5

C
m

M∞ = 2.5

RANS
Exp.

(b) Pitching-moment coefficient

0 5 10 15 20 25
α / ◦

3

4

5

6

7

8

9

x C
P

/D

M∞ = 2.5

RANS
Exp.

(c) Centre of pressure

Fig. 5.8 Reference data: body-alone results at M∞ = 2.5 from Tuling [30].



5.1 Introduction 305

0 5 10 15 20 25
α / ◦

0

1

2

3

4

5

6

C
N

M∞ = 3.0

RANS
Exp.

(a) Normal-force coefficient

0 5 10 15 20 25
α / ◦

0

1

2

3

4

5

C
m

M∞ = 3.0

RANS
Exp.

(b) Pitching-moment coefficient

0 5 10 15 20 25
α / ◦

3

4

5

6

7

8

9

x C
P

/D

M∞ = 3.0

RANS
Exp.

(c) Centre of pressure

Fig. 5.9 Reference data: body-alone results at M∞ = 3.0 from Tuling [30].



306 Application of Euler-Based Local Piston Theory to Static Control Deformations

0.00 0.25 0.50 0.75 1.00 1.25
M∞ sinα

3

4

5

6

7

8

x C
P

/D

M∞ = 2.0

RANS
Exp.

(a) M∞ = 2.0

0.00 0.25 0.50 0.75 1.00 1.25
M∞ sinα

3

4

5

6

7

8

9

x C
P

/D

M∞ = 2.5

RANS
Exp.

(b) M∞ = 2.5

0.00 0.25 0.50 0.75 1.00 1.25
M∞ sinα

3

4

5

6

7

8

9

x C
P

/D

M∞ = 3.0

RANS
Exp.

(c) M∞ = 3.0

0.00 0.25 0.50 0.75 1.00 1.25
M∞ sinα

3

4

5

6

7

8

9

x C
P

/D

M∞ = 2.0
M∞ = 2.5
M∞ = 3.0

(d) RANS trends

Fig. 5.10 Reference data: body-alone centre-of-pressure results from Tuling [30].



5.1 Introduction 307

5.1.3 Test Matrix

The parameter space of the present study is defined by four variables. These variables, their
ranges, and motivation for the selection of these ranges, are introduced below:

• The freestream Mach number, M∞:

M∞ = [2.0, 2.5, 3.0]

To facilitate comparison with the reference data from Tuling [30], the same set of M∞

was used in the present study. Moreover, the definition of the freestream conditions of
Tuling [30], given in Table 5.3, has been repeated.

• The freestream angle-of-attack, α:

α = [0, 2, 4, 6, 8, 10]

As discussed in Section 5.1.2, the range of angles-of-attack considered here has been
restricted to 0° ≤ α ≤ 10°. This was largely to avoid the interaction of multiple
body-shed vortices with the control surface. The interval between angles-of-attack of
Tuling [30] has been repeated. This is with the exception of α = 8°, which was not
included in the study by Tuling [30].

• The mode-shape of deformation for the leeside control surface:

Mode 1: first bending, Mode 2: first torsion, Mode 3: second bending

Only the first three mode-shapes were considered in the present study. It is the objective
of the present study to investigate the application of Euler-based LPT to a control
surface subject to an interference flowfield. The simple deformation patterns of the
first three modes allows the effect of flowfield-interaction to stand out from effects due
purely to changes in geometry.

• The maximum out-of-plane displacement for the given mode-shape, δ .

δ = [0mm, 5mm, 10mm]

The values (and increment) used for δ were chosen as nominal values. It was decided
to use the same maximum out-of-plane displacement for each mode-shape for the sake
of consistency when considering the interaction of control-surface deformation with
the interference flowfield. In order to accentuate this interaction, moderate to large
deformations were used. The tip displacement (as percentage of the span) and tip twist
associated with these values of δ have been introduced in Table 5.1.
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Table 5.5 M∞ sinα parameter space

α / ◦ M∞ = 2.0 M∞ = 2.5 M∞ = 3.0

0 0 0 0
2 0.07 0.09 0.10
4 0.14 0.17 0.21
6 0.21 0.26 0.31
8 0.28 0.35 0.42
10 0.35 0.43 0.52

Some considerations regarding the angle-of-attack range and the suitability of an Euler
formulation in this range follow. In particular, the roles of viscosity and turbulence (which
are absent in an Euler formulation) in this range are considered. The mechanism of vortex-
shedding from the body is dependent on the crossflow Mach number, Mc = M sinα . The
variation of M∞ sinα over the parameter space considered is shown in Table 5.5. For
sufficiently high freestream crossflow Mach numbers, typically M∞ sinα ≥ 0.5, acceleration
of the flow around the body in the crossflow plane leads to local regions of Mc ≥ 1. This leads
to a normal shock forming at the body surface in the crossflow plane. In viscous flows, the
driving mechanism of vortex formation is boundary-layer separation at the shock, forced by
the adverse pressure gradient of the body-crossflow shock. In inviscid flows, the rotationality
introduced by the shock is the driving mechanism of vortex formation. Although the overall
structure of the flowfield is similar in either case, the mechanisms for vortex formation differ.
The influence of turbulence and viscosity in the high-strain, separated leeside flow is not
modelled in an Euler formulation. The formation of secondary vortices and separated regions
on the body at α > 10° would also not be modelled in an inviscid formulation.

The suitability of an Euler formulation in the upper half of the truncated α-range in
the absence of a body-crossflow shock is not guaranteed. Vortex formation still occurs,
but the difference in the flowfield structure between a viscous formulation and an inviscid
formulation becomes more pronounced. The driving mechanism of vortex formation in
the viscous case is boundary-layer separation due to the adverse pressure gradient in the
crossflow plane. In the inviscid case, accumulation of rotationality due to the entropy
gradients introduced by the nose-shock leads to vortex formation. The vortices formed in the
inviscid case are significantly weaker than their viscous-case counterparts for the same M∞

and α . The difference in overall structure of the flowfield in the absence of SBLI becomes
pronounced.

In summary, an Euler formulation may be expected to be best suited at small incidences at
which no separation would occur in a viscous formulation. Under these conditions, whilst the
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momentum deficit in the leeside wake would not be modelled, no prominent flow structures
would be lacking in the Euler formulation. Good modelling of the flowfield structure may
also be expected at higher incidences when vortex formation is driven by the body-crossflow
shock. However, this only occurs in the upper M∞ and α limits of the parameter space
considered.

5.1.4 Numerical Methods

Flow Solver

A density-based compressible flow solver named HiSA was developed for OpenFOAM by
Heyns* and Oxtoby† [213] of the Council for Scientific and Industrial Research of South
Africa. The decision to utilize this solver was motivated as follows:

• The application of the solver to various scenarios of high-speed flows and its validation
was part of a larger project of work at the time,

• The solver and OpenFOAM are open source, with no license fees associated with their
use.

The Lax-Friedrichs flux-splitting method was used. A cell-limited least-squares interpolation
was used for gradient terms. A Van Leer scheme was used for reconstruction. The resulting
formulation was second-order. A mesh-motion solver based on cell-centre solid-body rotation
stresses was used to obtain the meshes for the deformed control-surface cases. Steady-state
analysis was conducted for all cases.

Local Piston Theory Formulation

The steady solution obtained for the undeformed control-surface was used as the mean-steady
reference solution to which LPT was applied. The LPT formulation and coefficients used are
repeated here for completeness. The pressure on the control surface following deformation
was computed as

p = pm + γ

[
c1

(
w
am

)
+ c2

(
w
am

)2

+ c3

(
w
am

)3
]
, (5.1)

*jheyns@csir.co.za
†ooxtoby@csir.co.za
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where the subscript “m” denotes the mean-steady values for the undeformed case. The
downwash definition used was

w =−Vm · n̂, (5.2)

where Vm is the fluid velocity vector obtained from the mean-steady solution for the un-
deformed case, and n̂ is the unit normal vector following deformation. An investigation
of the influence of the order of pressure-equation and of the coefficient definition on the
LPT prediction was performed. The former was achieved through truncating Eq. (5.1) to
the desired order. The latter involved the use of various definitions for c1, c2, and c3. The
various definitions of these coefficients are repeated in Tables 5.6 to 5.8. The coefficients are
computed using the local mean-steady Mach number Mm and mm =

√
M2

m −1. The origin of
these definitions and their theoretical bases have been discussed in Chapter 3.

Table 5.6 Local piston theory coefficients used in the present work: first order.

Source c1

Lighthill [88] 1
Van Dyke [104] M/m
Donov [105] M/m

Table 5.7 Local piston theory coefficients used in the present work: second order.

Source c2

Lighthill [88] (γ +1)/4
Van Dyke [104] [M4(γ +1)−4m2]/4m4

Donov [105] [M4(γ +1)−4m2]/4m4

Table 5.8 Local piston theory coefficients used in the present work: third order.

Source c3

Lighthill [88] (γ +1)/12
Van Dyke [104] 0
Donov [105] [8−12M2 +10(γ +1)M4 +(2γ2 −7γ −5)M6 +(γ +1)M8]/12Mm7
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5.1.5 Mesh

A preliminary mesh configuration study was conducted in order to achieve balance between:

• Solution convergence and stability,

• Resolution of flow features,

subject to the hardware constraints of the workstation used. A structured grid was used. The
multi-block definition chosen is defined in Figs. 5.11 to 5.13. The same block definition was
used in the body-alone and the full-vehicle cases, with the fin-thickness blocks absent in the
body-alone mesh. This was done in order to minimize grid-related differences between the
body-alone and full-vehicle cases. Similarly, the axial block-definition from the full-vehicle
case was used in the wing-alone mesh. This is seen from Figs. 5.12 and 5.13. The chief
difference (aside from geometry) between the full-vehicle and wing-alone grids was in the
crossflow-plane meshing strategy. The full-vehicle case utilized cylindrical block definitions
to conform with the body-surface. The wing-alone case utilized rectangular blocks to better
align the mesh with anticipated flow gradients. These differences are illustrated in Fig. 5.11.
The resulting meshes are depicted in Figs. 5.14 and 5.15.

The body-alone and full-vehicle domains span 0.1225L upstream of the body, where L is
the body length. The outlet is 1.5L downstream of the body. The farfield boundary is located
0.75L from the wing tips. The cell count for each mesh is listed in Table 5.9. A refinement
factor of 2 was used between each level of fineness.

Table 5.9 Mesh cell counts

Fineness Body-alone Wing-alone Full-vehicle

Coarse 62464 41040 63328
Medium 499712 324864 503168
Fine 3997696 2585088 4011520
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(a) Body-alone and full-vehicle

(b) Wing-alone

Fig. 5.14 Volume mesh with y < 0 omitted for clarity.
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(a) Body-alone and full-vehicle

(b) Wing-alone

Fig. 5.15 Surface mesh with focus on the control surface. The volume mesh in the plane
y = 0 is also shown.
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5.2 Body-Alone Aerodynamics

As stated in Section 5.1, the primary purpose of the body-alone case is verification and
validation of the modelling. To this end, Section 5.2.1 will introduce the mesh-independence
study. The verification of the numerical solver is the topic of the first portion of Section 5.2.2.
The second portion of the same section will focus on the physics validation. A discussion of
the overall physics and of the verification and validation will be given in Section 5.2.3.

A number of general remarks are offered with regards to the figures to be introduced in
Section 5.2:

• Except where explicitly noted otherwise, the results presented were obtained using the
OpenFOAM solver discussed in Section 5.1.4,

• Results depicting the location of the centre-of-pressure (xCP) will typically not be
shown at α = 0°. This is because of the inflation of numerical error when a small
number (Cm) is divided by a similarly small number (CN).

5.2.1 Mesh-Independence Study

The details of the body-alone mesh have been provided in Section 5.1.5, with cell counts
provided in Table 5.9 and depictions of the mesh provided in Figs. 5.11, 5.12, 5.14 and 5.15.
It is to be noted that the body-alone and full-vehicle meshes are nearly identical. The only
differences arise through the insertion of thickness blocks for the wings in the latter case. The
mesh-independence study for the body-alone case therefore also applies to the body-related
physics and flow features of the full-vehicle case.

The variation with mesh fineness of the normal-force coefficient (CN), the pitching-
moment coefficient (Cm), and the axial location of the centre-of-pressure (xCP) is depicted in
Figs. 5.16 to 5.18, respectively. These figures are discussed below:

• Figure 5.16: CN – a significant difference between results on the coarse and medium
meshes is noted. This is particularly prominent at M∞ = 2.0 and at higher incidences.
The difference between the coarse and medium results reduces with increasing Mach
number, but remains noticeable at M∞ = 3.0. The coarse mesh over-predicts CN and
leads to a higher nonlinear (with α) component. This is likely due to the numerical
viscosity of the mesh. Fairly close agreement is noted between the medium and fine
meshes. This agreement similarly improves with increasing Mach number,

• Figure 5.17: Cm – once again, noticeable differences between the coarse and medium
results are observed. Here, Cm is somewhat under-predicted by the coarse mesh. This
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suggests that the centre of pressure is closer to the midpoint of the body. This is
supported by the results of Figure 5.18. Largely the same trends are noted as were
observed in relation to CN ,

• Figure 5.18: xCP – prominent differences in xCP are noted between the meshes. Most
significantly, the difference between the medium and fine meshes is noticeable. This
latter difference is typically of the order of 0.5D. On the coarse mesh, xCP is typically
1.5D greater than on its value on the fine mesh. It is of interest to note that on the fine
mesh, xCP is predicted to be approximately at the centre of the nose (before the onset of
crossflow shocks on the cylindrical body). This is consistent with an inviscid physics
formulation, in which normal force is only created through unsteadiness or changes in
the cross-sectional diameter. The sharp rearward shift in xCP noted at the upper end of
the α range at M∞ ≥ 2.5 is due to the formation of crossflow shocks further aft on the
body.

These results have been quantified in terms of the grid convergence index (GCI) of
Roache [214]. The maximum error observed over the M∞-α parameter space is given in
terms of the GCI for each load in Table 5.10 below.

Table 5.10 Grid convergence index for body-alone loads

Fineness GCI (CN) GCI (Cm) GCI (xCP /D)

Medium 10% 6% 50%
Fine 4% 3% 25%

It is remarked here that significant improvement in the GCI (such that values of ≈ 1%
were achieved for all loads) was observed following the onset of the crossflow shocks at
M∞ = 3 with α ≥ 8°. This emphasizes that shock-dominated physics were effectively mesh-
independent. However, the (secondary) effects of flow rotationality due to weak curvature of
the bow shock exhibited a degree of mesh dependence.

In conclusion, in light of the close agreement between the medium and fine mesh results,
the medium mesh was used in the full-vehicle case. While some improvement in the
resolution of the body-shed vorticity would be achieved through use of the fine mesh, the
medium mesh modelled these flow features at significantly lower computational cost. The
medium mesh has slightly higher numerical viscosity (as evidenced by the higher CN and
more rearward xCP) and thus results in less-sharp flow gradients.

All remaining figures in this chapter are for results obtained on the medium mesh.
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Fig. 5.16 Body-alone mesh-independence results: normal-force coefficient CN .
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Fig. 5.17 Body-alone mesh-independence results: pitching-moment coefficient Cm.
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Fig. 5.18 Body-alone mesh-independence results: centre-of-pressure location xCP.
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5.2.2 Results and Validation

Solver Verification

Verification of the numerical solver implemented in OpenFOAM was performed through
comparison of results obtained by the solver with those obtained in Fluent on the same
mesh. Where translatable, the same numerical settings (read: discretization schemes and
relaxation factors) were used. The results are compared in Figs. 5.19 to 5.21. The following
remarks are made:

• Figure 5.19: CN – good agreement between the solvers is noted. Differences are most
noticeable at α = 10° at the lower Mach numbers. Comparison to Fig. 5.16 shows that
the Fluent results on the medium mesh are closer to the OpenFOAM results obtained
on the fine mesh. It is known that OpenFOAM offers greater control over the solution
parameters, while Fluent maintains closed-source code aimed at solution stability
and accelerated convergence. The relatively minor differences in the results may be
attributed to these factors,

• Figure 5.20: Cm – broadly the same observations may repeated here as were made
relating to Fig. 5.19. It is noted that the best agreement in Cm is obtained at M∞ = 2.0.
Differences in prediction are noted at the higher end of the α range at M∞ ≥ 2.5, and
may be related to the onset of crossflow shocks. It is observed that the OpenFOAM
predictions are slightly lower, suggesting a more rearward xCP. This is seen in Fig. 5.21.
Once again, comparison to Fig. 5.17 shows that the Fluent results are closer to the
fine-mesh OpenFOAM results,

• Figure 5.21: xCP – the Fluent results are typically within 0.5D more forward than
the OpenFOAM results on the medium mesh. This once again suggests that the Fluent
results for the medium mesh are comparable to the OpenFOAM results on the fine mesh.

It may thus be concluded that while minor differences between the OpenFOAM and Fluent
results are noted, the OpenFOAM solver may essentially be considered to be verified against
the Fluent solution for the purposes of this study. The same physical trends were noted, with
the differences pointing towards a less-forgiving solver in OpenFOAM.

Physics Validation

Validation of the physics modelled by the Euler formulation was performed through com-
parison of the inviscid results obtained (on the medium mesh) in OpenFOAM with reference
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data from RANS solutions and experiment from Tuling [30]. The results are compared in
Figs. 5.22 to 5.24. The figures are discussed below:

• Figure 5.22: CN – generally good agreement between RANS and experiment is noted.
Slight over-prediction by RANS is noted at M∞ = 2.0, with this trend being reversed at
higher Mach numbers. This under-prediction of normal-force at higher Mach numbers
may be attributed to a number of possible sources including shortcoming in:

– boundary-layer and separation modelling,

– SBLI modelling,

– modelling of the separated vortical flow.

Regardless, the trends suggest that RANS provides an accurate model of the underlying
physics and general flow features.

This is not mirrored in the results from the Euler formulation. Here, good agreement
in the load-slope is obtained only for α ≤ 2°. Thereafter, the inviscid prediction
increasingly under-predicts the normal force. The “missing” load is associated with
nonlinear (with α) vortex-induced loading. This shows the impact of “missing physics”
(viscosity) in the inviscid model. The result is inaccurate modelling of the physical
mechanism for vortex development. This is reflected in the difference between Euler,
RANS, and experimental results at α ≥ 8° at M∞ = 3.0. Here, while good agreement
is achieved in the load slope, a notable offset is observed. This may be attributed to
an under-prediction of the strength of the vortices. This is largely due to incorrect
modelling of the mechanism by which they are produced.

• Figure 5.23: Cm – similar remarks apply here. The onset of the crossflow shocks in
the Euler formulation is more obvious. Consideration of α > 6° at M∞ = 3.0 reflects
the fact that the crossflow shocks initially develop just aft of the nose, resulting in an
increase in the slope of the pitching moment. As the incidence increases, the crossflow
shock extends further aft along the cylindrical body, until it occupies the majority of
the body length at α = 10°. This is seen as an apparent reduction in the load slope
relative to that exhibited at the initial onset of the forward-positioned crossflow shocks
at α ≈ 8°.

Similar sharp changes in the load slope are not observed for the RANS and experimental
results. The more monotonic trends reflect the difference in the vortex-development
mechanism. In particular, the boundary-layer separation and later SBLI results in a
smoother progression of the load slope.
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Finally, larger differences between RANS and experiment are noted than in the CN

prediction. Once again, this may be attributed to shortcomings in boundary-layer
and separated-flow modelling. Nonetheless, RANS captures the key features of the
underlying physics.

• Figure 5.24: xCP – modelling deficiencies are shown quite well in this figure. Good
agreement in the trends is obtained between RANS and experiment, particularly
at M∞ = 3.0 and at α ≥ 4° in general. At the lower Mach numbers, the offset of
approximately 0.5D to 1D in xCP reflects shortcomings in the mathematical modelling
of the physical features. Nevertheless, the agreement in trends shows that these features
are accounted for. The starkly different trends predicted by the Euler model shows that
key components of the flow physics are not modelled. Nonetheless, improvement in
the prediction is obtained at the upper limit of the M∞ sinα range considered. This is
due to the onset of crossflow shocks around M∞ sinα ≈ 0.5, which effectively fix the
separation point.

Overall, the physics validation yields the expected conclusions that for the parameter
space considered of M∞ sinα < 0.5, an inviscid (Euler) formulation has fundamental short-
comings in its physical modelling. This is manifested in a lack of boundary-layer separation
and associated vortex lift at M∞ sinα < 0.5. However, fairly good prediction is obtained at
α ≤ 2°, before significant vortex-development occurs or before a significant viscous wake
develops.

The use of an Euler formulation is clearly not preferable for the purposes of accurate
physics modelling and prediction over the parameter space considered in this study. Nev-
ertheless, the mathematical basis for Euler-based LPT has been developed, as discussed
in Chapter 4. For the purposes of evaluating Euler-based LPT as a valid reduction of the
Euler equations, the modelling deficiencies of an Euler formulation relative to RANS are
inconsequential. However, they do highlight fundamental physical features which must be
accounted for in a RANS-based LPT formulation.
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Fig. 5.19 Solver validation: normal-force coefficient CN .
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Fig. 5.20 Solver validation: pitching-moment coefficient Cm.
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Fig. 5.21 Solver validation: centre-of-pressure location xCP.
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Fig. 5.22 Body-alone results validation: normal-force coefficient CN .
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Fig. 5.23 Body-alone results validation: pitching-moment coefficient Cm.



330 Application of Euler-Based Local Piston Theory to Static Control Deformations

0 2 4 6 8 10
α / ◦

2

3

4

5

6

x C
P

/D

Exp. [30]
RANS [30]
Euler

(a) M∞ = 2.0

0 2 4 6 8 10
α / ◦

2

3

4

5

6

x C
P

/D

Exp. [30]
RANS [30]
Euler

(b) M∞ = 2.5

0 2 4 6 8 10
α / ◦

2

3

4

5

6

x C
P

/D

Exp. [30]
RANS [30]
Euler

(c) M∞ = 3.0

Fig. 5.24 Body-alone results validation: centre-of-pressure location xCP.
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5.2.3 Discussion

In conclusion, the following discussion points are made regarding the results of the body-
alone case:

• It is posited that the results converged to the asymptotic mesh-independent values
on the fine mesh. This is supported by the minor differences in loads between the
medium and fine meshes, which have a refinement factor of 2 between them. The
medium mesh was used for all further body-related computations (in particular, for
the full-vehicle configuration) with the understanding that it exhibits slightly greater
numerical viscosity than the fine mesh. The results may thus be expected to have
slightly coarser resolution of vortical features and of other flow gradients,

• As discussed in Section 5.1.4, the use of the numerical solver in OpenFOAM was
motivated by its lack of licensing fees and by the context of other ongoing work. The
comparison in Section 5.2.2 of the results obtained with the solver with those obtained
in Fluent verifies the use of the HiSA solver in OpenFOAM. The minor differences
that were noted point towards finer solver tuning in Fluent than was employed in the
present study,

• The comparison of results from the Euler-based HiSA solver to RANS and experimental
results in Section 5.2.2 shows that the Euler formulation has fundamental shortcomings
in physics modelling. Good agreement is achieved at α ≤ 2°. Trends suggest that
fair agreement would also be achieved for M∞ sinα > 0.5. These observations are in
agreement with trends in the literature,

• Weak vortex development is observed at M∞ sinα > 0.4 in the Euler formulation.
Reference to Table 5.5 shows that this corresponds to α ≥ 10° at M∞ = 2.5 and to
α ≥ 8° at M∞ = 3.0. It is essentially only at these angles that significant interference
flow structures are generated by the Euler formulation. These conditions are therefore
of principal interest for the purposes of evaluating the application of Euler-based LPT
to slender bodies.
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5.3 Wing-Alone Aerodynamics

In the wing-alone case, the control-surfaces are exposed directly to the freestream. As the
surfaces are considered “in isolation” from the body, the leeside control-surface is subjected
to minimal aerodynamic interference. The only interference arising for the given geometry
and flight speeds is due to the action of the horizontal surfaces. At incidence, these create an
expansion from freestream conditions at the root of the leeside surface.

The purpose of the wing-alone case is thus essentially to provide an interference-free
reference for the loading on the leeside control surface when subjected to deformation. This
will be used for comparison in assessing the aerodynamic interference in the full-vehicle
configuration.

This chapter opens with the present introduction, which will include clarifying remarks
surrounding the mode-shapes of deformation. This will be followed by Section 5.3.1, which
covers the mesh-independence study for the wing-alone configuration. The results for the
deforming leeside control-surface will be presented in Sections 5.3.2 and 5.3.3. This will be
followed by a general discussion of the results for the wing-alone case in Section 5.3.4.

A number of introductory remarks regarding the results are made below:

• The wing-alone values for Cl and zCP have been adjusted to facilitate direct comparison
to the wing-body results. The moments (and centre-of-pressure) have been calculated
for the wing-alone configuration occupying the same space as the wings do in the
wing-body configuration (shifted one body-radius from the moment-axis),

• Mode 1 (first bending) results in minimal twist along the span of the wing. The
mode-shape was depicted in Fig. 5.2b. The maximum out-of-plane deflection occurs
at the wing tip, with deflections of 6% and 12% of the wing span being measured for
δ = 5mm and δ = 10mm, respectively. The corresponding twist at the wing tip is 0.5°
and 1.0° about the positive z-axis. The deflection induces slight camber.

The resulting turning of the unit normal-vector of the wing surface into the flow
direction (predominantly the x-direction) is minimal. This translates to low subsonic
downwash-Mach numbers being recorded for this mode.

• Mode 2 (first twist) is predominantly a torsion mode, with essentially no out-of-plane
deflection along the mid-chord of the wing. The mode-shape was depicted in Fig. 5.3a.
The maximum out-of-plane deflection occurs at the wing tip, with deflections of 0.45%
and 0.91% of the wing span being measured for δ = 5mm and δ = 10mm, respectively.
The corresponding twist at the wing tip is 12.3° and 23.5° about the positive z-axis.
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The nominal deformations of δ = 5mm and δ = 10mm result in large perturba-
tions in an aerodynamic sense. The maximum flow-turning angles for attached
oblique shocks at the freestream Mach numbers M∞ = [2.0, 2.5, 3.0] are approxi-
mately [23.0°, 29.8°, 34.1°], respectively. As a consequence, notable nonlinearity in
the load variation with modal deformation is expected. Shock detachment is expected
to occur in the vicinity of the wing-tip at M∞ = 2.0 for δ = 10mm.

The resulting turning of the unit normal-vector of the wing surface into the flow
direction (predominantly the x-direction) is substantial. This translates to high subsonic
to low supersonic downwash-Mach numbers being recorded for this mode,

• Mode 3 (second bending) results in slight twist at the wing-tip and moderate camber
at the mid-span position. The mode-shape was depicted in Fig. 5.3b. The maximum
out-of-plane deflection occurs at the wing tip, with deflections of −5.6% and −11%
of the wing span being measured for δ = 5mm and δ = 10mm, respectively. The
corresponding twist at the wing tip is 1.4° and 2.7° about the positive z-axis.

It is to be noted that the secondary point of maximum out-of-plane deflection is at the
trailing-edge of the mid-span, with a deflection 90% of that at the wing-tip. This is
expected to result in interaction with the body-shed vortices. These are typically located
at approximately the mid-span of the wings, and approximately one body-radius from
the plane of the un-deformed wing.

The resulting turning of the unit normal-vector of the wing surface into the flow
direction (predominantly the x-direction) is minimal. This translates to low subsonic
downwash-Mach numbers being recorded for this mode.

5.3.1 Mesh-Independence Study

An essentially similar presentation to that in Section 5.2.1 is given here for the mesh-
independence study of the wing-alone case. The details of the wing-alone mesh have been
provided in Section 5.1.5, with cell counts provided in Table 5.9 and depictions of the mesh
provided in Figs. 5.11 and 5.13 to 5.15. It is to be noted that the wing-alone and full-vehicle
meshes are identical with regards to axial discretization. The differences arise in the radial
and circumferential discretization. The nature of the wing-alone geometry lends itself to
a rectangular block definition, in contrast to the polar definition used for the full-vehicle
case. However, leading from the essential similarity of the meshes, it is posited that the
mesh-independence study for the wing-alone case also applies to the wing-related physics
and flow features of the full-vehicle case.
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The variation with mesh fineness of the normal-force coefficient (CN), the pitching-
moment coefficient (Cm), and the axial location of the centre-of-pressure (xCP) is depicted in
Figs. 5.25 to 5.27, respectively. These figures are discussed below:

• Figure 5.25: CN – excellent agreement is obtained between the medium and fine
meshes, with marginal differences noted in the coarse mesh. Moreover, it is noted that
the load-slope of the wing-alone configuration is essentially linear over the incidence
range 0° ≤ α ≤ 10° at the Mach numbers considered.

• Figure 5.26: Cm – similarly marginal differences are noted for the coarse mesh, with
excellent agreement achieved between the medium and fine meshes.

• Figure 5.27: xCP – the scale of the figures accentuates the differences between the
meshes. However, it is noted that the differences between the medium and fine meshes
is of the order of 0.01D. This is a nominal difference. It is also seen that there is
essentially no shift in xCP with α .

These results have been quantified in terms of the grid convergence index (GCI) of
Roache [214]. The maximum error observed over the M∞-α parameter space is given in
terms of the GCI for each load in Table 5.11 below.

Table 5.11 Grid convergence index for wing-alone loads

Fineness GCI (CN) GCI (Cm) GCI (xCP /D)

Medium 1.50% 1.60% 0.12%
Fine 0.50% 0.50% 0.03%

In conclusion, the close agreement between the medium and fine meshes justifies the use
of the medium mesh in the full-vehicle case. The resolution of wing-related physics may
thus be considered to be mesh-independent. It is also noted that the wing-alone case exhibits
essentially linear (in α) aerodynamics over the range 0° ≤ α ≤ 10°.

All remaining figures in this chapter are for results obtained on the medium mesh.
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Fig. 5.25 Wing-alone mesh-independence results: normal-force coefficient CN .
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Fig. 5.26 Wing-alone mesh-independence results: pitching-moment coefficient Cm.
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Fig. 5.27 Wing-alone mesh-independence results: centre-of-pressure location xCP.
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5.3.2 Results: Influence of Piston Theory Coefficients

The first set of results to be presented for the wing-alone case investigates the influence of the
piston-theory coefficients chosen for the LPT model. The three different theoretical bases,
with associated coefficients, which have been utilized in this study were defined in Tables 5.6
to 5.8. Where appropriate, the aerodynamic pressure on expansion surfaces as predicted
by LPT was limited to vacuum pressure. The occurrence of this pressure-limiting will be
manifested in the results as a visible difference between 1st-order and 2nd-order results of a
given formulation (e.g., Lighthill [88]). The results depicting the influence of the choice of
piston-theory coefficients are shown in Figs. 5.28 to 5.36, and will be discussed below on a
per-mode-shape basis.

Mode 1: First Bending

The side-force (CY ) and rolling-moment (Cl) coefficients for Mode 1 are shown for the Mach
set M∞ = [2.0, 2.5, 3.0] in Figs. 5.28 to 5.30, respectively. The reader is reminded that in
the global coordinate system defined in Fig. 5.4, the side-force acts normal to the leeside
control-surface. The following discussion points are made regarding the figures:

• As was noted in the introduction, Mode 1 (first bending) exhibits predominantly
bending, with minimal turning of the surface unit-normal vector into the mean steady
flow. As a consequence, deformation causes low-subsonic downwash. This is reflected
in how the 2nd- and 3rd-order LPT formulations are indistinguishable from the 1st-order
formulation. The reader is referred to Eq. (5.1) with w/am ≪ 1 for substantiation,

• This also provides insight into the role of the theoretical source for the coefficients.
While no difference is noted between higher-order variations within a theoretical
basis (e.g., Lighthill’s [88] coefficients or Van Dyke’s coefficients), differences are
noted between theoretical bases. This is to be expected, as Van Dyke’s [104] and
Donov’s [105] coefficients are Mach-dependent and serve to extend the theories to
lower supersonic Mach numbers than are assumed in Lighthill’s [88] formulation.
However, comparison to the Euler solution shows that better prediction is obtained (at
both deflections) by Lighthill’s [88] formulation. This is noted for all three freestream
Mach numbers considered. Minor differences in the load-slope with α are noted
between formulations. The variety of formulations essentially serve to provide an
estimation band which, for Mode 1, includes the Euler solution. This band is seen to
become narrower as M∞ increases. This is consistent with the differences between
Lighthill’s [88] formulation and Van Dyke’s [104] formulation being greatest at lower
supersonic Mach numbers.
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Mode 2: First Twist

The side-force and rolling-moment coefficients for Mode 2 are shown for the Mach set
M∞ = [2.0, 2.5, 3.0] in Figs. 5.31 to 5.33, respectively. The following discussion points are
made regarding the figures:

• Mode 2 (first twist) exhibits predominantly torsion, with substantial turning of the
surface unit-normal vector into the mean steady flow. As a consequence, deformation
causes high-subsonic to supersonic downwash. This is reflected in how the 2nd- and
3rd-order LPT formulations are distinct from one another, particularly at the higher
deflection of δ = 10mm. Moreover, the 2nd-order results are distinct from the 1st-order
results at δ = 10mm. Since the reference mean-steady solution is equal on both
surfaces of the wing, it may be concluded that this difference arises from “pressure
limiting” on the expansion surface. This was noted in the introduction. The occurrence
of “pressure limiting” points to the large downwash-Mach numbers encountered for
this mode-shape at δ = 10mm,

• The previous observations regarding the role of the LPT coefficients also broadly apply
to Mode 2. The interpretation of LPT variants providing an estimation band at a given
order of LPT is particularly clear in Fig. 5.33. Here, the 1st-order band at δ = 10mm is
seen to under-predict the Euler solution. The 2nd-order band captures the Euler solution.
Finally, the 3rd-order bands over-predict the Euler solution. This observation may
be informed through consideration of the behaviour of higher-order PT formulations
with increasing Mach number. It is known that the 3rd-order formulation becomes
unbounded as the downwash-Mach number increases, while the 2nd order formulation
adheres to the Mach independence principle. This was discussed in ??, with particular
emphasis given to ??. Once again, it is of interest that the Lighthill [88] coefficients
provide better agreement with the Euler solution over the parameter space considered.

Mode 3: Second Bending

The side-force and rolling-moment coefficients for Mode 3 are shown for the Mach set
M∞ = [2.0, 2.5, 3.0] in Figs. 5.34 to 5.36, respectively. The following discussion points are
made regarding the figures:

• Mode 3 (second bending) exhibits predominantly bending, with moderate camber at the
trailing-edge of the mid-span. As a consequence, deformation causes predominantly
low-subsonic downwash, with localized high-subsonic downwash at the mid-span
trailing-edge. This is reflected in how the 2nd- and 3rd-order LPT formulations are
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distinct from one another, particularly at the higher deflection of δ = 10mm. The fact
that the 2nd-order results are essentially indistinguishable from the 1st-order results
shows that vacuum pressure is not reached,

• The observations regarding the role of the LPT coefficients made for Mode 1 also
broadly apply to Mode 3. Once again, the 2nd-order Lighthill formulation provides the
best agreement with the Euler solution. Here, it is observed that the estimation band
narrows with both increasing M∞ and increasing α . The large overlap between the 2nd-
and 3rd-order estimation bands points to the low-subsonic downwash-Mach numbers
encountered over the majority of the wing.
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Fig. 5.28 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 1 at M∞ = 2.0.
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Fig. 5.29 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 1 at M∞ = 2.5.
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Fig. 5.30 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 1 at M∞ = 3.0.
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Fig. 5.31 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 2 at M∞ = 2.0.
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Fig. 5.32 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 2 at M∞ = 2.5.
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Fig. 5.33 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 2 at M∞ = 3.0.

M∞ = 2.0
Mode 3

Euler
1st-order

Lighthill
2nd-order

Van Dyke
3rd-order

Donov

0 2 4 6 8 10
α /◦

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

C
Y

δ = 5mm

δ = 10mm

0 2 4 6 8 10
α /◦

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

−C
l

δ = 5mm

δ = 10mm

Fig. 5.34 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 3 at M∞ = 2.0.
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Fig. 5.35 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 3 at M∞ = 2.5.
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Fig. 5.36 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 3 at M∞ = 3.0.
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5.3.3 Results: Influence of Freestream Mach Number

The second set of results to be presented for the wing-alone case investigates the influence of
M∞ on the accuracy of LPT prediction. Following the results of Section 5.3.2, the 2nd-order
LPT formulation based on Lighthill’s [88] coefficients was chosen for comparison to the
“exact” result of the Euler solution. Where of interest, any trends in the variation with α of
the load prediction will be noted. The results depicting the influence of M∞ are shown in
Figs. 5.37 to 5.42, and will be discussed below on a per-mode-shape basis.

Mode 1: First Bending

The influence of M∞ on prediction accuracy for Mode 1 is shown for the deflection set
δ = [5mm, 10mm] in Figs. 5.37 and 5.38, respectively. The following discussion points are
made regarding the figures:

• It is seen that prediction accuracy improves with increasing M∞. Generally, excellent
agreement in the side-force and rolling-moment coefficients is obtained. This is noted
for both deflection amplitudes.

• Good agreement in the α-dependence is obtained at all Mach numbers. Both CY and
Cl are noted to predominantly linear in α , with nonlinearity being barely noticeable.
The exception to this trend lies in the prediction of zCP. However, the prediction error
is within 0.05D, and is thus considered to be nominal. The variation with M∞ of xCP is
similarly negligible.

Mode 2: First Twist

The influence of M∞ on prediction accuracy for Mode 2 is shown for the deflection set
δ = [5mm, 10mm] in Figs. 5.39 and 5.40, respectively. The following discussion points are
made regarding the figures:

• It is noted that prediction accuracy is relatively insensitive to M∞ for δ = 5mm, while
a nominally greater offset is observed for the M∞ = 3.0 results at δ = 10mm. This
offset appears to be insensitive to M∞ over the Mach range considered. The loads
are over-predicted at M∞ for δ = 5mm, while they are under-predicted at M∞ for
δ = 10mm.

• Good agreement in the α-dependence is obtained at all Mach numbers. Similar to
Mode 1, the CY and Cl loading of Mode 2 is predominantly linear with α . The
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differences observed in the prediction and exact values of xCP and zCP are nominally
small.

Mode 3: Second Bending

The influence of M∞ on prediction accuracy for Mode 3 is shown for the deflection set
δ = [5mm, 10mm] in Figs. 5.41 and 5.42, respectively. The following discussion points are
made regarding the figures:

• Few generalized statements may be made regarding the trends in Mode 3. The predic-
tion accuracy and α-dependence at M∞ = 3.0 is seen to be insensitive to the deflection
amplitude. However, this is not observed at M∞ = 2.0. It is clear that the load-slopes
exhibit a degree of dependence on both M∞ and delta. It is posited that this is due to
the more complex mode-shape of deformation (see Fig. 5.3b) leading to greater three-
dimensionality in the aerodynamics due to the localized camber at the trailing-edge of
the mid-span. This is supported by the comparatively large shift with α noted in zCP.

• Improved agreement in the α-dependence is noted with increasing M∞. However,
this appears to be accompanied by a greater error in the load prediction. Fairly good
agreement is observed in the xCP and zCP prediction. Differences in xCP are nominal.
However, the differences in zCP and in its Mach-dependence are more notable. In the
absence of an interference flowfield, it is posited that these differences point to greater
three-dimensionality in the wing-alone aerodynamics due to the localized camber of
Mode 3.
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Fig. 5.37 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 1 with δ = 5mm.
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Fig. 5.38 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 1 with δ = 10mm.
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Fig. 5.39 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 2 with δ = 5mm.
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Fig. 5.40 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 2 with δ = 10mm.
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Fig. 5.41 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 3 with δ = 5mm.
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Fig. 5.42 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 3 with δ = 10mm.
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5.3.4 Discussion

Preliminary Remarks

The wing-alone case gives insight into the geometry- and deformation-driven aerodynamics of
the leeside control-surface in the absence of an interference flowfield. This allows important
insight to be obtained regarding inherent shortcomings of LPT, prior to the introduction of
further complications such as interaction with an interference flowfield.

Shortcomings identified in the wing-alone results point towards inaccuracies that stem
from the underlying assumptions of LPT. These assumptions have been discussed at length in
Sections 3.1.1 and 3.1.4 and Chapter 4 and will not be repeated in depth here. Fundamentally,
these assumptions reduce to requirements on the relative order-of-magnitude of flow gradients.
This has been detailed in Chapter 4. In the context of application to the leeside control surface:

• Gradients in the chordwise (x) direction must be negligible compared to gradients in
the thickness (y) direction,

• Gradients in the spanwise (z) direction must be negligible compared to gradients in the
thickness (y) direction.

In order to apply LPT in its current (state of the art) form, it is further required that the
above assumptions regarding gradients are valid in the entire region bounded by the vehicle
surface and the bow shock. In the absence of an interference flowfield, it is reasonable (and
common practice in analytical methods of this class) to assume that if the gradient-restriction
are satisfied at the body boundary and at the shock boundary, then they are satisfied in the
flowfield between these boundaries. However, in the presence of an interference flowfield,
this assumption is no longer implicitly reasonable.

Given the uniformity of flow between the wing bow-shocks and the body in the wing-
alone case (due to the absence of an interference flowfield), shortcomings in LPT will
point towards the underlying gradient-assumptions being violated in the vicinity of the
body boundary. In other words, the assumptions breakdown in the face of non-negligible
three-dimensionality of the flow.

Discussion Points

The following are the key conclusions drawn from the wing-alone results presented and
discussed in Sections 5.3.1 to 5.3.3:

• The shortcomings of LPT in predicting the CY and Cl trends for Mode 3 (second
bending) at both deflection amplitudes, as best seen in Figs. 5.41 and 5.42, are at-
tributed to the above-discussed failure of the underlying LPT assumptions due to
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three-dimensionality of the flow. Inspection of Fig. 5.3b shows that significant local-
ized camber (second-derivatives of deflection in the x-direction) and localized bending
(second-derivatives in the z-direction) are noted at the trailing-edge of the mid-span.
The surface curvature results in increased spanwise gradients, and destroys the validity
of a strip-theory approach to neglecting spanwise influence.

Further supporting evidence for attributing the observed shortcomings in LPT pre-
diction to flow three-dimensionality include the Mach-dependence, α-dependence,
and δ -dependence observed in the prediction error for Mode 3 in Figs. 5.41 and 5.42.
These trends stand in contrast to the trends observed for Mode 1 (first bending) and
Mode 2 (first twist). Despite having the same nominal out-of-plane deflections as
Mode 3, these modes exhibit significantly lower curvatures. The agreement between
LPT predictions and Euler results for Mode 1 and Mode 2 is notably better. Regarding
the Mach-dependence of the Mode 3 prediction accuracy, it is seen that the worst
agreement in α-dependence is obtained at M∞ = 2.0. The sensitivity of the prediction
accuracy to flow parameters is noted to reduce as the Mach number is increased to
M∞ = 3.0. This that the underlying assumptions of LPT become more accurate at
higher Mach numbers for Mode 3. This would be consistent with theory.

• Generally excellent prediction in CY and Cl is achieved by LPT for Mode 1 (first
bending) and Mode 2 (first twist) over the parameter space considered. A greater
degree of δ -dependence in the prediction accuracy is noted for Mode 2. This is not
surprising, as Mode 2 results in large aerodynamic twist and correspondingly large
perturbations. Regardless, it is noted that for simple mode-shapes with low curvatures,
accurate prediction trends may be obtained at both low-subsonic downwash-Mach
numbers (Mode 1, small perturbations) and low-supersonic downwash-Mach numbers
(Mode 2, large perturbations).

• The investigation of Section 5.3.2 showed that for the near-zero thickness, symmetrical
airfoil considered (with static deformations), the order of LPT used did not have any
observable effect on the α-dependence of the predicted CY and Cl . However, for
mode-shapes which yielded larger downwash-Mach numbers (w/am ≳ 0.5), the order
of the LPT formulation was noted to influence the offset in the load prediction. This
is consistent with the general knowledge surrounding piston theory, with particular
reference made to Eq. (5.1),

• The investigation of Section 5.3.2 also yielded much more interesting insight into the
influence of the piston-theory coefficients used. It was noted that across the spectrum
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of low-subsonic to low-supersonic downwash-Mach numbers, an offset between pre-
dictions using different coefficients existed. The predictions using Lighthill’s [88],
Van Dyke’s [104], and Donov’s [105] formulations effectively produce a prediction
band for a given order of LPT. A general trend is noted in Section 5.3.2 that for a
given modal deformation amplitude, the width of the prediction band decreases as
M∞ increases. This is consistent with the Mach-dependence of Van Dyke’s [104] and
Donov’s [105] coefficients diminishing with increasing M∞ and tending towards Mach-
independent coefficients as modelled by Lighthill [88]. To the author’s knowledge, this
investigation into the influence of LPT coefficients is the first of its kind in the litera-
ture. Interestingly, for Modes 2 and 3, consistently better prediction was noted using
Lighthill’s [88] coefficients. Mode 1 was best replicated using Mach-dependent, low-
supersonic extensions as offered by Van Dyke’s [104] or Donov’s [105] coefficients.
However, further investigation would be required to support a generalized recommen-
dation on the selection of LPT coefficients. The present study utilized a 2nd-order LPT
formulation based on Lighthill’s [88] coefficients for the majority of the figures. This
was motivated by the improved agreement obtained using Lighthill’s [88] coefficients,
while the 2nd-order formulation adhered to the Mach-independence principle.

In conclusion, it is deduced that the application of LPT to the cruciform wing-alone
configuration is well supported by numerical investigation. The absence of an interference
flowfield and any significant surface-to-surface interference yields conditions which are in
good agreement with the theoretical basis and assumptions in LPT as detailed in Sections 3.1.1
and 3.1.4 and Chapter 4. The comparatively worse agreement with the Euler solution
for Mode 3 points towards the shortcomings of LPT in the face of curvature-inducing
deformations and flow three-dimensionality. A novel study of the influence of the selection
of coefficients in piston-theory showed that they serve to provide a prediction-band which
typically encompasses the exact (Euler) solution. However, they do not appear to exhibit
underlying difference in trend-prediction. The use of higher-order formulations of LPT
similarly did not change the prediction of α-dependence of the loads in the present test case.
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5.4 Wing-Body Aerodynamics

The phrase “full-vehicle configuration” which has thus far been used refers to the present
wing-body case. The defining characteristic of the wing-body configuration is the aero-
dynamic interference between the body-related flowfield and the wing-related flowfield.
The wings (or control surfaces) are embedded in an interference flowfield which may be
characterized by:

• Non-uniform radial and circumferential distributions of fluid properties. One particular
fluid property of importance is the dynamic pressure, as discussed in Section 2.1.3.
These non-uniform distributions may be sharply defined,

• Flow structures originating from upstream, such as vortices and shock wave,

The wing-body case represents a simple geometry of practical engineering interest. It is
the purpose of the present study to investigate the application of Euler-based LPT to statically
deforming control surfaces on the geometry. This represents a controlled, incremental
investigation into the suitability of LPT in interference flows. The suitability of LPT will be
assessed by considering:

• The accuracy in load prediction (CY , Cl),

• The correctness of the loading trends predicted (∂CY
∂α

, etc.),

through comparison of the wing-body case with the interference-free wing-alone case.
This chapter opens with the present introduction. The reader seeking clarifying remarks

surrounding the mode-shapes of deformation is referred to the introduction of Section 5.3.
This introduction will be followed by Sections 5.4.1 and 5.4.2, in which the results of the
wing-body case are presented. This will be followed by Sections 5.4.3 and 5.4.4, in which the
comparison between the wing-alone and wing-body case will be made and the interference
assessed. The chapter will close with a general discussion of the results for the wing-body
case in Section 5.4.5.

5.4.1 Results: Influence of Piston Theory Coefficients

As was done in Section 5.3.2, the first set of results investigates the influence of the piston-
theory coefficients chosen. The three different theoretical bases, with associated coefficients,
which have been utilized in this study were defined in Tables 5.6 to 5.8. Where appropriate,
the aerodynamic pressure on expansion surfaces as predicted by LPT was limited to vacuum
pressure. The results depicting the influence of the choice of piston-theory coefficients are
shown in Figs. 5.43 to 5.51, and will be discussed below on a per-mode-shape basis.
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Mode 1: First Bending

The side-force (CY ) and rolling-moment (Cl) coefficients for Mode 1 are shown for the Mach
set M∞ = [2.0, 2.5, 3.0] in Figs. 5.43 to 5.45, respectively. The reader is reminded that in
the global coordinate system defined in Fig. 5.4, the side-force acts normal to the leeside
control-surface. The following discussion points are made regarding the figures:

• As was noted in the introduction of Section 5.3, Mode 1 (first bending) exhibits
predominantly bending, with minimal turning of the surface unit-normal vector into
the mean steady flow. As a consequence, deformation causes low-subsonic downwash.
This is reflected in how the 2nd and 3rd order LPT formulations are indistinguishable
from the 1st order formulation,

• Some observations on the trends of the Euler solution are warranted. A distinct shift
in the load-slopes (with α) is noted at all Mach numbers considered for α > 8°.
At M∞ = 2.0 (see Fig. 5.43), the change is fairly benign, with a similarly gradual
change noted between 6° < α8° at M∞ = 3.0 in Fig. 5.45. This is associated with
the development (through weak crossflow-shocks) or accumulation (from the weakly
curved bow shock) of rotationality at the rear of the body at these angles-of-attack.
The sharper changes noted at M∞ > 8° for M∞ = 2.5 and M∞ = 3.0 are associated with
the onset of stronger, more distinct vortical structures due to the presence of more
extensive crossflow-shocks along the length of the body. It is noted, with reference to
Table 5.5 that these trends develop at M∞ sinα > 0.4,

• Comparison to the Euler solution shows that better prediction is obtained (at both
deflections) by the Van Dyke formulation rather than by the Lighthill formulation over
the Mach range considered. This is in contrast with the observations made for the wing-
alone case in Section 5.3 regarding Figs. 5.43 to 5.45. The different LPT coefficients
provide an estimation band as before. As in the wing-alone case, this band is seen
to become narrower as M∞ increases. However, worse agreement of the estimation
band with the Euler solution is noted. Fair agreement is noted at α ≤ 4° over the Mach
range considered. The agreement (both in loads and in their α-dependence) quickly
deteriorates as the incidence is increased above α = 4°. Particularly poor agreement in
the α-dependence is noted immediately prior to and immediately following the onset
of the aforementioned vortical structures.
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Mode 2: First Twist

The side-force and rolling-moment coefficients for Mode 2 are shown for the Mach set
M∞ = [2.0, 2.5, 3.0] in Figs. 5.46 to 5.48, respectively. The following discussion points are
made regarding the figures:

• Many of the same observations apply to the present case as were made in the wing-
alone configuration in Section 5.3.2. Mode 2 (first twist) exhibits predominantly
torsion, which yields high-subsonic to supersonic downwash. This is reflected in how
the 2nd and 3rd order LPT formulations are distinct from one another, particularly at
the higher deflection of δ = 10mm. The vacuum-related “pressure-limiting” noted
previously is again evident in the difference between the 1st and 2nd order solutions,

• The observations previously made in Section 5.3.2 regarding the role of the LPT
coefficients also broadly apply here. The interpretation of LPT variants providing an
estimation band at a given order of LPT is particularly clear in Fig. 5.48. The same
observations regarding under-prediction and over-prediction by the 1st- and 3rd-order
bands again apply. Once again, it is of interest that the Lighthill coefficients provide
better agreement with the Euler solution over the parameter space considered.

Mode 3: Second Bending

The side-force and rolling-moment coefficients for Mode 3 are shown for the Mach set
M∞ = [2.0, 2.5, 3.0] in Figs. 5.49 to 5.51, respectively. The following discussion points are
made regarding the figures:

• Mode 3 (second bending) exhibits predominantly bending, with moderate camber at the
trailing-edge of the mid-span. As a consequence, deformation causes predominantly
low-subsonic downwash, with localized high-subsonic downwash at the mid-span
trailing-edge. This is reflected in how the 2nd and 3rd order LPT formulations are
distinct from one another, particularly at the higher deflection of δ = 10mm. The fact
that the 2nd order results are essentially indistinguishable from the 1st order results
shows that vacuum pressure is not reached,

• The observations regarding the role of the LPT coefficients made for Mode 1 also
broadly apply to Mode 3. Once again, the 2nd order Lighthill formulation provides the
best agreement with the Euler solution. Here, it is observed that the estimation band
narrows with both increasing M∞ and increasing α . The large overlap between the 2nd

and 3rd order estimation bands points to the low-subsonic downwash-Mach numbers
encountered over the majority of the wing.
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Fig. 5.43 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 1 at M∞ = 2.0.
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Fig. 5.44 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 1 at M∞ = 2.5.
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Fig. 5.45 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 1 at M∞ = 3.0.
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Fig. 5.46 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 2 at M∞ = 2.0.
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Fig. 5.47 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 2 at M∞ = 2.5.
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Fig. 5.48 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 2 at M∞ = 3.0.
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Fig. 5.49 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 3 at M∞ = 2.0.
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Fig. 5.50 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 3 at M∞ = 2.5.
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Fig. 5.51 Influence of piston theory coefficients on the prediction of side-force CY and
rolling-moment Cl coefficients. Mode 3 at M∞ = 3.0.



364 Application of Euler-Based Local Piston Theory to Static Control Deformations

5.4.2 Results: Influence of Freestream Mach Number

As was done in Section 5.3.3, the second set of results to be presented investigates the influ-
ence of M∞ on the accuracy of LPT prediction. Once again, the 2nd-order LPT formulation
based on Lighthill’s [88] coefficients is shown. The results depicting the influence of M∞ are
shown in Figs. 5.52 to 5.57, and will be discussed below on a per-mode-shape basis.

Mode 1: First Bending

The influence of M∞ on prediction accuracy for Mode 1 is shown for the deflection set
δ = [5mm, 10mm] in Figs. 5.52 and 5.53, respectively. The following discussion points are
made regarding the figures:

• A weak trend of improvement in prediction accuracy with increasing M∞ is noted.
The offset between LPT and Euler prediction is noted to scale linearly with deflection.
Prediction accuracy is noted to degrade with increasing α , particularly as the body-
vortex development starts around α ≈ 8°. Particularly poor prediction in the centre-of-
pressure location is noted for M∞ = 2.5 and M∞ = 3.0 at α = 10°. However, it must
be noted that this is due to the mathematical definition of xCP and zCP becoming poorly
defined as CY → 0,

• The progression in vortex development with increasing M∞ at a given α is evident
in the Euler results. This is manifested as the changes in the load-slopes (with α)
from α ≳ 8°. Furthermore, this is reflected in the tip-wards progression of zCP. These
trends are evidence of the body-shed interference flowfield. Further investigation of
the aerodynamic interference is reserved for Sections 5.4.3 and 5.4.4,

• Fair agreement in the α-dependence is obtained consistently only for α ≤ 6°. It is
evident that the accuracy of the load-slope predictions is both M∞- and α-dependent.
Significant errors in the load-slope prediction may be are observed immediately prior
to the onset of stronger crossflow-shocks at M∞ sinα ≈ 0.45.

This is exemplified by the slope predicted between 6° < α < 8° at M∞ = 3.0 and
between 8° < α < 10° at M∞ = 2.0. In these instances, the load-slope predicted
by Euler-LPT is of opposite sign to that found in the Euler solution. The trends in
the load-slopes point towards LPT predicting an earlier and more benign reversal in
sign with increasing α . This has direct implications for the prediction accuracy of
flight-dynamical and aeroelastic analyses.
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Mode 2: First Twist

The influence of M∞ on prediction accuracy for Mode 2 is shown for the deflection set
δ = [5mm, 10mm] in Figs. 5.54 and 5.55, respectively. The following discussion points are
made regarding the figures:

• The prediction accuracy is noted to have a clear dependence on M∞, α , and δ . At
δ = 5mm, it is observed that a degradation in prediction accuracy is obtained with
increasing M∞. However, at δ = 10mm, the prediction accuracy is comparatively
Mach-insensitive. Comparison of Figs. 5.54 and 5.55 shows that the α-trends of the
predicted (LPT) loads are essentially similar, with the loads themselves being scaled
by δ . The alternate under-prediction and over-prediction of loads at the two values of
δ points towards a difference in the δ -stiffness of the predicted and the actual loads,

• The agreement in the α-dependence is at best fair. Differences in the slopes are not
obvious in Figs. 5.54 and 5.55 due to the scale required to compare loads over the
Mach range considered. The differences in load-slopes and poorer agreement will be
more clearly shown in Figs. 5.63 to 5.65 and will be discussed in Section 5.4.3.

In contrast to Mode 1, it is seen that a notable change in the Euler load-slope (with α)
is only observed for M∞ = 3.0 between 8° < α < 10°. Comparison of the magnitude
of the predicted loads for Mode 1 and Mode 2 further suggests that interference from
body-shed vorticity plays a secondary role in determining the loads for Mode 2. In
light of the mode-shape of Mode 2 – first twist – this is not surprising,

• Inspection of the predicted centre-of-pressure locations shows that Euler-based LPT
does not reproduce the shift in xCP and zCP with M∞. Furthermore, the α-dependence
of zCP is incorrectly predicted. However, it must be noted that the variations in xCP and
zCP are nominal, and are of secondary concern to the prediction accuracy of CY and Cl

in the present case.

Mode 3: Second Bending

The influence of M∞ on prediction accuracy for Mode 3 is shown for the deflection set
δ = [5mm, 10mm] in Figs. 5.56 and 5.57, respectively. The following discussion points are
made regarding the figures:

• Generally poor agreement is seen, both in the load prediction and in the trend prediction.
Comparison of Figs. 5.56 and 5.57 shows no significant δ -dependence is observed in
the overall prediction trends,
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• Significant modelling differences in the α-dependence of both CY and Cl are with the
onset of body-shed vorticity. Inspection of the Euler trends in ∂CY

∂α
for M∞ = 2.5 and

M∞ = 3.0 shows no sharp changes. On the other hand, the LPT predictions show a
sharp sign-reversal between 8° < α < 10°.

The Euler trends in ∂Cl
∂α

for M∞ = 2.5 and M∞ = 3.0 show a more gradual influence of
the onset of body-shed vorticity. This is not reproduced by the LPT predictions, which
again feature a sharp sign reversal between 8° < α < 10°.

Interestingly, despite the outright incorrect prediction of trends in ∂CY
∂α

at M∞ = 2.0
and M∞ = 2.5, the overall trend in ∂ zCP

∂α
is correct. This is contrasted with the incorrect

trends being predicted for ∂xCP
∂α

. The shift in xCP, however, is nominally small.
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Fig. 5.52 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 1 with δ = 5mm.
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Fig. 5.53 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 1 with δ = 10mm.
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Fig. 5.54 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 2 with δ = 5mm.
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Fig. 5.55 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 2 with δ = 10mm.
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Fig. 5.56 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 3 with δ = 5mm.
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Fig. 5.57 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl , axial centre-of-pressure location xCP/D, and vertical
centre-of-pressure location zCP/D. Mode 3 with δ = 10mm.
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5.4.3 Interference Results: Direct Comparison of Loads

The present set of results will illustrate the aerodynamic interference in the full-vehicle
configuration through direct comparison of the wing-alone (W) and the wing-body (B+W)
loads. The Euler-based LPT predictions that will be shown refer to the second-order LPT
formulation using Lighthill’s [88] coefficients. Due to the weak dependence of the results
on δ , the figures will be limited to results for δ = 10mm for the sake of brevity. The direct
comparison of loads is shown in Figs. 5.58 to 5.69, with the figures discussed below on a
per-mode-shape basis.

Mode 1: First Bending

The comparison of wing-alone and wing-body loads for Mode 1 over the Mach range
considered is shown for δ = 10mm in Fig. 5.58. Due to the density of information depicted,
the comparison will also be shown for each Mach number in the set M∞ = [2.0, 2.5, 3.0] in
Figs. 5.59 to 5.61, respectively. The following discussion points are made regarding the Euler
solutions:

• The general trend is noted of increasing difference between the loads of the wing-alone
case and of the body-alone case as M∞ increases. This is particularly evident at α > 8°,
with smaller differences occurring at lower incidences. This is clear evidence of the
aerodynamic interference due to body-shed vortices,

• Minor differences between the wing-alone and body-alone loads are noted at α ≤ 4°.
This is accompanied by increased differences in the load-slopes around α = 0°. It
may be noted that the wing-alone and wing-body loads are very close to each other
at α = 0°. This points to negligible interaction (following deformation) with the
interference flowfield due to the body bow-shock and the associated non-uniform
dynamic-pressure distribution. This interaction will be referred to as “integration
effects” in the discussion below.

The following discussion points are made regarding the Euler-based LPT predictions:

• As was noted in Section 5.3.3, the wing-alone results show improved accuracy with
increasing M∞. Furthermore, good agreement with the Euler solution is obtained
throughout the α-range, both in the loads and in the load-slopes. A predominantly
linear loading with α is observed,

• These observations do not apply to the wing-body case. Here, any improvement in
prediction accuracy with M∞ is comparatively nominal. Generally worse prediction
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accuracy is obtained, both in the loads and the load-slopes. The prediction error rapidly
increases with α . The loading is clearly nonlinear with α ,

• It is of interest to note that the predicted loading at α = 0° is essentially identical
between the wing-alone and the wing-body cases. This trend will be noted throughout
for each mode-shape. A brief discussion of the observation is made here, and will be
repeated in Section 5.4.5.

Differences between the wing-alone and body-alone LPT-predicted loads at α = 0°
have a particular origin. In both cases, LPT uses the Euler solution at δ = 0mm as the
mean-steady reference solution being perturbed. The mode-shape (and by extension,
turning of the normal-vector) is the same between the wing-alone and the wing-body
cases. Thus, the only source for differences in prediction lies in the reference solution.

The near-negligible prediction difference at α = 0° seen throughout the present study
points to the weak effect that the body bow-shock has in changing the steady flow
about the un-deformed control-surface. Since LPT does not model interaction with the
surrounding flowfield, but is purely a perturbation to the surface solution, no significant
difference between the wing-alone and wing-body predictions are to be expected at
α = 0.

• It is of interest to note that while LPT does not model interaction with the surrounding
flowfield, the predicted wing-body loading is clearly nonlinear and shares a similar
overall trend with the Euler solution. This warrants further discussion. As remarked
above, LPT models perturbations to the surface solution. It does not have any “knowl-
edge” of the surrounding flowfield, and does not mathematically account for it. The
source of the nonlinearity in the predicted load is the mean-steady reference solution at
δ = 0mm. Specifically, it is the solution at the surface of the wing. Since LPT cannot
model interaction with the flowfield, differences between LPT and an Euler solution
may to some extent be attributed to this interaction.

It is inaccurate to attribute the entirety of the Euler / LPT difference to interaction
with the flowfield. The variety of sources of inaccuracy in LPT prediction have been
discussed at length in Sections 3.1.1 and 3.1.4 and Chapter 4. However, considering
the excellent agreement obtained for Mode 1 in the wing-alone results, it may be
argued that disagreement in the wing-body cases may largely be attributed to flowfield
interaction.

This interpretation allows some insight to be gained into the shortcomings of Euler-
based LPT applied to full-vehicle geometries (or generally, in interference flows). It
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may be deduced that a (potentially) significant component of the “full-vehicle trends”
is captured by the mean-steady solution at the surface of the un-deformed wing. In
other words, an LPT prediction may provide fair overall trends if the mean-steady
reference solution captured the surface-effects of the interference flowfield.

However, the accuracy (beyond overall trends) of the LPT prediction is thereafter
dictated by a variety of factors (Sections 3.1.1 and 3.1.4 and Chapter 4). Interaction
(both static and dynamic) with the surrounding flow as the geometry deforms may be
expected to be a significant factor. This is reflected in the notably worse prediction
accuracy obtained by LPT in the wing-body case than was obtained in the wing-alone
case for Mode 1.

Mode 2: First Twist

The comparison of wing-alone and wing-body loads for Mode 2 over the Mach range
considered is shown for δ = 10mm in Fig. 5.62. In order to better resolve differences between
data, the comparison will also be shown for each Mach number in the set M∞ = [2.0, 2.5, 3.0]
in Figs. 5.63 to 5.65, respectively. The following discussion points are made regarding the
Euler solutions:

• The general trend is noted of diminishing difference between the loads of the wing-
alone case and of the body-alone case as M∞ increases. The differences are inherently
larger at the upper portion of the α range. This is also where the effect of M∞ is most
noticeable. Prominent changes to the load-slope following the onset of body-shed
vortices are only noted at α > 8° for M∞,

• Fairly similar load-slopes are noted at α < 2° at Min f ty ≥ 2.5, with greater similarity
observed as M∞ increases. Larger differences between the wing-alone and body-alone
loads are noted at α = 0° than were observed for Mode 1. This points to a greater
amount of interaction (following deformation) with the interference flowfield due to
the body bow-shock than was noted for Mode 1. This is due to differences in the
mode-shape of deformation. The smallness of the wing-integration effects at α = 0°
relative to the overall load points towards the load being dominated by the surface
inclination of the wing. The differences between the wing-alone and wing-body loads
(and load-slopes) at higher incidences are a clear sign of aerodynamic interference.

The following discussion points are made regarding the Euler-based LPT predictions:

• It is clear that an error in the prediction of the wing-alone load-slopes exists. This error
is seen to decrease with increasing M∞. Following the discussion on sources of error
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in LPT from Mode 1, it may be argued that the prediction error (in both the load and
load-slope) is attributable to inherent shortcomings in LPT. The reader is reminded that
Mode 2 results in large twist at the wing tip (of the order of 23.5° at δ = 10mm). This
represents a large perturbation from the un-deformed reference solution. Furthermore,
it is known that aerodynamic loading becomes increasingly nonlinear (with deflection)
as shock detachment is approached. The combination of these factors are likely the
primary source of error in the wing-alone predictions for Mode 2,

• The above-discussed error in the wing-alone loads is independent of the interference
flowfield. Therefore, a proportionate error is to be expected in the wing-body pre-
dictions. Inspection of the wing-body results shows that a greater prediction error is
obtained. This points to further sources of error being introduced with the interference
flowfield.

One such additional source of error is the interaction (following deformation) with the
non-uniform interference flowfield surrounding the initially un-deformed wing. This is
evidenced, as before, by the offset between the wing-alone and wing-body Euler loads
at α = 0°, which is clearly not accounted for by Euler-based LPT,

• As discussed for Mode 1, it is significant to note that a portion of the underlying effect
of the interference flowfield is accounted for by LPT. Notably, the LPT predictions
replicate the general α trends of the Euler solution. This is clearly shown in the
sharp changes in load noted at α > 8° at M∞ = 3.0. However, the offset between the
predicted loads and the actual computed loads is seen to be a function of α at each M∞

examined. This again points towards underlying flowfield interactions being neglected
by LPT.

Mode 3: Second Bending

The comparison of wing-alone and wing-body loads for Mode 3 over the Mach range
considered is shown for δ = 10mm in Fig. 5.66. Due to the density of information depicted,
the comparison will also be shown for each Mach number in the set M∞ = [2.0, 2.5, 3.0] in
Figs. 5.67 to 5.69, respectively. The following discussion points are made regarding the Euler
solutions:

• As with Mode 2, the general trend is noted of diminishing difference between the loads
of the wing-alone case and of the body-alone case as M∞ increases. These differences
are related to differences in the load-slopes (with α). Greater similarity in wing-alone
and wing-body load-slopes is noted with increasing M∞. No prominent changes to CY
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are noted following the onset of body-shed vortices. However, vortex-related changes
are noted in Cl ,

• The difference between the wing-alone and body-alone loads at α = 0° is noted to
increase with increasing M∞. At M∞ = 3.0, the difference is comparable to that noted
for Mode 2. This suggests that the mode-shape of Mode 3 results in prominent flowfield
interaction.

This is further supported by the difference in trends between CY and Cl for Mode 3. For
Modes 1 and 2, the trends in α-dependence of CY and Cl were essentially equivalent. In
Mode 3, it is noted that the body-shed vortices clearly influence Cl , with the previously-
observed reversal in ∂Cl

∂α
. It is notable that this reversal is comparatively benign in

comparison to the sharp changes noted in Modes 1 and 2. However, inspection of
the CY trends for Mode 3 shows that obvious influence of the body-shed vortices.
This difference in CY and Cl trends points to a more complex interaction between the
mode-shape of deformation and the surrounding interference flowfield. This is to be
expected as a result of:

– The higher complexity of the mode-shape itself,

– The proximity of the mid-span deformation pattern (and point of secondary
maximum-deflection) to the body-shed vortices.

The following discussion points are made regarding the Euler-based LPT predictions:

• It is clear that an error in the prediction of the wing-alone load-slopes exists. This error
as an underlying shortcoming of LPT has been discussed in Section 5.3.4. As noted for
Mode 2 above, it may therefore be expected that a proportionate error in the load-slope
be present in the wing-body results,

• Inspection of the wing-body results shows that a greater prediction error is obtained. As
for Mode 2, this points to further sources of error being introduced with the interference
flowfield.

The previously-discussed interaction with the non-uniform interference flowfield at
α = 0° is noted again. The error is seen to be particularly significant at M∞ = 3.0,

• The most significant error in prediction relates to the general trends in CY . For Modes 1
and 2, it was noted that the LPT predictions replicated the general α trends of the Euler
solution. This is not the case for Mode 3. Fair replication of the Cl trends are noted,
with relatively poor prediction of the behaviour of ∂Cl

∂α
noted at M∞ = 3.0 and α > 6°.
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However, the prediction of ∂CY
∂α

for M∞ ≥ 2.5, α > 8° is fundamentally incorrect. It is
seen that LPT predicts a sign-reversal which is not present in the Euler solution.

In the discussion of the previous modes, it was remarked that the replication of the
general trends pointed to some extent of the interference flowfield being accounted
for purely by the mean-steady surface solution. The results of Mode 3 show that the
LPT-neglected interaction (following deformation) with the interference flowfield may
not be negligible. The sign-reversal noted in the LPT predictions stems from the mean-
steady surface solution. However, this is clearly countered by flowfield-interaction
in the Euler solution. Mode 3 may thus be considered an example of an engineering
problem of practical interest and minimal complexity in which LPT fails to capture
crucial flow physics.
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Fig. 5.58 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 1 with δ = 10mm.
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Fig. 5.59 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 1 with δ = 10mm. M∞ = 2.0.
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Fig. 5.60 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 1 with δ = 10mm. M∞ = 2.5.
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Fig. 5.61 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 1 with δ = 10mm. M∞ = 3.0.
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Fig. 5.62 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 2 with δ = 10mm.
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Fig. 5.63 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 2 with δ = 10mm. M∞ = 2.0.
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M∞ = 2.5
Mode 2, δ = 10mm

Euler
B+W

Lighthill 2nd-order
W

0 2 4 6 8 10
α /◦

−0.270

−0.265

−0.260

−0.255

−0.250

−0.245

C
Y

0 2 4 6 8 10
α /◦

−0.310

−0.305

−0.300

−0.295

−0.290

−C
l

Fig. 5.64 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 2 with δ = 10mm. M∞ = 2.5.
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Fig. 5.65 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 2 with δ = 10mm. M∞ = 3.0.
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Fig. 5.66 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 3 with δ = 10mm.
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Fig. 5.67 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 3 with δ = 10mm. M∞ = 2.0.
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Fig. 5.68 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 3 with δ = 10mm. M∞ = 2.5.
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Fig. 5.69 Comparison of the wing-alone and wing-body predictions of the side-force coeffi-
cient CY and rolling-moment coefficient Cl . Mode 3 with δ = 10mm. M∞ = 3.0.
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5.4.4 Interference Results: Interference Factors

The present set of results will illustrate the aerodynamic interference in the full-vehicle
configuration through the use of wing carryover-factors. These are presented as

CY (W (B))

CY (W )
and

Cl(W (B))

Cl(W )
(5.3)

for the side-force and rolling-moment coefficients, respectively. Comparison to the definition
of KW in Eq. (2.78) motivates the use of the phrase “carryover factor” to describe these ratios.
The symbol KW will be used interchangeably in the discussion below to refer to the quantities
in Eq. (5.3). For clarity, it is repeated here that CY (W (B)) refers to the side-force coefficient
acting on the leeside wing in the presence of the body (full-vehicle configuration). The
side-force on the leeside wing in the wing-alone configuration is given by CY (W ). A carryover
factor greater than 1 denotes an increase in the control effectiveness due to interference
effects.

The Euler-based LPT predictions that will be shown refer to the second-order LPT
formulation using Lighthill’s [88] coefficients. The results depicting the wing carryover-
factors are shown in Figs. 5.70 to 5.75, with the figures discussed below on a per-mode-shape
basis.

Mode 1: First Bending

The influence of M∞ on the prediction of the wing carryover-factors for Mode 1 is shown
for the deflection set δ = [5mm, 10mm] in Figs. 5.70 and 5.71, respectively. The following
discussion points are made regarding the figures:

• Inspection of the Euler results shows equivalent trends between CY and Cl . It is seen
that aerodynamic interference increases with increasing M∞ and with increasing α .
The onset and influence of body-shed vorticity from α > 8° is evident in the sharp
changes in gradient. A minor amount of flowfield interaction is noted at α = 0°. No
significant changes are noted with δ ,

• As was noted in Section 5.4.3, the inability of LPT to model flowfield interaction is
accentuated in the results of Figs. 5.70 to 5.75. In particular, this is shown by the
consistent prediction of KW = 1.0 at α = 0° regardless of the value of M∞, δ , or the
mode-shape considered. The significance of the deviation of the LPT prediction from
the Euler result at α = 0° will be discussed on a per-mod-basis. For Mode 1, as seen
in Figs. 5.70 and 5.71, the prediction error is minor, being of the order of 5%,
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• The overall trends are replicated by LPT (notably, increasing interference with increas-
ing M∞ and α , and the influence of body-shed vorticity). However, the prediction
error is noted to increase with α . Prediction errors of the order of 10% are noted for
α = 2°, with errors of 20% noted by α = 6°. Following the influence of the body-shed
vorticity, these errors rapidly increase to the order of 80% at M∞ = 3.0 and α = 10°.

Mode 2: First Twist

The influence of M∞ on the prediction of the wing carryover-factors for Mode 2 is shown
for the deflection set δ = [5mm, 10mm] in Figs. 5.72 and 5.73, respectively. The following
discussion points are made regarding the figures:

• Inspection of the Euler results shows equivalent trends between CY and Cl . It is seen
that aerodynamic interference increases with with increasing α . A Mach-dependence,
most significant at α = 10°, is also noted. The onset and influence of body-shed
vorticity is only evident as a sharp change in the gradients for M∞ = 3.0 at α > 8°. A
minor amount (≈ 2%) of flowfield interaction is noted at α = 0°. Minor changes are
noted with δ , with the interference at M∞ = 3.0 becoming more similar (prior to the
onset of body-shed vortices) to the interference factors of M∞ = 2.0 and M∞ = 2.5,

• For Mode 2, the inability of LPT to model flowfield interaction at α = 0° is seen to
be inconsequential. The loading is clearly dominated by the local surface inclination,
as may be expected for the first-twist mode-shape. This is reflected in the generally
good agreement obtained for this mode. An error in the prediction of ∂KW

∂α
is noted at

M∞ ≥ 2.5. However, the carryover factor is predicted to within 2% over the parameter
space considered. Within this context, LPT may be considered useful and accurate for
engineering purposes.

Mode 3: Second Bending

The influence of M∞ on the prediction of the wing carryover-factors for Mode 3 is shown
for the deflection set δ = [5mm, 10mm] in Figs. 5.74 and 5.75, respectively. The following
discussion points are made regarding the figures:

• Inspection of the Euler results shows equivalent trends between CY and Cl . A strong
dependence of KW on α and on M∞ is noted. Significantly, a substantial amount
(≈ 15%) of flowfield interaction is noted at α = 0°. This interaction exhibits a clear
Mach-dependence. The influence of the onset of body-shed vorticity is subtle, and is
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arguably best seen in the increased slope for the Cl carryover-factor at M∞ = 3.0 and
α > 8°. Minor changes are noted with δ , predominantly for M∞ = 3.0 at α = 10°,

• For Mode 3, the inability of LPT to model flowfield interaction at α = 0° is seen to be
significant. This is in contrast to the observations made for Modes 1 and 2. LPT is seen
to poorly predict the Mach-dependence of the interference factors for Mode 3. Most
significantly, it is seen that particularly poor prediction is obtained following the onset
of body-shed vortices at α > 8° for M∞ ≥ 2.5. Prediction errors of up to ≈ 40% are
obtained at α = 10°. The shortcomings of LPT in predicted the loading of Mode 3 are
clear evidence of “missing physics” in the mathematical formulation of LPT. From a
viewpoint of application, it is seen that incorrect trends are predicted in an interference
flow with flowfield interaction.
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Fig. 5.70 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl interference factors. Mode 1 with δ = 5mm.
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Fig. 5.71 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl interference factors. Mode 1 with δ = 10mm.
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Fig. 5.72 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl interference factors. Mode 2 with δ = 5mm.
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Fig. 5.73 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl interference factors. Mode 2 with δ = 10mm.
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Fig. 5.74 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl interference factors. Mode 3 with δ = 5mm.
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Fig. 5.75 Influence of freestream Mach number on the prediction of the side-force coefficient
CY , rolling-moment coefficient Cl interference factors. Mode 3 with δ = 10mm.
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5.4.5 Discussion

Preliminary Remarks

The wing-body case represents an investigation into aerodynamics of the leeside control-
surface in the presence of an interference flowfield. Comparison to the wing-alone case
gives insight into additional shortcomings of LPT which arise due to interaction with the
non-uniform interference flowfield.

The underlying assumptions of LPT have been discussed at length in Sections 3.1.1
and 3.1.4 and Chapter 4. These form the basis for the shortcomings of LPT in interference
flows. Here, the focus will be on the particular assumptions surrounding

• Relative magnitudes of directional gradients and the reduction of the perturbation flow
to a one-dimensional formulation,

• Interaction between the captive fluid in the “cylinder” and the “piston” (surface).

The presence of an established, non-uniform interference flow has implications for assump-
tions relating to both of the above topics:

• For the wing-alone case, the gradients (and flow structure) developed by the mean-
steady flow are (broadly speaking) a function of the wing geometry and M∞ sinα , as
outlined in Section 2.1.2. The review of the variations of “piston theory” in Section 3.2
showed an overwhelming majority of applications to 2D geometries, or applications
to uniform-flow portions of 3D wings. The typical scenario would involve a uniform
flowfield between the body (wing) and the bow-shock. Where a variation in this
flowfield was permitted, it was explicitly assumed that the variation was sufficiently
small that the unsteady analogy / law of plane sections was not violated. In essence,
the variations of piston theory developed thus far have either implicitly or explicitly
assumed that the gradients in the mean-steady flowfield facilitate a valid reduction to a
1D formulation.

Such a reduction is typically not attempted when considering flows around bodies
of revolution at incidence. This is because the flow is inherently two-dimensional
in the crossflow plane (see Section 2.1.1). The neglect of gradients in one of the
crossflow-directions would reduce the problem to an essentially planar formulation,
which would be an incorrect representation of the physical flow.

The immersion of a wing in an interference flow, such as that generated by a body of
revolution at incidence, then raises the question of the validity of neglecting directional
gradients in order to achieve a 1D formulation. It may be expected that the validity of
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the approximation is largely dictated by the relative strength of the interference-flow
gradients and of the gradients generated by the wing itself. This will be a chief point
of discussion when comparing the accuracy of LPT when applied to Modes 1 and 3
versus its application to Mode 2,

• The review of historical developments to LPT in Section 3.2 included a number of
formulations which accounted for the propagation of perturbations throughout the
captive fluid in the “cylinder”. It was noted that these “piston theories” achieved this
at the expense of a strictly point-local relation between surface deflection and surface
pressure. Typical assumptions included a wedge geometry and sinusoidal perturbations
to the surface and bow shock. Also assumed was a uniform mean-steady flow behind
the bow shock. Within this context, these formulations did account for interaction
between the captive fluid and the piston. The primary caveat is that the mean-steady
flow in the “cylinder” is uniform. This allows the 1D mathematical field problem to be
solved using characteristics.

In the context of bodies of revolution, similar solutions (and by extension, “piston
theories”) have only been obtained at zero-incidence. The resulting axisymmetric
formulation allows similar mathematical treatment to the planar problem.

The presence of non-uniformities in the crossflow plane (whether due to incidence
of the body of revolution or otherwise) significantly complicates the solution of the
2D field problem for the flow bounded by the body and the bow shock. Once again,
the question arises of the relative magnitude of the asymmetry and non-uniformity.
Regardless, no “piston theories” have been developed to account for the interaction
of the non-uniform captive fluid in the crossflow plane and the body surface. The
most significant approximations which account for this interaction are hypersonic
small-disturbance theory [78, 83] or Sychev’s [4] method, which have been covered in
Section 2.2.3. The interaction of the leeside wing with the non-uniform interference
flow generated by the body will be a second source of prediction error discussed in the
present study.

Discussion Points

The following are the key conclusions drawn from the wing-body results presented and
discussed in Sections 5.4.1 to 5.4.4:

• No significant conclusions regarding the role of the piston-theory coefficients were
reached in the investigation of Section 5.4.1 that were not already uncovered in Sec-
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tion 5.3.2. As a consequence, largely the same discussion follows in relation to
Section 5.4.1 as was given in Section 5.3.4. Namely,

– The order of LPT used did not have any observable effect on the α-dependence
of the predicted CY and Cl ,

– The use of different piston-theory coefficients for a given order of LPT provides
a prediction band. This band narrows with increasing M∞.

A greater offset between the prediction bands and the Euler solutions was noted for the
wing-body case. However, this is unrelated to the choice of coefficients, and is rather
a symptom of underlying deficiencies in piston-theory modelling. The conclusion is
reached that the choice of LPT coefficients does not fundamentally alter the predicted
loading trends. Hence, it has no direct influence on the fundamental applicability of
LPT in interference flows.

• The results of Section 5.4.2 show that the overall loading trends are typically replicated
by LPT. This is a point of interest which has been discussed at length in the context
of Mode 1 in Section 5.4.3. Essentially, it shows that a component (which may be
potentially significant) of the interference loading trends is contained in the mean-
steady solution at the surface of the wing,

• Comparison of the wing-alone and the wing-body loads as in Section 5.4.3 immediately
underscores the shortcomings of LPT when applied in interference flows. Again, a de-
tailed discussion with supporting arguments is given throughout Section 5.4.3. A more
quantitative assessment of the relative importance of the prediction error introduced
in Section 5.4.3 is given in terms of the wing carryover-factor in Section 5.4.4. The
following key conclusions are reached from the study:

– The numerical results clearly illustrate the inability of LPT to model interaction
of the deforming surface with the surrounding interference flowfield. This is
evidenced through the essential equivalence of the LPT-predicted wing-alone
and body-alone loads at α = 0°. In terms of a wing carryover factor, KW = 1 at
α = 0°,

– Despite this shortcoming, LPT is a useful prediction method in interference flows
provided the loading is dominated by local-inclination effects. This is evidenced
through the generally good agreement obtained in the wing carryover-factor
predicted for Mode 2 (first twist),
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– When applied to mode-shapes for which loading is not dominated by local-
inclination effects (Modes 1 and 3, bending modes), LPT may yield significant
prediction errors.

It was found that for simple mode-shapes, such as Mode 1 (first bending), the
majority of the prediction error could be attributed to interaction of the deforming
surface with the surrounding flowfield. While significant errors in the predicted
loading were obtained, the overall trends were replicated.

The more complex mode-shape of Mode 3 (second bending) was found to induce
three-dimensionality in the perturbed flow. This was manifested as notably worse
agreement between the LPT predictions and the Euler solutions. Significantly,
the prediction error was found to be a function of multiple parameters (M∞ and
α). Most significantly, it was shown that LPT did not replicate the overall loading
trends following the onset of body-shed vorticity,

– Prediction errors attributable to surface / flowfield interaction were noted over
the full spectrum of α investigated. This is significant in showing that the LPT
shortcomings in interference flows are not limited to flows involving crossflow
shocks and body-shed vortices.

In conclusion, it is deduced that the application of LPT to a simple wing-body configura-
tion is not well supported by numerical investigation. Useful prediction may be obtained,
provided that loading is dominated by local-inclination effects (such as for a first-twist mode).
More generally, interaction of the deforming surface with the surround interference flowfield
may be a significant source of error in LPT load prediction. It was found that general loading
trends may well be captured by LPT if the mean-steady solution accounts for interference at
the un-deformed surface. However, incorrect trend prediction has been shown following the
onset of body-shed vortices.

The shortcomings of LPT in interference flows may be understood in light of the theo-
retical and mathematical basis for LPT presented in Sections 3.1.1 and 3.1.4 and Chapter 4.
Significant prediction error in LPT may be obtained when perturbations cause spanwise
or axial gradients that invalidate the law of plane sections (i.e., which cause appreciable
three-dimensionality of the flow). Similarly, LPT is in error when interaction occurs be-
tween the surrounding fluid and perturbations from the deforming surface. A novel study
of the influence of the selection of coefficients in LPT showed that they serve to provide a
prediction-band which narrows with increasing M∞. However, coefficient selection has no
fundamental influence on the validity of LPT in interference flows. The use of higher-order
formulations of LPT similarly had no influence on its validity.
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5.5 Discussion and Summary

The present discussion offers a high-level summary of key discussion points made throughout
Sections 5.3 and 5.4. The supporting arguments are not repeated here for the sake of clarity
and brevity.

Chapter 5 demonstrated the application of Euler-based LPT to a slender body subject
to aeroelastic effects. The purpose of the numerical investigation was to determine the
suitability of Euler-based LPT as an aeroprediction method in interference flows. The review
of the literature on LPT in Section 3.2 found that no controlled, incremental investigation had
previously been performed to assess the validity of Euler-based LPT in interference flows (as
are generated by full-vehicle configurations). The same applies to RANS-based LPT.

This largely motivated the selection of the simple slender-body geometry used in the
present study. An extensive body of literature and knowledge exists on aerodynamic inter-
ference in this class of geometry. The component build-up approach towards interference
(namely considering body-alone, wing-alone, and wing-body loads) typically adopted for this
geometry was applied in the present numerical study. The combination of simple geometry
and the component build-up approach facilitated a controlled investigation into wing-body
interference.

Aeroelastic effects were introduced through prescribing static deformations of the leeside
wing (control surface). The decision to prescribe static deformations was similarly motivated
by considerations of a controlled, incremental investigation into the validity of Euler-based
LPT. In particular, static deformations eliminated flow unsteadiness and dynamic effects
as a source of error. In this sense, the present study does not directly draw conclusions
regarding the use of Euler-based LPT for the prediction of aerodynamic damping. However,
the same principles govern the validity of reduction from a 3D to a 1D formulation, whether
the application is static or dynamic perturbations. Furthermore, inherent shortcomings in the
mathematical formulation of piston theory will persist regardless of the time-dependence of
the boundary conditions. Similar considerations motivated the use of an Euler basis for LPT
despite the higher modelling fidelity of RANS.

The discussion of the outcomes of the numerical investigation will centre of three core
themes, namely:

• The insights gained into Euler-based LPT,

• The applicability of Euler-based LPT in interference flows,

• The implications of the study for future LPT extensions.
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5.5.1 Insights Gained

The present work addressed two gaps in the literature on LPT regarding:

• The extension of LPT to 2nd- and 3rd-order and the implications for modelling capabil-
ities,

• The influence of the coefficients used in LPT.

The first gap was addressed by a mathematical investigation in Section 3.3. The non-zero
contribution of 2nd order LPT to the wing-normal force coefficients is not demonstrated
by the numerical results. This is due to the use of a symmetrical flowfield (about the un-
deformed wing) being used as the mean-steady reference solution in the present study. This is
equivalent to having αm = 0° with (pM)(exact)L = (pM)(exact)U in Eq. (3.187). Comparison
of Eq. (3.187) and Eq. (3.184) show that under these particular conditions, 2nd-order LPT
makes a zero-contribution to the normal-force derivatives, as is the case in CPT. Differences
between the 1st- and 2nd-order LPT results in the present study occur only when local surface
pressures are limited to vacuum pressure. Differences noted between the 2nd- and 3rd-order
LPT predictions were related to the magnitude of CY and Cl . In other words, the extension to
higher-order LPT offered no inherently different prediction trends with α , and the modelling
of the underlying aerodynamic interference was unchanged. It is reiterated that this is due to
the use of a symmetrical (about the un-deformed wing) mean-steady Euler solution.

The second gap was addressed by the present numerical investigation. It was shown the
choice of LPT coefficients had no fundamental impact on the modelling of aerodynamic
interference. Nominal differences in predicted loading trends were noted. However, these
differences diminished with increasing M∞, which is consistent with the Mach-dependent
coefficients of Van Dyke [104] and Donov [105] tending to Mach-independent values as in
the case of Lighthill’s [88] coefficients. The variety of coefficients available to the engineer
essentially provide a prediction band for the loading. This allows a rough estimate to be
made of the error inherent in the LPT formulation.

It was numerically demonstrated that LPT does not model the interaction between the
deforming surface and the surrounding interference flowfield. This was manifested through
an equivalence in wing-alone and wing-body predicted loads at α = 0°. However, it was also
shown that the general character of loading trends was replicated by Euler-based LPT. This
occurred despite flowfield interaction not being modelled. This is significant in highlighting
the role of the mean-steady surface solution in determining the interference loading in the
wing-body case.
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A final outcome of the component build-up approach was the ability to identify sources
of error in the wing-body predicted load.The inaccuracy in the predicted loading may be
largely attributed to a combination of

• Underlying shortcomings of LPT in modelling perturbations which produce three-
dimensionality in the flow (as produced by mode-shapes with localized camber and
bending). These are manifested as prediction errors in the wing-alone case,

• The inability of LPT to model interaction between the deforming surface and the
surrounding interference flowfield. This is manifested as the remaining prediction error
once the wing-alone error is corrected for.

5.5.2 Applicability of Euler-Based LPT in Interference Flows

The numerical study highlighted a number of successes and a number of shortcomings in the
application of Euler-based LPT.

Successes

Generally excellent prediction was demonstrated by LPT when applied to the wing-alone
case in an interference-free flow. This was most notable for the small perturbations produced
by Mode 1 (first-bending). Significantly, good prediction accuracy was also achieved when
applied to Mode 2 (first twist), which created large perturbations (up to low supersonic piston
downwash).

The large perturbations caused by the turning of the surface unit-normal vector into
the flow in Mode 2 dominated the loading definition in the wing-body case. It was thus
demonstrated that in spite of the interference flowfield and flowfield-interaction, LPT may
provide useful aeroprediction. This is with the significant caveat that the pressure loading was
be dominated by surface-inclination, with flowfield-interaction being entirely a secondary
effect.

Shortcomings

More significantly, it was shown that LPT may not generally be expected to be accurate in
interference flows. This was evidenced by the significant prediction errors obtained in the
wing-body case for Mode 1 (first bending) and Mode 3 (second bending).

The excellent agreement obtained in the wing-alone case for Mode 1 allowed the pre-
diction error to be clearly attributed to flowfield-interaction. A significant outcome of the
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numerical investigation was the flowfield-interaction was noted to affect the prediction ac-
curacy at all α considered. This is significant, as it demonstrates the shortcomings of the
current state-of-the-art of LPT in the simplest of interference flows – no impinging shocks
and no body-shed vortices were required for the prediction accuracy to suffer.

While the prediction error for Mode 1 in the interference flow was significant, the
general character of the loading trends with α was replicated. This was not the case for
Mode 3. Following the onset of body-shed vortices at M∞ = 3.0 and α > 8°, Euler-based
LPT predicted a sharp reversal in the sign of ∂CY

∂α
. However, the Euler trend of ∂CY

∂α
was

largely unchanged. This represents another significant shortcoming of Euler-based LPT
in interference flows. It demonstrates that the general character of loading trends may be
incorrectly predicted by LPT when interaction between the surface and the interference
flowfield occurs.

The prediction error in the wing-body case is not solely attributable to flowfield interaction.
A similar (but less significant) error was observed in the wing-alone case. This prediction
error was attributed to the three-dimensionality induced by the localized camber and bending
of Mode 3. This serves as a reminder that even in the absence of an interference flowfield,
Euler-based LPT has inherent shortcomings in its 1D formulation.

5.5.3 Implications for LPT Extensions

The demonstration of underlying shortcomings in Euler-based LPT in interference flows in
the present work provides valuable information for the further development and extension of
LPT. Key sources of error were identified as

• Perturbations which induce significant three-dimensionality in the flow, violating the
1D point-local character of LPT,

• Interaction between the deforming surface and the surrounding flowfield.

These errors are associated with the fundamental assumptions required to arrive at the
mathematical formulation of LPT. A detailed development of the mathematical derivation
was provided in Chapter 4. The prediction errors and shortcomings of Euler-based LPT were
demonstrated in the present investigation for a geometry and flow characterized by

• Steady flow and static deformations,

• An inviscid fluid,

• A near-zero thickness wing of moderate aspect ratio (AR = 1.5) and low sweep (ΛLE =

15°).
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The combination of these factors represents the simplest case study for a geometry of practical
interest. Prediction errors encountered at this level of simplification will persist throughout
incremental addition of complexity through

• Unsteady flow or dynamic deformations,

• Viscosity,

• Geometry which results in more complex three-dimensional aerodynamics.

In light of the above, a discussion is offered surrounding the implications of the present study
for

• Requirements for extension of Euler-based LPT to interference flows,

• Requirements for extension of LPT to a RANS basis.

• The suitability of existing “extended / enhanced piston theories” in interference flows,

The crux of the arguments offered centres on the need for accurate mathematical modelling
of underlying physics.

Requirements for Extension to Interference Flows

Flowfield interaction as a source of prediction error in LPT was clearly illustrated by the
results of Mode 1 (first bending) in Figs. 5.58 to 5.61. The excellent agreement in the
wing-alone loads allows the error in the wing-body loads to be largely attributed to flowfield
interaction.

The prediction error in LPT when applied to the wing-alone case for Modes 2 and 3 was
naturally also present in the wing-body results for Modes 2 and 3. To further illustrate the
role of flowfield interaction, the load-predictions for a select number of parameters have been
corrected and illustrated in Figs. 5.76 to 5.79. The “uncorrected” loads represent the basic
load prediction by Euler-based LPT. To obtain the “corrected loads”, the wing-alone and
wing-body LPT predictions were adjusted as follows:

CY (corrected) =CY (uncorrected)+∆CY , (5.4)

∆CY =CY (W )Euler −CY (W )LPT , (5.5)

The same correction was applied to Cl . The essence of the correction is to “subtract” the
wing-alone error from the wing-body error. While this is a primitive correction, it allows a



400 Application of Euler-Based Local Piston Theory to Static Control Deformations

precursory interpretation of the prediction error. Moreover, it is not entirely dissimilar to the
“correction factor” class of engineering-level methods used to extend simple methods.

It is evident from Figs. 5.76 to 5.79 that while an improvement in the nominal agreement
is obtained through the correction, the fundamental loading trends are not significantly
different. Most notably, the prediction error is seen to remain a function of the parameter
space, notably of α . This highlights the fact that the source of the prediction error lies within
the interference flowfield. As has been repeated before, this is attributed to interaction of the
deforming surface with the surrounding flowfield.

This interaction is a fundamental component of aerodynamic interference. This interac-
tion is not modelled at a mathematical level in LPT due to the following core assumptions
typically invoked:

• The mean-steady flowfield is taken to remain constant as the surface deforms. That is to
say, the cylinder reference conditions are constant for the duration of the perturbation,

• The propagation of perturbations and the flow time-history within the “cylinder” are
neglected. This is required to reach a point-local formulation in piston theory. More-
over, analytical formulations which do account for the above have assumed a uniform
reference flow along the length of the cylinder (essentially an interference-free flow-
field),

It may be concluded that for any extension of LPT to faithfully reproduce loading trends
in interference flows, the underlying physics of flowfield interaction must be modelled
mathematically. It is seen in Figs. 5.76 to 5.79 that a “correction factor” approach is unlikely
to be suitable outside a semi-empirical framework, and that a mathematical extension to LPT
is required.

Similar arguments may be made surrounding the shortcomings of LPT in the prediction of
Mode 3 (second bending) loading trends. An extension of LPT aimed at improved prediction
accuracy would need to address the underlying physics (mathematically) of deformation
producing 3D perturbations.

Requirements for Extension to Viscous Flows

The application of LPT to viscous flows should similarly be informed by the underlying
physics. Applications of CFD-based LPT to viscous flows [12, 13, 18, 19, 194, 195] have not
modified formulation of piston theory. Instead, these applications have applied the inviscid
method about an effective shape determined by a variety of methods from the mean-steady
RANS solution. The implicit assumption in this approach is that the effective shape remains
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unchanged following perturbations. This also implicitly assumes that no interaction between
the deforming surface and the surrounding flowfield occurs.

The present study serves to inform the improvement in prediction obtained over Euler-
based LPT in the majority of these RANS-based LPT studies [12, 13, 18, 19, 194, 195]. It
was previously discussed that Euler-based LPT generally replicated the overall interference
loading trends, despite not modelling flowfield interaction. This is due to a component of
the interference loading being defined by the mean-steady surface solution. This conclusion
may be extended to the application of LPT to a RANS reference solution instead of an Euler
reference solution. The mean-steady fluid state predicted by the RANS solution influences
the unsteady RANS results as well as the RANS-based LPT prediction. An Euler reference
solution would provide worse agreement in the mean-steady solution, and subsequently
worse prediction of the unsteady loading when compared to the unsteady RANS results.

However, the present study and discussion of the error in LPT when applied to interference
flows also highlights the fundamental shortcoming in these works. As no modification is
made to the fundamental mathematical formulation of piston theory, these RANS-based
LPT applications do not mathematically account for interaction with the boundary layer
or the surrounding flow. This may be a significant source of error in the strong-interaction
regime often found in hypersonic applications. An improved extension or application of
LPT to viscous flows would need to have additional mathematical terms to account for this
interaction.

Such additional terms accounting for boundary-layer interaction have already been
developed in the context of CPT. Particular attention is drawn to the works of Orlik-
Rückemann [183], Ericsson [188], and of Hui and East [189] discussed in Section 3.2.9. It
is the opinion of the author that the extension of LPT to include the developments from the
above work will yield greater dividends than contemporary efforts into improved definitions
of the effective shape.

Suitability of Existing Formulations

The above discussions surrounding the extension of LPT to interference flows and to viscous
flows, along with the previous discussions on sources of error in LPT, inform the present
assessment of existing methods. The reader is referred to Sections 3.2 and 3.4 and particularly
to Tables 3.4 and 3.5 for a review of existing piston theory formulations. The assessment of
existing formulations follows the categorization of Tables 3.4 and 3.5:

• Classical point-function formulations of piston theory, in which no upstream influence
is accounted for, are unsuitable for interference flows. This encompasses the first six
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entries in Table 3.4. In these methods, all interaction with the upstream or surrounding
flow is disregarded. This is not strictly the case in LPT, as upstream influence is
accounted for the mean-steady solution, albeit not in the propagation of subsequent
perturbations,

• The following three entries in Table 3.4 comprise of the “extended / enhanced” piston
theories [144, 145, 160] – in particular, in their low-frequency or high-Mach series
forms –and of Landahl’s [128] method. These methods account for the 3D propagation
of upstream perturbations. A significant difference between the methods is that the
“extended / enhanced” piston theories are based in linear potential flows, while Lan-
dahl’s [128] method is based in nonlinear potential flows. The current formulation of
the methods does not account for non-uniform flows upstream of the wing, and would
require extension to account for interference flowfields. However, these methods do
account for sinusoidally-varying 3D perturbations and their propagation downstream,

• The final two entries in Table 3.4 relate to piston theories for shells. These methods
were developed for axisymmetric geometries (and flows) of essentially infinite length.
The introduction of a crossflow velocity or of wings would destroy the axisymmetric
formulation. The methods in their present forms are thus not suitable for application in
interference flows,

• The implementation of the hybrid linearized panel / CPT method of [79, 125] and its
potential for use as a perturbation relative to a mean-steady reference solution renders
the first entry in Table 3.5 the most viable method for application in interference flows
at present,

• The following entry in Table 3.5 refers to the heuristic influence-corrections to CPT of
Hui [181] and Wang [173]. While these do not model interaction with the flowfield,
they provide an approximate account of flow three-dimensionality in the mean-steady
solution. In this sense, it is possible that these methods will provide an (at best)
approximate replication of the interference loading trends as was noted for LPT,
though not of the same fidelity as achieved by LPT,

• The following two entries in Table 3.5 are the hypersonic SDTs developed for oscil-
lating wedges. These methods are significant in being the only methods (together
with the higher-order method of Hui and East [189]) that account for reflection of
perturbations off of the bow shock. While the methods account for upstream influence
and interaction with the surrounding flow, in their present form they are not suitable
for application in interference flows. This is due to their solution being obtained for
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the uniform reference flow between the (rectilinear) bow shock and the wedge surface.
This flowfield uniformity is not characteristic of interference flows, even within a
2D formulation. However, the development of the governing equations prior to their
solution is sufficiently general to be accurate for (2D) interference flows (in the absense
of impinging shocks and secondary bodies),

• The next two entries in Table 3.5 are the viscous piston-theories of Ericsson [188] and
of Orlik-Rückemann [183]. While these are not suitable for interference flows, they
were developed specifically to account for boundary-layer interaction in viscous flows,
and are suitable for this latter application,

• The next entry in Table 3.5 is the intermediate-level method of Hui and East[189].
It may be considered an extension to viscous-coupling of Hui’s [177, 178] inviscid
method for wedges. Due to its account of flowfield (particularly boundary-layer)
interaction and its iterative nature, it may be argued that it could be applied to 2D
interference flows. However, this remains to be substantiated. Due to the complexity
of the method, it is unlikely to be implemented as an extension to LPT,

• The final two entries in Table 3.5 are Euler-based and RANS-based LPT. The present
numerical investigation has shown that the former does not account for flowfield
interaction. The present discussion has also highlighted this shortcoming in present
formulations of RANS-based LPT.

The conclusion is reached that in their present form, existing piston theories, including the
“extended / enhanced piston theories” of [144, 145, 160], are not well-suited to application in
interference flowfields.

It is posited that these methods may be extended to account for vortex-interaction within
a potential-flow framework. It would similarly be of value to extend the (essentially lin-
earized) methods to a perturbation form about a mean-steady solution, as is done in LPT.
Further avenues of extension of existing methods to account for flowfield interaction may be
speculated on. The investigation of these possibilities outside the scope of the present work,
but is of prime interest in future work.
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Fig. 5.76 Comparison of the uncorrected and corrected predictions of the side-force coefficient
CY . Mode 2 with δ = 10mm. M∞ = 2.5.
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Fig. 5.77 Comparison of the uncorrected and corrected predictions of the side-force coefficient
CY . Mode 2 with δ = 10mm. M∞ = 3.0.
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Chapter 6

Conclusions and Recommendations for
Future Work

6.1 Conclusions

The present work is concluded with an abridged summary of each chapter in Section 6.1.1.
These key points raised in Section 6.1.1 are further reduced to the key conclusions relating
to the thesis put forward in Section 1.1. The contributions made to the field by the present
work are summarized in Chapter 7, while recommendations for future work are made in
Section 6.2.

6.1.1 Summary

The key conclusions of each chapter in the body of the present work are outlined below:

Chapter 2

• The review of the physics associated with flows around slender bodies in Section 2.1
emphasized the importance of

– Shock waves,

– The viscous boundary-layer,

– Vortices,

– Interaction between the aforementioned flow-structures, as well as between the
flowfield and deforming control surfaces.
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• The review of broadly-used aeroprediction methods for slender bodies in Sections 2.2
and 2.3 served to

– Introduce the broad spectrum of methods used, with an emphasis on the physics
modelled by the methods,

– Emphasize the trade-off between modelling fidelity and computational cost,

– Contextualize classical piston theory (CPT) and CFD-based local piston theory
(LPT) in the broader spectrum of methods,

– Highlight the significance of CFD-based LPT as a low-cost / high-fidelity predic-
tion method.

The chapter served to establish the relative merits of CFD-based LPT as a aeroprediction
method for slender bodies with aeroelastic effects.

Chapter 3

• The introduction to generalized piston theory in Section 3.1 emphasized the following
core ideas:

– Piston theory as the extension (or reduction) to 1D of the unsteady analogy (also
known as the law of plane sections),

– The usage of the term “piston theory” as the label for any point-local, algebraic
relationship between fluid pressure and surface motion,

– Sources of error in piston theory as identifiable with neglected physical phenom-
ena or processes.

• The categorization and review of significant historical developments relating to piston
theory in Sections 3.2 and 3.4 emphasized

– The broad spectrum of differing theoretical bases of varying fidelity which lead
to methods identified as “piston theory”,

– The extensive work historically completed towards accounting for

* Upstream influence and flowfield interaction,

* Viscous interaction,

in hypersonic small-disturbance theories and CPT,

– How this work relates to LPT,
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– How this work has been overlooked in the development and application of CFD-
based LPT,

– The trend of application to CFD-based LPT to increasingly complex flows and
geometries,

– The lack of a mathematical basis for LPT from which to justify these applications.

• The review of the theoretical validity of the linear potential flow basis for CPT con-
ducted in [116, 121] provided a framework for assessing

– The validity of recent renewed-interest in so-called “extended” piston theories
based in linear potential flows,

– The need for a nonlinear potential flow basis, as utilized in Landahl’s [128]
method,

– The validity of possible future extensions of LPT to a linear potential-flow basis.

• The review of the significance of second-order and higher-order terms in piston theory
in Section 3.3 yielded the following novel conclusions:

– A fundamental difference in modelling capability between CPT and LPT is
observed at second-order in steady flows. Specifically, a non-zero quadratic-
stiffness term is introduced at second-order in local piston theory,

– The extension of LPT to second-order offers the possibility of extending the
utility of a given mean-steady CFD solution to larger perturbations.

The chapter served to emphasize the rich body of knowledge pertaining to piston theory
(both classical and local). This simultaneously led to the following gaps being identified in
the literature:

• No mathematical basis exists for LPT,

• No controlled study into the application of LPT in aerodynamically interfering flows
as associated with slender-body geometries has been conducted,

• No investigation into the extension of the pressure-equation of LPT to higher-order
has been conducted.

The literature review also motivated the need for this gap to be addressed: current trends
in the application of LPT to increasingly complex flows are accompanied with increasing
prediction error. There is no mathematical (or indeed semi-empirical) basis justifying or
informing the application to these flows.
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Chapter 4

• The approach to the mathematical development was introduced in Section 4.1, along
with introductory remarks regarding non-dimensionalization and perturbation- and
scaling-analysis,

• The perturbation form of the Euler equations and related boundary conditions, non-
dimensionalized using un-specified (general) reference values, were presented as the
starting point of the development in Section 4.3,

• An introduction to the selection of appropriate reference values was given in Section 4.4,
with a framework for quantifying relative orders of magnitude presented in Appendix A,

• The derivation of CPT from the 3D unsteady Euler equations was presented in Sec-
tion 4.5, with the classical results associated with Il’yushin’s [77] development recov-
ered,

• Application of the same process to derive LPT using a different set of reference values
was demonstrated in Section 4.6,

• This was followed by a discussion of the mathematical requirements placed on the
flow to facilitate this derivation in Section 4.7. The key conclusions will be repeated in
Section 6.1.2.

The chapter served to develop the mathematical basis for deriving LPT from the 3D unsteady
Euler equations. Interpretation of this mathematical requirements provided significant insight
into the shortcomings of recent applications of CFD-based LPT. The mathematical basis also
serves to inform future extensions to CFD-based LPT.

Chapter 5

• An introduction was provided in Section 5.1 into

– The motivation for the geometry selected for the study,

– The computational and experimental reference data,

– The methodology of the numerical study.

• The results of the body-alone case were presented in Section 5.2. The body-alone case
served to

– Verify the use of the HiSA [213] solver in OpenFOAM against ANSYS Fluent,
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– Demonstrate the inherent shortcomings of an Euler-based model over the param-
eter space considered,

– Establish the interference flowfield in which control surfaces would be im-
mersed. The development of body-shed vortices at M∞ sinα ≈ 0.45 was driven
by crossflow-shocks in the inviscid formulation.

• The results of the wing-alone case were presented in Section 5.2. The wing-alone case
served to investigate the accuracy of Euler-based LPT when applied to a cruciform
control-surface set in the “+”configuration in the absence of an interference flowfield.
Furthermore, the influence of the following factors on the accuracy of LPT under these
circumstances was investigated:

– Mode-shapes of deformation and their amplitude,

– The selection of piston-theory coefficients and the order of the pressure equation,

– The freestream Mach number.

The key conclusions from this study will be repeated in Section 6.1.2.

• The results of the wing-body (full vehicle) case were presented in Section 5.4. The
influence of the same factors as in the wing-alone case on the accuracy of LPT was
investigated. The results also led to a discussion surrounding the prediction errors
and suitability of LPT for application in aerodynamically interfering flows typical of
slender bodies with aeroelastic effects in Section 5.5. The key conclusions from this
study will be repeated in Section 6.1.2.

This chapter yielded

• A controlled investigation into the accuracy of LPT in aerodynamically interfering
flows,

• Insight into the underlying shortcomings in the physical modelling of LPT,

• Prediction errors in scenarios which were anticipated by the mathematical basis of
Chapter 4,

and thus serves as supporting evidence for the mathematical basis developed in Chapter 4, as
well as a valuable first controlled investigation into applying piston theory in interference
flows.
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6.1.2 Key Conclusions

The key conclusions relating to the thesis are listed below:

Justification by a Theoretical or Mathematical Basis

• A mathematical basis for Euler-based LPT rooted in the 3D unsteady Euler equations
was developed. The basis requires that:

– A uniformly-valid non-dimensionalization is possible,

– Term groupings involving velocity perturbations in the streamwise direction
should be O

(
τ2) relative to the largest-order term grouping in the relevant equa-

tion. The latter will typically involve the mean-steady velocity in the streamwise
direction. This facilitates the reduction to a 2D formulation in the crossflow
plane,

– Gradients in the crossflow directions of perturbations to the flow must not be
comparable. This prohibits one of the crossflow direction from being neglected
in favour of the other, which is necessary for a reduction to a 1D formulation,

– If velocity perturbations in one of the crossflow directions are comparable in
magnitude to velocity perturbations in the streamwise direction, then one of the
requirements for a reduction to 1D is the following: perturbation gradients in
that crossflow direction must be at least as small as perturbation gradients in the
streamwise direction,

– In order to obtain an algebraic pressure-downwash relationship, the role of
surface-incident characteristics must be neglected.

• These requirements from the mathematical basis are violated to varying degrees (both
in terms of the magnitude and the spatial extent of the violation) when the following
occur:

– The mean-steady flow is transonic, or if embedded subsonic regions exist,

– A layer-type problem arises, as associated with

* Entropy layers,

* Viscous boundary-layers,

– The surface to which LPT is applied is in close proximity to

* Shock-waves,
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* Vortices,

* Strong entropy-gradients,

* Other aerodynamically-interfering surfaces,

– The surface to which LPT is applied is in close proximity to regions of sharp
curvature, such as

* Blunted noses,

* Wing-tips,

* Trailing-edges,

* Subsonic leading-edges,

* Wing-body junctions,

– Mode-shapes of deformation involving regions of localized bending or camber or
point-local deformations.

• It is noted that many of the above circumstances arise – at least within some spatial
extent of the surface of interest – in flows around the geometries of interest to the thesis.
It is thus concluded that Euler-based LPT in its present form is not mathematically
justified in the regions in which the above violations occur, and caution should be
exercised in applying the method.

Suitability of Euler-Based LPT in its Present Form

A numerical investigation into the application of Euler-based LPT to the geometry of interest
to the thesis was conducted. The key conclusions regarding the suitability of Euler-based
LPT in its present form were that

• Useful aeroprediction may be obtained in interference flows for mode-shapes involving
strong twist. More specifically, useful prediction is obtained if

– The pressure-loading is dominated by surface-inclination,

– Flowfield-interaction is of secondary importance.

Under these circumstances, useful prediction is obtained even at supersonic downwash
Mach numbers.

• The possibility for the general character of load-trends to be predicted in interference-
flows purely from the mean-steady interference at the surface was identified. However,
it is stressed that categorically incorrect trends were predicted following the onset
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of body-shed vortices when considering the second-bending mode (which involved
localized bending and camber),

• Significant prediction errors arose when considering bending-dominated mode-shapes:

– In the case of the first-bending mode, the general loading trend was replicated,
and the error was attributed to flowfield-interaction in the absence of body-shed
vortices,

– In the case of the second-bending mode, the prediction error were a non-trivial
function of the parameter space. The incorrect prediction of loading trends
following the onset of body-shed vorticity has already been noted. It was argued
that the prediction errors could not be solely attributed to flowfield interaction, as
similar errors were noted for this mode in the wing-alone case. Thus, a portion of
the prediction error was attributed to three-dimensionality of the perturbations
associated with the localized bending and camber.

• The selection of piston-theory coefficients in the LPT pressure equation had no signifi-
cant effect on the loading-trend prediction, but served to provide a prediction-band for
the load,

• Similarly, the use of second-order and third-order pressure equations in LPT did not
change the prediction of loading-trends when the mean-steady solution is symmet-
rical about the “windward” and ”leeside” surfaces of the deforming control-surface.
However, a offset in the load prediction was noted, with second-order LPT generally
providing the best agreement with the Euler results,

• The final assessment recommends that results obtained from Euler-based LPT in
interference flows be interpreted with caution. It cannot be stated that Euler-based
LPT is generally suitable in its present form, as the role of flowfield-interaction
may be significant. However, some useful results may still be obtained from the
method, and thus it cannot be categorically ruled “invalid”. In order to improve the
suitability and reliability of the CFD-based LPT, the author recommends that further
work be conducted towards extending LPT in a mathematically consistent way, with
the development informed by the mathematical basis presented in Chapter 4.
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6.2 Recommendations for Future Work

The following recommendations are made for future work:

• The development of a “flowfield-interactive” LPT which accounts for the persistence
and reflection of perturbations generated by the deforming control-surface is of great
interest. The author recommends that the development of such a method be initiated
by considering linearized perturbations in the equations presented in Section 4.3,

• The scaling analysis presented in Section 4.6 may be adapted for the higher spatial-
gradients of perturbations that may arise in problems dealing with panel-flutter. It
is expected that this may yield insight into the application of Euler-based LPT to
problems of this class,

• The interpretation of strong gradients in the mean-steady flow as additional source
terms in a LPT formulation, put forward in Section 4.6, has implications for existing
numerical studies on shock-impingement on flexible panels [19, 194, 195]. It is
possible that a revised formulation of LPT to account for the shock gradients may be
developed using the method of Chapter 4,

• The extension of the mathematical basis to perturbations in a Navier-Stokes framework
is recommended. This may provide insight into conditions under which a RANS-based
LPT as noted in recent literature [18] with effective-shape corrections may be valid,

• Investigation of the possibility to adapt existing RANS-based LPT to account for
viscous-inviscid interaction using the methods of Orlik-Rückemann and Ericsson [188]
is recommended,

• Investigation of the possibility to extend the “extended piston theories” of [144, 145,
160] to second-order in thickness using Van Dyke’s [104] second-order theory as
applied by Landahl [128] is recommended,

• The extension of the numerical investigation conducted in Chapter 5 to include a study
of the role of leading-edge sweep, subsonic leading-edges, and unsteady effects is
recommended.





Chapter 7

Contributions to the Field

The following novel contributions were made to the field:

• An extensive review and categorization of historical developments relating to both
classical and local piston theory, conducted in Chapter 3, with elements from it
published as [59, 116, 121]

• The development of the mathematical basis for Euler-based LPT, conducted in Chap-
ter 4 and published in an early form as [196]

• A controlled numerical investigation into the application and suitability of Euler-based
LPT to slender-bodies with aerodynamically-interfering control surfaces, conducted in
Chapter 5 and published as [212]

• An investigation into the role of higher-order terms in the pressure-equation of LPT
and the identification of a non-zero second-order contribution to aerodynamic stiffness,
presented in Section 3.3 and published as [123],

• An investigation into the role of selected piston-theory coefficients and higher-order
pressure terms in load-trend prediction in LPT, which was conducted in the context
of numerical investigation of Chapter 5 and was part of the associated publication
of [212].
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7.1 Publications from the Work

The following is a list of publications arising from the work conducted towards the completion
of the thesis, in chronological order of publication:

• M.-C. Meijer and L. Dala, “On the validity range of piston theory,” in 16th International Forum
on Aeroelasticity and Structural Dynamics, (St. Petersburg, Russia), 28 June–2 July 2015.
IFASD-2015-004.

• M.-C. Meijer and L. Dala, “Generalized formulation and review of piston theory for airfoils,”
AIAA Journal, vol. 54, no. 1, pp. 17–27, 2016. DOI: 10.2514/1.J054090

• M.-C. Meijer, “Piston theory applied to wing-body configurations: A review of the mathe-
matical basis,” in Research and Education in Aircraft Design 2016, (Warsaw, Poland), 12–14
Sept. 2016.

• M.-C. Meijer and L. Dala, “Quantifying non-linearity in planar supersonic potential flows,”
The Aeronautical Journal, vol. 121, no. 1237, pp. 372–394, 2017. DOI: 10.1017/aer.2016.141

• M.-C. Meijer and L. Dala, “Local piston theory as an alternative to mesh deformation: slender
wing/body configurations,” Journal of Aircraft, vol. 55, no. 4, pp. 1709–1719, 2018. DOI:
10.2514/1.C034697

• M.-C. Meijer and L. Dala, “On the role of higher-order terms in local piston theory,” Journal
of Aircraft, 2018. Published Online 13 Sept 2018. DOI: 10.2514/1.C034920
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Appendix A

Scaling Analysis of the Perturbed Euler
and Rankine-Hugoniot Equations

A.1 Un-Perturbed Solution

It is assumed that all un-perturbed quantities are known a-priori. In particular:

• The orientations and velocities of un-perturbed surfaces are known,

• The un-perturbed flow quantities are known.

The purpose of the present section is to parametrically quantify un-perturbed terms appearing
in the governing equations and boundary conditions. The final purpose of this is to quantify
the terms listed in Table 4.5.

Inspection of:

• The Euler equations in Eqs. (4.97) to (4.99),

• The shock boundary conditions in Eqs. (4.111) to (4.113),

• The body boundary conditions in Eq. (4.123),

shows that the only surface-associated direction vector of consequence in the equations of
interest is the surface-normal vector ¯̂n. The other chief direction vector of interest is that of
the flow velocity ¯̂V. These vectors and their projection onto each other ¯̂V · ¯̂n are important
quantities of interest. Other flow quantities are grouped below according to region:

• Pre-shock fluid state and velocity:

– ρ̄(U), p̄(U), ā(U), and V̄(U),
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• Shock-related quantities:

– V̄s and w̄(U) (with associated m̄⊥ and σ̄ ),

• Post-shock fluid state and velocity:

– ρ̄ , p̄, ā, and V̄,

• Surface-related quantities:

– V̄b.

It is repeated here that the post-shock fluid state and velocity are only prescribed at the shock
surface. The quantities further downstream must be determined by solution of the governing
equations. The non-permeability condition at the body surface effectively reduces the number
of free variables associated with the fluid velocity vector V from three (|V|, αv, and βv) to
two (by prescribing a relationship between αv and βv).

The development in the present section is grouped into terms relating to

• Geometric parameters and direction vectors,

• Post-shock quantities at the shock boundary,

• Velocity relations at the body surface.

A.1.1 Geometric Parameters and Direction Vectors

The unit normal-vector to the unperturbed surface has been defined in terms of angles in
a spherical coordinate system with ê3 acting as the zenith and −ê1 acting as the reference
direction for the azimuth. The equation for the un-perturbed normal vector is given as

¯̂n =−sin η̄ cos λ̄ ê1 − sin η̄ sin λ̄ ê2 + cos η̄ ê3 . (A.1)

The following interpretations are offered:

• The polar angle η has been defined in Eq. (4.11). It may be interpreted as the “thickness
angle” in the direction of steepest ascent in the planform plane. For a flat plate, η = 0.
For swept wedge or a chamfered leading-edge of a wing, η is the wedge / chamfer
angle normal to the leading-edge.

The angle η is dimensionless (radians), and has the range η = [0,π],
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• The azimuthal angle λ has been defined in Eq. (4.12). It may be interpreted as the
“sweep angle” of a wedge of thickness η . Inclination of the surface upstream is defined
by −π

2 < λ < π

2 ,

The angle λ is dimensionless (radians), and has the range λ = [−π,π],

• The component of the unit-normal vector in the ê1 direction will typically be interpreted
as “bluntness”. From Eq. (A.1) it is seen that

n̄1 =−sin η̄ cos λ̄ . (A.2)

While η typically characterizes “thickness”, the sweep of that thickness away from the
chordwise direction by means of λ may result in a geometry which is locally “thin” to
flow directed along ê1.

The vector component n̄1 is dimensionless, and has the range n̄1 = [−1,1],

• The component of the unit-normal vector in the ê2 direction will typically be interpreted
as a measure of “roll”. From Eq. (A.1) it is seen that

n̄2 =−sin η̄ sin λ̄ . (A.3)

For a given sweep angle through λ , the magnitude of n̄2 will be determined by the
“roll” through η .

The vector component n̄2 is dimensionless, and has the range n̄2 = [−1,1],

• The component of the unit-normal vector in the ê3 direction will typically be interpreted
as a measure of “flatness”. From Eq. (A.1) it is seen that

n̄3 = cos η̄ . (A.4)

For a lifting surface with a planform in the ê1ê2 plane, a deviation from n̄3 = 1
represents some deviation from the planform plane.

The vector component n̄3 is dimensionless, and has the range n̄3 = [−1,1].

A variety of useful formulations for the un-perturbed fluid-velocity vector may be adopted.
Its most general form is

V̄ =
∣∣V̄
∣∣ ¯̂V , (A.5)
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where ¯̂V is the direction vector of the un-perturbed velocity vector:

¯̂V =
v̄1∣∣V̄
∣∣ ê1 +

v̄2∣∣V̄
∣∣ ê2 +

v̄3∣∣V̄
∣∣ ê3 . (A.6)

The following definitions of the angle of attack αv and the angle of side-slip βv are introduced:

sinαv ≡
v3
|V| , (A.7)

sinβv ≡− v2
|V| . (A.8)

In terms of αv and βv, the direction vector for velocity may then be written as

¯̂V =
(
1− sin2

ᾱv − sin2
β̄ v
) 1

2 ê1 − sin β̄ v ê2 + sin ᾱv ê3 . (A.9)

The following interpretations are offered:

• The un-perturbed angle of attack ᾱv has been defined as the angle by which the
un-perturbed velocity vector V̄ deviates from the ê1ê2 plane.

The angle ᾱv is dimensionless (radians), and has the range ᾱv =
[
−π

2 ,
π

2

]
,

• The un-perturbed angle of side-slip β̄ v has been defined as the angle by which the
un-perturbed velocity vector V̄ deviates from the ê1ê3 plane for positive ê1.

The angle β̄ v is dimensionless (radians), and has the range β̄ v = [−π,π].

• The advantage of defining angles using resultant velocity, as above, as opposed to using
v1, is that the components of the velocity direction vector V̄ have the range [−1,1]. In
the case where they are defined using v1, the components become unbounded in the
limit of large angles.

The surface-normal velocity projection V̂ · n̂ is an important quantity in the shock relations
and the body non-permeability condition. In its most general form, it may be written

V̂ · n̂ = n1
(
1− sin2

αv − sin2
βv
) 1

2 −n2 sinβv +n3 sinαv , (A.10)

which may be adapted using Eqs. (A.2) to (A.4) and (A.9) to give

¯̂V · ¯̂n =−sin η̄ cos λ̄
(
1− sin2

ᾱv − sin2
β̄ v
) 1

2 + sin η̄ sin λ̄ sin β̄ v + cos η̄ sin ᾱv . (A.11)

It is noted that ¯̂V · ¯̂n is dimensionless and has the range [−1,1].



A.1 Un-Perturbed Solution 441

Finally, it is remarked that the translational velocities of the shock V̄s and of the body V̄b

only appear in the equations of interest through their projections onto their relevant surface
normals. These velocities may therefore be described in terms of speeds along the surface
normals:

Ḡs = V̄s · ¯̂ns , (A.12)

Ḡb = V̄b · ¯̂nb . (A.13)

A.1.2 Post-Shock Quantities at the Shock Boundary

The above relations allow w̄(U) and the associated m̄⊥ and σ̄ to be defined. These are
important in defining the post-shock fluid quantities ρ̄ , p̄, ā, and V̄. From Eqs. (A.11), (A.12)
and (4.106) it follows immediately that

w̄(U) =
∣∣V̄(U)

∣∣




− sin η̄s cos λ̄ s

(
1− sin2

ᾱv(U)− sin2
β̄ v(U)

) 1
2

+ sin η̄s sin λ̄ s sin β̄ v(U)+ cos η̄s sin ᾱv(U)



− Ḡs , (A.14)

Substituting the above into Eq. (4.62) yields

m̄2
⊥ =


M̄(U)





− sin η̄s cos λ̄ s

(
1− sin2

ᾱv(U)− sin2
β̄ v(U)

) 1
2

+ sin η̄s sin λ̄ s sin β̄ v(U)+ cos η̄s sin ᾱv(U)



− Ḡs

ā(U)




−2

, (A.15)

which may be substituted into Eqs. (4.60) and (4.61), which are repeated below as

1+ σ̄ =
γ +1

2m̄2
⊥+(γ −1)

, (A.16)

σ̄

1+ σ̄
=

2
γ +1

(
1− m̄2

⊥
)
. (A.17)

The above may then be substituted into Eqs. (4.65) to (4.67) to give the post-shock fluid
quantities at the shock boundary as

ρ̄

ρ̄(U)

= (1+ σ̄) , (A.18)

V̄∣∣V̄(U)

∣∣ =
¯̂V(U)−

σ̄

1+ σ̄

w̄(U)∣∣V̄(U)

∣∣ ¯̂n , (A.19)
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p̄

ρ̄(U)

∣∣V̄(U)

∣∣2 =
1

γM̄2
(U)

+
σ̄

1+ σ̄

w̄2
(U)∣∣V̄(U)

∣∣2 . (A.20)

It is noted the velocity vector may be expressed in terms of its components as

v̄1∣∣V̄(U)

∣∣ =
(

1− sin2
ᾱv(U)− sin2

β̄ v(U)

) 1
2
+

(
σ̄

1+ σ̄

w̄(U)∣∣V̄(U)

∣∣

)
sin η̄s cos λ̄ s , (A.21)

v̄2∣∣V̄(U)

∣∣ =−sin β̄ v(U)+

(
σ̄

1+ σ̄

w̄(U)∣∣V̄(U)

∣∣

)
sin η̄s sin λ̄ s , (A.22)

v̄3∣∣V̄(U)

∣∣ = sin ᾱv(U)−
(

σ̄

1+ σ̄

w̄(U)∣∣V̄(U)

∣∣

)
cos η̄s . (A.23)

Finally, it is noted that using the ideal gas equation of state, Eqs. (A.18) and (A.20) may be
manipulated to give

ā2

w̄2
(U)

=

[
2γ

γ +1
−
(

γ −1
γ +1

)
m̄2
⊥

]
(1+ σ̄)−1 , (A.24)

where ā2

w̄2
(U)

is dimensionless and has the range
[
1, 2γ(γ−1)

(γ+1)2

]
corresponding to the Mach-wave

and hypersonic limits, respectively.

A.1.3 Velocity Relations at the Body Surface

The non-permeability condition at the body surface forces the fluid-velocity vector to be
tangent to the surface. The fluid-velocity vector could thus be expressed in terms a rotation
of the unit surface-tangent vectors ¯̂t and ¯̂b about ¯̂n (see Eq. (4.9)). However, the introduction
of further parameters will be avoided here. Instead, it is merely noted that the body boundary
condition of Eq. (4.69) prescribes a relationship between allowable combinations of the angles
αv and βv in terms of which the fluid-velocity vector has already been described. Recalling
the relations in Eqs. (A.11) and (A.13), the following velocity relations are prescribed at the
body surface:

−sin η̄ cos λ̄
(
1− sin2

ᾱv − sin2
β̄ v
) 1

2 + sin η̄ sin λ̄ sin β̄ v + cos η̄ sin ᾱv =
Ḡb∣∣V̄
∣∣ (A.25)
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A.2 Representative Cases

A.2.1 Vectors

As noted in Section 4.4.2, it will be assumed that ê1 is aligned with the body axis or the
chordwise direction, and that the planform of lifting surfaces lies in the ê1ê2 plane.

Representative values for the body-surface may be obtained by considering a flat plate
(zero thickness) and by considering a swept wedge (which may represent a chamfered
leading-edge):

• For a flat plate: η̄ = 0, leading to ¯̂n = ê3,

• For a wedge with a leading-edge normal thickness angle of η̄ and a sweepback angle
of λ̄ : ¯̂n is given by Eq. (A.1).

Representative values for the shock-surface will be described for an un-swept (λ = 0)
wedge with thickness angle δ , with the freestream directed along ê1. The extension to a
swept shock surface is accomplished through the introduction of λ ̸= 0:

• In the limit of a vanishingly weak shock (a Mach wave): δ = 0 and the wave angle
is given by the Mach angle µ , where µ = sin−1

(
1

M∞

)
. This leads to η̄ = µ , with

sin η̄ = 1
M∞

and cos η̄ =

√
M2

∞−1
M∞

, or in terms of components:

n̄1 =− 1
M∞

, (A.26)

n̄2 = 0 , (A.27)

n̄3 =

√
M2

∞ −1
M∞

, (A.28)

• If the inclination of the wedge such that δ ̸= 0 and a shock angle of β is produced,
then the orientation of the shock would be given by the use of η̄ = β in Eq. (A.1) with
λ̄ = 0 for the un-swept shock.

Alternatively, if the shock angle β is expressed as β = µ + θ̄ , then the components of
the unit normal-vector to the shock un-swept shock surface could be written as

n̄1 =− 1
M∞

cos θ̄ −
√

M2
∞ −1

M∞
sin θ̄ , (A.29)

n̄2 = 0 , (A.30)
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n̄3 =

√
M2

∞ −1
M∞

cos θ̄ − 1
M∞

sin θ̄ , (A.31)

This formulation is particularly useful, as for M∞ > 2.0, the value of ∂ (β−δ )
∂δ

is small
for a wide range of δ . This has been shown in Figs. 3.12 and 3.13. This has the
implication that β̃ ≈ δ̃ , or at the very least, β̃ = O

(
δ̃

)
.

Representative values of the direction vector of the fluid-velocity vector V̂ will be described
using the definitions of angle-of-attack αv and side-slip βv adopted in Eqs. (A.7) and (A.8):

• It is noted that the ranges of allowable combinations of αv and βv are governed by the
restriction that

0 ≤ sin2
αv + sin2

βv ≤1 , (A.32)

or sin2
βv ≤cos2

αv . (A.33)

This shows that while simultaneously small angles sinαv ≈ sinβv = O(τ) with τ ≪ 1
are allowed, restrictions are placed on the manner in which the angles are allowed to
grow large,

• In the limit of small incidence, such that sinαv ≈ sinβv = O(τ), the following compo-
nents are obtained:

v1
|V| =

√
1− sin2

αv − sin2
βv = O

(
1− τ

2) , (A.34)

v2
|V| = O(τ) , (A.35)

v3
|V| = O(τ) , (A.36)

The following ratios are also noted:

v2
v1

= O
(
τ + τ

3) , (A.37)

v3
v1

= O
(
τ + τ

3) , (A.38)

• In the scenario in which one of the angles (say αv) becomes large while the other
remains small, various order of magnitude may be considered:
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– If αv is large such that cos2 αv = O(τ), then it is required that sinβv ≤ O
(

τ1/2
)

,
and the following components are obtained:

v1
|V| =

√
cos2 αv − sin2

βv ≤ O
(

τ
1/2
)
, (A.39)

v2
|V| = O

(
τ

1/2
)
, (A.40)

v3
|V| = O(1− τ) , (A.41)

The following ratios are also noted:

v1
v3

≤ O
(

τ
1/2 + τ

3/2
)
, (A.42)

v2
v3

≤ O
(

τ
1/2 + τ

3/2
)
, (A.43)

– If αv is larger such that cosαv = O(τ), then it is required that sinβv ≤ O(τ), and
the following components are obtained:

v1
|V| =

√
cos2 αv − sin2

βv ≤ O(τ) , (A.44)

v2
|V| = O(τ) , (A.45)

v3
|V| = O

(
1− τ

2) , (A.46)

The following ratios are also noted:

v1
v3

≤ O
(
τ + τ

3) , (A.47)

v2
v3

≤ O
(
τ + τ

3) , (A.48)

A.2.2 Post-Shock Quantities

To provide representative values of post-shock quantities, a number of parameters must be
accounted for (in particular, all of the vectors considered above). A critical parameter will
be w̄(U), which results from a combination of the above vectors. It has been noted that the
existence of a shock wave requires that w̄(U) > ā(U). In the discussion which follows, the
windward surface of a parametrically-defined delta wing will be considered. The discussion
will be informed by the experimental observations described in Fig. 2.29. This points to the
importance of two further parameters:
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• The Mach-number normal to the leading-edge of the incident (pre-shock) flow, MN ,

• The inclination of the incident flow in the leading-edge-normal plane relative to the
thickness plane, αN .

These parameters may be described in terms of existing parameters as

M̄N = M̄(U)





cos2
λ̄ s cos2

β̄ v(U)+ sin2
λ̄ s sin2

β̄ v(U)+ sin2
ᾱv(U) sin2

λ̄ s

−2sin λ̄ s cos λ̄ s sin β̄ v(U)

√
cos2 β̄ v(U)− sin2

ᾱv(U)





1
2

, (A.49)

sin ᾱN =
M̄(U) sin ᾱv(U)

M̄N
. (A.50)

From Fig. 2.29 it may be seen that the structure of the corssflow flowfield is defined by MN

and αN . Three regimes are observed in Fig. 2.29b:

• Region C, in which the bow-shock is attached to the leading-edge. This gives λ̄ s = λ̄ b

at the leading-edge, with lesser values of λ̄ s occuring towards the centerline of the
wing. This regime is defined by MN ≥ 1, with αN smaller than the value required
for detachment of an oblique shock over an equivalent wedge. In this regime, no
communication occurs between the windward and leeward surfaces,

• Region B, in which the bow-shock is detached from the leading-edge. It is noted
that this regime may occur for a supersonic leading-edge (MN ≥ 1) at sufficiently
high αN . The detachment of the shock from the leading-edge implies λ̄ s < λ̄ b at the
maximum value of λ̄ s. Region B is further defined by supersonic expansion about the
leading-edges. This essentially leads to one-way propagation of disturbances from the
windward surface to the leeward surface,

• Region A, in which the bow-shock is detached from the leading-edge and the post-shock
crossflow plane is entirely subsonic. This regime occurs for a subsonic leading-edge
(MN < 1) and may occur for a supersonic leading-edge at sufficiently high αN . The
detachment of the shock from the leading-edge again implies λ̄ s < λ̄ b, with the further
possibility of the shock being detached from the apex of the delta wing.

It is to be noted that in all of the above scenarios, the inclination of the bow shock will
everywhere be such that η̄s ≥ η̄b. Consideration of the relationship between λ̄ s and λ̄ b above
suggests that λ̄ s = O

(
λ̄ b
)

is an appropriate characterization. However, significantly larger
values of η̄s than η̄b may be encountered. These restrictions allow the following parameter
exploration to be conducted:
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• Thin wings will be considered such that sin η̄b = O(τ), where τ ≪ 1 is a small
parameter,

• The following wing sweeps will be considered:

– Low sweep, such that sin λ̄ b = O(τ),

– Moderate sweep, such that sin λ̄ b = O
(
cos λ̄ b

)
= O(1),

– High sweep, such that cos λ̄ b = O(τ),

• Low side-wash will be considered, such that sin β̄ v(U) = O(τ),

• The following angles of attack will be considered:

– Low incidence, such that sin ᾱv(U) = O(τ),

– Moderate incidence, such that sin ᾱv(U) = O
(
cos ᾱv(U)

)
= O(1),

– High sweep, such that cos ᾱv(U) = O(τ),

• As motivated by the above discussion, it will be assumed that λ̄ s = O
(
λ̄ b
)
,

• The shock inclination η̄s will be varied using similar definitions of “low”, “moderate”,
and “high” incidence, with the lower limit being defined by η̄s = O

(
ᾱv(U)

)
.

A.3 Perturbation Terms

A.3.1 Geometric Parameters and Direction Vectors

The unit-vector describing the axis of rotation, r̂, is a control parameter. It has been defined
in Eq. (4.74) using an essentially equivalent definition of polar (ηr) and azimuthal (λr) angles
as was used for the normal vector ¯̂n. Equation (4.74) is repeated below as

r̂ =−sinηr cosλrê1 − sinηr sinλrê2 + cosηrê3 . (A.51)

The following interpretations are offered:

• In considering lifting surfaces, rotations of practical interest will arise from bending or
twist (or both) of the planform. Bending may be associated with rotations about ê1,
while twist is associated with rotations about ê2. Rotations about ê3 may be interpreted
as a shearing rotation of the planform, and are not of practical interest,
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• As a consequence, ηr may be interpreted as a measure of the shearing action, and will
typically be ηr ≈ π

2 . However, it has the formal range of ηr = [0,π],

• By extension, λr may be interpreted as a mixing ratio between pure bending (λr =

0 or ±π) and pure twist (λr =±π

2 ). It has the range λr = [−π,π],

• Each component ri has the range ri = [−1,1] with the constraint of |r̂|= 1.

The perturbation vector to the normal vector, ñ is given below in vector form as

ñ =
(
sin θ̃r

)(
r̂× ¯̂n

)
−
(
1− cos θ̃r

)[ ¯̂n−
(
r̂ · ¯̂n
)
r̂
]
. (A.52)

The following interpretations are offered:

• The angle θ̃r through which the surface is rotated as a perturbation of its orientation is
a control parameter.

The angle θ̃r is dimensionless (radians) and has the range θ̃r = [0,2π].

• The component of the perturbation vector ñ in the ê1 direction will be interpreted as
“turning into the flow”. It is given below as

ñ1 = (r2n̄3 − r3n̄2)sin θ̃r −
(
1− cos θ̃r

)[
n̄1 −

(
r̂ · ¯̂n
)
r1
]
, (A.53)

The vector component ñ1 is dimensionless, and has the range ñ1 = [−1,1],

• The component of the perturbation vector ñ in the ê2 direction will be interpreted as
“spanwise turning”. It is given below as

ñ2 = (r3n̄1 − r1n̄3)sin θ̃r −
(
1− cos θ̃r

)[
n̄2 −

(
r̂ · ¯̂n
)
r2
]
, (A.54)

The vector component ñ2 is dimensionless, and has the range ñ2 = [−1,1],

• The component of the perturbation vector ñ in the ê3 direction will be interpreted as
and adjustment to maintain the unit magnitude of ñ. It is given below as

ñ3 = (r1n̄2 − r2n̄1)sin θ̃r −
(
1− cos θ̃r

)[
n̄3 −

(
r̂ · ¯̂n
)
r3
]
, (A.55)

The vector component ñ3 is dimensionless, and has the range ñ3 = [−1,1],
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• The general case of mixed torsion-bending with r̂ · ê3 = 0 results in perturbation
components given by:

ñ1 = r2
[
n̄3 sin θ̃r −

(
1− cos θ̃r

)
(n̄1r2 − n̄2r1)

]
, (A.56)

ñ2 =−r1
[
n̄3 sin θ̃r −

(
1− cos θ̃r

)
(n̄1r2 − n̄2r1)

]
, (A.57)

ñ3 =−
[
(n̄1r2 − n̄2r1)sin θ̃r +

(
1− cos θ̃r

)
n̄3
]
, (A.58)

• For pure bending through an angle of θ̃r about r̂ = −ê1, the perturbation vector ñ
simplifies to:

ñ1 = 0 , (A.59)

ñ2 = n̄3 sin θ̃r −
(
1− cos θ̃r

)
n̄2 , (A.60)

ñ3 =−
[
n̄2 sin θ̃r +

(
1− cos θ̃r

)
n̄3
]
, (A.61)

• For pure twist through an angle of θ̃r about r̂=−ê2, the perturbation vector ñ simplifies
to:

ñ1 =−
[
n̄3 sin θ̃r +

(
1− cos θ̃r

)
n̄1
]
, (A.62)

ñ2 = 0 , (A.63)

ñ3 = n̄1 sin θ̃r −
(
1− cos θ̃r

)
n̄3 , (A.64)

It is noted here that the perturbation to the velocity vector, Ṽ, is not a control parameter, as the
velocity perturbations are determined by the boundary conditions and governing equations of
the flow.

The direction-vectors associated with body- and shock-velocity vectors Ṽb and Ṽs (and
their un-perturbed counter-parts) may be described using the η-λ formulation adopted for
the unit-normal vector in Eq. (A.1) and for the axis of rotation in Eq. (A.51).

A.3.2 Post-Shock Quantities at the Shock Boundary

The above relations allow w̃(U) to be defined from Eq. (4.107). In the present development,
it will be assumed for simplicity’s sake that w̃(U) is dominated by the turning of the un-
perturbed velocity vector by the perturbation to the surface normal. This is expressed as
follows:

w̃(U) ≈ V̄(U) · ñ , (A.65)
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The perturbations to post-shock fluid quantities ρ̃ , Ṽ, and p̃. These are adapted from
Eqs. (4.111) to (4.113) as

ρ̃

ρ̄R
=

[
1−
(

γ −1
2

)
σ̄

](
4

γ +1

)(
ρ̄

ρ̄R

∣∣V̄(U)

∣∣
w̄(U)

)
w̃(U)∣∣V̄(U)

∣∣ , (A.66)

Ṽ∣∣V̄(U)

∣∣ =−
(

σ̄

1+ σ̄

)
w̄(U)∣∣V̄(U)

∣∣ ñ−
[

1−
(

γ +1
4

)(
σ̄

1+ σ̄

)](
4

γ +1

)
w̃(U)∣∣V̄(U)

∣∣
( ¯̂n+ ñ

)
,

(A.67)

p̃
p̄R

=

[
1+
(

γ −1
2

)(
σ̄

1+ σ̄

)]−1( 4γ

γ +1

)(
p̄

p̄R

∣∣V̄(U)

∣∣
w̄(U)

)
w̃(U)∣∣V̄(U)

∣∣ , (A.68)

A.3.3 Velocity Relations at the Body Surface

While the Rankine-Hugoniot equations effectively prescribe the perturbation velocities at
the shock surface, the non-permeability condition does not fully determine the perturbation
velocities at the body surface. As in the un-perturbed case, it only enforces flow tangency in
the body surface, with the flow direction and velocity magnitude determined by the governing
equations in the interior of the fluid domain. Thus, no attempt is made here to perform a
scaling analysis of the perturbation to fluid properties at the body surface.

A.4 Scaling Analysis for Delta Wings

The present section showcases some results of the application of the scaling-analysis frame-
work covered in this appendix. In particular, a series of delta wings are considered, para-
metrically defined by their leading-edge sweep through λ̄ b. A variety of shock orientations
are considered through λ̄ s and η̄b. The pre-shock Mach number M̄(U) is also treated as a
parameter. A range of pre-shock flow incidences are considered through ᾱv(U).

The scaling analysis introduces the following small parameters:

• τ ≪ 1,

• κ as an intermediate or moderate parameter. In particular, the definition of κ arises
from trigonometric functions. For an angle X , κ defines the scenario where

sinX = O(cosX) = O(κ) , (A.69)
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which by extension yields the result that

O
(
1−κ

2)= O
(
κ

2) . (A.70)

The following relative smallness definition will be enforced

τ ≪ κ , (A.71)

while the relative scaling of the following type of expression has not been prescribed:

1−κ
n with n ̸= 2 , (A.72)

κ
n − τ with n ≥ 2 . (A.73)

In terms of these parameters, the scaling analysis is limited to thin wings such that sin η̄b =

O(τ). Similarly, the pre-shock sideslip angle is maintained at a small value such that
sin β̄ v(U) = O(τ).

The geometric parameters pertaining to the body and shock result in the case definition
and nomenclature shown in Table A.1. This nomenclature is used as a shorthand throughout,
with its adaptations for the velocity and normal vectors shown in Table A.2. Also shown is
the quantification of pre-shock vector components.

The final column of Table A.1 provides an estimate of the expected relationship between
gradients in the thickness and spanwise directions. This is informed by Eqs. (A.49) and (A.50)
and Fig. 2.29. These quantities, along with surface-normal pre-shock velocities, are quantified
in Table A.3.

The minimum Mach-number required for a physical shock to exist for the orientations
defined in the aforementioned tables is given in Table A.4. The associated shock-strength (or
the absence of a shock) is also given.

The components of perturbations to the normal vector for pure bending (r̂ =−ê1) and
for pure twist (r̂ =−ê2) are given in Table A.5. The components of the perturbed normal
vector are given in Table A.6. A comparison of the associated un-perturbed and perturbation
shock-normal pre-shock velocities is given in Table A.7.

The above tables are used with Eqs. (A.19) and (A.67) to derive the scaling analysis for
un-perturbed and perturbation post-shock velocities at a variety of Mach numbers and for
pure twist and bending in Tables A.8 to A.13.

The analysis may be extended to the post-shock fluid density, pressure, and speed of
sound. However, this is not required in order to eliminate directional-dependence in the
governing equations.
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Table A.1 Angle- and case-definition for scaling analysis of boundary-related terms.

λ̄ b ᾱv(U) η̄s Case Code L̄2 and L̄3

sin ᾱv(U) = O(τ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

L̄3 = O(τL̄2)

sin λ̄ b = O(τ) ,

sin λ̄ s = O(τ) ,

sin β̄ v(U) = O(τ)

sin ᾱv(U) = O(κ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

L̄3 = O(τL̄2)

or

L̄3 = O(L̄2)

cos ᾱv(U) = O(τ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

L̄3 = O(L̄2)

sin ᾱv(U) = O(τ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

L̄3 = O(τL̄2)

or

L̄3 = O(L̄2)

sin λ̄ b = O(κ)

sin λ̄ s = O(κ)

sin β̄ v(U) = O(τ)

sin ᾱv(U) = O(κ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

L̄3 = O(L̄2)

cos ᾱv(U) = O(τ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

L̄3 = O(L̄2)

sin ᾱv(U) = O(τ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

L̄3 = O(L̄2)

cos λ̄ b = O(τ)

cos λ̄ s = O(τ)

sin β̄ v(U) = O(τ)

sin ᾱv(U) = O(κ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

L̄3 = O(L̄2)

cos ᾱv(U) = O(τ)

sin η̄s = O(τ)

sin η̄s = O(κ)

cos η̄s = O(τ)

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

L̄3 = O(L̄2)



A.4 Scaling Analysis for Delta Wings 453

Table A.2 Scaling analysis of un-perturbed pre-shock vectors with sin β̄ v(U) = O(τ).

Vector X̄ Case Code X̄1 X̄2 X̄3

λ0-η0

λ0-ηκ

λ0-η1

O
(
τ
[
1− τ2

])

O
(
κ
[
1− τ2

])

O
(
1− τ2

)

O
(
τ2
)

O(τκ)

O
(
τ
[
1− τ2

])

O
(
1− τ2

)

O(κ)

O(τ)

¯̂ns

λκ-η0

λκ-ηκ

λκ-η1

O(τκ)

O
(
κ2
)

O
(
κ
[
1− τ2

])

O(τκ)

O
(
κ2
)

O
(
κ
[
1− τ2

])

O
(
1− τ2

)

O(κ)

O(τ)

λ1-η0

λ1-ηκ

λ1-η1

O
(
τ2
)

O(τκ)

O
(
τ
[
1− τ2

])

O
(
τ
[
1− τ2

])

O
(
κ
[
1− τ2

])

O
(
1− τ2

)

O
(
1− τ2

)

O(κ)

O(τ)

¯̂V

α0

ακ

α1

O
(
1− τ2

)

O
(
κ
[
1− τ2

])

O
(
τ2
)

O(τ)

O(τ)

O(τ)

O(τ)

O(κ)

O
(
1− τ2

)
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Table A.3 Scaling analysis of boundary-related dot-products.

Case Code M̄N
/

M̄(U) sin ᾱN
¯̂V(U) · ¯̂nb w̄(U)

/∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

O
(
1− τ2

)
O
(
τ
[
1+ τ2

])
O
(
τ
[
1− τ2

])
O
(
τ
[
1− τ2

])

O(κ[1+ τ])

O
(
1− τ2

)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O
(
1− τ2

)
O
(
κ
[
1+ τ2

])
O(κ[1+ τ])

O(κ[1+ τ])

O
(
κ2
[
1− τ2

])

O(κ[1+ τ])

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O
(
1− τ2

)
O
(
1− τ2

)
O
(
1− τ2

)
O
(
1− τ2

)

O
(
κ
[
1− τ2

])

O
(
τ
[
1− τ2

])

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

O(κ[1− τ]) O
(
τκ−1[1+ τ]

)
O(τ[1+κ − τ])

O(τ[1+κ − τ])

O
(
κ2
[
1+ τ

(
κ−1 −1

)])

O(κ[1− τ])

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O(κ[1−κτ]) O
(
κ2
[
1+ τκ−1

])
O(κ[1+ τκ])

O(κ[1+ τκ])

O
(
κ2[1+κ − τ]

)

O
(
κ2
[
1− τ2

])

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O
(
1− τ2

)
O
(
1− τ2

)
O
(
1− τ2

)
O
(
1− τ2

)

O(κ[1− τκ])

O
(
τ
[
1−κ − τ2

])

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

O
(
τ
[
1− τ2

])
O
(
1− τ2

)
O
(
τ
[
1− τ2

])
O
(
τ
[
1− τ2

])

O
(
τκ
[
1− τ2

])

O
(
τ2[1− τ]

)

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O
(
κ
[
1− τ2

])
O
(
1− τ2

)
O
(
κ
[
1− τ2

])
O
(
κ
[
1− τ2

])

O
(
κ2
[
1− τ

(
κ−1 −1

)])

O
(
τ
[
1− τ2

])

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
1− τ2

)
O
(
1− τ2

)
O
(
1− τ2

)
O
(
1− τ2

)

O(κ[1− τ])

O
(
τ2[1− τ]

)
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Table A.4 Scaling analysis of shock-strength as a function of M̄(U).

Case Code M̄(U) ≥ . . . σ̄
/
(1+ σ̄),

M̄(U) = O(1) M̄(U) = O
(
κ−2

)
M̄(U) = O

(
τ−1
)

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

O
(
τ−1
)

O
(
κ−1

)

O(1)

no shock

no shock

O
(
τ2
)

no shock

O
(
κ2[1+ τ]

)

O
(
1−κ4

[
1+ τ2

])

O
(
τ2
)

O
(
1− τ2

)

O
(
1− τ2

)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O
(
κ−1

)

O
(
κ−2

)

O
(
κ−1

)

no shock

no shock

no shock

O
(
κ2[1+ τ]

)

O
(
τ2
)

O
(
κ2[1+ τ]

)

O
(
1− τ2

)

O
(
1− τ2

)

O
(
1− τ2

)

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O(1)

O
(
κ−1

)

O
(
τ−1
)

O
(
τ2
)

no shock

no shock

O
(
1−κ4

[
1+ τ2

])

O
(
κ2
[
1− τ2

])

no shock

O
(
1− τ2

)

O
(
1− τ2

)

O
(
τ2
)

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

O
(
τ−1
)

O
(
κ−2

)

O
(
κ−1

)

no shock

no shock

no shock

no shock

O
(
τ
(
κ−1 −1

))

O
(
κ2[1− τ]

)

O(κ − τ)

O
(
1− τ2

)

O
(
1− τ2

)

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O
(
κ−1

)

O
(
κ−2

)

O
(
κ−2

)

no shock

no shock

no shock

O
(
κ2[1+ τκ]

)

O(κ − τ)

O
(
τ2
)

O
(
1− τ2

)

O
(
1− τ2

)

O
(
1− τ2

)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O(1)

O
(
κ−1

)

O
(
τ−1
)

O
(
τ2
)

no shock

no shock

O
(
1−κ4

[
1+ τ2

])

O
(
κ2[1− τκ]

)

no shock

O
(
1− τ2

)

O
(
1− τ2

)

O
(
κ + τ2

)

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

O
(
τ−1
)

O
(
τ−1κ−1

)

O
(
τ−2
)

no shock

no shock

no shock

no shock

no shock

no shock

O
(
τ2
)

O
(
1− τ2

)

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O
(
κ−1

)

O
(
κ−2

)

O
(
τ−1
)

no shock

no shock

no shock

O
(
κ2
[
1− τ2

])

O
(
τ
(
κ−1 −1

))

no shock

O
(
1− τ2

)

O
(
1− τ2κ−4

)

O
(
τ2
)

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O(1)

O
(
κ−1

)

O
(
τ−2
)

O
(
τ2
)

no shock

no shock

O
(
1−κ4

[
1− τ2

])

O
(
κ2[1− τ]

)

no shock

O
(
1− τ2

)

O
(
τ2
)

no shock
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Table
A

.5
Scaling

analysis
ofthe

perturbation
to

the
shock

norm
al-vectorforsin

θ̃
r
=

O
(
τ

θ
).

R
otation

A
xis

C
ase

C
ode

ñ
1

ñ
2

ñ
3

λ
0-η

0

λ
0-η

κ

λ
0-η

1

000

O
(
τ

θ [1−
τ

2 ]−
τ

2θ
τ

2 )

O
(
τ

θ
κ−

τ
2θ
τ

κ )

O
(
τ

θ
τ−

τ
2θ
τ [1−

τ
2 ])

O
(
τ

θ
τ

2
+

τ
2θ [1−

τ
2 ])

O
(
τ

θ
κ

τ
+

τ
2θ
κ )

O
(
τ

θ
τ [1−

τ
2 ]
+

τ
2θ
τ )

r̂
=
−

ê1

λ
κ

-η
0

λ
κ

-η
κ

λ
κ

-η
1

000

O
(
τ

θ [1−
τ

2 ]−
τ

2θ
τ

κ )

O
(
τ

θ
κ−

τ
2θ
κ

2 )

O
(
τ

θ
τ−

τ
2θ
κ [1−

τ
2 ])

O
(
τ

θ
κ

τ
+

τ
2θ [1−

τ
2 ])

O
(
τ

θ
κ

2
+

τ
2θ
κ )

O
(
τ

θ
κ [1−

τ
2 ]
+

τ
2θ
τ )

λ
1-η

0

λ
1-η

κ

λ
1-η

1

000

O
(
τ

θ [1−
τ

2 ]−
τ

2θ
τ [1−

τ
2 ])

O
(
τ

θ
κ−

τ
2θ
κ [1−

τ
2 ])

O
(
τ

θ
τ−

τ
2θ [1−

τ
2 ])

O
(
τ

θ
τ [1−

τ
2 ]
+

τ
2θ [1−

τ
2 ])

O
(
τ

θ
κ [1−

τ
2 ]
+

τ
2θ
κ )

O
(
τ

θ [1−
τ

2 ]
+

τ
2θ
τ )

λ
0-η

0

λ
0-η

κ

λ
0-η

1

O
(
τ

θ [1−
τ

2 ]
+

τ
2θ
τ [1−

τ
2 ])

O
(
τ

θ
κ
+

τ
2θ
κ [1−

τ
2 ])

O
(
τ

θ
τ
+

τ
2θ [1−

τ
2 ])

000

O
(
τ

θ
τ [1−

τ
2 ]−

τ
2θ [1−

τ
2 ])

O
(
τ

θ
κ [1−

τ
2 ]−

τ
2θ
κ )

O
(
τ

θ [1−
τ

2 ]−
τ

2θ
τ )

r̂
=
−

ê2

λ
κ

-η
0

λ
κ

-η
κ

λ
κ

-η
1

O
(
τ

θ [1−
τ

2 ]
+

τ
2θ
τ

κ )

O
(
τ

θ
κ
+

τ
2θ
κ

2 )

O
(
τ

θ
τ
+

τ
2θ
κ [1−

τ
2 ])

000

O
(
τ

θ
τ

κ−
τ

2θ [1−
τ

2 ])

O
(
τ

θ
κ

2 [1−
τ

2 ]−
τ

2θ
κ )

O
(
τ

θ
κ [1−

τ
2 ]−

τ
2θ
τ )

λ
1-η

0

λ
1-η

κ

λ
1-η

1

O
(
τ

θ [1−
τ

2 ]
+

τ
2θ
τ

2 )

O
(
τ

θ
κ
+

τ
2θ
κ

τ )

O
(
τ

θ
τ
+

τ
2θ
τ [1−

τ
2 ])

000

O
(
τ

θ
τ

2−
τ

2θ [1−
τ

2 ])

O
(
τ

θ
τ

κ [1−
τ

2 ]−
τ

2θ
κ )

O
(
τ

θ
τ [1−

τ
2 ]−

τ
2θ
τ )
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(τ

θ
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ot
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n
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xi
s
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as

e
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n̄ 1
+

ñ 1
n̄ 2

+
ñ 2

n̄ 3
+

ñ 3

λ
0-

η
0

λ
0-

η
κ

λ
0-

η
1

O
( τ
[ 1

−
τ

2]
)

O
( κ
[ 1

−
τ

2]
)

O
( 1

−
τ

2)

O
( τ

θ

[ 1
−

τ
2]
+

τ
2[

1
−

τ
2 θ
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O
( τ

θ
κ
+

τ
κ
[ 1

−
τ

2 θ
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O
( τ

θ
τ
+

τ
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

θ
τ

2
−
[ 1

−
τ

2 θ
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−
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)

O
( τ

θ
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τ
−
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[ 1

−
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2 θ
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O
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θ
τ
[ 1

−
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−

τ
[ 1

−
τ

2 θ
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−

ê 1

λ
κ
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0

λ
κ

-η
κ

λ
κ
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1

O
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κ
)
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O
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[ 1
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( τ
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−
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+
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[ 1
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+

κ
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+
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2]
−

τ
[ 1

−
τ

2 θ

])

λ
0-

η
0

λ
0-

η
κ

λ
0-

η
1

O
( τ

θ

[ 1
−

τ
2]
−

τ
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

θ
κ
−

κ
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

θ
τ
−
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

2)

O
(τ

κ
)

O
( τ
[ 1

−
τ

2]
)

O
( τ

θ
τ
[ 1

−
τ

2]
+
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

θ
κ
[ 1

−
τ

2]
+

κ
[ 1

−
τ

2 θ

])

O
( τ

θ

[ 1
−

τ
2]
+

τ
[ 1

−
τ

2 θ

])

r̂
=
−

ê 2

λ
κ

-η
0

λ
κ

-η
κ

λ
κ

-η
1

O
( τ

θ

[ 1
−

τ
2]
−

τ
κ
[ 1

−
τ

2 θ

])

O
( τ

θ
κ
−

κ
2[

1
−

τ
2 θ

])

O
( τ

θ
τ
−

κ
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
(τ

κ
)

O
( κ

2)

O
( κ
[ 1

−
τ

2]
)

O
( τ

θ
τ

κ
+
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

θ
κ

2[
1
−

τ
2]
+

κ
[ 1

−
τ

2 θ

])

O
( τ

θ
κ
[ 1

−
τ

2]
+

τ
[ 1

−
τ

2 θ

])

λ
1-

η
0

λ
1-

η
κ

λ
1-

η
1

O
( τ

θ

[ 1
−

τ
2]
−

τ
2[

1
−

τ
2 θ

])

O
( τ

θ
κ
−

κ
τ
[ 1

−
τ

2 θ

])

O
( τ

θ
τ
−

τ
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ
[ 1

−
τ

2]
)

O
( κ
[ 1

−
τ

2]
)

O
( 1

−
τ

2)

O
( τ

θ
τ

2
+
[ 1

−
τ

2 θ

][
1
−

τ
2]
)

O
( τ

θ
τ

κ
[ 1

−
τ

2]
+

κ
[ 1

−
τ

2 θ

])

O
( τ

θ
τ
[ 1

−
τ

2]
+

τ
[ 1

−
τ

2 θ

])
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Table A.7 Scaling analysis of un-perturbed and perturbation shock-normal velocities.

Case Code w̄(U)

/∣∣V̄(U)

∣∣ w̃(U)

/∣∣V̄(U)

∣∣, w̃(U)

/∣∣V̄(U)

∣∣,
r̂ =−ê1, τθ = O(τ) r̂ =−ê2, τθ = O(τ)

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

O
(
τ
[
1− τ2

])

O(κ[1+ τ])

O
(
1− τ2

)

O
(
τ2
[
1− τ2

])

O
(
τ2κ[1+ τ]

)

O
(
τ3[1+ τ]

)

O
(
τ
[
1− τ2

])

O
(
τκ
[
1− τ2

])

O
(
τ2
[
1− τ2

])

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O(κ[1+ τ])

O
(
κ2
[
1− τ2

])

O(κ[1+ τ])

O
(
τ2[1− τ]

)

O
(
τ2
[
1− τ2

])

O
(
τ2κ[1+ τ]

)

O
(
τκ
[
1− τ2

])

O
(
τ2κ2

[
1− τ2

])

O(τκ[1− τ])

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O
(
1− τ2

)

O
(
κ
[
1− τ2

])

O
(
τ
[
1− τ2

])

O
(
τ2[1− τ]

)

O
(
τ2
[
1− τ2

])

O
(
τ2[1+ τ]

)

O
(
τ2[1+ τ]

)

O
(
τ2κ[1− τ]

)

O
(
τ
[
1− τ2

])

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

O(τ[1+κ − τ])

O
(
κ2
[
1+ τ

(
κ−1 −1

)])

O(κ[1− τ])

O
(
τ2[1+ τ]

)

O
(
τ2κ[1+ τ(1−κ)]

)

O
(
τ2κ
[
1+ τ

(
κ−1 −1

)])

O
(
τ
[
1− τ2

])

O
(
τκ
[
1+ τ2

])

O
(
τ2
[
1− τ2

])

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O(κ[1+ τκ])

O
(
κ2[1+κ − τ]

)

O
(
κ2
[
1− τ2

])

O
(
τ2
[
1− τ2

])

O
(
τκ3
[
1+ τκ−2

])

O
(
τκ2
[
1+ τ2

])

O(τκ[1+ τ(1−κ)])

O
(
τκ2[1−κ + τ]

)

O
(
τκ2[1− τ]

)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O
(
1− τ2

)

O(κ[1− τκ])

O
(
τ
[
1−κ − τ2

])

O
(
τ2
[
1− τ2

])

O
(
τκ2
[
1+ τκ−1

])

O
(
τκ
[
1+ τ2κ−1

])

O
(
τ2[1−κ + τ]

)

O
(
τκ2
[
1− τκ−1

])

O
(
τκ
[
1− τ2κ−1

])

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

O
(
τ
[
1− τ2

])

O
(
τκ
[
1− τ2

])

O
(
τ2[1− τ]

)

O
(
τ2[1+ τ]

)

O
(
τ2
[
1− τ2

])

O
(
τ2
[
1− τ2

])

O
(
τ
[
1− τ2

])

O
(
τκ
[
1− τ2

])

O
(
τ2
[
1− τ2

])

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O
(
κ
[
1− τ2

])

O
(
κ2
[
1− τ

(
κ−1 −1

)])

O
(
τ
[
1− τ2

])

O
(
τ2
[
1− τ2

])

O
(
τκ2
[
1+ τκ−1

])

O
(
τκ
[
1+ τ2κ−1

])

O(τκ[1+ τ])

O
(
τκ2
[
1− τ2

])

O
(
τ3κ
[
1− τ2

])

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
1− τ2

)

O(κ[1− τ])

O
(
τ2[1− τ]

)

O
(
τ2
[
1− τ2

])

O(τκ[1+ τ])

O
(
τ
[
1− τ2

])

O
(
τ2
[
1− τ2

])

O
(
τ3κ[1+ τ]

)

O
(
τ2
[
1− τ2

])
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Table A.8 Scaling analysis of post-shock velocity components for M̄(U) = O(1), r̂ =−ê1,
τθ = O(τ). Only the dominant terms are shown. in ≡ (1−κn).

Case Code
v̄1∣∣V̄(U)

∣∣
v̄2∣∣V̄(U)

∣∣
v̄3∣∣V̄(U)

∣∣
ṽ1∣∣V̄(U)

∣∣
ṽ2∣∣V̄(U)

∣∣
ṽ3∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

no shock

no shock

O(1)

no shock

no shock

O(τ)

no shock

no shock

O(τ)

no shock

no shock

O
(
τ2
)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ3
)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O
(
τ2
)

no shock

no shock

O(τ)

no shock

no shock

O(1)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ4
)

no shock

no shock

O
(
τ2
)

no shock

no shock

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O
(
τ2
)

no shock

no shock

O(τ)

no shock

no shock

O(1)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ2i1

)

no shock

no shock

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
τ2
)

no shock

no shock

O(τ)

no shock

no shock

O(1)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ2
)

no shock

no shock
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Table A.9 Scaling analysis of post-shock velocity components for M̄(U) = O
(
κ−2), r̂ =−ê1,

τθ = O(τ). Only the dominant terms are shown. in ≡ (1−κn), jn ≡ (κn − τ).

Case Code
v̄1∣∣V̄(U)

∣∣
v̄2∣∣V̄(U)

∣∣
v̄3∣∣V̄(U)

∣∣
ṽ1∣∣V̄(U)

∣∣
ṽ2∣∣V̄(U)

∣∣
ṽ3∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

no shock

O(i4)

O
(
κ4
)

no shock

O(τi4)

O
(
τκ4
)

no shock

O( j4)

O
(
τκ4
)

no shock

O
(
τκ4
)

O
(
τ2i4

)

no shock

O
(
τ2κ4

)

O
(
τ3κ4

)

no shock

O
(
κ4
)

O(τi4)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O(κ)

O(κ)

O
(
κ3
)

O(τ)

O(τ)

O(τi3)

O
(
κ3
)

O(κ)

O(κ)

O
(
τκ3
)

O
(
τ2κ3

)

O
(
τκ3
)

O
(
τ3κ3

)

O
(
τ3κ3

)

O
(
τ2κ3

)

O
(
τκ3
)

O
(
τ2κ3

)

O
(
τκ3
)

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O(τi4)

O
(
κ4
)

no shock

O(τ)

O(τi4)

no shock

O
(
κ4
)

O(i4)

no shock

O(τi4)

O
(
τ2κ3

)

no shock

O
(
τ4κ4

)

O
(
τ3κ3

)

no shock

O
(
τ2i4

)

O
(
τκ3
)

no shock

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

no shock

O(1)

O(i4)

no shock

O(τi4)

O( j4)

no shock

O
(
τκ2
)

O(τi3)

no shock

O
(
τκ3
)

O
(
τ2κ3

)

no shock

O
(
τκ3
)

O
(
τ2κ3

)

no shock

O
(
τκ2
)

O
(
τκ4
)

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O(κ)

O(κi4)

O(κ)

O(τi4)

O
(
κ5 − τ

)

O(τ)

O
(
κ3
)

O(κi4)

O(κ)

O
(
τκ3
)

O
(
τκ4
)

O
(
τκ3
)

O
(
τ2κ4

)

O
(
τκ4i1

)

O
(
τκ3
)

O
(
τκ3
)

O
(
τκ3i1

)

O
(
τ2κ2

)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O(τκi4)

O
(
κ5
)

no shock

O(τ[1−κi4])

O( j5)

no shock

O
(
κ4
)

O(i4)

no shock

O(τi4)

O
(
τκ4
)

no shock

O
(
τ3κ5i1

)

O
(
τκ6
)

no shock

O
(
τ2i4

)

O
(
τκ5
)

no shock

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O(κ)

O(κ)

no shock

O(τi1)

O
(
τκ2
)

no shock

O
(
κ3
)

O(κ)

no shock

O
(
τκ3
)

O
(
τ2κ2i1

)

no shock

O
(
τ2κ3

)

O
(
τκ3
)

no shock

O
(
τκ3
)

O
(
τκ3
)

no shock

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
τ2κ4

)

O(τ j4)

no shock

O
(
τκ4
)

O( j4)

no shock

O
(
κ4
)

O(i4)

no shock

O(τ)

O
(
τκ4
)

no shock

O
(
τ3
)

O
(
τ3κ4

)

no shock

O
(
τ2
)

O
(
τ2κ4

)

no shock
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Table A.10 Scaling analysis of post-shock velocity components for M̄(U) =O
(
τ−1), r̂ =−ê1,

τθ = O(τ). Only the dominant terms are shown. in ≡ (1−κn), jn ≡ (κn − τ).

Case Code
v̄1∣∣V̄(U)

∣∣
v̄2∣∣V̄(U)

∣∣
v̄3∣∣V̄(U)

∣∣
ṽ1∣∣V̄(U)

∣∣
ṽ2∣∣V̄(U)

∣∣
ṽ3∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

O(1)

O
(
κ2
)

O(1)

O(τ)

O
(
τκ2
)

O(τ)

O(τ)

O( j2)

O(τ)

O
(
τ2
)

O
(
τκ2
)

O
(
τ2
)

O
(
τ3
)

O
(
τ4κ2

)

O
(
τ3
)

O(τ)

O
(
τκ2
)

O(τ)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O(κ)

O
(
κ3
)

O(κ)

O(τ)

O(τi3)

O(τκ)

O(κ)

O
(
κ3
)

O(κ)

O(τκ)

O
(
τκ3
)

O
(
τ2κ
)

O
(
τ5κ3

)

O
(
τ5κ3

)

O
(
τ4κ
)

O
(
τ2κ
)

O
(
τκ3
)

O(τκ)

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O(τ)

O
(
κ2
)

O
(
τ2
)

O(τ)

O
(
τκ2
)

O(τ)

O(1)

O
(
κ2
)

O(1)

O(τ)

O
(
τκ2
)

O(τ)

O
(
τ6
)

O
(
τ5κ
)

O
(
τ2
)

O
(
τ2
)

O
(
τκ2
)

O
(
τ2
)

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

O(1)

O(i4)

O
(
κ2
)

O(τ)

O( j4)

O( j2)

O(τi1)

O( j3)

O(τi1)

O
(
τi21
)

O
(
τκ3
)

O
(
τ2κ
)

O(τκi1)

O
(
τ3κ3

)

O
(
τ4κ
)

O(τi1)

O
(
τκ4
)

O
(
τκ2
)

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O(κ)

O(κi3)

O
(
κ3
)

O
(
τκ2
)

O( j4)

O( j3)

O(κ)

O
(
κ3
)

O(κ)

O(τκ)

O
(
τκ3
)

O
(
τ2κ2

)

O
(
τ4κ2

)

O
(
τ3κ4

)

O
(
τ3κ3

)

O
(
τ2κi1

)

O
(
τκ4
)

O
(
τκ3
)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O(τκ)

O
(
κ3
)

O
(
τ
[
κ2i1 − τ

])

O(τi1)

O( j3)

O
(
τκ2
)

O(1)

O
(
κ2
)

O(1)

O(τ)

O
(
τκ2
)

O
(
τκ2i1

)

O
(
τ5κi1

)

O
(
τ3κ4

)

O
(
τκ2i1

)

O
(
τ2i1

)

O
(
τκ3
)

O
(
τ2κi1

)

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

O(1)

O(1)

no shock

O(τ)

O
(
τκ2
)

no shock

O(τ)

O
(
τκ2
)

no shock

O
(
τ2
)

O
(
τ2κ2

)

no shock

O
(
τ2
)

O
(
τ4κ
)

no shock

O(τ)

O
(
τ3κ2

)

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O(κ)

O(κ)

O(κ)

O(τi1)

O( j3)

O(τ)

O(κ)

O
(
κ3
)

O(κ)

O(τκ)

O
(
τκ3
)

O
(
τ4κ
)

O
(
τ4κ
)

O
(
τ3κ−1

)

O
(
τ3κ
)

O
(
τ2κ
)

O
(
τ2κ3

)

O
(
τ4κ
)

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
τ2
)

O
(
τ2
)

no shock

O(τ)

O(τ)

no shock

O(1)

O(1)

no shock

O(τ)

O
(
τ3κ2

)

no shock

O
(
τ3
)

O
(
τ3κ2

)

no shock

O
(
τ2
)

O
(
τ3κ2

)

no shock



462 Scaling Analysis of the Perturbed Euler and Rankine-Hugoniot Equations

Table A.11 Scaling analysis of post-shock velocity components for M̄(U) = O(1), r̂ =−ê2,
τθ = O(τ). Only the dominant terms are shown. in ≡ (1−κn).

Case Code
v̄1∣∣V̄(U)

∣∣
v̄2∣∣V̄(U)

∣∣
v̄3∣∣V̄(U)

∣∣
ṽ1∣∣V̄(U)

∣∣
ṽ2∣∣V̄(U)

∣∣
ṽ3∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

no shock

no shock

O(1)

no shock

no shock

O(τ)

no shock

no shock

O(τ)

no shock

no shock

O
(
τ2
)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ3
)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O
(
τ2
)

no shock

no shock

O(τ)

no shock

no shock

O(1)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ4
)

no shock

no shock

O
(
τ2
)

no shock

no shock

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O
(
τ2
)

no shock

no shock

O(τ)

no shock

no shock

O(1)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ2i1

)

no shock

no shock

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
τ2
)

no shock

no shock

O(τ)

no shock

no shock

O(1)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ3
)

no shock

no shock

O
(
τ2
)

no shock

no shock
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Table A.12 Scaling analysis of post-shock velocity components for M̄(U) =O
(
κ−2), r̂=−ê2,

τθ = O(τ). Only the dominant terms are shown. in ≡
(
1−κ4), jn ≡ (κn − τ).

Case Code
v̄1∣∣V̄(U)

∣∣
v̄2∣∣V̄(U)

∣∣
v̄3∣∣V̄(U)

∣∣
ṽ1∣∣V̄(U)

∣∣
ṽ2∣∣V̄(U)

∣∣
ṽ3∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

no shock

O(i4)

O
(
κ4
)

no shock

O(τi4)

O
(
τκ4
)

no shock

O( j4)

O
(
τκ4
)

no shock

O
(
τκ4
)

O
(
τ2i4

)

no shock

O
(
τ2κ4

)

O
(
τ3κ4

)

no shock

O
(
κ4
)

O(τi4)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O(κ)

O(κ)

O
(
κ3
)

O(τ)

O(τ)

O(τi3)

O
(
κ3
)

O(κ)

O(κ)

O
(
τκ3
)

O
(
τ2κ3

)

O
(
τκ3
)

O
(
τ3κ3

)

O
(
τ3κ3

)

O
(
τ2κ3

)

O
(
τκ3
)

O
(
τ2κ3

)

O
(
τκ3
)

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O(τi4)

O
(
κ4
)

no shock

O(τ)

O(τi4)

no shock

O
(
κ4
)

O(i4)

no shock

O(τi4)

O
(
τ2κ3

)

no shock

O
(
τ4κ4

)

O
(
τ3κ3

)

no shock

O
(
τ2i4

)

O
(
τκ3
)

no shock

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

no shock

O(1)

O(i4)

no shock

O(τi4)

O(l)

no shock

O
(
τκ2
)

O(τi3)

no shock

O
(
τκ3
)

O
(
τ2κ3

)

no shock

O
(
τκ3
)

O
(
τ2κ3

)

no shock

O
(
τκ2
)

O
(
τκ4
)

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O(κ)

O(κi4)

O(κ)

O(τi4)

O( j5)

O(τ)

O
(
κ3
)

O(κi4)

O(κ)

O
(
τκ3
)

O
(
τκ4
)

O
(
τκ3
)

O
(
τ2κ4

)

O
(
τκ4i1

)

O
(
τκ3
)

O
(
τκ3
)

O
(
τκ3i1

)

O
(
τ2κ2

)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O(τκi4)

O
(
κ5
)

no shock

O(τ[1−κi4])

O( j5)

no shock

O
(
κ4
)

O(i4)

no shock

O(τi4)

O
(
τκ4
)

no shock

O
(
τ3κ5i1

)

O
(
τκ6
)

no shock

O
(
τ2i4

)

O
(
τκ5
)

no shock

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O(κ)

O(κ)

no shock

O(τi1)

O
(
τκ2
)

no shock

O
(
κ3
)

O(κ)

no shock

O
(
τκ3
)

O
(
τ2κ2i1

)

no shock

O
(
τ2κ3

)

O
(
τκ3
)

no shock

O
(
τκ3
)

O
(
τκ3
)

no shock

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
τ2κ4

)

O(τ j4)

no shock

O
(
τκ4
)

O( j4)

no shock

O
(
κ4
)

O(i4)

no shock

O(τ)

O
(
τκ4
)

no shock

O
(
τ3
)

O
(
τ3κ4

)

no shock

O
(
τ2
)

O
(
τ2κ4

)

no shock
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Table A.13 Scaling analysis of post-shock velocity components for M̄(U) =O
(
τ−1), r̂ =−ê2,

τθ = O(τ). Only the dominant terms are shown. in ≡ (1−κn), jn ≡ (κn − τ).

Case Code
v̄1∣∣V̄(U)

∣∣
v̄2∣∣V̄(U)

∣∣
v̄3∣∣V̄(U)

∣∣
ṽ1∣∣V̄(U)

∣∣
ṽ2∣∣V̄(U)

∣∣
ṽ3∣∣V̄(U)

∣∣

λ0-α0-η0

λ0-α0-ηκ

λ0-α0-η1

O(1)

O
(
κ2
)

O(1)

O(τ)

O
(
τκ2
)

O(τ)

O(τ)

O( j2)

O(τ)

O
(
τ2
)

O
(
τκ2
)

O
(
τ2
)

O
(
τ3
)

O
(
τ4κ2

)

O
(
τ3
)

O(τ)

O
(
τκ2
)

O(τ)

λ0-ακ-η0

λ0-ακ-ηκ

λ0-ακ-η1

O(κ)

O
(
κ3
)

O(κ)

O(τ)

O(τi3)

O(τκ)

O(κ)

O
(
κ3
)

O(κ)

O(τκ)

O
(
τκ3
)

O
(
τ2κ
)

O
(
τ5κ3

)

O
(
τ5κ3

)

O
(
τ4κ
)

O
(
τ2κ
)

O
(
τκ3
)

O(τκ)

λ0-α1-η0

λ0-α1-ηκ

λ0-α1-η1

O(τ)

O
(
κ2
)

O
(
τ2
)

O(τ)

O
(
τκ2
)

O(τ)

O(1)

O
(
κ2
)

O(1)

O(τ)

O
(
τκ2
)

O(τ)

O
(
τ6
)

O
(
τ5κ
)

O
(
τ2
)

O
(
τ2
)

O
(
τκ2
)

O
(
τ2
)

λκ-α0-η0

λκ-α0-ηκ

λκ-α0-η1

O(1)

O(i4)

O
(
κ2
)

O(τ)

O( j4)

O( j2)

O(τi1)

O( j3)

O(τi1)

O
(
τi21
)

O
(
τκ3
)

O
(
τ2κ
)

O(τκi1)

O
(
τ3κ3

)

O
(
τ4κ
)

O(τi1)

O
(
τκ4
)

O
(
τκ2
)

λκ-ακ-η0

λκ-ακ-ηκ

λκ-ακ-η1

O(κ)

O(κi3)

O
(
κ3
)

O
(
τκ2
)

O( j4)

O( j3)

O(κ)

O
(
κ3
)

O(κ)

O(τκ)

O
(
τκ3
)

O
(
τ2κ2

)

O
(
τ4κ2

)

O
(
τ3κ4

)

O
(
τ3κ3

)

O
(
τ2κi1

)

O
(
τκ4
)

O
(
τκ3
)

λκ-α1-η0

λκ-α1-ηκ

λκ-α1-η1

O(τκ)

O
(
κ3
)

O
(
τ
[
κ2i1 − τ

])

O(τi1)

O( j3)

O
(
τκ2
)

O(1)

O
(
κ2
)

O(1)

O(τ)

O
(
τκ2
)

O
(
τκ2i1

)

O
(
τ5κi1

)

O
(
τ3κ4

)

O
(
τκ2i1

)

O
(
τ2i1

)

O
(
τκ3
)

O
(
τ2κi1

)

λ1-α0-η0

λ1-α0-ηκ

λ1-α0-η1

O(1)

O(1)

no shock

O(τ)

O
(
τκ2
)

no shock

O(τ)

O
(
τκ2
)

no shock

O
(
τ2
)

O
(
τ2κ2

)

no shock

O
(
τ2
)

O
(
τ4κ
)

no shock

O(τ)

O
(
τ3κ2

)

no shock

λ1-ακ-η0

λ1-ακ-ηκ

λ1-ακ-η1

O(κ)

O(κ)

O(κ)

O(τi1)

O( j3)

O(τ)

O(κ)

O
(
κ3
)

O(κ)

O(τκ)

O
(
τκ3
)

O
(
τ4κ
)

O
(
τ4κ
)

O
(
τ3κ−1

)

O
(
τ3κ
)

O
(
τ2κ
)

O
(
τ2κ3

)

O
(
τ4κ
)

λ1-α1-η0

λ1-α1-ηκ

λ1-α1-η1

O
(
τ2
)

O
(
τ2
)

no shock

O(τ)

O(τ)

no shock

O(1)

O(1)

no shock

O(τ)

O
(
τ3κ2

)

no shock

O
(
τ3
)

O
(
τ3κ2

)

no shock

O
(
τ2
)

O
(
τ3κ2

)

no shock
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