Proof of the proportion 4.1

Set $x = (I, A, E, S)^{T}$, with W^{T} being the transpose of the vector W. Then the system can be written as

$$\dot{x} = \mathcal{F}(x) - \mathcal{V}(x)$$

where

$$\mathcal{F}(x) = \begin{pmatrix} \frac{\mu_v \epsilon b I_v S}{\psi} \\ 0 \\ 0 \\ \frac{\sigma_a \epsilon A X + \sigma_i \epsilon I X}{\Gamma} \\ 0 \end{pmatrix},$$
$$\mathcal{V}(x) = \begin{pmatrix} (\eta + \rho + \mu) E \\ (\mu + \alpha_1) A - \rho E \\ (\mu + \delta + \alpha_2) I - \eta E \\ (\beta + \mu_v) E_v \\ -\beta E_v + \mu_v I_v \end{pmatrix}.$$

According to the theory of [1], the basic reproduction number \mathcal{R}_0 of our system is the spectral radius of FV^{-1} , where F and V are the matrices

and

$$V = \begin{pmatrix} (\eta + \rho + \mu) & 0 & 0 & 0 & 0 \\ -\rho & (\alpha_1 + \mu) & 0 & 0 & 0 \\ -\rho & 0 & (\alpha_2 + \delta + \mu) & 0 & 0 \\ 0 & 0 & 0 & (\beta + \mu_v) & 0 \\ 0 & 0 & 0 & -\beta & \mu_v \end{pmatrix}.$$

The matrix F is a non-negative matrix of rank one and can be written as the product of the vectors, where V is a non-singular M-matrix. The inverse of V is

$$V^{-1} = \begin{pmatrix} \frac{1}{\eta + \rho + \mu} & 0 & 0 & 0 & 0\\ \frac{-\eta +}{(\eta + \rho + \mu)(\alpha_2 + \delta + \mu)} & \frac{1}{\alpha_2 + \delta + \mu} & 0 & 0 & 0\\ \frac{\rho}{(\eta + \rho + \mu)(\alpha_1 + \mu)} & 0 & \frac{1}{\alpha_1 + \mu} & 0 & 0\\ 0 & 0 & 0 & \frac{-\eta}{(\gamma + \mu_v) + \mu_v} & \frac{1}{\mu_v} \end{pmatrix}.$$

Multiplying F and V^{-1} gives the next generation matrix

where

 $\begin{aligned} k_1 &= \frac{\beta \epsilon b \Gamma}{(\beta + \mu_v) \mu \psi} \\ k_2 &= \frac{\epsilon \Gamma \sigma_i}{\mu \psi} \\ k_3 &= \frac{\eta \sigma_i \mu \epsilon \psi}{(\eta + \rho + \mu)(\alpha_2 + \delta + \mu) \mu_v \Gamma} + \frac{\rho \sigma_a \epsilon \mu \psi}{(\eta + \rho + \mu)(\alpha_1 + \mu) \mu_v \Gamma} \\ k_4 &= \frac{\sigma_i \mu \epsilon \psi}{(\alpha_2 + \delta + \mu) \mu_v \Gamma} \\ k_5 &= \frac{\sigma_a \epsilon \mu \psi}{(\alpha_1 + \mu) \mu_v \Gamma} \end{aligned}$

Hence we compute the eigenvalues to obtain the spectral radius of the matrix FV^{-1} . The spectral radius is the reproductive number \mathcal{R}_0 . There are five eigenvalues obtained from FV^{-1} and maximum eigenvalue is $\lambda = \sqrt{k_1 k_3}$. Therefore the basic reproduction number for the system is as claimed.

References

 Van den Driessche P, Watmough J. Reproduction numbers and sub threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences. 2002; 180: 29-48.