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Abstract:
In this article, the weighted version of a probability density function is considered

as a mapping of the original distribution. Generally, the properties of the distribu-
tion of a random matrix and the distributions of its eigenvalues are closely related.
Therefore, the weighted versions of the distributions of the eigenvalues of the Wishart
distribution are introduced and their properties are discussed. We propose the concept
of rotation invariance for the weighted distributions of the eigenvalues of the Wishart
and non-central Wishart distributions. We also introduce here, the concept of a ”mir-
ror”, meaning, looking at the distribution of a random matrix through the distribution
of its eigenvalues. Some graphical representations are given, to visualize the weighted
distributions of the eigenvalues for specific cases.
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1 Introduction

Let X be a non-negative random variable (r.v.) having probability density function (p.d.f.) f(x; θ)
where θ is a scalar or a vector of parameters. Let w(x) > 0 be a function of x, with E[w(X)] <∞.
The w(x) is referred to as a weight function. Then, the weighted version of f(x; θ) is defined as

g(x; θ) =
w(x)f(x; θ)

E[w(X)]
. (1)

It is possible to let w(x) have a parameter, say, ψ, of its own. The p.d.f. f(x; θ) is referred to as
the original distribution and g(x; θ) is called the weighted version of f(x; θ). When w(x) = x the
p.d.f. g(.; .) is referred to as the length-biased version of the original distribution. It is anticipated
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that the properties of g(.; .) will closely resemble the properties of f(.; .). Thus, g(x; θ) can be used
for statistical inference about θ. The factor w(x)/E[w(X)] is an operator that changes f(x; θ) to
g(x; θ). Alternately, the family of g(.; .) can be thought of as a mapping of family of p.d.f’s f(.; .).

During the past thirty years, a number of papers have appeared discussing univariate weighted/
length-biased data and the data analysis using g(x; θ). In a nutshell, since the eigenvalues explain
the most of the variations in the data, the weighted distributions of eigenvalues may have the same
importance as the weighted distributions of the random matrix. The importance of distributions
of eigenvalues of random matrices is emphasized in literature by Zanella et al. (2008), Wu et al.
(2016), Stott et al. (2017) and Zhang et al. (2017), amongst others.

There are indications of the presence of size-biased data random matrices, such as example is
the biased mutation matrices as refer to in bioinformatics (Brick and Pizzi, 2008). The bias in the
observed values of the eigenvalues is discussed for data collected for face recognition (Hendrikse
et al., 2009). The presence of bias in signals associated with the length of the signal in MIMO
systems are discussed with regard to the eigenvalues of the related matrix configuration (Shenoy et
al., 2008). The above examples provide us a necessary motivation for studying the weighted matrix
variate distributions and contribute new distributions to matrix theory.

In (1) instead of a univariate r.v. X we can consider a matrix variate r.v. X : p × p and
an associated weight function with related regularity conditions. In this paper, the interest is
the derivation of the weighted version of the distribution of eigenvalues and the study of their
properties. The stochastic behavior of X is represented by the distribution of its eigenvalues, λ.
Therefore, given the distribution of λ, certain properties of the distribution of X can be studied.
We also introduce a new concept of “mirror” where the p.d.f. f(.; .) asymptotically approaches the
p.d.f. g(.; .).

The organization of the paper is as follows: The notation and the definitions needed for the
development of this paper are recorded in Section 2. In Section 3, the properties of the length-
biased version of the distribution of the eigenvalues of the Wishart matrix are studied and the
related results are obtained for the non-central Wishart distribution. Also, is introduced in Section
3 a concept of rotation invariance. In Section 4, a procedure referred to as “mirror”, in this paper,
is described for reconstructing the original distribution of a random matrix through the weighted
version of the distribution of the eigenvalues of the random matrix. To demonstrate the usefulness
of this concept of mirror we have provided the numerical results in Section 5. Section 6 concludes
with graphical representations of weighted distributions of eigenvalues.

2 Definitions and Some Useful Results

Throughout this paper, we shall assume the p× p matrix X is a matrix of real r.v.s or is a derived
matrix arising from another n × p matrix of r.v.s. Let S(p) be the space of all positive definite
matrices of order p. Also denote the space of all orthogonal matrices of order p by

O(p) = {H|H ′H = Ip, HH
′ = Ip},

∫
O(p)

dH = 1.

In this paper, the distribution of the m × 1 vector λ of eigenvalues plays a key role for all results
obtained and discussed.
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Definition 2.1. Let f(λ) denote the joint p.d.f of λ. Then, the weighted version g(λ) of f(λ) is
given by

g(λ) =
w(λ)f(λ)

E[w(λ)]
, (2)

where w(λ) > 0, is a weight function and E[w(λ)] <∞.

Note that in w(λ), it is possible to introduce a vector of parameters as may seem necessary in
a given application.

The p.d.f.’s g(λ) in (2) could be the joint p.d.f.’s of the subsets of vector λ or just the marginal
distributions of λi, i = 1, 2, . . . , p with corresponding weight functions.

Next, we introduce a concept of a rotation invariant family of distributions. In Section 3, we
explore the implications of this concept when combined with Definition 2.2.

Definition 2.2. Let λ1 > λ2 > . . . > λp to be the eigenvalues of the random matrix X ∈ S(p) with
p.d.f. f(.). Then g(λ) is said to be rotation invariant with respect to f(λ), iff g(λ) can be expressed
as a weighted distribution of f(λ) for a family of weight functions based on the eigenvalues.

Remark 2.1. According to Definition 2.2, there exists an order preserving map M : R+ → R+ for
each f(.) and g(.) for which we have

g(λ1, . . . , λp) =M(f(λ1, . . . , λp)).

Under M the functional form of f(.) and g(.) is maintained. It allows the embedding of f(.) and
g(.) in certain common statistical manifolds. Note that the form of M is not important, wheras
the property of maintaining is.

Definition 2.3. The random matrix X ∈ S(p) is said to have a non-central Wishart distribution
with scale matrix Σ ∈ S(p), n ≥ p degrees of freedom and non-centrality parameter Ω ∈ S(p)
denoted by X ∼Wp(Σ,Ω, n), if its p.d.f. is

f(X) =
det(Σ)−

1
2
n

2
1
2
npΓp

(
1
2n
) det(X)

1
2
n− 1

2
(p+1) etr

(
−1

2
Σ−1X

)
etr

(
−1

2
Ω

)
× 0F1

(
1

2
n;

1

4
ΩΣ−1X

)
where 0F1(.; .) is defined in Muirhead (2005, p.258).

Theorem 2.1. (James, 1961) Let X ∼ Wp(Σ,Ω, n), Ω = Σ−1MM ′ for some M ∈ Rp×n, wi,
i = 1, . . . , p are the eigenvalues of det(X − ωΣ) and Ω = diag(ω1, . . . , ωp) where ωi, i = 1, . . . , p
are the eigenvalues of det(MM ′ − ωΣ) = 0. Then the distribution of W = diag(w1, . . . , wp) is
given by

f(W ) =
π

1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

)
0F1

(
1

2
n;

1

4
Ω,W

)
×det(W )

1
2
n− 1

2
(p+1) etr

(
−1

2
W

) p∏
i<j

(wi − wj)

3



Further for any constants a and b,

Cκ,τφ (aX, bX) = akbtCκ,τφ (X,X) = akbtθκ,τφ Cκ,τφ (X),

from Davis (1979).

3 Eigenvalue-based Univariate Weighted Distribution

The theorems stated below originates from Definition 2.2, and is now applied to the distributions
of the eigenvalues of Wishart matrices.

Theorem 3.1. Let A ∼ W2(I2, n), n > 1. Let λi is the i-th eigenvalue of A with p.d.f. f(λi),
i = 1, 2. Then the distribution g(.) given by

g(λi) =
λif(λi)

E(λi)
, i = 1, 2,

is rotation invariant.

Proof: We give the proof of the distribution of λi for i = 1; for i = 2 it is similar. From Theorem
13.3.2 of Muirhead (2005), the joint p.d.f. of λ1, λ2 is given by

f(λ1, λ2) =
π

1
2λ

1
2

(n−3)

1 λ
1
2

(n−3)

2 (λ1 − λ2)e−
1
2

(λ1+λ2)

2nΓ
(

1
2n
)

Γ
[

1
2(n− 1)

] , λ1 > λ2.

Perform the transformation y = λ2
λ1

with the Jacobian J(λ2 → y) = λ1 to get the marginal
distribution of the largest eigenvalue as

f(λ1) =
π

1
2K(n, λ1)

2nΓ
(
n
2

)
Γ
(
n−1

2

) λn−1
1 e−

1
2
λ1 , (3)

where K(., .) is the Kummer function given by K(n, λ1) =
∫ 1

0 y
1
2

(n−3)(1− y)e−
1
2
λ1ydy.

Further, from (3) we have that

E(λ1) =
π

1
2

2nΓ
(
n
2

)
Γ
(
n−1

2

) ∫ 1

0
y

1
2

(n−3)(1− y)

∫ ∞
0

λn1e
− 1

2
λ1(1+y)dλ1dy

=
2π

1
2 Γ(n+ 1)

2nΓ
(
n
2

)
Γ
(
n−1

2

) Φ(n), Φ(n) =

∫ 1

0
y

1
2

(n−3)(1− y)(1 + y)−(n+1)dy.

Then by making use of (3), it follows that

g(λ1) =
K(n, λ1)

2Φ(n)Γ (n+ 1)
λn1e

− 1
2
λ1 . (4)

Comparing (3) with (4), one can immediately realize that they have the same structure in p.d.f.
According to Definition 2.2 the proof is complete. �
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Theorem 3.2. Let A ∼ W2(Σ, n), n > 1 and Σ = diag(α1, α2). Then the distribution g(.) given
by

g(λi) =
λif(λi)

E(λi)
, i = 1, 2,

is rotation invariant.

Proof: We give the proof for i = 1; for i = 2 it is similar. Using the spectral decomposition on

A = H ′ΛH, for H =

(
cosα − sinα
sinα cosα

)
, 0 < α < 2π with the Jacobian J(a11, a12, a22 →

α, λ1, λ2) = (λ1 − λ2), where 1 > λ1 > λ2 > 0 we obtain

f(H ′ΛH) =

∏2
i=1 λ

1
2

(n−3)

i (λ1 − λ2)

2nπ
1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

] e−(a cos2 α+b sin2 α),

where a = 1
2

(
λ1
α1

+ λ2
α2

)
, and b = 1

2

(
λ2
α1

+ λ1
α2

)
. Then it follows that

f(Λ) = 4

∫ 1
2
π

0
f(H ′ΛH)dα

=
4
∏2
i=1 λ

1
2

(n−3)

i (λ1 − λ2)

2nπ
1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

]
×
∞∑
r=0

(−1)r

r!

∫ 1
2
π

0
(a cos2 α+ b sin2 α)rdα

=
4
∏2
i=1 λ

1
2

(n−3)

i (λ1 − λ2)

2nπ
1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

]
×
∞∑
r=0

(−1)r

r!

r∑
x=0

Crx

∫ 1
2
π

0
(a cos2 α)x(b sin2 α)r−xdα

=
8
∏2
i=1 λ

1
2

(n−3)

i (λ1 − λ2)

2nπ
1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

]
×
∞∑
r=0

(−1)r

r!

r∑
x=0

Crxa
xbr−xB

(
r − x+

1

2
, x+

1

2

)
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where B(., .) is the beta function. Therefore, the marginal distribution of the largest eigenvalue is

f(λ1) =

∫ λ1

0
f(Λ)dλ2

=
8λ

1
2

(n−3)

1

∑∞
r=0

(−1)r

r!

∑r
x=0C

r
xB
(
r − x+ 1

2 , x+ 1
2

)
2nπ

1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

]
×
∫ λ1

0
λ

1
2

(n−3)

1 (λ1 − λ2)

(
λ1

2α1
+

λ2

2α2

)x( λ2

2α1
+

λ1

2α2

)r−x
dλ2

=
8λ

1
2

(n−3)

1

∑∞
r=0

(−1)r

r!

∑r
x=0C

r
xB
(
r − x+ 1

2 , x+ 1
2

)
2n+rπ

1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

]
×

x∑
k=0

Cxkα
k−x
1 α−k2

r−x∑
t=0

Cr−xt αt+x−r2 α−t1 λr−t−k1

×
∫ λ1

0
(λ1 − λ2)λ

1
2

(n−3)+k+t

2 dλ2

=
∞∑
r=0

P1(r)λn+r−1
1 , (5)

where

P1(r) =
8 (−1)r

r!

∑r
x=0C

r
xB
(
r − x+ 1

2 , x+ 1
2

)
2n+rπ

1
2
∏2
i=1 α

1
2
n

i

∏2
i=1 Γ

[
1
2(n+ 1− i)

]
×

x∑
k=0

r−x∑
t=0

CxkC
r−x
t αk−x−t1 αt+x−r−k2(

1
2(n− 1) + k + t

) (
1
2(n+ 1) + k + t

) .
From (4), after some manipulation, it follows that

g(λ1) =

∞∑
r=0

P2(r)λn+r
1 , (6)

where P2(r) = (n+r)P1(r)∑∞
r=0 P1(r)

.

Finally, comparing (5) with (6), f and g has similar distributional structures. �

4 Eigenvalue-based Matrix-variate Weighted Distribution

Now, we extend the results to a more general case of Wishart distributions. These results are
useful for exploring various applications for practical purposes. As an important consequence of
these results (see Corollary 4.1.2 below) we define the rotation invariant Wishart distribution, such
distribution is associated with the size-biased sampling.
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Theorem 4.1. Let A ∼ Wp(Σ, n), n > p − 1 and X ∈ S(p) be any constant or random matrix
independent of A. Let f(.) be the distribution of the eigenvalues of A given by Λ = diag(λ1, . . . , λp),
and let h be a real Borel measurable function. Then the p.d.f. g(.), given by

g(Λ) =
h(tr ΛX)f(Λ)

E [h(tr ΛX)]
,

is rotation invariant.

Proof: Using the spectral decomposition on A = H ′ΛH, H ∈ O(p) we have

f(H ′ΛH) =
det(Λ)

1
2
n− 1

2
(p+1) etr

{
−1

2Σ−1H ′ΛH
}

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] ∏
i<j

(λi − λj).

Then since according to Greenacre (1973), f is not invariant, we have

f(Λ) =
det(Λ)

1
2
n− 1

2
(p+1)∏

i<j(λi − λj)

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] ∫
O(p)

etr

{
−1

2
Σ−1H ′ΛH

}
dH

=
det(Λ)

1
2
n− 1

2
(p+1)∏

i<j(λi − λj)

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] ∞∑
k=0

∑
κ

1

k!

Cκ(−1
2Σ−1)Cκ(Λ)

Cκ(Ip)

=

∞∑
k=0

∑
κ

P (κ) det(Λ)
1
2
n− 1

2
(p+1)Cκ(Λ)

∏
i<j

(λi − λj), (7)

where P (κ) = 1

2nπ
1
2 det(Σ)

1
2n

∏p
i=1 Γ[ 12 (n+1−i)]k!

Cκ(− 1
2
Σ−1)

Cκ(Ip) , from Muirhead (2005, p.248).

In order to get the expectation of h(tr ΛX) one may use the following approach

E [h(tr ΛX)] =
1

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] ∞∑
k=0

∑
κ

1

k!

Cκ(−1
2Σ−1)

Cκ(Ip)

×
∫
S(p)

h(tr ΛX) det(Λ)
1
2
n− 1

2
(p+1)Cκ(Λ)

∏
i<j

(λi − λj)dΛ

To solve the above integral, we make use of the technique used in Arashi (2013) with
ΛΛΛ = HTHHTHHTH ′,HHH ∈ O(p), to get

E [h(tr ΛX)] =

∫
O(p)

∫
S(p)

h(tr ΛX)f(H ′ΛH)dΛdH

=

∫
O(p)

det(Λ)
1
2
n− 1

2
(p+1)∏

i<j(λi − λj)

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

]
×
∫
S(p)

h(trTH ′XH) det(T )
1
2
n− 1

2
(p+1)

7



× etr

(
−1

2
Σ−1T

)
dTdH

=

∫
O(p)

1

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] ∞∑
t=0

∑
τ

1

t!

×
∫
S(p)

h(trTH ′XH) det(T )
1
2
n− 1

2
(p+1)

×Cτ
(
−1

2
Σ−1T

)
dTdH (8)

Using the result of Teng et al. (1989) for (8) we obtain

E [h(tr ΛX)] =

∑∞
t=0

∑
τ

Γp[ 12n,τ ]Cτ(−
1
2
Σ−1)Cτ (X−1)γ

t!Γ[ 12np+t]Cτ (Ip)
det(X)−

1
2
n

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] , (9)

where

γ =

∫
R+

x( 1
2
n)p+k−1h(x)dx. (10)

Thus from (7) and (9) one obtains

g(Λ) =

∞∑
k=0

∑
κ

P ∗(κ)h(tr ΛX) det(Λ)
1
2
n− 1

2
(p+1)Cκ(Λ)

∏
i<j

(λi − λj),

where

P ∗(κ) =

{ ∞∑
t=0

∑
τ

1

t!

Γp
[

1
2n, τ

]
Γ
[

1
2np+ t

] Cτ (−1
2Σ−1

)
Cτ (X−1)

Cτ (Ip)

}−1

×
det(X)

1
2
nCκ

(
−1

2Σ−1
)

k!Cκ(Ip)
.

Now using Taylor series expansion for h(x+ a) =
∑∞

i=1
h(i)(a)ai

i! , where h(i)(a) is the ith derivative

of h at point a, and taking Y = diag
(
a
p , . . . ,

a
p

)
we can obtain

g(Λ) =

∞∑
k=0

∑
κ

P ∗(κ)
∞∑
s=0

h(s)(a)

s!
(tr(ΛX − Y ))s det(Λ)

1
2
n− 1

2
(p+1)Cκ(Λ)

×
∏
i<j

(λi − λj)

=

∞∑
k=0

∑
κ

P(κ) det(Λ)
1
2
n− 1

2
(p+1)Cκ(Λ)Cφ(ΛX − Y )

∏
i<j

(λi − λj), (11)

where P(κ) =
∑∞

s=0
h(s)(a)
s!

∑
φ P
∗(κ).

Comparing (7) with that of (11), we find both distributions have the same structures. �
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Next, we study certain special cases of Theorem 4.1 arising when h(.) is defined suitably for
practical considerations. It is important to note that for constant matrices X ∈ S(p) the distribu-
tion g(.) is a valid p.d.f. However for random matrices X ∈ S(p), for every selection h(.), for g(.)
to be a valid p.d.f, the h(.) function has to be integrated out over S(p).

Corollary 4.1.1. As a result of Theorem 4.1, we have the following results.

(i) If h(x) = xα, α ∈ C, then

g(Λ) =
tr(XΛ)αf(Λ)

E [tr(XΛ)α]
.

(ii) If h(x) = e−βx, β ∈ C, then

g(Λ) =
etr(−βXΛ)f(Λ)

E [etr(−βXΛ)]
.

(iii) If h(x) = xαe−βx, α, β ∈ C, then

g(Λ) =
tr(XΛ)α etr(−βXΛ)f(Λ)

E [tr(XΛ)α etr(−βXΛ)]
.

(iv) If h(x) = (1 + βx)α, α ∈ C and β ∈ R+, then

g(Λ) =
(1 + β tr(XΛ))αf(Λ)

E [(1 + β tr(XΛ))α]
.

Corollary 4.1.2. From Corollary 4.1.1 (iii), one may think of the following rotation invariant
distribution, which will be called as rotation invariant Wishart distribution whose p.d.f. is given by

g(Λ) =
h(trXΛ)f(Λ)

E [h(trXΛ)]
,

where X ∼ Wp(Σ
∗,m),Σ∗ ∈ S(p) is independent of A. The above distribution has an application

when the sampling is biased.

In the following theorem, we prove that the non-central Wishart distribution is also rotation
invariant.

Theorem 4.2. Let A ∼ Wp(Σ,Ω, n). Let f(.) be the distribution of Λ = diag(λ1, . . . , λp), X ∈
Cp×p and h is a real Borel measurable function. Then the distribution g(.) given by

g(Λ) =
h(tr ΛX)f(Λ)

E [h(tr ΛX)]
,

is rotation invariant.
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Proof: Here we only compute the term E [h(tr ΛX)]; since the rest of the proof is similar to
Theorem 4.1.

According to Theorem 2.1 and using Theorem 7.3.3 of Muirhead (2005), the distribution of
eigenvalues Λ = diag(λ1, . . . , λp), λ1 > . . . , λp > 0 can be rewritten as

f(Λ) =
π

1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

)
det(Λ)

1
2
n− 1

2
(p+1)

× etr

(
−1

2
Λ

) p∏
i<j

(λi − λj)
p∏
j=1

λj

∫
O(p)

0F1

(
1

2
n;

1

4
ΩHΛH ′

)
dH

=
π

1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

)
det(Λ)

1
2
n− 1

2
(p+1) etr

(
−1

2
Λ

)
×

p∏
i<j

(λi − λj)
p∏
j=1

λj

∞∑
t=0

∑
τ

1(
1
2n
)
τ

1

t!

(
1

4

)t Cτ (Ω)Cτ (Λ)

Cτ (Ip)
(12)

Then, in a similar fashion as in the proof of Theorem 4.1, by taking Λ = HTH ′, we have

E[h(tr ΛX)] =

∫
O(p)

π
1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

)
×
∞∑
t=0

∑
τ

1(
1
2n
)
τ

1

t!

(
1

4

)t Cτ (Ω)

Cτ (Ip)

×
∫
T
h(trTH ′XH) Cτ (T )

×det(T )
1
2

(n+2)− 1
2

(p+1) etr

(
−1

2
T

)
dTdH.

Make use of the Taylor series expansion

h(trTH ′XH) =
∞∑
k=0

h(k)(0)

k!
(trTH ′XH)k =

∞∑
k=0

∑
κ

h(k)(0)

k!
Cκ(TH ′XH)

and change the order of integration to obtain

E[h(tr ΛX)] =
π

1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

) ∞∑
t=0

∑
τ

1(
1
2n
)
τ

1

t!

(
1

4

)t
×Cτ (Ω)

Cτ (Ip)

∞∑
k=0

∑
κ

h(k)(0)

k!
×
∫
T

det(T )
1
2

(n+2)− 1
2

(p+1)

× etr

(
−1

2
T

)
Cτ (T )

∫
O(p)

Cκ(TH ′XH) dHdT

=
π

1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

) ∞∑
t=0

∑
τ

1(
1
2n
)
τ

1

t!

(
1

4

)t
×Cτ (Ω)

Cτ (Ip)

∞∑
k=0

∑
κ

h(k)(0)

k!

Cκ(X)

Cκ(Ip)

∑
φ∈κ·τ

(
θκ,τφ

)2

10



∫
T

det(T )
1
2

(n+2)− 1
2

(p+1) etr

(
−1

2
T

)
Cφ(T )dT

=
π

1
2
p2

2
1
2
npΓp

(
1
2n
)

Γp
(

1
2p
) etr

(
−1

2
Ω

) ∞∑
t=0

∑
τ

1(
1
2n
)
τ

1

t!

(
1

4

)t
×Cτ (Ω)

Cτ (Ip)

∞∑
k=0

∑
κ

h(k)(0)

k!

Cκ(X)

Cκ(Ip)

∑
φ∈κ·τ

(
θκ,τφ

)2
2

1
2

(p(n+2)+2k)

×
(

1

2
(n+ 2)

)
φ

Γm

(
1

2
(n+ 2)

)
Cφ(Ip)

Accordingly, one may find the desired representation, that completes the proof. �

5 Mapping illustration

According to (1), it is not possible to rebuild the p.d.f. f(.) from g(.) - the weighted distributions
of a population. In other words, it is not possible to assume h(.) ≡ 1 to get g(x) = f(x), since
the h(.) function should admit the Taylor’s series expansion as a regularity condition for the proofs
of the theorems in Section 3. Hence, if the researcher is provided with the samples obtained from
g(.), there is no mechanism for coming close to f(.). The usefulness of weighted distributions is a
well established fact and not having a mechanism in this context is not a weakness of the concept
of weighted distribution. However, there is a possibility to come close to this mechanism, which is
described below.
If there exists a map M that concludes g(x) = f(x) or g(x) ≈ f(x), then we refer to this map as
a mirror. In what follows, we construct a mirror by making use of the weighted distributions of
eigenvalues of a random matrix. We consider one special case of weights, (see Theorem 4.1), to
show that one may use the map referred to in Definition 2.2 for constructing a mirror.

To be more precise, the comparison of the plots of g(.) and the p.d.f. of the joint distribution of
the eigenvalues of the Wishart matrix is of interest. To demonstrate the afore-mentioned concept,
we illustrate the performance of the functions f(Λ) and g(Λ) based on only one generation from
the Wishart distribution.

We note that the matrix X can be a constant or random complex matrix. For our purpose, we

assume X = Ip, Σ = αIp, α ∈ R+ and also consider the special weight h(x) = exp
(
−β

2x
)

. Thus,

according to Corollary 4.1.1, we have

g(Λ) = w(Λ)f(Λ), where w(Λ) =
etr
(
−β

2 Λ
)

E
[
etr
(
−β

2 Λ
)]

Using Corollary 3.2.19 of Muirhead (2005),

f(Λ) =
π
p
2

(2α)
pn
2 Γp

(p
2

)
Γp
(
n
2

) det(Λ)
n
2
− 1

2
(p+1) etr

(
− 1

2α
Λ

) p∏
i<j

(λi − λj).
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Table 1: Values of p.d.f. f(Λ) and g(Λ) for different values of parameters (α, β).
β = 0.01 β = 0.1 β = 1 β = 10 β = 100

f(Λ) g(Λ) g(Λ) g(Λ) g(Λ) g(Λ)

α = 0.01 0 0 0 0 0 0
α = 0.1 5.324068e-52 4.743447e-52 1.677643e-52 5.324068e-52 1.754126e-102 0
α = 1 2.175332e-08 1.981957e-08 8.485153e-09 2.175332e-08 5.084515e-57 0
α = 10 2.80966e-06 3.168843e-06 4.885186e-06 2.80966e-06 1.677643e-52 0
α = 100 2.569014e-08 1.291537e-07 3.168843e-06 2.569014e-08 4.743447e-52 0

Then for σ = 1
α + β we obtain

E

[
etr

(
−β

2
Λ

)]
=

π
p
2

(2α)
pn
2 Γp

(p
2

)
Γp
(
n
2

) ∫
Λ

det(Λ)
n
2
− 1

2
(p+1) etr

(
−σ

2
Λ
)

×
p∏
i<j

(λi − λj)dΛ

=

(
1

ασ

) pn
2

.

In conclusion, we have

g(Λ) =
(σ

2

) pn
2 π

p
2

Γp
(p

2

)
Γp
(
n
2

) det(Λ)
n
2
− 1

2
(p+1) etr

(
−σ

2
Λ
) p∏
i<j

(λi − λj).

Table 1 shows the values of f(Λ) and g(Λ), where the eigenvalues are derived from one generation of
W5(αI5, 5), for different parameter values α and β. It might be interesting to see the changes based
on the parameters p and n. Based on the result of Table 1, as β increases, the values of f(Λ) and

g(Λ) get closer for each value of α. This is apparent from the specific weight h(x) = exp
(
−β

2x
)

,

since as β →∞, the h(.) function approaches to one and gives f(Λ) = g(Λ). This is an important
result, since for none of the selections of the quartet (p, n, α, β), we have f(Λ) = g(Λ). To see

this, it is sufficient to consider that f(Λ) = g(Λ) implies tr(Λ) = − (ασ)
pn
2

1
α

+σ
, which is a contradiction

with
∑p

i=1 λi to be positive. Thus, for g(.) to be as close to f(.) as possible, it is recommended
that β increases. From the view point of the weighted distributions, the larger the β, the more
peneplanation for bigger weights.

Remark 5.1. A mirror for the p.d.f. of main distribution can be constructed through the weighted
distribution of eigenvalues where exponential rate is a weight. In other words, according to the result
of Section 3, taking exponential weight for the eigenvalue distribution corresponds to a length-biased
version of population distribution.

Table 1 clearly shows that as β increases the weighted distribution approaches to zero, for a
fixed value of parameter α. More importantly, although we claimed that as β goes to infinity g(Λ)
gets close to f(Λ), from the result of Table 1, it is clear that this fact needs to be controlled by the

12



parameter α. In other words, the mirror performs well for some specific value of a parameter α.
In spite of the well established theoretical performance of the mirror (as β →∞), we always need
to select relevant parameters α and β. For example, for all selections of α, when β equals one, a
perfect mirror is obtained.

6 Graphical Representations

In this section, we display the graphs of p.d.f. and cumulative distribution function (c.d.f.) of a
rotation invariant Wishart distribution.

Under the assumptions of Theorem 4.1, for Σ = diag(σ2
1, . . . , σ

2
p), the p.d.f. of the eigenvalues

of A is given by (see Muirhead (2005, p.260))

f(Λ) =
det(Λ)

1
2
n− 1

2
(p+1)∏

i<j(λi − λj)

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] ∫
O(p)

0F0

(
−1

2
Σ−1H ′ΛH

)
dH

=
det(Λ)

1
2
n− 1

2
(p+1)∏

i<j(λi − λj)

2nπ
1
2 det(Σ)

1
2
n∏p

i=1 Γ
[

1
2(n+ 1− i)

] 0F
(p)
0

(
−1

2
Σ−1,Λ

)
(13)

Using the result for 0F
(p)
0 from Khatri (1968) results in

f(Λ) =

∫
O(p)

f(H ′ΛH)dH

=

∏p
i=1 λ

1
2
n− 1

2
(p+1)

i

∏
i<j(λi − λj)

2nπ
1
2
∏n
j=1 σ

n
j

∏p
i=1 Γ

[
1
2(n+ 1− i)

] × Γp(p) det
[
(exp

(
−1

2σ
−2
i λj

)
)
]

π
p(p−1)

4
∏p
k<l(λk − λl)

∏p
k<l

(
−1

2σ
−2
k −

1
2σ
−2
1

)
(14)

The effect of the weighting can be observed from Table 2 by comparing the weighted distributions
with the standard case, which is the unweighted eigenvalue distribution of a Wishart matrix. The
choice of the weight function h will impact the severity of the weighting scheme of the largest and
smallest eigenvalues of a random matrix.
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7 Summary

The literature that is devoted to the study of random matrices is vast, regarding both theory and
practice. However, there is an absence of results for the biased version of the matrix variate data,
and related parametric models such as the weighted versions of the matrix variate distributions
that can be used as models for the analysis of such data when they occur in practice. Possible
applications could soon be a reality in bioinformatics (biased mutation matrix), MIMO systems
and imaging (diffusion tensor data).

In this paper we defined a map which connected the distribution of eigenvalues to a weighted
distribution of eigenvalues. We provided the definition of rotation invariant Wishart distribution.
The weight function in the context of rotation invariant distribution can have many interpreta-
tions. For example the exponential rate can be a functional choice, since it motivated the idea of
mirror. By the mapping illustration, we specifically showed that the mirror enables the researcher
to ”approximate” the main distribution more closely through the weighted distribution, by using
the map M in our definition. The effect of the weighting of the eigenvalues of a random matrix
is evidenced through a graphical illustration. These results can be extended for the ensembles of
random matrices that are classified into four categories - (Hermite, Laguerre, Jacobi, Fourier), see
Edelman and Rao (2005).

These matrix variate distributions are developments to the distribution theory field similar as
Edelman and Koev (2014) and Jones (2015), and should stimulate research and applications.
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