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Summary

In this mini-dissertation we briefly describe the context and development of spatial statis-
tics, spatial sampling and point patterns. Thereafter spatial homogeneity is considered in
detail.

Before selecting an appropriate sampling design in the spatial context, it is important
to know whether the data is first- and second-order homogeneous. Currently the method
of kernel smoothing is used to construct density plots which can be used to visually and
subjectively infer on first-order homogeneity. We propose the use of hypothesis tests,
developed for the comparison of K Poisson intensities from independent samples, in the
spatial setting as a more rigorous statistical approach to testing for first-order homogeneity.
We also discuss the data assumptions required for these hypothesis tests and provide
suggestions for the users.
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Chapter 1

Introduction

In statistics, the term ‘spatial’ most commonly refers to the fact that data contains a
geographical reference so that we can pinpoint on a map where each observation was
taken [49], but can also refer to points in the brain or pixel locations in an image. Tobler’s
law of geography states that observations that are close together are more likely to be
similar than observations that are further apart [98]. The field of spatial statistics deals
with data in this setting and developed in conjunction with geographical information
systems (GIS) through the field of regional science, an emergent field of enquiry in the
1950s [47]. Pioneering work in the field of mathematical statistics proved fundamental
to the development of spatial data analysis. These works include the paper by Whittle
[104] who extended autoregressive models for analysing variation in time series to formally
represent spatial variation. The spatially autoregressive models introduced therein were
amongst the first to appear in statistical literature and made it possible, when working
with regular lattice data, to specify a formal representation of certain types of spatial
structure for hypothesis testing, to test for model significance and to assess the goodness
of fit to the data. Prior to this, it was only possible to test the null hypothesis of no spatial
autocorrelation (in other words, no spatial structure) against a non-specific alternative
hypothesis [45, 55, 70, 71].

In 1951, Krige [59, 60] proposed the use of statistical analysis of the spatial behaviour of
gold grades, both collectively and individually, in order to improve valuation methods for
the determination of the probable tonnage and grade of remaining ore. In this method, the
interpolated values are modeled by a Gaussian process governed by prior covariances. The
theoretical basis for this method was developed by the French mathematician and geologist,
Matheron [67], by extending the Wiener-Kolmogorov stochastic prediction theory to the
case of spatial processes defined on a continuous geographical space. This theory laid the
groundwork for the field of geostatistics. Although the fields of geostatistics and spatial
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CHAPTER 1. INTRODUCTION 7

data analysis initially developed as separate research fields, they have supported and added
value to each other over time [47].

Many different types of spatial data exist along with many forms of spatial data analy-
sis. These data types include polygons, lines, points, point processes and lattice/grid data
[7, 10, 12, 49, 101]. Data that is recorded from a set of fixed locations on a continuous
surface is known as ‘data from a surface’. This data on a continuous surface might be
measurements on land use, soil characteristics, air pollution, snow depth or precipitation
levels [3, 19, 56, 106]. The attributes of interest exist everywhere, but are measured only
at a few locations. Point observations for the attribute being measured could be sufficient
for a continuous surface such a snow depth, whilst a domain with volume may be neces-
sary for a surface such as air pollution. The attributes being measured are usually of a
continuous nature, for instance diameters or heights of trees, but may also be categorical,
for instance on/off, case/control, colour, etc. [39, 82]. Data recorded from point or area
objects located in a geographical space is referred to as data from objects [62]. An exam-
ple of point objects would be a set of towns scattered across a region. In this case, the
attributes being measured may be quantitative or qualitative in nature. For both data
from surfaces and objects, once the data is collected, the location of each observation is
treated as fixed. [49]

Spatial data sets contain two aspects of variation, namely variation in data values
disregarding the information provided by a locational index, and spatial variation which
accounts for variation across the map, i.e. in locatia. The description of these calls for
different strategies and terminology. A model which explains the variation in an attribute
may also explain spatial variation, but this is not always the case [49]. Spatial analysis
aims to describe the spatial variation in attribute values across a study area, or the spa-
tial pattern of variation in terms of other attributes [49]. Descriptions may involve the
detection of clusters or concentrations of high or low values. In areas such as geostatis-
tics, spatial analysis can be used to provide estimates or predictions of attribute values
at unsampled locations, or can be used for the mapping of attributes on the basis of a
sample.

Spatial point patterns are datasets that give the locations of objects, also referred to
as events, which are distributed within a study region [40]. Examples of points that may
be studied includes any map-type data such as earthquake epicentres, crimes, bird nests,
trees or even new cases of a disease/virus. Points may be located on a two-dimensional
plane, on the surface of the earth, or in a three-dimensional volume or in space-time,
referred to as a spatio-temporal point pattern. Points may contain additional attribute
information, called marks, which may be categorical or continuous in nature. Datasets
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could also contain explanatory data, referred to as covariates, which do not form part of the
response and can be any type of data. Examples of covariates include spatial functions
and spatial patterns. Spatial functions, for instance terrain altitude, are defined at all
spatial locations and can be displayed as a pixel image or a contour plot. Spatial patterns,
such as a map of geological faults, can be displayed as point patterns or as line segment
patterns [7, 40]. The motivation for investigating point patterns is often to determine
whether points exhibit some form of interpoint dependence [10].

The location of points or areas can often be seen as outcomes of some process [49].
The description of these location patterns is referred to as point pattern data with data
commonly obtained from objects, not surfaces, as previously described. In these types of
problems, the location of observations are not seen as fixed. A point pattern is defined
as a set of locations that are irregularly distributed within a designated region and is
presumably generated by some form of stochastic mechanism [40]. In the univariate case,
a point process generates points, known as events, which consist of two variables (x, y)

referring to a position in R2. An example of a univariate case would be the positions
of trees in a forest. For ease of notation, we will refer to the location of an event as
x = (x, y). In the case of a multivariate point process, additional information is collected
for the events under consideration. In such a case, a point will consist of the variables
(x, f(x)) where x refers to the position of the point and f(x) is a discrete function. This
function, known as a covariate or mark, can be of any form and no fixed information is
included in the function [7]. A covariate refers to any variable that can be recruited as an
explanatory variable and can potentially be observed at any spatial location within the
observation window, not only at the observed point. Covariates can also be obtained by
overlaying additional maps or layers such as geological polygons and doing a spatial join
[2]. On the other hand, marks are attributes associated with each of the observed points.
As an example of a multivariate point process we can expand on the univariate example
of trees in a forest and collect additional information on attributes such as the heights,
circumferences or species of trees.

Sampling within a spatial context is also important. Sampling is used to estimate
characteristics of the population when we are unable to investigate the population as a
whole. In an ideal world a sample would be a perfectly scaled-down version of the origi-
nal population in the sense that every characteristic of the population would be matched
in the sample [64]. Although this ideal is almost impossible to meet, researchers aim to
get as close to this as possible. When certain subsets of the population are under- or
over-represented in the sample, we run the risk that the estimates of the population char-
acteristics become biased. Probability sampling methods, also known as random sampling
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methods, can be used to obtain representative samples. The properties of these methods
are well documented and sampling estimation errors can be calculated [64].

When sampling in the spatial context, the aim is to collect samples which are typically
used to estimate the mean or total for some parameter in an area, for the optimization of
parameter estimates for unsampled populations, or to predict the location of a movable
object [103]. Two theories are commonly applied in these settings, namely design- and
model-based sampling. The difference in these two approaches involves the sources of
randomness in the technique. In design-based sampling, the population of values are
regarded as unknown but fixed and randomness primarily arises from the random selection
of sampling sites through traditional sampling methods [22]. On the contrary, model-
based sampling regards the unknown population values as variable with observed values
representing a single realization of a stochastic process, also known as a superpopulation.
In these designs, sampling sights are fixed and inferences are based on the validity of
the stochastic model. Unlike design-based schemes, a model-based sampling design is
constructed by minimizing a predefined objective function leading to a single, optimal
sampling design [103]. Design-based methods are therefore a combination of probability
sampling and design-based inference, where model-based sampling is a combination of
purposive sampling and interpolation [34].

Consider wildlife data and the process of obtaining samples thereof. Even though
wildlife researchers are aware of the advantages of random sampling, these methods are
usually not implemented due to practical complications. In practice, most samples are
convenience samples [4, 91] so the selection probabilities of the elements cannot be de-
scribed, making it impossible to derive statistically valid estimators and their errors. This
implies that commonly used statistical methods may not be directly applicable or may
not yield reliable results [4, 79, 91]. Typically, it is assumed that the convenience sam-
ples obtained in wildlife research approximate random samples so that inferences can be
made about the population, however, these assumptions remain mostly unfounded and
untested. In wildlife research, probability sampling methods such as simple random sam-
pling (SRS) are not practical since all elements in the population may not be known,
available or accessible. Instead, prior knowledge is often used to select elements, or in
some cases, any available element is included. For example, when studying an endan-
gered animal in the wild, a researcher would typically include any available animal in the
study. Another common reason for convenience sampling in wildlife research is that many
sampling opportunities could occur as a result of opportunity, rather than planning. Con-
venience sampling is not only a problem in wildlife research but also in general studies of
non-controlled environments such as internet surveys, or other self-selected samples.
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Nusser et al. [79] performed a landscape-based simulation study in order to explore the
properties of estimators from convenience samples in relation to probability samples. The
simulations included spatial information and considered the habitat preferences of the
wildlife population, disease distribution and potential biases of a convenience sampling
approach. A study such as this can help researchers understand the impact of taking
a convenience and probability samples, but is limited by the assumptions being made.
Krumm et al. [61] compared the prevalence of chronic wasting disease (CWD) among
vehicle-killed mule deer to the disease prevalence among mule deer of the same sex sampled
in the vicinity of collision sites. This study is useful in showing how a study based on
convenience sampling of deer killed in vehicle collisions would overestimate the disease
prevalence in natural deer populations.

These challenges also extend to research on domesticated animals. Rabies is a serious
yet neglected public health threat in rural, underserved communities in Africa [57]. The
effective control of this infectious disease relies on vaccinating a sufficient threshold pro-
portion of the host population to effect herd immunity [41]. This threshold proportion is
a function of the basic reproductive number, the number of secondary cases of infection
generated by a typical infectious individual in a otherwise fully susceptible population.
Hampson et al. [50] predicted that rabies outbreaks in dogs can be controlled if at least
40% of the population is immune at any time, however the rapid turnover in free-roaming
dog populations, along with a lack of affordable and accessible veterinary services, makes
achieving this goal challenging. It is therefore recommended that mass vaccinations are
implemented annually by the state or other agencies in order to obtain a coverage per-
centage of 60-70% [50, 72]. Using census data obtained for villages in the Mara province,
Northern Tanzania, Kraamwinkel et al. [58] investigated the effectiveness of traditional
sampling techniques compared to a variation of a simple spatial-type sampling technique,
namely the EPI cluster survey method.

These examples illustrate a need for more effective and appropriate sampling methods,
also valid within a spatial domain. The principle behind Tobler’s law of geography vio-
lates the critical assumption made in conventional sampling, namely that observations are
independent and identically distributed within the population (or within subpopulations)
and that selection probabilities of elements are known [64]. In reality, and specifically in
the setting of wildlife and animal research, the data to be collected is usually spatially
autocorrelated and heterogeneous with selection probabilities seldomly known. When us-
ing conventional sampling designs, this leads to inefficient and non-representative samples
with questionable estimation value [87]. Spatial sampling techniques are aimed at getting
results of a higher quality at a lower cost [103]. Cost as well as quality constraints are
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commonly applied in order to ensure that sampling costs do not exceed a given budget
whilst the quality of the results meet a given minimum requirement.

An important first step in spatial sampling involves the clarification of the sampling
objectives. These objectives could include the estimation of population parameters, the
prediction of values at unsampled sites, the mapping of an area or the identification of
the position of a target [103]. It is crucial to know whether the objective is about the
population or the superpopulation. In this context, a population refers to the ‘here-and-
now’ whilst a superpopulation refers to a single realization of a stochastic process and deals
with ‘where’ type questions [102]. For a population, we are often interested in estimating
an attribute, making design-based methods more applicable, whilst for a superpopulation,
we are interested in estimating the parameters of the underlying process, implying the
need for model-based methods [103]. The appropriateness and considerations needed for
each of these methods are discussed by Haining [49], Wang et al. [102] and de Gruijter et
al. [34]. A useful summary and examples are supplied in Wang et al. [103].

Model-based sampling allows for spatial information to be included in the sampling
design and aims to ensure representative sampling by making use of information regarding
the underlying spatial structure of the population [49, 66]. However, before we are able
to choose and fit an appropriate model, it is crucial that we understand this underlying
data structure by considering first- and second-order homogeneity [102]. A surface which
is first-order homogeneous has the same intensity (or mean) at different locations on the
map. This implies that the expected number of observations is proportional to the size of
the observation area. On the other hand, a surface which is second-order heterogeneous
has different spatial autocorrelation structures in different sections of the map. This relates
not to the expected number of points in a region but rather to the expected number of pairs
of points in that region. This concept is discussed in more detail in Chapter 2. The focus
of this mini-dissertation will be on methods that can be used to describe heterogeneity in
point patterns.

Many tests have been developed for second-order heterogeneity in the spatial point
process context and the theory of these is discussed in Section 2.2 with an application in
Section 3.2. To our knowledge, tests for first-order homogeneity in the spatial context are
not yet well-developed, with researchers mostly relying on the visual inspection of density
plots or assumptions about the data to decide whether the data is homogeneous or not.
These density plots are obtained through kernel estimation and are affected by the choice
of whether or not to apply edge correction. An example of this is shown if Figure 1.1 where
kernel estimation was applied to a simulated homogeneous point pattern with and without
various edge corrections. As an example, if a judgement call had to be made regarding the
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(a) Uncorrected. (b) Uniformly corrected. (c) Diggle’s corrected.

Figure 1.1: Kernel density estimates of a simulated homogeneous point pattern using
various edge corrections and a Gaussian kernel.

homogeneity of this pattern using Figure 1.1b, a researcher might mistakenly classify the
pattern as first-order heterogeneous. This example is discussed in more detail in Chapter
2 of this mini-dissertation. Tests for first-order homogeneity in point patterns are however
merely the comparison of intensities at different locations on the map, leading us to apply
tests developed in the context of time intervals to this setting. The theory of these tests
is discussed in Section 2.3 with an application to real-world data provided in Section 3.3.

In Chapter 2 we will give a description of point patterns, their applications and the
theory of the most common current methods used for assessing first- and second-order
homogeneity. Our focus is on assessing first-order homogeneity and these are illustrated
using current an proposed methods through a simulation study. In Chapter 3 we apply the
first- and second order homogeneity tests and methods discussed in Chapter 2 to real-life
point patterns and discuss the possible limitations of these.

In summary, in this mini-dissertation we aim to

• discuss briefly second-order homogeneity in order to indicate to the reader the impact
of not evaluating first-order homogeneity correctly,

• discuss methods available for testing first-order homogeneity, and

• pinpoint any shortcomings, limitations and advantages of these tests.



Chapter 2

Tests for heterogeneity in spatial point
patterns

2.1 Introduction

Before we can model a spatial point process we need to investigate the first-order and
second-order homogeneity of the observed pattern. Our choice of model will depend
on whether the intensity of the points vary across the pattern, namely first-order het-
erogeneity, and whether inter-point interactions vary from location to location, namely
second-order heterogeneity.

Complete spatial randomness (CSR) is used to describe points in a point pattern that
are randomly distributed [40, 44]. In considering CSR, we are in fact investigating second-
order homogeneity as we are looking at the interaction between points. Three possibilities
can occur when testing for CSR, namely that data will be regular, clustered or random
[7, 10, 40]. Regular implies that points tend to avoid each other, leading to a pattern
within the data with points distributed in a regular fashion (see Figure 2.2a). A clustered
pattern, also referred to by some authors as an ‘aggregated’ pattern, implies that points
may be grouped or clustered together. An example of a clustered pattern can be seen
in Figure 2.1b and shows the locations of redwood seedlings. In this specific case, the
clustering can be explained biologically as seedlings were known to be clustered around
redwood stumps. The locations of these stumps were however not recorded, limiting the
conclusions that can be made through statistical analysis.

A random pattern implies that the there is no pattern to the points, neither regular nor
clustered. Figure 2.1a shows the locations of 65 Japanese black pine saplings. It is clear
that no obvious pattern can be observed and points appear to be completely random. The
theory and tests for complete spatial randomness are well developed and we will consider
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CHAPTER 2. TESTS FOR HETEROGENEITY IN SPATIAL POINT PATTERNS 14

these in Section 2.2. Lastly, we could also consider spatio-temporal point patterns (see
Figure 2.2b) in which information is provided on both the location and the times where
events occurred within a specified spatial region and time interval, but this is beyond the
scope of this mini-dissertation. The topic is however addressed in the books by Cox and
Lewis [25], Cressie [28] and Diggle [40], as well as the recent article by González et al. [46].

(a) Locations of 65 Japanese black pine
saplings in a square of side-length 5.7 me-
tres [78].

(b) Locations of 62 redwood seedlings in a
square of side-length 23 metres [96][88].

Figure 2.1: Examples of random and clustered point patterns. Images obtained from [40].

(a) Locations of 42 cell centres in a unit
square [29][88].

(b) Locations of cases of non-specific gas-
trointestinal symptoms reported to NHS Di-
rect Hampshire, UK, between 1 and 8 Jan-
uary 2001. The radius of each plotted circle
codifies the reporting date.

Figure 2.2: Examples of regular and spatio-temporal point patterns. Images obtained
from [40].
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If points are found to be completely spatially random, using the methods in Section
2.2, we cannot sensibly fit a spatial model which takes into account a second-order trend.
It is important to note that since second-order homogeneity refers to the interaction be-
tween points, we are in fact considering the correlation between these. In order to obtain
an accurate measure of this correlation, we require sound knowledge of the process in-
tensity. Without this it is likely that we will encounter problems of spurious correlation
and confounding [10]. The evaluation of the intensity of the process will be considered in
Section 2.3.

A difficulty that can arise in spatial point pattern analysis is so-called edge-effects.
These effects occur when the region being observed is part of a larger region on which
the underlying process operates. In these situations the points being observed may be
interacting with points not being observed. There are various methods to adjust for these
effects. Although our application in Chapter 3 of this mini-dissertation deals with complete
point patterns and no edge irregularities are present, we will briefly consider the impact of
applying edge corrections when investigating the first-order homogeneity of the process.
[6, 36, 40, 89, 99]

2.2 Testing for Complete Spatial Randomness

An important step in modelling any observed point patterns is testing for CSR. Many
tests are used to explore data and assist in formulating plausible alternatives for CSR.
The informal combination of complementary tests is often useful in indicating the nature
of departures from CSR, however, Cox et al [26] states that using multiple procedures as
part of a diagnostic test only makes practical sense if the various tests examine different
aspects of the pattern since a significant result in one test will not prevent a sensible
interpretation for other tests. According to Diggle [40], tests for CSR should be seen as
a natural starting point on the road to fitting stochastic spatial models. We will consider
different hypotheses and their associated tests in the following sections. [40]

The spatial dependence of a point process considers the relationship between the num-
ber of events in pairs of subregions within a window W . This second-order property can
be formally defined in terms of a mathematical limit as

γ (ui, uj) = lim
dui, duj→0

(
E (n (dui)n (duj))

duiduj

)
where du is a small region around the point u, du is the area of this region, i is an index
and n (du) is the number of observed points in this small region [44].
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Classical techniques for investigating interpoint interaction are based on measuring the
distances between points [7]. These techniques are referred to as distance methods and are
discussed in Sections 2.2.4. There are three different types of distances we can consider,
namely pairwise, nearest neighbour and empty space distances. We define these distances
as follows

• pairwise distances, sij = ‖xi− xj‖, considers all distinct pairs of points xi and xj
in the pattern where i 6= j,

• nearest neighbour distances, ti = minj 6=i sij, consider the distance from each
point xi to its nearest neighbour, and

• empty space or void distances , d(u) = mini ‖u−xi‖, considers the distance from
a fixed reference location u in the window to the nearest data point.

2.2.1 Manual methods

An initial look at complete spatial randomness can be done using a semivariogram. A
semivariogram, is a function describing the degree of spatial dependence in data and
is defined as the variance of the difference between field values in two locations across
realizations of the field (see Figure 2.3) [27]. Although many authors use the terms ‘vari-
ogram’ and ‘semivariogram’ interchangeably, the semivariogram is actually one half of the
variogram [101]. This distinction does not always matter but could be crucial in some
calculations. A graph of the semivariogram plotted against the separation distance yields
valuable information regarding spatial variability. If observations close together are more
alike, this graph starts at zero and increases as the separation distance increases, implying
that pairwise differences increase and autocorrelation decreases, as the distance between
points increase. As the separation distance increases, the semivariogram levels off to a
constant value called a sill. Points which are further apart than this distance are con-
sidered spatially uncorrelated, having near constant variance in pairwise differences. This
implies that a homogeneous point process will have constant variance in pairwise difference
for all distances between points. In geostatistics, methods such as kriging require valid
semivariograms which are often estimated by the empirical variogram. [101]

When comparing two spatial processes it is also useful to compare correlation instead of
variance [101]. The correlogram, also known as an autocorrelation plot, is commonly used
in time-series analysis to show the autocorrelations present in data. These can however
also be applied to spatial data to check if points close together in space, as opposed to
close together in time, exhibit some sort of dependence. If data is uncorrelated or random,
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Figure 2.3: An example of a semivariogram. The semivariogram γ is plotted against the
separation distance h. The range refers to the separation distance at which the semi-
variogram levels off, in other words the distance at which observations tend to become
spatially uncorrelated. The nugget indicates if a spatial variable is continuous and the
level of irregularity in the spatial variability. Image obtained from [43].

autocorrelations should be near zero with correlated data showing values significantly non-
zero.

Moran’s index, referred to as Moran’s I [71], also provides a measure of spatial auto-
correlation and is given by

I =
N∑

i

∑
j

wij

∑
i

∑
j

wij
(
Xi − X̄

) (
Xj − X̄

)
∑
i

(
Xi − X̄

)2
for a point pattern where N is the number of spatial units, {Xi}Ni=1 are the spatial units
and wij are spatial weights. The weights are usually chosen as 1 for neighbouring spatial
points and 0 otherwise, where the definition of a neighbour is appropriately chosen. Al-
ternatively, weights can be assigned using distance decay functions such as covariogram
contiguity which assigns weights based on the variogram model for the dataset [5, 73]. The
index I ranges from -1 to 1, namely negative spatial autocorrelation to positive spatial
autocorrelation, with a 0 value indicating CSR.

Another simple technique for assessing the correlation in a point pattern is based
on dividing a rectangular observation window into quadrats of equal size and counting
number of pairs of points within different quadrats [10]. If a pattern is both first-order
homogeneous and CSR, then we would expect the total number of ordered pairs of points
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within quadrats to be equal. In other words, if there arem quadrats containing n1, . . . , nm

points respectively, then the jth quadrat should contain nj(nj−1) distinct ordered pairs of
points. If the pattern has a total of n points, then there are n(n−1) distinct ordered pairs
of points. We can therefore calculate the fraction of all distinct ordered pairs of points
in which both points fall in the same quadrat as

∑
j nj(nj−1)
n(n−1) . If the process is CSR, this

fraction is expected to be 1
m
. The Morisita index is calculated as the ratio of the observed

and expected fractions, namely

M = m

∑
j nj (nj − 1)

n (n− 1)
.

This index should be close to 1 if the points are independent, less than 1 if the points are
regular and greater than 1 if points are clustered. The Morisita index plot can be obtained
by repeating this process for different sized quadrats and then plotting the Morisita index
against the diameter of the quadrats. Figure 2.4 shows examples of these plots for random,
clustered and regular patterns. It is important to note that this test can only be applied
to a rectangular window and is based on the assumption that the point pattern has ho-
mogeneous intensity. If the pattern has inhomogeneous intensity then M can have large
values because of the differences in intensity, rather than correlation between points. In
addition, the derivation of the Morisita index is based on a Poisson process (the properties
of this process are discussed in Section 2.2.2). If points are generated through some other
process it is unclear how the value of this index should be interpreted. [10]

Fry plots can also be used to investigate the interspace distances between points. The
technique was originally developed by Patterson [80, 81] for crystallography but was then
independently reinvented for geophysics by Fry [42, 51]. These plots are created by printing
the pattern on a piece of paper, then overlaying it with a transparency or tracing paper.
This transparency should have a cross drawn in the middle, then position the cross over
the first point in the pattern. Indicate the positions of all the points in the pattern on
the transparency in their relative positions. It may happen that some points will not fit
onto the transparency since they could be too far away but this is not a problem. This
process is repeated by moving the cross to all data points and copying the positions of
the other points onto the transparency. Examples of these Fry plots can be seen in Figure
2.5. The origin of the plot represents a typical point within the pattern and the points
indicated on the plot represent the positions of nearby points relative to the typical point.
If there is no obvious pattern, the plot indicates that points are CSR. If the center of the
plot shows no points, it implies that all points are at least that minimum distance apart,
meaning that the points have a regular distribution. If the center of the plot is crowded
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(a) Plot for a regular pattern created using the amacrine point
pattern. [39]

(b) Plot for a CSR pattern created from a simulated homogeneous
point pattern.

(c) Plot for a clustered pattern created using the bei point pat-
tern. [23, 24, 54, 68]

Figure 2.4: Examples of Morisita index plots.
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Figure 2.5: Examples of Fry plots for random (left), regular (middle) and clustered (right)
patterns. Images obtained from [7].

with points, it implies that points tend to be close together, in other words a clustered
pattern. Although these plots are easy to construct and interpret, they are based on
the assumption that the process has homogeneous intensity. The interpretation of Fry
plots have been very insightful in the field of geophysics, but their interpretation in other
applications is very subjective and in order to extract useful information, these plots often
need to be simplified, reduced or summarized.

2.2.2 Poisson Processes - a starting point

A point pattern that exhibits CSR can be modelled using a Poisson point process with
intensity λ. Researchers usually focus on establishing that their data does not conform to
this model and the Poisson point process therefore serves as a ‘null model’ in statistical
analysis [7].

Definition 1. A homogeneous Poisson point process of intensity λ [7] has the following
properties:

1. the number of points n falling within any region B is a Poisson random variable,
with intensity parameter λ,

2. the expected number of points within a region B is equal to the intensity times the
area of the region, λ× area(B),

3. if B1 and B2 are disjoint regions, then the number of points in each respective
region, n1 and n2, are independent random variables, and

4. the n points in a region B are uniformly distributed in the region.

An important property of the Poisson distribution that should be considered is that
a Poisson variable has a mean which is equal to its variance. The sample variance-to-
mean ratio of the counts within subregions of the observation window can therefore be
interpreted as a measure of over- or underdispersion of the counts, assuming these have a
constant mean [10].
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2.2.3 The inhomogeneous Poisson process

Definition 2. An inhomogeneous Poisson process of intensity λ (u) , u ∈ R2 where u is a
spatial location, is a modification of the homogeneous Poisson process with the following
properties:

1. the number of points n falling within any region B is a Poisson random variable,
2. the number of points, N (X ∩B), falling in a regionB has expectationE [N (X ∩B)] =´

B
λ (u) du,
3. if B1 and B2 are disjoint regions, then the number of points in each respective

region, n1 and n2, are independent random variables, and
4. given thatN (X ∩B) = n, the n points are independently and identically distributed

with common probability density f (u) = λ(u)/I, where I =
´
B
λ (u) du.

2.2.4 Tests for second-order homogeneity

The F function

The F function of empty space distances was developed by Baddeley et al. [8]. If X is
stationary point process, the cumulative distribution function of the empty space distance
is given by

F (r) = P [d (u,X) ≤ r]

where u is an arbitrary reference location. For a first-order homogeneous process, this
definition is not dependent on u [7]. The empirical distribution function of the observed
empty space distances on a grid of locations uj, j = 1, ...,m is given by

F ∗(r) =
1

m

∑
j

1 {d (uj,x) ≤ r}

and is a negatively biased estimator of F (r). This bias is a result of so-called edge effects
and can be dealt with using a variety of corrections, all effectively forms of the Horvitz-
Thompson estimator [53]. An unbiased estimator for F (r) is given by

F̂ (r) =
∑
j

e (uj, r)1 {d (uj, x) ≤ r}

where e (uj, r) is an edge correction weight. Assuming an homogeneous point process, we
can therefore compute an unbiased and reasonably accurate estimate of the empty space
function F .

A useful benchmark for the interpretation of this estimate is the Poisson process. Note
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that d (u,X) > r if and only if there are no points of X in the disc b (u, r) of radius r,
centered at u. A homogeneous Poisson process with intensity λ will have a mean number
of µ = λ × area (b (u, r)) = λπr2 points falling in b (u, r). Therefore, the probability of
having no points in this region is given by e−µ = e−λπr

2 . This means that for a Poisson
process we have that

Fpois(r) = 1− e−λπr2 .

To decide whether a point process is random, regular or clustered, we compare F̂ (r)

to the value obtained for Fpois(r) by plugging in the estimated intensity λ̂ = n(x)
area(W )

where
W is the observation window.

• If F̂ (r) > Fpois(r) it suggests that the empty space distances in the observed point
pattern are shorter than for a Poisson process which points to a regular spaced
pattern.

• If F̂ (r) < Fpois(r), a clustered pattern is indicated.

• If F̂ (r) = Fpois(r), the pattern is said to exhibit complete spatial randomness and
further spatial analysis is therefore not justified.

The G function

Unlike the F function which is based on empty space distances, the G function is based on
nearest neighbour distances. The empirical distribution of these distances depends on the
geometry of the sampling window W , as well as the characteristics of the point process
X. This again implies that corrections need to be made for edge effect bias.

The G function, developed by Baddeley et al. [8], states that if X is a first-order
homogeneous point process, we can define the cumulative distribution of the nearest-
neighbour distance for a typical point in the pattern as

G(r) = P (d (u,X\ {u}) ≤ r | u ∈ X)

where u is an arbitrary location and d (u,X\ {u}) is the shortest distance from u to the
point pattern X excluding u itself. For a stationary process, this definition does not
depend on u itself.

The empirical distribution function of the observed nearest-neighbour distances is given
by

G∗(r) =
1

n(x)

∑
i

1 {ti ≤ r}
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and is a negatively biased estimator of G(r) due to edge effects. There are many edge cor-
rections available to deal with this bias, typically being weighted versions of the empirical
cumulative distribution function,

Ĝ(r) =
∑
i

e (xi, r)1 {ti ≤ r}

where e (xi, r) is an edge correction weight designed so that Ĝ(r) is approximately un-
biased. A counterpart to the Kaplan-Meier estimator [9] is defined as follows. For
i = 1, ...,m, let (yi, di) with yi the distance from each of the m sample points to the
nearest other event in W and di denote the distance to the nearest point on the boundary
of W . The estimator is then defined as

Ĝ(r) =
# (yi ≤ r and di > r)

# (di > r)

where # is read as ‘The number of points such that’.
The nearest-neighbour distance distribution function for a homogeneous Poisson point

process of intensity λ is given by

Gpois(r) = 1− e−λπr2 .

When comparing this function to the empty space function Fpois(r), it can be seen
that these functions are identical. We should however note that the interpretation of the
G function differs from that of the F function.

• If Ĝ(r) > Gpois(r), this suggests that the observed nearest neighbour distances are
shorter than for a Poisson process, suggesting a clustered pattern.

• If Ĝ(r) < Gpois(r) a regular pattern is suggested.

• If Ĝ(r) = Gpois(r), the pattern is said to exhibit complete spatial randomness and
furher spatial analysis is therefore not justified.

The J function

The J function, a nonparametric measure of spatial interaction developed by van Lieshout
and Baddeley [100], combines the G and F functions a useful manner as

J (r) =
1−G (r)

1− F (r)



CHAPTER 2. TESTS FOR HETEROGENEITY IN SPATIAL POINT PATTERNS 24

for all r ≥ 0 such that F (r) < 1. For a first-order homogeneous Poisson process, Fpois =

Gpois, so that
Jpois (r) ≡ 1

for r > 0.
This function compares inter-event distances to distances from a fixed sampling point

and can be used to measure both the strength and range of interactions. The function
can be evaluated in closed form for more models than the F and G functions and contrary
to these, a plot of the estimated J function can be interpreted without comparison to a
Poisson point process. This function has been found to be a competitive choice, producing
tests with similar power or more powerful alternatives than those of the F and G functions.
However, the performance of tests based on the J function worsens drastically as the range
of values taken into account grows, especially in tests using the Maximum Statistic. A
simulation study investigating the power of tests based on the J function compared to
tests based on the F and G functions was conducted by Thönnes et al. [97].

The J function can be estimated by

Ĵ (r) =
1− Ĝ (r)

1− F̂ (r)

where F̂ (r) and Ĝ (r) are defined as on pages 21 and 22. This estimator has been shown
to be insensitive to edge effects [100].

The J function can be interpreted as follows.

• If Ĵ(r) > Jpois(r) ≡ 1, a regular pattern is suggested.

• If Ĵ(r) < Jpois(r) ≡ 1 a clustered pattern is suggested.

• If Ĵ(r) = Jpois(r) ≡ 1, the pattern is said to exhibit complete spatial randomness.

The K function

When observing pairwise distances sij = ‖xi − xj‖ in a point process, a bias occurs in
favour of smaller distances. This bias is due to our inability to observe a pairwise distance
greater than the diameter of the windowW . The K function for a first-order homogeneous
point process was defined by Ripley [88] in such a way that λK(r) is the expected number
of points in the process within a distance r of a typical point in the process. The function
is given by

K(r) = 1
λ
E [n (X ∩ b (u, r) \ {u}) |u ∈ X] .
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For a homogeneous Poisson process, the fact that u is known to be a point of X does
not affect other points in the process, thereby implying that X\ {u} is conditionally a
Poisson process. This means that the expected number of points falling in b (u, r) is given
by λπr2. For a homogeneous Poisson process,

Kpois (r) = πr2

irrespective of the intensity.
The empirical distribution function of the pairwise distances is of the general form

K̂ (r) =
1

λ̂2area(W )

∑
i

∑
j 6=i

1 {‖xi − xj‖ ≤ r} e (xi, xj; r)

where e (u, v, r) is an edge correction weight. As long as some edge correction is applied,
the choice of estimator does not appear to be very important. The formulation of the
edge correction depends on the shape of the study area W . More details about this can
be found in the book by Diggle [36, 40].

To make an inference on the randomness of the point pattern, the estimate K̂ (r) is
compared to the Kpois function.

• If K̂ (r) > Kpois(r), a clustered pattern is suggested.

• If K̂ (r) < Kpois(r), a regular pattern is suggested.

• If K̂ (r) = Kpois(r), the pattern is said to exhibit complete spatial randomness and
further spatial analysis is therefore not justified.

The L function

The L function is merely a commonly used transformation of the K function and is defined
as

L (r) =
√

K(r)
π
.

In effect, the K function is transformed to the straight line Lpois (r) = r which makes
visual assessment much easier. The transformation approximately stabilises the variance
of the estimator, which simplifies the assessment of deviations.

The L function is estimated by

L̂ (r) =

√
K̂(r)

π
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and is interpreted as follows.

• If L̂ (r) > Lpois(r), a clustered pattern is suggested.

• If L̂ (r) < Lpois(r), a regular pattern is suggested.

• If L̂ (r) = Lpois(r), the pattern is said to exhibit complete spatial randomness and
further spatial analysis is therefore not justified.

In this section we considered various functions that can be used to evaluate second-order
homogeneity in point patterns. The F function classifies a pattern as clustered, regular or
random by considering empty space distances, in other words, the distance from a fixed
reference location which may or may not be in the pattern, to the nearest observed point
in the pattern. This function is useful as we gain more information by considering the
cumulative distribution function of the empty space distances, F (r), than we would from
considering the average empty space distance as we are now considering the probability
of observing a specified distance[10]. In the same way, we can gain more information
regarding the distances between points and their closest neighbouring points by considering
the cumulative distribution function of the nearest neighbour distances, G (r), rather than
the average of the nearest-neighbour distances. These empty space and nearest neighbour
distribution functions, F and G, are combined to give the J function, a nonparametric
measure of spatial interaction. This implies that the J function compares the surroundings
of a point belonging to the process to the neighbourhood of a random point. The K
and L functions consider spatial interaction of points by considering pairwise distances.
The K function describes characteristics at different scales, both large and small. When
considering pairwise distances, a bias occurs in favour of smaller distances since pairwise
distances between points inside the observation window and points outside the observation
window cannot be observed. The K function therefore considers the expected number of
points in the process within a specified distance, r, of a typical point in the process. The
L function merely transforms the K function into a straight line, making visual inspection
easier.

2.2.5 Adjustment for the impact of first-order inhomogeneity

In Section 2.2.4 we discussed the F , G, J , K and L functions for first-order homogeneous
point processes. The inhomogeneous counterparts of the F , G, J , K and L functions also
hold and are available for implementation in the spatstat package of R [10, 11]. If a point
process is not first-order homogeneous, deviations between the empirical and theoretical
functions should not necessarily be seen as confirmation of interpoint interaction since it
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could be attributable to variations in intensity [7]. An first-order inhomogeneous point
process with intensity function λ (u) ∈ R2 has expected number of points in any region A
given by I =

´
A
λ (u) du. In addition, given n events x1, x2, . . . , xn in a region A, the xi’s

are an independent random sample from common distribution f (u) = λ(u)/I on A.

2.3 First-order homogeneity

The hypothesis tests we now present, originally applied to one-dimensional Poisson pro-
cesses for statistically testing first-order homogeneity, namely that of the intensity, λ (t)

where t is time. For the spatial application we consider λ (u) where u is a spatial location.
In different contexts the average number of points can represent different concepts, for

instance abundance of particles on a surface, density of light-sensitive cells in a retina,
productivity of crops, risk of crimes, intensity of a lightning storm or prospectivity of
undiscovered mineral deposits [10]. The standard generic term for this is intensity. A
very important first step in analysing spatial data is determining whether the rates or
intensities of K underlying spatial processes are the same [10, 21]. In this context, the K
underlying spatial processes refers to subdividing the observation window into K quadrats
and comparing the intensities of these. In practice, the intensity of a spatial point process
could vary from place to place, in which case, the process is said to be first-order hetero-
geneous [44]. When calculating an intensity for a surface by dividing the total number
of points by the area, we are in fact making a tentative assumption that the intensity is
uniform across the area. This is often a working assumption in some kinds of analysis,
but may be inappropriate. When intensity varies spatially it is effectively a function of
spatial location and the intensity function can be estimated through statistical methods
using observed data. [10]

Understanding the intensity of a process is often the aim of the scientific question under
question. For instance, spatial variation in intensity could reflect the preference of wild
animals for certain habitats or the natural segregation of certain plant species. However,
when intensity is not the main focus of a study, it remains a crucial part of the analysis as
intensity can easily be confused with other pattern characteristics such as clustering. For
us to establish that a pattern is clustered we first need to eliminate alternative explanations
such as spatially varying intensity. When it is known that intensity varies across a pattern,
adjustments for this effect can be made to the tools used to investigate clustering. [10, 44]

Let X be a point pattern defined in two-dimensional space. In the homogeneous case,
for any subregion B of a two-dimensional space, the intensity of a point pattern is taken
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as the expected number of points of X falling in B and is proportional to the area of B:

E [n (X ∩B)] = λ |B| (2.1)

where n (X ∩B) is the number of points in X falling in the subregion B and |B| is tbe
area of the subregion B. The intensity, indicated as λ, can therefore be thought of as
the average density of points per unit area where λ is a constant [7, 10, 44]. In the
heterogeneous case, the expected number of points falling within a region B, with spatial
varying intensity function of the process, λ (u), is defined by Baddeley [7] as

E [n (X ∩B)] =

ˆ
B

λ (u) du. (2.2)

If Equation 2.2 holds, λ (u) is called the intensity function of the point process. When
points are concentrated along an edge/line, the point process does not have an intensity
function. This is a common occurrence in seismology where earthquakes tend to occur on
tectonic plate boundaries [10]. This implies that we can define the intensity of a point
process as the mathematical limit

λ (u) = lim
du→0

(
E (n (du))

du

)
where du is a small region around the point u, du is the area of this region and n (du)

is the number of observed points in this small region [44]. A point process is said to be
stationary or first-order homogeneous if the intensity of the process, λ (u) = λ, is constant
over the observation window W [44].

The techniques used to estimate intensity differ according to whether the process is
first-order homogeneous or heterogeneous. According to Baddeley et al. [10], analysis
often starts with the tentative assumption that a process is homogeneous and the validity
of this assumption is then assessed. In point processes, the empirical density of points,

λ̂ =
n (x)

|W |
, (2.3)

is an unbiased estimate of the true intensity λ, assuming the point process has homoge-
neous intensity. In this equation, x is the observed point pattern observed in the window
W , n (x) is the number of points in x and |W | is the area of the window W . Additional
assumptions are required in order to give a standard error for the intensity estimate. If we
provisionally assume that the point process is Poisson then the observed number of points
within W is a Poisson random variable with mean λ |W |. Since the mean and variance for
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a Poisson random variable are equivalent, this implies that λ̂ has variance given by

var
(
λ̂
)

=
var [n (X ∩W )]

|W |2
=

λ

|W |

leading to an estimate for the standard error of λ̂ given by
√

λ̂/|W |.
The intensity function can be estimated non-parametrically using techniques such as

kernel smoothing, as recommended in the literature, or the method of quadrat counting
[10, 11]. The density.ppp function available in the spatstat package in R [10, 11] performs
kernel smoothing using an isotropic Gaussian kernel as default and yields a pixel image
object which can indicate the direction and pattern of a possible trend. Quadrat counting
is also implemented in spatstat, providing the number of observed points in a specified
number of quadrats. Examples of both these methods can be found in [7]. These techniques
are explained in the following sections followed by new suggested hypothesis tests for first-
order homogeneity.

2.3.1 Quadrat counts

Quadrat counting, a simple visual technique that can be employed to check for first-
order homogeneity, is employed by dividing the observation window W into sub-regions,
called quadrats, and then counting the number of points within each quadrat. If a point
process is homogeneous, the number of points in equal sized areas should be roughly
equal. For simplicity we will assume that the m sub-regions, B1, . . . , Bm, have equal
area, but this need not be the case. Let nj = n (x ∩Bj) be the number of points in region
Bj for j = 1, . . . ,m. If the intensity is homogeneous, these counts should be equal ‘on
average’ since the counts in are unbiased estimators of the corresponding expected values
E [n (X ∩Bj)]. If a spatial trend is observed in the counts, this suggests that the intensity
is inhomogeneous. [10]

Consider the point pattern shown in Figure 2.6. This pattern was simulated from a
homogeneous Poisson point process with intensity λ = 50 generated in a square window
with a length of 4 units. It can be seen from this pattern that homogeneous intensity does
not imply that points are uniformly distributed, rather that the average number of points
in areas of equal size are roughly the same. Figure 2.7 shows additional examples of point
patterns with homogeneous intensity and Figure 2.8 shows examples of point patterns
with inhomogeneous intensity.

Figure 2.9 shows the simulated homogeneous point pattern divided into quadrats of
different sizes with the top figures showing the counts for the quadrats and the bottom fig-



CHAPTER 2. TESTS FOR HETEROGENEITY IN SPATIAL POINT PATTERNS 30

Figure 2.6: A point pattern simulated from a homogeneous Poisson point process with
intensity λ = 50.

Figure 2.7: Examples of point patterns with roughly homogeneous intensity. The image
on the left shows biological cell centres in a histological section [87, 88]. This image in
the middle shows the locations of trees in a forest in New Zealand, excluding a five-foot
border [65, 87]. The image on the right shows the location of Swedish Pine saplings [88, 95].
Images obtained from Baddeley [10].
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Figure 2.8: Examples of point patterns with inhomogeneous intensity. The image on the
left shows the locations of enterochromaffin-like cells in a histological section of gastric
mucosa (Dr Thomas Bendtsen in [69]). The top of the image shows the interior of the
stomach. The image on the right shows the locations of gorilla nesting sites in Kagwene
Gorilla Sanctuary, Cameroon [10].

ures showing estimates for the intensity in each of the quadrats. These intensity estimates
are calculated by dividing the quadrat counts by the quadrat size. The choice of the size
of the quadrats is a tradeoff between bias and variability. While large quadrats reduce the
relative error of the counts nj, it also smooths out the variation in intensity within each
of the quadrats. If we are willing to assume that the counts within the different quadrats
are approximately independent variables with the same unknown distribution, and the
quadrats are of equal size and shapes, the quadrat counts can be used to calculate the
standard error for the overall estimate of intensity as√√√√var

(
λ̂
)

m− 1
.

Quadrats can have different shapes and sizes, however, should this happen the counts
cannot be compared directly. Under the assumption of homogeneity, Equation 2.1 implies
that the expected count in each quadrat is proportional to the area of the quadrat. This
in turn implies that the average intensity given by Equation 2.3 is an unbiased estimator
for the homogeneous intensity λ. We can therefore compare the estimated intensities in
different sized and shaped quadrats in order to make an inference about the homogeneity
of a point pattern. An example of this is shown in Figure 2.10.

It is however clear that visual inspection of these output can lead to subjective decisions
regarding the homogeneity of the observed pattern. Hypothesis tests should be applied
in order to make inferences in this regard. These suggested tests are discussed in Section
2.3.3.
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(a) Quadrat counts for 2× 2, 5× 5 and 10× 10 grids.

(b) Intensity estimates for 2× 2, 5× 5 and 10× 10 grids.

Figure 2.9: The simulated pattern shown in Figure 2.6 divided into quadrats of various
sizes.

Figure 2.10: The point pattern in Figure 2.6 divided into quadrats of unequal sizes and
shapes.
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2.3.2 Kernel density estimation

Kernel smoothing is a nonparametric data smoothing technique that can be used to es-
timate the intensity function, λ (u), of a point pattern. Waller et al. [101] compared
fitting a kernel density estimate to mapping out events on a tabletop and then placing
an identical mound of molding clay over each event. The mounds of clay will overlap for
groups of events occurring close together, resulting in a taller pile of clay in those areas.
When considering the entire surface, the clay represents a surface reflecting a nonparamet-
ric estimate of the intensity function. In effect, kernel density estimation centers a kernel
function at each data point and then sums all these functions in order to create an overall
smooth density estimate.

The kernel density estimator with kernel K is defined by

f̂ (u) =
1

nh

n∑
i=1

K

(
u−Xi

h

)
(2.4)

where h is the smoothing parameter, also known as the window width or bandwidth [93].
The n observed points are denoted by X1, . . . , Xn and u is a location within the observed
window. Equation 2.4 therefore implies that we will estimate the density at each point
u in the observed window, regardless of whether or not a point was observed at u. This
means that at locations with few observed points the density estimate will be low whilst
locations with many observed points will have a much bigger density estimate. The shape
of this density estimate at each location is given by the choice of the kernel function K.
The choice of bandwidth parameter h will affect the width of the density estimate at
each location. A larger bandwidth leads to more smoothing and the choice of bandwidth
involves a tradeoff between variance and bias since as the bandwidth increases, the bias
typically increases and the variance decreases [10]. The usual properties of kernel function
as discussed by Silverman [93] are as follows:

• A kernel function must be non-negative if the density estimate is required to be a
probability density function.

• A kernel function must be a valid probability density function.

• The kernel function must be continuous and differentiable so that f̂ will inherit these
properties.

In special circumstances the first property can be relaxed. For practical purposes, the
kernel function is usually symmetric unless the researcher has prior knowledge to indicate
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that an unsymmetric kernel would provide a better estimate. The usual kernel estima-
tors of the intensity function λ (u) are the uncorrected, uniformly corrected and Diggle’s
correction estimators, given respectively by

λ̂(0) (u) =
n∑
i=1

K (u− xi) , (2.5)

λ̂(U) (u) =
1

e (u)

n∑
i=1

K (u− xi) , (2.6)

λ̂(D) (u) =
n∑
i=1

1

e (xi)
K (u− xi) , (2.7)

where u is any spatial location inside the window W , K (u) is the kernel function and
e (u) =

´
W
K (u− v) dv is the correction that deals with the bias caused by edge effects

[10]. The estimated intensity outside the observed window W is zero. Figure 2.11 shows
the kernel estimates obtained for the estimators given in Equations 2.5 to 2.7 when applied
to the simulated homogeneous point pattern shown in Figure 2.6 and Figure 2.12 shows
the associated perspective plots of the estimates. These estimates were all obtained using
a Gaussian kernel. The uncorrected estimate in Figure 2.11a shows a decline towards the
boundary of W , commonly known as an edge effect. Points lying outside the boundary
do not contribute to the intensity estimates near the boundary, leading to the decline. An
uncorrected estimate should therefore only be used if it is known that all points have been
observed and are contained within the observation window. When observing only some
of the points in the pattern inside a window, we need to apply an edge correction. The
uniformly corrected estimator is unbiased when the true intensity is homogeneous whilst
Diggle’s corrected estimator has a smaller mean square error leading to better overall
performance. It should however be noted that kernel estimators are generally slightly
biased since they smooth out the details of the intensity function [10].

The shape of the estimated density at each point u is given by the shape of the kernel
function. Any probability density function can be used as a kernel. Kernels that appear
regularly in the literature include the uniform, triangle, Epanechnikov, quartic/biweight,
triweight and normal distribution density functions, the last being the most common
choice [10, 93, 101]. The mathematical or computational properties may be better for
some functions, however the differences between estimates based on different kernels are
often small [101]. This is illustrated in Figure 2.13 by applying the kernels available in
the spatstat package to the simulated point pattern in Figure 2.6. The Epanechnikov,
qaurtic and Gaussian kernels give very similar estimates with only the disc kernel differing
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(a) Uncorrected. (b) Uniformly corrected. (c) Diggle’s corrected.

Figure 2.11: Density estimated of the simulated homogeneous point pattern using various
edge corrections and a Gaussian kernel.

(a) Uncorrected. (b) Uniformly corrected. (c) Diggle’s corrected.

Figure 2.12: Perspective plots associated with the density estimates shown in Figure 2.11.

(a) Epanechnikov kernel. (b) Quartic kernel. (c) Disc kernel.

Figure 2.13: Density estimates for the simulated homogeneous point pattern in Figure 2.6
using different kernels.
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noticeably.
The degree of smoothing is controlled by the kernel bandwidth. A small bandwidth

leads to an undersmoothed intensity surface whilst a larger bandwidth leads to an over-
smoothed surface. This is illustrated in Figure 2.14 where the bandwidth ranges from
0.1 to 1. The choice of bandwidth is not clear-cut but a very rough rule of thumb used
to select the bandwidth is to set it equal to one-eighth of the shortest side length of the
rectangular window, a rule which is often not satisfactory [10, 44]. Many bandwidth se-
lection methods exist and are based on minimising error measures. These include Diggle
and Berman’s mean-square cross-validation method [14, 37], the likelihood cross-validation
method [63] and Scott’s rule of thumb [92]. Different bandwidth selection methods can
give very different estimates, as it is often based on possibly inappropriate assumptions
about the dependence between points. The mean square error cross-validation method for
example assumes a Cox process whilst the likelihood cross-validation method assumes an
inhomogeneous Poisson process. Optimal bandwidth selection is however not the focus of
this mini-dissertation, but the interested reader is referred to [30, 38].

An indication of the accuracy of kernel estimates can be obtained by calculating stan-
dard errors and confidence intervals, however these require additional assumptions. Stan-
dard errors are justified by asymptotic theory but confidence intervals based on the stan-
dard error are notoriously unreliable since estimates of the intensity and estimates of the
variance of the intensity are highly correlated [10]. In future research we will be inves-
tigating the application of the Kolmogorov-Smirnov test for the comparison of different
kernel estimates [1]. This is however outside the scope of this mini-dissertation.

2.3.3 Hypothesis tests for first-order homogeneity

Currently in practice, first-order homogeneity is investigated through the visual inspection
of kernel density plots. Two of the hypothesis tests discussed in this section, namely
Pearson’s χ2 and the likelihood ratio test, are already available for use in the spatstat

package in R [10, 11], however these tests are to our knowledge not widely applied in
practice. The application of these tests also currently have software limitations that will
be discussed in Section 3.3.2 of this mini-dissertation. In this section we elaborate on the
theory of the aforementioned as well as three further hypothesis tests, newly extended in
this mini-dissertation to the investigation of first-order homogeneity in point pattern data.

For data that is modeled by the Poisson distribution, count data is typically used to
test for the equality of these intensities on K time intervals or spatial regions. The fixed
observation periods or areas need not be of equal length/size, but are generally assumed
to be independent. A number of studies have been performed to compare the size and
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(a) Bandwidth of 0.01.

(b) Bandwidth of 0.1.

(c) Bandwidth of 0.5.

(d) Bandwidth of 1.

Figure 2.14: Comparison of density estimates and their perspective views for the simulated
homogeneous point pattern in Figure 2.6 using different bandwidths.
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Figure 2.15: Illustration of the division of a rectangular point pattern into quadrats con-
taining xi points in corresponding areas of size Ai.

power of numerous test statistics if K = 2 for both equal sampling frames (see [16, 35])
and unequal sampling frames (see [20, 76, 77]).

Points in a spatial pattern that are close together are however unlikely to be inde-
pendent, violating this assumption. In some cases, points that are far apart may also be
considered dependent. An example of this occurs when analysing weather patterns along
a coastline or property damage along a fault line, when in one direction short distances
will exhibit dependence, while in a different direction independence. Nonetheless, in some
spatial patterns, points that are further apart could validly be considered independent.
Where the researcher suspects that this is the case, the tests discussed in the following
sections give valuable insight into the first-order homogeneity. Some level of intuition or
judgement should be applied by the researcher when deciding whether the assumption of
independence is justifiable, as well as deciding on the number of areas to compare.

Suppose we observe K independent random variables X1, X2, ..., XK where each xi
is the observed number of occurrences in a spatial Poisson process with an unknown rate
λi in a sampling frame with known area Ai. This concept is illustrated in Figure 2.15.
The density function of Xi is given by

f (xi) =
e−λiAi (λiAi)

xi

xi!
, for i = 1, 2, . . . , K.

The maximum likelihood estimate of λi is given by the empirical rate, λ̂i = xi/Ai. The
homogeneity test for K independent Poisson variates is given by H0 : λ1 = λ2 = . . . = λK

against HA : λi 6= λj for some i, j ∈ [1, . . . , K].
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Under the assumption of independence, the likelihood function is given by

L (λ1, . . . , λK | x1, . . . , xK) = e−
∑K

i=1 λiAi

∏K
i=1 (λiAi)

xi∏K
i=1 xi!

.

Under the null hypothesis, each Xi follows a Poisson distribution with parameter λi =

λ, implying that the point pattern is first-order homogeneous. The maximum likelihood
estimator of λ is given by

λ̂ =

∑K
i=1 xi∑K
i=1Ai

.

Numerous statistics have been proposed to test for the equality of the rates of Poisson
processes outside the field of spatial statistics, namely for time in one dimension. Here
we extend these tests to be applicable in the spatial domain. In the following subsections
we will be discussing these tests in the context of spatial point processes. These tests
are closely linked to the the process of quadrat counts as the window W is divided into
quadrats B1, ..., BK . The number of points within each quadrat, x1, ..., xK is then counted
and the size of each quadrat, A1, ..., AK , is noted. Under the null hypothesis, if the areas
of each quadrat are equal, A = A1 = ... = AK , and the unknown intensity is λ, then the
counts xi are independent Poisson random variables with equal mean Aλ [10].

2.3.3.1 Parametric bootstrap tests

Sections 2.3.3.2 to 2.3.3.6 describe first-order homogeneity tests, all of which have χ2-
distributions that are valid only asymptotically. Tests using p-values calculated by these
asymptotic distributions may encounter size distortions which can be addressed through
the use of parametric bootstrap tests. These tests approximate the p-value through Monte
Carlo resamples generated according to the homogeneity hypothesis [21, 33].

The procedure for approximating p-values is as follows. The test statistic, denoted τ , is
calculated based on the observed counts. Next we draw a sample ofK independent Poisson
variates with mean Aiλ̂, i = 1, . . . K, where λ̂ is the maximum likelihood estimate of the
intensity, that is under H0. The test statistic is calculated for this sample and is denoted
by τ ∗1 . This process is repeated R times so that we have τ ∗1 , . . . , τ ∗R. The bootstrap p-value
as proposed by Davison and Hinkley [33] is

bootstrap p-value =
# {i : τ ∗i ≥ τ}+ 1

R + 1
. (2.8)

We reject the null hypothesis of homogeneity if the bootstrap p-value is less than or equal
to the nominal significance level α. An alternative bootstrap p-value can be calculated
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without adding 1 in the nominator and denominator in Equation 2.8 (see [31, 32]). In this
mini-dissertation we will follow the original testing procedure.

Hope [52] illustrated that, in the case that there is no nuisance parameter, the power
loss resulting from using parametric bootstrap tests is slight compared the corresponding
uniformly most powerful test. This implies that R need not necessarily be large. Besag
and Diggle [15] suggested that at α = 0.05, R = 99 would be adequate. A simulation
study conducted by Davison and Hinkley [33] showed that for α ≥ 0.05, the loss of power
with R = 99 is not serious but that R = 999 should generally be a safe choice. In this
mini-dissertation, we will compare the asymptotic p-values to the approximate p-values
obtained from parametric bootstrap samples of sizes 99, 999 and 9999.

2.3.3.2 Pearson’s χ2 -test

Pearson’s χ2-test is arguably the most widely used χ2-test. The test statistic was proposed
by Potthoff et al. [83] and is given in the current context of a point pattern by

χ2
Pearson =

K∑
i=1

(
xi − λ̂Ai

)2
λ̂Ai

=

K∑
i=1

Ai

K∑
i=1

xi

K∑
i=1

x2i
Ai
−

K∑
i=1

xi (2.9)

This test can be applied in two different ways. Firstly, it can be used to test goodness-of-fit
to the Poisson distribution assuming homogeneous intensity [17]. Secondly, it can be used
to test for homogeneity by assuming independence [48]. Since we are interested in testing
for first-order homogeneity we will be applying the second, namely the χ2 test of uniformity.
Under the null hypothesis, this test statistic has an asymptotic χ2-distribution with K−1

degrees of freedom. Traditionally, this approximation is acceptable if the expected number
of points in each of the quadrats is at least 5. The power of the test depends on the size
of the quadrats and is optimal when these are neither very large nor very small [10].

This test can be performed in the spatstat package using the function quadrat.test.
The p-value for this test can be calculated in spatstat using the χ2 approximation as
well as Monte Carlo simulations. Figure 2.16 shows plots of the χ2 test performed on
the simulated homogeneous point pattern shown in Figure 2.6 using different grid sizes.
In these plots we can see the expected number of points per quadrat and it should be
noted that each is at least 5. The test statistics and parametric bootstrap p-values for
these tests are shown in Table 2.1, indicating that the pattern has homogeneous intensity.
Although spatstat can calculate Monte Carlo p-values, the ones given in this table were
calculated using the approach described in Section 2.3.3.1 using 9999 samples. For all grid
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Grid size Test statistic Asymptotic p-value Bootstrap p-value
2× 2 1.7725 0.6209 0.6178 0.6182 0.6262
5× 5 24.78 0.4178 0.4238 0.4138 0.4151

10× 10 102.92 0.3737 0.3764 0.3873 0.3845

Table 2.1: Comparison of the asymptotic and three parametric bootstrap p-values obtained
for the χ2 test applied to the simulated homogeneous point pattern shown in Figure 2.6.

sizes the asymptotic and bootstrap p-values are similar, leading to the conclusion that the
asymptotic distribution is “acceptable”.

Baddeley [10] however pointed out the limitations of this test. Firstly, the alternative
hypothesis that the point pattern has inhomogeneous intensity merely negates the null
hypothesis of a homogeneous intensity. There are two possible reasons why a point process
may fail to be a homogeneous point process, namely that the process does in fact not have
homogeneous intensity, or that it violates the property of independence between points.
The test can alternatively be viewed as a test of the independence property, assuming the
intensity is homogeneous.

2.3.3.3 Likelihood ratio test statistic

The likelihood ratio test can be used to test both simple and composite hypotheses, by
comparing the likelihood of the parameter(s) under the null to the likelihood of the pa-
rameter(s) under the alternative, given an observed dataset. Since the likelihood function
is explicitly known, the likelihood ratio is obtained as

Λ =
L
(
λ̂, . . . , λ̂ | x1, . . . , xK

)
L
(
λ̂1, . . . , λ̂K | x1, . . . , xK

) .
It is convention to take that 0/0 = 0 in case the sum of the xi’s equals 0. The likelihood
ratio test statistic was originally proposed by Neyman and Pearson in 1928 [74] with the
asymptotic distribution of the test derived by Wilks in 1938 [105]. Based on this test
statistic, Chiu and Wang [21] developed a likelihood ratio test statistic to test for the
equivalence of Poisson intensities, namely

LR = −2Λ = 2

 K∑
i=1

xi ln
xi
Ai
−

K∑
i=1

xi ln

K∑
i=1

xi

K∑
i=1

Ai

 ,
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Figure 2.16: χ2 test for homogeneity performed on the point pattern shown in Figure
2.6 using various grid sizes. Within each quadrat the observed count (top left), expected
count (top right) and the Pearson residual (bottom) is shown. The Pearson residual gives a
comparison of the observed and expected counts relative to the square root of the expected
count. The magnitude of the residual indicates the degree to which the two differ. Roughly
speaking, a residual above 2 in absolute value indicates a lack of fit.
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Grid size Test statistic Asymptotic p-value Bootstrap p-value
2× 2 1.7805 0.7616 0.6254
5× 5 24.7 0.8444 0.4348

10× 10 108.67 0.4757 0.2927

Table 2.2: Comparison of the asymptotic and parametric bootstrap p-values obtained for
the likelihood ratio test applied to the simulated homogeneous point pattern shown in
Figure 2.6.

which under the convention that 0 ln 0 = 0, has an asymptotic χ2-distribution with K − 1

degrees of freedom. Rao and Chakravarti [85] considered the particular case where the
time periods (in our case area) are of length to 1, however Chiu and Wang [21] were the
first to discuss the more general case.

This test can also be performed in the spatstat package using the argument CR = 0

in the quadrat.test function. The p-value for this test can be calculated in spatstat

using the χ2 approximation as well as Monte Carlo simulations. The test statistics and p-
values for these tests are shown in Table 2.2, indicating that the pattern has homogeneous
intensity.

2.3.3.4 Score test

In 1948, the score test was introduced by Rao as an alternative to likelihood ratio test [84].
This test is simpler than the likelihood ratio test as it only requires estimation under the
null hypothesis. This is particularly applicable when the success of an experiment depends
on disproving the null hypothesis. The test is computationally quite simple but was only
put to serious use in the 1980s when its use was popularized in the field of econometrics
[13]. In the context of point processes, this test statistic is given by

SC = u
(
λ̂, . . . , λ̂

)′
I
(
λ̂, . . . , λ̂

)−1
u
(
λ̂, . . . , λ̂

)
=


K∑
i=1

xi

K∑
i=1

Ai


2

K∑
i=1

A2
i

xi
−

K∑
i=1

xi

where

u (λ1, . . . , λK) =

(
∂ ln L (λ1, . . . , λ | x1, . . . , xK)

∂λ1
, . . . ,

∂ ln L (λ1, . . . , λ | x1, . . . , xK)

∂λK

)′
,

I (λ1, . . . , λK) =

[
−∂

2 ln L (λ1, . . . , λ | x1, . . . , xK)

∂λi∂λj

]
i,j=1, ...,K

.
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Grid size Test statistic Asymptotic p-value Bootstrap p-value
2× 2 1.799674 0.615006 0.6122
5× 5 25.2935 0.389955 0.4601

10× 10 149.7024 0.000761 0.3002

Table 2.3: Comparison of the asymptotic and parametric bootstrap p-values obtained for
the score test applied to the simulated homogeneous point pattern shown in Figure 2.6.

A general approach to avoiding the problem of division by zero is to add 0.5 to every
xi whenever one of the observed xi is zero. However in the spatial context, we are only
interested in comparing intensities for areas where points have been observed, thereby
making this step of the test avoidable. Under the homogeneity hypothesis, SC has an
asymptotic χ2-distribution with K − 1 degrees of freedom. Ng and Cook [75] investigated
score tests of homogeneity for Poisson processes with equal observation periods. Chiu et
al. [21] performed a comparative study to consider the homogeneity of K ≥ 3 Poisson
count data with different observation periods.

A comparison of the asymptotic and bootstrap p-values for this test is given in Table
2.3. Considering a 2× 2 and a 5× 5 grid, the asymptotic p-values indicate a homogeneous
pattern, but fails using a 10 × 10 grid. Although the asymptotic and bootstrap p-values
are similar for a 2×2 grid, these differ considerably when increasing the grid size, bringing
into doubt the validity of the asymptotic distribution. For all grid sizes, the bootstrap
p-values correctly indicate that the pattern has homogeneous intensity.

2.3.3.5 VT test

In 1966, Potthoff et al. [83] proposed two test statistics that deal with the homogeneity
of Poisson count data with different observation periods. The test statistic was developed
in the context of time intervals, ti, but we will consider the case of areas, Ai. The first of
these is the V T test statistic based on the statistic

V =

(
K∑
i=1

Ai

)
K∑
i=1

xi (xi − 1)

Ai

where

V −
(

K∑
i=1

xi

)(
K∑
i=1

xi − 1

)
√

2 (K − 1)

(
K∑
i=1

xi

)(
K∑
i=1

xi − 1

)



CHAPTER 2. TESTS FOR HETEROGENEITY IN SPATIAL POINT PATTERNS 45

Grid size Test statistic Asymptotic p-value Bootstrap p-value
2× 2 1.774614 0.621133 0.6178
5× 5 24.211839 0.417349 0.4235

10× 10 92.438459 0.372661 0.3765

Table 2.4: Comparison of the asymptotic and parametric bootstrap p-values obtained for
the VT test applied to the simulated homogeneous point pattern shown in Figure 2.6.

follows the standard normal distribution asymptotically under the null hypothesis. A more
mathematically refined approximation can be found as

V T = eV + f ∼ χ2
ν1

(2.10)

with degrees of freedom ν1 = e2 (K − 1)

(
K∑
i=1

xi

)(
K∑
i=1

xi − 1

)
. The constants in Equation

2.10 are given by

e =
2 (K − 1)(

K∑
i=1

Ai

)(
K∑
i=1

1
Ai

)
− 3K + 2 + 2 (K − 1)

(
K∑
i=1

xi − 2

)
and

f = e [(K − 1) e− 1]

(
K∑
i=1

xi

)(
K∑
i=1

xi − 1

)
and are determined in such a way that V T and χ2

ν1
have the same first three moments.

Table 2.4 shows the asymptotic and bootstrap p-values obtained when applying the
VT test to the simulated homogeneous point pattern. All grid sizes lead to similar p-values
and indicate a homogeneous intensity present in the pattern.

2.3.3.6 UT test

The second test statistic proposed by Potthoff et al. [83] is also an asymptotic χ2-test
which has been proven to be the locally most powerful test against a selected alternative
if λ is known [21, 83]. As with the V T test, we will consider areas, not time intervals. The
UT test statistic is based on the statistic

U =
K∑
i=1

x2i−
K∑
i=1

xi − 2λ
K∑
i=1

Aixi



CHAPTER 2. TESTS FOR HETEROGENEITY IN SPATIAL POINT PATTERNS 46

and

U + λ2
K∑
i=1

A2
i√

2λ2
K∑
i=1

A2
i

(2.11)

follows the standard normal distribution asymptotically under the null hypothesis.
A more mathematically refined approximation can be found as

UT = gU + h ∼ χ2
ν2

(2.12)

with degrees of freedom ν2 = g2λ2
K∑
i=1

A2
i . The constants in Equation 2.12 are given by

g =

K∑
i=1

A2
i

K∑
i=1

A2
i

2
+ λ

K∑
i=1

A3
i

and

h = g (g + 1)λ2
K∑
i=1

A2
i

and are determined in such a way that UT and χ2
ν2

have the same first three moments.
Potthoff and Whittinghill [83] proposed an alternative estimator, λ∗, for the case where λ
is unknown. This estimator is the value of λ that minimizes Equation 2.11 and is given
by

λ∗ =

√√√√√√√
K∑
i=1

x2i−
K∑
i=1

xi

K∑
i=1

A2
i

.

Chiu and Wang [21] confirmed through a simulation study that the UT test is some-
times too conservative in small experiments and shows a marked loss of power in such a
situation. This handicap is not shared by the Pearson’s χ2 and V T tests.

Finally, Table 2.5 shows the comparison of the asymptotic and bootstrap p-values
obtained for the UT test. For a 2 × 2 grid, there is a considerable difference evident in
these p-values, however as the grid size is increased, the bootstrap and asymptotic p-values
become more similar. As with the score test, we have reason to doubt the validity of the
asymptotic distribution, however all p-values correctly indicate a homogeneous intensity
in the pattern.
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Grid size Test statistic Asymptotic p-value Bootstrap p-value
2× 2 1.757402 0.777848 0.6177
5× 5 24.05834 0.474219 0.4236

10× 10 91.89836 0.399748 0.3764

Table 2.5: Comparison of the asymptotic and parametric bootstrap p-values obtained for
the UT test applied to the simulated homogeneous point pattern shown in Figure 2.6.

2.4 Conclusion

In this chapter we described two different types of homogeneity, namely first-order and
second-order. We also described tests and functions that are currently employed in as-
sessing second-order homogeneity, also known as tests for complete spatial randomness.
We described the methods currently employed for assessing first-order homogeneity and
introduced hypothesis tests as a more rigorous form of assessment. Visualisation of the
density fitted using kernel density estimation is considered as the current method for as-
sessing the spatial intensity of a point process. We should note that it is also possible to
employ adaptive kernel estimation, a method in which the bandwidth varies according to
the density of observed points within an area. Here, in order to avoid smoothing out too
much detail, the bandwidth is reduced in areas that are densely populated since we have
more detailed information available on the variation in intensity [18, 44].

In this chapter, methods for testing first-order homogeneity were assessed using a
simulated homogeneous point pattern. The results over various grid sizes and window
choices were discussed.

In the next chapter we will employ these tests on real-life spatial point pattern data.
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Application

3.1 Data description and setting of analysis

Our census data was collected in Mara province, Northern Tanzania1,2. Data is available
for a total 34253 households in 78 villages. The smallest village consists of 102 households
and the largest has 1630 households. Table 3.1 shows an overview of this data.

Number of Villages 78
Total number of Households 34253
Minimum number of households 102
Maximum number of households 1630
Average number of households 439.14
Median number of households 370.5

Table 3.1: Overview of village descriptives

Figures 3.1 show the locations of households in four randomly selected villages. The
data has spatial mark information of the number of cats and dogs in each household as the
data was collected with the intention of developing an effective rabies vaccination schedule
for rural villages. This mini-dissertation however only focuses on the homogeneity checks
for the household spatial distributions, not on the creation of a sampling design, which
could be investigated in future work. A summary of the number of households within
each of the selected villages is given in Table 3.2. It should be noted that when calculating
the distance between two coordinates, r, a measurement of r = 0.01 is approximately
equivalent to a distance of 1.1km.

1http://www.gla.ac.uk/researchinstitutes/bahcm/staff/katiehampson/
2http://www.katiehampson.com/#intro

48
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Village Number of households
Machochwe 713
Mesaga 512
Morotonga 501
Ring’wani 234

Table 3.2: Number of households (points) within the selected villages.

(a) Locations of households in Machochwe (left) and Mesaga (right).

(b) Locations of households in Morotonga (left) and Ring’wani (right).

Figure 3.1: Locations of households for four villages in Mara province, Northern Tanzania.
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We will also be considering the effect that the choice of window has on the various tests.
Tests will be performed on both rectangular windows as well as convex hull windows, shown
in Figures 3.2 and 3.3 respectively.

(a) Machochwe (left) and Mesaga (right).

(b) Morotonga (left) and Ring’wani (right).

Figure 3.2: Rectangular windows for four villages in Mara province, Northern Tanzania.
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(a) Machochwe (left) and Mesaga (right).

(b) Morotonga (left) and Ring’wani (right).

Figure 3.3: Convex hull windows for four villages in Mara province, Northern Tanzania.
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3.2 Second-order homogeneity

To illustrate the effect of the homogeneous CSR tests on inhomogeneous patterns, first
the homogeneous F , G, J , K and L functions are applied to the data.

(a) Machochwe

(b) Mesaga

Figure 3.4: Examples of household locations analysed by the F function using rectangular
(left) and convex hull (right) windows.

Consider the locations of the households in each of the villages as a realisation of a point
process. Using the spatstat package in R [10, 11], the F function was used to analyse each
of the point patterns for randomness. The results for the four selected villages can be seen
in Figures 3.4 and 3.5 for both rectangular and convex hull windows. The parameter r is
represented on the x-axis and the value of the function F (r) is found on the y-axis. Since
we are observing all points in a pattern (the locations of all households in each village are
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known) and not merely points in a sampling window, we need not consider edge effects.
The graphs show the values for a theoretical Poisson point process, Fpois (r) as well as the
uncorrected F function of the data, F̂raw (r). For all villages and both window types, it is
clear that F̂ (r) < Fpois (r) for all values of r, indicating that points are clustered.

(a) Morotonga

(b) Ring’wani

Figure 3.5: Examples of household locations analysed by the F function using rectangular
(left) and convex hull (right) windows.

The household locations were also analysed using the G function. The results for four
selected villages can be seen in Figures 3.6 and 3.7 for both rectangular and convex hull
windows. The parameter r is represented on the x-axis and the value of the function G(r)

is found on the y-axis. The graphs show the values for a theoretical Poisson point process,
Gpois (r) as well as the uncorrected G function of the data, Ĝraw (r). For all villages, it is
clear that Ĝ (r) > Gpois (r) for small values of r. This indicates that points form a clus-
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tered pattern at close distances but that points are random when further apart. As with
the F function, the results are consistent for both window types, although the distance up
to which clustering occurs differs. For Machochwe we observe clustering up to a distance
of approximately 300m (r ≈ 0.00275) using a rectangular window or approximately 220m
(r ≈ 0.002) using a convex hull window; for Mesaga we observe clustering up to a distance
of approximately 385m (r ≈ 0.0035) and approximately 275m (r ≈ 0.0025) using rectan-
gular and convex hull windows respectively; and for Ring’wani we observe clustering up to
a distance of approximately 605m (r ≈ 0.0055) and approximately 330m (r ≈ 0.003) using
rectangular and convex hull windows respectively. For Morotonga, the values of Ĝ (r) are
close to Gpois (r), indicating that the household locations are distributed randomly.

(a) Machochwe

(b) Mesaga

Figure 3.6: Examples of household locations analysed by the G function using rectangular
(left) and convex hull (right) windows.



CHAPTER 3. APPLICATION 55

(a) Morotonga

(b) Ring’wani

Figure 3.7: Examples of household locations analysed by the G function using rectangular
(left) and convex hull (right) windows.
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(a) Machochwe

(b) Mesaga

Figure 3.8: Examples of household locations analysed by the J function using rectangular
(left) and convex hull (right) windows.

Next we analysed the locations using the J function. The results for four selected
villages can be seen in Figures 3.8 and 3.9 for both rectangular and convex hull windows.
The parameter r is represented on the x-axis and the value of the function J(r) is found on
the y-axis. The graphs show the values for a theoretical Poisson point process, Jpois (r) as
well as the uncorrected J function of the data, Ĵraw (r). For all villages except Morotonga,
it is clear that Ĵ (r) < Jpois (r) ≡ 1 for all values of r. This again indicates that points
form a clustered pattern. The results are again consistent for both window types. For
Morotonga we observe that Ĵ (r) > Jpois (r) up to approximately 32m (r ≈ 0.000292)
using a rectangular window and approximately 38m (r ≈ 0.000346) using a convex hull
window, indicating a regular pattern. Beyond this distance, Ĵ (r) < Jpois (r), indicating
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(a) Morotonga

(b) Ring’wani

Figure 3.9: Examples of household locations analysed by the J function using rectangular
(left) and convex hull (right) windows.
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that households are clustered.

(a) Machochwe

(b) Mesaga

Figure 3.10: Examples of household locations analysed by theK function using rectangular
(left) and convex hull (right) windows.

The locations were then analysed using the K function. The results for four selected
villages can be seen in Figures 3.10 and 3.11 for both rectangular and convex hull windows.
The parameter r is represented on the x-axis and the value of the function K(r) is found
on the y-axis. The graphs show the values for a theoretical Poisson point process, Kpois (r)

as well as the uncorrected K function of the data, K̂raw (r). For all villages, it is clear that
K̂ (r) > Kpois (r) for all values of r when using a rectangular window. This indicates that
points form a clustered pattern. Using a convex hull window the same result is obtained
for Ring’wani, however for Machochwe, Mesaga and Morotonga, the K function indicates
a random pattern.
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(a) Morotonga

(b) Ring’wani

Figure 3.11: Examples of household locations analysed by theK function using rectangular
(left) and convex hull (right) windows.
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(a) Machochwe

(b) Mesaga

Figure 3.12: Examples of household locations analysed by the L function using rectangular
(left) and convex hull (right) windows.

Finally, the locations were analysed using the L function. The results for four selected
villages can be seen in Figures 3.12 and 3.13 for both rectangular and convex hull windows.
The parameter r is represented on the x-axis and the value of the function L(r) is found
on the y-axis. The graphs show the values for a theoretical Poisson point process, Lpois (r)

as well as the uncorrected L function of the data, L̂raw (r). For all villages, it is clear
that L̂ (r) > Lpois (r) for all values of r when using a rectangular window. This indicates
that points form a clustered pattern. As with the K function, when using a convex hull
window the L function indicates a clustered pattern for Ring’wani but a random pattern
for Machochwe, Mesaga and Morotonga.

The F , G, J , K and L functions used thus far assume homogeneity, namely that the
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(a) Morotonga

(b) Ring’wani

Figure 3.13: Examples of household locations analysed by the L function using rectangular
(left) and convex hull (right) windows.
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(a) Machochwe

(b) Mesaga

Figure 3.14: Examples of household locations analysed by the inhomogeneous F function
using rectangular (left) and convex hull (right) windows.

intensity of points remains constant across the pattern. We will however now consider the
results when household locations are analysed using the inhomogeneous F , G, J , K and
L functions.

The results for the inhomogeneous F function for four selected villages can be seen in
Figures 3.14 and 3.15 for both rectangular and convex hull windows. The parameter r is
represented on the x-axis and the value of the inhomogeneous function F (r) is found on
the y-axis. As with the homogeneous functions, we need not consider edge effects since
we are observing all points in the pattern. However, spatstat does not allow for an
uncorrected inhomogeneous F function3 to be calculated and automatically calculates the

3http://www.inside-r.org/packages/cran/spatstat/docs/Finhom
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(a) Morotonga

(b) Ring’wani

Figure 3.15: Examples of household locations analysed by the inhomogeneous F function
using rectangular (left) and convex hull (right) windows.
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(a) Machochwe

(b) Mesaga

Figure 3.16: Examples of household locations analysed by the inhomogeneous G function
using rectangular (left) and convex hull (right) windows.

function with the border method correction. Since we have observed the entire pattern,
this correction will not affect our conclusion. The graphs show the values for a theoretical
inhomogeneous Poisson point process, Fpois (r) as well as the corrected F function of the
data, F̂bord (r). For Machochwe and Mesaga using both window types, as well as Ring’wani
using a rectangular window, it is clear that F̂bord (r) < Fpois (r) for all values of r. This
indicates that points form a clustered pattern. For Morotonga using both window types,
as well as Ring’wani using a convex hull window F̂bord (r) is only slightly less than Fpois (r)

for all values of r, indicating a random pattern.
The results for the inhomogeneous G function for four selected villages can be seen in

Figures 3.16 and 3.17 for both rectangular and convex hull windows. The parameter r is
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(a) Morotonga

(b) Ring’wani

Figure 3.17: Examples of household locations analysed by the inhomogeneous G function
using rectangular (left) and convex hull (right) windows.
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represented on the x-axis and the value of the inhomogeneous function G(r) is found on the
y-axis. As with the inhomogeneous F function, spatstat does not allow for an uncorrected
inhomogeneous G function4 but the correction made will not affect our conclusion. The
graphs show the values for a theoretical inhomogeneous Poisson point process, Gpois (r) as
well as the corrected G function of the data, Ĝbord (r). Using a rectangular window, for
Machochwe, Mesaga and Ring’wani it is clear that Ĝbord (r) > Gpois (r) for all values of r.
This indicates that points form a clustered pattern. For Morotonga, Ĝbord (r) ≈ Gpois (r)

indicating a random pattern up to approximately 65m (r ≈ 0.000591), with Ĝbord (r) >

Gpois (r) for r > 0.000591, indicating weak clustering beyond this distance. Using a convex
hull window, for Machochwe and Mesaga, Ĝbord (r) > Gpois (r) for r < 0.0035, indicating a
clustered pattern up to approximately 385m. Beyond this distance, Ĝbord (r) ≈ Gpois (r),
indicating a random pattern. For Ring’wani, Ĝbord (r) > Gpois (r) for all values of r,
indicating a clustered pattern. For Morotonga, the result obtained using a convex hull
window is consistent with the rectangular window result, indicating a random pattern.

The results for the inhomogeneous J function for four selected villages can be seen in
Figures 3.18 and 3.19 for both rectangular and convex hull windows. The parameter r is
represented on the x-axis and the value of the inhomogeneous function J(r) is found on
the y-axis. As with the inhomogeneous F and G functions, spatstat does not allow for an
uncorrected inhomogeneous J function5 to be calculated and automatically calculates the
function with the border method correction. Since we have observed the entire pattern,
this correction will not affect our conclusion. The graphs show the values for a theoretical
inhomogeneous Poisson point process, Jpois (r) ≡ 1 as well as the corrected J function of
the data, Ĵbord (r). For all villages except Morotonga, it is clear that Ĵbord (r) < Jpois (r)

for all values of r. This indicates that points form a clustered pattern. For Morotonga,
Ĵbord (r) > Jpois (r) for r smaller than approximately 0.0005 and Ĵbord (r) < Jpois (r) for
r>0.0005, indicating a weak regular pattern up to approximately 55m and clustering be-
yond this distance. The results are again consistent for both window types.

The results for the inhomogeneous K function for four selected villages can be seen in
Figures 3.20 and 3.21 for both rectangular and convex hull windows. The parameter r is
represented on the x-axis and the value of the inhomogeneous function K(r) is found on
the y-axis. Unlike the inhomogeneous F , G and J functions, spatstat does allow for an
uncorrected inhomogeneous J function to be calculated. The graphs show the values for
a theoretical inhomogeneous Poisson point process, Kpois (r) as well as the uncorrected K
function of the data, K̂un (r). Using a rectangular window, for Machochwe, Mesaga and

4http://www.inside-r.org/packages/cran/spatstat/docs/Ginhom
5http://www.inside-r.org/packages/cran/spatstat/docs/Jinhom
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(a) Machochwe

(b) Mesaga

Figure 3.18: Examples of household locations analysed by the inhomogeneous J function
using rectangular (left) and convex hull (right) windows.
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(a) Morotonga

(b) Ring’wani

Figure 3.19: Examples of household locations analysed by the inhomogeneous J function
using rectangular (left) and convex hull (right) windows.
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(a) Machochwe

(b) Mesaga

Figure 3.20: Examples of household locations analysed by the inhomogeneous K function
using rectangular (left) and convex hull (right) windows.
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(a) Morotonga

(b) Ring’wani

Figure 3.21: Examples of household locations analysed by the inhomogeneous K function
using rectangular (left) and convex hull (right) windows.
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(a) Machochwe

(b) Mesaga

Figure 3.22: Examples of household locations analysed by the inhomogeneous L function
using rectangular (left) and convex hull (right) windows.

Morotonga, it is clear that K̂ (r) > Kpois (r) for all values of r. This indicates that points
form a clustered pattern, although for Morotonga the clustering appears to be weak. For
Ring’wani, K̂ (r) ≈ Kpois (r) up to r ≈ 0.005, thereby indicating a random pattern up to
a distance of approximately 550m, and K̂ (r) < Kpois (r) for r > 0.005, thereby indicating
a regular pattern beyond this distance. A similar result is obtained for Ring’wani when
using a convex hull window, but here the regular pattern becomes evident at a distance
of approximately 360m when r ≈ 0.00325. For Machochwe, Mesaga and Morotonga,
using a convex hull window, we again observe a random pattern for small values of r and
a regular pattern beyond this. For Machochwe, Mesaga and Morotonga, this occurs at
approximately 750m (r ≈ 0.0068), 800m (r ≈ 0.0073) and 495m (r ≈ 0.0045) respectively.
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(a) Morotonga

(b) Ring’wani

Figure 3.23: Examples of household locations analysed by the inhomogeneous L function
using rectangular (left) and convex hull (right) windows.
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The results for the inhomogeneous L function for four selected villages can be seen in
Figures 3.22 and 3.23 for both rectangular and convex hull windows. The parameter r is
represented on the x-axis and the value of the inhomogeneous function L(r) is found on the
y-axis. The graphs show the values for a theoretical inhomogeneous Poisson point process,
Lpois (r) as well as the uncorrected L function of the data, L̂un (r). Using a rectangular
window, for Machochwe and Mesaga we observe that L̂ (r) > Lpois (r) for all values of
r, indicating that points form a clustered pattern. For Morotonga the values of L̂ (r) >

Lpois (r) for all values of r, thereby indicating weak clustering since the differences between
L̂ (r) and Lpois (r) values are small. For Ring’wani, L̂ (r) > Lpois (r) up to r ≈ 0.004

(roughly translating to 440m), thereby indicating a clustered pattern up to this distance
and L̂ (r) < Lpois (r) for r > 0.005 (roughly translating to 550m), thereby indicating a
regular point pattern. Using a convex hull window, we obtain similar results for Ring’wani
with a clustered pattern up to approximately 275m (r ≈ 0.0025) and regular pattern
beyond approximately 365m (r ≈ 0.0033). For Morotonga, L̂ (r) ≈ Lpois (r) for all values
of r, indicating a random pattern. For Machochwe and Mesaga we observe weak clustering
up to distances of approximately 630m (r ≈ 0.00576) and 715m (r ≈ 0.0065) respectively,
and a regular pattern beyond these distances.

From the results given in this section it is clear that the choice of an appropriate
window can have an effect on the outcome of these second-order homogeneity tests. In
the case where a natural window does not exist, it is therefore important to consider
the choice of this boundary carefully. In our case study we are specifically considering
household within a village and therefore, the definition of a village could be considered
for this purpose. Empty spaces that do not contain households naturally occur within
villages, for instance, a village could contain a village green, sports fields, streams or
rivers, etc. Some general guidelines regarding the optimal window choice are provided in
[86, 90, 94]. It is also clear that the outcome of second-order homogeneity tests are affected
by the assumption of first-order homogeneity. As an example, consider the outcome of
the F function for Morotonga, using either a rectangular or convex hull window. In both
cases, the homogeneous F function indicates a clustered pattern while the inhomogeneous
F function indicates a random pattern. These discrepancies highlight the importance of
correctly identifying whether a pattern is first-order homogeneous or heterogeneous.
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3.3 First-order homogeneity

3.3.1 Density plots

Examination of Figures 3.1 and 3.3 suggest that the point process could be inhomogeneous.
The intensity of points was thus estimated for each village using kernel smoothing via

the density.ppp function of R. The output for the four example villages can be seen
in Figures 3.24, 3.26, 3.28 and 3.30. These estimates were obtained using a Gaussian
kernel with bandwidth roughly equal to one-eighth of the shortest side length of the
rectangular window. The estimates were obtained on both rectangular and convex hull
windows, without edge corrections. Visual inspection suggests that all of the villages have
inhomogeneous intensity and that the choice of window leads to subtle differences in the
intensity estimates.

Although the entire pattern was observed, for completeness we also considered the effect
of including edge corrections on the estimates. These estimates are shown in Figures 3.25,
3.27, 3.29 and 3.31. As in Section 2.3.2, it is clear that the choice of edge correction has
a significant effect on the density estimates.

In the following section we consider a more rigorous approach for confirming inhomo-
geneity through the hypothesis tests defined in Section 3.3.2.

Figure 3.24: Uncorrected kernel density estimates of point intensity (left) and perspective
view of density estimates (right) for Machochwe using rectangular (top) and convex hull
(bottom) windows.
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(a) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

(b) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

Figure 3.25: Uniformly corrected (a) and Diggle’s corrected (b) kernel estimates for Ma-
chochwe.
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(a) Density estimate (left) and perspective view of density estimate (right)

(b) Density estimate (left) and perspective view of density estimate (right)

Figure 3.26: Kernel estimation of point intensity for Mesaga using rectangular (top) and
convex hull (bottom) windows.
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(a) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

(b) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

Figure 3.27: Uniformly corrected (a) and Diggle’s corrected (b) kernel estimates for
Mesaga.
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(a) Density estimate (left) and perspective view of density estimate (right)

(b) Density estimate (left) and perspective view of density estimate (right)

Figure 3.28: Kernel estimation of point intensity for Morotonga using rectangular (top)
and convex hull (bottom) windows.
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(a) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

(b) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

Figure 3.29: Uniformly corrected (a) and Diggle’s corrected (b) kernel estimates for Mo-
rotonga.



CHAPTER 3. APPLICATION 80

(a) Density estimate (left) and perspective view of density estimate (right)

(b) Density estimate (left) and perspective view of density estimate (right)

Figure 3.30: Kernel estimation of point intensity for Ring’wani using rectangular (top)
and convex hull (bottom) windows.
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(a) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

(b) Density estimate (left) and perspective view of density estimate (right) for
rectangular (top) and convex hull (bottom) windows.

Figure 3.31: Uniformly corrected (a) and Diggle’s corrected (b) kernel estimates for
Ring’wani.
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3.3.2 Testing for first-order homogeneity in household locations

We now look at the village data and test for first order homogeneity. To test for first-
order homogeneity within each village, each village was divided into n × n grids, where
n = 3, 5, 7. Only blocks containing points were used to estimate the intensity. Figures
3.32, 3.33, 3.34 and 3.35 show each of the villages divided into quadrats along with the
number of households falling into each of the quadrats. Table 3.3 contains the number
of non-empty quadrats as well as the maximum likelihood estimates of the intensity for
each of the villages and each of the grid sizes and window types. The aim of excluding
blocks with no points from calculations is to only include the actual village area and to
exclude the empty area outside the village borders so as to not underestimate the intensity.
For this reason, the intensity estimate for the convex hull windows will always be higher
than the intensity of the rectangular windows. We should however also note that this will
exclude empty space within the village if the grid becomes too fine, leading to the intensity
being overestimated.

Figure 3.32: Quadrat counts for different grid sizes grids for Machochwe.
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Figure 3.33: Quadrat counts for different grid sizes grids for Mesaga.

Figure 3.34: Quadrat counts for different grid sizes grids for Morotonga.
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Figure 3.35: Quadrat counts for different grid sizes grids for Ring’wani.

Village n Number of quadrats Non-empty quadrats λ̂Rec λ̂CH

Machochwe
3 9 9 192324.2 304596.9
5 25 22 218550.2 304641.6
7 49 42 224378.2 304596.9

Mesaga
3 9 8 127839.8 222634.1
5 25 19 149520.2 218858.3
7 49 32 174004.1 217824.8

Morotonga
3 9 9 704702.3 865131.6
5 25 24 734064.9 898689.2
7 49 43 803032.9 929458.8

Ring’wani
3 9 7 72275.9 118552.8
5 25 19 73966.6 91578.2
7 49 31 88855.4 108845.9

Table 3.3: Maximum likelihood estimates for λ obtained for different n× n grids
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The χ2 and likelihood ratio tests can be performed using the quadrat.test function
available in the spatstat package in R. It should however be noted that this built-
in function should be used with caution. During the application phase of this mini-
dissertation we discovered some irregularities in the test statistics obtained. Although the
built-in functions correctly calculated the test statistic when using a rectangular window
with no empty quadrats, discrepancies occurred when there were empty quadrats or when
using a convex hull window. When empty quadrats are present, the areas for these are
still included in the calculation of the statistic and no option is available to exclude these.
We were unable to determine the exact source of the discrepancy in the test statistic
calculations when using a convex hull window. Secondly, by default the function performs
a two-sided hypothesis test. In this context we consider only one-sided tests, specifically
upper-tailed tests, as a large absolute difference between observed and expected counts is
an indication of a deviation from the null. Thirdly, when specifying in the function that
a one-sided test must be performed, the p-value given in the output is for a lower-tailed
test and needs to be adjusted as we are performing an upper-tailed test. Due to these
concerns, the formulae for all tests and p-values in this chapter were hard-coded.

Next we compared the number of households in the K non-empty blocks to see if the
intensities are different in different areas. Tables 3.4 and 3.5 show a summary of the
results for Pearson’s χ2 test for four villages using rectangular and convex hull windows
respectively. For a rectangular window and all grid sizes, all asymptotic and bootstrap
p-values were found to be significant. However when considering a convex hull window,
using a 3× 3 grid, both Mochochwe and Mesaga have insignificant bootstrap p-values. In
these cases the tests do not identify the patterns as first-order heterogeneous. For these
two cases, the bootstrap and asymptotic p-values give contradictory results.

A summary of the results obtained for the four villages using the likelihood ratio test
can be seen in Tables 3.6 and 3.7 for rectangular and convex hull windows respectively.
As with Pearson’s χ2 test, for a rectangular window and all grid sizes, all asymptotic and
bootstrap p-values are significant and indicate first-order heterogeneity. However, for a
convex hull window and a 3× 3 grid, the bootstrap p-values do not identify the patterns
as first-order heterogeneous for Machochwe and Mesaga. In these two cases the bootstrap
and asymptotic p-values give contradictory results.

For the score test using a rectangular window, all asymptotic and bootstrap p-values
indicate that, within all villages, we have first-order heterogeneity. Using a convex hull
window and a 3× 3 grid, the bootstrap p-values do not identify the patterns as first-order
heterogeneous for Machochwe, Mesaga and Ring’wani. Again the asymptotic p-values give
contradictory results for these three cases. For 5 × 5 and 7 × 7 grids, all asymptotic and
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bootstrap p-values are significant. The results for our four example villages are given in
Tables 3.8 and 3.9 for rectangular and convex hull windows respectively.

The results obtained from the V T test are again in line with previous results, showing
asymptotic and bootstrap p-values close or equal to zero when using a rectangular window,
and contradictory asymptotic and bootstrap p-values for Machochwe and Mesaga when
using a convex hull window. In this case, all villages show significant asymptotic and
bootstrap p-values for 5× 5 and 7× 7 grid sizes. The results for our four example villages
are given in Tables 3.10 and 3.11 for rectangular and convex hull windows respectively.

For the UT test, the results for our four example villages are given in Tables 3.12 and
3.11 for rectangular and convex hull windows respectively. As with all previous tests using
a rectangular window, all asymptotic and bootstrap p-values are significant. However for
Mesaga, using a convex hull window and a 3× 3 grid, we obtain contradictory bootstrap
and asymptotic p-values, with bootstrap p-values again not identifying the heterogeneity.
All other tests however identified this heterogeneity for all grid sizes and all villages.

Based on both the simulation study in Section 2.3.3, as well as the real-world applica-
tion it is clear that we have reason to doubt the accuracy of the asymptotic p-values. It
is clear that this is particularly true when the pattern is divided into a smaller number of
quadrats and the window is not rectangular. The optimal choice of grid size as well as the
reliability of using asymptotic p-values warrants further investigation.

In this section we showed that the choice of an appropriate window can also affect the
outcome of the hypothesis tests, especially if a smaller grid size is used. In the case where
a natural window does not exist, it is therefore important to consider the choice of this
boundary carefully. Some guidelines are provided in [86, 90, 94].

The setting in which we performed these analysis necessitated that we divide the
pattern into blocks. If some natural subdivision exists, this could be used instead. For
instance, if we wanted to compare reported crime intensities in different wards, the wards
are a natural subdivision that can be used since ward sizes and the number of reported
crimes per ward will be known.
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3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 411.419 0 0.01 0.001 0.0001
Mesaga 8 1 184.781 0 0.01 0.001 0.0001
Morotonga 9 0 222.251 0 0.01 0.001 0.0001
Ring’wani 7 2 55.453 3.75×10−10 0.01 0.001 0.0001

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 486.941 0 0.01 0.001 0.0001
Mesaga 19 6 294.250 0 0.01 0.001 0.0001
Morotonga 24 1 230.641 0 0.01 0.001 0.0001
Ring’wani 19 6 262.761 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 754.055 0 0.01 0.001 0.0001
Mesaga 32 17 310.292 0 0.01 0.001 0.0001
Morotonga 43 6 247.852 0 0.01 0.001 0.0001
Ring’wani 31 18 198.145 0 0.01 0.001 0.0001

Table 3.4: χ2
Pearson test statistics and p-values obtained using a rectangular window.

3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 416.427 0 0.01 0.001 0.0001
Mesaga 8 1 175.073 0 0.01 0.001 0.0001
Morotonga 9 0 200.181 0 0.01 0.001 0.0001
Ring’wani 7 2 55.798 3.2×10−10 0.01 0.001 0.0001

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 425.433 0 0.01 0.001 0.0001
Mesaga 19 6 294.244 0 0.01 0.001 0.0001
Morotonga 24 1 270.851 0 0.01 0.001 0.0001
Ring’wani 19 6 209.028 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 579.589 0 0.01 0.001 0.0001
Mesaga 32 17 288.031 0 0.01 0.001 0.0001
Morotonga 43 6 262.676 0 0.01 0.001 0.0001
Ring’wani 31 18 172.772 0 0.01 0.001 0.0001

Table 3.6: LR test statistics and p-values obtained using a rectangular window.
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3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 534.931 0 0.70 0.707 0.7080
Mesaga 8 1 16386.267 0 0.23 0.179 0.1547
Morotonga 9 0 150.981 0 0.01 0.001 0.0001
Ring’wani 7 2 23819.173 0 0.01 0.001 0.0002

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 300.166 0 0.01 0.001 0.0001
Mesaga 19 6 196.686 0 0.01 0.001 0.0001
Morotonga 24 1 167.665 0 0.01 0.001 0.0001
Ring’wani 19 6 186.717 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 481.922 0 0.01 0.001 0.0001
Mesaga 32 17 203.572 0 0.01 0.001 0.0001
Morotonga 43 6 195.987 0 0.01 0.001 0.0001
Ring’wani 31 18 134.811 3.11×10−15 0.01 0.001 0.0016

Table 3.5: χ2
Pearson test statistics and p-values obtained using a convex hull window.

3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 411.322 0 0.11 0.057 0.0656
Mesaga 8 1 303.970 0 0.24 0.186 0.1655
Morotonga 9 0 140.277 0 0.01 0.001 0.0001
Ring’wani 7 2 572.555 0 0.01 0.002 0.0004

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 275.237 0 0.01 0.001 0.0001
Mesaga 19 6 161.624 0 0.01 0.001 0.0001
Morotonga 24 1 195.180 0 0.01 0.001 0.0001
Ring’wani 19 6 165.114 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 383.434 0 0.01 0.001 0.0001
Mesaga 32 17 204.914 0 0.01 0.001 0.0001
Morotonga 43 6 207.566 0 0.01 0.001 0.0001
Ring’wani 31 18 126.239 9.04×10−14 0.01 0.001 0.0001

Table 3.7: LR test statistics and p-values obtained using a convex hull window.
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3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 1087.011 0 0.01 0.001 0.0001
Mesaga 8 1 219.705 0 0.01 0.001 0.0001
Morotonga 9 0 225.126 0 0.01 0.001 0.0001
Ring’wani 7 2 67.281 1.47×10−12 0.01 0.001 0.0001

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 818.736 0 0.01 0.001 0.0001
Mesaga 19 6 1052.824 0 0.01 0.001 0.0001
Morotonga 24 1 1330.757 0 0.01 0.001 0.0001
Ring’wani 19 6 530.716 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 1510.263 0 0.01 0.001 0.0001
Mesaga 32 17 636.222 0 0.01 0.001 0.0001
Morotonga 43 6 764.609 0 0.01 0.001 0.0001
Ring’wani 31 18 291.704 0 0.01 0.001 0.0001

Table 3.8: SC test statistics and p-values obtained using a rectangular window.

3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 663.535 0 0.35 0.394 0.3899
Mesaga 8 1 94.291 0 0.14 0.107 0.1121
Morotonga 9 0 160.692 0 0.01 0.001 0.0001
Ring’wani 7 2 146.629 0 0.17 0.211 0.1843

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 400.035 0 0.01 0.001 0.0001
Mesaga 19 6 242.406 0 0.01 0.001 0.0001
Morotonga 24 1 1077.170 0 0.01 0.001 0.0001
Ring’wani 19 6 525.883 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 654.905 0 0.01 0.001 0.0001
Mesaga 32 17 489.498 0 0.01 0.001 0.0001
Morotonga 43 6 514.706 0 0.01 0.001 0.0001
Ring’wani 31 18 201.143 0 0.01 0.001 0.0001

Table 3.9: SC test statistics and p-values obtained using a convex hull window.



CHAPTER 3. APPLICATION 90

3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 410.528 0 0.01 0.001 0.0001
Mesaga 8 1 184.393 0 0.01 0.001 0.0001
Morotonga 9 0 221.548 0 0.01 0.001 0.0001
Ring’wani 7 2 55.296 3.79×10−10 0.01 0.001 0.0001

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 481.279 0 0.01 0.001 0.0001
Mesaga 19 6 290.297 0 0.01 0.001 0.0001
Morotonga 24 1 226.128 0 0.01 0.001 0.0001
Ring’wani 19 6 255.113 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 734.448 0 0.01 0.001 0.0001
Mesaga 32 17 301.786 0 0.01 0.001 0.0001
Morotonga 43 6 237.506 0 0.01 0.001 0.0001
Ring’wani 31 18 186.538 0 0.01 0.001 0.0001

Table 3.10: V T test statistics and p-values obtained using a rectangular window.

3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 524.981 0 0.70 0.703 0.7051
Mesaga 8 1 4875.603 0 0.23 0.187 0.1632
Morotonga 9 0 150.740 0 0.01 0.001 0.0001
Ring’wani 7 2 12286.505 0 0.01 0.004 0.0008

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 289.761 0 0.01 0.001 0.0001
Mesaga 19 6 186.177 0 0.01 0.001 0.0001
Morotonga 24 1 161.977 0 0.01 0.001 0.0001
Ring’wani 19 6 180.195 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 434.115 0 0.01 0.001 0.0001
Mesaga 32 17 195.464 0 0.01 0.001 0.0001
Morotonga 43 6 185.493 0 0.01 0.001 0.0001
Ring’wani 31 18 122.802 1.1×10−14 0.01 0.001 0.0001

Table 3.11: V T test statistics and p-values obtained using a convex hull window.
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3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 364.700 0 0.01 0.001 0.0001
Mesaga 8 1 170.471 0 0.01 0.001 0.0001
Morotonga 9 0 201.809 0 0.01 0.001 0.0001
Ring’wani 7 2 52.368 4.02×10−9 0.01 0.001 0.0001

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 423.546 0 0.01 0.001 0.0001
Mesaga 19 6 260.528 0 0.01 0.001 0.0001
Morotonga 24 1 208.175 0 0.01 0.001 0.0001
Ring’wani 19 6 213.137 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 618.262 0 0.01 0.001 0.0001
Mesaga 32 17 272.510 0 0.01 0.001 0.0001
Morotonga 43 6 220.854 0 0.01 0.001 0.0001
Ring’wani 31 18 165.873 0 0.01 0.001 0.0001

Table 3.12: UT test statistics and p-values obtained using a rectangular window.

3× 3 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 9 0 249.612 0 0.01 0.001 0.0001
Mesaga 8 1 45.851 1.47×10−8 0.09 0.108 0.1136
Morotonga 9 0 139.212 0 0.01 0.001 0.0001
Ring’wani 7 2 109.004 0 0.02 0.003 0.0034

5× 5 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 22 3 266.451 0 0.01 0.001 0.0001
Mesaga 19 6 106.396 1.11×10−16 0.01 0.001 0.0001
Morotonga 24 1 139.091 0 0.01 0.001 0.0001
Ring’wani 19 6 159.835 0 0.01 0.001 0.0001

7× 7 grids:
Village K n2 −K Test statistic Asymptotic R=99 R=999 R=9999
Machochwe 42 7 408.684 0 0.01 0.001 0.0001
Mesaga 32 17 180.299 0 0.01 0.001 0.0001
Morotonga 43 6 172.218 0 0.01 0.001 0.0001
Ring’wani 31 18 115.646 4.22×10−14 0.01 0.001 0.0001

Table 3.13: UT test statistics and p-values obtained using a convex hull window.
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3.4 Considering the independence assumption in hy-

pothesis tests

The hypothesis tests applied to the point patterns in Section 3.3.2 assume that counts
used in the calculation of the test statistics are obtained from areas that are independent
of each other. This assumption of independence is unlikely to be valid and was discussed
in Sections 2.3.3 and 2.3.3.2. In this section we consider alternative methods of applying
these tests such that the independence assumption is no longer violated.

As a first alternative, the counts from every second quadrat is used in the calculation
of the test statistic. We perform these tests by first taking every second quadrat into
account, starting at the first (odd-numbered quadrats - see Figures 3.36 and 3.37), and
then calculating test statistics using every second quadrat, starting at the second (even-
numbered quadrats - see Figures 3.36 and 3.39). As in Section 3.3.2, only non-empty
quadrats were included in the calculation of the test statistics. Since the quadrats that
are used in the calculations are not directly adjacent to each other, it is unlikely that the
number of points in one quadrat is dependent on the number of points in another quadrat.
The results obtained for each of the five tests for the odd- and even-numbered quadrats
using a rectangular window are compared in Tables 3.14, 3.18, 3.22, 3.26 and 3.30. The
results obtained for each of the five tests for the odd- and even-numbered quadrats using
a convex hull window are compared in Tables 3.15, 3.19, 3.23, 3.27 and 3.31. Although
the results for both the even- and odd-numbered quadrats are given for these test, it is
important to note that the test statistics should not be compared directly as the number
of quadrats used in the calculations of these may not be the same. In addition, even if
the number of quadrats are the same, the area of the quadrats included are unlikely to
be then same if a convex hull window is used. For these tests the bootstrap p-values are
obtained as follows. First a homogeneous Poisson point pattern is generated on the same
window as the original pattern using the maximum likelihood estimate obtained for the
intensity of the original pattern. The quadrats in the simulated pattern corresponding
to those used to calculate the test statistic for the original pattern, are then used to
calculated the first bootstrap test statistic. For instance, if odd-numbered quadrats are
used for the calculation of the original test statistic, then the odd-numbered quadrats in the
simulated pattern are used for the calculation of the bootstrap test statistic. This process
of generating patterns from a homogeneous Poisson point process and calculating test
statistics is then repeated 99, 999 and 9999 times after which the bootstrap test statistics
are compared to the original test statistic and the bootstrap p-value is calculated using
Equation 2.8 on page 39.
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Figure 3.36: Quadrats used for the calculation of test statistics using a rectangular window
if odd-numbered quadrats are included.



CHAPTER 3. APPLICATION 94

Figure 3.37: Quadrats used for the calculation of test statistics using a convex hull window
if odd-numbered quadrats are included.
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Figure 3.38: Quadrats used for the calculation of test statistics using a rectangular window
if even-numbered quadrats are included.
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Figure 3.39: Quadrats used for the calculation of test statistics using a convex hull window
if even-numbered quadrats are included.
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A second approach for dealing with the independence violation involves randomly
sampling a subset of the non-empty quadrats and using these to calculate a test statistic.
This process is repeated 99 times, each time drawing a different sample of quadrats.
Summaries of the results obtained using this approach using a rectangular window are
given in Tables 3.16, 3.20, 3.24, 3.28 and 3.32 with the summaries for convex hull windows
are given in Tables 3.17, 3.21, 3.25, 3.29 and 3.33. These summaries are based on taking
99 random samples of 50% of the non-empty quadrats and calculating a test statistic for
each of these. For each of these test statistics, bootstrap p-values are calculated as follows.
As before, point patterns are generated from a homogeneous Poisson process on the same
window as the original pattern. A sample of 50% of the non-empty quadrats is then used
to calculate the bootstrap test statistic. This process is repeated first 99 and then 999
times to obtain two bootstrap p-values for each of the original test statistic values using
Equation 2.8 on page 39. The asymptotic and bootstrap p-values for each of the 99 test
statistics are summarized to show the minimum, maximum, average and median p-value.
The standard deviation along with an empirical 95% confidence interval for the p-values
is also shown.

For the χ2 test using the first approach, from now on referred to as the alternating
quadrats approach, on a rectangular window and for all grid sizes, it is clear from Table
3.14 that all p-values, both asymptotic and bootstrap, are significant and indicate a het-
erogeneous intensity. This corresponds to the results obtained in Table 3.4 on page 87.
Using the second approach, from now on referred to as the bootstrap approach, the χ2

test indicates a heterogeneous pattern for all villages using 5× 5 and 7× 7 grids as indi-
cated in Table 3.16 with bootstrap and asymptotic p-values showing little to no variation.
For a 3 × 3 grid, the test indicates a heterogeneous pattern for Machochwe and Mesaga.
For Morotonga and Ring’wani, the p-values vary considerably and empirical confidence
intervals are wide. However, in both cases the average and median p-values still indicate
a heterogeneous intensity.

Next we consider using a convex hull window and calculating the test statistics using
the alternating quadrats approach. For Mesaga using a 3 × 3 grid, both the even and
odd quadrats lead to insignificant p-values, thereby incorrectly indicating a homogeneous
intensity. For all other villages using a 3 × 3 grid we obtain contradictory results for the
odd- and even-numbered quadrats. Except for the same contradictory results obtained
for Mesaga on a 5× 5 grid, all tests performed on all villages using 5× 5 and 7× 7 grids
show significant p-values and identify the heterogeneity in the pattern. The comparison
of the odd- and even-numbered quadrat tests implies that the choice of which quadrats
to include in the calculation of the test statistic can have a significant impact on the
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outcome of the test. The p-values for the bootstrap approach on convex hull windows are
summarised in Table 3.17. For a 3×3 grid, the p-values obtained for different test statistics
vary considerably and in most cases empirical confidence intervals are wide and include
both significant and insignificant p-values. For example, Ring’wani has an empirical 95%
confidence interval given as (0.01, 0.944) obtained from 99 Monte Carlo simulations and a
95% confidence interval given as (0.001, 0.891) obtained from 999 Monte Carlo simulations.
The high variability in the p-values obtained suggests that the choice of quadrats that are
included in the calculation of the test statistic has a significant impact on the conclusion
reached by the test. However, when using a 5 × 5 or a 7 × 7 grid, the variability in the
p-values obtained is reduced and results from tests become more consistent.

For we consider the likelihood ratio (Table 3.18), score (Table 3.22), V T (Table 3.26)
and UT tests (Table 3.30) using a rectangular window and the alternating quadrats ap-
proach. We observe similar results as with the χ2 test as all tests have significant p-values
for all grid sizes. This is consistent with the results obtained in Section 3.3.2. As with the
bootstrap approach discussed for the χ2 test, we observe that specifically Morotonga and
Ring’wani show highly variable p-values when a 3× 3 grid is used. The p-values obtained
for larger grids are more stable with only Ring’wani having some large p-values for the LR
and SC tests. However, in both these cases the empirical confidence intervals are narrow
and contain only significant p-values. Summaries of the bootstrap p-values obtained for
rectangular windows corresponding to the likelihood ratio, score, VT and UT tests can be
seen in Tables 3.20, 3.24, 3.28 and 3.32 respectively.

Using convex hull windows and the alternating quadrats approach, we again see similar
results to the χ2 test. Using a 3× 3 grid, the choice of using the odd- or even-numbered
quadrats have a significant effect on the outcomes of the tests as can be seen in Tables
3.19, 3.23, 3.27 and 3.31. For larger grid sizes and all tests the p-values are found to
be significant and the tests correctly identify the heterogeneity in the intensity. The only
exception to this occurred with the UT test on a 5×5 grid for Mesaga using odd-numbered
quadrats. Summaries for p-values obtained for the likelihood ratio, score, V T and UT tests
using the bootstrap approach are given in Tables 3.21, 3.25, 3.29 and 3.33 respectively. As
with the χ2 test, p-values obtained through randomly sampling non-empty quadrats from
a 3 × 3 grid are highly variable and often fail to pick up the heterogeneity in intensity
across the patterns. However, for larger grid sizes the p-values stabilise and in cases where
large p-values still occur, the average and median p-values are significant. In most of these
cases, the 95% empirical confidence intervals contain only significant p-values, except for
the SC and V T tests performed on Ring’wani using a 7 × 7 grid. It should however be
noted that Ring’wani is the smallest village analysed, consisting of only 234 households.
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3.5 Conclusion

We started this chapter with a basic descriptive study of our dataset. The households
locations in 4 randomly selected remote villages in Northern Tanzania were described as
point patterns.

Second-order homogeneity was investigated using both the homogeneous and inhomo-
geneous F , G, J , K and L functions and the results were compared for rectangular and
convex hull windows.

A current approach to checking for first-order homogeneity in point patterns is to
construct a density plot of intensities using kernel density estimation. This method was
applied to each of the villages with plots of the estimates indicating varying intensity across
the patterns. For completeness we also showed the impact of including edge corrections
in the estimation of the density.

This initial visual check was confirmed statistically significant by Pearson’s χ2, like-
lihood ratio, score, V T and UT tests, using different grid sizes on both rectangular and
convex hull windows. When applied to rectangular windows, the tests identified the first-
order heterogeneity for all grid sizes. This is however likely because some of the non-empty
quadrats included areas which are not part of the village and therefore do not contain any
points. When convex hull windows are applied to the patterns, many of these open areas
were excluded from the observation window. In some cases the tests had trouble iden-
tifying the first-order heterogeneity when using a too small grid (3× 3), but as the grid
size was increased (5 × 5 and 7 × 7) the tests gave consistent results. In these specific
cases for a small grid size, the asymptotic tests were not well-behaved, possibly due to the
small number of quadrats as well as the violation of the independence assumption between
quadrats.

Two possible solutions for the independence violation were investigated, namely cal-
culating the test statistic using regular-spaced non-adjacent quadrats or by randomly
sampling a subset of the quadrats for inclusion in the calculation of the test statistic. For
the first approach, two cases were compared, firstly by including every non-empty odd-
numbered quadrat and secondly by including every non-empty even-numbered quadrat.
Since the areas included in the calculations are different for the two scenarios, the test
statistics should not be compared directly. The asymptotic tests were also not well-
behaved, but a comparison could be made using bootstrap p-values. It was shown that,
when using regular-spaced non-adjacent quadrats, the choice of starting quadrat can have
a significant effect on the outcome of the test when using a small grid size and a convex
hull window. Here, contradictory conclusions were obtained for the two scenarios. This
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shows that the choice of which quadrats to include in the calculation of the test statistic
can have a major impact on the outcomes of the tests.

The second solution involved randomly selecting a subset of quadrats to include in the
calculation of the test statistic, after which bootstrap p-values were obtained as before.
This process was repeated 99 times and the resulting p-values were used to set up empirical
95% confidence intervals. For small grid sizes, these intervals tend to be wide, including
both significant and insignificant p-values and no conclusion can be reached. When the grid
size was increased, p-values stabilised and the empirical confidence intervals became more
accurate. The only exception occurred for Ring’wani, a pattern that contains significantly
fewer points than the other patterns.

We conclude that the first option of dealing with the independence violation, namely
including non-adjacent quadrats in the calculation of the test statistics, although compu-
tationally simple is not ideal as the results for this are too dependent on the choice of
quadrats to include. The second option, namely obtaining bootstrap samples of quadrats
for inclusion in the test statistic calculations, provides us with a better measure of the
first-order homogeneity within the pattern. These tests, although more computationally
intensive, provides us with an indication of how p-values differ when different quadrats
are included in the calculation of the test statistics. When p-values are highly variable,
these empirical confidence intervals could also give us an indication of how appropriate
the choice of grid size is. In our application, we showed how a small grid size can nega-
tively influence the results of homogeneity tests and that larger grid sizes could potentially
be more informative. However, the number of points within the pattern should also be
taken into account as a too large grid could also influence the tests negative, as shown for
Ring’wani. This is in line with the statement made by Baddeley et al. [10] that grid sizes
should not be too small or too large.



Chapter 4

Final thoughts

4.1 Discussion of our contribution

In this mini-dissertation we developed three new hypothesis tests for stationarity in the
context of spatial point patterns and compared their results for tests currently available
in the spatstat package inR. These tests however assume that counts included in the
calculation of the test statistics are independent, an assumption which is unlikely to be
valid for spatial data. Two possible solutions for the independence violation were inves-
tigated, namely calculating the test statistic using regular-spaced non-adjacent quadrats
or by randomly sampling a subset of the quadrats for inclusion in the calculation of the
test statistic. For the first solution, two cases were compared, firstly by including all non-
empty odd-numbered quadrats and secondly by including all non-empty even-numbered
quadrats. A comparison was made using parametric bootstrap p-values. It was shown
that, when using regular-spaced non-adjacent quadrats, the choice of which quadrats to
include can have a significant effect on the outcome of the tests with contradictory con-
clusions obtained for the two scenarios. This shows that the choice of which quadrats to
include in the calculation of the test statistic can have a major impact on the outcomes
of the tests.

The second solution involved randomly selecting a subset of quadrats to include in the
calculation of the test statistics, after which parametric bootstrap p-values were obtained
as before. This process was repeated 99 times and the resulting p-values were used to
set up empirical 95% confidence intervals. For small grid sizes, these intervals tend to
be wide, including both significant and insignificant p-values and no conclusion can be
reached. When the grid size was increased, p-values stabilised and the empirical confidence
intervals became more accurate. The only exception occurred for Ring’wani, a pattern that
contains significantly fewer points than the other patterns.
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We conclude that the first option of dealing with the independence violation, namely
including non-adjacent quadrats in the calculation of the test statistics, although compu-
tationally simple is not ideal as the results for this are too dependent on the choice of
quadrats to include. The second option, namely obtaining random samples of quadrats
for inclusion in the test statistic calculations, provides us with a better measure of the
stationarity within the pattern.

The χ2 and likelihood ratio tests can be performed using the quadrat.test function
available in the spatstat package in R. This built-in function should however be used with
caution. During the application phase of this article we discovered several irregularities in
the test statistics obtained. Although the built-in functions correctly calculated the test
statistic when using a rectangular window with no empty quadrats, discrepancies occurred
if there were empty quadrats or when using a convex hull window. In the presence of
empty quadrats, their areas are still included in the calculation of the statistic and no
option is available to exclude these. We were unable to determine the exact source of
the discrepancy in the test statistic calculations when using a convex hull window. In
addition, small areas where the expected number of points is less than 5 are not excluded
from the calculation of the test statistic. Secondly, by default the function performs a
two-sided hypothesis test. In this context we consider only one-sided tests, specifically
upper-tailed tests, as a large absolute difference between observed and expected counts is
an indication of a deviation from the null. Thirdly, when specifying in the function that
a one-sided test must be performed, the p-value given in the output is for a lower-tailed
test and needs to be adjusted as we are performing an upper-tailed test. Due to these
concerns, the formulae for all tests and p-values in this article were hard-coded. Finally,
the calculation of the test statistics and p-values based on random samples of quadrats is
not currently available in the spatstat package.

4.2 Conclusion

In conclusion, in this mini-dissertation we have

• discussed briefly second-order homogeneity in order to indicate to the reader the
impact of not evaluating first-order homogeneity correctly,

• discussed two first-order homogeneity hypothesis tests currently available, but sel-
domly used, in point pattern analysis software, namely Pearson’s χ2 and the likeli-
hood ratio tests,
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• elaborated on the shortcomings and limitations of these tests available in point
pattern analysis software,

• proposed three more first-order homogeneity tests, not currently employed in point
pattern analysis, and

• proposed two methods of dealing with the violation of the first-order homogeneity
tests.

In this mini-dissertation we briefly described the context and development of spatial statis-
tics, spatial sampling and point patterns. Before selecting an appropriate sampling design
in the spatial context, it is important to know whether the data is first- and second-order
homogeneous. In our application we considered the household locations in four randomly
selected remote villages as an unmarked point pattern. In future work we will be consid-
ering the villages as marked patterns, taking into account the locations of households as
well as the presence of animals at each household location.

For completeness, second-order heterogeneity was briefly investigated using the homo-
geneous and inhomogeneous F , G, J , K and L functions on both rectangular and convex
hull windows.

Currently the method of kernel density estimation is used to construct density plots
which can be used to visually and subjectively infer on first-order homogeneity. This
technique was applied to our point patterns and the impact of using different windows
and including edge corrections was illustrated. We proposed the use of hypothesis tests,
developed for the comparison of K Poisson intensities from independent samples, in the
spatial setting. In our application, the K samples were obtained as non-empty quadrats
within a grid, effectively comparing intensities across the entire point pattern, assuming
independence between quadrats. Tobler’s law of geography states that observations that
are close together are more likely to be similar than observations that are further apart,
which implies that the counts in adjacent quadrats may not be independent but counts in
quadrats further apart may be. It was found that the asymptotic tests are not always well-
behaved, possibly due to the violation of the independence assumption and/or the choice
of grid size and window. Further investigation into the validity of asymptotic distributions
is required.

Two possible solutions for dealing with the violation of the independence assumption
were considered. The first involved calculating test statistics using non-adjacent quadrats,
spaced at regular intervals, however the results from these tests were highly influenced
by the choice of quadrats to include. Secondly, we considered calculating test statistics
based on random samples of quadrats and setting up empirical confidence intervals for
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the p-values. In addition, this approach gave us insight into the appropriateness of using
different grid sizes.

The choice of window was shown to also have an impact on the accuracy of test results,
both for first- and second-order homogeneity. The choice of an appropriate window also
warrants further investigation. The interested reader is referred to [86, 90, 94] for guidelines
on how to optimise window selection.

Future work

In future work we will focus on

• further investigating the validity and limitations of using asymptotic distributions
for first-order homogeneity tests,

• exploring additional solutions to the violation of the independence assumption in
first-order homogeneity tests,

• the optimal selection of grid size for these first-order homogeneity tests,

• optimal window selection for first- and second-order homogeneity tests, and

• criteria for choosing the most appropriate first-order homogeneity test, given a point
pattern.
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