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The building energy efficiency has received massive attention from the government, industry and

academia, due to the mismatch between the shortage of energy resources and the growing energy

demands. The building is a complex system with a variety of components. One or several components

can comprise a subsystem that provides additional or enhanced functionality to the building. These

subsystems reveal enormous energy efficiency opportunities in buildings, including the power quality

control, smart appliance operation, energy flow balance and energy efficiency project planning. Ac-

cordingly, a hierarchical building energy efficiency framework can be identified by categorising these

energy efficiency opportunities into four layers: the power electronics layer, smart appliance layer,

energy flow layer and planning layer. The four layers are distinguished by different functionalities and

control intervals. While the first three layers involve excessively studied engineering fields, the energy

efficiency planning is nevertheless less well understood, due to the lack of a systematic approach to

model, evaluate and optimize the planning of building energy efficiency projects. As a result, the

energy efficiency project planning has received increasing attentions from the researchers in the recent

years.
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The retrofitting of existing buildings is one of the most important types of building energy efficiency

projects, as the existing buildings account for a large portion of final energy consumptions in the world.

The retrofitting planning aims at maximizing the energy and economy performances with limited

budget and manpower. Therefore, the retrofitting planning is a kind of investment decision to make

best use of the investment. However, such an investment decision is difficult due to the interactions of

the multiple layers in building energy efficiency framework. Furthermore, the retrofitting investment

decisions suffer significant risks from the failures of retrofitted items during operation. According

to measurement and verification principles, failures of retrofitted items result in the decrease of the

energy savings, which are the major concern of a retrofitting project. Although the deteriorated energy

savings can be restored by applying maintenance actions, the economy performances receive further

impacts from the maintenance costs. In summary, the investment decision of a retrofitting project

can be very complex, manifesting multiple time scales and significant dynamics when simultaneously

taking into account the retrofitting and maintenance planning.

In order to address the investment decision complexity, a control system framework is proposed,

where the dynamics of aggregated performances can be addressed and optimized. A necessary

simplification is adopted where the retrofitted items are categorised into several groups. Each group

consists of items that are considered to be homogeneous ones, i.e., with the same inherent energy and

reliability performances, the same operating schedules and similar operational environment. Thereafter,

the aggregate energy savings can be computed by the individual item savings and the item group

populations. In this way, the control system modelling at management level can be obtained. The state

variables are the item group populations, and the control inputs are the maintenance intensities, i.e.,

the count of the restored items from one group at a specific instant. Such instant is called maintenance

instant, i.e., a time point at which the maintenance actions are scheduled to take place. The statistical

laws of the item group population decay comprise the system dynamics. The measured outputs are the

aggregate energy and economy performances. Thereafter, the retrofitting and maintenance planning

are cast into an optimal control problem. A finite decision horizon, namely the sustainability period

is defined, based on which the control objectives are obtained, i.e., maximising the aggregate energy

savings and financial benefits. A series of constraints are accordingly introduced, e.g., the targeted

energy saving limit, budget limit and payback period limit, etc. The influences of uncertainty factors

are taken into account to be random noises on the state variables and measured outputs. Consequently,

the control approaches can be introduced to address the retrofitting and maintenance planning. A

model predictive control approach with a differential evolution algorithm based numerical solver is
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employed for the controller design in most of the illustrative studies.

The control system framework allows development and expansion by selecting different state variables

and control inputs. Given that the selective control inputs involve a broad field of maintenance engineer-

ing, a number of maintenance categories comprise the alternatives of control inputs. The introduction of

different maintenance categories provides more options to decision makers. Thereafter, the complexity

of performance dynamics can be addressed, and the utility of limited capitals and manpower can be

improved. Following this idea, a series of extensive studies are conducted and illustrated after the

elaboration of the control system framework. Firstly, a control system modelling with coupled state

variables is proposed to address the interacting energy effects between different categories of retrofitted

item groups. Secondly, the energy saving deterioration of retrofitted items before malfunctions is

modelled by a multi-state system approach, which incorporates two different maintenance categories

into the planning. Thirdly, the collaborative optimisation of the maintenance intensities and instants

is proposed, where additional energy efficiency opportunities are identified. Finally, the robustness

of control system performances when different grouping methods are applied is investigated. These

extensive studies will be introduced in respective chapters in this dissertation.

The highlighted main contributions of the work is listed as following:

• Introducing the life-cycle cost analysis and corresponding dynamics modelling into building

energy retrofitting planning.

• The thesis’s works contribute to the investment decision at management level. Different with the

conventional control topics, the thesis focuses on managing item groups via a management level

modelling. Such a modelling is connected with both the planning and operation interests.

• It is identified in this thesis that the maintenance problems at management level can be modelled

as an optimal control problem, thus allows the employment of control system approaches.

• Many different maintenance options from reliability engineering are introduced into the control

system framework to better reflect the practical maintenance strategies. The control approaches

are accordingly developed.
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CHAPTER 1 INTRODUCTION AND LITERATURE

REVIEW

1.1 BACKGROUND

The energy crisis has been a serious issue to the worldwide dwellers, manufacturers, builders and

traders since 1970s, resulted from the mismatch between the growing energy demands and the limited

petroleum and coal supply. The energy crises never really goes far. After 2000, there have been several

energy crisis all over the world, including the global energy crisis in 2003, California electricity crisis

in 2001, Argentine energy crisis in 2004, central Asia energy crisis in 2008, etc. South Africa suffers

serious electricity shortage as well. Since 2007, the major power supplier Eskom 1 has faced deficiency

in the electricity generation. At the same time, the energy demands from the industry and consumers

kept growing. This incurred several months of load shedding in 2008 and 2015, during which the

South African dwellers had to suffer periodical blackouts.

In response to the energy shortage, the energy efficiency studies are encouraged by worldwide govern-

ments, industries and research facilities. Among the massive relevant topics, building energy efficiency

has drawn significant attentions. This is due to the important role of building energy consumptions.

Generally, the building sector accounts for 32% of the final energy consumption in the world [1].

The U.S. Energy Information Administration (EIA) announced that in 2015, the residential and

commercial buildings consumed about 40% of total U.S. energy consumption 2. The proportion of the

building energy consumption keeps growing as the energy demands increase with the development of

technologies. Therefore, the building energy efficiency projects can achieve significant effects. For

example, in 2009, in South Africa, 7.5 millon South Africa Rand annual savings had been delivered

1http://www.eskom.co.za
2http://www.eia.gov/tools/faqs/faq.cfm?id=86&t=1
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

from nearly 900 building energy efficiency projects [2]. The South African Department of Minerals

and Energy have been rewarding such efforts to improve the building energy efficiency against the

growing energy demands over the country.

The study in this dissertation is motivated by the considerable energy efficiency potentials in the

building sector. Given that the building is a complicated system that assembles the topics pertaining to

the architect, material, environment engineering, electrical engineering, psychology, social science.

etc., the building energy efficiency is also a very broad field involving multiple layers and focuses,

from the operation of very specific equipment to the investment decision of a large scale project. The

following section introduces a scope of the residential and commercial building energy efficiency, from

which the main topic of this study, i.e., a control system framework for building energy retrofitting and

maintenance planning, can be deduced.

1.2 BUILDING ENERGY EFFICIENCY FRAMEWORK

1.2.1 Building energy efficiency scope

The building is a complicated system with massive different components. The building energy

efficiency potentials can be identified from many of the building components. Taking residential

building as an example. A set of building components pertaining to different functionalities and

manifesting energy efficiency potentials are illustrated in Fig. 1.1.

Some components pertain to the power generation. Apart from the main grid power supply, several

supplementary power supply or renewable energy resources can be incorporated into the building

system, e.g., the diesel generator, fuel cell, photovoltaic (PV) system, wind generator, biomass, etc.

The supplementary power supplies improve the cost effectiveness and reliability subject to the occupant

energy demands and energy prices. For example, in South Africa, the time-of-use (TOU) tariffs are

applied by Eskom. Consequently, the scheduling of alternative power sources result in the improvement

of cost effectiveness [3]. Furthermore, in South Africa, off-grid applications are required in the rural

sites, where the combination of several supplementary power supplies including the battery system are

implemented [4]. Although the battery storage system is too expensive to provide full supply back

up at the current stage, it is however the most effective and promising solution at present to improve
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

Figure 1.1. The scope of residential building energy efficiency

the supply reliability against the risk of main grid failures and intermittent renewable energy sources.

A recent article [5] introduces a trend of rapidly falling costs of battery packs for electric vehicles.

There is a reason to believe that the battery systems can become affordable component for domestic

buildings.

The building materials and envelope comprise another important category of components. The building

envelope delivers a significant impact to the energy consumptions of building heating ventilation and

air conditioning (HVAC) system. A large proportion of the HVAC system workload comes from the

heat transmission between the interior and exterior of the building. The transmission rate is greatly

influenced by the building materials and envelope, e.g., the insulations and windows. Improving

building materials and envelope can reduce the building HVAC system workload and corresponding

energy consumptions [6]. In this way, the materials and envelope also influence the occupant thermal

comfort [7, 8, 9]. Some building envelop studies also take into account the building orientation [10,

11, 12] and corporate with the geographic information system (GIS) platform [13, 14]. The orientation

of the building can be taken into account to maximise the effectiveness of heating and PV generation.

The GIS platform provides further energy efficiency opportunities via the ‘geospatial awareness’, i.e.,

the integration of energy and GIS modelling. The geographic information is incorporated into the
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

building modelling and data analysis and energy optimisation. Thereafter, the building envelop design

can be assisted by the GIS platform to better identify the impacts to building energy efficiency. In

summary, although the building materials and envelope do not consume any energy, they still manifest

significant energy efficiency potentials.

The appliances are energy-consuming components pertaining to various functionalities and energy

efficiency opportunities. Generally, we categorise the appliances into four classes according to the

functionalities: the lighting, HVAC, water heating and plug devices. The existing studies reveal that

appliance energy efficiency can be improved from developing more energy-efficient equipment. For

example, with the development of lighting technologies, new efficient lamps have been developed, e.g.,

the compact fluorescent lamps (CFLs) and light-emitting diodes (LEDs). Significant energy savings

can be achieved by replacing inefficient lamps with efficient ones [15, 16]. Similar strategies can be

applied to the water heaters. The inefficient resistive element water heaters can be replaced with the

heat pump water heaters, which are identified to have approximately two thirds less consumption [17].

The plug devices, e.g., the TV, refrigerator and microwave oven can be replaced with efficient ones

with high energy rating as well. Apart from developing efficient equipment, employing advanced

control strategies can also improve the appliance energy efficiency. A series of studies where energy

efficiency control strategies are employed to facilitate the air conditioner energy efficiency can be

found from [18, 19, 20].

Further building energy efficiency can be achieved by incorporating the water energy nexus, which

is receiving increasing attentions [21]. The water-energy nexus brings a series of direct and indirect

benefits to the domestic dwellers, including the water savings, energy savings from water purification,

utility pumping and carbon emission reduction [22]. Given that South Africa is a water-scarce country,

the energy efficiency impact from water-energy nexus deserves more attention.

One or several aforementioned components can comprise a subsystem in buildings, which provides

additional and enhanced functionality to the building. Many such subsystems can be identified in

the building context, each brings in a number of energy efficiency opportunities. For example, an air

conditioning system comprises a subsystem in the building that adjusts the indoor thermal comfort,

where the control of the air conditioner components bring in energy efficiency potentials; several

supplementary power sources can also comprise a subsystem that increases the reliability and cost-

effectiveness of the power supply, where the energy balancing offers additional energy efficiency
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

opportunities; the supplementary power sources and appliances, e.g., the heat pump water heater, can

be combined to simultaneously take into account the supply side and demand side energy efficiency.

These subsystems define the scope of building energy efficiency, and the subsystem modelling is the

foundation of building energy efficiency studies. Various studies have been conducted with focuses

on different subsystems, where massive energy efficiency issues have been identified. These energy

efficiency issues involve different time scales, from µs level to year level, due to different focused

subsystems. According to the multiple time scales, we categorise the energy efficiency opportunities

into four levels. A hierarchical building energy efficiency framework is thereby proposed.

1.2.2 Hierarchical building energy efficiency framework

There are four layers in the building energy efficiency framework, including the power electronics layer,

smart appliance layer, energy flow layer and planning layer. Each layer corresponds to a different

subsystem category and energy efficiency perspective. Generally, the four layers are distinguished

by the following criteria. The power electronics layer involves energy optimisations that focus on

maintaining and improving the power quality where the control intervals can be very small, e.g., several

µs . The smart appliance layer involves bringing energy efficiency intelligence to the appliances,

where the control intervals range from a few minutes to half an hour. The energy flow layer involves

energy balances for grid-connected or off-grid systems that aim at different objectives, where the

control intervals are often several hours. The planning layer involves organising and managing an

energy efficiency project with limited capital investment and manpower. The decisions are made via

evaluating performances over a long time period, e.g., 5-10 years. More detailed explanations are

introduced as following:

The power electronics layer pays attention to maintain the power quality, i.e., the electricity quality

in buildings. Specifically, a satisfying power quality can be characterised as a power supply with 1)

steady voltage within a predefined range; 2) steady alternating current (A.C) frequency and 3) smooth

voltage curve waveform [23]. The power quality is a traditional topic for the power system, as low

quality power supply, e.g., unstable voltage or A.C frequency can damage the equipment, including

the power generator, power consumer and power line. According to the definition, the major concerns

of maintaining power quality is the voltage, frequency and AC phase [24]. From the energy efficiency

viewpoint, the power quality also plays an important role. This is because the damaged equipment
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

results in deterioration of energy efficiency. For example, the lighting, air conditioner and refrigerator

are the most common appliances in domestic environment. If the power quality cannot sustain, these

equipment can either consume more energy or become malfunctioning, i.e., the energy performances

deteriorate due to the worse working state. In this way, the power quality is essential to building energy

efficiency. In South Africa, the power quality is generally well maintained, however the capacity

of the main grid is not very satisfying comparing with the growing demands. In 2014 and 2015, a

major coal supply incident in South Africa resulted in continuous load shedding: Eskom shed load

for the first time in six years for 14 hours on 6 March 2014, and three more load shedding events

occurred during June 2014 due to multiple unit trips, as well as a constrained power system in meeting

demand [25]. The shortage of supply capacity encouraged the deployment of supplementary power

supplies such as renewable energy facilities, especially in the rural sites [4]. As a result, new power

quality challenges are brought in. Firstly, the electricity generated from supplementary power supplies,

especially from the renewable energy sources, must be processed to meet the service level power

quality requirement. Secondly, for grid-tied systems, the generated electricity must further meet the

power quality standard from the grid. Given the distributed nature of the renewable energy system,

additional building energy efficiency opportunities are revealed at the power electronics layer. In

domestic context, the inverter is the main method to adjust the power quality. A number of studies

have been conducted with the focus on inverter control. Abo-Al-Ez et al. [26] proposes the design

of a dual-loop model predictive controller for voltage source inverter operation in smart microgrids.

Liu et al. [27] proposes a control strategy for microgrid inverters based on adaptive three-order sliding

mode and optimised droop controls. Wilson et al. [28] proposes a non-linear power flow control

design that regulates renewable energy sources, loads and identifies energy storage requirements for

an AC inverter based microgrid system. Mokgonyana et al. [29] investigates daily volt/var control in

distributed networks, where the proposed approach determines the most suitable substation secondary

bus reference voltage and dispatch sequences to minimise daily voltage deviations and total loss over

24h. There are many other studies contributing to similar topics [30, 31, 32, 33]. The switch interval

of inverters can be as small as µs level and control actions usually take place every hundreds of ms.

Such intervals are much smaller than the control problems at the other layers.

The smart appliance layer aims at bringing in energy efficiency intelligence to the appliances in

addition to the built-in control logic. In practice, additional energy efficiency opportunities can be

identified to allow the appliance to coordinate with the ambient and user behavior. For example, Wang

et al. [34] proposes a quantitative model to estimate the the energy performances of an air conditioning
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

system under different set point conditions. Such a knowledge provides better understanding of the

energy efficiency potentials with an air conditioning system apart from improving the control logic of

a chiller system itself. In fact, many further energy efficiency opportunities lie within the interactions

between the equipment and the working environment. Similarly, Catherine et al. [35] investigates

the energy efficiency impacts from the collaboration of an intelligent geyser usage profiling system

and geyser timer. Arens et al. [36] emphasises the energy efficiency opportunities from ambient

intelligence in buildings, and a number of relevant studies have been conducted on implementing

ambient intelligence to improve the building energy efficiency [37, 38, 39]. The appliances can also be

organised and managed as one subsystem to achieve the energy savings and load balancing. Setlhaolo

et al. [40, 41, 42] propose a series of relevant studies, where household appliances are scheduled in

accordance with a battery energy storage system. The purpose of the scheduling is cost minimisation

and load balance under the circumstance of TOU tariffs, where the battery energy storage system is

utilized to provide peak shaving and valley filling of the load profile. In this way, the appliance energy

efficiency intelligence also provide financial benefits to the occupants. Given that the main purpose of

the appliances is satisfying the occupant demands, the corresponding control interval is often 10-20

minutes, so that the occupant intentions can be rapidly responded to.

The energy flow layer focuses on the energy efficiency opportunities from balancing different energy

sources. In practice, the supplementary power sources manifest different problems. The diesel

generator has been the most popular solution for off-grid applications due to the low initial capital cost

and reliable performances. However the operation and maintenance costs of diesel generator is very

high, in addition, the diesel generator increases the carbon emission. The photovoltaic system and

wind generator are renewable and clean energy sources, with advantages such as little maintenance,

absence of fuel costs and flexibility of expansion. However, their ability of continuous and reliable

power supply is limited by the intermittent nature. Incorporating battery storage systems or hydrogen

fuel cells into the renewable energy system can improve the reliability. However, the oversizing of the

storage and renewable energy system capacity is inevitable, which results in high capital costs and

inefficient use of the system. In order to address the above issues, the hybrid energy system is proposed,

where the aforementioned power sources are combined and scheduled to achieve an environmentally

friendly, reliable and cost-effective power supply system. Great energy efficiency opportunities are

identified from such hybrid systems. Tazvinga et al. [43, 4, 44, 45, 46] conducted a series of studies to

investigate the energy efficiency opportunities of hybrid system in off-grid applications. The usage of

diesel generator is minimised and usage of renewable energy is encouraged in these studies. In this way,
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

the advantages of the renewable energy system are amplified while the supply reliability is guaranteed.

Such a hybrid system can be extended by incorporating demand side management into the energy

balancing. Sichilalu et al. [3, 47, 48] investigated such a scenario that the hybrid system is connected

with a thermal heat pump load. Both the supply side and demand side performances are optimised

to minimise the energy costs and maximise the fuel cell outputs subject to TOU tariffs. In this way,

the supply reliability of the hybrid system is verified. Nwulu and Xia [49, 50, 51] investigated the

energy balance with demand response in a grid-connected microgrid scenario. The energy balance is

implemented via optimising an economic dispatch of the microgrid, where the conventional generators

fuel cost and transaction costs of the transferable power are minimised while the microgrid operator’s

demand response benefit is maximised, subject to a series of constraints including the load demand

constraint. The control interval at the energy flow layer is approximately 1-2 hours, due to the daily

basis of the energy balance.

The planning layer energy efficiency issues are actually management level issues. As introduced in

preceding paragraphs, the evaluation period are usually 5-10 years, which are less than the building life

cycle. This is often defined by the measurement and verification projects. It is not necessarily the whole

building life cycle, but a prescribed time period, during which the savings are identified and confirmed.

The identified savings are the basis of a series of energy footprints, national level analysis and financial

incentives. Therefore, the performances during the evaluation period are extremely important. The

term ‘management level’ implies a fact that an individual equipment or subsystem is not the focus of

the planning layer. Instead, organising, planning and managing an energy efficiency project becomes

the major concern. The cost effectiveness is the most important objective at planning layer, i.e., the

decisions are made to make best use of the capital investment. Take building energy retrofitting as an

example. In a retrofitting project, due to the limitation of capital and manpower, the retrofit options

must be carefully evaluated and selected to maximise the overall energy savings. Different budget limits

can result in different retrofitting plans [52, 53, 54]. From this viewpoint, the planning layer energy

optimisations are actually a kind of investment decisions and budget competitions. Such investment

decisions are extremely important to achieve energy efficiency, as limited capitals and manpower are

common situations in practice. Accordingly, massive studies have been conducted on energy efficiency

project planning. However, when comparing with the preceding three layers, less studies have been

conducted on organising the methodologies in a systematic framework to model, evaluate and optimise

the energy efficiency projects at planning layer. A control system framework to the building retrofitting

and maintenance planning is thereby proposed in this dissertation to fill this research gap. The control
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

system context and details are attentively introduced in the following sections and chapters.

1.3 ENERGY RETROFITTING IN BUILDINGS: STATE OF THE ART

Before introducing the control system framework, the state of the art studies on building retrofitting

are hereby investigated. The retrofitting is an important part of the green building studies. Zuo and

Zhao [55] concludes that the green building studies cover three main topics: the definition and scope of

green buildings, the quantification of the benefits of green buildings against conventional buildings and

the technologies to achieve green buildings. Over the last twenty years, a number of green building

assessment tools have been developed among many countries, e.g., the Leadership in Energy and

Environmental Design (LEED, United States), BRE Environmental Assessment Method (BREEAM,

United Kingdom), Hong Kong Building Environmental Assessment Method (HK BEAM), Green

Building Council of Australia Green Star (GBCA, Australia), Green Star South Africa rating system

(Green Star SA, South Africa), etc. Most assessment tools allow a credit based evaluation that covers

various aspects of the green building sustainability, from the energy efficiency, environmental impact

to the human aspect. These assessment tools provide a thorough guideline to the design of green

buildings and facilitate the development of green building projects. For example, the LEED v2.2 has

accredited over 5000 projects globally since its first launch in 2005 [56].

There are different types of building energy efficiency projects, where retrofitting is the most common

one. Although the newly erected green buildings are energy efficient and environmental friendly,

removing most of the existing inefficient buildings and erecting brand new green buildings can be too

expensive, even infeasible in the near future. The growing energy demands in existing buildings remain

an unaddressed issue. Therefore, retrofitting is the main solution to improve the energy efficiency in

existing buildings.

1.3.1 Building retrofitting: a difficult problem

The retrofitting of existing buildings is never an isolated topic from the green building design. Many

technologies aims at achieving green buildings also facilitate the energy retrofitting in existing buildings.

A very common part of the building energy efficiency technologies is the utilisation of the renewable

energy. The utilisation of renewable energy includes but is not limited to: photovoltaic and wind turbine
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

driven electricity, the solar water heating, the geothermal heat pump, the biomass energy [57, 58, 59].

The renewable energy resources cause less emission than the conventional energy resources, e.g.,

coal and petrol. Furthermore, utilising the renewable energy resources reduces the power demand

from the main grid. This is essential to achieve net zero energy buildings [60, 61]. There have been

many studies pertaining to renewable energy retrofitting projects [62, 63, 64]. Another aspect of

technologies in common is the energy conservation interventions that aims at reducing the energy

consumption and improve the resource utilisation efficiency [65, 66]. The term ‘energy conservation

intervention’ is ‘used to mean measures to improve efficiency or conserve energy or water, or manage

demand’ as defined in [67]. The utilisation of the energy conservation interventions involves many of

the studies introduced in the previous section. The control strategies implemented to the appliances

for energy efficiency purpose can be a type of energy conservation interventions. Apart from the

improvement on the appliance itself, applying the management policy or disseminate the knowledge

can also be a form of energy conservation interventions. Some relevant studies can be found from

[68, 69, 70, 71, 72].

However, the building energy retrofitting remains a holistic planning problem while involving so many

energy efficiency technologies. The retrofitting is a systematic process including five phases [73]: 1)

the project setup phase, where the scope of the work is defined and the project target is set; 2) the energy

auditing phase, where a thorough understanding of the retrofitted building is established by energy

auditing at different level; 3) retrofit option identification phase, where a number of energy conservation

interventions can be assessed and selected; 4) implementation phase, where selected interventions

will be applied to the retrofitted building; 5) measurement and verification (M&V) phase, where the

impact of the retrofitting is quantitatively assessed following a series of standardised methodologies,

i.e., the M&V method. Ma et al. [73] interprets the retrofitting planning as ‘to determine, implement

and apply the most cost effective retrofit technologies to achieve enhanced energy performance while

maintaining satisfactory service levels and acceptable indoor thermal comfort, under a given set of

operating constraints’. During the planning, a large number of the alternative interventions are often

involved in a project. The project target usually needs to take into account the energy performances,

the economy and the human aspects. Furthermore, building is a complicated system including several

interacting subsystems. All these factors make the retrofitting planning difficult to address.
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1.3.2 State of the art methodologies

During the last decade, the retrofitting plan optimisation problem has been extensively studied. As

aforementioned, a retrofitting plan takes into account multiple considerations that are often contra-

dictory. Consequently, the multi-criteria model is widely employed to select proper retrofit options.

The criteria usually involves the energy performances, the economy and human aspects. The energy

performance in a retrofitting project is evaluated by the amount of reduced energy consumptions

[74, 75, 76, 77, 78]. Malatji et al. [52] further introduces the M&V methodology to evaluate the energy

performances by the energy savings obtained against an adjusted baseline. In some early studies

[79, 80], the economy criterion is the amount of capital investment. Actually, some common economic

analysis methods can be introduced to evaluate the cost effectiveness of the retrofit options, e.g., Net

Present Value (NPV), Internal Rate of Return (IRR), Overall Rate of Return (ORR), Benefit-Cost Ratio

(BCR), Discounted Payback Period (DPP) and SPP [81, 82, 83]. Some of the aforementioned methods

have already been employed in the life cycle analysis and the economic evaluation in green building

designs [84, 85, 86, 87]. The human aspects can involve the thermal comfort, indoor environmental

quality, occupants health and productivity, etc [55]. The human aspects can pertain to some criticisms

against green buildings. Thermal comfort issues, e.g., high level of humidity or higher temperature

during summer, have incurred some negative experience with green buildings [88, 89, 90]. These

issues draw the attention from the building retrofitting researchers. A number of studies take into

account the human aspects in their retrofitting projects [91, 92, 93, 94, 95, 96].

The reliable estimation and quantification of the energy conservation intervention benefits is essential

to the building retrofitting plan optimisation. The popular method to quantitatively evaluate the

intervention benefits is implementing the building energy simulation. There are a number of simulation

tools, including EnergyPlus, eQUEST, DOE-2, ESP-r, BLAST, TRNSYS, etc [73]. Generally, these

simulation tools include a variety of building component models, ranging from the detailed physical

models to the data driven models, which allows the decision maker to simulate the performances of the

interventions in a virtual environment considering as many details as possible. A number of building

retrofitting and green building design studies have been conducted by taking advantage of the building

simulation tools [97, 98, 99, 100, 101, 102].

However, even with the simulation support at highest accuracy, risks are inevitable to the retrofitting

planning. This is because of the many uncertainty factors all over the retrofitting process. The possible
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uncertainty factors can come from the uncertainty in parameters such as savings estimation or weather,

the random nature of occupant behavior, the measurement uncertainty such as sampling error, the

system performance degradations, etc. Consequently, the overall energy and economy performances in

building retrofitting involve significant uncertainty. One important research topic pertaining to this issue

is the risk assessment. Risk assessment allows the decision maker to estimate the deviation that the

uncertainty factors can deliver to the retrofitting plan [82]. The methodologies include expected value

analysis, mean-variance criterion and coefficient of variation, risk-adjusted discount rate technique,

certainty equivalent technique, Monte Carlo simulation, decision analysis, real options and sensitivity

analysis [73]. A number of studies take into account or focus on the risk assessment in building

retrofitting. Gustafsson [103] introduces the sensitivity analysis approach to facilitate the decision

making in building retrofitting to choose optimal strategies that are relatively robust against parameter

changes. Heo [104] proposes a systematic approach to support large scale analysis and risk conscious

decision making in building retrofitting. Menassa [105] proposes an augmented net present value

method to estimate the investment that takes into account different uncertainties associated with the life

cycle costs and perceived benefits of the investment. Ye et al. [106, 107, 108, 109, 110] propose a series

of methodologies to overcome the risks in measurement and verification from sampling uncertainties

and minimise the sampling costs.

Although the existing studies have taken into account the life cycle cost analysis and risk assessment,

most of the state of the art methodologies only take into account the intervention performances at

an early stage. Some life cycle cost analysis studies include the operation cost. The performance

degradations and the possibility of equipment malfunctions are hardly mentioned in existing studies.

Furthermore, the risk assessment studies mainly address the retrofitting planning as a static optimisation

problem. The opportunity of introducing control approaches to address the investment decisions

remains an open question.

1.3.3 Optimisation technologies

As aforementioned, the building retrofitting plan optimisation problems are difficult as multiple consid-

erations are involved. The decision maker must take into account several contradictory considerations

that leads to conflicting objectives [111], i.e., the retrofitting planning is often a multi-objective optim-

isation. While the single objective optimisation is relatively straightforward to solve, multi-objective
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

optimisation involves the trade-off between the conflicting objectives, which makes multi-objective

optimisation more complicated. There are mainly two kinds of approaches to obtain the solution: the

weighted sum approach and the Pareto optimisation. In a weighed sum approach, the objectives are

combined into one single objective function with a set of specific weighting factors. This allows the

employment of the normal solver for single objective optimisation. The Pareto optimisation is more

complicated. It is built on the concept of dominance [112]: if solution a outperforms solution b on

each objective, then a dominates b. Contrarily, if there is no feasible solution that dominates a, then

a is non-dominated. The mathematical definition of dominance can be found in [112]. The Pareto

optimisation finds the collection of non-dominated feasible solutions. Usually, the result of Pareto

optimisation, namely Pareto front, is illustrated by a range of non-dominated solutions that are sorted

to illustrated the trade off between each objective. Both approaches can be employed to solve the

building retrofitting plan optimisation. Malatji et al. [52] employs a weighted sum of two objectives

with a non-stationary penalty function to solve a retrofitting planning problem involving large amount

of retrofit options. Wu et al. [113] investigates a similar problem and employs a multi-objective neigh-

borhood field optimisation (MONFO) algorithm to obtain the Pareto front. Generally, the weighted

sum approach provides the decision maker a clear answer to the optimisation problem while the Pareto

approach offers a concrete understanding of the conflicting nature of the objectives. Both approaches

are valuable to the decision maker.

Once the formulation of the objective function is confirmed, there are a variety of solvers to be

employed. The evolutionary computing approaches are easy to implement and verified to be ef-

fective against non-linear optimisation problems [114]. Evins [111] illustrates the popularity of the

evolutionary computing with the retrofitting optimisation studies. The review did a broad search

among the relevant studies from 1990 to 2012. According to the statistics, the Genetic Algorithm has

been the most popular solver that is employed by over half of the investigated studies. Some other

commonly employed evolutionary computing approaches include the Simulated Annealing, Particle

Swarm Optimisation and Differential Evolution. For high dimensional optimisation problems, the

conventional evolutionary computing approaches result in great computational burden. This is resulted

from the stochastic nature of the evolutionary computing. During the last decade, improved algorithms

have been investigated to address such a issue. Wu et al. [115, 116] propose a neighborhood field

optimisation method to improve the convergence accuracy and speed of the evolutionary computing

approaches in high dimensional optimisation problems. This method has been utilised in different

building energy optimisation problems [113, 117].
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

1.4 A CONTROL SYSTEM FRAMEWORK

1.4.1 Complexity of retrofitting and maintenance planning

The time scale of retrofitting planning is much larger than the smart appliance operation or power

energy flow balance. However, retrofitting planning is not an isolated issue within the scope of

building energy efficiency. There are strong connections between different layers of the building energy

efficiency framework: the power quality is essential to guarantee the performances of the appliances;

the smart appliance operation and energy flow balance are the basis to evaluate the performances of

retrofit options. On the other hand, the investment decisions introduce a series of objectives to the

energy flow balance, smart appliance operation and power quality control. If the energy efficiency at

the other three layers cannot sustain during operation, further risks are introduced into the investment

decisions due to the deviations of evaluation.

Actually, the investment decisions suffer significant risks from the failures of retrofitted items during

operation. In practice, failures and malfunctions are inevitable as most subsystems in buildings are

subject to deterioration with usage and age [118]. In the retrofitting planning, the most concerned

performance is the energy savings. The energy savings cannot be directly measured, since they

represent the absence of energy use. Instead, savings are determined by comparing measured use

before and after implementation of a project, making appropriate adjustments for changes in conditions.

According to the measurement and verification (M&V) principles [67, 119], a failed item no longer

contributes energy savings to the retrofitting project. The results comes from the fact that in M&V,

savings are computed by the difference between the actual performance and an estimated (adjusted)

baseline performance, as Fig. 1.2 indicates [119]. According to M&V principles, when a failed item

appears, the energy consumption baseline is adjusted accordingly. More, specifically, the baseline

consumption and the actual consumption of the failed item are both absent, resulting in the absence of

the desired energy saving from the item. Thereafter, such an absence of energy savings from individual

items result in the decrease of overall energy savings. The clean development mechanism (CDM)[120]

guideline for energy efficiency lighting project already notices the negative impacts of failures. An

additional constraint is added to the project: if 50% of the initial installed lamps are lost during the

evaluation period, project is considered to be a failure [121]. In practice, maintenance actions are

periodically applied over the item life cycle to restore the failed item to normal working state, and the
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

Figure 1.2. Concept of measurement and verification (M&V)

energy savings are accordingly restored. However, maintenance actions result in additional capital and

manpower investment. Under the joint impacts of failures and maintenance, the aggregate energy and

economy performances manifest strong dynamics during operation.

However, the impacts of maintenance are unique. Different with the stochastic nature of the item

failures, maintenance is a kind of activities that can be planned and scheduled. While maintenance

contributes to the dynamics of energy and economy performances in a retrofitting project, it also implies

that the performances can be ‘controlled’ by maintenance planning. More specifically, in a retrofitting

project, the aggregate energy and economy performances can be further improved against the impacts

of failures by incorporating maintenance planning into the investment decision. Consequently, such

investment decisions become even more complicated: the time interval of maintenance planning ranges

from several months to one or two years, which is very different with the aforementioned energy

efficiency issues; the maintenance planning involves both management level performances and actions

on individual retrofitted items; the costs of applying maintenance actions must be taken into account to

be a part of the investment. Furthermore, maintenance engineering is also a broad research field. The

diverse maintenance actions can bring in more complicated interacting effects, e.g., some maintenance

actions can influence the possibilities of items becoming failure.

In summary, the investment decision of a retrofitting project can be very complex, manifesting

multiple time scales and significant dynamics when simultaneously taking into account the retrofitting
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

and maintenance planning. Such a novel investment decision is promising to overcome the risks

from inevitable retrofitted item failures. However, the aggregate performances are dynamical during

operation due to the joint effects of failures and maintenance. The inevitable uncertainties, the interplay

between different item groups and the item performance degradation before malfunctions result in

additional complexity to the performance dynamics. The state of the art optimisation methodologies

cannot address investment decisions with such complexity. There lacks a systematic approach to allow

the modelling, optimisation and development of investment decisions in retrofitting projects. Therefore,

we propose a control system framework to address the above issues.

1.4.2 Control system framework

The conventional building automation has already brought in a large number of relevant studies that

employ control approaches. Although the control system perspective remains novel to the planning

layer decision makings, the control approaches are specialised to address problems with dynamic

natures. In the above discussion, we already mention that the aggregate performances can be ‘controlled’

by maintenance planning. Ideally, the dynamic nature of the aggregate performances can be described

to be the system dynamics under the influence of the control inputs, i.e., the maintenance actions.

Thereafter, the investment decision can be cast into an optimal control problem. However, there are

two gaps to fill to implement control approaches in such a way: 1) the gap between the management

level concerns and the individual item characteristics; 2) the gap between the conventional optimal

control modelling and the investment decision modelling.

On the one hand, the major concerns of retrofitting planning are the aggregate energy and economy

performances rather than individual item or subsystem performances. On the other hand, the com-

putation of aggregate performances requires information regarding each individual item. In practice,

it is very expensive (from both capital and manpower viewpoints) to inspect each item. Therefore,

modelling each retrofitted item is infeasible for the investment decision. In the CDM energy efficiency

lighting projects, sampling strategies are introduced to address similar issues [107]. The performances

of a large scale lighting group are estimated by monitoring a small group of lamps. The metering data

are processed to represent the whole lighting group, at the cost of additional uncertainties. Follow-

ing the idea of sampling strategies, a grouping method is introduced to allow the system dynamics

modelling at the management level. The retrofitted items are categorised into several groups. Each
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

group consists of items that are considered to be homogeneous ones, i.e., with the same inherent

energy and reliability performances, the same operating schedules and similar operational environment.

Thereafter, the aggregate energy savings can be computed by the individual item savings and the item

group populations. The term ‘population’ hereby refers to the count of retrofitted items. The term

‘population’ is frequently used in this dissertation, and the above explanation applies to most contexts.

The retrofitted item failures are represented by the population decay of the item groups. The population

decay modelling is another interesting and difficult research topic. Nevertheless, it is not the major

concern in this dissertation. Generally, the statistical laws are employed to be our population decay

models. Accordingly, the impacts of maintenance actions to the item group population are the main

focus in the control system modelling. A term ‘maintenance intensity’ is hereby introduced to describe

the count of the restored items from one item group at a specific instant. Such instant is referred

to as the ‘maintenance instant’, i.e., a time point at which the maintenance actions are scheduled to

take place. The maintenance intensities and instants are selected to represent the maintenance plan,

instead of individual item maintenance strategies. Similarly, economy performances, e.g., the cash

inflow and outflow of the project can be obtained from the item group populations and maintenance

intensities.

Taking advantage of the grouping method, the control system modelling is revealed already. Given that

the state variables are a set of variables that meet the minimal requirement to describe the future state of

a dynamical system, the item group populations are selected to be the state variables. The maintenance

intensities are selected to be the control inputs. The population decay of the item groups comprise

the system dynamics. The aggregate performances are selected to be the measured output. In this

way, a control system framework is obtained, where the retrofitting and maintenance planning is cast

into an optimal control problem. A finite decision horizon, namely the sustainability period is defined.

Generally, the control objectives are maximising the aggregate energy savings and a certain economy

performance indicator, e.g., the internal rate of return (IRR), over the sustainability period. A series of

constraints are accordingly introduced, e.g., the targeted energy saving limit, budget limit and payback

period limit, etc. The uncertainty factors are inevitable in practice. The impacts of uncertainties are

taken into account to be random noises on the state variables and measured outputs.

There are many promising control approaches to address the investment decision with uncertainties,

e.g., the model predictive control (MPC). However, the investment decision optimal control problem is

different with the conventional optimal control formulation. Firstly, multiple objectives are involved
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in the investment decision, and the objective formulations are very different with the conventional

quadratic performance index. The IRR formulation is even more complicated, as it is non-analytic.

Secondly, the constraints involve a series of long-term performances, e.g., the budget limits. Such con-

straints are unusual to the optimal control problems with uncertainties. To overcome these difficulties,

a weighted sum approach is employed to combine the two control objectives. Thereafter, an alternative

MPC based approach with an improved differential evolution (DE) algorithm based numerical solver

is employed. This controller design is frequently employed in most chapters of the dissertation. The

technical details are attentively introduced there.

1.4.3 Control inputs: maintenance

The control system framework allows further development and extensions. Different selections of state

variables, control inputs and measured outputs are possible given different situations and purposes. For

example, the control inputs, i.e., the maintenance actions, involve a broad field of the maintenance

engineering. In practice, there are many maintenance types corresponding to different functionalities.

The combinations of different maintenance types can be introduced into the control system framework

to achieve the control objectives in different scenarios.

In reliability engineering, the maintenance actions are defined to be the activities required to operate

and maintain the facilities and their supporting infrastructures in a condition to be used to meet their

intended function over the operating period 3. The maintenance categories are enormous: there is

emergency maintenance, corrective maintenance, preventive maintenance, predictive maintenance and

proactive maintenance [122]. The most common maintenance categories are the corrective maintenance

(CM) and preventive maintenance (PM). CM involves the repairs and replacements against failures and

PM refers to all actions performed in an attempt to retain an item in a specified condition, according

to MIL-STD-721C4. In reliability engineering, the maintenance actions are implemented subject

to the maintenance policy. The objective of the maintenance policy is usually to reduce the failure

rate of a specific type of facility during operation. The common maintenance policies include the

age-dependent PM policy, periodic PM policy, failure limit policy, repair limit policy, etc [123]. These

maintenance policies are similar to a large extent: The PM actions are implemented when a certain

3Comprehensive Facility Operation & Maintenance Manual, 2013, http://www.wbdg.org/om/om_manual.php
4MILITARY STANDARD: DEFINITIONS OF TERMS FOR RELIABILITY AND MAINTAINABILITY, 1981,

http://www.everyspec.com/MIL-STD/MIL-STD-0700-0799/MIL-STD-721C_1040
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

condition is satisfied. This condition can be the age, failure times or repair times, depending on the

policy. This condition is usually the decision variable of the maintenance policy optimisation. The

early stage studies take into account the minor failures that can be repaired and catastrophic failures

that requires replacement. However, the performance degradation without a failure is not included.

The multi-state system (MSS) approach is developed to address this issue. The MSS characterises

the multiple performance levels in a system by defining a set of multi-working and failure states

[124, 125, 126]. In an MSS, the current working state can degrade to a worse one upon time. CM

represents the actions that restore the system from a failure state and the PM actions are carried out

before failures, restoring the system to a better state. Such state-transition of the MSS has described to

be a Markov process in relevant studies [125, 126, 127, 128, 129, 130]. The decision variables in MSS

are more complicated, including the types of maintenance to be implemented under each state, the

frequency of inspection and the number of PM actions, etc.

In our studies, the selective control inputs involve PM and CM. The scope of the corresponding

maintenance actions is illustrated in Fig. 1.3. The meanings of some terms in Fig. 1.3 can be

slightly different with the conventional maintenance engineering definitions. The planned maintenance

suggests the existance of the maintenance plan (our decision variables), as opposed to the unplanned

maintenance, where maintenance actions take place when the need arises. The scheduled preventive

maintenance and deferred corrective maintenance are the selective control inputs, where the deferred

corrective maintenance refers that the maintenance action can be delayed until the scheduled instant

when maintenance can take place. The immediate corrective maintenance refers to the emergency

maintenance, which take place to repair the failed items where downtime cannot be tolerated, e.g., the

power supply. The immediate corrective maintenance is excluded from our control inputs. Instead, it is

taken into account as part of the uncertainty factors. The condition based maintenance is excluded at the

current stage as well. It mainly refers to the routine maintenance that is indicated by the manufacturer.

In the future, the condition based maintenance can be designed/optimised as an open-loop control

scheduling problem.

The selection of control inputs fulfills different requirements in practice, where decision makers

are facing different options while the capitals and manpower are limited. For example, preventive

maintenance can reduce the possibility of failures, however, additional manpower is required to apply

preventive maintenance. Therefore, the impact of preventive maintenance must be carefully evaluated

to decide whether preventive maintenance should be introduced into a retrofitting project. This is the
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

Figure 1.3. The scope of maintenance actions involved in the control system modelling

reason that investment decision optimisation is required. Our studies investigate the impacts of different

combinations of control inputs, i.e., the maintenance categories. This dissertation is a precursor study

that aims at developing a systematic approach for investment decisions, where expansion is possible via

selecting different state variables and control inputs. Furthermore, the new control system perspective

to the investment decision for retrofitting and maintenance planning can facilitate the development of

control science by investigating the dynamical system modelling and controller design for investment

decisions.

1.4.4 The selection of numerical solver

The thesis’s works bring in a kind of optimisation problems that includes mixed integer decision

variables, non-linear items and non-analytic items. Furthermore, given the complexity of the input

(a series of maintenance intensities and even instants), the optimisation problems can be considered

as non-convex. Such items make the optimisation problems difficult to solve. A DE based numerical

solver is employed for the mixed integer, nonlinear, non-analytic and non convex optimisation problems.

DE algorithm is a more recent evolution algorithm that is very easy to implement with computers.
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW

Vesterstrom et al. [131] conduct a comparative study to investigate the performances of DE algorithm

on a set of 23 numerical benchmark problems and conclude that DE is the best performing algorithm

in the study. During recent decade, the number of studies that employ DE algorithm for non convex

optimisation problems. In the recent decade, the number of studies that employ DE algorithm for non

convex optimisation problems keeps growing. A few literatures that employ DE algorithm to solve non

smooth, non convex problems and with over 200 citations are hereby listed [132, 133, 134].

In the thesis, DE algorithm is the selective numerical solver due to its simplicity and rapid searching

ability. It however does not guarantee the global optimum. Instead, after sufficient iterations, the DE

algorithm can hopefully find a satisfying solution. On the one hand, the DE algorithm is less reliable

than conventional gradient based numerical solvers, e.g., sequential quadratic programming (SQP).

this is the main drawback of DE and other evolutionary algorithms. On the other hand, DE can be

applied to all kind of numerical problems, which allows it to be employed in complicated practical

optimisation problems as mentioned in literatures [135, 136]. The comparison of DE solver and other

numerical solvers is however excluded from the contributions of the thesis. The thesis will focus on

establishing the control system framework rather than investigating numerical solvers.

1.5 RESEARCH CONTRIBUTIONS AND LAYOUT OF THE DISSERTATION

The main contributions of this dissertation have been published in five journal articles and another

one has been submitted for publication. Some conference contributions have also been published or

accepted. These contributions are listed in the section of publications.

The major topic of the thesis is to develop a control system framework to address the building energy

retrofitting and maintenance problems at the planning layer by a control system approach. Although the

building retrofitting and maintenance planning has been studies from the perspectives of optimisation,

the inherent dynamics of the planning problems are not well addressed. As a result, the control

system remains an unexplored perspective for the building energy efficiency project management level

planning. The energy performance evaluation is given by the M&V principles. The main contributions

are highlighted as following:
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• Introducing the life-cycle cost analysis and corresponding dynamics modelling into building

energy retrofitting planning.

• The thesis’s works contribute to the investment decision at management level. Different with the

conventional control topics, the thesis focuses on managing item groups via a management level

modelling. Such a modelling is connected with both the planning and operation interests.

• It is identified in this thesis that the maintenance problems at management level can be modelled

as an optimal control problem, thus allows the employment of control system approaches.

• Many different maintenance options from reliability engineering are introduced into the control

system framework to better reflect the practical maintenance strategies. The control approaches

are accordingly developed.

Given the limitations of models and corresponding knowledge, a series of limitations of the current

stage work are listed as following to allow the establishment of control system framework.

• The statistical law is employed to characterize the population decay of items. Currently, the

stochastic model remains uninvestigated and can be a major challenge of the following re-

searches.

• Many of the engineering facts are simplified, e.g., the multi-state transition models and the

MTBF dynamics of air conditioning system. Polishing, improving and removing the simplified

engineering facts are another research challenge in the future.

• The numerical solver is limited to evolutionary algorithm. The evaluation of the performances

of the numerical solver is not one of the contributions of the thesis, therefore it is not listed in

this work.

A layout description of the dissertation are described below.

• The building energy retrofitting planning taking into account the life cycle analysis is investig-

ated.
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• The corrective maintenance planning for building energy retrofitting is investigated from the

dynamic programming and optimal control perspective.

• The corrective maintenance planning is extended by taking into account the interacting energy

effects.

• A multi-state system based maintenance plan optimisation problem is modelled.

• The maintenance time schedule is incorporated into the maintenance plan optimisation.

• The robustness of the grouping method is investigated.

Chapter 2 introduces an improved retrofitting plan optimisation model. The dynamic performances

due to the failures and maintenance are incorporated into the optimisation problem by the life cycle

cost analysis approach. The life cycle costs mainly come from the maintenance costs. The main-

tenance plan is pre-decided, based on which the long-term performances are computed. Chapter 2

preliminarily investigates the performance dynamics within the investment decision of the retrofitting

planning. Taking advantage of the results in chapter 2, the necessity of the control system framework

is revealed.

Chapter 3 further investigates the investment decision with maintenance planning. A corrective

maintenance plan optimisation problem is cast into an optimal control problem where the performances

dynamics can be addressed. Thereafter, an MPC based control approach is introduced to solve the

maintenance plan optimisation. The control inputs are the corrective maintenance intensities subject to

pre-decided maintenance time schedule. In this way, the control system framework is established with

a lot of opportunities to develop and extend to fulfill different project requirements. The ability of the

control approach to reduce the negative impacts of uncertainties is also manifested in Chapter 3.

Chapters 4, 5 and 6 are the extension of the control system framework by selecting different state

variables and control inputs. In Chapter 4, the main topic is to address the interplay between different

retrofitted item groups. The control system framework is extended by introducing coupled state

variables, where the interacting energy and reliability effects are modelled. The new modelling is

verified to be able to achieve better energy and economy performances against the interacting effects.
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In Chapter 5, the item performance degradation before malfunctions is addressed by introducing

preventive maintenance into the control system framework. Accordingly, the control system modelling

is improved by employing a multi-state system approach, where the performance degradations and

effects of preventive maintenance are modelled. The control inputs are thereby extended to include

the preventive maintenance intensities. The case study verifies the energy efficiency contributions

from preventive maintenance. Chapter 6 introduces a collaborative optimisation of the maintenance

intensities and instants based on the multi-state control system obtained in Chapter 5. By investigating

the collaborative optimisation, further energy efficiency opportunities have been identified within

maintenance planning.

In the above chapters, the system dynamics are modelled based on a grouping method. The retrofitted

items are categorised into several groups of homogeneous items, each consists of items that are

considered to have same energy and reliability performances. Thereafter, the performances can be

computed from the item group populations. Such a grouping method is inherently subjective, depending

on the knowledge of the decision maker. An interesting question is thereby brought in: will the control

system performances sustain with different grouping methods? Such robustness of different grouping

methods is essential to our control system framework. Therefore, Chapter 7 investigates the grouping

robustness. A preliminary theoretical analysis is proposed.

Finally, some general conclusions and ideas of future research topics are drawn in Chapter 8.
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING

WITH LIFE-CYCLE COST

ANALYSIS

2.1 INTRODUCTION

The retrofitting plan optimisation hereby involves selecting the energy conservation interventions on

the equipment, e.g., the lights, HVAC devices, water heaters, office appliances, etc. The trade off

between the energy performance and cost-effectiveness is taken into account. The objective of the

optimisation is to find the best trade off between the two considerations to strike the balance between

the interests of the stakeholders.

The energy performances are evaluated by the energy savings of each intervention. The energy savings

are obtained following the M&V methodology. As we introduced in Chapter 1, the failures and

malfunctions result in the absence of the energy savings. The energy savings during operation can vary

over time. Thereafter, the impacts and costs of the maintenance should be taken into account as well.

The maintenance actions can restore the failed equipment from absence. From the energy efficiency

perspective, this restores the absent energy savings of the failed interventions. The maintenance

delivers a significant impact to the energy efficiency of the retrofitting project in this way. Thereafter,

the maintenance costs pertaining to the restoration of energy savings should be taken into account as

part of the operation cost.

As a result of such dynamics of the energy savings and maintenance costs during operation, the decision

maker has to take into account the long-term performances of the interventions. When evaluating

alternative interventions, one can appear to be cost-effective at the installation stage but actually more
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expensive over the long term. Therefore, the life cycle cost analysis (LCCA) is employed to figure out

the long term cost-effectiveness of the alternatives. The LCCA is an advanced technique especially

for assessing the total cost of facility ownership. The life-cycle cost (LCC) is defined to be the total

cost throughout its life including planning, design, acquisition, support and any other costs directly

attributable to owning or using the asset 1. In this study, The LCC pertains to the estimation of future

cash flows. The cash inflow mainly comes from the energy savings, and the cash outflow comes

from the retrofitting investments and maintenance costs. Thereafter, the LCCA can be applied to

estimate the overall costs of the alternatives during the life-cycle of the building and evaluate the long

term cost-effectiveness. Actually, the LCCA has been employed in relevant studies for the building

retrofitting investments. Verbeeck and Hens [84] firstly introduces the concept of LCC to assess the

economically feasibility of the retrofit options. Kaynakli [137] uses LCCA to determine the optimal

thickness of the insulation material in a building envelope for best cost-effectiveness. Menassa [105]

presents a method to determine the retrofitting investment by taking into account different uncertainties

within the LCC.

This study hereby proposes a multi-objective optimisation model with life-cycle cost analysis for

building retrofitting planning. The objectives including maximising the long term energy savings over

a specific period of time, namely the sustainability period, and maximising the internal rate of return

(IRR) of the project during the sustainability period. The reason of selecting the sustainability period

instead of the whole life cycle of the building is that the uncertainties keep growing until the end of the

building life cycle. The IRR is the indicator of the economy performance, i.e., the cost effectiveness.

The optimisation model involves both selecting proper energy conservation interventions from a range

of available alternatives and determining the quantities of equipment to apply the intervention. The

weighted sum approach is employed, i.e., the objective function is a polynomial of the quantitative

objectives. The general target is to find the retrofitting plan that achieves the maximum possible

energy savings with highest possible IRR subject to the targeted saving, payback period and retrofitting

budget constraints. The targeted saving is the minimal saving amount that must be achieved by the

retrofitting. The payback period is defined to be the latest possible time that the project NPV remains

non-negative. The retrofitting budget constraint indicates how much investment is allowed to implement

the retrofitting plan.

1NSW Treasury, Life Cycle Costing Guideline, http://www.treasury.nsw.gov.au/__data/assets/pdf_file/0005/5099/

life_cycle_costings.pdf
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

A number of alternatives involved in the optimisation. There are many possible combinations of

the alternatives, and the evaluation often involves non-linear performance indicators. The possible

interventions and combinations must be taken into account and evaluated simultaneously. With the

development of computational powers and algorithms, it is possible to address problems with such

complexity. The evolutionary algorithm (EA), a kind of generic population-based meta-heuristic

optimisation algorithm, is hereby introduced for the building energy optimisation problems. The

Genetic Algorithms (GAs) are a type of very famous EA that are widely employed by the decision

makers [138, 52]. However, GAs are difficult to encode and the convergence speed is relatively slow.

Storn and Price [139] proposes a simple and efficient meta-heuristic method, namely the differential

evolution (DE) algorithm, to improve the conventional GAs. According to [139] and [131], DE

generally outperforms GAs and many other algorithms on many numerical benchmark problems,

including unimodal and multimodal functions, functions with correlated and uncorrelated variables,

and a single problem with plateaus. More importantly, the DE algorithm is very easy to implement

compared to the GAs. A DE algorithm based numerical solver is employed for the optimisation

model in this study. The employed DE algorithm is an improved one with a binary neighbourhood

field optimisation (BNFO) method [116]. An actual building retrofitting project is selected to be

the case study. The simulation results illustrates the feasibility and effectiveness of the proposed

approach.

2.2 MULTI-OBJECTIVE OPTIMISATION MODELLING

2.2.1 Decision variables

In a retrofitting project, a set of energy conservation interventions and corresponding retrofitting actions

constitute the retrofitting plan. The retrofitting actions include the existing equipment to be retrofitted,

the alternatives of the new technological interventions and the quantities of equipment corresponding

to the selected alternative. Table 2.1 illustrates a sample of the retrofitting plan.

Assuming that I types of retrofitted equipment are involved in the project, and there are Ji types of

alternative interventions corresponding to each equipment type. Let x j
i denote the number of selected

items from the i-th equipment with j-th alternative intervention, namely alternative intervention (i, j).

For i = 1,2, ..., I, let Xi = (x1
i ,x

2
i , ...,x

Ji
i ), and X = (X1,X2, ...,XI). X is thus the decision variable in
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

Table 2.1. A sample retrofitting plan

Equipment Alternatives Quantities

Lighting

Lighting Intervention 1 20

Lighting Intervention 2 0

Lighting Intervention 3 35

Geyser Geyser Intervention 1 25

Air-Con
Air-Con Intervention 1 0

Air-Con Intervention 2 30

this retrofitting plan optimisation problem. Given that the decision variables are quantities of selected

items, the nature of the investigated problem is an integer programming problem.

2.2.2 Multi-objectives formulation

Let tk = kS, k = 0,1,2, ...,T denote the sampling instants over the sustainability period [0,T S), where

t0 = 0 and S indicates the sampling interval. As aforementioned, there are two objectives, the energy

savings and IRR. Let (2.1) and (2.2) indicate the two objectives respectively:

f1(X) =
ES|all

α
, (2.1)

f2(X) = IRR, (2.2)

where (2.1) indicates the energy efficiency objective and (2.2) indicates the cost-effectiveness objective.

ESall denotes the overall energy savings during the sustainability period [0,T S) and α denotes the

targeted energy savings, which is usually a percentage of the energy consumption of the retrofitted

building. ESall is computed by (2.3):

ES|all =
T

∑
k=1

I

∑
i=1

Ji

∑
j=1

a j
i (tk)x

j
i (tk), (2.3)

where a j
i (tk) denotes the energy savings contributed by a retrofitted item corresponding to alternative

(i, j) over the interval [tk−1, tk). x j
i (tk) denotes the number of working items corresponding to alternative

(i, j). As a result of the possible failures and malfunctions, x j
i (tk) can vary during operation. Generally,

ESall is the summation of the energy savings from each retrofitted item over the sustainability period.

The IRR is developed based on NPV: it is the discount rate that makes NPV = 0 over the sustainability

period. The NPV is formulated by (2.4):

NPV =
T

∑
k=1

B(tk)−h(tk)
(1+d)n(tk)−1 −h0, (2.4)
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

where d is the selected discount rate. n(tk) denotes the year where the sampling interval [tk−1, tk) lies

within after t0. It is an integer that selects value from 1,2, .... n(tk) is adopted because that the NPV

is computed on a yearly basis. h0 indicates the initial investment of the retrofitting project, i.e., the

capital cost to implement the retrofitting. B(tk) denotes the cash inflow over [tk−1, tk). In this case, the

cash inflow comes from the cost savings corresponding to the energy savings. h(tk) denotes the cash

outflow that comes from the maintenance actions. h0, B(tk) and h(tk) are formulated by the following

equations:

h0 =
I

∑
i=1

Ji

∑
j=1

c j
i x j

i , (2.5)

B(tk) =
I

∑
i=1

Ji

∑
j=1

b j
i (tk)x

j
i (tk), (2.6)

h(tk) =
I

∑
i=1

Ji

∑
j=1

u j
i (tk−1)m

j
i (tk), (2.7)

where b j
i (tk) indicates the cost savings subject to the energy savings from the items and the energy

price. c j
i is the cost of applying single intervention (i, j). x j

i , as aforementioned, indicates the number

of items corresponding to alternative intervention (i, j). x j
i = x j

i (tk). The estimation of such prices

can takes into account the inflation. m j
i (tk) indicates the maintenance cost for one item from (i, j) and

u j
i (tk) denotes the count of items that are restored over [tk−1, tk from (i, j). The IRR thus is obtained by

solving d out of the equation NPV = 0.

The objectives are subject to a series of constraints as (2.8) illustrates:

∑
Ji
j=1 x j

i ≤ xi,

ES|all ≥ α,

NPV |Tp
0 ≥ 0,

h0 ≤ β .

(2.8)

where xi denotes the maximum possible number of the items subject to the i-th equipment. Tp

denotes the computed payback period and T ′ the maximum acceptable payback period. Tp is obtained

by solving the NPV sequence. Assuming that k′ is the last index that makes NPV negative, i.e.,

∑
k′
k=1

B(tk)−h(tk)
(1+d)n−1 −h0 < 0, then Tp = k′+1. T ′ is the expected payback period. β denotes the budget

limit that covers the implementation costs of the retrofitting project. There is an alternative form of the

budget limit:

hall ≤ β
′. (2.9)

where

hall = h0 +
T

∑
k=1

I

∑
i=1

Ji

∑
j=1

u j
i (tk)m

j
i (tk). (2.10)
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

β ′ hereby denotes the budget limit for overall cost, including the implementation costs and maintenance

costs, during the sustainability period.

The objectives of this model are maximising objective function f1(X) and f2(X) subject to constraints

(2.8) or (2.9).

2.2.3 Population decay formulation

x j
i (tk) represents the number of working items corresponding to intervention (i, j) over the interval

[tk−1, tk). x j
i (tk) can be different with x j

i due to the population decay resulting from the failures and

malfunctions. Such population decay delivers a series of impacts to the optimisation model (2.1)-(2.7).

The term ‘failure’ hereby refers to the all the possible problems that prevent the equipment from

working, i.e., the malfunctions. A malfunctioning item is considered to be unavailable to the occupants

of the building. For example, a faulty, flickering light bulb or an air conditioner having mechanical

problems with its condenser or compressor are considered malfunctioning, which no longer contribute

energy savings. There could also be some electrical and mechanical problems which do not stop the

items from working, for example, the fatigue of a bulb or the refrigerant in an air conditioner needs to

be recharged. The equipment performances can deteriorate due to such problems. Such deterioration

will be taken into account in Chapter 6. At the current stage, only the the malfunctions are included to

clearly illustrate the idea.

x j
i (tk) is estimated by the following equation:

x j
i (tk+1) = G j

i (x
j
i (tk))+ x j

i (tk)+u j
i (tk), (2.11)

where x j
i (t0) = x j

i . G j
i (·) represents the population decay of the items corresponding to intervention

(i, j). Succeeding the decision variables definition, ∀i, j and tk, x j
i (tk) ∈ Z+ as x represents the quantity

of items, therefore, x is an integer by nature. Carstens et al. [109] monitors and formulates the

population decay of a lighting group in a Clean Development Mechanism (CDM) lighting retrofitting

project. According to the study, such population decay can be considered as a first-order Markov

process, which means that the population size after decay only relates to the population size prior to

the decay. An assumption is made here: the retrofitted items subject to intervention (i, j) constitute a

group of homogeneous items with the same failure rate, namely homogeneous group. This assumption

will be discussed in Chapter 7.
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

According to the existing studies, two population decay models are hereby employed:

G j
i (x

j
i (tk)) = µ

j
i ν

j
i x j

i (tk)
2/x j

i4t−µ
j

i x j
i (tk)4t, (2.12)

G j
i (x

j
i (tk)) =−

4t

η
j

i

x j
i (tk), (2.13)

where4t = tk+1− tk. The coefficients µ,ν ,η are estimated by the mean time to failure (MTTF) for

the non-repairable product and mean time between failures (MTBF) for repairable product. (2.12)

and (2.13) are discrete time representations of a set of continuous form survival rate models. (2.12) is

taken from [109], which describes the population decay for the non-repairable items, e.g., the lamps,

showerheads, motion sensors, etc. According to [109], the original continuous time survival rate

statistical law is given as (2.14):

x j
i (t) =

x j
i

ν
j

i + eµ
j

i t−L j
i

. (2.14)

A mathematical transformation is applied to (2.14) to obtain (2.12). The L j
i denotes the rated lifetime,

i.e., the MTTF for the non-repairable items. The coefficients in (2.14) can be identified from the

experimental data fitting or solved out from the following equation: x j
i (t0) = x j

i ,

x j
i (L

j
i − t0) = 0.5x j

i .
(2.15)

x j
i (t0) = x j

i is the initial condition and x j
i (L

j
i − t0) = 0.5x j

i is resulted from the definition of rated life

time of light bulbs.

(2.13) describes the population decay of repairable items, e.g., the air conditioners, chillers, heat

pumps, etc. These equipment usually have a very long lifespan, several times longer than the MTBF.

According to the reliability bathtub curve [140], the failure rate of the equipment is an approximately

low constant before the end of the lifetime. Therefore a constant failure rate decay model is adopted

from [140], implying the following continuous time survival rate statistical law:

x j
i (t) = e

− t
η

j
i x j

i , (2.16)

where η
j

i denotes the MTBF of the equipment.

The selections of the scale of L, η and4t are tricky. In case that L and η are much larger than4t,

(2.12) and (2.13) manifest sufficient accuracy to approximate the continuous time model. However,

this is not always the case. In buildings, the sampling interval can be quite large comparing with the

rated life time of some equipment. In that case, a iterative differential approximation of (2.12) and

(2.13) applies. Furthermore, given the integer nature of x, the continuous variables x j
i (tk+1) in (2.12)

and (2.13) are forced to be integers at the end of the differential approximation.
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

(2.11) describes such a population dynamics: each homogeneous group subject to intervention (i, j)

consists of the remained population and the maintained population, after the maintenance actions that

take place at tk, the remain population is estimated by (2.12) or (2.13), depending on the type of the

equipment, and the maintained population is given by u j
i (tk). u j

i (t) and the maintenance instant tk can

vary according to different maintenance plan. The maintenance plan optimisation will be introduced in

the following chapter. For the non-repairable items, the maintenance action is usually the replacement,

therefore the maintenance cost m j
i (t) is the cost of replacing the malfunctioning item by a new one.

For the repairable items, maintenance actions can be the repairs, and m j
i (t) is often a lower cost than

the replacement [141].

2.2.4 The weighted sum objective function

Marler and Arora [142] suggests that, the weighted sum method provides a basic and easy-to-use

approach that gives an acceptable approximation of one’s preference function when the preference

information is not too complex. By employing the weighted sum approach, the optimisation model

(2.1)-(2.7) is translated into a minimisation problem. The objective function is formulated to be the

weighted sum of two objectives associated with a non-stationary penalty functions:

J(x) =−λ1 f1(X)−λ2 f2(X)+ω

3

∑
k=1

max(0,Pk), (2.17)

where λ1,λ2 are a pair of positive constants, i.e., the weighting factors. ω is a large positive constant

associated with the penalties. Pk with k = 1,2,3 are the penalty functions pertaining to the constraints

(2.9). The formulations of Pk are:

Pk =


α−ES, k = 1,

Tp−T ′, k = 2,

h0−β , k = 3.

(2.18)

An alternative form of the penalty function P3 subject to constraint (2.9) is formulated:

hall−β
′, k = 3. (2.19)

A differential evolution (DE) based numerical solver can be adopted for the minimisation problem

(2.17)-(2.18). The adopted DE algorithm is an improved one where the binary neighborhood field

optimisation (BNFO) method is incorporated. The BNFO method is a mechanism that introduces

the binary coding and neighbourhood field optimisation (NFO) mechanism to DE algorithm. The

binary coding allows the DE algorithm to be an integer decision variable solver, and the NFO method
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

improves the convergence of the algorithm comparing with the conventional DE. The technical details

of the numerical solver can be found in Addendum A. The DE algorithm with BNFO method is

employed by most chapters of the thesis as the mixed integer nonlinear programming (MINLP) solver.

The comparison of the DE algorithm and conventional MINLP solvers is not the focus of the thesis;

for more detailed discussions, please refer to Addendum A.

One important reason to employ the weighted sum approach is that such objective formulation can

be extended to the maintenance plan optimisation as an optimal control problem. The weighted sum

approach will be our major modelling method. An additional study has been conducted by the author,

where a Pareto approach is employed to the multi-objective retrofitting planning taking into account

the LCCA [113].

2.3 RESULTS AND ANALYSIS

2.3.1 Case study

An actual building retrofitting project is adopted to be our case study, where 12 types of interventions

are taken into account subject to a series of equipment, including lighting facilities, heat pumps, chillers,

control systems and other devices. Each intervention type has 2-5 alternatives. The content of the input

data is shown in Table 2.2, including information on the existing equipment and specifications of the

alternative interventions. 2.2. The Maximum Possible Quantity column regulates the count of items

from a specific type of intervention that can be retrofitted. The aggregation of the retrofitted items

from one intervention type cannot exceed its maximum possible quantity. The Unit Cost with unit US

dollar $ indicating the cost of purchasing and installing one such item, i.e., the cost of implementing

this alternative; Energy Savings with unit kWh is the estimation of the average annual energy savings

from implementing the selected alternative; Unit Cost Saving is the estimation of the cost savings

subject to the energy saving. The maintenance cost and the MTTF(MTBF) are illustrated by the

Maintenance Cost and MTTF(MTBF) columns. In reliability engineering area, the units of MTTF and

MTBF are usually hours. For the convenience of computation, the unit of MTTF(MTBF) is translated

into years, according to respective operating schedules of items. The coefficients of the population

decay models for each intervention are shown in Table 2.3. As mentioned in the previous section,

there are non-repairable items that apply the decay model (2.12), and repairable items that apply the
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

decay model (2.13). The coefficients η
j

i , µ
j

i and ν
j

i for different alternatives are illustrated in the three

columns.

Some parameters in the optimisation model are selected according to the specifics of the project. In this

case study, the service provider of the retrofitting is contracted to guarantee the energy performances

in 10 years, i.e., the sustainability period is 10 years. The targeted energy savings are 10% of the

energy baseline, which is 58,709,110 kWh over the sustainability period. Baseline adjustment is not

considered here, as this baseline mainly provides a targeted saving amount. The budget limits and

payback period limits are shown in Table 2.4, where 8 scenarios are introduced. The first 4 scenarios

A,B,C,D adopt budget constraint from equation (2.18) while the rest scenarios E,F,G,H adopt the

budget constraint from equation (2.19). Thus the range of the budget amounts is much larger in the last

4 scenarios. The discount rate for the NPV computation is 9%.

The maintenance plan is decided by the owner of the building. A full maintenance strategy is adopted

here, i.e., every time a maintenance takes place, it will restore all the failed items back to working

within the scope of the project. The maintenance plan in this case study is scheduled in such a way: at

the end of every two years, the maintenance can take place and all failed items are repaired or replaced.

(2.20) indicates the values of u j
i (tk) under the adopted maintenance plan:

u j
i (tk) =

 0, k = 1,3,5...

x j
i − x j

i (tk), k = 2,4,6...
(2.20)

which means maintenances take place at the end of the year 2,4,6... During each maintenance, all the

failed items are fixed, so that the population size is increased to x j
i . For the 8 scenarios, λ1 = 0.5, and

λ2 = 0.5. Such weights are employed to represent the equal importance of the two objectives: energy

savings and IRR.

2.3.2 Illustrative results and analysis

Fig. 2.1 compares the performances from the DE algorithms with the BNFO method and the con-

ventional DE. The solid curve is the BNFO method result and the dashed curve is the conventional

DE result. The logarithmic coordinate is applied to the y-axis to better illustrate the iterations. The

mean result over 10 runs with the standard errors are illustrated. Given that the global optima of our

minimisation problem is an unknown one, the local minima is reached to be a satisfying solution. In
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

Table 2.2. Detailed information on existing and proposed alternative facilities

Existing equipment Maximum

possible

quantity

Proposed alternatives Unit Cost

($)

Energy

Savings

(kWh)

Unit Cost

Savings

($)

Main-

tenance

Cost($)

MTTF

(MTBF)

(years)

No sensors installed 202 Motion sensor type1 196 1141 155.02 196 3

Motion sensor type2 150.28 1240 168.47 150.28 3.42

50W downlight I 537 energy saver globe type1 16.36 208 10.65 16.36 3.33

energy saver globe type2 16.93 223 11.42 16.93 2.92

energy saver globe type3 20.19 195 9.98 20.19 3.5

energy saver globe type4 18.95 220 11.26 18.95 3.33

50W downlight II 145 35 W new lamp ECG type1 14.19 102 5.2 14.19 3.33

35 W new lamp ECG type2 15.17 116 5.91 15.17 3.75

35 W new lamp ECG type3 14.25 107 5.45 14.25 3.58

18W recessed fitting I 270 18 W retrofit ECG type1 11.72 21 1.07 11.72 3.17

18 W retrofit ECG type2 11.11 20 1.02 11.11 2.58

18 W retrofit ECG type3 9.47 25 1.27 9.47 2.75

54W recessed fitting II 1271 36 W triphosphor tubes type1 65.67 232 11.88 65.67 3.25

36 W triphosphor tubes type2 78.09 186 9.52 78.09 3.08

36 W triphosphor tubes type3 61.54 262 13.42 61.54 3.17

36 W triphosphor tubes type4 60.77 260 13.31 60.77 2.83

36 W triphosphor tubes type5 65.29 199 10.19 65.29 3.17

Old chillers 4 New chillers type1 147125 25392 13775.88 14712.5 2

New chillers type2 170590.31 23539 12770.57 17059.03 2.25

Electric geyser 9 3 kW heat-pumps type1 1250 10989 794.44 125 2

3 kW heat-pumps type2 1299.22 11166 807.24 129.92 2.25

3 kW heat-pumps type3 1544.88 12074 872.88 154.49 1.83

Electric geyser 3 22 kW heat-pumps type1 13750 1006 1854.13 1375 2

22 kW heat-pumps type2 13757.97 875 1612.69 1375.79 1.92

22 kW heat-pumps type3 12600.01 1152 2123.22 1260.01 2.25

Electric geyser 94 9 kW heat-pumps type1 1250 10989 72.74 125 2

9 kW heat-pumps type2 1355.36 12447 82.39 135.54 2.17

9 kW heat-pumps type3 954.95 9019 59.7 95.5 2.17

High-flow showerheads 360 Low-flow showerheads type1 11.25 278 18.61 11.25 5.42

Low-flow showerheads type2 10.54 254 17 10.54 4.83

No heater wraps 107 Heater wraps type1 21 273 21 21 4.25

Heater wraps type2 24.32 326 25.08 24.32 4

Heater wraps type3 22.36 243 18.69 22.36 5

No thermal traps 107 Thermal traps type1 8 380 8 8 5.58

Thermal traps type2 9.13 350 7.37 9.13 4.08

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

Table 2.3. Coefficients of the decay models

Existing Facilities Proposed alternatives 1
η

j
i

µ
j

i ν
j

i

No sensors installed Motion sensor type1 1.2895 0.9502

Motion sensor type2 1.2521 0.9672

50W downlight I energy saver globe type1 1.2587 0.9643

energy saver globe type2 1.2984 0.9459

energy saver globe type3 1.2458 0.9698

energy saver globe type4 1.2587 0.9643

50W downlight II 35 W new lamp ECG type1 1.2587 0.9643

35 W new lamp ECG type2 1.2286 0.9765

35 W new lamp ECG type3 1.2398 0.9722

18W recessed fitting I 18 W retrofitting ECG type1 1.2732 0.9579

18 W retrofitting ECG type2 1.3403 0.9245

18 W retrofitting ECG type3 1.3179 0.9361

54W recessed fitting II 36 W triphosphor tubes type1 1.2658 0.9612

36 W triphosphor tubes type2 1.2811 0.9542

36 W triphosphor tubes type3 1.2732 0.9579

36 W triphosphor tubes type4 1.3078 0.9412

36 W triphosphor tubes type5 1.2732 0.9579

Old chillers New chillers type1 0.5

New chillers type2 0.4444

Electric geyser 3 kW heat-pumps type1 0.5

3 kW heat-pumps type2 0.4444

3 kW heat-pumps type3 0.5455

Electric geyser 22 kW heat-pumps type1 0.5

22 kW heat-pumps type2 0.5217

22 kW heat-pumps type3 0.4444

Electric geyser 9 kW heat-pumps type1 0.5

9 kW heat-pumps type2 0.4615

9 kW heat-pumps type3 0.4615

High-flow showerheads Low-flow showerheads type1 1.1568 0.9956

Low-flow showerheads type2 1.176 0.992

No heater wraps Heater wraps type1 0.2353

Heater wraps type2 0.25

Heater wraps type3 0.2

No thermal traps Thermal traps type1 0.1791

Thermal traps type2 0.2449
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

Table 2.4. Eight scenarios with different budget limits and payback period limits

Scenarios Description

Scenario A The initial investment budget limit is $60,000. The payback period limit is 3 years. The targeted energy

saving is 10% of the energy baseline.

Scenario B The initial investment budget limit is $95,000. The payback period limit is 3 years. The targeted energy

saving is 10% of the energy baseline.

Scenario C The initial investment budget limit is $125,000. The payback period limit is 3 years. The targeted energy

saving is 10% of the energy baseline.

Scenario D The initial investment budget limit is $195,000. The payback period limit is 3 years. The targeted energy

saving is 10% of the energy baseline.

Scenario E The overall investment budget limit is $100,000. The payback period limit is 3 years. The targeted

energy saving is 10% of the energy baseline.

Scenario F The overall investment budget limit is $125,000. The payback period limit is 3 years. The targeted

energy saving is 10% of the energy baseline.

Scenario G The overall investment budget limit is $175,000. The payback period limit is 3 years. The targeted

energy saving is 10% of the energy baseline.

Scenario H The overall investment budget limit is $250,000. The payback period limit is 3 years. The targeted

energy saving is 10% of the energy baseline.

Fig. 2.1, the solid curve decreases faster than the dashed curve and the reached fitness value is a smaller

one. The convergence of the dashed curve cannot be reached even after 1500 iterations, manifesting

unsatisfying convergence speed. The better convergence and accuracy of the BNFO method is thereby

illustrated.

Table 2.5 illustrates the corresponding performances from the optimisation results, where Energy

Saving, Overall Profit and Overall Investment are the aggregate performances over the sustainability

period. Percentage saved indicates the proportion of energy savings against the energy baseline. IRR

indicate the internal rate of return. Initial Investment are the implementation costs of the retrofitting

plan and Overall Investment are the investment including maintenance costs over the sustainability

period.

In Table 2.5, scenarios A, B, C, D are cases with the initial investment budget limit, scenarios

E, F, G, H are cases with overall budget limit. In all 8 scenarios, the investments are very close to
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

Figure 2.1. The comparison of the convergence of from the BNFO method and classical DE

Table 2.5. Performances of the optimal solutions

Payback period Energy savings Percentage IRR Investment($) NPV($)

(months) (kWh) Saved Initial Overall

Scenario A 13 6180190 10.53% 91.23% 59554.26 80579.36 311974.7

Scenario B 21 8906045 15.17% 59.18% 94954.27 121881.5 293950.3

Scenario C 28 11220535 19.11% 44.85% 124975.2 157469.1 270064.1

Scenario D 36 14288310 24.34% 33.27% 170248.5 213768.4 243709.4

Scenario E 17 7532570 12.83% 72.23% 77200.32 99918.37 306113.4

Scenario F 22 9163590 15.61% 56.88% 98492.25 124971.8 290213.4

Scenario G 32 12486805 21.27% 38.52% 141428.2 174989.1 249235.7

Scenario H 36 14259005 24.29% 33.31% 170135 211481.4 244192.1

the budget limits, indicating that as many cost-effective alternatives are selected as possible. With

increased budget, the optimal solution take into account more items which are less cost-effective than

the prior selected ones. The economy performances degrade with the growing budget limit, however,

more energy savings are achieved by increasing the investment. The trade-off between the energy and

economy objective are thereby illustrated. The radar charts in Fig. 2.2 illustrate the comparative shapes

of the performances in all 8 scenarios. The scales of the values of each performance characteristics are

normalised to the similar range for the sake of clear illustration. It can be observed that the shapes

of the optimal performances in the radar charts are similar with each other. Table 2.5 and Fig. 2.2

manifest the ability of our optimisation model to find satisfying solutions.
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

Figure 2.2. Comparative performances (normalized) in 8 Scenarios

Figure 2.3. Sensitivity analysis of the impacts from maintenance cost and failure rate

2.3.3 Sensitivity analysis

In practice, the confidential level of the parameters cannot reach 100% due to the inevitable uncertainty

factors. The actual performances of the project thereby manifest deviations from the estimations. A set

of sensitivity analysis is given for several parameters, e.g., the auditing error, electricity prices, wrongly

specified energy savings and initial investments. The uncertainties on the maintenance cost and failure

rate are selected. The maintenance cost of the interventions can be different due to the fluctuation

in economy. The stochastic nature of the equipment failure rates must be taken into account as well.

Consequently, the bias on the performance due to the uncertainty factors must be checked.

Fig. 2.3 illustrates the performance bias when the failure rates and the maintenance costs of all

interventions are increased by 10%. The performances of Scenario C are selected to be the baseline

demonstrate the influences on payback period, energy savings, overall investment and IRR. Given
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CHAPTER 2 OPTIMAL RETROFITTING PLANNING WITH LIFE-CYCLE COST ANALYSIS

the baseline performances to be 100%, the biased performances against the baseline are illustrated.

According to Fig. 2.3, the impacts of the failure rate uncertainties appear to be more significant. When

the maintenance costs are increased, the payback period is 28 months and the energy savings are

11220535 kWh. The overall investment increases to $160718.5 and the IRR decreases to 43.59%. When

failure rate is increased, the payback period becomes 30 months and the energy savings are 10768095

kWh. The overall investment increases to $181463.6 and the IRR decreases to 40.27%.

2.4 CONCLUSION

An optimisation model for building retrofitting planning is introduced in this chapter. The optimisation

objectives are maximising the overall energy savings 7and internal rate of return over the sustainability

period. A life-cycle cost analysis method is incorporated into the optimisation model, where the

population dynamics due to the equipment failures and maintenance is taken into account. In this way,

multiple alternative interventions are simultaneously evaluated to select the proper combinations of

intervention types and number of retrofitted items, under a series of constraints.

The energy savings are subject to the population dynamics, which can be adjusted by the maintenance.

Furthermore, the life cycle costs are highly related to the selective maintenance plan. There are further

energy efficiency potentials within the maintenance planning for a retrofitting project.
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CHAPTER 3 MAINTENANCE PLAN

OPTIMISATION

3.1 INTRODUCTION

In the previous chapters, the necessity and complexity of maintenance for the sustainability of energy

efficiency in a building retrofitting project is already mentioned. The maintenance actions, from the

building retrofitting perspective, delivers a very different impact from the conventional reliability

engineering perspective. In a retrofitting project, absence and restoration of the energy savings are the

major concern, instead of the equipment reliability. The aggregate population and the performances

manifest significant dynamics under the impacts of the failures and maintenance. However, the

maintenance planning in the building energy efficiency context is not a straightforward issue. On the one

hand, the decision variables in retrofitting planning can influence several long term performances that

are also influenced by the maintenance planning; on the other hand, the operation of the retrofitted items,

which usually subjects to short intervals such as days and hours, can also influence the maintenance

planning from the reliability and energy perspectives. Furthermore, the budget limits must be taken

into account as well. Generally, the building energy optimisation problems becomes complicated due

to the complexity and interplay of the retrofitting, maintenance and operation.

To investigate how to incorporate the maintenance plan optimisation into the building energy efficiency

framework, the maintenance planning problem from chapter 2 is extended, namely the Building

Retrofit Corrective Maintenance Planning (BRCMP) problem. The term ‘retrofit’ hereby refers to

the totality of the retrofitted items in the retrofitting project. The BRCMP problem is a simplified

subproblem from the broad field of maintenance planning: it only takes into account the planning of

the corrective maintenance, and subject to fixed time schedule. The corrective maintenance actions
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

are planned at the aggregate population level, instead of focusing on individual items. In order to

allow the retrofit to be planned at the management level, the items are categorised into several groups

subject to the interventions. Each group consists of items that are considered to be homogeneous

ones, i.e., with the same inherent energy and reliability performances, the same operating schedules

and similar operational environment. Such grouping is subjective as different decision makers can

have different opinions on the grouping plan. The robustness of the grouping will be discussed in

Chapter 6. In practice, apart from the usual maintenance actions, there can be emergency maintenance.

The emergency maintenance pertains to the equipment that must work continuously, e.g., the power

electronic devices that guarantees the power supply of the building. Such equipment is excluded from

the planning, as no deferred maintenance can be tolerated.

Taking advantage of the grouping, the major concern of the BRCMP problem becomes the aggregate

energy and economy performances of each group. An aggregate population level optimisation model

is thereby developed. Given the BRCMP a problem succeeding the retrofitting planning in chapter

2, the same objectives are employed, i.e., maximising the overall energy savings and internal rate of

return (IRR) over the sustainability period. The major difference between the retrofitting planning

and BRCMP is the decision variable. In retrofitting planning, the decision variables are the categories

and number of the items to be applied with interventions, which are decided at the initial stage of the

retrofitting project. The maintenance planning pays attention to the maintenance actions all over the

sustainability project. The decision variables in BRCMP are the counts of the items to be restored

by the maintenance actions at pre-decided time points from each group. The term ‘maintenance

intensity’ is hereby employed to indicate a count of the restored items from one group at a time, and

the term ‘maintenance instant’ to indicate a time point at which the maintenance actions are scheduled

to take place. The maintenance instants constitute a successive sequence of time points all over the

sustainability period and subject to the maintenance time schedule. Accordingly, the maintenance

intensities are a sequence of integers with inherent dependence and subject to the maintenance instants.

Consequently, the maintenance plan optimisation is a dynamic optimisation. The optimisation model

formulation without taking into account the uncertainties is the first part of this chapter.

The existing optimisation models lack the ability to address the problem with the uncertainties. Given

the dynamics nature of the BRCMP problem, the control system approach is introduced. The control

system is an almost unexplored perspective for the building energy optimisation at the planning

level. From the control system perspective, the totality of the retrofitted items constitute the control
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

plant, the maintenance intensities become the control variables and the populations of each group of

homogeneous items are the state variables. The measured output of the control system can be several

long-term performances, e.g., the aggregate energy savings, capital investment, etc. The uncertainty

factors are taken into account as the disturbances on the state variables or measured output. For

simplicity, two further assumptions are made: 1) the disturbances are introduced to be a random noise

on state variables; 2) the sampling errors are simplified as a random noise on the measured output.

In this way, the BRCMP problem is cast into an optimal control problem. Taking advantage of the

aforementioned weighted sum approach, the objective function can be formulated. Thereafter, the

uncertainties, i.e., the disturbances, can be addressed by the control system approaches. A model

predictive control (MPC) based approach is hereby employed. The MPC approach repeatedly optimises

the optimal control inputs based on the predicted future from the present state of the system. The

disturbances are included within each prediction, therefore the MPC is inherently robust against

disturbances. The MPC approach is easy to implement by computers. It has been widely used in

control problems in many fields, including the engineering, food processing, automotive applications,

and aerospace applications [143], demand-side management [144] and dispatch of power generation

[145]. The optimal control problem is the second part of this chapter.

The differential evolution (DE) algorithm with the binary neighbourhood field optimisation method

is employed as the numerical solver for both the dynamic optimisation and the optimal control. A

practical building retrofitting project is employed as the case study to test and verify the feasibility of

the optimisation and control approaches.

3.2 MULTI-OBJECTIVE BRCMP

3.2.1 Variables definitions

Assuming that I groups of homogeneous items are involved in a retrofitting project. Let tk = kS,k =

0,1,2, ...,T denote the sampling instants over the sustainability period [0,T S), where t0 = 0 and S

indicates the sampling interval. Let xi(tk) denote the population of item group i over the sampling

period [tk−1, tk), which constitute the state variables:

x(tk) = (x1(tk),x2(tk), ...,xI(tk))T . (3.1)
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Let x(t0)= x0 indicate the initial condition of the state variables. x0 is obtained from the retrofitting plan.

In practice, xi(tk) with k > 0 is obtained by the inspection at instant tk. For the energy conservatism,

the inspection result is considered to be the state over the last sampling interval. Let ui(tk) denote the

maintenance intensities at instant tk, i.e., the count of maintenance actions subject to group i and take

place over interval [tk, tk+1). The maintenance plan at tk can be represented by:

u(tk) = (u1(tk),u2(tk), ...,uI(tk))T . (3.2)

For the convenience of further derivation, let x and u denote the system states and maintenance

intensities respectively. u are thereby the decision variables of the BRCMP and control variables of

the optimal control problem. Let Q denote the pre-decided maintenance time schedule:

Q = {m1,m2, ...,mτ}. (3.3)

Q indicates the collection of the maintenance instants. The elements of Q are the indices of the

sampling instants, selected from k = 1,2, ...,T . Generally, the maintenance instants in our model

are considered to be commensurate with the sampling instants tk. According to the time schedule,

u(tk) = 0 if k /∈ Q.

Taking advantage of the population dynamics (2.11), the system state is updated by:

xi(tk+1) = Gi(xi(tk))+ xi(tk)+ui(tk). (3.4)

Gi(·) denotes the population decay of the item group i over [tk, tk+1). From the control system

perspective, Gi(·) is the system dynamics. In this chapter, the retrofitted items are also categorised into

non-repairable items and repairable items. The population decay models are adopted from (2.12) and

(2.13) accordingly.

3.2.2 Objective function formulation

The objective function formulation adopts the objectives from our retrofitting plan optimisation model:

the energy savings as the energy performance indicator and IRR as the economy indicator. Taking

advantage of the performance measures (2.3)-(2.7), the objectives are formulated as following:
fe(x,u) =

ES|all

α
,

fr(x,u) = IRR,
(3.5)
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

where fe(x,u) is the energy performance objective and fr(x,u) is the economy performance objective.

Similarly, ES|all denotes the aggregate energy savings:

ES|all =
T

∑
k=1

ES(x(tk), tk) =
T

∑
k=1

I

∑
i=1

ai(tk)xi(tk), (3.6)

where α is the targeted energy saving amount. ES|all is the overall energy savings subject to the

maintenance plan over the sustainability period. ES(x(tk), tk) is the aggregate energy savings from

the retrofitting project over interval [tk−1, tk), where x(tk) is to emphasise the connection between the

energy savings and the group population, i.e., the system state. ai(tk) denotes the energy savings that

one item from group i contributes over [tk−1, tk). The aggregate cost savings CS|all can be computed

accordingly:

CS|all =
T

∑
k=1

B(x(tk), tk) =
T

∑
k=1

I

∑
i=1

bi(tk)xi(tk), (3.7)

where B(x(tk), tk) denotes the aggregate cost savings, i.e., the cash inflow over [tk−1, tk). bi(tk) denotes

the energy savings that one item from group i contributes over [tk−1, tk). In order to calculate IRR,

the cash outflow must be obtained as well. The cash outflow mainly consists of the maintenance

costs:

h|all = h0 +
T

∑
k=1

h(u(tk−1), tk) = h0 +
T

∑
k=1

I

∑
i=1

ci(tk)ui(tk−1), (3.8)

where h|all denotes the overall capital investments of the project. h0 denotes the initial investment for

the implementation of the retrofitting plan. h0 can be obtained according to (2.5). However, in the

BRCMP problem, h0 is considered to be a known a priori constant instead of a performance indicator

to be adjusted. h(u(tk−1), tk) denotes the aggregate maintenance costs over [tk−1, tk), where u(tk−1) is

applied over the same interval. ci(tk) denotes the maintenance cost over [tk−1, tk) to restore one failed

item from group i to working state. h(u(tk−1), tk) is thereby the cash inflow over [tk−1, tk). The net

present value (NPV) which is computed taking advantage of the cash flows:

NPV =
T

∑
k=1

B(x(tk), tk)−h(u(tk−1), tk)
(1+d)n(tk)−1 −h0, (3.9)

and the IRR is the discount rate d that makes NPV = 0 over [0,T S). n(tk) selects value from 1,2, ...

that indicates that the sampling interval [tk−1, tk) lies within the n-th year after t0.
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

The constraints of the BRFMP problem include the system dynamics, targeted energy savings, main-

tenance budget limit, payback period limit, and the pre-decided maintenance time schedule:

x(tk+1) = G(x(tk))4t +u(tk),

ES|all ≥ α,

T

∑
k=1

h(tk)≤ β ,

Tp ≤ T ′,

up(tk) = 0, k /∈ Q,

(3.10)

where β denotes the maintenance budget limit. Tp denotes the payback period of the project, T ′ denotes

the payback period limit. Tp is defined to be the last instant where NPV remains negative.

3.2.3 The BRCMP optimisation problem

The weighted sum approach is employed to formulate the objective function. Taking advantage of

(3.5) and (3.10), the multi-objective optimisation problem is translated into a minimisation problem,

which is the weighted sum of the objectives associated with a non-stationary penalty function:

J =−λ1 fe(x,u)−λ2 fr(x,u)+ω

3

∑
n=1

max(0,Pn), (3.11)

subject to constraints (3.10). λ1, λ2 are positive constants, i.e., the weighting factors. ω is a large

positive constant that amplifies the penalties of violating constraints. Pn are the penalty functions

defined as following:

Pn =



α−ES|all, n = 1,

T

∑
k=1

h(tk)−β , n = 2,

Tp−T ′, n = 3

(3.12)

The BRCMP optimisation problem is finding a maintenance plan u that minimises the objective

function (3.11). The solver for this optimisation problem is the DE algorithm with the BNFO method

that is introduced in Addendum A. The details of the solver will not repeat here.
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

3.3 CONTROL SYSTEM APPROACH WITH UNCERTAINTIES

3.3.1 The control system framework formulation

Taking advantage of the system states (3.1) and decision variable (3.2), a general form of control system

formulation to describe the population dynamics in BRCMP is obtained by rewriting (3.4):x(tk+1) = G(x(tk))+x(tk)+u(tk)+d(tk),

y(tk) = ES(x(tk), tk)+w(tk).
(3.13)

As aforementioned, the population dynamics is essential to describe the aggregate energy and economy

performances at the planning level. Therefore, (3.13) will be a keystone to introduce the control

system approaches to the building energy optimisation problems at the planning level. The aggregate

energy savings are selected to be the measured output y(tk) in this formulation. In large-scale projects,

y(tk) has to be measured by the sampling method. Ye et al. [106] figures out that the accuracy and

confidential level of the sampling based measurement is determined by the sampling size. d(tk) and

w(tk) are the disturbances on the system states and measured outputs respectively, which represents

the impacts of the uncertainty factors.

Thereafter, the BRCMP can be cast into an optimal control problem that aims at finding an optimal

control law u that minimises the performance index (3.11) subject to the system dynamics (3.13)

and constraints (3.10). An MPC based approach is employed to solve the BRFCMP optimal control

problem.

3.3.2 The MPC approach

In MPC approaches, a dynamic programming, i.e., an open-loop optimal control problem is repeatedly

solved over a finite horizon, namely the control horizon, according to the prediction of the system states

and performances. The obtained open-loop optimal control is then used to compute the control input

to solve the BRCMP optimal control problem. The state variables executed over the next finite horizon

are estimated taking advantage of the obtained control input. The optimal controller over the next

finite horizon is actually a function of the system state from the previous control step. A closed-loop

feedback is thereby obtained. Given the finite decision horizon ,i.e., the sustainability period in our

model, the conventional MPC algorithm is modified as following: let tm denote the current instant,
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

consider a control horizon that covers [tm,T S), i.e., the rest of the sustainability period. The revised

approach thereby introduces a risk that the computational burden grows along with the decision horizon

T . Therefore, it only applies to problems with limited prediction steps. A mathematical transformation

of the BRCMP optimal control problem is applied, and the dynamic programming over the control

horizon [tm,T S) is accordingly defined to be the following minimisation problem:

min J′ =−λ1 f ′e|m(x,u)−λ2 f ′r |m(x,u), (3.14)

where f ′r |m(x,u) indicates the discount rate that makes NPV ′|m = 0, with

f ′e|m(x,u) =
m

∑
k=1

ES(x(tk), tk)+
T

∑
k=m+1

ES(x|m(tk), tk),

NPV ′|m =
m

∑
k=1

B(x(tk), tk)−h(u(tk−1), tk)
(1+d)n(tk)−1

+
T

∑
k=m+1

B(x|m(tk), tk)−h(u|m(tk−1), tk)
(1+d)n(tk)−1 −h0,

(3.15)

subject to 

x(tk+1) = G(x(tk))+u(tk)+w(tk),

m

∑
k=1

ES(x(tk), tk)+
T

∑
k=m+1

ES(x|m(tk), tk)≥ α,

m

∑
k=1

h(u(tk), tk)+
T

∑
k=m+1

h(u|m(tk), tk)≤ β ,

Tp ≤ T ′,

u(tk) = 0, k /∈ Q,

(3.16)

where x|m(tk) denotes the predictive system states and u|m(tk) the scheduled control inputs after tm.

The employed MPC approach takes into account the existing system states and performances before

tm so that the global performance constraints are guaranteed to be satisfied. The DE algorithm with

the BNFO method (As referred in Addendum A) is employed as the numerical solver to the dynamic

optimisation problem (3.14)-(3.16).

Taking advantage of the results of the numerical solver, a series of optimal control inputs are obtained

that are denoted by u′|m = {u′|m(tk) : k = m,m+ 1, ...,T − 1}. Only the optimal control input over

the first interval [tm, tm+1) is applied, denoted by û|m = {u′|m(tm)}= {û|m(x(tm), tm)}, where the last

equation is to emphasise the functional dependence of the optimal control on the initial state x(tm)

of the MPC formulation in (3.14)-(3.16). After û|m is applied, the predictive state x|m(tm+1) can
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

be obtained. Due to the impacts of uncertainty factors, i.e., the disturbances d(tm), the actual state

x̂(tm+1) = x|m(tm+1)+d(tm). In practice, x̂(tm+1) must be obtained from the inspection. x̂(tm+1) then

becomes the initial condition of the MPC formulation over the next control horizon [tm+1,T S). When

m /∈ Q, the control input u(tm) = 0. The optimal control inputs û are thus obtained by consecutively

implementing the above process over the sustainability period. The measured output y(tk) is obtained

by (3.13). x(tk+1) is also applied as the initial state for the open-loop optimal control problem over the

next control horizon. In summary, the following MPC algorithm can be formulated:

3.3.3 The MPC Algorithm

Initialisation: Let initial state x(t0) = x0 and m = 0.

(i) Compute the open-loop optimal solution {u′|m(tk)} of the problem formulation (3.14)-(3.16), where

k = m,m+1, ...,T −1.

(ii) The MPC controller û|m = {u′|m(tm)} is applied after the sampling instant tm. The remains of

the open loop optimal solution {u′|m(tk) : k = m+ 1, ...,T − 1} are discarded. The predictive state

x|m(tm+1) is then obtained according to:

x|m(tm+1) = G(x(tm))+x(tm)+u′|m.

Given the impact of disturbance d(tm) on system states, the actual state x̂(tm+1) = x|m(tm+1)+d(tm).

(iii) Let x̂(tm+1) be the initial state for the next predictive horizon, m := m+1 and go back to step (i).

According to the constraint (3.16), u(tm) = 0 when m /∈ Q, where step (i) is skipped and

x̂(tm+1) = G(x(tm))+d(tm). The above MPC algorithm will go over the sustainability period to solve

out the optimal control law.

Generally, MPC is a closed-loop optimal control approach, as the input state variable x(tm+1) for

each finite-horizon [tm, tm+N) is predicted according to the plant model and executed over the current

sampling instant.
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

3.4 SIMULATION AND VERIFICATION

3.4.1 Case study

A practical retrofitting project is adopted to be our case study. In this study, the project scale is reduced

in order to clearly illustrate population dynamics. The retrofitting plant is a fifteen-floor concrete

office building for government affairs, erected in 1960s. A deep audit has been applied to identify the

energy efficiency potentials and impacts of the interventions. The retrofitting plan is already decided,

optimised based on the methodology in Chapter 2. The sustainability period is 10 years. The sampling

interval is 6 months, the indices of the sampling instants are k = {0,1,2, ...,24}. The baseline energy

consumption is obtained from the history data which is 4,397,572 kWh per year. The targeted energy

saving amount is 15% of the 10-year baseline consumptions, i.e., 6,596,358 kWh. In this project, the

cash inflows are defined to be the amount of the cost savings. This is because the investor and the

stakeholder of the project are the same party, i.e., the government as the building owner. The overall

investment consists of the initial implementation costs and the maintenance costs. A full maintenance

strategy is employed as the comparative strategy, where all the failed items are repaired.

The specifications of the retrofits are illustrated in Table 3.1. 5 categories of interventions are involved,

including the motion sensors, the 20W retrofit Compact Fluorescent Lamps (CFL), the 23 inch LCD

monitors, the 3kW heat-pumps and the 23L microwave ovens. The retrofitted items are grouped subject

to the interventions. The motion sensors, 20W CFL and 23 inch LCD monitors are considered to

be non-repairable items. The population decay of these item groups are estimated by (2.12). The

heat-pumps and microwave ovens are considered to be repairable items, where the population decay

of the corresponding item groups are estimated by (2.13). Note that (2.12) and (2.13) are discrete

representations developed from continuous time survival rate models, as introduced in 2.2.3. The

parameters of the respective population decay models are illustrated in Table 3.2.

Table 3.1 indicates several different performance characteristics of the items with respective interven-

tions, where the currency unit is US dollars. The type column indicates the attribute of the item. Type

I indicates the non-repairable items and type II indicates the repairable items. The retrofitting costs

are illustrated to indicate the cost to implement one such intervention. The energy savings and cost

savings are the the annual average values. The corrective costs are the average estimations of the costs
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Table 3.1. Specifications of the involved retrofits

Pre-retrofitting Retrofits Type Quantities Retrofitting Unit Energy Unit Cost Corrective

Costs ($) Saving (kWh) Saving ($) Cost ($)

No motion sensor Motion sensor I 123 196 1140 121.1 196

Halogen Classic 75W 20W retrofit CFL I 408 14 105.6 11.9 14

Old CRT Monitor 23 inch LCD Monitor I 250 150 87.8 10.8 150

Electrical geyser 3kW Heat-pumps II 85 1250 8640 973.3 201

Inefficient oven 23L Microwave oven II 35 88 72 8.3 45

to restore one such item from failures. The quantities of the retrofitted item involved in this energy

efficiency retrofitting project, i.e., the initial state x0. The quantities indicate the initial population of

the item groups.

The maintenance actions are scheduled to take place at the end of each year except the last year, i.e.,

the maintenance time schedule Q = {2,4,6, ...,22}. From the retrofitting costs, the initial investment

h0 can be obtained, which is $176,650. The desired payback period is 3 years, i.e., T ′ = 6.

The maintenance planning aims at optimising a series of long-term, planning level performances. The

maintenance actions scheduled over a 10-year period are involved in the case study. Waiting for actual

operations over such a long period is infeasible. Therefore, the simulation of the population dynamics

is hereby adopted. The simulation involves five different cases, including three optimal cases: the

Optimal balance case where λ1 = 0.5, λ2 = 0.5, the Energy prior case where λ1 = 1.0, λ2 = 0, and

the Economy prior case where λ1 = 0, λ2 = 1.0. The Optimal balance case takes into account the

two objectives equally. The Energy prior case and Economy prior case actually cast the BRFCMP

Table 3.2. Parameters for the corresponding population deterioration models

Retrofits type MTTF µi νi ηi

/MTBF

Motion sensor I 1.13 1.299 0.895 N/A

20W retrofit CFL I 1.49 1.2165 0.9494 N/A

23 inch LCD Monitor I 2.71 1.115 0.996 N/A

3kW Heat-pumps II 2.08 N/A N/A 0.24

23L Microwave oven II 1.98 N/A N/A 0.25
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Table 3.3. Comparison of the performances of cases without disturbances

Cases Budget Energy Percentage IRR Payback NPV Maintenance Total

limit ($) savings (kWh) saved period (years) ($) cost ($) investment ($)

No maintenance N/A 2,065,742 4.69% 0.69% N/A -18,755.68 0 176,650

Full maintenance N/A 8,830,340 20.08% 40.54% 2.71 314,556.3 179,223 355,873

Optimal balance 125,000 8,219,041 18.69% 40.56% 2.7 310,439.4 124,963 301,613

Optimal balance 200,000 8,827,172 20.07% 40.65% 2.7 315,168.6 178,233 354,883

Energy prior 125,000 8,219,041 18.69% 40.56% 2.7 310,439.4 124,963 301,613

Energy prior 200,000 8,830,340 20.08% 40.54% 2.71 314,556.3 179,223 355,873

Economy prior 125,000 8,219,041 18.69% 40.56% 2.7 310,439.4 124,963 301,613

Economy prior 200,000 8,737,285 19.87% 40.79% 2.69 318,225.4 162,328 338,978

problem into a constrained single objective optimisation problem, where one objective is taken into

account. For the three cases, there are tight and sufficient maintenance budget limits. The tight budget

for the whole sustainability period is $125,000, and the sufficient budget is $200,000. Two different

contexts are introduced by the budget limits: the tight budget allows less capital investment than the

costs of full maintenance strategy; the sufficient budget is enough to cover the full maintenance costs.

The two budget limits are introduced to investigate the effectiveness of our method. Performances

with different objectives under different budget limits will be given to illustrate the effectiveness of

the proposed approach. In addition, two pre-decided maintenance strategies are included, namely the

no maintenance strategy and full maintenance strategy. The no maintenance strategy illustrates the

population dynamics without any maintenance. The full maintenance strategy selects all failed items

at the current instant. The disturbances are represented by a random noise in the simulation. Given

that the system state feedback is adopted in our MPC approach, the noise is added as a total on the

system states. The range of the noise is ±0.1x(tk).

3.4.2 Illustrative results and analysis

Table 3.3 illustrates the optimal maintenance plan performances without considering disturbances.

The following information is included: the energy performance indicators including the aggregate

energy savings (kWh) and percentage savings against the energy baseline; the economy performance

indicators including the IRR, payback period (years) and NPV ($). The maintenance cost ($) and the

total investments of the project ($) indicate the actual expenditures. The unacceptable no mainten-
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Table 3.4. Comparison of the performances of cases including disturbances

Cases Budget Energy Percentage IRR Payback NPV Maintenance Total

limit ($) savings (kWh) saved period (years) ($) cost ($) investment ($)

Balance open-loop 125,000 7,685,571 17.47% 38.43% 2.65 274,193.7 125,361 302,011

Balance with feedback 125,000 7,878,323 17.92% 38.78% 2.81 287,191.1 125,179 301,829

Balance open-loop 200,000 8,051,623 18.31% 39.24% 2.64 272,539.8 180,795 357,445

Balance with feedback 200,000 8,810,725 20.04% 40.97% 2.59 307,000.8 196,249 372,899

Energy open-loop 125,000 7,167,616 16.30% 33.54% 3.16 232,309.7 125,585 176,650

Energy with feedback 125,000 7,467,160 16.98% 35.29% 3.05 254,924 124,999 301,649

Energy open-loop 200,000 7,719,358 17.55% 37.33% 2.68 249,480 180,144 356,794

Energy with feedback 200,000 8,674,394 19.72% 39.63% 2.58 293,014.1 199,996 376,646

Economy open-loop 125,000 7,063,163 16.06% 36.69% 2.77 258,692 80,259 256,909

Economy with feedback 125,000 7,512,802 17.08% 37.60% 2.81 277,871.4 94,552 271,202

Economy open-loop 200,000 7,368,024 16.75% 36.04% 2.73 233,466.1 165,144 341,794

Economy with feedback 200,000 7,640,285 17.37% 39.55% 2.71 282,598.7 112,158 288,808

ance performances are illustrated in the first row. The important role of the maintenance is thereby

manifested. Then full maintenance performances in the second row are thereby illustrated to be the

performance baseline. After that, the Optimal balance, Energy prior and Economy prior performances

under different budget limits are illustrated in the rest rows.

The sufficient budget limit cases reveal interesting results. The Energy prior performances are the same

with the full maintenance solutions. The IRR from the Optimal balance performances is improved by

slightly losing the energy savings. The Economy prior performances appear similar with the former

two cases. Generally, the full maintenance strategy is close to the optima with sufficient budget.

However, in practice, budget can often be insufficient. In tight budget limit cases, the maintenance plan

optimisation plays an important role. In this case study, the same optimal maintenance plan is obtained

in the three respective optimal cases with tight budget limits. An explanation of this situation is that the

energy and economy performances objectives can be consistent in our case study, given that the cost

savings mainly come from the cost of the saved energy consumptions. In summary, the maintenance

costs are significantly reduced and the energy savings are still preserved, in comparison with the full

maintenance strategy. Such performances reveals the potential for cost-effective maintenance planning,

and the effectiveness of our optimisation method is thus verified.

Table 3.4 illustrates the results of the maintenance planning taking into account uncertainty factors.
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Figure 3.1. Energy performances of the maintenance plans with and without feedback in Optimal

Balance case.

Figure 3.2. Energy performances of the maintenance plans with and without feedback in Energy Prior

case.

The Balance open-loop, Energy open-loop and Economy open-loop are the cases where maintenance

plans are obtained without considering uncertainties. The three cases are illustrated as the comparative

performances. In contrary to the open-loop cases, Balance with feedback, Energy with feedback and

Economy with feedback are the cases where the maintenance plan is optimised via the control system

approach with state feedback. The disturbances in the with feedback cases and open-loop cases are the

same for the sake of comparison. Generally, the performances in with feedback cases outperform the

ones in open-loop cases, as Table 3.4 illustrates. This reveals that the robustness of the control system

approach against uncertainty factors. The results can prove the control approach effectiveness when

reducing the adverse impacts from the uncertainty factors during operation.
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Figure 3.3. Energy performances of the maintenance plans with and without feedback in Economy

Prior case.

Figure 3.4. Cash flows of the maintenance plans with feedback in Optimal Balance case.

Figure 3.5. Cash flows of the maintenance plans with feedback in Energy Prior case.
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

Figure 3.6. Cash flows of the maintenance plans with feedback in Economy Prior case.

Figure 3.7. Performances comparison between the Optimal Balance and full maintenance under same

budget condition.

The energy and economy performances of the Balance with feedback, Balance with feedback and

Economy with feedback cases are illustrated in Figs. 3.1-3.6. The impacts of the uncertainty factors

are included. There are two different types of illustrative system dynamics: the energy savings and

cash flows over each sampling interval. In Figs 3.1-3.3, the performances in the with feedback cases

are illustrated by the thin dashed lines. The thick dashdot lines represent the energy savings from

the open-loop cases as the comparative trajectory. More energy savings are lost with uncertainties

during operation in open-loop maintenance plans. The cash flows from the with feedback cases are

selected in Figs. 3.4-3.6. The cash inflows are represented by the solid lines and the cash outflows are

represented by the dashed line. The cash outflows reflect the maintenance intensities over the sampling

interval. The performance measures of the cases under the tight budget limit are compared in Fig. 3.7.

The Optimal balance without disturbance or with feedback control and the Full maintenance strategy
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CHAPTER 3 MAINTENANCE PLAN OPTIMISATION

without disturbance or with feedback control are selected for the comparison. The Full maintenance

strategy is revised, where all failed items are restored until the budget limit is reached, thereafter the no

maintenance strategy will be applied. The performance measures are normalised for the sake of clear

illustration. From Fig. 3.7, the optimal maintenance plan outperforms the full maintenance strategy

when budget limit is not sufficient. It further illustrates the effectiveness of the maintenance plan

optimisation approach.

3.5 CONCLUSION

This chapter investigates the important role of maintenance in the building energy optimisation at the

planning level. An aggregate population level optimisation model is proposed to address the BRCMP

problem, with two different objectives: maximising the long-term aggregate energy savings over the

sustainability period and maximising the internal rate of return of the project. A weighted sum approach

is employed to formulate the objective function. Given the inherent dependence of the decision variable,

i.e., the maintenance intensities, the optimisation problem is actually a dynamic optimisation. When

taking into account the uncertainty factors, the dynamic optimisation is further developed into an

optimal control problem, where a model predictive control based approach is employed to solve out

the optimal control law.

The proposed optimal control model can be extended from various perspectives. The maintenance time

schedule can be part of the optimisation; the interactions between the retrofitted items can be taken

into account in the control system modelling; the preventive maintenance can also be incorporated.

These topics will be discussed in the following chapters.
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CHAPTER 4 MAINTENANCE PLANNING WITH

INTERACTING ENERGY EFFECTS

4.1 INTRODUCTION

The existing studies have investigated the interacting energy efficiency effects among different equip-

ment. For example, the ASHRAE 1 2009 Fundamental Handbook [146] introduces the complicated

composition of the heating/cooling load for an air conditioning system in buildings, where the heat

loss/gain from the heat transmission through the building envelope, the heat loss/gain through the

ventilation, the heat gain from solar rays and the internal heat gain from the electrical appliances, e.g.,

lights and computers, are all involved in the computation of air conditioner heating/cooling loads. The

energy consumptions of an air conditioning system are highly related to its heating/cooling loads. The

heating/cooling loads can be significantly influenced by some appliances in the air conditioner working

zone, e.g., the lights and computers. Sezgen [6] and Zmeureanu [147] evaluate such interactions

between lighting and air conditioning systems in buildings. Ahn et al. [148] takes into account the

lighting/HVAC interactions to design green buildings, where the convective heat from LED lighting is

directed to reduce the air conditioner working loads. Consequently, the BRCMP optimisation model

can be extended by incorporating such interactions to better reflect the practical situations.

Furthermore, the interacting reliability effects can also be taken into account in the population decay

models. Breuker and Braun [149] investigates the common faults and their impacts for rooftop air

conditioners, where several possible faults are resulted from improper air conditioner working load: if

the working load is too high, the overloaded compressor motor can be damaged; if the working load

is too low, liquid can flood back into the compressor, which increases the possibility of failures. In

1American Society of Heating, Refrigerating and Air-conditioning Engineers
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

practice, the design of building air conditioner systems takes into account the normal activities in its

heating/cooling area. The selected capacity of the air conditioner system is often a little higher than the

peak working load in its working space. However, the estimation of the peak working load can ignore

the malfunctions of appliances. The population decay of both lighting and air conditioner groups can

lead to abnormal working loads that can be either too low or too high compared to the air conditioning

system rated capacities. Consequently, failures are more likely to happen among the air conditioners.

The air conditioner reliability can deteriorate faster than usual depending on the status of the lighting

and air conditioner groups. When taking into account such effects, the population dynamics must be

formulated as a control system with coupled state equations.

When extending the BRCMP optimisation model by incorporating the interacting energy and reliability

effects, the following assumptions are made to allow the population dynamics formulation:

1. There are only lights and air conditioners.

2. The retrofitted items are installed in a common space, i.e., all the lighting devices contribute to

the working load of all the air conditioners.

3. The other heat sources are considered known a priori and independent of the lights and air

conditioners.

The control system is then modelled based on the simplified population dynamics formulation. The

state variables are a pair of coupled variables, i.e., the populations of the lighting group and the HVAC

device group. The BRCMP problem is thereby extended to be an optimal control problem with a

coupled system dynamics. A case study is used to test and verify the effectiveness of the proposed

approach. A maintenance plan that is optimised without considering the interactions is employed as

the comparative baseline.
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

4.2 PROBLEM FORMULATION

4.2.1 Variable definition

As aforementioned, the energy efficiency of the retrofitted lighting and air conditioners are the main

concern. Assuming a project including two groups of homogeneous retrofitted items, i.e., the lighting

group and air conditioner group. Let tk = kS,k = 0,1,2, ...,T denote the sampling instants over the

a finite decision horizon [0,T S), namely the sustainability period, where S indicates the sampling

interval. let xL(tk) denote the population of lighting group and xAC(tk) the population of air conditioner

group over interval [tk−1, tk). The system state is represented by:

x(tk) = (xL(tk),xAC(tk))T . (4.1)

x(t0) = (x0
L,x

0
AC)

T indicates the initial state. The maintenance intensities at tk for each group are

represented by:

u(tk) = (uL(tk),uAC(tk))T . (4.2)

For convenience of further derivation, x and u are employed to represent the system states and

maintenance intensities. u are the decision variables. Let Q = {m1,m2, ...,mN} denote a set of

indices of the sampling instants, i.e., the maintenance instants. The elements of Q are selected from

k = 0,1,2, ...,T as the maintenance instants are commensurate with sampling instants tk. For tk with

k /∈ Q, uL(tk) = 0 and uAC(tk) = 0. The maintenance instants are pre-decided and elements of Q are

therefore constants.

4.2.2 Interacting energy effects modelling

Let aL(tk) denote the average energy consumption per lighting unit over interval [tk−1, tk). The overall

energy consumption of the lighting group is then indicated by EL(tk) = aL(tk)xL(tk). The average power

per lighting unit is generally consider constant during operation. According to [146], the instantaneous

rate of sensible heat gain from the electric lighting can be formulated as the following:

qel = 3.41WFulFsa, (4.3)

where qel denotes the instantaneous heat gain (Btu/h), W the rated light wattage, Ful the lighting use

factor, Fsa the lighting special allowance factor and 3.41 the conversion factor. The lighting use factor

indicates the ratio of lighting wattage in use to total installed wattage. The special allowance factor
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

indicates the ratio of the lighting fixtures’ power consumption, including lamps and ballast, to the

nominal power consumption of the lamps [146]. Given (4.3), the average lighting heat gain QL(tk) that

contributes to the air conditioner working load can be estimated by the following,

QL(tk) = frEL(tk), (4.4)

where fr denotes a space fraction, i.e., the fraction of lighting heat gain goes into the room. [146] and

[150] gives a series of reference values of the space fraction.

Taking advantage of (4.4), the average air conditioner working load during interval [tk−1, tk) can also

be estimated. The air conditioner working load includes heating and cooling loads. The energy

consumption of an air conditioner is obtained from the heating/cooling load and the heating/cooling

system energy efficiency. Let QHD(tk) denote the total heating load in the working zone during [tk−1, tk)

and QCD(tk) the total cooling load. QHD(tk) and QCD(tk) can be estimated by

QHD(tk) = Q′HD(tk)−QL(tk),

QCD(tk) = Q′CD(tk)+QL(tk),
(4.5)

where Q′HD(tk) indicates the overall heat loss from other resources and Q′CD(tk) denotes the overall

heat gain from other resources. The energy consumption of the lighting group is a part of the

internal heat gain [146]. As aforementioned, Q′HD(tk) and Q′CD(tk) are considered known a priori and

independent of xL(tk) and xAC(tk). In order to emphasise the interacting energy efficiency effects, the

heating/cooling load is rewritten as QHD(tk,xL(tk)) and QCD(tk,xL(tk)). An assumption in our model

is that the heating/cooling load is evenly distributed to the working air conditioners in the working

zone. Thereafter, the energy consumption of an working air conditioner during [tk−1, tk) is estimated

by:

aAC(tk) =ρh(tk)εh(tk)
QHD(tk,xL(tk))

xAC(tk)

+ρc(tk)εc(tk)
QCD(tk,xL(tk))

xAC(tk)
,

(4.6)

where ρh(tk) and ρc(tk) are constrained by
ρh(tk)+ρc(tk) = 1,

ρh(tk)ρc(tk) = 0.
(4.7)

ρh(tk) = 1 indicates that the air conditioners are working at heating mode and ρc(tk) = 1 indicates the

cooling mode. εh(tk) denotes the average heating efficiency and εc(tk) the average cooling efficiency of

the working air conditioners during [tk−1, tk). The estimation of εh(tk) and εc(tk) is not straightforward.

The heating seasonal performance factor (HSPF) and seasonal energy efficiency ratio (SEER), defined
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

in AHRI Standard 210/2402, provide methodologies to measure the heating/cooling efficiency of an air

conditioner. Generally, εh(tk) and εh(tk) are not constant and influenced by many factors including the

difference between the actual heating/cooling load comparing with the rated capacity. The interacting

energy efficiency effects thereby exist in the heating/cooling efficiency as well. εh(tk) and εh(tk)

are rewritten into εh(tk,xL(tk),xAC(tk)) and εh(tk,xL(tk),xAC(tk)) accordingly. The overall energy

consumption of the air conditioner group is then estimated by EAC(tk) = aAC(tk)xAC(tk).

Let SL(tk) and SAC(tk) denote the energy savings from lighting and air conditioner groups respectively.

Given the pre-implementation light wattage āL(tk) and pre-implementation energy consumption from

the air conditioner group ĒAC(tk). Assuming that aL(tk), aAC(tk), āL(tk) and ĒAC(tk) are computed

under the same weather, building environment, occupancy rate and operating schedule, the aggregated

energy savings are calculated according to [119]:

SL(tk) = xL(tk)(āL(tk)−aL(tk)),

SAC(tk) = ĒAC(tk)−aAC(tk)xAC(tk),
(4.8)

and corresponding cost saving:

CL(tk) = p(tk)SL(tk),

CAC(tk) = p(tk)SAC(tk),
(4.9)

where p(tk) denotes the electricity price during [tk−1, tk). Given the interactions between the two item

groups in (4.5)-(4.9), the population dynamics are coupled as aforementioned and formulated in the

following subsection.

4.2.3 Population dynamics modelling with interactions

Taking advantage of the modelling in the previous chapter, the population dynamics can be represented

by:  xL(tk+1)

xAC(tk+1)

=

 GL(xL(tk))

GAC(xL(tk),xAC(tk))

+

 xL(tk)

xAC(tk)

+

 uL(tk)

uAC(tk)

 , (4.10)

where xL(t0) = x0
L, xAC(t0) = x0

AC indicate the initial state. GL(xL(tk)) indicates the population decay

of lighting group and GAC(xL(tk),xAC(tk)) the population decay of air conditioner group. xL(tk) in

GAC(xL(tk),xAC(tk)) is to emphasise the coupling of the system states.

2Air Conditioning, Heating, and Refrigeration Institute in its 2008 standard AHRI 210/240, Performance Rating of

Unitary Air-Conditioning and Air-Source Heat Pump Equipment.
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

Taking advantage of the population decay models, e.g.,(2.12) and (2.13), the interacting effects of

the reliability between the lighting and air conditioner groups is estimated. At the current stage, the

population decay model developed by Carstens et al. [109] is employed to formulate the lighting group

decay. For the air conditioner group, Kwak et al. [151] claimed that the reliability of the main units of

HVAC system in the period of life can be expressed by Weibull distribution, which is thereby employed

to characterise the population decay of air conditioner group due to random failures. The population

decay formulations are given as the following:

GL(xL(tk)) =
µLνLxL(tk)2

x0
L

4t−µLxL(tk)4t, (4.11)

GAC(xL(tk),xAC(tk)) =−
γtγ−1

k 4t
ηγ

xAC(tk). (4.12)

where4t = tk+1− tk. µL and µL are decay parameters, related to the average lighting life span from

the group and can be identified according to section 2.2.3. GAC(xL(tk),xAC(tk)) is developed taking

advantage of the Weibull distribution [140]. γ is the shape parameter and η is the scale parameter

of Weibull distribution. η is usually estimated by the mean time between failure (MTBF) that is

obtained based on reliability statistical information. According to the aforementioned studies on air

conditioner fault detection, failures are more likely to take place when the compressor is overloaded

due to heavy loads or the cooling load is too small [149]. Therefore, η can vary during operation and is

rewritten into η(tk,xL(tk),xAC(tk)) to emphasise the interactions. The air conditioner reliability loss and

damage quantification is not straightforward and therefore lacks relevant studies. At the current stage,

a piecewise exponential estimator of the scale parameter η(tk,xL(tk),xAC(tk)) is applied. Following the

qualitative result in [149], an assumption is made that η of an air conditioner decreases when the air

conditioner working load qAC(tk,xL(tk),xAC(tk)) becomes too large or too small, comparing to its rated

heating/cooling capacity.

Let ph(tk) denote the percentage heating load of an air conditioner during [tk−1, tk) against the rated

heating capacity q̄h. pc(tk) denote the percentage cooling load based on its rated cooling capacity q̄c.

From equations (4.5) and (4.6), ph(tk) and pc(tk) can be represented by:

ph(tk) =
QHD(tk)
q̄hxAC(tk)

∗100%,

=
Q′HD(tk)−qL(tk)xL(tk)

q̄hxAC(tk)
∗100%, i f ρh = 1,

pc(tk) =
QCD(tk)
q̄cxAC(tk)

∗100%, ,

=
Q′CD(tk)+qL(tk)xL(tk)

q̄cxAC(tk)
∗100%, i f ρc = 1.

(4.13)
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

Let η0 denote the scale parameter estimated by MTBF in normal working conditions. If ph(tk) and

pc(tk) deviate from 100%, η(tk,xL(tk),xAC(tk)) is estimated according to the following equation:

η(tk,xL(tk),xAC(tk)) =
η0

1
ah,l + e−kh,l ph(tk)+bh,l

, ph(tk)< T hh,l%,

η0, T hh,l%≤ ph(tk)≤ T hh,r%,

η0
1

ah,r + ekh,r ph(tk)−bh,r
, ph(tk)> T hh,r%,

(4.14)

η(tk,xL(tk),xAC(tk)) =
η0

1
ac,l + e−kc,l pc(tk)+bc,l

, pc(tk)< T hc,l%,

η0, T hc,l%≤ pc(tk)≤ T hc,r%,

η0
1

ac,r + ekc,r pc(tk)−bc,r
, pc(tk)> T hc,r%,

(4.15)

where ah,l , bh,l , kh,l , ah,r, bh,r, kh,r, ac,l , bc,l , kc,l , ac,r, bc,r and kc,r are positive constants, i.e., the

parameters of the piecewise exponential estimator. T hh,l and T hh,r denote the threshold points,

i.e., a pair of percentage heating loads. If the actual percentage heating load ph(tk) < T hh,l% or

ph(tk)> T hh,r%, the scale parameter η starts decreasing. Similarly, T hc,l and T hc,r denote a threshold

pair of such percentage cooling loads. Equation (4.14) applies when ρh = 1 and (4.15) applies when

ρc = 1.

(4.10)-(4.15) constitute a control system formulation of coupled population dynamics.

4.2.4 Performance indicators formulation

The performance indicators for the optimisation problem is formulated as the following. Given the

baseline energy consumption, the air conditioner working loads and maintenance costs per light and per

air conditioner are known a priorigiven predecided from the pre-implementation audits and evaluation.

Let mcL(tk) denote the maintenance cost to restore a light and mcAC(tk) the maintenance cost of an air

conditioner. The aggregated energy savings during [tk−1, tk) and the overall energy savings over the

sustainability period [0,T S) are: 
ES(tk) = SL(tk)+SAC(tk),

ES|all =
T

∑
k=1

ES(tk),
(4.16)
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

and the corresponding cost savings: 
C(tk) =CL(tk)+CAC(tk),

C|all =
T

∑
k=1

C(tk).
(4.17)

The maintenance cost at each time instant is obtained:

h(tk) = mcL(tk)uL(tk)+mcAC(tk)uAC(tk), (4.18)

and the overall investment of the retrofitting project is:

h|all = h0 +
T

∑
k=1

h(tk), (4.19)

where h0 denotes the initial expenditure of implementing the retrofitting project. The profit of the

project is then obtained by P =C|all−h|all . The Net Present Value (NPV) of the project over [0,T S)

is formulated as the following,

NPV =
T

∑
k=1

C(tk)−h(tk)
(1+d)φ(tk)−1 −h0, (4.20)

where d ∈ (0,1) denotes the discount rate for NPV calculation. φ(tk) = 1,2,3... indicates that the

sampling instant tk lies within a specific year after the implementation of the retrofitting project. Taking

advantage of the NPV formulation, the IRR, denoted by dR|T in the present model, can be obtained by

solving the following equation:
T

∑
k=1

B(tk)−h(tk)
(1+dR|T )φ(tk)−1 −h0 = 0, (4.21)

which means to find the discount rate that makes NPV=0 over [0,T S).

4.2.5 Optimal control problem formulation

In a control system formulation, the optimal control problem can be formulated.

Optimisation Problem MPO: For a dynamic system described by (4.10)-(4.15) with a pair

of coupled state variables x(tk) = (xL(tk),xAC(tk))T with x0 = x(t0) = (x0
L,x

0
AC)

T , given a prede-

termined maintenance time schedule Q = {m1, ...,mN}, find the optimal maintenance plan u =

{uL(tm1),uAC(tm1), ...,uL(tmN ),uAC(tmN )}, which minimises the following performance index:

J(x0,Q,u(·)) =−λ1
ES|all

α
−λ2dR|T , (4.22)
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

subject to (4.10)-(4.15) and 

ES|all ≥ α,

T

∑
k=1

h(tk)≤ β ,

NPV |Tp
0 ≥ 0,

xL(tk)≤ x0
L, xAC(tk)≤ x0

AC,

xL(tk)≥ x0
L/3, xAC(tk)≥ x0

AC/2.

(4.23)

where λ1 and λ2 denote the weighting factors. α denotes the targeted energy saving amount, and β

the maintenance budget limit over [0,T S). NPV |Tp
0 denotes the NPV computed over [0,TpS) where

Tp is the maximum acceptable payback period. The last two inequalities in (4.23) indicate the upper

and lower bound of the state variables xL(tk),xAc(tk), where the lower bound is resulted from human

comfort requirements. Given N the number of elements in Q, u(·) ∈ R2×N , i.e., the minimisation

problem (4.22)-(4.23) is a finite dimensional problem. The previously introduced MPC approach and

the DE numerical solver can employed to solve the optimal control problem MPO. The technical

details are omitted in this chapter. They can be found in the previous chapters and the appendix.

4.3 SIMULATION AND VERIFICATION

4.3.1 Case study

A simulated case study is employed to verify the effectiveness of our approach. The simulation is

established by taking advantage of the audit data from an actual retrofitting plan. The retrofitted

building locates in South Africa. There are 480 retrofitted compact fluorescent lamp (CFL) lights

and 16 retrofitted air conditioners in the building, i.e., x0
L = 480 and x0

AC = 16. The maintenance plan

is scheduled for 10 years. As the maintenance plan optimisation involves long-term management

level item group performances, it is infeasible to wait for actual operation during such a long time,

therefore the simulation is selected. The operation starts from January, and the sampling interval is

one month. Given the weather in Pretoria, the heating season includes May, June, July and August,

the cooling season includes the rest months. The heating targeted temperature is 24oC, and cooling

targeted temperature is 26oC.
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

Table 4.1. The estimated heating/cooling loads from other resources, the pre-retrofit light and air

conditioner energy consumptions and the annual temperature profile

Month Jan Feb Mar Apr

Q′HD (kWh) n/a n/a n/a n/a

Q′CD (kWh) 4651.77 4560.96 4042.32 3971.5

āL (kWh) 17.28 17.28 17.28 17.28

ĒAC (kWh) 6340.34 6268.04 6309.68 6150.91

High oC 32 31 30 29

Low oC 17 17 16 12

Month May Jun Jul Aug

Q′HD (kWh) 7856.72 9224.1 9473.4 7928.16

Q′CD (kWh) n/a n/a n/a n/a

āL (kWh) 17.28 17.28 17.28 17.28

ĒAC (kWh) 0 0 0 0

High oC 20 17 15 16

Low oC 7 3 3 7

Month Sep Oct Nov Dec

Q′HD (kWh) n/a n/a n/a n/a

Q′CD (kWh) 4228.48 4342.72 4492.7 4542.7

āL (kWh) 17.28 17.28 17.28 17.28

ĒAC (kWh) 6111.19 6339.49 6421.05 6600.86

High oC 29 30 31 32

Low oC 11 14 15 16

Table 4.2. Retrofitted items specifications

26W CFL 8500 Btu/h air

lighting conditioner

Max possible quantities 480 16

Rated power heating (W) 26 926.8

Rated power cooling (W) 26 740

Rated heating capacity (Btu/h) n/a 8500

Rated cooling capacity (Btu/h) n/a 8500

Average monthly consumption (kWh) 6.24 n/a

Electricity price ($/kWh) 0.1661 0.1437

Installation price ($) 14.19 460

Maintenance cost ($) 14.19 180

MTBF (months) 11.9 18
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

For the convenience of the reader, the building specifications are omitted and some necessary informa-

tion for the simulation is given in Table 4.1. The high oC indicates the highest temperature in a day and

low oC indicates the lowest temperature in a day. As aforementioned, Q′HD denote the total heat loss

from the other resources other than lighting, Q′CD denote the total heat gain from the other resources.

The average estimations for each month are made according to the history occupancy profiles. āL and

ĒAC denote the pre-retrofit energy consumption from the lighting and air conditioners, where āL is the

monthly consumption of one light and ĒAC indicates the overall consumption of the whole pre-retrofit

air conditioner system. The annual temperature profile is also illustrated in Table 4.1. The retrofitted

item specifications are given in Table 4.2. The max possible quantities indicate the number of items in-

cluded in the retrofitting, i.e., x0
L and x0

AC. The average monthly consumption of one light is considered

constant in this case, according to the history occupancy profile. The air conditioner consumptions

are not illustrated in Table 4.2 but computed according to the energy modelling (4.5)-(4.9) and system

dynamics (4.10)-(4.15). The installation prices indicate the respective cost of initially applying a

retrofit. According to the install price and max possible quantities, h0 is $14,171.2. The maintenance

costs indicate the respective cost of applying a maintenance action to a retrofitted item. The MTBF are

given in months. Taking advantage of the MTBF information, the following population decay models

are employed:

GL(xL(tk)) = 0.0692xL(tk)2/68−0.1094xL(tk)+ xL(tk), (4.24)

GAC(xL(tk),xAC(tk)) =

(1− 1
η(tk,xL(tk),xAC(tk))

)xAC(tk),
(4.25)

where the life expectancy of a lighting is 11.9 months, implying that µL = 0.0692 and νL = 0.1094

in (4.11). In equation (4.25), the shape parameter γ = 1, the MTBF of an air conditioner unit is 18

months, implying that η0 = 25.97 in (4.12). During the heating season, η can be estimated by:

η(tk,xL(tk),xAC(tk)) =
25.97

0.835+ e−7.105pc(tk)+1.397 , ph(tk)< 45%,

25.97, 45%≤ ph(tk)≤ 100%,
25.97

0.719+ e1.195pc(tk)+2.465 , ph(tk)> 100%,

(4.26)

and during cooling season:

η(tk,xL(tk),xAC(tk)) =
25.97

0.835+ e−7.105pc(tk)+1.397 , pc(tk)< 45%,

25.97, 45%≤ pc(tk)≤ 100%,
25.97

0.683+ e1.239pc(tk)+2.389 , pc(tk)> 100%.

(4.27)
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

Figure 4.1. The shapes of η , εh and εc against the percentage part-load ratio.

The heating/cooling efficiency ε is estimated by:

εh(tk,xL(tk),xAC(tk)) =
2.8

0.9485+1.1364e−7.105pc(tk)+1.397 , ph(tk)< 45%,

−2.7768ph(tk)2 +5.0672ph(tk)+1.0312,45%≤ ph(tk)≤ 100%,
2.8

0.7492+1.0417e1.1949pc(tk)+2.4649 , ph(tk)> 100%,

(4.28)

εc(tk,xL(tk),xAC(tk)) =
3.62

0.9274+1.1e−7.105pc(tk)+1.397 , pc(tk)< 45%,

−4.3386pc(tk)2 +6.4881pc(tk)+1.2167,45%≤ pc(tk)≤ 100%,
3.62

0.7348+1.0753e1.239pc(tk)+2.389 , pc(tk)> 100%.

(4.29)

Fig. 4.1 depicts the shapes of η , εh and εc, where the part load ratio is a percentage of the actual

working load against the rated capacity.

The baseline energy consumption is 1,500,743.6 kWh and the targeted energy saving is 671,380.1

kWh over 10 years. The discount rate for NPV calculation is 11% per year, and the desired payback

period is 4 years. The maintenance time schedule is Q = {6,12,18,24, ...,114}. Several maintenance

budget limits are applied: $31,500, $37,500 and $42,500, from very tight to sufficient. The weights in

objective function (4.22) are set to be λ1 = 0.5 and λ2 = 0.5.

There are two tests in the simulation. The first test excludes the uncertainties; the MPO problem is
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

solved by the DE based numerical solver as an open loop dynamic programming problem over the

whole sustainability period. To manifest the impact of the interacting effects, a maintenance plan

is developed without considering the interactions, as we introduced in Chapter 3. The comparative

maintenance plan is applied to the control system (4.10)-(4.15). The obtained performances are

illustrated in Table 4.3 for comparison. The second test includes the uncertainties; in this test, the

maintenance plan is developed by the MPC controller. The uncertainties are represented by a set of

random variables that follow the even distribution in the range up to ±10% on the state variables x(tk).

The comparative maintenance plan is developed by solving the open loop problem. Thereafter, the two

maintenance plans with or without taking into account the uncertainties are compared in Table 4.4 to

manifest the effectiveness of the control system approach when addressing the MPO problem with

uncertainties.

4.3.2 Illustrative results

The results in Table 4.3 and 4.4 are an average of 20-run results, where the ‘Percentage savings’

column denotes how much extra savings are obtained comparing with the targeted value. From Table

4.3, most performances are decreased by 2-3% if the maintenance plan is developed without taking

into account the interacting effects. Up to 8.9% of the energy saving and up to 9.6% of the IRR

can be improved relatively against the without interaction strategies (given that the no interaction

strategy performances are 100%). We believe that this illustrates the impact of interacting effects in

the case study: the interacting effects delivers an around 2% uncertainty to the performances with

the given energy efficiency and reliability models. In Table 4.4, the open loop solution performances

are decreased by 5-10% when comparing with closed-loop solutions. Thereby the effectiveness of

the MPC controller can be illustrated. Such deterioration also indicate that the uncertainties deliver

a significant impact to the final performances without the compensation of the feedback control in

practice.

Fig. 4.2 illustrates the population dynamics in a few different cases. The air conditioner group

population decay and lighting group population decay in the first row represent the population dynamics

without any maintenance. At the end of the population dynamics without maintenance, all equipment

are lost, suggesting a serious damage to the user comfort. The solid line indicates the estimation where

interacting effects are excluded and the dashed dot line indicates the estimation taking into account the
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

Table 4.3. Comparison of solutions with or without taking into account the interacting effects with

different budget limits

Cases Budget Energy Percentage IRR Payback NPV Maintenance Comfort

limit ($) savings (kWh) savings period (years) ($) cost ($) violation

With interactions 31500 682461.3 1.65% 69.89% 1.52 37041.77 31414.17 Yes

Without interactions 31500 660406.1 -1.64% 67.84% 1.55 34737.33 31460.43 Yes

With interactions 37500 725261.8 8.02% 68.77% 1.52 35917.37 37379.22 No

Without interactions 37500 720228.5 7.27% 66.85% 1.54 36239.4 37473.3 No

With interactions 42500 822015.9 22.43% 70.76% 1.51 41791.32 42422.7 No

Without interactions 42500 818781.6 21.95% 70.59% 1.53 41584 42427.95 No

Table 4.4. Comparison of solutions with or without taking into account the uncertainties with different

budget limits

Cases Budget Energy Percentage IRR Payback NPV Maintenance Comfort

limit ($) savings (kWh) savings period (years) ($) cost ($) violation

Closed-loop solution 31500 669008.9 -0.35% 68.18% 1.53 36462.9 31526.3 Yes

Open loop solution 31500 607177.6 -9.56.% 62.34% 1.56 32020.5 31560.27 Yes

Closed-loop solution 37500 709476.3 5.67% 66.29% 1.54 35258.5 37487.1 No

Open loop solution 37500 666778.8 -0.685% 63.15% 1.54 33389.8 37479.3 Yes

Closed-loop solution 42500 795327.1 18.46% 67.95% 1.54 40791.4 42499.7 No

Open loop solution 42500 707188.9 5.33% 64.2% 1.53 36062.4 42417.6 No

interactions. The interacting effects deliver a significant impact to the air conditioner group population

decay in our model. The cases in the second row depict the performances under maintenance effects.

The air conditioner and lighting population dynamics respectively illustrate the population dynamics

trajectories of the closed-loop solutions with $37500 budget limit.

4.4 CONCLUSION

In this chapter, the BRCMP problem from Chapter 3 is extended by taking into account the interactions

of energy and reliability performances among items. The interactions between lighting and air

conditioner systems are our major concern. From existing studies, the decrease in number of working

lights and working air conditioners significantly change the cooling/heating load in the retrofitting

plant, resulting in the changes of energy savings and reliability of the air conditioners. Such interactions
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CHAPTER 4 MAINTENANCE PLANNING WITH INTERACTING ENERGY EFFECTS

Figure 4.2. Population dynamics in a few different cases

are modelled as the coupled energy consumptions and reliability function scale parameters. A group

of homogeneous lights and a group of homogeneous air conditioners, where items from the same

group reveal similar energy and reliability performances, are selected to be our control object. The

population dynamics of the two item groups is then formulated as a state-space model with coupled

state equations. Thereafter, the maintenance plan optimisation problem is cast into an optimal control

problem that aims at maximising the overall energy savings and internal rate of return of the retrofitting

project during the sustainability period. According to the simulation results, up to 8.9% of the energy

saving and up to 9.6% of the IRR can be improved against the without interaction strategies.
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE

PLAN OPTIMISATION

5.1 INTRODUCTION

In the previous chapters, the control system modelling focuses on the corrective maintenance (CM)

planning, the equipment deterioration effects are thereby omitted. In practice, equipment can deteriorate

to a worse working state before malfunctions, e.g., air conditioners and heat pumps can consume more

energy upon usage. Such a relationship has been revealed in relevant studies [152, 153]. To address

such deterioration, the preventive maintenance (PM) must be incorporated into the maintenance plan

optimisation (MPO) model. The multi-state system (MSS)approach is thereby investigated.

In reliability engineering, the multiple performance levels of a system can be characterised by the MSS

approach [124]. The MSS is usually defined to be a system with multiple working state and failure

states that range from perfectly functioning to complete failure. This is resulted from the deterioration

and failure of some components in the system [125]. In the scope of the MSS model, CM restores

the system from a failure state to working state, and PM restores the system to a better working state

before the malfunction. The single deteriorating system with multiple working states has been the

focus of many existing studies [126]. The system state-transition is taken into account to be governed

by a Markov process, where the system states are defined to be a set of probabilities corresponding to

the working states. As aforementioned, in our optimisation model, the major concern is the totality

of the retrofitted items. The various categories of retrofitted items that are corresponding to different

performance levels result in complicated aggregate performance dynamics. Therefore, the state of the

totality of retrofitted items can become even more complicated than the one in a single deteriorating

system. The grouping method is introduced to address this complexity. The homogeneous items from
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

one group are further divided into several subsets subject to the item working state. Specifically, the

term ‘population’ is hereby employed to represent the count of items within a homogeneous group

under a specific working state. The populations of the subsets are commensurate with the probabilities

of an individual item manifesting different working states. Population dynamics is thereby more

complicated: it represents the transition of the items from one working state to another, resulting in the

changes of the subset populations. Such population changes are commensurate with the individual

item state-transition probabilities.

In this way, the homogeneous item group state can be described by an alternative MSS model. A

state-space model is formulated based on the alternative MSS model. For simplicity, assuming the CM

actions restore a number of items from the malfunctioning state to the best working state, and the PM

actions the worse working state to the best state. The state variables in the MSS state-space model are

the populations of the item subsets subject to different working states. The control inputs are the PM

and CM maintenance intensities. The maintenance time schedule is known a priori, which is a fixed,

pre-decided one. We do not take into account the installation of additional equipment apart from the

retrofitted items, consequently, the system states are physically bounded. The uncertainty factors are

also taken into account as the disturbances on the system states.

Thereafter, the population dynamics indicating the performance deterioration is modelled to be a control

system, and the corresponding maintenance planning problem is cast into an optimal control problem.

A weighted sum formulation is employed for the optimal control problem. There are two objectives:

maximising the aggregate energy savings and maximising the internal rate of return (IRR) over the

sustainability period. The targeted energy savings and the budget limit are involved in the optimal

control problem as the constraints over the whole decision horizon. The model predictive control (MPC)

approach that takes into account the history states is employed to satisfy the long term constraints. The

state variables and control inputs are both integers as they represent the counts of retrofitted items.

The differential evolution (DE) algorithm with the binary neighbourhood field optimisation (BNFO)

method is employed as the numerical solver for the MPC approach. A simplification of a practical

project is adopted as our case study.
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

5.2 CONTROL SYSTEM MODELLING

5.2.1 Control system framework for MSS based MPO

Let tk = kS,k = 0,1,2, ...,T denote the sampling instants over the sustainability period [0,T S), where

t0 = 0 and S indicates the sampling interval. Given an item group l with Nl homogeneous items and

Ml different working states subject to performance levels. Let Gl(tk) denote the performance level of

an item at instant tk. Gl(tk) takes value from the set

gl = {gl,1,gl,2, ...,gl,Ml}. (5.1)

The working state i is subject to performance level gl,i. gl is given in ascending order. gl,Ml denotes the

best working state, i.e., the state where an item can contribute maximum energy saving. Accordingly,

gl,1 denotes worst state where an item contributes the minimum saving. Thereafter, the homogeneous

group l can be divided into Ml subsets subject to the working states. The subset i with i = 1,2, ...,Ml

consists of all items from group l and under working state i, i.e., Gl(tk) = gl,i. Let xl(tk) denote the

populations of all subsets in group l at tk:

xl(tk) = (xl,1(tk),xl,2(tk), ...,xl,Ml (tk))
T , (5.2)

where xl,i(tk) denotes the population of subset i at instant tk, ∑
Ml
i=1 xl,i(tk) = Nl . Let ul(tk) denote the

maintenance intensities for group l during [tk, tk+1):

ul(tk) = (ul
1(tk),u

l
2(tk), ...,u

l
Ml−1(tk),u

l
C(tk))

T , (5.3)

where ul
i(tk) and ul

C(tk) are a set of integers. ul
i(tk) denotes the PM intensities, i.e., the count of

items under state i that are restored to state Ml . ul
C(tk) denotes the CM intensities, i.e., the count of

malfunctioning items that are restored to state Ml . Let P denote the pre-decided PM time schedule

and Q denote the pre-decide CM time schedule. P = {mp
1 ,m

p
2 , ...,m

p
Tp
} and Q = {mc

1,m
c
2, ...,m

c
Tc
}, The

elements of P and Q are selected from the indices of sampling instants, i.e., k = 0,1,2, ...,T . This

suggests that the maintenance instants are commensurate with the sampling instants tk. For tk with

k /∈ P, ul
i(tk) = 0 with ∀i ∈ [1,Ml]. For tk with k /∈ Q, ul

C(tk) = 0.

Given N̄ item groups in the MPO problem, let x(tk) = (x1(tk),x2(tk), ...,xN̄(tk))
T denote the state

variable and u(tk) = (u1(tk),u2(tk), ...,uN̄(tk))
T denote the control input. Let Gl(xl(tk),ul(tk)) denote

the population dynamics in group l under the impacts of deteriorations and maintenances. A compact

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

Figure 5.1. The state-transition diagram of an individual item from homogeneous group l with Ml

working states and one malfunctioning state

form of the state-space model can be obtained:
x1(tk+1)

...

xN̄(tk+1)

=


x1(tk)

...

xN̄(tk)

+


G1(x1(tk),u1(tk))

...

GN̄(xN̄(tk),uN̄(tk))

 , (5.4)

where

Gl(xl(tk),ul(tk)) = [4xl,Ml (tk),4xl,Ml−1(tk), ...,4xl,1(tk)]T , (5.5)

with 4xl,i(tk) representing the population dynamics in subset i from group l. The initial state is

x(t0) = x0 = (x0
1,x

0
2, ...,x

0
N̄)

T .

5.2.2 Population dynamics formulation

In group l, xl,i(tk) changes over each time. The state-transition of an individual group l item is

illustrated in Fig. 5.1, where Pl,i(tk), i ∈ [1,Ml] denotes the probability that this item works under

state i and performance level gl,i. λ l
i,i−1(tk) indicates the state-transition from state i to state i−1 over

the sampling interval [tk, tk+1). The circle F denotes the malfunctioning state and Pl,F(tk) denotes the

probability of this item being malfunctioning. λ l
i,F(tk) indicates the state-transition from state i to

malfunctioning. As Fig. 5.1 illustrates, Pl,i(tk) increases due to transition λ l
i+1,i(tk), decreases due to

transition λ l
i,i−1(tk) and transition λ l

i,F(tk) simultaneously. Pl,Ml (tk) continuously decrease and Pl,F(tk)

continuously increase without maintenance. Such state-transition can be formulated to be an Markov

process. Given that the population dynamics of homogeneous group l is commensurate with the

individual item state-transition, the population dynamics Gl(xl(tk),ul(tk)) in group l are formulated in

(5.6), where f l
i,i−1(xl,i(tk)) denote the population dynamics from subset i to i−1 that is resulted from

the transition λ l
i,i−1(tk).
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4xl,Ml (tk) =− f l
Ml ,Ml−1(xl,Ml (tk))− f l

Ml ,F(xl,Ml (tk))+
Ml−1

∑
i=1

ul
i(tk)+ul

C(tk),

4xl,Ml−1(tk) = f l
Ml ,Ml−1(xl,Ml (tk))− f l

Ml−1,Ml−2(xl,Ml−1(tk))− f l
Ml−1,F(xl,Ml−1(tk))−ul

Ml−1(tk),

...

4xl,2(tk) = f l
3,2(xl,3(tk))− f l

2,1(xl,2(tk))− f l
2,F(xl,2(tk))−ul

2(tk),

4xl,1(tk) = f l
2,1(xl,2(tk))− f l

1,F(xl,1(tk))−ul
1,Ml

(tk),
(5.6)

The state-transition described in (5.6) is simplified by assuming that the transition exists only from

the current state to malfunctioning state or between a pair of neighbour states. The population decay

model denoted by f l
i,i−1(xl,i(tk)) can be obtained via the experimental data fitting or existing reliability

models, as discussed in the previous chapters. Several assumptions are made to enable the employment

of (5.6). The degradations of the maintained items and the maintenance downtime are ignored during

the interval where maintenance actions take place. The state transition intensities of the items are

known a priori. The inspection during operation can indicate the working states of the retrofitted items.

Due to the energy conservatism principles, the inspections are considered as the actual states of the

item groups from the last sampling instant to the current one.

5.3 CONTROLLER DESIGN

5.3.1 Objective function formulation

In the maintenance plan optimisation (MPO) problem for a building retrofitting project, the retrofitted

items can be further categorised into two types. The type-I retrofitted items undertake no preventive

maintenance over the life-cycle. The corrective replacement takes place after the breakdown of a type-I

item, e.g., an energy efficient globe or motion sensor, etc. The old malfunctioning item is thereby

scrapped. The energy saving degradation of the type-I retrofits are not taken into account. The type-II

retrofitted items are more complicated. The performance levels of a type-II item, e.g., an air conditioner

or heat pump, are indicated by the estimated energy savings, computed following the M&V principles

[119]. For a type-II item, the performance degradation before the malfunctions is incorporated into the

energy modelling. In order to restore a type-II item to a better state, the PM actions must be applied.
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

The CM actions are also needed to restore the item from malfunctions. The type-I item is a binary

state system, which is actually a special case of the MSS. Therefore, (5.2) is employed to describe

items of both types.

The overall energy savings and IRR over the sustainability period are introduced to be the control

objectives. The targeted energy saving amount limit, budget limit and payback period limit are adopted

to be the constraints. The performance characteristics are known a priori via pre-implementation audit

and simulation: 
al(tk) = {al,1(tk),al,2(tk), ...,al,Ml (tk)},

bl(tk) = {bl,1(tk),bl,2(tk), ...,bl,Ml (tk)},

Cl(tk) = {Cl
1(tk),C

l
2(tk), ...,C

l
Ml
(tk),Cl

C(tk)}.

(5.7)

Similar to the notations in the previous chapters, al(tk) denotes the average energy savings over

[tk−1, tk) and bl(tk) denotes the average cost savings. Cl(tk) denotes the maintenance costs. In (5.7),

for i ∈ [1,Ml], al,i(tk) and bl,i(tk) denote the performance characteristics of an individual item with

Gl(tk) = gl,i. Cl
i (tk) denotes the PM costs and Cl

C(tk) denotes the CM cost. Thereafter, the aggregate

energy savings can be formulated:
ES(tk) =

N̄

∑
l=1

Ml

∑
i=1

al,i(tk)xl,i(tk),

ES|all =
T

∑
k=1

ES(tk),

(5.8)

and the corresponding cost savings:
B(tk) =

N̄

∑
l=1

Ml

∑
i=1

bl,i(tk)xl,i(tk),

B|all =
T

∑
k=1

B(tk),

(5.9)

the aggregate maintenance cost at each time instant:

h(tk) =
N̄

∑
l=1

(
Ml

∑
i=1

Cl
i (tk)u

l
i(tk)+Cl

C(tk)u
l
C(tk)), (5.10)

and the retrofitting project investment:

h|all = h0 +
T

∑
k=1

h(tk), (5.11)

where h0 denotes the initial investment of the retrofitting project. The net present value (NPV) over

[0,T S) is formulated taking advantage of B(tk) and h(tk):

NPV =
T

∑
k=1

B(tk)−h(tk)
(1+d)n−1 −h0, (5.12)
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

where d denotes the discount rate. n = 1,2, ... indicates that the sampling interval [tk−1, tk) lies within

the n-th after t0. The IRR is thereby obtained by solving out the discount rate that makes NPV = 0

over [0,T S).

5.3.2 Optimal control problem formulation

Given the initial state x(t0) = x0, the pre-decided PM time schedule P= {mp
1 ,m

p
2 , ...,m

p
Tp
} and CM time

schedule Q = {mc
1,m

c
2, ...,m

c
Tc
}, the optimal control problem is to find a control law, i.e., the sequence

of maintenance intensities u(·) = {u(t1),u(t2), ...,u(tT )} that subjects to P and Q and minimises the

following performance index over the sustainability period:

J(x0,u(·)) =−λ1
ES|all

α
−λ2IRR, (5.13)

subject to (5.4)-(5.6), and 

ES|all ≥ α,

T

∑
k=1

h(tk)≤ β ,

Tp ≤ T ′,

0≤ x(tk)≤ x0,

ul
i(tk)(tk) = 0, k /∈ P,

ul
C(tk)u(tk) = 0, k /∈ Q,

(5.14)

where λ1 and λ2 are the weighting factors. α denotes the target energy saving amount, and β denotes

the maintenance budget limit over [0,T S). Tp denotes the payback period and T ′ is the payback period

limit.

5.3.3 MPC controller

A mathematical transformation is applied to the optimal control problem (5.13)-(5.14) to allow the em-

ployment of the MPC approach. The predictive horizon at instant tm covers the rest of the sustainability

period [tm,T S), and a dynamic programming is formulated to minimise the following performance

index:

J′(x(tm),u′|m(·)) =−λ1
ES′|m

α
−λ2IRR′, (5.15)
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

where IRR’ is the discount rate that makes NPV ′|m = 0, with
ES′|m =

m

∑
k=1

ĒS(tk)+
T

∑
k=m+1

ES(tk),

NPV ′|m =
m

∑
k=1

B̄(tk)− h̄(tk)
(1+d)n−1 +

T

∑
k=m+1

B(tk)−h(tk)
(1+d)n−1 −h0,

(5.16)

subject to (5.4)-(5.6), and 

ES′|m ≥ α,

h′|m ≤ β
′, m ∈ R,

Tp ≤ T ′,

0≤ x(tm)≤ x0,

ul
i(tk)(tk) = 0, k /∈ P,

ul
C(tk)u(tk) = 0, k /∈ Q,

(5.17)

where 
h′|m =

T

∑
k=m+1

h(tk),

β
′ = β −

m

∑
k=1

h̄(tk),

(5.18)

The ĒS(tk), B̄(tk) and h̄(tk) respectively denote the aggregation of the existing energy savings, cost

savings and maintenance costs prior to tm. Tp is obtained by figuring our the last instant that NPV ′|m

remains negative.

Let d(tk) = (d1(tk),d2(tk), ...,dN̄(tk))
T denote the impacts of uncertainty factors, i.e., the disturbance

on state variables. The actual state x̂(tm+1) = x(tm+1)+d(tk), which can be measured from inspections.

The actual state is utilised to be the initial condition of prediction horizon [tm+1,T S). The detailed

discussions pertaining to the MPC can be found in Chapter 3. The MPC algorithm is then formulated

as following:

MPC Algorithm

Initialisation: Let initial state x(t0) = x0 and m = 0.

(i) Compute the open loop optimal solution {u′|m(tk)} of the problem formulation (5.15)-(5.18), where

k = m,m+1, ...,T −1.

(ii) The MPC controller ū|m = {u′|m(tm)} is applied after the sampling instant tm. The remains of the

open loop optimal solution {u′|m(tk) : k = m+1, ...,T −1} are discarded. The predicted x(tm+1) are
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

then obtained according to (5.4)-(5.6). As a result of the uncertainties, the actual system state over the

next sampling period is updated according to:
x̂1(tm+1)

...

x̂N̄(tm+1)

=


x1(tm+1)

...

xN̄(tm+1)

+


d1(tm)

...

dN̄(tm)

 ,

which is inspected at tm+1 and executed over [tm, tm+1).

(iii) Let x̂(tm+1) = (x̂1(tm+1), ..., x̂N̄(tm+1))
T be the initial state for the next predictive horizon,

m := m+1 and go back to step (i).

According to the pre-decided maintenance time schedules P and Q, u(tm) = 0 when m /∈ P

and m /∈ Q, where step (i) is skipped and x̂(tm+1) is obtained by
x̂1(tm+1)

...

x̂N̄(tm+1)

=


x1(tm)

...

xN̄(tm)

+


G1(x1(tm),0)

...

GN̄(xN̄(tm),0)

+


d1(tm)

...

dN̄(tm)

 .

The above MPC algorithm will go over the sustainability period to solve out the optimal control

strategy. The DE algorithm based numerical solver can be found at Algorithm 1 in addendum A.

5.4 SIMULATION AND VERIFICATION

The case study involves a simplification of a retrofitting project for a government building. The

sustainability period is 10 years, where the sampling interval is one month, i.e., there are 120 sampling

instants, k = 1,2, ...,120. The PM actions take place before the end of each year, i.e., the PM time

schedule is P = {11,23,35,47, ...,119}. The CM actions take place every three months, therefore the

CM time time schedule is Q = {2,5,8,11, ...,119}. Table 5.2 illustrates the specifications of the 5

categories of retrofitted items, i.e., the groups of homogeneous items, which are all in good conditions

at the initial stage. The motion sensors, 20W Light Emitting Diode (LED) bulbs and 180W new

projectors are considered to be type-I items, i.e., the binary state systems. The 3kW heat-pumps and

new air conditioners are considered to be type-II items, i.e., the MSS. The 3kW heat-pumps and new air

conditioners are type-II items. Fig. 5.2 illustrates the state transition diagram for type-II items, where

preventiveA indicates the PM action that restores the item state from average to good, preventiveB

from bad to good, and corrective from failed to good.
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

Figure 5.2. The state transition diagram for type-II items in the case study.

Table 5.1. Transition intensities of involved retrofits (in months)

Retrofitted Type MTBF t1 (good to average) t2 (average to bad)

Items (months) (months) (months)

Motion sensor I 33.5 N/A N/A

20W retrofit LED I 27.2 N/A N/A

180W new projector I 32.8 N/A N/A

3kW heat-pumps II 52 25.2 100

New air conditioner II 43.8 21.6 86.4

The subset population dynamics are estimated by an exponential decay model with constant transition

intensities [140]. Let θ l
i,i−1 denote the transition intensity from state i to state i−1 for an item from

homogeneous group l, and η l
i,i−1 = 1/θ l

i,i−1. The subset population dynamics f l
i,i−1(xl,i(tk)) is:

f l
i,i−1(xl,i(tk)) = η

l
i,i−1xl,i(tk). (5.19)

Table 5.1 illustrates the known a priori transition intensities for each category of retrofitted items. The

mean time between failure (MTBF) indicates the transition intensity for an item from an arbitrary

working state to failure state, t1 indicates the one from good to average and t2 from average to

bad.

Table 5.2 gives the following specifications. The Type column indicates the type of the items. The

Quantities column represents the initial populations of the homogeneous groups, which are regulated

by the corresponding retrofitting project. The unit prices column indicates the the purchase and

installation costs of an retrofitted item. The unit energy saving column and cost saving column

illustrates measures of the monthly average. The aforementioned savings are considered to be constant

over the sustainability period. The preventiveA cost, preventiveB cost and corrective cost hereby

represent the averages of the respective maintenance costs. The targeted energy saving amount is
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Table 5.2. Specifications of the retrofitted items

Retrofitted Type Quantities Unit Energy Unit Cost Corrective PreventiveA PreventiveB

Items Saving (kWh) Saving ($) Cost ($) Cost ($) Cost ($)

Motion sensor I 125 95.08 11.26 196 N/A N/A

20W retrofit LED I 382 8.5 0.91 14.19 N/A N/A

23 inch LCD Monitor I 48 19.2 2.16 263.28 N/A N/A

3kW Heat-pumps II 86 720 81.11 201 47 65

New air conditioner II 111 148.5 16.3 175 26 35

Table 5.3. Performance characteristics of obtained maintenance plan in different cases

Cases Energy Percentage IRR Payback NPV Maintenance Total

savings (kWh) saved period (months) ($) cost ($) investment ($)

No maintenance 3517093 38.70% 13.62% 62.77 33277.99 0 270758

Full maintenance 10687010 117.86% 33.18% 40.62 338954.1 255249.6 526007.6

Optimal Balance 10367170 114.31% 35.06% 39.33 366320.5 164992.1 435750.1

Energy Prior 10381420 114.49% 34.92% 39.32 366461.8 164989.6 435747.6

Economy Prior 10256830 113.11% 35.23% 39.34 364942 156841.6 427599.6

9,067,921.6 kWh. The initial investment is $270,760, which can be computed by the quantities and

unit prices of the retrofitted items. The maintenance budget limit is $165,000 over the sustainability

period. The payback period limit is 40 months, and the discount rate for NPV computation is 9%. The

impact of the uncertainty factors are represented by a series of bounded random noises ranging within

±5% of the state variables.

There are 5 cases with different maintenance strategies: the no maintenance and full maintenance are

cases without taking into account uncertainties, and the optimal balance, energy prior and economy

prior are three optimal case, where uncertainty factors deliver impacts and the control approach must

be applied. Different weighting factors are employed in these cases. In the optimal balance case, the

energy and economy objectives are equally considered, therefore λ1 = 0.5 and λ2 = 0.5; in the energy

prior case, only the energy savings are considered, therefore λ1 = 1.0 and λ2 = 0; in the economy prior

case, only the economy performance is considered, therefore λ1 = 0 and λ2 = 1.0. The MPO problem

becomes a constrained single-objective optimisation problem in the energy priorand economy prior

cases.
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

The performances of the maintenance strategies in the 5 cases are illustrated in Table 5.3. The

performances of the no maintenance case illustrate the impact of the deterioration. The performances

of the full maintenance case are also illustrated for comparison, where all the degraded and failed

items are restored without taking the budget limit into account. Due to the budget limits, the full

maintenance strategy can be infeasible in some cases. The performances of the three optimal cases are

then illustrated and compared with the full maintenance case. In summary, the energy savings in the

three optimal cases are very close to the full maintenance case, and the IRR and NPV values are even

larger. However, the full maintenance strategy incurs a much larger overall investment while the three

optimal cases keep the expenditure within the budget limit. All the illustrative performances are the

mean values of 10-run results taking into account the uncertainties.

Fig. 5.3 draws the system dynamics trajectories from the three optimal cases. In addition to the

population dynamics, the cash flows are also illustrated, which can reflect the maintenance intensities

over each interval. Furthermore, Fig. 5.4 draws the energy savings over time in these cases. The

black solid line indicates the ideal energy savings without deterioration, which cannot be achieved in

practice. The other four curves respectively represent the energy savings in the full maintenance case

and the three optimal maintenance cases. In addition, two different population dynamics trajectories

are illustrated in Fig. 5.5, subject to no maintenance and full maintenance strategies. The curves

respectively represent the population dynamics from all 5 categories of retrofitted items that are under

good, average, bad and failed states. According to Fig. 5.5 and Table 5.3, if there are no maintenance

actions, the energy efficiency of the plant cannot sustain against the deterioration, and the economy of

the retrofitting project is seriously damaged as well. This reveals the important role of the maintenance

for a retrofitting project from both energy efficiency and economy perspectives.

The magnitude of difference is limited in the optimal cases according to Table 5.3 and Fig. 5.3. One

possible reason is that, in our case study, the government is the owner and the user of the retrofitted

building. Therefore the cost savings are proportional to the energy savings. Given that the cash inflow

mainly consists of the cost savings, the more energy savings are achieved, the more cash inflow can

be earned. As a result, the energy saving objective plays a very important role in the MPO problem.

However, when various stakeholders are involved, the performances can be very different.
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

Figure 5.3. The performances of the three optimal cases. Both the population dynamics and the cash

flows are illustrated.

Figure 5.4. The energy saving dynamics over the sustainability period in all cases

5.5 CONCLUSION

In this chapter, both the preventive and corrective maintenances are incorporated into the maintenance

plan optimisation model for the building energy retrofitting project. The multi-state system model is

taken into account to characterise the performance deterioration of retrofitted items during operation.

The totality retrofitted items can manifest complicated state during operation. This complexity is

addressed by introducing a grouping method, where retrofitted items are categorised into several

homogenous groups, each can be divided into several subgroups subject to the item working states.

The subset population dynamics follows the state-transition of an individual item. Thereafter, the
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CHAPTER 5 MULTI-STATE BASED MAINTENANCE PLAN OPTIMISATION

Figure 5.5. The population dynamics of no maintenance and full maintenance.

maintenance plan optimisation problem is improved to be an optimal control problem with multi-

state system dynamics, which allows the employment of the model predictive control approach. The

effectiveness of the proposed optimisation model and control approach is illustrated in the case study,

where the comparative maintenance strategies are outperformed.
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CHAPTER 6 MAINTENANCE INSTANTS AND

INTENSITIES OPTIMISATION

6.1 INTRODUCTION

In the previous chapters, a control system framework is proposed to incorporate the maintenance

planning into retrofitting planning, where the maintenance plan optimisation is cast into an optimal

control problem. Such an optimal control problem aims at finding a series of maintenance intensities

to maximise the aggregate energy savings and internal rate of return (IRR) [81] over a finite decision

horizon, namely the sustainability period. The maintenance intensities are subject to a pre-determined,

fixed collection of maintenance instants, namely the maintenance time schedule. In chapter 5, a multi-

state system approach is further employed, where items can deteriorate to a worse working state or even

worse, the malfunctioning state, during operation. Accordingly, two types of maintenance actions are

introduced: the preventive maintenance (PM) and corrective maintenance (CM). The PM time schedule

and CM time schedule are pre-determined and fixed as well. Such a time schedule is determined

via the expertise of decision makers. In this way, the optimal control problem is parameterised to

find the optimal combination of maintenance intensities. The impacts of maintenance instants are

excluded. However, the maintenance instants also deliver significant impacts to the aggregate energy

and economic performances, due to their dynamic natures. Adjusting the maintenance instants can

further influence the aggregate performances. Additional energy efficiency potentials are expected

from the maintenance time schedule optimisation, especially when limited budget and manpower are

applied. Therefore, incorporating the maintenance time schedule optimisation into the investment

decision is the main topic at the current stage.

In order to simultaneously take into account the maintenance intensities and instants into the retrofitting
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

and maintenance planning, the parameterisations of the optimal control problem must be modified.

However, adjusting the maintenance instants in the existing control system framework is an uneasy

task, due to the interplay between the maintenance intensities and instants. An impulsive and switched

system modelling is introduced to characterise such an interplay. Actually, the effects of maintenance

are different with the conventional control inputs. Firstly, the maintenance implementation time

is usually much smaller than the sustainability period, consequently, the maintenance actions are

considered to take place instantaneously. Secondly, the item group population grows to a larger number

under the impact of maintenance. As a result, the state variables, i.e., the item group populations are

considered to jump under the effects of maintenance. The performance dynamics can be modelled as a

hybrid system with impulsive effects and switching phenomena, i.e., an impulsive switched system

[154]. According to the impulsive and switched system modelling, the maintenance intensities and

instants are parameterised to be a set of coupled decision variables. Thereafter, the influences that

maintenance actions deliver to the system dynamics can be characterised, and the optimal control

problem is translated into a parameter optimisation problem such that the gradient method can be

employed to find the numerical solution [154].

The main contribution of this chapter is introducing an impulsive and switched system modelling to

the control system framework for the investment decision of retrofitting and maintenance planning.

Comparing with the previous chapters, the impulsive and switched system modelling allows simultan-

eous optimisation of the maintenance intensities and instants, which are a pair of coupled parameters

in the control framework. Specifically, a maintenance plan optimisation (MPO) is hereby investigated.

Some preliminary results have been presented in [155], where the discrete form of the control system

framework is employed. For the sake of generality, a continuous form is developed, instead of the

previous discrete form. Furthermore, the system states are modified to be the ratios of the current

item group population to the initial population, and the maintenance intensities are the ratios of the

restored item to the total failed item from the same item group. In this way, the maintenance strategy

actually becomes a proportional feedback control. The objective function is the weighted sum of the

aggregate energy savings and IRR over the sustainability period. The MPO problem is subject to the

impulsive and switched system dynamics and a series of constraints, e.g., the targeted energy savings,

maintenance budget limit and payback period limit. Given that the IRR is a non-analytic function

rather than a simple integral of the utility function [156], the gradient method is an unsuitable solver

for the present optimal control problem. Therefore, a differential evolution (DE) algorithm based

numerical solver is introduced to the MPO problem. A case study retrofitting project is illustrated to
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

test and verify the effectiveness of the proposed approach.

6.2 CONTROL PROBLEM FORMULATION

6.2.1 Impulsive and switched system modelling:

Given the finite decision horizon, i.e., the sustainability period [0,T ). Let the following continuous

dynamical system over [0,T ) represent the impulsive and switched system dynamics of MPO:

ẋ(t) = g(x(t), t), t 6= ki, i = 1,2, ...,S, (6.1)

where x denotes the state variables, i.e., the ratio of current item group population to the initial item

population. x ranges from 0 to 1, where x(0) = 1. g(·) is a continuously differentiable function, which

denotes the population decay of the item group. Assumed that there are S maintenance instants over

[0,T ), let k = k1,k2, ...,kS denote the maintenance instants. The system states jump at k, therefore the

system dynamics under the impulsive maintenance effects is given as follows:
~x(ki) = x(ki)+4x(ki), i = 1,2, ...S,

ẋ(ki) = g(~x(ki),ki),

(6.2)

where4x(ki) denotes an impulsive effect prior to ki that incurs an impulsive jump of the system state.

4x(ki) denotes the impulsive effect at instant ki, and ranges from 0 to 1− x(ki). x(ki) denotes the

system state prior to the impulsive jumps and~x(ki) denotes the system state after the impulsive jump.

The continuous dynamical system (6.1)-(6.2) is thereby an impulsive switched system.

In a multi state control system framework, given an item group l with Ml working states and Nl

items. Ml denotes the best working states and 1 denotes the worst. The impulsive and switched

system dynamics of group l is formulated as (6.3), where the system state xl,i(t), i = 1,2, ...,Ml

denotes the ratios of the population of items under state i to the initial population of item group l.

f l
i, j(xl,i(t), t) denotes the portion of items that degrade from state i to a worse state j, gl,i(xl,i(t), t)

denotes the portion of items under state i and become malfunctioning. For simplicity, assuming

that an item under working state i can only degrade to the next worse state i− 1. For convenience,

let xl(t) = (xl,Ml (t),xl,Ml−1(t), ...,xl,1(t))T , ẋl(t) = F(xl(t)) denote (6.3). xl(k) jumps at k as (6.4)

illustrates. where xl,0(t) is especially employed to indicate the portion of malfunctioning items

from group l at t. Similar with (6.2),4xl,i(t) denotes the impulsive effect that incurs the impulsive

jump of system states. ~xl(t) = (~xl,Ml (t),~xl,Ml−1(t), ...,~xl,1(t))T denotes the system states after the
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION



ẋl,Ml =− f l
Ml ,Ml−1(xl,Ml (t), t)−gl,Ml (xl,Ml (t), t), t 6= kc,

ẋl,Ml−1 = f l
Ml ,Ml−1(xl,Ml (t), t)− f l

Ml−1,Ml−2(xl,Ml−1(t), t)−gl,Ml−1(xl,Ml−1(t), t), t 6= kp,

...

ẋl,1 = f l
2,1(xl,2(t), t)−gl,1(xl,1(t), t), t 6= kp,

ẋl,Ml (0) = 1,

ẋl,n(0) = 0,n = 1,2, ...,Ml−1.

(6.3)



4 xl,Ml (t) = uc
l (t)xl,0(t), t = kc,

4 xl,Ml (t) =
Ml−1

∑
i=1

ul,i(t)xl,i(t), t = kp,

4 xl,Ml−1(t) =−ul,Ml−1(t)xl,Ml−1(t), t = kp,

...

4 xl,1(t) =−ul,1(t)xl,1(t), t = kp,

~xl,i(t) = xl,i(t)+4xl,i(t), 1≤ i≤Ml , t = kp,kc,

ẋl(t) = F(~xl(t)), t = kp,kc,

xl,0(t) = 1−
Ml

∑
i=1

xl,i(t),

(6.4)

impulsive jumps. Such impulsive effects are resulted from the maintenance intensities. As introduced

above, there are two types of maintenance: PM and CM, and accordingly, two types of switching

instants: kpi, i = 1,2, ...,Sp the preventive maintenance instants, and kci, i = 1,2, ...,Sc the corrective

maintenance instants. Let Qp = {kp1,kp2, ...,kpSp} and Qc = {kc1,kc2, ...,kcSc} denote the respective

collections of preventive and corrective maintenance instants, where the elements are distributed over

the sustainability period [0,T ). Sp denotes the horizon of Qp and Sc denotes the horizon of Qc. Qp and

Qc therefore represent the preventive and corrective maintenance time schedule. For the convenience of

derivation, let kp denote the arbitrary element of Qp and kc denote the arbitrary element of Qc.

Let ul,i(t) and uc
l (t) denote the control inputs for the impulsive and switched system (6.3)-(6.4) over

[0,T ). ul,i(t) with i = 1,2, ...,Ml−1 represent the PM intensities, uc
l (t) represents the CM intensities.

These maintenance intensities are actually a series of ratios corresponding to xl(t), where a portion

of xl,i(t), i = 1,2, ...,Ml−1 are added to xl,Ml (t), as illustrated in (6.4). This reveals a fact that the

maintenance strategy is actually a kind of proportional feedback control. ul,i(t) and uc
l (t) are computed
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

as follows, 

up
l (t) = (ul,1(t),ul,2(t), ...,ul,Ml−1(t))

T , t = kp,

up
l (t) = 0, t 6= kp,

uc
l (t) = uc

l (t), t = kc,

uc
l (t) = 0, t 6= kc.

(6.5)

Given that up
l (t) and uc

l (t) are 0 when t 6= kp and t 6= kc, the control of (6.3)-(6.4) is to determine

the pairs of ul,i(kp) and kp, ul,c(kc) and kc. In this way, the control problem is translated into a

parameter optimisation problem. The population decay formulations are difficult to obtain. Currently,

the population decay statistical laws that have been confirmed in existing studies [140] are employed

as follows: 
f l
i,i−1(xl,i(t), t) = ζ

p
l,ixl,i(t), i > 1

gl,i(xl,i(t), t) = ζ
c
l,ixl,i(t),

(6.6)

where the decay rates are assumed to be constant. ζ
p
l,i and ζ c

l,i are usually small positive constants close

to 0. For some item categories where preventive maintenance cannot apply, e.g., the lamps, only one

working state is considered. The population decay is obtained from the experimental data fitting results

[109]:

gl,1(xl,1(t), t) = µlxl,1(t)−µlνlxl,1(t)
2. (6.7)

The parameter determinations for these decay models can be found in our relevant studies

[53, 109].

6.2.2 Objective function formulation

The performance indicators are given in this subsection. Given a building energy efficiency retrofitting

project including N̄ groups of homogeneous retrofitted items. The average energy savings, cost savings,

and maintenance costs per item are known a priori. These characteristics can be obtained from pre-

implementation audits. Let Pl denote the initial population for item group l, and the performance

characteristics are represented as follows,
al(t) = {al,1(t),al,2(t), ...,al,Ml (t)},

bl(t) = {bl,1(t),bl,2(t), ...,bl,Ml (t)},

Cl(t) = {C1,1(t),Cl,2(t), ...,Cl,Ml−1(t),C
c
l (t)},

(6.8)

where al(t) denotes the energy savings from an item at instant t. bl(t) denotes the cost savings. al,i(t)

and bl,i(t) are corresponding with xl,i(t). Cl(t) denotes the maintenances costs per item, where C1,i(t)

is pertaining to PM intensity ul,i(t) and Cc
l (t) the CM intensity uc

l (t). The overall energy savings over
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

the sustainability period [0,T ) are then represented by (6.9),
ES(t) =

N̄

∑
l=1

Ml

∑
i=1

al,i(t)xl,i(t)Pl ,

ES|all =
∫ T

t=0
ES(t)dt,

(6.9)

and the corresponding cost savings are obtained:
B(t) =

N̄

∑
l=1

Ml

∑
i=1

bl,i(t)xl,i(t)Pl ,

B|all =
∫ T

t=0
B(t)dt,

(6.10)

the maintenance cost at each time instant is obtained:

h(t) =
N̄

∑
l=1

Ml−1

∑
i=1

Cl,i(t)ul,i(t)

+
N̄

∑
l=1

Cc
l (t)u

c
l (t)+Mc(t),

(6.11)

where Mc(t) denotes a minimal cost that is charged when a maintenance action takes place at t.

Mc(t) = 0 if t /∈ Qc
⋃

Qp. Mc(t) is introduced to reflect the actual situation, where the maintenance

manpower must be taken into account. The overall investment of the retrofitting project is then

represented by:

h|all = h0 +
∫ T

t=0
h(t)dt, (6.12)

where h0 denotes the initial expenditure of the retrofitting project. The Net Present Value (NPV) [81]

of the project over [0,T ) is computed from B(t) and h(t). In order to compute NPV from a continuous

system model, the yearly cash inflow and cash outflow must be obtained. Let Bn denote the cash

inflow and hn denote the cash outflow of the n-th year. The formulation of Bn and hn are illustrated as

follows: 
Bn =

∫ tn

tn−1

B(t)dt,

hn =
∫ tn

tn−1

h(t)dt,
(6.13)

where tn denotes the instant that separates the n-1-th year and n-th year. t0 = 0. Assuming that there

are NT years within the sustainability period, the NPV can be computed as follows,

NPV =
NT

∑
n=1

Bn−hn

(1+d)n −h0, (6.14)

where d denotes the discount rate for NPV calculation. The IRR, denoted by dR|T , is defined to be the

discount rate that makes NPV = 0 over [0,T ). The IRR cannot be represented analytically, but still a

bounded value with finite initial investment h0 [156].

Let P = {P1,P2, ...,PN̄} denote the initial populations of the respective item groups, up(·) denote the

collection of up
l (kp), uc(·) denote the collection of uc

l (kc), l = 1,2, ..., N̄. Taking advantage of the
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

weighted sum approach, the objective function for the MPO problem is obtained as follows,

J(P,Qp,Qc,up(·),uc(·)) =−λ1
ES|all

α
−λ2dR|T , (6.15)

where α is the targeted saving value, d|TR is the IRR. λ1 and λ2 denote the weighting factors. The

objective function formulation indicates that the energy and economic performances are simultaneously

taken into account, where the weighting factors adjust the importance of the two objectives.

6.2.3 Optimal Control Problem

Taking advantage of the aforementioned impulsive and switched system modelling (6.3)-(6.7) and

objective function formulation (6.15), the optimal control problem can be formulated as follows:

Optimization Problem MPO: For a dynamical system consisting of N̄ subsystems in (6.3)-(6.7) with

state variables x(t) = {x1(t), ...,xl(t), ...,xN̄(t)} and initial state x(0), find the optimal maintenance

time schedule Qp and Qc, PM intensities up(·) = {up
1(kp), ...,up

l (kp), ...,up
N̄(kp)} and CM intensities

uc(·) = {uc
1(kc), ...,uc

l (kc), ...,uc
N̄(kc)}, which minimise the performance index (6.15) that is subject

to system dynamics 6.3-6.7 and the following constraints
ES|all ≥ α,∫ T

t=0
h(t)dt ≤ β ,

Tp ≤ T ′,

(6.16)

where β is the maintenance budget limit over [0,T ), T ′ is the payback period limit. Tp is the payback

period, which is computed from the last tn that makes NPV < 0. Let MN̄ denote the total number of

working states for the N̄ item groups, up(·) ∈ R(MN̄−N̄)×Sp and uc(·) ∈ RN̄×Sc , i.e., the minimisation

problem (6.15)-(6.16) is a finite dimensional problem. (6.15)-(6.16) is different with the conventional

optimal control problem. Firstly, the control inputs to be solved are a set of parameters. Secondly, the

objective function is a weighted sum of two different performance indicators, instead of the quadratic

performance index. Finally, dR|T is non-analytic, as a result, the gradient method becomes infeasible

to (6.15)-(6.16). Therefore, a differential evolution (DE) algorithm can be employed as the numerical

solver to the minimisation problem, as introduced in previous chapters and the appendix.
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

6.2.4 Feasibility and Boundedness

Feasibility of the optimisation and stability of the closed-loop system can be given by the following

theorem.

Theorem 1 Consider the population dynamics described by the impulsive switched system (6.3)–(6.7).

If β in (6.16) is selected large enough, then,

1. system states are bounded;

2. the optimisation problem P is feasible.

Proof.

1. With 0 < ζ
p
l,i < 0.5 and 0 < ζ c

l,i < 0.5 (which are usually satisfied in practice) in (6.6), it is

apparent that xl,i with i > 1 decreases to zeros if there are no maintenance.

Moreover, according to the constraints (6.16), h(t) is bounded, indicating that up(·) and uc(·)

are bounded. It then follows from (6.4) that ∆xl,i are always bounded.

Consequently, it can be concluded that system states are bounded.

2. Boundedness of system states indicates that −λ1
ES|all

α
in (6.15) is bounded; the IRR dR|T is

bounded since 0< d < 1 and h0 > 0, indicating that−λ2dR|T in (6.15) is bounded. Consequently,

the performance index J is lower bounded.

In another aspect, according to [117], there exists at least one feasible solution that satisfies all

the constraints from (6.15)–(6.16). Moreover, constraints given by (6.16) indicates a closed set

of solution. As a result, it can be concluded that the optimisation problem MPO is feasible, with

the optimal solution either equal to or superior over the existing solution in [117].

�
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6.3 SIMULATION AND ANALYSIS

6.3.1 A case study

A case study is investigated to test and verify the energy efficiency potentials of maintenance time

schedule optimisation. For simplicity, a subset of two retrofitted item groups from a large retrofitting

project is employed as the case study. One item group consists of a series of compact fluorescent lamps

(CFLs) that manifest binary working state. The other group consists of the air conditioner fan coil units,

where three working states are involved. The specifications and some performance characteristics of

the involved retrofitted items are illustrated in Table 6.2. The new fan coil unit 3, 2 and 1 denote the

three working states that correspond with different savings and maintenance costs. The energy saving

and cost saving are the annual average value obtained from the energy auditing. The preventive cost

indicates the costs of restoring a fan coil unit from working state 2 or 1 to the best working state 3.

The corrective cost indicates the costs of restoring one item from failure to normal working. The state

transition and the population dynamics of the fan coil unit group is characterised by the multi state

model in (6.6). The CFL population decay is governed by the statistical law as confirmed in (6.7). The

parameters in (6.6)-(6.7) are given in Table 6.1.

The sustainability period is 10 years, where T = 10. Given that the sustainability period is a very

long time, it is infeasible to wait the actual operation results. Therefore the simulation instead of

the filed test is implemented here. The targeted energy saving is 1,042,237.44 kWh. The initial cost

h0 is $28,692. The minimal cost is $200. The discount rate for NPV calculation is 11% per year,

and the payback period limit is 3 years. In order to investigate the performances of the approach, a

series of scenarios are introduced, where different maintenance budget limits are involved: $35,000,

$39,000, $45,000, $49,500, $55,000, and $60,000, from very tight to sufficient. There are 19 preventive

maintenance instants and 9 corrective maintenance instants. A pair of fixed preventive and corrective

time schedules Qp = {0.5,1,1.5,2, ...,9.5} and Qc = {1,2,3, ...,9} are employed to be the baseline

performances, where the maintenance instants are expected to be evenly distributed over sustainability

period. The adopted weight factors are λ1 = 0.5 and λ2 = 0.5, implying that the two objectives are

equally considered.
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Table 6.1. Parameters for the corresponding population deterioration models

Retrofits µi νi ζ
p
i ζ c

i

15W retrofit CFL 1.1364 0.7746 N/A N/A

New fan coil units 3 N/A N/A 1.2500 0.4545

New fan coil units 2 N/A N/A 0.8333 0.5348

New fan coil units 1 N/A N/A N/A 0.7576

Table 6.2. Characteristics of retrofitted items

Retrofits Quantities Unit Price Unit Energy Unit Cost Preventive Corrective

($) Saving (kWh) Saving ($) Cost ($) Cost ($)

15W retrofit CFL 338 14 105.6 11.9 N/A 14

New fan coil units 3 42 380 4320 486.65 N/A 175

New fan coil units 2 0 380 3542.3 397.95 52 N/A

New fan coil units 1 0 380 2651.75 278.35 70 N/A

6.3.2 Results and analysis

Table 6.3 illustrates the optimisation results as well as the comparative results. The optimal maintenance

time schedule is shown in Table 6.4. The following performances are selected in Table 6.3: the overall

energy savings during the sustainability period (given in kWh), the percentage savings that indicate the

ratios against the targeted energy savings, the IRR, the payback period (given in years), the NPV, the

total maintenance cost and the overall investment (given in USD). The investigated MPO problem is

complicated as there are significant interplays between the decision variables, furthermore, a non-linear

and non-analytic item is involved in the objective function. Due to this complexity, multiple runs with

sufficient iterations are applied to obtain the optimal solutions.

According to Table 6.3, for all six different scenarios, the collaborative optimisation approach outper-

forms the maintenance plan with fixed time schedule. The energy savings from two approaches are

very close, while notable improvements on the economic performances, i.e., the IRR, payback period

and NPV, can be observed. When comparing with the fixed time schedule, the IRR are improved

by from 17.5% to 20.81% (considering the fixed time schedule solutions to be 100%), the payback

period are improved by from 18.03% to 21.03%, and NPV are improved by from 4.2% to 6.9%. The

significant improvements of the economic performances are resulted from its time sensitivity. The
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Table 6.3. Maintenance plan performances with optimal and fixed time schedule and under different

budget limits

Cases Budget Energy Percentage IRR Payback NPV Maintenance Total

limit ($) savings (kWh) saved period (years) ($) cost ($) investment ($)

Optimal time schedule 35,000 1256843.42 120.59% 34.80% 2.1 44926.19 35000 63692

Fixed time schedule 35,000 1254194.99 120.33% 29.26% 2.57 42488.31 34997 63689

Optimal time schedule 39,000 1324389.81 127.07% 35.15% 2.08 46847.46 38991 67683

Fixed time schedule 39,000 1324431.62 127.07% 29.92% 2.63 44961.26 38983 67675

Optimal time schedule 45,000 1443808.05 138.53% 36.45% 2.1 51029.96 44993 73685

Fixed time schedule 45,000 1443137.27 138.47% 30.57% 2.63 48272.56 44994 73686

Optimal time schedule 49,500 1523456.37 146.17% 36.92% 2.08 52872.58 49488 78180

Fixed time schedule 49,500 1507740.41 144.66% 30.69% 2.63 49431.04 49481 78173

Optimal time schedule 55,000 1592895.84 152.83% 36.66% 2.09 53721.8 54983 83675

Fixed time schedule 55,000 1586436.17 152.21% 30.39% 2.65 50545.11 54993 83685

Optimal time schedule 60,000 1628414.85 156.24% 37.18% 2.09 54113.05 59475 88167

Fixed time schedule 60,000 1626898.5 156.10% 30.78% 2.62 50937.89 59285 87977

optimal maintenance time schedule adjust the yearly cash flows that significantly influence the financial

paybacks.

Fig. 6.1 depicts the optimal trajectories during the sustainability period under different budget limits.

The three figures in the first row indicate the population dynamics and the three figures in the second

row indicate the cash flows. Given that one air conditioner fan coil unit contributes much larger energy

and cost savings than one CFL, the budget is firstly used on the maintenance of the fan coil units when

the budget limit is tight. From Table 6.3 and Fig. 6.1, two facts are verified: according to our model,

the evenly distributed maintenance instants and intensities result in higher energy savings, yet the

time schedule optimisation reveals significant economic efficiency potentials comparing with the fixed

maintenance time schedule. Fig. 6.2 depicts and compares the solutions from Table 6.3. Fig. 6.3 shows

the timely energy savings under the three budget limits.

Furthermore, an extra set of six scenarios with same budget limit but 2.5 year payback period limit

are investigated to further identify the advantages of the collaborative optimisation approach. The

payback period limit is relatively tight in the extra six scenarios. Table 6.5 illustrates the corresponding

solutions. According to Table 6.5, when comparing the optimal the fixed time schedule, the energy

savings are improved by from 1.88% to 3.36%, the IRR are improved by from 19.12% to 23.09%. Due
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Table 6.4. Optimal maintenance time schedules (in years)

Time Budget Maintenance Maintenance

schedule limit ($) Number Instants

Qp 35,000 19 {0.4824 1.0000 1.5053 2.0066 2.5504 3.0015 3.5750 4.0005 4.4987

5.0222 5.4288 6.0105 6.4904 7.0005 8.0359 8.3516 8.4361 8.9501 9.5853}

Qc 9 {1.0014 2.0097 3.0001 4.0089 5.0388 6.0175 7.0012 8.0329 9.0041}

Qp 39,000 19 {0.4994 1.0021 1.6362 2.0170 2.4896 3.0686 3.4937 4.0103 4.3531

4.9908 5.4922 6.0241 6.3516 6.9791 7.1393 7.3216 7.9012 9.3183 9.6936}

Qc 9 {1.0035 2.0199 2.7400 4.0174 4.9930 6.0200 6.9680 8.2087 9.0544}

Qp 45,000 19 {0.5639 1.0001 1.4966 2.0033 2.3821 3.0064 3.5911 4.0084 4.4965

4.7379 5.4728 6.0174 6.5339 7.0084 7.1204 8.0067 8.4721 9.0470 9.3255}

Qc 9 {1.0004 2.0000 3.0005 4.0001 5.0186 6.0159 7.0015 8.0001 8.7736}

Qp 49,500 19 {0.1648 1.0001 2.0000 2.0006 3.0023 3.5163 4.0100 4.2250 4.6346

5.0061 5.4174 5.4338 6.0066 7.0042 7.7697 8.2473 9.0150 9.3649 9.6464}

Qc 9 {1.0027 2.0097 3.0000 4.0000 5.0014 6.0000 7.0094 7.9781 8.6827}

Qp 55,000 19 {0.4913 1.0307 1.4698 2.0153 2.4907 3.0012 3.5345 4.0069 4.5019

5.0000 5.4813 6.0190 6.4916 7.0386 7.7634 7.9394 8.4522 8.9935 9.4889}

Qc 9 {1.0364 2.0185 3.0052 4.0074 4.9905 6.0184 7.0390 8.0494 8.9953}

Qp 65,000 19 {0.5011 1.1385 1.4726 2.0539 2.3032 3.1412 3.6526 4.1384 4.5511

5.0707 5.6281 6.3182 6.8380 7.4386 7.8842 8.2963 8.8296 9.3070 9.6213}

Qc 9 {1.0695 2.0515 3.1388 4.1875 5.2676 6.0573 7.1144 8.0477 9.1108}

Figure 6.1. The population and cash flows under the optimal maintenance time schedule with different

budget limit.
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

Figure 6.2. Comparison of the optimal and fixed time schedule solutions. (a) depicts the IRR and

percentage energy savings in six scenarios, each circle indicates a solution from optimal time schedule

and each cross indicates a solution from fixed time schedule. (b) depicts the value of our weighted sum

objective function in six scenarios. Similarly, the circles indicate the optimal time schedule solutions

and crosses indicate fixed time schedule solutions.

Figure 6.3. The timely energy savings over the sustainability period.

to the tight payback period limit, some energy savings are compromised in the fixed time schedule

solutions. This illustrates the further advantage of the collaborative optimisation against the fixed time

schedule when tight constraints are applied.

6.4 CONCLUSIONS AND FUTURE WORKS

In this chapter, the maintenance time schedule optimisation is incorporated into the maintenance

plan optimisation for building energy retrofitting projects. The aggregate energy and economic

performances of the retrofitting project manifest significant dynamics under the joint effects of the item

performance deterioration, item failures and maintenance. Such dynamics is addressed via a control
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

Table 6.5. Maintenance plan performances with optimal and fixed time schedule and tight payback

period limit

Cases Budget Energy Percentage IRR Payback NPV Maintenance Total

limit ($) savings (kWh) saved period (years) ($) cost ($) investment ($)

Optimal time schedule 35,000 1256843.42 120.59% 34.80% 2.1 44926.19 35000 63692

Fixed time schedule 35,000 1216033.51 116.68% 29.22% 2.496 41053.05 34997 63689

Optimal time schedule 39,000 1324389.81 127.07% 35.15% 2.08 46847.46 38991 67683

Fixed time schedule 39,000 1298216.07 124.56% 29.40% 2.49 42957.73 38905 67597

Optimal time schedule 45,000 1443808.05 138.53% 36.45% 2.1 51029.96 44993 73685

Fixed time schedule 45,000 1404030.34 134.71% 29.80% 2.47 45676.87 44983 73675

Optimal time schedule 49,500 1523456.37 146.17% 36.92% 2.08 52872.58 49488 78180

Fixed time schedule 49,500 1482095.11 142.20% 30.03% 2.46 47445.9 49493 78185

Optimal time schedule 55,000 1592895.84 152.83% 36.66% 2.09 53721.8 54983 83675

Fixed time schedule 55,000 1562903.36 149.96% 30.14% 2.496 49031.11 54989 83681

Optimal time schedule 60,000 1628414.85 156.24% 37.18% 2.09 54113.05 59475 88167

Fixed time schedule 60,000 1598405.83 153.36% 30.21% 2.5 49094.4 58883 87575

system framework, where the retrofitted items are categorized into several groups. Each group consists

of items that are considered to be homogeneous, and the item group populations are selected to be

the state variables of the control system. Given that the system states jump under the instantaneous

effect of the maintenance, the performance dynamics is modelled to be an impulsive and switched

system. Both the preventive and corrective maintenance is involved in the control system framework.

Thereafter, the maintenance intensities and instants are simultaneously and collaboratively optimised.

The optimisation aims at maximising the aggregate energy savings and internal rate of return over the

sustainability period subject to the impulsive and switched system dynamics, targeted energy saving

limit, maintenance budget limit and payback period limit. A case study is investigated to test and verify

the effectiveness of the proposed approach. From the simulation results, up to 20.8% of the IRR and

up to 6.9% of the NPV can be improved against the fixed maintenance time schedule under the same

budget limit with relaxed payback period limit (considering fixed time schedule solution to be 100%).

When tight payback period limit is applied, up to 3.36% of the energy savings and up to 23.09% of the

IRR can be improved. Therefore, further energy efficiency and economic efficiency opportunities are

identified via the collaborative optimisation of maintenance intensities and instants over a finite time

period subject to limited budget and manpower.

The current stage work calls for further studies. The number of maintenance instants can deliver
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CHAPTER 6 MAINTENANCE INSTANTS AND INTENSITIES OPTIMISATION

further impacts to the aggregate performances. Incorporating the maintenance time schedule scale

optimisation into the current control system framework will be a focus of our next step studies.
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CHAPTER 7 GROUPING ROBUSTNESS

ANALYSIS

7.1 INTRODUCTION

The building retrofitting and maintenance planning problems is inherently complex as they can involve

multiple time scales and substantial magnitude. A retrofitting plan is usually evaluated on a large

time scale, e.g., 10-15 years. However, the population and performances can manifest significant

changes within 1-2 years depending on the type of the retrofitted items, e.g., the lights [109]. The

performances of the retrofitted items are often evaluated within a short period, e.g., a few days even

several hours. Furthermore, the population of the involved retrofitted items can be so large that it

is very difficult and expensive to evaluate and control each individual item from the perspective of

the decision makers. Therefore, a simplification method, namely grouping, is implemented in the

previous optimisation models to address the above complexity. The retrofitted items are categorised

into several homogeneous groups, where items from the same group are considered to be homogeneous

ones that manifest the same energy and economy performances, furthermore, the homogeneous group

population decreases in a manner consistent with the individual item reliability. The term ‘reliability’

is from the reliability engineering, which specifically refer to the ability of a system or component to

perform its required functions under stated conditions for a specified period of time [140]. In this way,

the overall performances can be evaluated by investigating the homogeneous group population and the

performances of an individual homogeneous item. The grouping has been implemented in some other

management level optimisation problems. Ye et al. [108] implements the grouping to figure out an

optimal metering plan for a large number of lights to achieve the M&V accuracy cost-effectively.

However, grouping is an inherently subjective approach. Different decision makers can have different
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

opinions on how to implement groupings. A question is thereby raised: How will different groupings

influence the performances of the maintenance plan in a maintenance plan optimisation (MPO)? A

kind of grouping based MPO problems are hereby employed as the basis of the discussion. The concept

‘performance robustness’ is hereby introduced to facilitate the evaluation of the impacts from applying

different grouping. For the MPO, performance robustness refers to the ability that the control system

output sustains when an alternative grouping is applied. More specifically, given a set of same retrofitted

items and two different groups, if the results (performances) of an arbitrary maintenance plan based

on one grouping remain accessible when the other grouping is applied, the performance robustness

is satisfied, and the two groupings are considered equivalent. The satisfaction of the performance

robustness provides the decision makers a method to evaluate alternative groupings.

This chapter presents a preliminary study on the robustness of grouping based maintenance plan

optimisation in building retrofitting. A mathematical description of the grouping as well as the grouping

based control system formulation is illustrated. Taking advantage of the open loop performances of a

control system under full maintenance and no maintenance policy, a distance of performance is defined

to evaluate the performances of alternative groupings. Thereafter, a distance of different groupings is

defined within the scope of the retrofitting and maintenance planning (RMP) problems in the building

energy retrofitting context. The distance of grouping provides a criterion to evaluate the similarity of

two alternative groups. Based on the two distances, a theorem is proved to characterise the relationship

of groupings and performances for the RMP problems. A theoretical characterisation of grouping

robustness is given, and a case study is shown for the effectiveness of the characterisation.

7.2 MATHEMATICAL DESCRIPTION OF ITEM GROUPING

7.2.1 What is grouping

The general idea of item grouping is dividing the retrofitted items into several groups. For each group,

instead of investigating the performances of each individual item, a representative item is selected

from the group to indicate the average of the totality of the individual items. The individual items

and the representative item are thereby considered homogeneous. The homogeneous items manifest

same energy efficiency and reliability performances. In this way, the overall energy and reliability
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

performances of the totality of the retrofitted items are evaluated by management level characteristics,

i.e., the population of the homogeneous item group.

Let the information system I= {U,A,{Va|a∈A},{Ma|a∈A}} describe the totality of retrofitted items.

These retrofitted items are assumed to be the same type of facilities, e.g., lights or air conditioners. This

implies that the items can be described by a series of common properties. Let U denote a non-empty

set of finite objects p, i.e., the retrofitted items of the same type. A is a non-empty finite set of attributes

a ∈ A and Va denotes the set of values that attribute a may take. Ma(p) denotes a mapping that assign

a value a(p) from Va to each attribute a and object p, i.e., Ma(p) = a(p). Let .
= denote an equivalence

relation between two objects. Given i 6= j, if ∀a ∈ A,a(pi) = a(p j), then pi
.
= p j, i.e., pi and p j are

homogeneous objects.

Let P(U) denote a grouping method that divides U into several groups, and n the number of groups.

P(U) results in the following n partitions:
I1
...

In

=


U1,A,{Va|a ∈ A},{M̃a|a ∈ A}, p̃1,m1

...

Un,A,{Va|a ∈ A},{M̃a|a ∈ A}, p̃n,mn

 , (7.1)

where Ui∩U j =∅ with i 6= j, and U1∪U2∪ ...∪Um =U. Let Ui = {pi,1, pi,2, ..., pi,mi} and x̃i denote

the representative object for Ui, mi the number of the objects in Ui. Let Ma(p̃i) = ãi, ãi ∈Va. Given

k = 1,2, ...,mi, M̃a(pi,k) denotes a new mapping that assigns ãi to each attribute a and object pi,k ∈ Ui,

i.e., M̃a(pi,k) = ãi. Let4a(pi,k) = ‖a(pi,k)− ãi‖ denote the deviation from a(pi,k) to ãi, where ‖ · ‖ is

defined to be a certain distance. ãi is selected such that ∑
mi
k=14a(pi,k) is minimised. Let∼= denote such

a relation that the two objects are considered homogeneous under the grouping P(U). Given k 6= l, if

∀a ∈ A, M̃a(pk) = M̃a(pl), then pk ∼= pl . According to the grouping method, M̃a(pi,k) = M̃a(p̃i), i.e.,

all objects from the same partition Ui are considered homogeneous. However, there lacks a guarantee

that pk
.
= pl as a(pk) and a(pl) can be different. Additional uncertainty can be introduced when P(U)

is applied to describe U.

7.2.2 Grouping based control system modelling

As aforementioned, the grouping is applied to obtain the control system framework taking account

of the population dynamics of the totality of the retrofitted items. The RMP is accordingly cast into
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

an optimal control problem. The general idea of the control system and optimal control problem

formulation is introduced in this section.

Given a grouping P(U) with n partitions, i.e., n groups of homogeneous retrofitted items. Let x(tk) =

{x1(tk),x2(tk), ...,xn(tk)} denote the respective populations for each group during sampling interval

[tk−1, tk), i.e., x(tk) is the state variable. x0 = {x1(t0),x2(t0), ...,xn(t0)} denotes the initial population

as well as the maximum possible population. According to the common notation of control system,

the notation ‘x’ now refers to the population instead of a single object of an information system I. The

maintenance actions consist of two factors: the maintenance intensities and maintenance instants. The

term ‘maintenance intensities’ indicates the count of the maintained devices during a maintenance

action, and ‘maintenance instants’ indicates the time instant at which a maintenance action takes

place. Let u(tk) = {u1(tk),u2(tk), ...,un(tk)} denote the maintenance intensities at maintenance instant

tk. Given the nature of the maintenance, u(tk) can be considered as a kind of proportional feedback

control, i.e., ui(tk) = ωi(tk)(xi(t0)− xi(tk)), where ωi(tk) denotes a proportion between 0 and 1. A

compact form of the control system can be obtained:
x1(tk+1)

...

xn(tk+1)

=


G1(t,x1(tk),u1(tk))

...

Gn(t,xn(tk),un(tk))

+


d1(tk)

...

dn(tk)

 , (7.2)

where Gi(t,xi(tk),ui(tk)) denotes the population decay formulations for each homogeneous group.

Gi(t,xi(tk),ui(tk)) can be obtained from various resources, e.g., a simplified linear assumption [121] or

experimental data fitting [109], an extension of the equipment reliability function [140] or multi-state

transition model [117]. Uncertainties can be resulted from complicated resources, e.g., sampling,

measurement and modeling efforts. They are inevitable to all these models. di(tk) denotes a set of

random variables that represents the impact of the uncertainties.

In the aforementioned RMP problems, several contradictory considerations that leads to conflicting

objectives can be involved, e.g., maximising energy savings, minimising capital costs, maximising

human comfort, etc. As a result, the control objective is formulated by a weighted sum approach to

take into account multiple objectives in the control system framework. Assuming that s objectives

are involved in the RMP problem. An optimal control problem for the RMP can be formulated as

following: given the initial state x0, find the control law, i.e., the maintenance plan u|t f
t0 over a finite
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

period [t0, t f ) to minimise the following performance index:

J(x0,u|
t f
t0 ),λ1O1(x|

t f
t0 ,P1(x|

t f
t0 ))+λ2O2(x|

t f
t0 ,P2(x|

t f
t0 ))+

...+λsOs(x|
t f
t0 ,Ps(x|

t f
t0 )),

(7.3)

subjects to (7.2) and a series of constraints:

ψ
i
j(x(t f ))≥ 0, j = 1,2, ...,ni

ψ ,

ψ
e
j (x(t f )) = 0, j = 1,2, ...,ne

ψ ,

κ
i
j(t,x|

t f
t0 ,u|

t f
t0 )≥ 0, j = 1,2, ...,ni

κ ,

κ
e
j (t,x|

t f
t0 ,u|

t f
t0 ) = 0, j = 1,2, ...,ne

κ ,

u ∈ [uL,uU ],

(7.4)

where x|t f
t0 = {x(t0),x(t1), ...,x(t f )}, u|t f

t0 = {u(t0),u(t1), ...,u(t f )}, O1(·), ...,Os(·) denote the objective

functions for each single objective,λ1, ...,λn denote the corresponding weighting factors. [uL,uU ]

denotes the boundary of the maintenance intensities u. P1, ...,Ps ⊆ A denote the corresponding

attributes, e.g., the item energy savings that contribute to the overall energy efficiency, the cost savings

that contribute to the overall economic performance, etc.

Taking advantage of the aforementioned grouping method, each single objective Oi(·) and the objective

function (7.3) can be obtained from the group population x|t f
t0 and the representative object attributes ãi

subject to grouping P(U).

7.2.3 Performance evaluation between groupings

Given a grouping P(U), the performances of a maintenance plan u|t f
t0 can evaluated by the single

objectives O1(·), ...,Os(·) according to the objective function formulation (7.3). However, due to the

dynamical nature of the RMP problem, i.e., the optimal control problem (7.2)-(7.4), the performance

evaluation of different groupings is not that straightforward. Different groupings can result in different

state variables and different boundary of the control variables. Furthermore, if two groupings have

different number of partitions, the dimension of the state variables and control variables are different

accordingly. As a result, it is infeasible to find a same maintenance plan to compare the performances

of two groupings.
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

In the aforementioned existing studies, given a fixed set of pre-determined maintenance instants,

namely maintenance time schedule, there are two kinds of baseline maintenance policy: the full

maintenance policy and no maintenance policy [157]. The full maintenance policy indicates that

all failed items are maintained at and only at each maintenance instant. The no maintenance policy

indicates that none of the failed items are maintained at any instant. The full maintenance policy is

intuitive and common in practice. The no maintenance policy can be applied to verify the population

decay model. Both policies are feasible to an arbitrary grouping method.

Hypothesis 1 Given that the full maintenance and no maintenance policies are often selected to be

the baseline maintenance strategies, the performances from full maintenance and no maintenance

policies are considered to be benchmark performances for the grouping robustness investigation. Given

a totality of retrofitted item U and a corresponding RMP problem that is described by the optimal

control problem (7.2)-(7.4). Two alternative groupings P1(U) and P2(U) are applied to formulate

the control systems in this RMP problem. Despite the number of partitions with the two groupings,

i.e., the dimension of the control system, the full maintenance or no maintenance performances of the

same RMP problem subject to the same maintenance time schedule can be compared to evaluate the

performance distance between the two groupings.

Taking advantage of Hypothesis 1 and the objective function formulation (7.3), the performance

distance between two alternative groupings is accordingly defined:

Definition 1 Given a totality of retrofitted items U and a corresponding grouping P(U). An RMP based

optimal control problem is formulated subject to U and P(U) as (7.2)-(7.4) indicate. Let OF
i (P(U))

denote the value of single objective i under grouping P(U) and the full maintenance policy, O0
i (P(U))

denote the value of single objective i under the no maintenance policy. Given two alternative groupings

P1(U) and P2(U), let J(P1(U)) and J(P2(U)) denote their respective performances under the same

maintenance plan. The distance between J(P1(U)) and J(P2(U)) is formulated by the following

equation:

Dp(P1(U),P2(U)), ‖J(P1(U))− J(P2(U))‖

=

√
∑

s
i=1 λi(OF

i (P1(U))−OF
i (P2(U)))2

∑
s
i=1 λi

+

√
∑

s
i=1 λi(O0

i (P1(U))−O0
i (P2(U)))2

∑
s
i=1 λi

(7.5)
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

In general, if ‖J(P1(U))− J(P2(U))‖< ε , where ε is a small enough positive, it can be considered

that the difference between the performance of the two alternative groupings is small, i.e., P1(U) and

P2(U) result in very similar performances on the same RMP problem.

7.3 ROBUSTNESS OF GROUPING IN BUILDING RETROFITTING CONTEXT

In this section, the performance robustness of the grouping method is discussed based on a common

formulation of RMP problems in the building retrofitting context. Such a formulation have been

employed in most of the aforementioned studies. Before the discussion of the performance robustness,

the RMP problem formulation is briefly introduced.

7.3.1 Population decay dynamics modelling

The population decay dynamics modelling is fundamental to the RMP problems. At the current stage,

two population decay models are established for non-repairable items and repairable items. Generally,

building energy appliance are categorised into reparable and non-reparable ones. A repairable appliance

can have multiple minor failures and be repaired before becoming salvaged. Air conditioners, heat

pumps or printers are repairable appliances. A non-repairable item can only experience one catastrophic

failure before the salvage. A replacement is required to remove such failure. CFLs or motion sensors

are non-repairable appliances. The failure rates of the repairable and non-repairable items are usually

different. The population decay dynamics models investigated here are merely a small part of a

broad field of the reliability engineering. There are many other available classifications in different

scenarios, which remain uninvestigated, and consequently many other available models, corresponding

to different categories of retrofitted items.

For the repairable items, an exponential degradation model is investigated to model the repairable

failures in [140] and applied in the studies [157], as shown in (7.6),

x(tk) = x(tk)e−ζ4t . (7.6)

The state space form of (7.6) is

x(tk+1) = x(tk)(1−ζ4t), (7.7)

or in continuous time,

ẋ =−ζ x,
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

where θ denotes the Mean Time between Failures (MTBF) of the retrofitted items, and ζ is calculated

by:

ζ = (θ)−1. (7.8)

It is assumed that such retrofitted items have constant failure rate ζ .

For the non-repairable items, a lighting population decay dynamics that is obtained from experimental

data fitting is employed [109]. A general form of the population decay dynamics model by re-calibrating

existing models established from biological population dynamics study or from reliability engineering

experiments [158] is proposed. The general form of the model is provided in (7.9):

x(tk) =
x0

ν +σeµtk
, (7.9)

where x(t) is the survived devices at time tk for a lighting project, x0 is the initial value, tk is counted

from the implementation of a lighting retrofit project. σ = e−L, where L denotes the rated average

life span of a certain model of the retrofitted item. The rated average life span is declared by the

manufacturer or responsible vendor as being the expected time at which 50% of any large number

of devices reach the end of their individual lives [121]. µ is the slope of decay and ν is the initial

percentage lamp survival at t = 0. Thus, with a given L, ν and µ can be obtained by solving the

following equations: 
x(t0) = x0,

x(L− t0) = 0.5x0,

(7.10)

a state space of (7.9) can thus be obtained:

x(tk+1) = x(tk)−µx(tk)4t +µνx(tk)2/x(t0)4t, (7.11)

or in continuous time,

ẋ = µνx2/x0−µx.

Models (7.6)- (7.11) indicate the system dynamics of the control system (7.2). For repairable items,

the system dynamics is a linear one; for the non-repairable systems, the system dynamics is a quadratic

one. Let 4A denote the deviation of the system parameters, i.e., ζ in (7.7) or µ , ν in (7.11), 4x

denote the deviation of the state trajectory. Obviously, for an RMP problem that is defined over a finite

interval of time, given the same controller, if ‖4A‖< ε where ε is a small enough positive, the control

system with system dynamics (7.7) or (7.11) remains stable, and ‖4x‖ remains small as well.
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

7.3.2 Objective function formulation

For a retrofitting project, the energy efficiency is evaluated by the energy savings against the baseline

energy consumption. The energy savings cannot be directly measured, since they represent the

absence of energy use. Instead, savings are determined by comparing measured use before and after

implementation of a project, making appropriate adjustments for changes in conditions [67, 119]. The

economic performance is evaluated by the net present value (NPV) or internal rate of return (IRR).

The IRR is defined to be the discount rate at which the net present value of cash flows in a retrofitting

project equal zero. The cash inflows mainly come from the cost savings corresponding to the energy

savings, or the incentive policies, if applicable. The cash outflow comes from the retrofitting costs

at the initial stage and the maintenance costs during operation. Obviously, IRR is a non-analytic

indicator. In the previous chapters, IRR is commonly employed to be an objective. As a result, the

evolutionary algorithm based numerical solver is widely employed in these relevant studies. The NPV

is computed based on a discount rate that is pre-determined by the decision maker, it is analytic but

more subjective than IRR. At the current stage, we assume that the objective function is analytic and

smooth for the grouping robustness discussion, therefore, the NPV is employed to be one of the control

objectives.

Taking advantage of a lighting retrofitting project as an example, where a number of lights in an

office building are involved. The modelling of the RMP problem is generally employed from chapter

3. Given that a grouping P(U) results in n lighting groups. The sustainability period is [0,T S). A

series of sampling instants tk with k = 0,1,2, ...,T are evenly distributed over [0,T S) and S denotes the

sampling interval. The state variable x(tk), i.e., the item group population over [tk−1, tk) is represented

by the following equation:

x(tk) = (x1(tk),x2(tk), ...,xn(tk))T . (7.12)

The maintenance intensities u(tk) are accordingly represented by the following equation:

u(tk) = (u1(tk),u2(tk), ...,un(tk))T , (7.13)

subject to the maintenance time schedule Q. Q = {k1,k2, ...,kτ} indicates a collection of the main-

tenance instants. The elements of Q are selected from k = 1,2, ...,T , i.e., the indices of the sampling

instants. These maintenance instants are considered to be commensurate with the sampling instants tk.

According to the time schedule, u(tk) = 0 if k /∈ Q.
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

The objectives are formulated as following:
fe(x,u) =

ES|all

α
,

fr(x,u) =
NPV

h0
,

(7.14)

where fe(x,u) is the energy performance objective and fr(x,u) is the economic performance objective.

ES|all denotes the aggregate energy savings:

ES|all =
T

∑
k=1

ES(x(tk), tk) =
T

∑
k=1

n

∑
i=1

ai(tk)xi(tk), (7.15)

where α is the targeted energy saving amount. ES|all is the overall energy savings subject to the

maintenance plan over the sustainability period. ES(x(tk), tk) is the aggregate energy savings from

the retrofitting project over interval [tk−1, tk), where x(tk) is to emphasise the connection between the

energy savings and the group population, i.e., the system state. ai(tk) denotes the energy savings that

one item from group i contributes over [tk−1, tk). The aggregate cost savings CS|all can be computed

accordingly:

CS|all =
T

∑
k=1

B(x(tk), tk) =
T

∑
k=1

n

∑
i=1

bi(tk)xi(tk), (7.16)

where B(x(tk), tk) denotes the aggregate cost savings, i.e., the cash inflow over [tk−1, tk). bi(tk) denotes

the energy savings that one item from group i contributes over [tk−1, tk). In order to calculate IRR,

the cash outflow must be obtained as well. The cash outflow mainly consists of the maintenance

costs:

h|all = h0 +
T

∑
k=1

h(u(tk−1), tk) = h0 +
T

∑
k=1

n

∑
i=1

ci(tk)ui(tk−1), (7.17)

where h|all denotes the overall capital investments of the project. h0 denotes the initial investment

for the implementation of the retrofitting plan. h(u(tk−1), tk) denotes the aggregate maintenance costs

over [tk−1, tk), where u(tk−1) is applied over the same interval. ci(tk) denotes the maintenance cost

over [tk−1, tk) to restore one failed item from group i to working state. h(u(tk−1), tk) is thereby the

cash inflow over [tk−1, tk). The net present value (NPV) is computed taking advantage of the cash

flows:

NPV =
T

∑
k=1

B(x(tk), tk)−h(u(tk−1), tk)
(1+d)n −h0. (7.18)

Taking advantage of the aforementioned performance indicators, the RMP optimal control problem is

established by a weighted sum approach, where the multi-objective optimisation problem is translated

into a minimisation problem. The objective function is a weighted sum of the objectives. In this way,

the multi-objective problem is converted into a minimisation problem. The performance index is given

in (7.19):

J =−λ1 fe(x,u)−λ2 fr(x,u) (7.19)
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

subject to the system dynamics and the following constraints:

x(tk+1) = G(x(tk))+u(tk),

ES|all ≥ α,

T

∑
k=1

h(tk)≤ β ,

Tp ≤ T ′,

u(tk) = 0, k /∈ Q,

(7.20)

where λ1, λ2 are positive constants, i.e., the weighting factors. The constraints of the RMP problem

include the system dynamics, targeted energy savings α , maintenance budget limit β , payback period

limit T ′, and the pre-decided maintenance time schedule Q. Tp denotes the payback period of the

project, which is the last instant where NPV remains negative. The RMP optimal control problem is

then finding a maintenance plan u subject to pre-decided maintenance time schedule Q and the system

dynamics to minimise the performance index (7.19). The technical details of the MPC controller design

and corresponding numerical solver can be found in the previous chapters and the appendix.

7.3.3 Grouping robustness

Based on the above RMP problem in building retrofitting context, the criteria of the grouping robustness

is hereby investigated. A few assumptions are made before the discussion:

1. Items that are from different types of EE devices cannot be categorised into one group, e.g., a

heat pump and a CFL are distinguished to be two types, for they have different structure of the

population decay models and different common properties, i.e., different types of items cannot

be characterised by one information system.

2. Based on the above assumption, only the robustness of different groupings for a totality of the

same type of retrofitted items is investigated. This suggests that different groupings mainly

result in parameter deviations in the models, e.g., system dynamics (7.7), (7.11), and objective

functions (7.14)-(7.19).

3. Only the performances without the disturbance in the control system are employed to be the

grouping robustness criteria at the current stage.
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

The general idea of grouping robustness can be interpreted as following: if two alternative groupings

are similar according to a certain criterion, the two groupings result in very similar performances on

the same RMP problem under equivalent maintenance plan. The similarity of the performances is

verified by the distance of performances in Definition 1.

The similarity of two alternative groupings is given by the following distance:

Definition 2 Given two alternative groupings P1(U) with n1 partitions and P2(U) with n2 partitions.

The representative objects from the two groupings are indicated by {p̃i
1|i = 1,2, ...,n1} and { p̃ j

2| j =

1,2, ...,n2} respectively. mi
1 and m j

2 denote the number of items from each group respectively. Given

the same totality U, obviously, ∑
n1
i=1 mi

1 = ∑
n2
j=1 mi

2. The two groupings can be described by the same

information system and have a finite set of common properties A with the value space {Va|a ∈ A}.

A and Va comprise a metric space, namely Ā. {p̃i
1} and { p̃ j

2} are considered to be two sets of mass

points in metric space Ā. Let~ri
1 denote the position vector for p̃i

1 and~r j
2 for p̃ j

2, and ‖~ri
1−~r

j
2‖ the

distance between p̃i
1 and p̃ j

2. Assuming that there are l attributes in A, denoted by {a1,a2, ...,al}.

Taking advantage of (7.1),~ri
1 and~r j

2 are thereby defined by the following equation:

~ri
1 = {

∂J(x1,uF)

∂a1
M̃a1(pi

1),
∂J(x1,uF)

∂a2
M̃a2(pi

1), ...,
∂J(x1,uF)

∂al
M̃al (pi

1)}

~r j
2 = {

∂J(x2,uF)

∂a1
M̃a1(p j

2),
∂J(x2,uF)

∂a2
M̃a2(p j

2), ...,
∂J(x2,uF)

∂al
M̃al (p j

2)},
(7.21)

and the mass of such a point p̃i
1 or p̃ j

2 is defined by the following equation:

m̄i
1 = mi

1
∂J(x1,uF)

∂xi
1

,

m̄ j
2 = m j

2
∂J(x2,uF)

∂x j
2

,

(7.22)

where x1 and x2 denote the state trajectory under full maintenance policy uF . xi
1 and xi

1 denote the

state trajectory of state variable xi
1 and x j

2. M̃ak(pi
1) denotes the representative object pi

1’s value of

attribute ak. ∂J(x1,uF )
∂ak

hereby indicates the weights of this attribute. According to sensitivity analysis

theory [159], attribute ak is a more sensitive parameter if ∂J(x1,uF )
∂ak

is larger, i.e., attribute ak is more

important to objective function J(x,u). Taking advantage of (7.21) and (7.22), let p̃1,c and p̃2,c denote

the respective barycenter of the mass point sets { p̃i
1} and { p̃ j

2}, the position vectors of p̃1,c and p̃2,c

can be computed by:

~r1,c =
∑

n1
i=1 m̄i

1~r
i
1

∑
n1
i=1 m̄i

1
,

~r2,c =
∑

n2
j=1 m̄ j

2~r
j
2

∑
n2
j=1 m̄ j

2

.

(7.23)
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

Let d̆i
1 denote the minimal distance between p̃i

1 and all representative objects from P2(U). Similarly,

d̆ j
2 denotes the minimal distance between p̃ j

2 and all representative objects from P1(U), i.e.,

d̆i
1 = min{‖~ri

1−~r
j
2‖, j = 1,2, ...,n2},

d̆ j
2 = min{‖~r j

2−~r
i
1‖, i = 1,2, ...,n1}.

(7.24)

Taking advantage of (7.22)-(7.24), the distance between P1(U) and P2(U) is defined as the following:

Du(P1(U),P2(U)), ‖P1(U)−P2(U)‖

= ‖~r1,c−~r2,c‖+
1

n1 +n2
(

n1

∑
i=1

d̆i
1 +

n2

∑
j=1

d̆i
2).

(7.25)

According to Definition 2, some properties can be more sensitive than the others subject to the form

of the objective function. Such properties are referred to as the ‘important parameters’. For an RMP

problem that is defined by the optimal control problem (7.2), (7.7), (7.11) and (7.12)-(7.20), the

important parameters include the rated MTBF or life span L, the unit energy savings ai(tk), the unit

cost savings bi(tk) and the maintenance cost ci(tk). These parameters are computed from a series of

data, e.g., the baseline consumptions, rated power, operating hour, labor cost, equipment price, energy

price, etc. Some data are relatively irrelevant to the important parameters, e.g., the color of the device,

the noise during operation, etc. The interplay between the data are complicated. In our previous

studies, the important parameters have been extracted from the processed auditing data. Accordingly,

the following discussion only employs the four important parameters to establish the information

system.

Theorem 2 For the RMP problem defined by (7.2), (7.7), (7.11) and (7.12)-(7.20), given two alternat-

ive groupings P1(U) and P2(U). For any small ε > 0, ∃δ > 0, if P1(U) and P2(U) are closed enough,

i.e., ‖P1(U)−P2(U)‖ ≤ δ , then they result in similar performances, i.e., ‖J(P1(U))−J(P2(U))‖< ε .

Proof.

1. n1 = n2:
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

Taking advantage of (7.14)-(7.19), according to the Taylor series, the deviation of the respective

objectives between the two groupings can be converted as the following:

4 f F
e = fe(x0

2,s2,F ,a2)− fe(x0
1,s1,F ,a1)

= fe(x0
1 +4x0

1,s1,F +4s1,F ,a1 +4a1)− fe(x0
1,s1,F ,a1)

= J fe(x0
1,s1,F ,a1)hT +

1
2

hH fe(x0
1,s1,F ,a1)hT +R( fe(x0

1,s1,F ,a1)),

(7.26)

where h = (4x0
1,4s1,F ,4a1), J fe denotes the Jacobian matrix and H fe denotes the Hessian

matrix. R denotes the remainder. s denotes the percentage survival rate of the retrofitted items,

where x = x0s. s1,F thus denotes the open loop percentage survival rate under full maintenance

strategy. Similarly,

4 f 0
e = J fe(x0

1,s1,0,a1)hT +
1
2

hH fe(x0
1,s1,0,a1)hT +R( fe(x0

1,s1,0,a1)),

4 f F
r = J fr(x0

1,s1,F ,a1)hT +
1
2

hH fr(x0
1,s1,F ,a1)hT +R( fr(x0

1,s1,F ,a1)),

4 f 0
r = J fr(x0

1,s1,0,a1)hT +
1
2

hH fr(x0
1,s1,0,a1)hT +R( fr(x0

1,s1,0,a1)).

(7.27)

Generally, it is assumed that the Jacobian and Hessian matrices exist and bounded for the RMP

problem. Given that the RMP problem is bounded by nature, and (7.19) is a simple linear

combination of the state variables, the assumption applies to the investigated RMP problems.

From the above equations and Definition 2, the performance distance is a function of the

parameter deviations in initial population x0, survival rate sF or s0, and model parameters a,

therefore the vector of deviations h is the focus of grouping robustness investigation. Given that:

‖J(P1(U))− J(P2(U))‖=

√
λ14 f F

e
2 +λ24 f F

r
2

λ1 +λ2
+

√
λ14 f 0

e
2 +λ24 f 0

r
2

λ1 +λ2
. (7.28)

Obviously, for any small ε > 0, if |4 f F
e | < 1

2 ε , |4 f 0
e | < 1

2 ε , |4 f F
r | < 1

2 ε and |4 f 0
r | < 1

2 ε ,

‖J(P1(U))− J(P2(U))‖< ε .

From (7.26), given that 1
2 hH fe(x0

1,s1,F ,a1)hT is positive and the remainder R( fe(x0
1,s1,F ,a1))

is trivial, obviously, |J fe(x0
1,s1,F ,a1)hT | < 1

2 ε , therefore, |h| < ε

2|J fe(x0
1,s1,F ,a1)|

. Similarly,

from (7.27), |h| < ε

2|J fe(x0
1,s1,0,a1)|

, |h| < ε

2|J fr(x0
1,s1,F ,a1)|

, |h| < ε

2|J fr(x0
1,s1,0,a1)|

. Let δ ′ denote the

smallest one of the right part of the above inequalities. As a result, |h|< δ ′, thus |4x0
1|< δ ′ ,

|4s1,F |< δ ′ and |4a1|< δ ′.

According to robust control theory [160, 161], for system dynamics (7.7) and (7.11),

it can be considered that |4L| < f (η) if |4s1,F | < η , where f (η) is a bounded func-

tion and limη→0 f (η) = 0. With |4s1,F | < δ ′, |4L| < f (δ ′), and with |4a1| < δ ′,

it is easy to figure out that | 1
n1+n2

(∑
n1
i=1 d̆i

1 + ∑
n2
j=1 d̆i

2)| < f (δ ′) + δ ′. Furthermore,
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

|4x0
1| < δ ′, i.e., ∀i, ∃ j such that ‖mi

1 − m j
2‖ < δ ′. According to Definition 2, ob-

viously, ‖~r1,c −~r2,c‖ = ‖∑
n1
i=1 m̄i

1~r
i
1−∑

n2
j=1 m̄ j

2~r
j
2

∑
n1
i=1 mi

1
‖ < n1δ ′. Therefore, ‖P1(U) − P2(U)‖ =

‖~r1,c−~r2,c‖+ 1
n1+n2

(∑
n1
i=1 d̆i

1+∑
n2
j=1 d̆i

2)< f (δ ′)+δ ′+n1δ ′, i.e., ∀ε > 0, ∃δ = f (δ ′)+δ ′+n1δ ′,

if ‖P1(U)−P2(U)‖ ≤ δ , then ‖J(P1(U))− J(P2(U))‖< ε .

2. n1 6= n2:

Taking advantage of (7.2), (7.7), (7.11) and (7.12)-(7.20), for a group of homogeneous item x

with the initial population x0, it can be divided into l subgroups xi with the initial population

xi
0, x0 = ∑

l
i=1 xi

0. Each xi consists of the same homogeneous items as x. The performances f F
e ,

f F
r , f 0

e and f 0
r of group x can thus be rewritten into a linear combination of the performances of

subgroups xi:

f F
e (x,uF) =

T

∑
k=1

a(tk)xF(tk) = x0

T

∑
k=1

a(tk)sF(tk)

= (
l

∑
i=1

xi
0)

T

∑
k=1

a(tk)sF(tk) =
l

∑
i=1

f F
e (xi,uF)

f F
r (x,uF) =

1
(1+d)n

T

∑
k=1

(b(tk)xF(tk)− c(tk)uF(tk)) =
x0

(1+d)n

T

∑
k=1

(b(tk)sF(tk)− c(tk)ωF(tk))

=
∑

l
i=1 xi

0
(1+d)n

T

∑
k=1

(b(tk)sF(tk)− c(tk)ωF(tk)) =
l

∑
i=1

f F
r (xi,uF).

(7.29)

Similarly,

f 0
e (x,u0) =

n

∑
i=1

f 0
e (x

i,u0)

f 0
r (x,u0) =

n

∑
i=1

f 0
r (x

i,u0).

(7.30)

As a result, x and the summation of xi can be considered as equivalent groupings.

Assuming that n1 < n2. Some groups from P1(U) can be further divided into several subgroups,

each consists of the same homogeneous items. According to above discussion, such a dividing

results in the same performances as the old grouping P1(U). Given that P1(U) is further divided

into n2 groups in this way, i.e., a new grouping P′1(U) with n2 partitions is obtained. Obviously,

‖P1(U)−P′1(U)‖= 0, ‖J(P1(U))− J(P′1(U))‖= 0.
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

Given that both P2(U) and P′1(U) has n2 partitions, taking advantage of proof 1, ∀ε > 0, ∃δ > 0

such that if ‖P′1(U)−P2(U)‖< δ , ‖J(P′1(U))− J(P2(U))‖< ε . ‖P1(U)−P′1(U)‖= 0, there-

fore, ‖P1(U)−P2(U)‖< δ ; ‖J(P1(U))− J(P′1(U))‖= 0, therefore ‖J(P1(U))− J(P2(U))‖<

ε , i.e., ∀ε > 0, ∃δ > 0 such that if ‖P1(U)−P2(U)‖< δ , ‖J(P1(U))− J(P2(U))‖< ε .

�

7.3.4 Case study

A case study is illustrated to investigate the utilisation of Definition 2 in projects. There are totally

3000 compact fluorescent lights (CFLs) in this project. There are five different groupings for the 3000

CFLs, as Table 7.1 indicates. The illustrative parameters in Table 7.1 are the average of the items of

each subgroup. Due to the different operating environment and occupant behaviors, some performance

characteristics of the lights can be different, e.g., the energy savings, cost savings and lifespan (given

in years). The energy savings and cost savings are the annual averages. The unit price indicates the

average cost of purchasing and installing one CFL. The maintenance cost indicates the cost of applying

corrective maintenance, i.e., the replacement to one failed CFL.

In accordance with the groupings, there are five different grouping based system dynamics, each

corresponding to a same collection of CFLs. The five state space formulations are illustrated in Table

Table 7.1. Five different groupings for a lighting retrofitting project

Groupings Quantities Unit Price Unit Energy Unit Cost Maintenance Lifespan

($) Saving (kWh) Saving ($) Cost ($) (MTTF)

Grouping I 1 1910 14 99.5 11.28 14 1.67

Grouping I 2 1090 22 205 23.9 22 1.5

Grouping II 1 1830 13.8 99 11.2 13.8 1.67

Grouping II 2 1200 21.5 199.7 22.75 21.5 1.51

Grouping III 1 1570 14.2 101.5 11.7 14.2 1.69

Grouping III 2 1430 19.7 178.6 20.8 19.7 1.55

Grouping IV 1 1910 14 99.5 11.28 14 1.67

Grouping IV 2 570 22.1 204 23.8 22.1 1.49

Grouping IV 3 520 21.9 205.9 24.02 21.9 1.52

Grouping V 1 3000 17 127.5 13.1 17 1.61
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

Table 7.2. System dynamics of different grouping methods

Grouping System dynamics formulations model parameters

I x1(tk+1) = x1(tk)−µ1x1(tk)+µ1ν1x2
1(tk)/x1(t0)+u1(tk), x1(t0) = 1910, µ1 = 1.1033, ν1 = 0.8118

x2(tk+1) = x2(tk)−µ2x2(tk)+µ2ν2x2
2(tk)/x2(t0)+u2(tk), x2(t0) = 1090, µ2 = 1.1343, ν2 = 0.7769

II x1(tk+1) = x1(tk)−µ1x1(tk)+µ1ν1x2
1(tk)/x1(t0)+u1(tk), x1(t0) = 1830, µ1 = 1.1033, ν1 = 0.8117

x2(tk+1) = x2(tk)−µ2x2(tk)+µ2ν2x2
2(tk)/x2(t0)+u2(tk), x2(t0) = 1200, µ2 = 1.1322, ν2 = 0.7791

III x1(tk+1) = x1(tk)−µ1x1(tk)+µ1ν1x2
1(tk)/x1(t0)+u1(tk), x1(t0) = 1570, µ1 = 1.1002, ν1 = 0.8155

x2(tk+1) = x2(tk)−µ2x2(tk)+µ2ν2x2
2(tk)/x2(t0)+u2(tk), x2(t0) = 1430, µ2 = 1.1242, ν2 = 0.7877

IV x1(tk+1) = x1(tk)−µ1x1(tk)+µ1ν1x2
1(tk)/x1(t0)+u1(tk), x1(t0) = 1910, µ1 = 1.0328, ν1 = 0.8117

x2(tk+1) = x2(tk)−µ2x2(tk)+µ2ν2x2
2(tk)/x2(t0)+u2(tk), x2(t0) = 570, µ2 = 1.1364, ν2 = 0.7746

x3(tk+1) = x3(tk)−µ3x3(tk)+µ3ν3x2
3(tk)/x3(t0)+u3(tk), x3(t0) = 520, µ3 = 1.1301, ν3 = 0.7813

V x1(tk+1) = x1(tk)−µ1x1(tk)+µ1ν1x2
1(tk)/x1(t0)+u1(tk), x1(t0) = 3000, µ1 = 1.1223, ν1 = 0.7899

7.2. Such a state space model employs the population decay of a lamp group that is governed by a

statistical law. The statistical law is obtained from the experimental data fitting [109]. The model

parameters are identified as introduced in chapter 2.

Taking advantage of (7.12)-(7.20), the corresponding RMP problem subject to the system dynamics in

Table 7.2 is established. The sustainability is 10 years. The sampling interval is one month, i.e., the

time period between tk+1 and tk is one month. Thereafter, a finite decision horizon k = {0,1,2, ...,120}

is obtained. The targeted energy saving is 2,139,148 kWh, the budget limit is $150,000. The payback

period limit is 2 years. The weighting factors λ1 = 0.5, λ2 = 0.5. The maintenance actions are
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

Table 7.3. Performances of different groupings

Groupings Cases Energy Percentage NPV Payback Payback Maintenance Total

savings (kWh) saved ( fe) ($) ratio ( fr) period (years) cost ($) investment ($)

Grouping I Full M 3565246.65 166.67% 132726.88 261.69% 2.02 148060 198780

No M 742134.67 34.69% 28851.48 56.88% 1.42 0 50720

Grouping II Full M 3628951.41 169.64% 132983.3 260.48% 2.03 149073 200127

No M 755576.22 35.32% 28920.06 56.65% 1.42 0 51054

Grouping III Full M 3591316.04 167.89% 139893.52 277.21% 1.93 144460 194925

No M 754750.77 35.28% 31044.26 61.52% 1.37 0 50465

Grouping IV Full M 3565773.24 166.69% 133007.1 262.21% 2.02 147861 198586

No M 742832.98 34.73 28945.88 57.06% 1.41 0 50725

Grouping V Full M 3316338.75 155.03% 85321.66 167.3% 2.83 145860 196860

No M 698450.1 32.65% 15805.12 30.99% 1.86 0 51000

scheduled to take place at the end of each year during the sustainability period. Therefore, the

maintenance time schedule Q = {11,23, ...,119}, i.e., when k 6= 11,23, ...,119, ui(tk) = 0.

The performances of the five different groupings are given in Table 7.3. The percentage savings

and payback ratios indicate the value of objective functions (7.14) under full maintenance and no

maintenance policies. Thereafter, the distance of groupings Dp and distances of performances Du

are illustrated in Table 7.4, where Dp and Du are computed according to (7.5) and (7.25). From 7.4,

generally, Dp ∝ Du when Du is small.

From Table 7.3, it is very possible that two groupings result in significantly different performances.

The differences among the groupings I-IV are relatively small. Considering grouping I as the baseline,

grouping II manifests 1.8% more energy savings, and 0.2% more NPV; grouping III manifests 0.7%

more savings and 5.4% more NPV; grouping IV manifests 0.012% more savings and 0.21% more

NPV. From grouping V, 7% less savings and 35.7% less NPV are resulted. The difference between

grouping I and V are much more significant than the differences between other pairs. From Table 7.4,

the distances from grouping I to other groupings are much larger than the distances between other

pairs: the distances are generally proportional to the differences of performances. This indicates the

effectiveness of theorem 2. Furthermore, the relationship between performances and distances reveal a

fact that the difference groupings can cause significant and reasonable differences in the optimization

performances. It is important to compare the performances carefully.
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CHAPTER 7 GROUPING ROBUSTNESS ANALYSIS

Table 7.4. Distances between different groupings

Groupings Distances To I To II To III To IV To V

From I Dp N/A 0.0388 0.2025 0.007 1.2108

Du N/A 3.4862 22.2062 1.0593 74.889

From II Dp 0.0388 N/A 0.2169 0.0414 1.2012

Du 3.4862 N/A 19.4646 4.1411 73.1244

From III Dp 0.2025 0.2169 N/A 0.1954 1.413

Du 22.2062 19.4646 N/A 24.9317 56.8762

From IV Dp 0.007 0.0414 0.1954 N/A 1.2178

Du 1.0593 4.1411 24.9317 N/A 83.7064

From V Dp 1.2108 1.2012 1.413 1.2178 N/A

Du 74.889 73.1244 56.8762 83.7064 N/A

7.4 CONCLUSION

This chapter aims at answering the following question: how does the grouping influence the output of

a grouping based optimisation problem? The purpose of the study is to figure out a kind of groupings

that allow the robustness of the outputs of maintenance plan optimisation in building retrofitting.

According to the definitions, a grouping contributes a set of representative items, each corresponds

to one homogeneous group, and the overall performances of the RMP can be obtained by the group

population and the representative item attributes. Given the optimal control problem formulation of

RMP, alternative groupings can result in the variation of representative item attributes. This results

in a change in the performances of the grouping based control systems. In order to characterise such

a change, a distance of performances is proposed based on the open loop performances under full

maintenance and no maintenance strategies. Thereafter, a distance of two alternative groupings is

further identified to characterise the similarity of the groupings. Taking advantage of the two distances,

a theorem is proved that if two alternative groupings are similar according to a certain criterion, the two

groupings result in very similar performances on the same RMP problem under equivalent maintenance

plan. By computing the distances between two groupings, it is possible to verify the similarity of their

performances. A case study illustrates the utilisation of the criterion.
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CHAPTER 8 CONCLUSION AND FUTURE

WORKS

The dissertation proposes a control system framework to facilitate the investment decision for building

energy retrofitting and maintenance planning. The long-term energy and economy performances of a

retrofitting project manifest significant dynamics due to the joint effects of the retrofitted item failures

and maintenance actions. A basic form of the control system framework is proposed. Thereafter, this

basic framework is improved by taking into account the effects of a series of different maintenance

actions.

8.1 CONCLUSIONS

The established retrofitting plan optimisation model identifies and takes advantage of the system

dynamics at the planning level. The planning level dynamics results from the impacts of the failures

of retrofitted items and the corresponding maintenance. According to M&V principles, failed items

contribute zero energy savings, as a result, the aggregate energy savings in a retrofitting project

vary over time subject to the failures and maintenance of the retrofitted items. Due to the different

specifications of the interventions, some retrofit options appear to be energy efficient at the initial

stage but are actually expensive if taking into account the lost energy savings and maintenance costs.

Therefore, the proposed retrofitting plan optimisation model employs the life cycle cost analysis to

evaluate the long-term energy and economy performances of the interventions.

The planning level dynamics brings in the maintenance planning problem. According to the life cycle

cost analysis for the interventions, the aggregate energy and economy performances of a retrofitting

project can be further improved by optimising the maintenance plan. A grouping method is employed
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CHAPTER 8 CONCLUSION AND FUTURE WORKS

to establish the maintenance plan optimisation model, where retrofitted items are categorised into

several groups that items from the same group are considered to be homogeneous ones. The population

dynamics for each item group can be optimised to achieve desired performances over a specific time

period. The maintenance intensities, i.e., the count of maintained items at a specific time instant,

namely the maintenance instant, are selected to be the decision variables. Given that the maintenance

intensities at latter maintenance instants depend on the effects of the maintenance intensities at the

former maintenance instants, the maintenance plan optimisation problem is identified to be a dynamic

programming problem. Thereafter, a control system modelling can be obtained for the planning level

dynamics, which allows the implementation of control system approaches, e.g., the model predictive

control (MPC). A subproblem of the maintenance planning, namely building retrofitting corrective

maintenance planning, is employed to facilitate the derivation of the control system formulation. The

population of the item groups are selected to be the state variables. The maintenance intensities subject

to pre-decided maintenance time schedule are selected to be the control variables. In the case study,

the optimal maintenance plan results in around 93% of the full maintenance savings and only consume

a very limited maintenance budget, around 69% of the full maintenance strategy.

Thereafter, a series of studies have been conducted to extend the selective state variables and con-

trol inputs. The interacting energy and reliability effects are introduced to develop the corrective

maintenance plan optimisation model into an optimal control problem with coupled state variables.

Further energy savings and financial benefits can be lost if the interacting effects are omitted. In the

investigated case study, it is possible to reach up to 8.9% of the energy saving and up to 9.6% of

the IRR can be improved against the without interaction strategies. Furthermore, the performance

deterioration can take place during operation before the malfunctions. Such deterioration is taken

into account via a multi-state system approach. The effects of preventive maintenance can also be

incorporated into the multi-state system dynamics. The preventive maintenance intensities are selected

to be the control inputs apart from the corrective maintenance, subject to pre-decided preventive and

corrective maintenance time schedules. The preventive maintenance can contribute further savings

when there is performance deterioration. The maintenance time schedule optimisation can also be

taken into account to extend the control variables. The collaborative optimisation of the maintenance

intensities and instants manifest significant energy saving potential in comparison with the fixed time

schedule subject to the budget limit. In the investigated case study, up to 20.8% of the IRR and up to

6.9% of the NPV can be improved against the fixed maintenance time schedule under the same budget

limit with relaxed payback period limit. When tight payback period limit is applied, up to 3.36% of
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CHAPTER 8 CONCLUSION AND FUTURE WORKS

the energy savings and up to 23.09% of the IRR can be improved.

The grouping method is a necessary simplification to allow the selection of state variables and control

inputs. The robustness of the grouping method thereby becomes a problem due to the possible opinions

from decision makers on the way of grouping. In the last part of the dissertation, a mathematical

description of the grouping is illustrated for the grouping based control system framework. Taking

advantage of the open loop performances of a control system under full maintenance and no mainten-

ance policy, a distance of performance is defined to evaluate the performances of alternative groupings.

Thereafter, a distance of different groupings is defined within the scope of the retrofitting and mainten-

ance planning problems in the building energy retrofitting context. The distance of grouping provides

a criterion to evaluate the similarity of two alternative groups. Based on the two distances, a theorem

is proved to characterise the relationship of groupings and performances for the maintenance planning

problems. A theoretical characterisation of grouping robustness is given, and a case study is shown for

the effectiveness of the characterisation.

8.2 FUTURE WORKS

A new perspective to facilitate the building energy efficiency at the planning level has been proposed

in this dissertation. There are many promising research topics under the scope of retrofitting and

maintenance planning. Firstly, there is huge potential to improve the population decay model. The

adopted population decay models are mainly statistical laws, which are quite inaccurate. Furthermore,

the parameter identifications are also necessary in practice. Secondly, the control system modelling

requires further exploration. There are actually many possible plans to select the state variables and

control inputs, each facilitate the implementation of our optimisation model in practice. The theoretical

study are also required to guarantee the performances of the control system. Thereafter, the enormous

methodologies from the control science can be employed to facilitate the building energy optimisation

at planning level. Finally, the uncertainty factors imply a broad field to be incorporated into the

planning level dynamical system. At the current stage, the uncertainty factors are addressed in a very

general way. Actually, some of the uncertainty factors can be identified to be part of the decision

variables, e.g., the emergency maintenance. Some can be address by feed-forward or robust control

mechanism. There are many promising technologies to employ for the uncertainty factors.
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CHAPTER 8 CONCLUSION AND FUTURE WORKS

In summary, the study in this dissertation calls for considerable future studies to bring systematic

approaches from other fields to the building energy efficiency.
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ADDENDUM A DIFFERENTIAL EVOLUTION

ALGORITHM WITH BNFO

A.1 DE ALGORITHM BASED NUMERICAL SOLVER

Generally, the DE algorithm follows the basic procedure of an evolutionary algorithm, including three

mathematical operations as the main steps: Mutation,Crossover and Selection. In common evolutionary

algorithm, a set of candidate solutions, namely individuals, are adopted to represent the possible values

of the decision variables, e.g., x j
i in our model. These individuals are moved around in the search-space

which is regulated by the boundary of the problem. With the iterative search, the DE algorithm can

hopefully, although not guaranteed, discover a satisfactory solution for the problem.

The employed DE algorithm is improved by the binary neighborhood field optimisation method. The

idea of the BNFO method comes from the biological world, where individuals often communicate with

and learn from their neighbors within limited perceptual range. Similarly, the individuals in BNFO

algorithm are mostly affected by the local environment rather than the global one, i.e., each individual

is updated under the concept of ‘learning from the neighbors’ that is following superior neighbors and

diverging from inferior neighbors. The utilisation of the attractive field of the superior neighbor and

the repulsive field of the inferior neighbor in the BNFO method is able to deliver promising results

efficiently within acceptable computational time, thereby reduces the computational cost [115].

The binary coding suggests that the individuals are coded as bit strings. In practice, the optimisation

problem is discrete as x j
i indicates the number of items, which are obviously integers. As a result, the

individuals representing possible x j
i are a collection of integers with number 0 as the lower bound. The

upper bounds are regulated by constraint (2.8). These integers are translated into binary codes, which
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ADDENDUM A DIFFERENTIAL EVOLUTION ALGORITHM WITH BNFO

facilitate the diversity of the candidate solution population and the effectiveness of the Mutation and

Crossover operations. The detailed procedure of implementing DE algorithm with the BNFO method

is illustrated as following [116]:

Initialisation: randomise the initial np individuals, which are sampled uniformly in the search-space;

(i) Localisation: for each individual xi,G at the generation G, find the superior neighbor xci,G and the

inferior neighbor xwi,G in the search-space as
xci,G = arg min

J(xk,G)<J(xi,G)
‖xk,G− xi,G‖ ,

xwi,G = arg min
J(xk,G)>J(xi,G)

‖xk,G− xi,G‖ ,
(A.1)

where J(x) denotes the minimisation problem, i.e., the weighted sum objective function in our models.

‖·‖ denotes the distance evaluation, which is Hamming distance in the present model. xci,G is the

nearest superior neighbor with a smaller function value than J(xi,G) and xwi,G is the nearest inferior

neighbor with a larger function value. If xi,G is in the best individual in the population, xci,G is defined

as xi,G; if xi,G is in the worst individual in the population, xwi,G is defined as xi,G.

(ii) Mutation: perturb each individual as

vi,G = xi,G	 [αr1⊗ (xci,G	 xi,G)⊕αr2⊗ (xci,G	 xwi,G)], (A.2)

to obtain the mutation vector vi,G. 	 denotes ‘XOR’ operator, ⊗ denotes ‘AND’ operator and ⊕

denotes ‘OR’ operator. αr1 and αr2 are random binary integer vectors generated by:αr1 = rand1 < α,

αr2 = rand2 < α,
(A.3)

where rand1 and rand2 are random vectors uniformly distributed in [0,1] and α denotes the learning

rate ∈ (0,1).

(iii) Crossover: recombine the mutation vector with the target vector xi,G:

u j,i,G =


v j,i,G, i f rand(0,1)≤Cr or j = jrand ,

x j,i,G, otherwise,
(A.4)

with j = 1,2, ...,D denoting the dimension index. Cr denotes the crossover probability. rand(0,1)

represents a uniformly distributed random number over [0,1]. jrand denotes the randomly selected

component where the obtained mutant vector is accepted to generate the trail vector.

(iv) Selection: in the next generation, the individual xi,G+1 will be updated as the better one between

xi,G and ui,G:

xi,G+1 =


ui,G, i f J(ui,G)< J(xi,G),

xi,G, otherwise,
(A.5)
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ADDENDUM A DIFFERENTIAL EVOLUTION ALGORITHM WITH BNFO

(v) Go back to step (i) in case the stopping criteria are not satisfied, otherwise stop the algorithm and

let x = xī,Ḡ be the obtained optimal solution, where xī,Ḡ denotes the individual with the lowest function

value, i.e., J(xī,Ḡ)≤ J(xi,G|∀i,∀G).

Remark 1 Existing studies reveals that the improved DE algorithm with the BNFO method manifests

better performances on a series of benchmark numerical problems than many conventional stochastic

optimisation approaches. Thorough investigations and discussions can be found in Wu’s relevant

studies [116, 115].

The pseudocode of the above algorithm is illustrated in Algorithm 1.

A.2 PSEUDOCODE
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ADDENDUM A DIFFERENTIAL EVOLUTION ALGORITHM WITH BNFO

Algorithm 1 Pseudocode of DE algorithm with BNFO method
Definition:

np: the population size;

d: dimension of the problem;

X : the decision matrix with the size of np*d;

J: the function value vector with the size of np*1;

Mg: the maximum number of generations for stopping criterion.

1: BEGIN

2: Set mutation probability Cr and learning rate α;

3: Create a random, binary coded initial population {xi,1|i = 1,2, ...,np};

4: Let xbest = x1,1;

5: while G = 1 to Mg do

6: while i = 1 to np do

7: Locate xi,G in X and obtain its superior neighbor xci,G and inferior neighbor xwi,G;

8: αr1 = rand < α; αr2 = rand < α;

9: v1 = αr1 & xor(xi,G,xci,G);

10: v2 = αr2 & xor(xwi,G,xci,G);

11: vi,G = xor(xi,G, v1|v2);

12: Repair vi,G if it violates the upperbound or lowerbound;

13: Generate jrand = randint(1,d);

14: while j = 1 to d do

15: if j = jrand or rand(0,1)<CR then

16: u j,i,G = v j,i,G;

17: else

18: u j,i,G = x j,i,G;

19: end if

20: end while

21: if J(ui,G)≤ J(xi,G) then

22: xi,G+1 = ui,G;

23: if J(xi,G+1)< J(xbest) then xbest = xi,G+1;

24: end if

25: else

26: xi,G+1 = xi,G;

27: end if

28: end while

29: end while

30: Return xbest ;

31: END
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