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Abstract

In this paper, a fault diagnostic methodology is developed which is able to detect, locate

and trend gear faults under fluctuating operating conditions when only vibration data from a

single transducer, measured on a healthy gearbox are available. A two-phase feature extraction

and modelling process is proposed to infer the operating condition and based on the operating

condition, to detect changes in the machine condition. Information from optimised machine and

operating condition hidden Markov models are statistically combined to generate a discrepancy

signal which is post-processed to infer the condition of the gearbox. The discrepancy signal is

processed and combined with statistical methods for automatic fault detection and localisation

and to perform fault trending over time. The proposed methodology is validated on experimental

data and a tacholess order tracking methodology is used to enhance the cost-effectiveness of the

diagnostic methodology.
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1. Introduction

Condition-based maintenance uses the current condition of the machine as basis for mainte-

nance decisions and can be a cost-effective and more efficient alternative to run-to-failure and

time-based maintenance procedures [1]. Rotating machines, such as gearboxes, frequently oper-
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ate under fluctuating operating conditions due to its varying operating environment (e.g. ground

properties for bucket wheel excavators [2], wind speed for wind turbines [3, 4] etc.). The fluctuat-

ing operating conditions lead to amplitude and frequency modulation [5], phase distortion when

performing computed order tracking [6, 7] and varying signal-to-noise ratios [8] which complicate

the condition monitoring process.

In recent years, machine learning techniques gained popularity in the engineering commu-

nity due to its ability to solve difficult inference tasks such as problems found in the condi-

tion monitoring field [9–14]. Machine learning-based diagnostic methodologies, using supervised

learning approaches, assume that historical fault data, of all relevant damage modes, are readily

available for model optimisation. However, this assumption is rarely realised in industrial ap-

plications, which makes optimising the relevant models difficult. Novelty detection approaches

in the machine diagnostic field, are attractive alternatives to supervised learning approaches,

because the assumption is made that data from a healthy machine are abundant. A model of

the healthy machine data is used to determine whether new data are from a healthy machine or

not. Fernandez-Francos et al. [15] performed novelty detection for bearing diagnostics using a

one-class support vector machine. Heyns et al. [16] used a statistical approach to average linear

prediction models for gear fault detection under fluctuating operating conditions.

Discrepancy analysis is a novelty detection approach that uses a discrepancy measure to

quantify the deviation of newly acquired data from the behaviour of data of a healthy machine.

Heyns et al. [17] generated a discrepancy signal from the envelope of the residual signal obtained

from a forward prediction made by a neural network. Heyns et al. [18] used a Gaussian mixture

model to model the behaviour of a gearbox in a healthy condition. The negative log-likelihood,

also known as the error function [19], was used to generate a discrepancy signal. Heyns et al. [20]

developed a methodology using smart features and machine learning techniques for gearboxes

operating under fluctuating operating conditions. A two-phase feature extraction approach was

proposed using the concept of smart features, which was used to determine the instantaneous

operating conditions and machine condition. Hidden Markov models (HMMs) and Gaussian

mixture models modelled the operating and the machine condition features respectively, with its

information combined using hard classification rules to generate a discrepancy signal. Heyns et

al. [18] proposed synchronous averaging, and Schmidt et al. [21] proposed additional discrepancy
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signal processing techniques which can be used to detect, locate and trend gear damage over the

machine’s operational lifetime.

In this paper, a fault diagnostic methodology is proposed for gearboxes operating under

fluctuating conditions with its process diagram presented in figure 1. It is assumed that only vi-

(a) Training or optimisation process (b) Evaluation process

Figure 1: The optimisation and evaluating processes that are used in the proposed methodology. The following
abbreviations are used: Operating condition (OC); Machine condition (MC); Operating condition feature (OCF);
Machine condition feature (MCF); Principal component analysis (PCA); Continuous wavelet transform (CWT);
Operating condition state (OCS); Hidden Markov Model (HMM).

bration data, measured from a single transducer on a healthy gearbox, are available for optimising

the respective models. Operating and machine condition information are extracted separately

from the order tracked vibration signal and modelled using separate HMMs. Information from

the operating condition HMM is used to optimise a machine condition HMM for each operating

condition state. The operating and machine condition information are statistically combined to

automatically detect the relevance of each machine condition model, which is subsequently used

to generate the discrepancy signal. The discrepancy signal is processed to detect, locate and

trend damage automatically. The discrepancy generation process holds the advantage that the

machine condition can be inferred in the presence of distinct operating condition states such as

idling, full load and for transient states within a measurement. Another major advantage of this

approach is that it does not require historical fault data and it is more flexible and simpler to

implement than physics-based models with the condition being easily inferred from the processed

discrepancy signal.

In this article, x(t) denotes a continuous function, x[t] indicates a scalar at instant t, xt
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indicates a vector or multidimensional feature at instant t and X = [x1,x2, . . . ,xN ] indicates a

multidimensional dataset over the N samples in the considered time period.

2. Proposed methodology

The key steps of the proposed methodology, with its process diagram in figure 1, are motivated

and discussed in this section.

2.1. Order tracked vibration signal

The vibration signal, measured from a transducer on a rotating machine, is best represented

in the angle domain due to the characteristics of rotating machines [22]. The signal is transformed

from the time to the angle domain for example by using the instantaneous phase of the shaft

of interest, acquired from a shaft key, shaft encoder or from using tacholess order tracking

techniques. Tacholess order tracking is suggested here, since it reduces the implementation and

running cost of the fault diagnostic methodology and it can be impractical or even impossible to

install shaft encoders [23]. The order tracked vibration signal is processed further and moving

windows with short angular lengths are applied to extract features from the data which allows

localised changes in the signal to be detected. The angular lengths of the windows, associated

with the machine and operating condition feature extraction processes, are different and discussed

in the subsequent sections.

2.2. Operating condition feature extraction, modelling and classification

Some authors [2, 8, 24] have stated that it is essential to incorporate operating condition

information into the diagnostic process, to ensure that the correct machine condition is inferred

from the data. Operating condition information was incoroporated by Bartelmus and Zimroz [2]

and Zimroz et al. [3] to successfully diagnose the condition of a gearbox in fluctuating operating

conditions. In this paper, it is assumed that the operating conditions cannot be measured directly

and therefore the instantaneous operating conditions need to be inferred from representative

features extracted from the data.

The operating condition feature extraction and modelling process, shown in figure 2, is used

in the methodology to make the discrepancy signal more robust under fluctuating operating

conditions. The operating condition features reflect changes in operating conditions and it is
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Figure 2: The operating condition feature extraction, modelling and state classification process. A tacholess
(rotational) speed estimation process is required when a tacholess order tracking method is used. If the rotational
speed obtained from a tachometer is available, it can be used instead.

expected that similar operating condition features will indicate that similar operating conditions

are present. The operating condition states, at which the operating conditions are similar, are

inferred from an operating condition HMM.

The first operating condition feature is the mean estimated rotational speed within one gear

revolution. The second set of operating condition features are extracted from the spectrogram

of the order tracked vibration signal. The spectrogram, is the squared magnitude of the short-

time Fourier transform, and contains operating and machine condition information. However, if

the operating condition feature windows are made a full gear revolution, it is assumed that the

effects of localised faults will be masked by the mean operating condition and healthy machine

condition effects. The spectrogram features are extracted in narrow bands of 2×k orders around

the gear mesh frequency of the gearbox and its four harmonics, where k = 1 for the fundamental

gear mesh frequency, k = 2 for its first harmonic etc.

The mean rotational speed and the spectrogram features have different magnitudes and the

spectrogram features are expected to have redundant information contained within them. Linear

scaling, is used to transform each feature to a new scale, consistently in the range of (-10, 10),

to ensure that the features are of the same order of magnitude. Linear scaling is performed on

feature x

y =
ymax − ymin

xmax − xmin
(x− xmin) + ymin, (1)

to obtain a scaled representation y, with xmax and xmin obtained from the training set of the
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specific operating condition feature and ymin = −10 and ymax = 10. Principal component analysis

(PCA), is a linear dimensionality reduction technique, which is subsequently used to remove

correlated or redundant information from the multidimensional operating condition feature space

[19, 25].

In PCA, an eigenvalue analysis is performed to obtain the eigenvalues and the eigenvectors

of the covariance matrix of the training feature set. The eigenvalues are used to determine the

information content along the principal axes of the covariance matrix, with larger eigenvalues

indicating that more information is present. Hence the d-eigenvectors associated with the d-

largest eigenvalues, denoted by V 1:d, are used to transform the original D-dimensional feature

space to the d-dimensional feature space with [26]

yt = V T
1:d (xt − µx) , (2)

where x and y are D- and d-dimensional feature vectors and µx is the mean of the healthy

features. The relative information content of the D-principal components, estimated from the

accumulative contribution rate (ACR) [14]

βk =

∑k
i=1 λi∑D
s=1 λs

, (3)

is used as a guideline to determine the appropriate dimensionality of the new feature space. In

equation (3), λi is the ith largest eigenvalue of the aforementioned covariance matrix, and βk

denotes the ACR associated with the first k-principal components.

A Hidden Markov model (HMM) is optimised on the processed operating condition features

from the healthy gearbox. A HMM is a latent variable model which is able to model data

with strong sequential characteristics [19, 27]. A HMM is used because the operating condition

features are expected to contain strong sequential characteristics due to the rotational inertia

of the machine. The latent variable in the operating condition HMM, denoted by zot , follows

a Markov process and is linked to the operating condition features by Gaussian observation

distributions. The HMM parameters are obtained by using the Baum-Welch algorithm [19, 27]

with a maximum likelihood objective function.

The inferred hidden state sequence of the operating condition features, is obtained from the
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Viterbi algorithm [19, 27], and is also referred to as the operating condition state sequence in

this article. The operating condition states cluster similar features together which implies that

similar operating conditions are present if the same operating condition state is present. The

inferred operating condition state sequence is used in the machine condition feature extraction

and modelling phase, considered in the next section.

2.3. Machine condition feature extraction and modelling

Machine condition features are required to be sensitive to changes in machine condition and

need to be fairly insensitive to operating condition changes. The continuous wavelet transform, a

form of wavelet analysis, has been very successful in the fault diagnostic field [13, 28–33] due to its

sensitivity to impulses and singularities induced by damage in the rotating machine components

[34]. The continuous wavelet transform (CWT) in the form of

W (a1, a2) =
1
√
a1

∫ ∞
−∞

x(t)ψ∗
(
t− a2
a1

)
dt, (4)

is used to calculate the wavelet coefficient W (a1, a2) at scale a1 and translation a2 for vibration

signal x and the complex conjugate of the wavelet basis function, denoted by ψ∗. The problem

with the CWT is that it contains much redundant information, as opposed to the discrete wavelet

transform and the wavelet packet transform.

The performance of wavelet analysis is sensitive to the choice of wavelet basis function [28]

with the Meyer basis function being used in this paper, from its performance in the article

by Jedlinski and Jonak [13]. The CWT is evaluated with 20 scales, uniformly spaced with a

bandwidth of 3 orders around the gear mesh frequency of the monitored gearbox and its four

harmonics. The gear mesh frequency contains diagnostic information and is easily calculated for

novelty detection applications. The wavelet coefficients of the 100 scales (20 scales at each of

the five gear mesh frequency bands that are used), are windowed into equal angular windows

from which the machine condition features, listed in table 1, are extracted. The features allow

Table 1: Machine condition features extracted from the windowed wavelet coefficients at each scale.

(1) Energy (2) Skewness
(3) Kurtosis (4) Root-mean-square (RMS)

changes in the characteristics of the wavelet coefficients to be detected. The angular length of the
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machine condition windows are 2π/Nteethrad with an overlap of π/Nteethrad between adjacent

windows, where Nteeth denotes the number of teeth on the gear of interest. The windows are

made sufficiently long to ensure that the features, presented in table 1, are not sensitive to

non-diagnostic related outliers, but are sufficiently short to allow fault localisation.

The four features extracted from the 100 scales, result in a 400 dimensional feature space

which requires many parameters and much training data to be modelled. PCA is applied to the

machine condition features so that the dimensionality of the feature space is reduced by removing

the redundant information or correlated features from the final feature space.

The information from the operating condition classification process is used in the machine

condition feature modelling process to ensure that its prediction is more robust to operating

condition changes. The machine condition model optimisation process is illustrated in figure

3. The operating and machine condition feature extraction processes work on the same signal

Principal  component 
machine condition 

features

Set of machine condition 
models being optimised

Gear revolutions

HMM for OCS 3

HMM for OCS 2

HMM for OCS 1

OCS 3

OCS 2

OCS 1

Figure 3: Machine condition model training process using the machine condition features trained with the operating
condition information, in the form of the operating condition state (OCS) sequence.

and therefore the extracted operating condition states can be used to label the corresponding

machine condition features as well. The idea is to label all the machine condition features

of a revolution to a specific operating condition state and use these features to optimise the

machine condition HMM associated with the operating condition state. It is assumed that the

machine condition features, extracted from the same operating condition state, have similar

characteristics for a healthy system and therefore it makes the output of the machine condition

models operating condition independent. HMMs have been successful in the rotating machine

diagnostics field [9, 31, 35–37] and it provides more discriminatory power than similar alternatives
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such as Gaussian mixture models [37] and Gaussian distributions.

2.4. Discrepancy signal generation

The discrepancy signal generation process is performed for a Nocs-state operating condition

HMM with Nocs machine condition HMMs being used. The discrepancy measure at instant t,

is derived by considering the joint distribution over the machine condition features bt . . . b1, the

operating condition features ot, the operating condition model latent variables zot , the operating

condition model θo and the set of the Nocs machine condition model parameters, {θb}, written

as

p(bt, z
o
t , {θb},θo,ot, bt−1, . . . , b1) =p(bt|zot , {θb},θo,ot, bt−1, . . . , b1)p(zot |{θb},θo,ot)×

p({θb}|θo,ot)p(θo|ot)p(ot)p(bt−1, . . . , b1),
(5)

where the machine condition features at the previous time instants are included because hidden

Markov models are used to model the machine condition features. Note that {θb} contains

the model parameters of each machine condition model j which is denoted by θjb. The model

parameters and the operating condition latent variable are not important for diagnostic purposes

and are as a result marginalised out to obtain

p(bt,ot, bt−1, . . . , b1) =

Nocs∑
j=1

∫∫
p(bt, z

o
tj , {θb},θo,ot, bt−1, . . . , b1)dθod{θb}, (6)

which is used to obtain the conditional distribution

p(bt|ot, b1, . . . , bt−1) ≈
Nocs∑
j=1

p(bt|zotj , θ̂
j

b, b1, . . . , bt−1)p(z
o
tj |ot, θ̂o), (7)

using the conditional independence properties of the random variables and making the assump-

tion that p({θ̂b}, θ̂o) is sharply peaked around the set of estimated machine and operating con-

dition model parameters. The latter assumption is reasonable if much training data are used

[26]. The output from each machine condition HMM is weighted by the posterior distribution of

the operating condition HMM in equation (7). This means that the relevance of each machine

condition model is automatically determined at each time step. Even though discrete latent

states are used for the operating condition HMM, it is expected that as the number of latent
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states is increased, larger operating condition fluctuations can be dealt with. The discrepancy

measure, in the form of

η[t] = − log p(bt|ot, b1, . . . , bt−1), (8)

is evaluated at each machine condition window t to obtain the discrepancy signal. The discrep-

ancy signal describes the deviation of the new data from the healthy machine’s behaviour, given

the inferred operating conditions at each machine condition window. The discrepancy signal con-

tains information related to the gear and the pinion and therefore additional signal processing is

necessary to determine the condition of the gears within the gearbox.

2.5. Processing the discrepancy signals

The impulses and subsequent discrepancies generated by gear damage are synchronous with

the shaft to which the gear is fixed and are non-synchronous with the other shafts on the gear

train. Hence, the synchronous average of the discrepancy signal in the form of

µη[l] =
1

Nr

Nr−1∑
i=0

η[l + iNs], where 1 ≤ l ≤ Ns, (9)

is a useful tool for analysing discrepancy signals [18, 20]. The synchronous average µη[l] at posi-

tion l on the gear is calculated over Nr rotations with Ns samples per rotation. The ability of the

synchronous average to attenuate the non-synchronous components within a signal depends on

the characteristics of the non-synchronous components as well as the number of shaft revolutions,

Nr, that are used [38].

A second synchronous averaging process, over a set of consecutive Nm measurements, is useful

when the number of revolutions is insufficient to attenuate the non-synchronous components [21].

The working principle of the second synchronous averaging process, proposed by Schmidt et al.

[21], is illustrated in figure 4. The synchronous averages of the Nm discrepancy signals are aligned

to have zero relative phase difference to ensure that the synchronous components are retained

in the second synchronous averaging process. The signal alignment can be performed using

tachometers or by using cross-correlation maximisation techniques if a tacholess order tracking

method is used [21]. The second synchronous average can be susceptible to an increased noise

floor if phase estimation errors occur, additional noise are present during the experiments, etc.

This problem can be circumvented by using a bias estimation and subtraction procedure on the
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Synchronous averages of 
measurement N.. to Na + N

Align the N.. measurements so 
that the relative phase difference 

between all of them is zero

Weighted average of the 
N.. measurements to obtain the 
second synchronous average

Start

Figure 4: The second synchronous averaging process performed over a set of Nm measurements, where Na is
initially set to 0. The number of measurement overlap for two averaging processes are Noverlap. The mean and
variance of the Nm synchronous averages are obtained for each unique Na.

second synchronous average to avoid potential false alarms [21]. Note that the bias subtraction

process is only performed when localised damage is present and other methods need to be used

when investigating for distributed damage such as wear.

If the second synchronous average of the discrepancy signal is correctly implemented and

the necessary provisions, such as bias estimation and subtraction, are made, it will only con-

tain diagnostic information. A confidence bound is proposed, using statistical theory, on the

synchronous average of the healthy gearbox to automatically generate an alarm threshold. The

second synchronous average of the healthy vibration signal is estimated using point estimation

methods. Hence, a confidence interval can be created which is expected to contain the true mean

of a healthy synchronous averaged discrepancy signal with 100× (1−α)% confidence. The upper

confidence bound (CB) on the mean of the synchronous average (i.e. the second synchronous

average)

µCB
η [i] = µ(2)η [i] + Tα,Nm−1

σ
(2)
η [i]√
Nm

, (10)

is used as an alarm threshold in this article and is calculated from the Student-t distribution

because the population variance is unknown. The Student-t distribution, with Nm−1 degrees of

freedom , is calculated for a confidence bound of 100× (1−α)% and is denoted by Tα,Nm−1. The

superscript (2), in equation (10), indicates the statistics of the synchronous average obtained

from the second synchronous averaging process. The confidence bound, µCB
η [i], is calculated at

position i on the gear using the sample mean and the sample standard deviation of Nm healthy

measurements and is used with the following criteria

Condition =

 Expected behaviour, if µCB
η [i]− µ(2)η [i] ≥ 0

Novelty is observed at i, if µCB
η [i]− µ(2)η [i] < 0

, (11)
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to infer the condition of the gear at position i.

The gear-pinion discrepancy distribution, proposed by [21], visualises the condition of the two

gears within a single-stage gearbox simultaneously, and it aids with the condition inference pro-

cess. It is calculated directly from the discrepancy signals of the gear and the pinion respectively

and presents the joint discrepancy of a location on the gear and a location on the pinion. The

discrepancy of the gear and the pinion are multiplied and averaged in the calculation process,

which results in a bias in the distribution if localised damage is present [21].

Inferring the condition of the gear is important and if damage is detected it is important

to analyse the stability of the damage growth as well. The second synchronous average of the

discrepancy signal can be examined over time, and then changes in condition can be investigated.

If localised gear damage is present, it is possible to utilise a healthy-damaged portion separation

algorithm as proposed by Schmidt et al. [21]. This holds the advantage that the standard

deviation of the damaged component can also be investigated over time, which is used to critically

investigate the fault growth rate over time. The k-means clustering algorithm, as described in

[19], is used to find two clusters within a second synchronous average. The clusters with the

smaller and larger centres are labelled as healthy and damaged, respectively and trended over

time. The results can be smoothed to reduce the noise content of the healthy and damaged

portion [21].

3. Experimental setup

The developed fault diagnostic methodology is validated on data acquired from an experi-

mental setup shown in figure 5. An electrical motor supplies rotational energy to the system,

where an alternator, connected to a resistor bank, applies a counteracting load. The rotational

Figure 5: Experimental setup

speed of the electrical motor and the load applied by the alternator is controlled through a per-
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sonal computer, which allows fluctuating loads and speeds to be applied. A zebra tape shaft

encoder and an optical probe are located on the input shaft of the monitored gearbox and are

used to measure the instantaneous angular speed of the input shaft of the monitored gearbox.

The axial acceleration was measured on the bearing housing of the monitored gearbox with a

100mV/g tri-axial accelerometer. The experimental data were measured using an Oros OR35

data acquisition system.

The operating conditions, at the input shaft of the monitored gearbox, are presented in

figure 6. The torque in figure 6a was estimated from the voltage and current generated from the
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Figure 6: The experimental operating conditions

alternator and the speed in figure 6b was calculated from the zebra tape shaft encoder tachometer

signal. The operating conditions in figure 6 were chosen to reflect a machine operating between

various operating condition states with a large relative difference between the maximum and

minimum states and are a significant simplification for the operating conditions seen typically in

bucket wheel excavators and wind turbines for example.

After measurements were taken with the healthy gear, the gearbox was disassembled so that

damage could be induced on the healthy gear. This was achieved by seeding a slot into the root

of a gear tooth as shown in figure 7a. The slot was along the entire width of the tooth, was

50% of the tooth thickness deep and it had a height of 0.3mm. The experiment was performed

continuously with regular measurements taken until the damaged tooth completely failed. The

gear tooth failed approximately after 20 days of experiments, with the gear after failure shown

in figure 7b.

13



(a) Before (b) After

Figure 7: The gear before and after the experiment was completed.

4. Results

The proposed methodology is evaluated on the experimental data discussed in the previous

section. The operating condition feature extraction and modelling results are presented and dis-

cussed, whereafter the machine condition feature extraction, -modelling, discrepancy generation

and processing phases are presented and discussed.

4.1. Operating condition state classification

A set of vibration measurements was acquired from a gearbox in a healthy condition, where-

after it was order tracked using the tacholess order tracking method proposed by Schmidt et al.

[39]. Operating condition features were extracted from the order tracked vibration signal, scaled

and transformed to a lower dimension using principal component analysis (PCA) as outlined in

section 2.2. The ACR threshold for the 18 dimensional PCA feature space was set to 0.80, which

resulted in a new feature space with a dimensionality of 5. The first two principal components

of the operating condition features are shown in figure 8a for the training data. The sequential

nature of the data is highlighted in figure 8b, where the first 45 data points are connected. A

Hidden Markov model was optimised with three operating condition states, because it provided

the ideal compromise between model complexity and prediction performance. It should be em-

phasised that if more operating condition states are used, a better resolution is obtained in the

operating conditions. However, there is a risk of rarely visiting a specific operating condition

state, which results in an insufficient amount of training data being available when optimising
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Figure 8: The operating condition principal component feature space of the training data is shown in figure 8a.
The first 45 data points are connected, with the gear revolution at which the coordinates correspond to, shown in
figure 8b.

the associated machine condition model. The inferred operating condition state sequence for the

operating condition features set is superimposed in figure 9 with the corresponding rotational

speed. If the results in figure 9 are compared to the result in figure 8b, it can be observed

0 5 10 15 20 25 30 35 40 45

Gear revolutions [Rot]

1

1.5

2

2.5

3

Rotational speed [Hz]
Hidden state sequence

Figure 9: The operating condition state sequence, inferred by the operating condition HMM, is superimposed on
the rotational speed of the input shaft of the gearbox.

that the coordinates in the PCA feature space correspond to the instantaneous operating condi-

tions. This validates that the operating condition feature extraction, modelling and classification

process works.
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4.2. Machine condition feature extraction, modelling and discrepancy generation

The machine condition features are extracted as described in section 2.3. The first six prin-

cipal components of the machine condition features have an ACR of 0.999491, which indicate

that this captures most of the information content in the data. The processed machine condition

features, with a dimensionality of six, are labelled with the same operating condition state as

the overlapping operating condition features. The three machine condition models are optimised

with the process shown in figure 3.

The model complexity of the machine condition models are determined by evaluating the

likelihood of the machine condition features, from the validation dataset. The model optimisation

may differ for different initialisation points and therefore a statistical analysis is performed.

The average performance and the bound, obtained from the standard deviation, of 20 machine

condition model optimisation runs are compared in figure 10. Note that the machine condition
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Figure 10: The log-likelihood of the training dataset versus the number of hidden states (i.e. model complexity)
for the machine condition models.

model, associated with each operating condition state, has the same model complexity. It is

observed in figure 10 that if more than four hidden states are used for the machine condition

HMMs, the gradient of the performance of the HMM decreases significantly. This indicates

that the model performance starts to saturate, even though the model complexity increases

which motivates using four hidden state machine condition HMMs. A summary of the operating

condition and machine condition model characteristics is presented in table 2.

The discrepancy signal is generated, as described in section 2.4, for the validation data as

well as the new or testing data, and is indicated as the negative log-likelihood (NLL) in the
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Table 2: A summary of the characteristics used in the operating condition (OC) and machine condition (MC)
modelling process.

Model type for Number of Number of hidden Raw feature Processed feature
each model models states per model dimension dimension

OC HMM 1 3 18 5
MC HMM 3 4 400 6

figures. The discrepancy signal from the data of a healthy gearbox and from the data of a

damaged gearbox, with a localised tooth fault, is compared in figure 11. It is observed that the
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Figure 11: The discrepancy signals over gear revolutions of the gearbox, with healthy gears and the gearbox with
the damaged gear, are compared. The full measurement period is shown in (a), while a zoomed view is shown in
(b).

discrepancy signal, associated with the damaged gearbox, contains slightly larger values, but it

is difficult to ascertain the characteristic or cause of the increase. Further processing techniques,

as described in section 2.5, are required to correctly infer the condition of the gears within the

gearbox.

4.3. Discrepancy signal processing results

The results of the processed discrepancy signal are given in this section. It should be noted

that in all subsequent plots containing the discrepancy signal of the damaged gear over a single

gear revolution, the damage on the gear is positioned manually to 180 degrees to make the

comparison easier between different figures.

4.3.1. Synchronous averaging results

The first synchronous average of the NLL calculated from the healthy validation data, denoted

by µv, and the resulting confidence bound from the NLL calculated from other validation data,

denoted by CBv, are superimposed in figure 12. The synchronous average of the NLL of the
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validation data is fairly uniform and does not exceed the confidence bound. If equation (11) is

used, it is observed that the gear is in a healthy condition and this validates that the proposed

method is able to correctly diagnose a healthy gear.
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Figure 12: Synchronous average of the discrepancy signal generated from the validation data (i.e. healthy gearbox
data not used during model optimisation), denoted by µv, and the generated confidence bound, denoted by CBv

which is used as the alarm threshold. In equation (10), α = 10−4.

The synchronous average of the NLL of two datasets, from a gearbox with a damaged gear

during different measurement times, is denoted by µt and is compared in figure 13 to the results

in figure 12. The data of the damaged gear, presented in figure 13a, are from the first set of
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Figure 13: The first synchronous average of the first measurement is shown in 13a and the measurement taken a
week later is shown in 13b of the damaged gearbox and is denoted by µt. It is compared to the confidence bound,
CBv, and the synchronous average of the validation data, µv, that is shown in figure 12 as well.

measurements after the gearbox was reassembled with the damaged gear and the data in figure

13b are from a measurement taken after a week of experiments. It is observed in figure 13a, that
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various portions of the synchronous average of the tested dataset exceed the alarm threshold and

if equation (11) is used, it seems that many novelties are present. This incorrectly indicates that

more than one failure mode is present on the gear. This is an undesirable result, because the

gear is incorrectly represented with the synchronous average in figure 13a.

The synchronous average in figure 13b has improved significantly, since the localised fault at

180 degrees is clearly observed. This is because the damaged have increased between the two

measurements and possibly because the machine components settled to their original position

after the disassembling and reassembling process. However, some portions of the synchronous

average exceed the confidence bound, possibly due to noise etc., which incorrectly represents

the true condition of the gear as well. In the next section, the second synchronous average is

employed to circumvent the aforementioned problems and to obtain the true representation of

the condition of the gear.

4.3.2. Second synchronous averaging results

The discrepancy signals associated with the 20 measurements, that are used in the second

synchronous averaging process, are aligned using the cross-correlation maximisation procedure

proposed by Schmidt et al. [21]. The statistics of the synchronous average (µt and σt) for the

first 20 measurements, obtained from the second synchronous average process, are given in figure

14a. Note that the entire mean, µt obtained from the second synchronous average of the NLL,
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Figure 14: The second synchronous average and the unbiased second synchronous average of the first set of
measurements are compared in this figure to the alarm threshold in the form of a modified confidence bound.

exceeds the alarm threshold, which is undesired. The bias is attributed to cross-correlation errors
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because the damage is not well developed and the presence of noise in the initial measurements

after the disassembling and reassembling process. Hence, this makes it necessary to calculate the

unbiased second synchronous average, with the bias estimation and subtraction process proposed

by Schmidt et al. [21].

The result of the unbiased second synchronous averaging process in figure 14b is a better

representation of the actual condition of the gear. It can be observed that damage is located at

180 degrees, while the other portions of the gear are healthy. Note that the mean of the NLL of

the validation data is subtracted from the NLL of the validation data and the confidence bound

to ensure that the results can be compared. The bias subtraction process is allowed because it is

expected that the bias in the NLL of a healthy gear and of the healthy portions of the damaged

components need to be same. Hence, the unbiased second synchronous average is sensible when

investigating localised damage on a gear and other techniques must be developed if distributed

damage is present on the gear. The result of the second synchronous averaging process of 20

measurements, taken approximately a week after the experiments started, is shown in figure 15.

The unbiased second synchronous average in figure 15 indicates that prominent localised damage
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Figure 15: The unbiased second synchronous average of 20 measurements taken after a week of experiments.

is present on the gear and that the damage evolved from the result in figure 14b.

The unbiased second synchronous average of the healthy pinion is considered in figure 16,

where it is observed that the entire pinion is healthy when compared to the confidence bound.

The results indicate that it is possible to infer the presence of localised damage within a gearbox

automatically, by using the second synchronous averaging process and the confidence bound on

the gear and the pinion discrepancy signals, respectively. The second synchronous average is
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Figure 16: The unbiased second synchronous average of the pinion which is compared to the confidence bound
and the discrepancy signal of the validation data.

significantly smoother than the first synchronous average result which makes it more robust and

less prone to false alarms when inferring the machine condition.

4.3.3. Gear pinion discrepancy distribution

The gear-pinion discrepancy distribution, proposed by [21], is investigated to support the

condition of the gearbox that was inferred in the previous section. The information of the

condition of the gear and the pinion is contained within the discrepancy signal, which is used to

calculate the gear-pinion discrepancy distribution. The gear-pinion discrepancy distribution of

the healthy gearbox and the damaged gearbox is shown in figure 17. It is observed that a fairly
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Figure 17: Gear-pinion discrepancy distribution for a gearbox with healthy gears and a gearbox with a damaged
gear. A localised fault is present on one of the teeth of the damaged gear.

uniform distribution is obtained for the healthy gear and that the distribution, associated with

the gearbox with the damaged gear, clearly indicates the presence of localised gear damage. The
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bias in figure 17b is attributed to the presence of large discrepancies attributed to the damage

within the discrepancy signals of the gear and the pinion as described in section 2.5 and by

[21]. It is concluded from the distribution in figure 17a and 17b, that the pinion is in a healthy

condition.

4.4. Fault trending

The moment damage is detected and located, its severity needs to be estimated. It is difficult

to estimate the severity of the damage in terms of absolute quantities (i.e. dimension of the crack

etc.), however it is possible to compare the discrepancy associated with the damaged portion

to the healthy portion and to determine the stability of the damage evolution by comparing

its value over time. The second synchronous average of the experimental data over normalised

operational time is compared in figure 18. This three dimensional plot indicates the change in
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Figure 18: Second synchronous average of the damaged gearbox over measurement time using 20 measurements
and an overlap of 80% between measurements in the second synchronous averaging process.

damage severity until the failure occurs, which validates that the presented approach is able to

locate and trend damage until the failure occurs. It is often useful to investigate the higher order

statistics, such as the variance, of a sampling distribution as well. This provides more insight into

the deterministic nature of the damage and provides more confidence in the second synchronous

average results. The healthy-damaged portion separation algorithm, proposed by Schmidt et al.

[21], is used with the k-means algorithm to decompose the second synchronous average of the

discrepancy signal into its healthy and damaged portions and is shown in figure 19. It is possible
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Figure 19: Healthy and damaged portion of the discrepancy signal compared over normalised time of the damaged
experiment until the gear tooth failed. The mean µ and standard deviation σ of the healthy and damaged
measurements are denoted by the subscripts h and d, respectively.

to determine the healthy and damaged portions within the discrepancy signal and it is easy to

track the growth in severity of the damage until the time of failure. The results indicate that the

healthy and damaged modes are well separated which indicates that the damage can be detected

sufficiently early to make proper maintenance decisions.

5. Conclusion

The diagnostic methodology, presented in this article, is proposed for gearboxes operating

under fluctuating conditions and is validated on experimental data. It is shown that it is possible

to generate a discrepancy signal which is robust to fluctuating operating conditions and can be

processed to detect, locate and trend gear damage over time. The methodology only requires

healthy vibration data from a single vibration transducer which is placed on a rotating machine

for model optimisation. This overcomes many of the practical limitations of supervised learning

condition monitoring methodologies. The proposed methodology automatically determines the

operating condition states after which the relevance of each machine condition model is automat-

ically determined. The processed discrepancy results are easy and intuitive to interpret which

holds many advantages in the condition monitoring field. The confidence bound and the unbiased

second synchronous average are useful for performing automatic localised damage detection. The

proposed methodology also holds the advantage that it is quite flexible and it can be extended

to include other features which might provide a better performance than the features used in

this investigation.
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The authors envisage that this technique can be applied to machines which operate under

operating condition states which differ significantly such as idling, full power and transient states.

The implications of this is that the methodology will automatically determine, from the data,

the relevance of the machine condition models which are used to generate a discrepancy signal.

This makes the methodology robust to fluctuating operating conditions.

The authors suggest that future investigations, using the methodology, need to be focussed

on data from industrial machines such as draglines, wind turbines etc. Investigations can be per-

formed to have more optimal machine condition features, which can possibly make the method-

ology even more sensitive to changes in machine condition. The current focus is on localised

gear fault detection and it needs to be extended to distributed gear and bearing fault detection,

localisation and trending. This will have a positive impact on condition monitoring in many

industrial environments such as the mining, energy and aeronautical industries.
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