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ABSTRACT
The objective of this study was to apply the Immersed Bound-

ary Method with the Virtual Physical Model to study external
compressible flows. The Immersed Boundary methods have been
increasingly used to model flows with submerged objects, partic-
ularly when they are in movement or deformation. These meth-
ods use independent grids to represent the domain and the im-
mersed bodies. The domain is represented by an Eulerian mesh,
whereas the 2D immersed body is represented by a set of points,
which is called Lagrangian mesh. The no-slip condition is en-
forced by the force field introduced into the momentum equa-
tion. Another advantage of this approach is that the drag and lift
forces can be calculated directly by using the Lagrangian force
field. In the Virtual Physical Model, the force is first obtained
in the Lagrangian grid by using the conservation laws and then
is distributed to the Eulerian grid. In the present work, a non-
uniform Cartesian grid and a central finite volume scheme with
second order accuracy were used in the spatial discretization of
the Navier-Stokes equations. The Euler method was applied for
time discretization. Subsonic flows were simulated over a circu-
lar profile with adiabatic walls for different Reynolds numbers.
Supersonic shock wave reflection problems were also simulated.
Relevant parameters such as drag and lift forces, Strouhal num-
ber and pressure distribution were compared with numerical and
experimental results from literature. In addition, this study was
carried out using OpenFOAM program, seeking to validate the
methodology and the in-house CFD code developed in this work.

INTRODUCTION
Many researchers have been interested in studying flows over

immersed bodies due to their different applicabilities. The Im-
mersed Boundary Method (IBM), proposed by Peskin [1], was
first developed to be applied in the modeling of elastic bound-
aries immersed in incompressible viscous flows. In this method-
ology, the conservative equations are solved by using an Eulerian
grid that represent the whole domain, and a Lagrangian grid is
used to represent the immersed body. The effect of the immersed
body is felt through a force field f added to the momentum equa-
tions acting on the interface region and its neighborhoods. Later,

NOMENCLATURE

c [m/s] Speed of sound
CFL [-] Courant number
Cd [-] Drag coefficient
Cl [-] Lift coefficient
cp [J/kgK] Heat capacity at constant pressure
D [m] Diameter of the cylinder
Di j [m−2] Distribution/interpolation function
e [J/kg] specific total energy
f [N/m3] Eulerian Force vector
F [N/m3] Lagrangian Force vector
I [-] Indicator function
k [W/mK] Thermal conductivity
Ma [-] Mach number
MM [g/mol] Molar mass
NP [-] Number of Lagrangian points
p [Pa] Pressure
Pr [-] Prandtl number
qx [W/m2] Heat flux by conduction in x direction
qy [W/m2] Heat flux by conduction in y direction
Re [-] Reynolds number
St [-] Strouhal number
t [s] time
T [K] Temperature
U [m/s] Vector velocity in Cartesian mesh
u,v [m/s] Velocity components in the x and y directions
x [m] Vector position in Cartesian mesh
x,y [m] Cartesian axis directions

Special characters
ρ [kg/m3] Density
γ [-] Heat capacity ratio
κ [W/mK] Thermal conductivity
ψ [-] Non-dimensional time
µ [Pa s] Dynamic viscosity
θ [-] angle
τ [N/m2] Viscous stress tensor
∆x,∆y [m] Cell dimensions in x and y directions
∆s [m] Distance between Lagrangian points

Subscripts
∞ Undisturbed flow
min Minimum value

different IBM approaches have been suggested in literature, such
as cut-cell method [2] and the ghost-cell method [3]. The cut-cell
approach involves truncating the Cartesian cells at the boundary
surface to create new cells which conform to the shape of the
surface. In ghost-cell approach, a ghost zone is introduced near
the boundaries and within the solid body.

At the present work, the Immersed Boundary Method (IBM)
and the Physical Virtual Model (VPM) [4] were used to study
external compressible flows in subsonic and supersonic regime.
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The VPM, which is a model to calculate the Lagrangian force F
on the immersed body, was initially developed for incompress-
ible flows, and in the present work was extended to compressible
flows.

A numerical C++ code named Compressible Virtual Physical
Model (CVPM) was developed to solve the compressible Navier-
Stokes equations (NSE) in a Cartesian grid. This in-house code
is based on the IBM/VPM to model the immersed objects. The
studied cases were also simulated using the OpenFOAM pro-
gram (OF) which uses adaptive grids to solve external flows mak-
ing it a good alternative to validate comparing the results. Liter-
ature data were also used in validations.

MATHEMATICAL MODEL
The compressible, two-dimensional Navier-Stokes equations,

mass, momentum and energy can be written in Cartesian coordi-
nates as:

∂Q
∂t

=−∂F
∂x
− ∂G

∂y
+

∂Fv

∂x
+

∂Gv

∂y
+ f (1)

where:

Q =
∣∣ρ ρu ρv ρe

∣∣T (2)

F =
∣∣ρu ρu2 + p ρuv u(ρe+ p)

∣∣T (3)

G =
∣∣ρv ρuv ρv2 + p v(ρe+ p)

∣∣T (4)

Fv =
∣∣0 τxx τxy uτxx + vτxy−qx

∣∣T (5)

Gv =
∣∣0 τyx τyy uτyx + vτyy−qy

∣∣T (6)

f =
∣∣0 fx fy 0

∣∣T (7)

In vector Q, there are conservative quantities in its intensive
forms: mass, momentum and energy; thus the term on the left of
equation (1) represents its rates of change with time. Vectors F
and G are terms of advective transport of these variables, and Fv
and Gv are terms of diffusive transport. τi j are the components of
the viscous stress tensor. By considering the fluid as Newtonian
and non-polar, and the Stokes hypotheses the terms of the viscous
stress tensor can be calculated as:

τi j = µ
(

∂U j

∂xi
+

∂Ui

∂x j

)
− 2

3
µ

∂Ui

∂xi
δi j (8)

In equations (5) and (6), qx and qy are the conduction heat flux
in each coordinate that conforms to Fourier’s law.

The system of equations becomes complete by using a state
law for the fluid considered as an ideal gas:

p = ρ(γ−1)
(

e− u2 + v2

2

)
, (9)

Mathematical modeling of the Immersed Boundary
Two meshes are used in IBM named Eulerian and lagrangian

meshes. In the Eulerian mesh, the discretized governing equa-
tions are solved and the Lagrangian mesh is used to repre-
sent the immersed boundaries. The Lagrangian grid for a two-
dimensional flow is formed by a set of points called Lagrangian

points. These points are represented by the subscript k, so its
position is vector xk.

In the VPM approach, the force field F(xk, t) which complies
with the conditions of non-slip and non-penetration of fluid, is
calculated using the conservation laws. The Lagrangian force
F is then distributed to the Eulerian mesh through a distribution
function D (Eqs. 16, 17 and 18).

Using the momentum equations for compressible flows in the
x and y directions, respectively, the components Fx (xk, t) and
Fy (xk, t) can be calculated at a Lagrangian point xk as:

Fx (xk, t) =
∂ρu
∂t
−
(
−∂ρu2

∂x
− ∂ρuv

∂y
− ∂p

∂x
+

∂τxx

∂x
+

∂τxy

∂y

)
(10)

Fy (xk, t) =
∂ρv
∂t
−
(
−∂ρuv

∂x
− ∂ρv2

∂y
− ∂p

∂y
+

∂τyx

∂x
+

∂τyy

∂y

)
(11)

All terms of equations (10) and (11) are determined by the
interpolation of variables from the Eulerian grid, in a xk position,
at each instant of time t.

NUMERICAL METHOD
The terms of pressure gradient and inertia of the NSE are

spatially discretized by using central finite volume scheme with
second order accuracy named KT method [5]. An interpolation
scheme using the minmod flux limiter [5,6] is applied to prevent
the oscillations that occur when second order schemes are used
for the NSE discretization in regions with shock, discontinuities
or severe gradients. Viscous terms are discretized using central
finite differences. The time integration was made explicitly by
using first order Euler’s method. The time step (∆t) is limited by
the Courant number (CFL), using the following condition:

CFL = max
(
|u|+ c

∆x
+
|v|+ c

∆y

)
(12)

where c is the local speed of sound.

Lagrangian and Eulerian forces calculation - CVPM
Equations (10) and (11) are solved on the Lagrangian points

using interpolation schemes. For example, the terms ∂ρu
∂t and ∂ρv

∂t
are responsible to enforce the fluid velocity as close as possible
to the velocity of the immersed boundary. For this, these terms
are calculated as:

∂ρu
∂t

(xk, t) =
ρ(xk, t)uIB (xk, t)−ρ(xk, t)u(xk, t)

∆t
(13)

∂ρv
∂t

(xk, t) =
ρ(xk, t)vIB (xk, t)−ρ(xk, t)v(xk, t)

∆t
(14)

where uIB (xk, t) and vIB (xk, t) are the Lagrangian velocities in x
and y directions, respectively. ρ(xk, t), u(xk, t) and v(xk, t) are
calculated using the interpolated values from the Eulerian Carte-
sian grid. In the case of stationary body, the Lagrangian velocity
of the boundary is zero.

In equations (10) and (11), the terms in brackets are the same
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that appear on the right of equality in the momentum conserva-
tion equations in directions x and y, respectively. So, these terms
can be calculated by interpolation from the spatial discretization
of the momentum equation. After Fx (xk, t) and Fy (xk, t) being
calculated in all Lagrangian points, these forces are distributed
to the Eulerian mesh, producing a force field (f) which is the
source term of the NSE.

The interpolations from the Eulerian mesh are made using a
distribution/interpolation function proposed by Peskin [1] and
modified by Unverdi and Tryggvason [7]. For example, the value
of the density in xk can be interpolated from the Eulerian mesh
using the following equation:

ρ(xk, t) =
Nx,Ny

∑
i=1, j=1

D(xi, j−xk)ρ(xi, j, t)∆x∆y (15)

D(x−xk) is the distribution function, which is calculated as the
following equation:

D(x−xk) =
g(rx)g(ry)

h2 (16)

g(r) =


g1 (r) i f ‖r‖< 1

1
2 −g1 (2−‖r‖) i f 1 < ‖r‖< 2

0 i f ‖r‖> 2
(17)

where:
g1 (r) =

(
3−2‖r‖+

√
1+4‖r‖−4‖r‖2

)
/8 (18)

rx and ry are (xi− xk)/h and (yi− yk)/h, respectively. h is the
Eulerian grid size.

After the calculation of the force field in each Lagrangian
point, the force is distributed to the Eulerian mesh, using the
same distribution function D(x−xk) presented above. The Eu-
lerian force field (f) is obtained according to the following equa-
tion:

f(x, t) =
Np

∑
k=1

D(x−xk)F(xk, t)∆s∆s (19)

where ∆s is the distance between two Lagrangian points. The
force field is effective only up to distance 2h and it has maximum
intensity on the interface, according to the distribution function
adopted.

An indicator function, I (x, t) [7] allows the visualiza-
tion/localization of the body. This function has value 0 outside
the interface, value 1 inside the body and intermediary values on
the interface. Since the present study aims to simulate adiabatic
boundary, thermal conductivity was neglected inside the body
using the indicator function to locate the cylinder. In the future
an improvement for this process will be performed.

The drag and lift forces are obtained directly from the La-
grangian force through the integration on the interface.

RESULTS
The CVPM code was applied to study four problems involv-

ing two-dimensional flows over an isolated cylinder. In all these
cases, the following gas properties are considered: molecular

weight MM = 28.96 g/mol, heat capacity ratio γ = 1.4 and
Prandtl number Pr = 0.71. The initial conditions are pressure
p = 105 Pa and density ρ = 1.4 kg/m3. The velocity of the
undisturbed flow (u∞) is calculated from the Mach number at the
infinite (Ma∞). In all studies a 1m diameter cylinder was consid-
ered. Reynolds number is calculated using the cylinder diameter.
The viscosity of the gas is determined in each case to obtain the
desired Re∞.

Some of the simulations carried out with the CVPM code were
also simulated using OpenFOAM. In OF the application rho-
CentralFoam was used. It is a density based solver which uses
the same discretization method [5] used in present work. The
time integration is done implicitly through the first order Euler
method. In the simulations with OF, an adaptive mesh was used
and the VanLeer flux limiter [6] was applied.

The CFL number for all the simulations using the CVPM code
is equal to 0.02, whereas the CFL number for all the simulations
using OF is equal to 0.2. This low CFL requirement is due to the
CVPM method.

Subsonic flow over an isolated cylinder
The results of subsonic flow over an isolated cylinder were

obtained with both codes, CVPM and OF. For all these simula-
tions, Ma∞ = 0.3 and Re∞ is equal to: 40, 80, 150 and 300. The
domain is rectangular and its dimensions are 60D and 50D in the
x and y directions, respectively. The cylinder center is located at
x = 22D and y = 25D.

Depending on the direction of the velocity vector in each cell,
the boundaries are treated as inlets or outlets. At the inlets, the
Dirichlet boundary conditions are applied for temperature and
velocities and the Neumann boundary condition for pressure. At
the outlets, the Dirichlet boundary conditions are applied for
pressure and the Neumann boundary condition for temperature
and velocities. The instantaneous results are shown as a function
of non-dimensional time ψ = tU∞/D.

Two different grid refinements were used with the CVPM
code. The maximum level of refinement of the meshes were
equal to ∆xmin = D/80 and ∆xmin = D/40, with a total number of
cells of 141,360 and 79,488, respectively. In figure 1 the coarse
mesh with 79,488 cells is shown.

The OpenFOAM simulations were done using an adaptive
mesh. The local maximum refinement is equal to D/80 over the
cylinder and the total number of cells is 132,516. This mesh was
built using the snappyHexMesh tool.

Symmetrical bubbles occurred on the flows at Re∞ = 40. Fig-
ure 2 shows some geometrical parameters of the bubbles formed
behind the cylinder. In Table 1, the results are shown for the
simulations at Re∞ = 40 together with some data from literature
[4,8,9]. The computed geometrical properties of the symmetrical
vortices agree quite satisfactorily with the literature specially the
value b/D and the angle θ.

Table 2 summarizes some results obtained for simulations
with Re∞ equals 80, 150 and 300 using the CVPM code, Open-
FOAM and from literature. The lift and drag coefficients have
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Figure 1. Coarse mesh with maximum refinement equal to
∆xmin = D/40 and a total number of cells equal to 79,488.

Figure 2. Relevant geometrical parameters of the symmetric
separation region behind the cylinder. Source: [8].

Table 1. Bubble parameters and drag coefficient obtained with
CVPM and OF codes, and simulations from literature at Re∞ =
40.

L/D a/D b/D θ(◦) Cd

CVPM ∆xmin = D/40 2.62 0.97 0.84 51.4 1.63

CVPM ∆xmin = D/80 2.47 0.77 0.62 52.6 1.62

OF ∆xmin = D/80 2.34 0.75 0.61 52.6 1.58

[4] (Numerical) 2.54 - - - 1.49

[8] (Numerical) 2.28 0.72 0.60 53.8 1.55

[9] (Experimental) - - - - 1.58

been time averaged over a number of shedding cycles. The
computed Strouhal number based on the shedding frequency, f
(St = f D/U∞) is also presented. The numerical results agree
well with the experimental and numerical data from the litera-
ture. For Re∞ = 300, the results are found to be in reasonable
agreement due to the three-dimensional effects presented. When
the refinement level is increased the results obtained with CVPM
are closer to the results obtained with OpenFOAM.

Higher drag coefficients in the solutions obtained with the
CVPM may be seen. This may be explained by considering
that a compressible code was used to simulate the incompress-
ible case (Ma∞ ≤ 0.3). The influence of the Mach number on the
drag coefficient for these flows should be better investigated. All

the presented reference data were obtained with incompressible
codes and the results obtained with the OF also have higher drag
coefficient when compared with literature.

In figure 3, the non-dimensional temperature (T/T∞) field ob-
tained for Re∞ = 150 is shown. The maximum value is ap-
proximately 1.025, showing that at Ma = 0.3, the flow displays
slightly compressible regime.
Table 2. Cd , Cl and St for Re∞ equals 80, 150 and 300 flows.

Re∞ Cd Cl St

80

CVPM ∆xmin = D/40 1.49 ±0.27 0.15

CVPM ∆xmin = D/80 1.45 ±0.26 0.15

OF ∆xmin = D/80 1.42 ±0.24 0.15

[4] (Numerical) 1.40 ±0.25 0.15

[10] (Experimental) - - 0.15

150

CVPM ∆xmin = D/40 1.44 ±0.56 0.18

CVPM ∆xmin = D/80 1.43 ±0.53 0.18

OF ∆xmin = D/80 1.40 ±0.55 0.18

[4] (Numerical) 1.37 ±0.41 0.18

[10] (Experimental) - - 0.18

300

CVPM ∆xmin = D/40 1.57 ±0.89 0.20

CVPM ∆xmin = D/80 1.53 ±0.98 0.21

OF ∆xmin = D/80 1.45 ±0.89 0.21

[10] (Experimental) - - 0.22

Figure 3. Non-dimensional temperature field obtained with
CVPM for Re∞ = 150 using the finest mesh with ∆xmin = D/80.

Flow over a rotating cylinder
The flow over an isolated rotating cylinder at Re∞ = 200 and

Ma∞ = 0.3 was simulated using CVPM and OF codes. In this
study, the same mesh refinement and the same initial conditions
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of the previous case were used. The angular velocity of the cylin-
der is 0.3 rad/s, so its peripheral velocity is equal to u∞/2.

In figure 4, the streamlines are shown for two different instant
of time. The experimental results from literature [11] are also
presented. The position and size of the recirculations are very
well compared.

Figure 4. Streamlines obtained with CVPM (right side) for the
rotating cylinder at ψ= 1.5 (top) and ψ= 3.5 (bottom). Left side
experimental results [11].

In table 3, some parameters obtained for the rotating cylinder
case are shown together with the reference data. Strouhal number
compared well with both reference values. The drag is almost 4
% higher than the incompressible case [12]. The lift coefficient
is very close to the result using OF code, but it was 7% lower
than the incompressible simulation. In addition, it is known that
compressible solvers when running under incompressible flow
conditions (i.e. using low Mach numbers without corrections or
preconditioning) do not provide the same aerodynamic quantities
when compared to incompressible solvers. These results provide
some guidelines and error estimates that quantify these differ-
ences and may need to be considered when running compressible
solvers at incompressible flow regimes [13].
Table 3. Parameters obtained for the simulations of subsonic
flow over an isolated rotating cylinder.

Cd Cl St

CVPM ∆xmin = D/80 1.40 1.09 0.19

OF ∆xmin = D/80 1.37 1.11 0.19

[12] (Numerical) 1.35 1.17 0.19

Supersonic flow over an isolated cylinder
Flows at Ma∞ = 3 and Re∞ = 500 were modeled using CVPM

and OF. The maximum level of refinement of the meshes is
∆xmin = D/100, and the total number of cells is 146,880 and
141,126 for CVPM and OpenFOAM respectively. Is is a retan-
gular domain having 30D and 40D in the x and y directions, re-
spectively. The center of the cylinder is located at x = 1.6D and
y = 20D. For supersonic flows, the Dirichlet boundary condi-

tions were applied for all variables on the left boundary, which
is a supersonic inlet. For all the other boundaries, the Neumann
boundary conditions were used.

The results are shown in non-dimension time equal to ψ = 15,
when the steady state is achieved. The drag coefficients obtained
with CPVM and with OF codes are 1.43 and 1.45, respectively.
Figure 5, shows the pressure distribution obtained from a hori-
zontal line passing through the cylinder center. The proximity
between the pressure curves may be observed. There is a high
gradient of pressure across the interface. Due to this gradient,
it is difficult to determine the properties of the fluid at the in-
terface. Temperature and density gradients also have the similar
behavior.

Figure 5. Pressure curves obtained for the flow at Ma∞ = 3 and
Re∞ = 500. The dashed lines represent the position of immersed
boundary.

Figure 6 presents Mach contours obtained with CVPM code.
The symmetry of the flow can be seen. The solution also presents
a fewer degree ripples in the shock region.

Figure 6. Mach number contours obtained with CVPM code.
Ma∞ = 3 and Re∞ = 500.

Shock wave diffraction over an isolated cylinder
In this problem, the diffraction of a plane shock wave at Ma =

2.81 over an isolated cylinder was studied. The square domain
has dimension of 8D. The center of the cylinder is located at
x = 2.25D and y = 4D. The plane shock wave propagates in the
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positive x direction, and at the beginning it is at x = 0. Reynolds
number is equal to 103, and its calculation is done by taking the
properties of the fluid in the shock wave region and the cylinder
diameter.

A uniform Cartesian grid with 360,000 cells was used for
modeling of this problem. The boundary conditions were the
same as in the previous case. In the left boundary shock wave
properties were imposed.

Non-dimensional density contours (ρ/ρ∞) obtained by using
the CVPM code at time t = 3 · 10−3 s are shown in figure 7.
Experimental result from literature [14] is also presented.

Figure 7. Non-dimensional density contours obtained by using
the CVPM code at time t = 3 ·10−3 s.

Figure 8. Non-dimensional density contours. Solid lines: ex-
perimental; dashed lines: Numerical. Source: [14].

The density field obtained by using CVPM code was very
close to the experimental one [11]. This shows the capability
of the method to simulate shock wave diffraction problems.

CONCLUSIONS
In this work, compressible laminar flows over a isolated cylin-

der were simulated using CVPM. Flows at Mach number rang-
ing between 0.3 and 3 were studied. Good results were obtained,
showing the CVPM ability to model flows in subsonic and super-
sonic regime. Parameters as the drag coefficient, lift coefficient
and the Strouhal number were assessed and validated with litera-
ture data. The CFL number in the simulations had to be limited to
0.02 to use CVPM code. It is concluded that the CVPM is a sim-
ple implementation code which produced satisfactory results for
compressible laminar flows over stationary and moving bound-

aries, however the computational cost is high due to limitation in
the CFL number.
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