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Abstract
We obtain Edelstein-Suzuki type theorems for multivalued mappings in compact b-metric spaces. Moreover, we prove the

existence of coincidence and common fixed points of a hybrid pair of mappings that satisfies Edelstein-Suzuki type contractive
condition. We present some examples along with a comparison with results in existing literature. In the end, we present some
corollaries in the metric spaces with applications in best approximation theory. c©2017 All rights reserved.
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1. Introduction

Let (X,d) be a metric space and CB(X) a collection of nonempty closed and bounded subsets of X.
The Hausdorff metric H on CB(X) induced by the metric d on X is defined as follows:

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

for all A,B ∈ CB(X), where d(x,B) = inf
y∈B

d(x,y).

It is well-known that (CB(X),H) is a complete metric space, if (X,d) is complete metric space.
The collection of nonempty closed subsets of X is denoted by Cl(X).
A self-mapping f on X is called contraction, if there exists a real number r in [0, 1) such that

d(fx, fy) 6 rd(x,y),
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for all x,y ∈ X. One of the basic and the most widely applied result in metric fixed point theory is ”Banach
(or Banach- Caccioppoli) contraction principle” due to Banach [3]. It states that if (X,d) is a complete
metric space and f : X→ X a contraction mapping, then f has a unique fixed point.

To establish the existence and uniqueness of solution of an operator equation f(x) = x, particularly
to prove the existence of solution of differential or integral equations, Banach contraction principle guar-
antees the convergence of a sequence of successive approximations of a required solution. Due to its
applications in mathematics and other related disciplines, this principle has been generalized in many
directions (see [6, 8, 12, 16, 27, 28]).

A self-mapping f on X is called strictly contraction, if

d(fx, fy) < d(x,y),

for all x,y ∈ X with x 6= y. A strictly contraction mapping defined on a complete metric space X need not
to have a fixed point. However, if strictly contraction mapping has a fixed point, then it is always unique.

To prove the existence of a fixed point of strictly contraction mapping, Edelstein [12] imposed a
restriction on the domain of a mapping and proved the following result.

Theorem 1.1 ([12]). Let (X,d) be a compact metric space and f : X −→ X a strictly contraction mapping. Then f
has a unique fixed point.

Suzuki [27] presented an interesting extension of a contraction mapping and employed it to charac-
terize the completeness of domain of such mapping. This result is remarkable in the sense that existence
of a fixed point of contraction mapping does not characterize the completeness of domain of contraction
mapping [25].

Suzuki [27] proved a variant of Edelstein result as follows.

Theorem 1.2. Let (X,d) be a compact metric space and f : X −→ X. If for any x,y ∈ X with 1
2d(x, fx) < d(x,y)

implies that d(fx, fy) < d(x,y), then f has a unique fixed point.

Recently, Doric et al. [11] generalized above theorem as follows.

Theorem 1.3 ([11]). Let (X,d) be a compact metric space and f : X −→ X. If for any x,y ∈ X

1
2
d(x, fx) < d(x,y),

implies that
d(fx, fy) < Ad(x,y) +Bd(x, fx) +Cd(y, fy) +Dd(x, fy) + Ed(y, fx),

where A,B,C,D,E > 0 , A+B+C+ 2D = 1 and C 6= 1, then f has a fixed point. Moreover, f has a unique fixed
point, if E 6 B+C+D.

Popescu [21] proved the following generalization of Theorem 1.2.

Theorem 1.4 ([21]). Let (X,d) be a compact metric space and f : X −→ X. If for any x,y ∈ X, ad(x, fx) +
bd(y, fx) < d(y, x) implies that d(fx, fy) < d(x,y), where a,b > 0 and 2a+ b < 1, then f has a unique fixed
point.

Karapinar [17, 18] obtained the following Edelstein-Suzuki type theorem.

Theorem 1.5 ([17]). Let (X,d) be a compact metric space and f : X −→ X. If for any x,y ∈ X,

1
2
d(x, fx) < d(x,y),

implies that

d(fx, fy) < max
{
d(x,y),d(x, fx),d(y, fy),

d(x, fy)
2

,
d(y, fx)

2

}
,

then f has a unique fixed point.
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Nadler [20] proved the multivalued version of a Banach contraction principle as follows.

Theorem 1.6 ([20]). Let (X,d) be a complete metric space. If a multivalued mapping T : X −→ CB(X) satisfies

H(Tx, Ty) 6 kd(x,y),

for all x,y ∈ X and for some k ∈ [0, 1), then F(T) = {x ∈ X : x ∈ Tx} is nonempty.

Shaddad et al. [22] obtained the following result:

Theorem 1.7 ([22]). Let (X,d) be a compact metric space and T : X −→ Cl(X). If for any x,y ∈ X, there exists

some r ∈
[

0,
1
2

)
such that 1

2d(x, Tx) < d(x,y) implies that

H(Tx, Ty) < rmax
{
d(x,y),d(x, Tx),d(y, Ty),

d(x, Ty) + d(y, Tx)
2

}
,

then F(T) is nonempty.

Due to the contractive constant r ∈
[

0,
1
2

)
, above theorem is not an exact multivalued version of

Theorem 1.2.
Beg and Aleomraninejad [4] proved the following result in this direction.

Theorem 1.8 ([4]). Let (X,d) be a compact metric space and T : X −→ CB(X). If for any x,y ∈ X, there exists

some r ∈
(

0,
1
2

]
such that rd(x, Tx) < d(x,y) implies that H(Tx, Ty) < d(x,y), then F(T) is nonempty.

On the other hand, concept of a metric has been generalized in many directions [14].
In 1993, Czerwik [8] introduced the notion of b-metric spaces as follows:

Definition 1.9. Let X be a nonempty set and b > 1 a real number. A mapping d : X× X → R+ is said to
be a b-metric on X, if for any x,y, z ∈ X, the following conditions hold:

(a1) d(x,y) = 0, if and only if x = y;

(a2) d(x,y) = d(y, x);

(a3) d(x,y) 6 b (d(x, z) + d(z,y)) .

Every metric is b-metric for b = 1, but converse does not hold in general [8, 24].
A number of results dealing with existence of fixed point of operators satisfying certain contractive

conditions in the framework of b-metric spaces have been obtained [2, 7–10, 15, 17, 18, 24].
We now state the following lemmas from [8–10, 24] needed in the sequel.

Lemma 1.10. For any b-metric space X, x,y ∈ X and A,B ∈ CB(X), the following hold:

b1) If (X,d) is b-metric space, then so is (CB(X),H).

b2) d(x,B) 6 d(x,y) for all y ∈ B.

b3) d(x,B) 6 H(A,B) for all x ∈ A.

b4) d(x,A) 6 b (d(x,y) + d(y,A)) .

b5) For h > 1 and a ∈ A, there is a b ∈ B such that d(a,b) 6 hH(A,B).

b6) For h > 0 and a ∈ A, there is a b ∈ B such that d(a,b) 6 H(A,B) + h.
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b7) d(x,A) = 0 if and only if x ∈ Ā = A.

b8) For any sequence {un} in X,

d(u0,un) 6 bd(u0,u1) + ... + bn−1d(un−2,un−1) + b
n−1d(un−1,un).

An et al. [2] studied some useful topological properties of b-metric spaces and showed that every
b-metric space is a semi-metrizable space. They also proved Stone-type theorem on b-metric spaces.

They stated [2, Example 3.9] the following useful facts about b-metric spaces.

c1) d is not continuous in each variable.

c2) A b-metric is not necessarily a metric.

c3) If d is continuous in one variable then d is continuous in other variable.

c4) An open ball in b-metric space is not necessarily an open set. An open ball is open if d is continuous
in one variable.

Corollary 1.11 ([2, 19]). If (X,d) is a b-metric space and A ⊂ X. Then the following statements are equivalent.

c5) x ∈ A.

c6) For every ε > 0, B(x, ε)∩A is nonempty, where B(x, ε) is an open ball centered at x with radius equal to ε.

c7) There exists a sequence {xn} in A such that lim
n→∞ xn = x.

Corollary 1.12 ([2, 19]). Let (X,d) be a b-metric space and A ⊂ X. Then the following hold.

c8) A is closed if and only if x ∈ A for any sequence {xn} ⊂ A with lim
n→∞ xn = x.

c9) For any x ∈ A and ε > 0, B(x, ε)∩A is nonempty.

c10) A is compact if and only if A is sequentially compact.

c11) If A is compact, then A is totally bounded.

Definition 1.13. Let (X,d) be a b-metric space. The b-metric d : X× X → R+ is continuous, if we have
lim
n→∞d(xn,yn) = d(x,y) whenever {xn}, {yn} are sequences in X such that lim

n→∞ xn = x and lim
n→∞yn = y.

Note that if b-metric function d : X×X→ R+ is continuous, then it is continuous in both the variables.
Throughout this paper, we assume the continuity of a b-metric d : X×X→ R+.

2. Main results

In this section, we prove Edelstein-Suzuki variant of Hardy-Rogers type fixed point theorem for mul-
tivalued mappings in compact b−metric spaces.

Let Φ =

{
ϕ : R+ ×R+ → R : ϕ(s, t) 6

1
2b
s− t

}
.

Theorem 2.1. Let (X,d) be a compact b-metric space and T : X −→ Cl(X). If for any x,y ∈ X

ϕ (d(x, Tx),d(x,y)) < 0,

implies that

H(Tx, Ty) < Ad(x,y) +Bd(x, Tx) +Cd(y, Ty) +
D

b
d(x, Ty) + Ed(y, Tx), (2.1)

where ϕ ∈ Φ, A,B,C,D,E > 0 such that A+B+C+ 2D = 1
b and C 6= 1

b , then T has a fixed point.
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Proof. If β = inf
x∈X

d(x, Tx), then there exists a sequence {xn} in X such that β = lim
n→∞d(xn, Txn). As Txn

is closed in (X,d) for each n ∈ N, Txn is compact and hence for each n ∈ N, there exists yn ∈ Txn such
that

β = lim
n→∞d(xn,yn).

Since (X,d) is compact, it is sequentially compact [2, 19]. Without loss of generality, we assume that {xn}
and {yn} converge to v and w, respectively. Thus we have

β = d(v,w) = lim
n
d(xn,yn),

β = lim
n
d(xn,w) = d(v,w),

β = lim
n
d(v,yn) = d(v,w),

lim
n
d(v, Txn) 6 lim

n
d(v,yn) = d(v,w) = β.

Consequently,

lim
n
d(v, Txn) 6 lim

n
d(v,yn) = lim

n
d(xn,w) = lim

n
d(xn,yn) = lim

n
d(xn, Txn) = d(v,w) = β.

We now claim that β = 0. If β > 0, then there exists an n0 ∈N such that for all n > n0, we have

2β
3
< d(xn,w) <

4β
3

and
2β
3
< d(xn, Txn) <

4β
3

.

Note that
ϕ (d(xn, Txn),d(xn,w)) 6

1
2b
d(xn, Txn) − d(xn,w) <

2β
3b

−
2β
3

6 0,

for all n > n0. Now by (2.1), we have

1
b
d(yn, Tw) 6 d(yn, Tw) 6 H(Txn, Tw)

< Ad(xn,w) +Bd(xn, Txn) +Cd(w, Tw) +
D

b
d(xn, Tw) + Ed(w, Txn)

6 Ad(xn,w) +Bd(xn,yn) +Cd(w, Tw) +
D

b
d(xn, Tw) + Ed(w,yn),

for all n > n0. On taking limit as n→∞ on both sides of above inequality, we have

1
b
d(w, Tw) 6 Ad(v,w) +Bd(v,w) +Cd(w, Tw) +

D

b
d(v, Tw)

6 Ad(v,w) +Bd(v,w) +Cd(w, Tw) +Dd(v,w) +Dd(w, Tw)
6 (A+B+D)d(v,w) + (C+D)d(w, Tw),

and hence (
1
b
−C−D

)
d(w, Tw) 6 (A+B+D)d(v,w). (2.2)

Obviously, 1
b −C−D 6= 0. If 1

b −C−D = 0, then A+ B+C+ 2D = 1
b gives A+ B+D = 1

b −C−D = 0
and hence A = B = D = 0 and C = 1

b , a contradiction. By (2.2), we obtain that d(w, Tw) 6 d(v,w) = β.
Hence, d(w, Tw) = β. Since Tw is nonempty and compact, for every minimizing sequence {wn} ∈ Tw,
there exists a subsequence {wnk

} that converges to a point w0 in Tw. That is, w0 = lim
k→∞wnk

. From

lim
k→∞d(w,wnk

) = β, we have d(w,w0) = β. If w = w0, then d(w,w0) = β = 0, a contradiction to our

supposition that β > 0. Let w 6= w0. Then, we have

ϕ (d(w, Tw),d(w,w0)) 6
1

2b
d(w, Tw) − d(w,w0)
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6
1

2b
d(w,w0) − d(w,w0)

< d(w,w0) − d(w,w0) = 0.

Thus

1
b
d(w0, Tw0) 6 d(w0, Tw0) 6 H (Tw, Tw0)

< Ad(w,w0) +Bd(w, Tw) +Cd(w0, Tw0) +
D

b
d(w, Tw0) + Ed(w0, Tw)

6 Ad(w,w0) +Bd(w,w0) +Cd(w0, Tw0) +
D

b
d(w, Tw0) + Ed(w0,w0)

6 Ad(w,w0) +Bd(w,w0) +Cd(w0, Tw0) +Dd(w,w0) +Dd(w0, Tw0)

6 (A+B+D)d(w,w0) + (C+D)d(w0, Tw0).

As 1
b −C−D 6= 0,

(
1
b
−C−D)d(w0, Tw0) < (A+B+D)d(w,w0),

implies that d(w0, Tw0) < d(w,w0) = β, a contradiction to the definition of β. Hence β = 0. We now
prove that T has a fixed point. If not, then d(xn, Txn) > 0, for all n ∈N. Obviously,
1

2b
d(xn, Txn) < d(xn, Txn) 6 d(xn,yn). Note that

ϕ (d(xn, Txn),d(xn,yn)) 6
1

2b
d(xn, Txn) − d(xn,yn) < 0.

This further implies that

1
b
d(yn, Tyn) 6 d(yn, Tyn) 6 H(Txn, Tyn)

< Ad(xn,yn) +Bd(xn, Txn) +Cd(yn, Tyn) +
D

b
d(xn, Tyn) + Ed(yn, Txn)

6 Ad(xn,yn) +Bd(xn,yn) +Cd(yn, Tyn) +
D

b
d(xn, Tyn)

6 Ad(xn,yn) +Bd(xn,yn) +Cd(yn, Tyn) +Dd(xn,yn) +Dd(yn, Tyn),

for all n ∈N. That is (
1
b
−C−D

)
d(yn, Tyn) < (A+B+D)d(xn,yn),

for all n ∈N. If
1
b
−C−D = 0, then A+B+D =

1
b
−C−D = 0, that is A = B = D = 0 and hence C =

1
b

,

a contradiction. Thus
1
b
−C−D 6= 0. Consequently

d(yn, Tyn) < d(xn,yn). (2.3)

For each n, there exists zn ∈ Tyn such that d(yn, Tyn) 6 d(yn, zn) < d(yn, Tyn)+ 1
n . From (2.3), we have

lim
n
d(yn, zn) = lim

n
d(yn, Tyn) = 0, which implies that lim

n
d(v, zn) 6 b

(
lim
n
d(v,yn) + d(yn, zn)

)
= 0.

Hence
lim
n
d(v, zn) = 0.

Suppose that there exists some n1 ∈N such that

ϕ (d(xn1 , Txn1),d(xn1 , v)) > 0,
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and
ϕ (d(yn1 , Tyn1),d(yn1 , v)) > 0.

Then we have
1

2b
d(xn1 , Txn1) > d(xn1 , v), and

1
2b
d(yn1 , Tyn1) > d(yn1 , v). (2.4)

Using (2.3) and (2.4), we have

d(xn1 ,yn1) 6 b (d(xn1 , v) + d(yn1 , v))

6
1
2
d(xn1 , Txn1) +

1
2
d(yn1 , Tyn1)

<
1
2
d(xn1 ,yn1) +

1
2
d(xn1 ,yn1) = d(xn1 ,yn1),

a contradiction. Hence for all n ∈N, either ϕ (d(xn, Txn),d(xn, v)) < 0 or ϕ (d(yn, Tyn),d(yn, v)) < 0. If
ϕ (d(xn, Txn),d(xn, v)) < 0, then we have

1
b
d(yn, Tv) 6 d(yn, Tv) 6 H(Txn, Tv)

< Ad(xn,w) +Bd(xn, Txn) +Cd(v, Tv) +
D

b
d(xn, Tv) + Ed(v, Txn).

On taking limit as n→∞ we obtain that

1
b
d(v, Tv) 6

(
C+

D

b

)
d(v, Tv) 6 (C+D)d(v, Tv).

If ϕ (d(yn, Tyn),d(yn, v)) < 0, then we have

1
b
d(zn, Tv) 6 d(zn, Tv) 6 H(Tyn, Tv)

< Ad(yn, v) +Bd(yn, Tyn) +Cd(v, Tv) +
D

b
d(yn, Tv) + Ed(v, Tyn).

On taking limit as n→∞ we obtain that

1
b
d(v, Tv) 6

(
C+

D

b

)
d(v, Tv) 6 (C+D)d(v, Tv).

Thus we have 1
bd(v, Tv) 6 (C+D)d(v, Tv). Note that C+D 6= 1

b . Otherwise, we have A+B+D = 0, that
is, A = B = D = 0 and hence C = 1

b , a contradiction. So d(v, Tv) = 0 and v ∈ Tv, a contradiction to the
assumption that T has no fixed point. Hence the result follows.

Remark 2.2. If in Theorem 2.1, ϕ(s, t) = rs− t with r ∈
[

0,
1
2

)
and A =

1
b

, B = C = D = E = 0, then ϕ ∈ Φ

and we obtain an extension of Theorem 1.8 to b-metric space.

Corollary 2.3. Let (X,d) be a compact b-metric space and T : X −→ Cl(X). If for any x,y ∈ X,
ϕ (d(x, Tx),d(x,y)) < 0 implies H(Tx, Ty) < 1

bd(x,y), where ϕ ∈ Φ. Then T has a fixed point in X.

Corollary 2.4. Let (X,d) be a compact b-metric space and f : X −→ X. If for any x,y ∈ X,

ϕ (d(x, fx),d(x,y)) < 0,

implies that

d(fx, fy) < Ad(x,y) +Bd(x, fx) +Cd(y, fy) +
D

b
d(x, fy) + Ed(y, fx),

where ϕ ∈ Φ, A,B,C,D,E > 0 such that A+B+C+ 2D = 1
b and C 6= 1

b . Then f has a fixed point. Moreover f
has a unique fixed point provided that E < B+C+D.
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Proof. Existence of fixed point of f follows from Theorem 2.1. Let v and u be two fixed points of f such
that v 6= u. Then

ϕ (d(v, fv),d(v,u)) 6
1

2b
d(v, fv) − d(v,u) = −d(v,u) < 0.

Hence

1
b
d(v,u) 6 d(v,u) = d(fv, fu)

< Ad(v,u) +Bd(v, fv) +Cd(u, fu) +
D

b
d(v, fu) + Ed(u, fv)

6 Ad(v,u) +Bd(v, v) +Cd(u,u) +
D

b
d(v,u) + Ed(u, v)

6

(
A+

D

b
+ E

)
d(v,u) 6 (A+D+ E)d(v,u).

As E < B+ C+D, so A+D+ E < A+ B+ C+ 2D = 1
b implies that d(v,u) < d(v,u), a contradiction.

Hence f has a unique fixed point.

The above corollary generalizes and extends various comparable results in the existing literature.

Remark 2.5. If in Corollary 2.4, ϕ(s, t) =
1

2b
s− t, then:

1. We obtain Theorem 1.3 in framework of b-metric space.
2. We have Theorem 1.2 in the setup of a b-metric space provided that A = 1

b and B = C = D = E = 0.
3. We obtain Edelstein-Suzuki type version of Chatterjea fixed point result [6] in the setup of b-metric

space provided that A = B = 0, D =
1
2

.

Corollary 2.6. Let (X,d) be a compact b-metric space and f : X −→ X. If for any x,y ∈ X,
1

2b
d(x, fx) < d(x,y)

implies that d(fx, fy) < 1
2bd(x, fy) + Ed(y, fx), where E > 0, then f has a fixed point in X. Further, if E 6

1
2

,
then f has a unique fixed point in X.

Corollary 2.7. Let (X,d) be a compact b-metric space and f : X −→ X. If for any x,y ∈ X,

ϕ (d(x, fx),d(x,y)) < 0,

implies that
d(fx, fy) < Bd(x, fx) +Cd(y, fy),

where ϕ ∈ Φ, B,C > 0 such that B+C = 1
b and C 6= 1

b , then f has a unique fixed point in X.

If in the above Corollary, ϕ(s, t) =
1

2b
s− t, we obtain the following:

Corollary 2.8. Let (X,d) be a compact b-metric space and f : X −→ X. If for any x,y ∈ X,
1

2b
d(x, fx) < d(x,y)

implies that d(fx, fy) < Bd(x, fx) +Cd(y, fy) where B,C > 0 with B+C = 1
b and C 6= 1

b , then f has a unique
fixed point in X.

Corollary 2.9. Let (X,d) be a compact b-metric space and f : X −→ X. If for any x,y ∈ X,ϕ (d(x, fx),d(x,y)) < 0
implies that d(fx, fy) < 1

bd(x,y), where ϕ ∈ Φ, then f has a unique fixed point in X.

Example 2.10. Let X = {a1,a2,a3} and d : X×X→ R+ be defined as d(a1,a2) = 2,d(a2,a3)=
1
2

,d(a1,a3) =

1, d(x,y) = d(y, x) and d(x, x) = 0 for all x,y ∈ X. Then (X,d) is not a metric space, because 2 = d(a,b) 66

d(a, c) + d(c,b) =
3
2

. For b =
4
3

, d is a b-metric. Let ϕ(s, t) =
1

2b
s− t. Define T : X −→ Cl(X) as follows:
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Tx =

{
{a1,a2}, when x 6= a2,
{a1}, when x = a2.

Note that for all x,y ∈ X such that x 6= y, we have
1

2b
d(x, Tx) < d(x,y). Hence ϕ(d(x, Tx),d(x,y)) < 0 for

all x,y ∈ X such that x 6= y. Further H(Tx, Ty) = 0, for all x,y ∈ {a1,a3} and H(Ta2, Ta3) = H(Ta2, Ta1) =

H({a1}, {a1,a3}) = 1. Let A =
1
2

,B =
1
4

,C = D = 0,E =
1
2

, then A+B+C+ 2D =
3
4
=

1
b

. Hence

H(Ta2, Ta3) = 1 < Ad(a2,a3) +Bd(a2, Ta2) + Ed(a3, Ta2) =
5
4

,

H(Ta2, Ta1) = 1 < Ad(a2,a1) +Bd(a2, Ta2) + Ed(a1, Ta2) =
3
2

.

Therefore ϕ (d(x, Tx),d(x,y)) < 0 implies that

H(Tx, Ty) < Ad(x,y) +Bd(x, Tx) +Cd(y, Ty) +
D

b
d(x, Ty) + Ed(y, Tx),

holds for all x,y ∈ X, A,B,C,D,E > 0 such that A+ B+C+ 2D =
1
b

and ϕ ∈ Φ. So all the conditions of
Theorem 2.1 are satisfied. Here, a1 and a2 are fixed points of T .

Remark 2.11. Consider the b-metric d on X = {a1,a2,a3} and mapping T same as in Example 2.10. Let

x = a2,y = a3, then H(Ta2, Ta3) = 1 6< 3
8
=

1
b
d(a2,a3) and hence Corollary 2.3 is not applicable in this

case. Note that Corollary 2.3 is generalization of Theorem 1.1 and Theorem 1.2 for multivalued mappings
in the context of b-metric space.

3. Edelstein-Suzuki type coincidence and common fixed point result for a hybrid pair of mappings

Let (X,d) be a b-metric space, g : X→ X and T : X→ Cl(X). A point x in X is called

(i) a coincidence point of hybrid pair (g, T), if gx ∈ Tx;

(ii) a common fixed point of hybrid pair (g, T), if x = gx ∈ Tx.

Denote C(g, T) and F(g, T) by the set of all coincidence and common fixed points of hybrid pair (g, T).
In consistent with [1, 13], we need the following definitions and result in the sequel.

Definition 3.1. A hybrid pair (g, T) is called w-compatible, if g(Tx) ⊆ T(gx), for all x ∈ C(g, T).

The mapping g is called T -weakly commuting at some point x ∈ X, if g2(x) ∈ T(gx).
Haghi et al. [13] proved the following lemma by using axiom of choice.

Lemma 3.2 ([13]). Let X be a nonempty set and g : X→ X. Then there exists a subset E ⊆ X such that g(E) = g(X)
and g : E→ X is one-to-one.

We now prove the following result.

Theorem 3.3. Let (X,d) be a b-metric space and (g, T) a hybrid pair of mappings. If for any x,y ∈ X

ϕ (d(gx, Tx),d(gx,gy)) < 0,

implies that

H(Tx, Ty) < Ad(gx,gy) +Bd(gx, Tx) +Cd(gy, Ty) +
D

b
d(gx, Ty) + Ed(gy, Tx),

where ϕ ∈ Φ, A,B,C,D,E > 0 with A+ B+C+ 2D = 1
b and C 6= 1

b , then C(g, T) is nonempty provided that
T(X) ⊆ g(X) and g(X) is compact. Further F(g, T) is nonempty if any of the following conditions hold:
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d1- The hybrid pair (g, T) is w-compatible, lim
n→∞gn(x) = u, for some u ∈ X , x ∈ C(g, T) and g is continuous

at u.

d2- The mapping g is T -weakly commuting at some x ∈ C(g, T) and g2x = gx.

d3- The mapping g is continuous at some x ∈ C(g, T) and lim
n→∞gn(u) = x, for some u ∈ X.

Proof. By Lemma 3.2, there is a set E ⊆ X such that g : E → X is one-to-one and g(E) = g(X). Then
a mapping T : g(E) → Cl(X) defined as T(gx) = T(x) for all g(x) ∈ g(E) is well-defined because g is
one-to-one. Also{

ϕ (d(gx, Tx),d(gx,gy)) < 0, implies that
H(Tx, Ty) < Ad(gx,gy) +Bd(gx, Tx) +Cd(gy, Ty) + D

b d(gx, Ty) + Ed(gy, Tx).

Thus 
ϕ (d(gx,T(gx)),d(gx,gy)) < 0, implies that
H(T(gx),T(gy)) < Ad(gx,gy) +Bd(gx,T(gx)) +Cd(gy,T(gy))

+
D

b
d(gx,T(gy)) + Ed(gy,T(gx)),

for all gx,gy ∈ g(E). As g(E) = g(X) is compact, T satisfies all the conditions of Theorem 2.1 with mapping
T on g(E). There exists a point u ∈ g(E) such that u ∈ Tu. Since T(X) ⊆ g(X), there is a point x in X such
that gx = u. This implies that gx ∈ Tgx = Tx. That is x ∈ C(g, T). Now we prove that F(g, T) is nonempty.
Let (C1) hold. As the pair (g, T) is w-compatible and lim

n→∞gn(x) = u for some u ∈ X, the continuity of g

at u implies that gu = u and the w-compatibility of the pair (g, T) implies that gn(x) ∈ T
(
gn−1(x)

)
, that

is gn(x) ∈ C(g, T) for all n ∈ N. Note that gn(x) 6= g(u) for all n, if gn(x) = g(u) for some n, then we
have u = gu = gn(x) ∈ T(gn−1(x)) = T(u) and the proof is done. So let gn(x) 6= g(u) for all n, we further
get

ϕ
(
d(gn(x), T

(
gn−1(x)

)
),d(ggn−1(x),gu)

)
6

1
2b
d(gn(x), T

(
gn−1(x)

)
) − d(ggn−1(x),gu)

= 0 − d(ggn−1(x),gu) < 0.

This implies that

1
b
d(gn(x), Tu) 6 d(gn(x), Tu) 6 H(T

(
gn−1(x)

)
, Tu)

< Ad(gn(x),gu) +Bd(gn(x), T
(
gn−1(x)

)
)

+Cd(gu, Tu) +
D

b
d(gn(x), Tu) + Ed(gu, T

(
gn−1(x)

)
)

6 Ad(gn(x),gu) +Bd(gn(x),gn(x))

+Cd(gu, Tu) +
D

b
d(gn(x), Tu) + Ed(gu,gn(x)).

On taking limit as n→∞, we obtain 1
bd(gu, Tu) 6 Cd(gu, Tu)+ D

b d(gu, Tu) 6 (C+D)d(gu, Tu). That is,( 1
b −C−D

)
d(gu, Tu) 6 d(gu, Tu). If 1

b −C−D = 0, then A+ B+D = 0, consequently A = B = D = 0,
that is C = 1

b , a contradiction, hence d(gu, Tu) = 0 implies that u = gu ∈ Tu. To prove F(g, T) is
nonempty, let (C2) hold. Thus for some x ∈ C(g, T), g2x = gx. Since g is T -weakly commuting, therefore
gx = g2x ∈ T(gx). Hence gx ∈ F(g, T). If (C3) holds, then lim

n→∞gn(u) = x for some u ∈ X and x ∈ C(g, T).

Using continuity of g we get x = gx ∈ Tx. Hence F(g, T) is nonempty.

Corollary 3.4. Let (X,d) be a b-metric space and (g, T) be a hybrid pairs of mappings satisfying T : X −→ Cl(X)
be a multivalued mapping satisfying 1

2bd(gx, Tx) < d(gx,gy) implies that H(Tx, Ty) < d(gx,gy) for all x,y ∈ X.
Then C(g, T) is nonempty provided that T(X) ⊆ g(X) and g(X) is compact. Further F(g, T) is nonempty if (d1)-(d3)
hold as given in Theorem 3.3.
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4. Fixed point theorems in metric spaces with application in best approximation theory

If we take b = 1 in Theorem 2.1, we get the following result in metric spaces.

Theorem 4.1. Let (X,d) be a compact metric space and T : X −→ Cl(X). If for any x,y ∈ X

ϕ (d(x, Tx),d(x,y)) < 0,

implies that H(Tx, Ty) < Ad(x,y) + Bd(x, Tx) + Cd(y, Ty) +Dd(x, Ty) + Ed(y, Tx), where ϕ ∈ Φ, A,B,C,
D,E > 0 such that A+B+C+ 2D = 1 and C 6= 1. Then T has a fixed point.

Corollary 4.2. Let (X,d) be a compact metric space and f : X −→ X. If for any x,y ∈ X,

ϕ (d(x, fx),d(x,y)) < 0,

implies that
d(fx, fy) < Ad(x,y) +Bd(x, fx) +Cd(y, fy) +Dd(x, fy) + Ed(y, fx),

where, ϕ ∈ Φ, A,B,C,D,E > 0 such that A+ B+C+ 2D = 1 and C 6= 1. Then f has a fixed point. Moreover f
has a unique fixed point provided that E 6 B+C+D.

Corollary 4.3. Let (X,d) be a compact metric space and f : X −→ X be a mapping satisfying 1
2d(y, fx) < d(x,y)

implies that d(fx, fy) < d(x,y) for all x,y ∈ X. Then f has a unique fixed point in X.

Corollary 4.4. Theorem 1.1.

Example 4.5. Let X = {a,b, c} and d : X×X→ R+ be defined as

d(a,b) = 4 = d(b, c),d(a, c) = 2,
d(x,y) = d(y, x), and d(x, x) = 0, ∀x,y ∈ X.

Then (X,d) is a metric space. Let ϕ(s, t) =
1
2
s− t. Define f : X −→ Cl(X) as follows:

fx =

{
b, when x 6= c,
c, when x = c.

For x = a,y = c,
1
2
d(a, fa) =

1
2
d(a,b) = 2 = d(a, c). Note that 1

2d(x, fx) − d(x,y) < 0 holds for all

x,y ∈ X and x 6= a and y 6= c. Further d(fa, fc) = d(fb, fc) = d(b, c) = 4, d(fa, fb) = d(b,b) = 0. Let

A = B =
1
4

,E =
2
3

, D =
1
4

and C = 0. Then A+B+C+ 2D = 1. Hence

d(fa, fc) = 4 < Ad(a, c) +Bd(a, fa) +Cd(c, fc) +Dd(a, fc) + Ed(c, fa)
= Ad(a, c) +Bd(a,b) +Cd(c, c) +Dd(a, c) + Ed(c,b)

= 2A+ 4B+ 2D+ 4E =
14
3

,

d(fb, fc) = 4 < Ad(b, c) +Bd(b, fb) +Cd(c, fc) +Dd(b, fc) + Ed(c, fb)
= Ad(b, c) +Bd(b,b) +Cd(c, c) +Dd(b, c) + Ed(c,b)

= 4A+ 4D+ 4E =
14
3

.

Therefore
ϕ (d(x, fx),d(x,y)) < 0,

implies
d(fx, fy) < Ad(x,y) +Bd(x, fx) +Cd(y, fy) +Dd(x, fy) + Ed(y, fx),

for all x,y ∈ X such that A,B,C,D,E > 0 and A+ B+C+ 2D = 1. So all the conditions of Corollary 4.2
are satisfied. Here, b and c are fixed points of f.
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Remark 4.6. Consider the metric d on X = {a,b, c} and mapping f same as in Example 2.10.

• If x = b,y = c, then d(fb, fc) = d(b, c) = 4 and hence Theorem 1.1 is not applicable in this case.

• If x = b,y = c, then
1
2
d(b, fb) = 0 < 4 = d(b, c) holds but d(fb, fc) = d(b, c) = 4. Hence Theorem

1.2 is not applicable in this case.

• If x = b,y = c, then we have rd(b, fb) + sd(c, fb) = rd(b,b) + sd(c,b) < d(c,b) for any s < 1 and

2r+ s < 1. As d(fb, fc) = d(b, c) = 4 and d(b, c) = 4, d(b, fb) = 0, d(c, fc) = 0,
d(b, fc)

2
=
d(c, fb)

2
=

2. Hence

4 = d(fb, fc) 6< 4 = max
{
d(b, c),d(b, fb),d(c, fc),

d(b, fc)
2

,
d(c, fb)

2

}
.

Thus Theorem 1.4 and Theorem 1.5 are not applicable in this case.

• If x = b,y = c, then d(b, c) = 4, d(b, fb) = 0, d(c, fc) = 0,
1
2
(d(b, fc) + d(c, fb)) = 4. Hence

4 = d(fb, fc) 6< 4r = rmax
{
d(b, c),d(b, fb),d(c, fc),

d(b, fc) + d(c, fb)
2

}
,

for any r ∈
[

0,
1
2

)
. So Theorem 1.7 is not applicable in this case.

• If x = b,y = c, then rd(b, fb) < d(c,b) holds for any r ∈
(

0,
1
2

]
but d(fb, fc) = d(b, c) = 4 implies

that Theorem 1.8 is not applicable in this case.

4.1. Application in best approximation
Let (X, ‖·‖) be a normed linear space. A mapping f : X→ X is called nonexpansive on X, if ‖fx− fy‖ 6

‖x− y‖ for all x,y ∈ X. A subset C of X is said to be f-invariant, if f(C) ⊆ C. The set F(f) = {x ∈ X : x = fx}

is a fixed point set of f and the set

PC(x̃) =

{
y ∈ C ⊆ X : ‖y− x̃‖ = inf

z∈C
‖z− x̃‖

}
,

is a set of best C-approximations of x̃. A subset C of X is called a starshaped with respect to q ∈ C, if for
all x in C and λ ∈ [0, 1], λx+ (1 − λ)q ∈ C. Note that a convex set C is starshaped with respect to every q
in C. Brosowski [5] proved the following theorem in approximation theory.

Theorem 4.7 ([5]). Let f be a linear, nonexpansive mapping on a normed linear space X and C an f-invariant
subset of X and x ∈ F(f). If PC(x) is nonempty, compact and convex then PC(x)∩ F(f) is nonempty.

Singh [23] improved the Brosowski theorem by relaxing the linearity of the mapping f and the con-
vexity of the subset C.

Theorem 4.8 ([23]). Let f be a nonexpansive mapping on a normed linear space X and C an f-invariant subset of
X and x ∈ F(f). If PC(x) is nonempty, compact and starshaped then PC(x)∩ F(f) is nonempty.

Suzuki [26] introduced the concept of generalized nonexpansive mappings on a normed linear space.
Let f be a mapping on a normed linear space X that satisfies

1
2
‖x− fx‖ 6 ‖x− y‖ , implies that ‖fx− fy‖ 6 ‖x− y‖ , (4.1)

for all x,y ∈ X. This condition on mappings is known as condition (C) which is weaker than nonexpan-
siveness but stronger than quasi-nonexpansiveness.

Now we prove the following theorem for generalized nonexpansive mappings (that satisfy condition
(C)) on a normed linear spaces.
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Theorem 4.9. Let f be a mapping on a normed linear space X that satisfies condition (C) for all x,y ∈ X and C an
f-invariant subset of X and x̃ ∈ F(f). If PC(x̃) is nonempty, compact and starshaped then PC(x̃)∩ F(f) is nonempty
provided that ‖y− fx‖ 6 ‖x− y‖ holds for all x,y ∈ PC(x̃).

Proof. Consider f : PC(x̃)→ PC(x̃). Let y ∈ PC(x̃). Then, we have

1
2
‖x̃− fx̃‖ = 1

2
‖x̃− x̃‖ = 0 6 ‖x̃− y‖ ,

for all y ∈ PC(x̃). This implies that ‖fy− x̃‖ = ‖fy− fx̃‖ 6 ‖x̃− y‖ . Consequently fy ∈ PC(x̃), that is f is
PC(x̃)-invariant. Fix p ∈ PC(x̃) such that

λp+ (1 − λ)x ∈ PC(x̃), (4.2)

for all x ∈ PC(x̃) and λ ∈ [0, 1]. Let {kn} ∈ [0, 1) such that lim
n→∞kn = 1. Define fn : PC(x̃) → PC(x̃) as

fnx = knfx+(1−kn)p for all x ∈ PC(x̃). Since f is PC(x̃)-invariant, therefore by (4.2) fn is PC(x̃)-invariant.
Moreover we have

1
2
‖x− fx‖ 6 1

2
‖x− y‖+ 1

2
‖y− fx‖ 6 1

2
‖x− y‖+ 1

2
‖x− y‖ = ‖x− y‖ ,

for all x,y ∈ PC(x̃). By (4.1) we obtain

‖fnx− fny‖ = kn ‖fx− fy‖ 6 kn ‖x− y‖ < ‖x− y‖ ,

for all x,y ∈ PC(x̃) and for all n ∈ N. Since PC(x̃) is compact, therefore by Corollary 4.4, for all n ∈ N,
fn has a unique fixed point, say xn. Thus fnxn = xn for all n ∈ N. The compactness of PC(x̃) yields a
convergent subsequence xni

converging to x̄ ∈ PC(x̃) (say). Hence xni
= fni

xni
= kni

fxni
+ (1 − kni

)p.
On taking limit as i→∞, we obtain x̄ = fx̄.
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[15] N. Hussain, D. Dorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point

Theory Appl., 2012 (2012), 12 pages. 1
[16] R. Kannan, Some results on fixed points, II, Amer. Math. Monthly, 76 (1969), 405–408. 1
[17] E. Karapınar, Edelstein type fixed point theorems, Ann. Funct. Anal., 2 (2011), 51–58. 1, 1.5, 1
[18] E. Karapınar, Edelstein type fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 12 pages. 1, 1
[19] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), 3123–3129. 1.11, 1.12, 2
[20] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475–488. 1, 1.6
[21] O. Popescu, Some generalizations of Suzuki and Edelstein type theorems, Fixed Point Theory Appl., 2013 (2013), 11

pages. 1, 1.4
[22] F. Shaddad, M. Salmi, S. M. Alsulami, Common fixed point results of Ciric-Suzuki-type inequality for multivalued maps

in compact metric spaces, J. Inequal. Appl., 2014 (2014), 11 pages. 1, 1.7
[23] S. P. Singh, An application of a fixed-point theorem to approximation theory, J. Approx. Theory, 25 (1979), 89–90. 4.1,

4.8
[24] S. L. Singh, B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55 (2008),

2512–2520. 1
[25] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc.,

136 (2008), 1861–1869. 1
[26] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal.

Appl., 340 (2008), 1088–1095. 4.1
[27] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313–5317. 1, 1
[28] E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc., 191 (1974), 209–225. 1


	Introduction
	Main results
	Edelstein-Suzuki type coincidence and common fixed point result for a hybrid pair of mappings
	Fixed point theorems in metric spaces with application in best approximation theory
	Application in best approximation


