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ABSTRACT
Chemovirotherapy is a combination therapywith chemotherapy and
oncolytic viruses. It is gaining more interest and attracting more
attention in the clinical settingdue to its effective therapy andpoten-
tial synergistic interactions against cancer. In this paper, we develop
and analyse a mathematical model in the form of parabolic non-
linear partial differential equations to investigate the spatiotemporal
dynamics of tumour cells under chemovirotherapy treatment. The
proposed model consists of uninfected and infected tumour cells, a
free virus, and a chemotherapeutic drug. The analysis of themodel is
carried out for both the temporal and spatiotemporal cases. Travel-
ling wave solutions to the spatiotemporal model are used to deter-
mine the minimum wave speed of tumour invasion. A sensitivity
analysis is performed on the model parameters to establish the key
parameters that promote cancer remission during chemovirother-
apy treatment. Model analysis of the temporal model suggests that
virus burst size and virus infection rate determine the success of
the virotherapy treatment, whereas travelling wave solutions to the
spatiotemporal model show that tumour diffusivity and growth rate
are critical during chemovirotherapy. Simulation results reveal that
chemovirotherapy is more effective and a good alternative to either
chemotherapy or virotherapy, which is in agreement with the recent
experimental studies.
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1. Introduction

Current cancer treatments involve combination therapies such as radioimmunotherapy
[29, 58], radiovirotherapy [15, 59], and immunotherapy combined with targeted therapies
[23, 41, 63], to name but a few. Presently, despite aggressive treatments including combi-
nation therapies, most cancers often recur due to their resistance to conventional therapies
and limitations to effective therapies [60]. Recently, chemovirotherapy, a combination ther-
apy with chemotherapy and oncolytic viruses, has gained increasing significance in the
clinical setting. The essence of using chemovirotherapy is that oncolytic viruses directly
lyse tumour cells or deliver genes that make them more susceptible to chemotherapeutic
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drugs. In fact, many studies have concluded that the combination of oncolytic viruses with
chemotherapy acts synergistically mainly because they are mediated by different pathways
[1, 3, 52].

Numerous experimental studies have shown that, with the right combination of
oncolytic viruses and standard cytotoxic chemotherapy agents, synergistic interactions
occur resulting in enhanced therapeutic effects not attainable by either therapy alone [6,
43, 45, 49]. Chemovirotherapy has been experimentally and clinically tested for the treat-
ment of some cancers such as malignant gliomas [3, 61], lymphoma [62], lung cancers
[23], and metastatic breast cancer [12]. The study by Alonso et al. [3] showed that the
combination of an oncolytic adenovirus (ICOVIR-5), with either everolimus (RAD001)
or temozolomide (TMZ) resulted in an enhanced increase in the anti-glioma effect in
vitro and in vivo glioma xenograft model. They concluded that the animals’ median sur-
vival rate has increased by 20–40% and that they remained disease free beyond 90 days
after treatment. Another experimental study on malignant glioma by Ulasov et al. [61]
suggested that virotherapy and temozolomide chemotherapy, when combined, are able
to eradicate malignant glioma. Their results showed that 90% of the treated mice sur-
vived beyond the 100 days’ mark after being treated. In [62], Ungerechts et al. examined
the synergy between a reprogrammed oncolytic virus and two chemotherapeutics in the
mantle cell lymphoma (MCL). They investigated the efficacy of different regimens of a
reprogrammedmeasles virus into an oncolytic virus in combinationwith two chemothera-
peutics, fludarabine and cyclophosphamide (CPA) approved for treatment of lymphoma in
anMCL xenograft model. Their study showed that CPA administration before virotherapy
enhanced oncolytic efficacy. They concluded that a three 23-day courses of triple sequen-
tial treatment with CPA, virus and fludarabine treatment resulted in complete regression
of the xenografts.

A recent experimental study byGomez-Gutierrez et al. [23] showed that the chemother-
apeutic drug (TMZ) enhances virotherapy in three lung cancer cell lines, concluding that
combined therapy of the oncolytic adenovirus (adeAdhz60) and TMZ has a synergistic
killing effect in vitro. In [12], Cody et al. presented a summary of oncolytic virother-
apy strategies that have been used in a number of combinatorial therapeutic strategies
to increase their effectiveness against breast cancer. They particularly reviewed the recent
studies in which virotherapy has been combined with chemotherapeutic agents to target
metastatic breast cancer. They communicated that all of these studies concluded that the
antitumour efficacy of oncolytic viruses can be enhanced by chemotherapeutics agents.
In addition, they discussed the challenges facing oncolytic virotherapy of metastatic breast
cancer such as enhancing systemic delivery, promoting efficient intratumoral spread (over-
coming matrix barriers, diffusion gradients, and poor viral replication), and limiting the
antiviral immune response.

In [6], Binz and Ulrich gave a thorough and up-to-date review on the clinical studies in
which the concepts of chemotherapy and virotherapy have been combined. They stated that
phase II/III clinical trials on combining the adenovirus H101 with the chemotherapeutic
drug cisplatin and 5-fluorouracil showed a 40% improvement compared to chemotherapy
alone for the treatment of patients with head and neck cancer. They also communicated
that these clinical studies have led to an early classification of chemovirotherapeutic combi-
nation regimens. In 2005, China approved adenovirus Ad-H101 for the treatment of head
and neck cancers after phase III clinical trials showed a higher response rate for Ad-H101
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combined with 5-fluorouracil (79–72%) compared to chemotherapy alone (40%) [21].
Ad-H101 became the first oncolytic virus to be approved for the treatment of human can-
cers. Ten years later, in 2015, the U.S. Food and Drug Administration approved Imlygic�

(talimogene laherparepvec), a genetically modified live oncolytic herpes virus therapy, as
first oncolytic virotherapy for the treatment of melanoma lesions in the skin and lymph
nodes [17, 18]. Earlier this year, it was also approved in Europe for some inoperable
melanomas [30]. Most of these (and other studies not mentioned in this paper) have vali-
dated the general principle that oncolytic virotherapy could be harnessed as a component
of a multi-modality cancer therapy.

Despite a large body of experimental and clinical work on oncolytic virus therapy, the
mechanism of action of chemovirotherapy is still not well understood. Primarily, this is
due to the complexity and the high non-linearity of the dynamics between tumour cells,
oncolytic viruses, and their microenvironment [43, 45]. There is increasing evidence that
mathematical models can be helpful in investigating the interactions between tumour cells
and viruses. Indeed, various yet limited, mathematical models of oncolytic virus thera-
pies have been developed to examine the emerging properties of these dynamics, suggest
optimal treatment strategies as well as to inform the design of new experiments. For a
comprehensive review on mathematical models of virotherapy, the reader is referred to
excellent papers, reviews, and the references therein in [14, 20, 25, 26, 28, 66–69]. Here, we
restrict our literature review to few key papers in modelling virotherapy treatments that
have motivated the formulation of our model.

Tian [57] presented a basic mathematical model in the form of ordinary differential
equations (ODEs), for virotherapy treatment which incorporated virus burst size. This
mathematical model was based on an earlier basic virotherapy models of Wodarz and
Komarova [70]. Tian concluded that besides the virus type, the burst size of an oncolytic
virus and the tumour size determine the outcome of oncolytic treatment. Crivelli et al.
[13] in an analysis of the cell cycle-specific activity of viruses noted that intracellular viral
replication and the virus-tumour cells fusion are among the parameters that substantially
impact the outcome of virotherapy. These parameters are equivalent to burst size and viral
infection rate in our model.

In [36], Malinzi et al. presented a mathematical model to describe the interactions of
the tumour-immune-virus dynamics. Their model included local kinetic interaction terms
of the tumour and immune cells and a modified functional immune response to account
for the saturation of immune cells in a tumour. The results from the study showed that
the main virotherapy treatment properties were tumour cell movement and local kinetic
interaction terms such as tumour growth and death rates. Unlike Malinzi et al. [36] who
examined a one-dimensional spatial domain, in this paperwe consider a three-dimensional
spatial tumour domain, under the assumption of radial symmetry, thus providing formore
realistic tumour geometry. Also, it is important to note that the immune systemplays a very
important role in tumour cells eradication from body tissue [16, 33, 39, 40]. We, however,
for the sake of model tractability, do not consider immune cell interactions.

In this paper, we extend the growing literature on tumour virotherapy models by pre-
senting a mathematical model of chemovirotherapy which builds upon those presented
by Tian [57] and Malinzi et al. [36]. To this end, we develop and analyse a mathemati-
cal model which combines chemotherapy and virotherapy treatments. Themodel includes
uninfected and infected tumour cells, free virus particles, and chemotherapeutic drug. The
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aim is to investigate the spatiotemporal distribution of tumour cells and viruses as well as
to determine the outcome of chemovirotherapy treatment. Moreover, through travelling
wave solutions, numerical simulations, and sensitivity analysis, we intend to establish the
key parameters that promote cancer remission during chemovirotherapy treatment.

This paper is organized as follows. In Section 2, we introduce the mathematical model,
define the initial and boundary conditions, and re-scale the model. In Section 3, we set
the baseline values for the parameters for simulating the model. In Section 4, we present
the temporal model analysis and simulations. In Section 5, we determine travelling wave
solutions to the spatiotemporal model and simulate themodel in the cases of no treatment,
chemotherapy, virotherapy, and chemovirotherapy. In Section 6, we perform a sensitivity
analysis on the model parameters to determine which parameters have the greatest impact
on model outcomes. The conclusion and discussion are presented in Section 7.

2. Mathematical model

2.1. Model construction

In this section, we devise a mathematical model that describes an avascular solid tumour
growth under chemotherapy and virotherapy treatments in spherical coordinates under
the assumption of radial symmetry. We consider an avascular tumour, with a necrotic core
containing dead cells with a radius L0, in a radially geometric setting with a fixed radius
L. We consider a tumour nodule that has grown to its maximum size of about 1–3mm
diameter [40] and just prior to angiogenesis, an assumption necessary for clinical inter-
vention. We model the movement of cells using the Kolmogorov equation [31], a linear
diffusion model used for simulating cell movement. The variables used to describe the
tumour progress and its interaction with the oncolytic virus and chemotherapy are:

• U(r, t): uninfected tumour density in cells per mm3

• I(r, t): infected tumour cell density in cells per mm3

• V(r, t): free virus density in virions per mm3

• C(r, t): concentration of a chemotherapeutic agent in grams per millilitre (g/ml)

where r ∈ [0, L] is the radius of the tumour at a time t ∈ [0,∞). Figure 1 depicts the
interactions between tumour cells, virus, and a chemotherapeutic drug.

Tumour density, U(r, t), and I(r, t)

The following assumptions aremade in order tomodel the evolution of a tumour over time
and in space:

• The tumour is considered to grow logistically at an intrinsic rate α per day and its
carrying capacity K is taken to be 106 cells [40].

• The infected tumour density, I(r, t), increases as the oncolytic viruses multiply in the
uninfected tumour cells and burst.

• Virus infection of the tumour is considered to be of Michaelis–Menten form [64].



248 J. MALINZI ET AL.

Figure 1. Diagram of the tumour–virus–chemotherapy interactions. Uninfected tumour cells are
infected upon entry of a free virus. Infected cells undergo lysis resulting in release of free viruses.
Chemotherapy drug, injected directly in the body tissue, kills both the uninfected and infected tumour
cells.

• The tumour–virus interaction is one to one, that is, one virus infects one tumour cell
which later multiplies into infected tumour cells [57].

• The chemotherapeutic drug is administered as a single bolus and its concentration in
the blood stream decays exponentially [55].

• The drug kills the tumour cells in a concentration-dependent manner [19], that is,
the drug cytotoxicity increases with increasing drug concentration, asymptotically
approaching its maximum.

The uninfected and infected tumour cell densities are governed by the following reac-
tion–diffusion equations:

∂U
∂t

= D1
1
r2
∂

∂r

[
r2
∂U
∂r

]
︸ ︷︷ ︸

Diffusion

+αU
(
1 − U + I

K

)
︸ ︷︷ ︸

Tumour growth

− βUV
Ku + U︸ ︷︷ ︸

Loss of U due to infection

− δ0UC
Kc + C︸ ︷︷ ︸

Drug response

, (1)

∂I
∂t

= D2
1
r2
∂

∂r

[
r2
∂I
∂r

]
︸ ︷︷ ︸

Diffusion

+ βUV
Ku + U︸ ︷︷ ︸

Gain of I due to infection

− δ1IC
Kc + C︸ ︷︷ ︸

Drug response

− δI︸︷︷︸
Death of infected tumour cells

.

(2)

In Equations (1) and (2), the terms D1(1/r2)(∂/∂r)[r2(∂U/∂r)] and D2(1/r2)(∂/∂r)
[r2(∂I/∂r)], respectively, represent diffusion in spherical coordinates, under radial sym-
metry, for the uninfected and infected tumour cells to model tumour movement. D1 and
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D2 are, respectively, the uninfected and infected tumour diffusion constants. The second
term αU(1 − (U + I)/K) represents tumour progression, where α is the intrinsic tumour
growth rate andK is the carrying capacity. The third term−βUV/(Ku + U)models infec-
tion of tumour cells by the virus, whereβ is the infection ratemeasured per day per number
of cells. It is of Michaelis–Menten form to account for saturation in the virus prolifera-
tion [36, 64]. The terms −δ0UC/(Kc + C) and −δ1IC/(Kc + C), respectively, represent
chemotherapeutic drug responses to uninfected and infected tumour cells where δ0 and δ1
are lysis-induced rates measured per day. Ku and Kc are, respectively, Michaelis–Menten
constants which relate to lysis rates when the virus and the drug are half-maximal. The
term βUV/(Ku + U), in Equation (2), describes a gain in infected tumour cells due to
infection by the virus. The last term in Equation (2), that is −δI, represents the death of
infected tumour cells where δ is the death rate.

Virus density, V(r, t)

Virus production is dependent on its burst size, that is, the larger the burst size, the higher
the number of viruses produced [57]. Virus production is taken to be bδI, where b is the
virus burst size measured per day and δ is the infected tumour cell death rate measured
per day [57]. The virus gets deactivated in body tissue at a rate γ per day. The non-linear
differential equation describing the virus density is given by:

∂V
∂t

= D3
1
r2
∂

∂r

[
r2
∂V
∂r

]
︸ ︷︷ ︸

Diffusion

+ bδI︸︷︷︸
Virus production

− βUV
Ku + U︸ ︷︷ ︸

Loss of Vdue to infection

− γV︸︷︷︸
Virus deactivation

. (3)

In Equation (3), the termD3(1/r2)(∂/∂r)[r2(∂V/∂r)] represents virus diffusion, where
D3 is the virus diffusion constant. Viruses reproduce by engulfing tumour cells and bursting
thus releasing other copies. The term −βUV/(Ku + U) describes loss of free virus due
to infection of the uninfected tumour cells. The last term in Equation (3), that is −γ I,
represents virus decay from body tissue.

Drug density, C(r, t)

Drug penetration into the tumour is modelled using reaction–diffusion. The drug density
is governed by the following reaction diffusion equation:

∂C
∂t

= D4
1
r2
∂

∂r

[
r2
∂C
∂r

]
︸ ︷︷ ︸

Diffusion

+ Cb(t)︸ ︷︷ ︸
Drug plasma level

− μC︸︷︷︸
Drug decay

. (4)

Similarly, in Equation (4) the term D4(1/r2)(∂/∂r)[r2(∂C/∂r)] represents chemother-
apeutic drug diffusion, where D4 is the drug diffusion coefficient, Cb(t) = ψ e(−kt) is the
prescribed drug plasma level in the blood stream, and −μC is the natural drug concen-
tration decay, where μ is the rate of decay. The constant ψ is the rate of drug infusion
and k relates to the chemotherapy drug half life, T1/2, which is roughly one day [50], and
is given by k = ln 2/T1/2. Figure 1 displays the tumour–virus–chemotherapy interactions
and Table 1 gives a summary of all the parameter descriptions, their baseline values, units,
and sources.
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Table 1. A summary of the parameter descriptions, their baseline value ranges, and their sources.

Parameter Description Value/units and units References

Di , i = 1, 2 . . . 4 Cell diffusion coefficients 10−3–10−6 cm2 day−1 [48]
α Intrinsic tumour growth rate 0.1–0.3 day−1 [54]
K Tumour carrying capacity 105–109 number of cells [54]
β Virus infection rate of U by V 0.001 day−1 number of cells−1 [5]
δ0 Lysis-induced rate of U by C 0.005 day−1 [47]
δ1 Lysis-induced rate of I by C 0.006 day−1 [1, 7, 44]
Ku Michaelis–Menten constant 105 g/ml [27]
Kc Michaelis–Menten constant 105 g/ml [27]
b Virus burst size 2–1000 day−1 [1, 7, 44]
δ Infected tumour cell death 0.5115 day−1 [4, 5]
γ Virus deactivation rate 0.001–0.1 day−1 [4, 9]
ψ Rate of drug infusion 20–200 ml day−1 [1, 7, 44]
k Drug half life constant 0.01–0.9 day−1 [50]
μ Rate of drug decay 4.17 day−1 [1, 7, 44]
ρ Tumour permeability 0.01 g−1 [32]

Note: est: estimated.

2.2. Initial and boundary conditions

This section gives an account for the choice of the initial and boundary conditions for the
model. A tumour nodule comprises three layers: a necrotic core containing dead cells, and
quiescent and proliferating zones comprising living cells [11]. We therefore consider the
uninfected tumour density in the necrotic core to be zero and that it increases outwards,
that is, in the quiescent and proliferating zones [36]. Initially, the drug and virus densities
are considered to lie on the sheath of the tumour in small concentrations. This is because
the boundary in which we investigate the tumour–drug–virus interactions is the tumour
sheath. We consider no flux boundary conditions for all cell concentrations at r=0, the
centre of the tumour, because it contains dead cells. At the boundary r=L, we consider no
flux conditions for the infected and uninfected tumour cells since the tumour is considered
to be at avascular growth stage with no small amounts of cells escaping through the tumour
sheath to spread into the surrounding tissue [2, 40]. Zero flux boundary conditions are
assumed for the virus density, at r=L, because of the cancellation of flux from inside and
outside the tumour [46]. The chemotherapeutic drug diffuses into the tumour through the
outside tumour boundary r=L whose permeability is denoted as ρ and the virus density
at the boundary is determined by the tumour–virus interactions. With these assumptions
we close off the system (1)–(4) with the following initial and boundary conditions:

U(r, 0) =
{
0, 0 ≤ r ≤ L0,
U0(1 − e−100(r−L0)2), L0 ≤ r ≤ L,

I(r, 0) = 0, r ∈ [0, L],

V(r, 0) =
{
V0, r = L,
0, elsewhere,

C(r, 0) =
{
C0, r = L,
0, elsewhere,

(5)
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∂U
∂r

∣∣∣∣
r=0

= ∂I
∂r

∣∣∣∣
r=0

= ∂V
∂r

∣∣∣∣
r=0

= ∂C
∂r

∣∣∣∣
r=0

= 0,

∂U
∂r

∣∣∣∣
r=L

= ∂I
∂r

∣∣∣∣
r=L

= 0, D3
∂V
∂r

∣∣∣∣
r=L

= 0, D4
∂C
∂r

+ ρC
∣∣∣∣
r=L

= 0,
(6)

where L0 is the radius of the necrotic core.

2.3. Model re-scaling

The system (1)–(4) is re-scaled by setting Ū = U/K, Ī = I/K, V̄ = V/V0, and C̄ = C/C0
with t̄ = t/t0 and r̄ = r/r0 where U0, I0, V0, and C0 are initial cell concentrations and the
space variable, r, is re-scaled relative to the length of the region under study, that is, r0 = 1
[40]. The parameters become

φi = Dit0, i = 1, 2, 3, 4, ᾱ = αt0, β̄ = βV0t0
U0

, δ̄0 = δ0C0t0, K̄u = Ku

U0
,

K̄c = Kc

C0
, δ̄1 = δ1C0t0, b̄ = bK

V0
, γ̄ = γ t0, ψ̄ = ψt0

C0
, μ̄ = μt0, φ5 = D4

r0
.

Dropping the bars for clarity and taking the necrotic core to be of radius 0.2 mm [22]
gives a re-scaled model defined by the following parabolic system of non-linear reaction
diffusion equations:

∂U
∂t

= φ1
1
r2
∂

∂r

[
r2
∂U
∂r

]
+ αU(1 − U − I)− βUV

Ku + U
− δ0UC

Kc + C
, (7)

∂I
∂t

= φ2
1
r2
∂

∂r

[
r2
∂I
∂r

]
+ βUV

Ku + U
− δ1IC

Kc + C
− δI, (8)

∂V
∂t

= φ3
1
r2
∂

∂r

[
r2
∂V
∂r

]
+ bI − βUV

Ku + U
− γV , (9)

∂C
∂t

= φ4
1
r2
∂

∂r

[
r2
∂C
∂r

]
+ Cb(t)− μC, (10)

with the initial and boundary conditions (11) and (12).

U(r, 0) =
{
0, 0 ≤ r ≤ 0.2,
1 − e(−100r−L0)2 , 0.2 ≤ r ≤ 1,

I(r, 0) = 0, r ∈ [0, 1],

V(r, 0) =
{
1, r = 1,
0, elsewhere,

C(r, 0) =
{
1, r = 1,
0, elsewhere

(11)
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and

∂U
∂r

∣∣∣∣
r=0

= ∂I
∂r

∣∣∣∣
r=0

= ∂V
∂r

∣∣∣∣
r=0

= ∂C
∂r

∣∣∣∣
r=0

= 0,

∂U
∂r

∣∣∣∣
r=1

= ∂I
∂r

∣∣∣∣
r=1

= 0, φ3
∂V
∂r

+ ρV
∣∣∣∣
r=1

= 0, φ5
∂C
∂r

+ ρC
∣∣∣∣
r=1

= 0.
(12)

3. Parameter estimation and baseline values

To date, there is still no available longitudinal data for chemovirotherapy treatment. To
simulate our model, we first determine the baseline parameter values from the literature
that most correspond to available experimental chemotherapy, virotherapy data, and bio-
logical facts. A summary of the parameter descriptions along with their numerical values
and references is given in Table 1.

3.1. Diffusion coefficients

The diffusion coefficients for the tumour, D1 and D2, were estimated using the formula,
D = 4R2q, where R and q are, respectively, the tumour radius and growth rate, discussed
in Prigogine and Lefever [48]. These values are approximated to be q=0.1–1 day−1 and
R = 4µm. Therefore,D1 andD2 are approximated to be 10−6–10−3 cm2 day−1. The virus
diffusion coefficient, D3, was estimated using Einstein’s formula D = κT/(6πRτ), where
κ is Boltzmann’s constant, T is the temperature, R is the radius of a virus cell, and τ is
the viscosity coefficient of the medium [40]. The temperature and viscosity coefficients
are known to be T=310 K, and τ = ρwater. We consider the radius of the virus to be a
fraction of that for the tumour. Therefore, R = 1 − 4µm. Virus diffusivity,D3, is therefore
approximated to be 10−5 cm2 day−1. Since the oncolytic virus is laboratory made to be
injected into body tissue, the drug diffusion coefficient is considered to be in the same
range as that of the virus.

3.2. Tumour growth and carrying capacity

The carrying capacity of the tumour is taken to be 106 cells per unit volume because a
tumour nodule contains about 105–109 tumour cells [54]. The tumour growth rate was
taken to be 0.26 day−1 because several experimental tumour growth models estimate it to
be in the range of 0.1–1 [5].

3.3. Virus production and infection rate parameters

Viral burst size is the number of viruses released from each infected tumour cell. This
alludes to the fact that virus emission leads to either cell lysis or cell death. The production
of new viruses from infected tumour cells therefore occurs as a burst of a characteristic
numbers of viruses, on time scales ranging from minutes to days [9]. Burst sizes for dif-
ferent viruses have a large range corresponding to their genus. The number of oncolytic
viruses produced in a day is considered to be in the range 2–1000 [9]. The infected tumour
cell death is estimated by Bajzer et al. [4] to be 0.5115 day−1.
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3.4. Chemotherapeutic drug parameters

The rate of drug infusion into body tissue is taken to be 20mg/day since most cancers
require high doses of treatment and the drug decay rate is estimated to be 4.17mg/day,
values which concur with cancer pharmacokinetic studies [1, 7, 44]. Since infected tumour
cells multiplication is enhanced by the oncolytic virus replication, the tumour cells lysis is
considered to be greater than that for uninfected tumour cells [47]. The half life of several
chemotherapeutic drugs is one hour to a month [65]. Therefore, we estimate the value of
k to be k = ln 2/T1/2 = 0.01 to 0.8.

To predict tumour cell densities at different time periods without the consideration of
space, we first analyse and simulate the model without spatial dynamics which we present
in the next section.

4. Temporal model analysis

In this section, we investigate the temporal model’s phase space properties, present its
asymptotics and stability, and run some simulations to support analytical findings.Without
spatial effects the model, Equations (7)–(10) become:

dU
dt

= αU(1 − U − I)− βUV
Ku + U

− δ0UC
Kc + C

, (13)

dI
dt

= βUV
Ku + U

− δ1IC
Kc + C

− δI, (14)

dV
dt

= bI − βUV
Ku + U

− γV , (15)

dC
dt

= Cb(t)− μC. (16)

4.1. Phase space properties

The solutions to model (13)–(16) are cell densities and concentrations which would only
make sense when they are positive quantities. It is important to first investigate solutions
existence and show that trajectories which start non-negative remain non-negative and
that the solutions never blow up.

Theorem 4.1:

(1) There exists a unique positive solution to the temporal model (13)–(16) on some domain
X = [0, b), b > 0.

(2) The solutions to the model (13)–(16) are bounded from above and the trajectories evolve
in an attracting region D ∈ X, where

D =
{
(U, I,V ,C) ∈ R

4
+ | 0 ≤ U + I ≤ 1, 0 ≤ V ≤ b

γ
, 0 ≤ C ≤ C∗

}
,

where C∗ is the maximum value attained by the chemotherapeutic drug concentration.
(3) The solutions to the model (13)–(16) are positive, bounded and defined for all t ≥ 0.
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Proof: (1) Equation (16) is a first-order linear differential equation and can be solved
using a suitable integrating factor to obtain

C(t) =
(
C0 + ψ

k − μ

)
e−μt +

(
ψ

μ− k

)
e−kt , k �= μ, lim

t→∞C(t) = 0. (17)

For Equations (14)–(16), we use Theorem A.4. in [56] which is stated as follows:

Theorem: LetRn+ = [0,∞) be the cone of non-negative vectors inR
n. Let F : Rn+1

+ →
R
n be locally Lipschitz,

F(t, x) = (F1(t, x), . . . Fn(t, x)), x = (x1, . . . xn),

and satisfy

Fj(t, x) ≥ 0 whenever t ≥ 0, x ∈ R
n
+, xj = 0.

Then, for every x◦ ∈ R
n+, there exists a unique solution of x′ = F(t, x), x(0) = x◦,

with values in R
n+, defined on some interval [0, b), b>0.

The functions, F(U, I,V) on the left of Equations (14)–(16) and their partial deriva-
tives are continuous on R

4 and
(i) In (13), F(I,V ,C) ≥ 0 whenever t ≥ 0, (U, I,V) ∈ R

n+, U =0
(ii) In (14), F(U,V ,C) ≥ 0 whenever t ≥ 0, (U, I,V) ∈ R

n+, I=0
(iii) In (15), F(U, I,C) ≥ 0 whenever t ≥ 0, (U, I,V) ∈ R

n+, V =0
(iv) In (16), F(U, I,V) ≥ 0 whenever t ≥ 0, (U, I,V) ∈ R

n+, C=0
(2) From Equations (13) and (14),

dU
dt

+ dI
dt

= αU(1 − (U + I))− δ0UC
Kc + C

− δ1IC
Kc + C

− δ1I

≤ α(U + I)(1 − (U + I)). Let U + I = W,

W(t) ≤ 1
B e−αt + 1

,

sup
t∈[0,b)

W(t) ≤ 1,

where B = (1 − W0)/W0. From Equation (15),

dV
dt

= bI − βUV
Ku + U

− γV ≤ b − γV , (18)

V(t) ≤ 1 − V0 e−γ t

b
, (19)

sup
t∈[0,b)

V(t) ≤ b
γ
. (20)
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The solution to Equation (16) exponentially decreases with time provided that k ≥ μ

and the highest possible concentration, C∗, is C(t0), where

t0 = log

[
(
ψ
μ−k − C0)

ψ
k−μ

]
.

(3) Since the bound of U, I, V , and C on [0, b) is finite, then bmust be infinite. �

Theorem 4.1 states that the solutions to the model (13)–(16) are positive and bounded.
Thence the cell concentrations are biologically meaningful since body tissue can only con-
tain a finite amount of cells. Equation (17) shows that with time the drug concentration is
depleted from body tissue provided that k, a constant which relates to the drug half life,
is greater than the rate of drug decay. We next determine the model equilibria and their
stability to predict long-term behaviour of the model solutions.

4.2. Asymptotics and stability

In order to determine steady-state solutions of the model (13)–(16), the system equations
are first transformed into an autonomous system of ODEs by letting y = Cb(t) = ψ e−kt

such that dC/dt = y − μC and dy/dt = −ky.

Theorem 4.2: The model (13)–(16) has three biologically meaningful steady states; a
tumour-free state where the tumour is eradicated from body tissue, that is, U = 0, I =
0, V = 0, C = 0, y = 0, which is unstable, a state where the tumour grows to maximum
size, that is, U = 1, I = 0, V = 0, C = 0, y = 0, and a state where the tumour co-exist
with the virus, that is,

U = δγKu

β(b − δ)− δγ
,

I = (δγKu − bβ + βδ + δγ )αγKu

(αγKu + bβ − βδ − δγ )(βδ + δγ − bβ)
,

V = (δγKu − bβ + βδ + δγ )α(b − δ)Ku

(αγKu + bβ − βδ − δγ )(βδ − δγ − bβ)
,

C = 0, y = 0

(21)

provided that bβ > δ(γKu + β + γ ) and b > δ.

Proof: The characteristic polynomial of the Jacobian matrix evaluated at the tumour-free
steady state has both positive and negative real roots, that is, −γ ,−μ,−k,α,−δ. This
shows that the tumour-free state is unstable. �

The other states are either stable or unstable depending on the parameter values, mostly
Ku,Kc, and β . Equation (21) shows that with time, except for the chemotherapeutic drug,
all tumour densities co-exist in body tissue. High values of the virus burst size b and the
virus infection rate β lead to lower tumour densities. Moreover, Theorem 4.2 biologi-
cally implies that without the consideration of space, the temporal model predicts that
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Figure 2. Simulations of the temporal model (13)–(16) for chemotherapy, that is I= V = 0, showing a
variation of the fractional tumour and drug concentrations with time. The non-dimensional parameter
values in Equation (22) were used. The plot shows the drug, as it gets depleted, reducing the tumour
concentration.

the tumour may either co-exist with the virus in small concentrations or it may grow
to its maximum size depending on several conditions as defined by the parameters in
Equation (21).

4.3. Temporal model simulations

In this section, we present numerical simulations of themodel (13)–(16) to support analyt-
ical findings and to predict changes in tumour size in response to either treatments, and to
the combination of the chemotherapy with the virotherapy. The fourth-order Runge–Kutta
method is used to discretise the system of equations. The dimensional values in Table 1
were re-scaled by taking t0 = 1/δ to give the following non-dimensional parameter values:

α = 0.4027, β = 0.002, δ0 = 9.76, δ1 = 11.73, γ = 0.002, Ku = 0.01,

Kc = 0.01, b = 10, γ = 0.002, ψ = 0.5865, μ = 8.13, k = 0.1. (22)

Initially, the tumour is assumed to have grown to maximum size to necessitate treat-
ment. The fractional concentrations are therefore taken to be U0 = 1, I0 = 0, V0 = 0.1,
and C0 = 0.1.

First, we simulate the model with either treatments, then chemotherapy and virother-
apy treatments combined. In this simulation, one unit on the time scale represents two
days, whereas one unit on the cell concentrations scale represents 106 number of cells.
Figure 2 displays chemotherapy treatment with time. The simulation results show that after
40 days, although the tumour decreased to its steady states when the drug is depleted, it is
not completely wiped out from the body tissue. Figure 3 shows the temporal variation of
the tumour and virus concentrations using virotherapy. The simulation results show that
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Figure 3. Simulations of the temporalmodel for virotherapy (13)–(16), that isC= 0, showing a variation
of the fractional cell concentrations with time. The non-dimensional parameter values in Equation (22)
were used. The simulation shows the virus infecting and lysing all tumour cells after 10 days.

it takes about two days for all tumour cells to be infected and about ten days for all the
tumour cells to reduce to undetectable cell counts. Figure 4 depicts the case of the com-
bination of chemotherapy and virotherapy. The simulation results show that it takes less
than four days for all tumour cells to be infected and die out completely.

Biologically, these simulation results imply that the treatment of cancer with chemovi-
rotherapy is more effective than chemotherapy and virotherapy alone, which is in accor-
dance with some experimental studies [60, 71]. These results also show that it would take
a shorter time period to clear all tumour cells from the body tissue which is in line with
the experimental study by Weber et al. [66].

5. Spatiotemporal model analysis

In this section, we analyse the full model (7)–(10) to investigate the spatial dynamics of
the cell densities. First, in one dimension and with constant drug infusion, we employ a
technique used byMaidana and Yang [34] and Chahrazed et al. [10] to determine the min-
imum wave speed of the travelling wave solutions to the model (7)–(10). In doing this, we
seek to determine the parameters which define the minimum speed of tumour invasion,
thus determining the factors which characterize the potential with which a tumour invades
body tissue. We later present results from numerical simulations of the model (7)–(10).

5.1. Travelling wave analysis

Using the transformation ζ = r − ct, where c is the propagation speed, Equations (7)–(10),
in one dimension, are transformed to:

d2U
dζ 2

+ G1(U, I,V ,C)
dU
dζ

+ F1(U, I,V ,C) = 0, (23)
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Figure 4. Simulations of the temporal model (13)–(16) for the combination of chemotherapy and
virotherapy treatments. The plots are a variation of the fractional cell concentrations with time. The
non-dimensional parameter values in Equation (22) were used. The simulations are similar to those with
virotherapy treatment although it would take less time for tumour depletion from body tissue.

d2I
dζ 2

+ G2(U, I,V ,C)
dI
dζ

+ F2(U, I,V ,C) = 0, (24)

d2V
dζ 2

+ G3(U, I,V ,C)
dV
dζ

+ F3(U, I,V ,C) = 0, (25)

d2C
dζ 2

+ G4(U, I,V ,C)
dC
dζ

+ F4(U, I,V ,C) = 0, (26)

where

G1 = c
φ1

, F1 = c1U
(
α(1 − U − I)− βV

Ku + U
− δ0C

Kc + C

)
,

G2 = c
φ̄2

, F2 = c2I
(

βUV
I(Ku + U)

− δ1C
Kc + C

− δ

)
,

G3 = c
φ̄3

, F3 = c3V
(
bI
V

− βU
Ku + U

− γ

)
,

G4 = c
φ̄4

, F4 = c4C
(
ψ

C
− μ

)
,

where ci = 1/φ̄i, i=1,2,3,4.
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By letting y1 = dU/dζ , y2 = dI/dζ , y3 = dV/dζ , and y4 = dC/dζ , Equations (23)–(26)
are transformed into a system of first-order differential equations:

dY
dζ

= f (Y) where Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
U
y2
I
y3
V
y4
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
8 (27)

and

f (Y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−G1y1 − F1
y1

−G2y2 − F2
y2

−G3y3 − F3
y3

−G4y4 − F4
y4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

with boundary conditions

lim
ζ→−∞

(y1,U, y2, I, y3,V , y4,C) = Y1,

and

lim
ζ→+∞

(y1,U, y2, I, y3,V , y4,C) = Y2,

where Y1 and Y2 correspond to the equilibrium solutions of Equation (28). Y1 is the
tumour-free equilibrium andY2 is the equilibrium solutionwhere either the tumour grows
to maximum size or where all cell concentrations co-exist. A travelling wave solution is the
trajectory that joins Y1 and Y2. The tumour-free equilibrium must therefore not oscil-
late, that is a trajectory leaving Y1 must move to the stable equilibrium. Consequently, in
determining the minimum wave speed the eigenvalues of the Jacobian matrix evaluated
about Y1 must have real values. The eigenvalues, λi, i = 1, 2, . . . 8, of the Jacobian matrix
of Equation (28) are:

λ1,2 = −c ±
√
c2 + 4μφ4
2φ4

, (29)

λ3,4 = −c ±
√
c2 + 4γφ3
2φ3

, (30)

λ5,6 − c ±
√
c2 + 4δφ2
2φ2

, (31)
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λ7,8 = −c ±
√
c2 − 4αφ1
2φ1

. (32)

The eigenvalues λ1 to λ6 in Equations (29)–(31) are real. Equation (32) therefore deter-
mines the minimum wave speed. This is obtained by setting

√
c2 − 4αφ1 = 0 which gives

c = 2
√
αφ1. This speed highlights the parameterswhich are critical during chemovirother-

apy treatment. These parameters are tumour diffusivity and growth rate.

5.2. Spatiotemporal model simulations

We now present numerical simulations of the model (7)–(10) with space to investigate
tumour cell distributions in space with time. The multi-domain monomial based collo-
cation method [42] and pdepe [53], a finite element-based method in Matlab, are used
to determine the numerical solutions. In re-scaling the spatiotemporal model, we take
t0 = 1/D1 which gives rise to the following non-dimensional parameter values:

φ1 = 1, φ2 = 0.01, φ3 = 0.01, φ4 = 0.01, ρ = 0.01,

α = 206, β = 511, δ0 = 5 × 106, δ1 = 6 × 106, Ku = 0.1,

Kc = 0.1, δ = 0.005, b = 3, γ = 0.002, ψ = 0.0050, μ = 4160, k = 0.1.
(33)

We simulate the model in the following cases: no treatment, chemotherapy alone,
virotherapy alone, and lastly combination of chemotherapy and virotherapy as described
in the following sections.

5.2.1. No treatment
To investigate the efficacy of each treatment and their combination, we first simulate
Equation (7) which models tumour growth without any form of treatment, that is C=V
= I=0. Figure 5 illustrates the initial tumour distributions. Simulation results show that
the tumour density is zero in the necrotic core (i.e. 0 ≤ r ≤ 0.2) and increases towards the
tumour sheath. The infected tumour density is zero throughout the tissue since there was
no virotherapy treatment. Figure 6 shows the distribution of tumour cells in the tissuewith-
out any form of treatment. The simulation results indicate that tumour density increases
with time. This can be seen from Figure 6 (a,b), where after 25 days the fractional tumour
density rose to 0.998 × 106 cells per unit volume from 0.84 × 106 cells per unit volume,
which is about 16% increase.

Next, we simulate each of the chemotherapy and virotherapy treatments separately to
determine how the drug and virus treatment affect the tumour density and spatiotemporal
distribution.

5.2.2. Chemotherapy
Figure 7 depicts the fractional distribution of the chemotherapeutic drug in body tissue.
Simulation results show that the drug concentration is highest inside the tissue and that
the drug concentration is reduced with time. Initially, the fractional drug concentration is
maximum outside the tumour and with time it circulates in the tumour and redistributes
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Figure 5. Initial fractional tumour cell densities. Uninfected tumour cells lie in the quiescent and prolif-
erating zone 0.2 ≤ r ≤ 1 while the region 0 ≤ r ≤ 0.2 contains dead cells. The infected tumour density
is initially zero in the whole domain.

to have a higher density inside the tissue, that it, maximum concentration is near the core
than outside where r ≥ 0.2.

Figure 8 (a–c) shows numerical solutions of Equation (7) which simulates the tumour
with chemotherapy treatment. The tumour density in the tissue is reducedwith time.When
comparing the simulation results in Figures 6 and 8, we note that the tumour density was
reduced from 0.849 × 106 to 0.790 × 106 cells per unit volume for a 10-day period treat-
ment, from 0.998 × 106 to 0.41 × 106 cells per unit volume for a 25-day period treatment,
and from 1 × 106 to 0.385 × 106 cells per unit volume for a 50-day period treatment. This
reduction in tumour density is about 7%, 60% and 62% for the 10, 25, and the 50-day
periods of treatment, respectively.

5.2.3. Virotherapy
Figure 9(a), (b), and (c) shows the numerical simulation of tumour treatmentwith virother-
apy after 10, 25, and 50 days respectively. We notice that with time the virus reduces the
uninfected tumour cell density from outside the tumour. Initially, we assume that there are
no infected tumour cells in the tissue, that is I=0, and the tumour has grown to maxi-
mum size. After a period of 10 days, Figure 9(a) shows that the infected tumour density
begins to increase from outside the tissue, that is, 0.8 ≤ r ≤ 1 and the uninfected tumour
density begins to reduce throughout the tissue. After 25 days, the infected tumour den-
sity and the region in which it lies, increased to about 0.6 × 106 cells per unit volume in
0.6 ≤ r ≤ 1. The uninfected tumour density was reduced to zero in this region. After 50
days, the infected tumour density occupied 0.2 ≤ r ≤ 0.6, whereas the tumour density was
reduced to zero in the region 0.4 ≤ r ≤ 1.
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Figure 6. Spatial distributionof fractional untreated tumourdensity in the tissueat times corresponding
to (a) 10, (b) 25 and (c) 50 days. The plots show that tumour density increases with time.
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Figure 7. Simulation of Equation (10) showing distributions of the drug concentration for different time
periods.

5.2.4. Combining chemotherapy and virotherapy
Figure 10 (a,b) shows the spatiotemporal dynamics of the tumour with both chemother-
apy and virotherapy treatments combined. The simulation results are similar to those
for virotherapy treatment except that the cell densities are reduced from both sides of
the domain. The simulations indicate that with time, the tumour density reduces from
both sides of the tissue domain, that is, from r=0 and r=1. After a 50-day period of
treatment, the uninfected tumour density occupies a narrower domain, 0.2 ≤ r ≤ 0.8,
compared to the region, 0 ≤ r ≤ 1, that it occupied after the 10-day treatment period.
Simulation results show that, when both chemotherapy and virotherapy treatments are
combined, the uninfected tumour density is reduced to a lower value compared to either
chemotherapy or virotherapy treatments. For example, for the case of a 50-day period of
treatment, we notice that: (a) with chemotherapy alone, in Figure 8(c), the uninfected den-
sity is about 0.41 × 106 in the whole tumour domain 0 ≤ r ≤ 1, (b) with virotherapy alone,
in Figure 9(c), the uninfected density is decreased from its highest peak of 0.9 × 106 to
zero and lies in a reduced domain 0 ≤ r ≤ 0.4, and (c) with chemotherapy and virotherapy
combined, in Figure 10(c), the highest peak of the tumour is about 0.6 × 106 and lies in the
region 0.2 ≤ r ≤ 0.7. Going by the peak and the domain occupied by the cell densities, this
means that combining chemotherapy and virotherapy results in about 20% improvement
compared to virotherapy alone and about 37% compared to chemotherapy alone.

We further notice that the number of infected tumour cells is highly reduced with
chemovirotherapy compared to treatment with virotherapy. For example, after a 50-day
period of treatment with virotherapy alone, when comparing Figures 9(c) and 10(c) we
notice that the infected tumour cells are 0.5 × 106 and lie in the region 0.2 ≤ r ≤ 0.6,
whereas with chemovirotherapy they are about 0.2 × 106 and covering 0.6 ≤ r ≤ 0.8. That
is about 80% difference between the two treatments. The simulations show that chemovi-
rotherapy has a double-edged sword effect, with the ability to reduce tumour cells spatially
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Figure 8. Chemotherapy alone: Spatial distribution of fractional tumour density in the tissue with
chemotherapy treatment at times corresponding to (a) 10, (b) 25, and (c) 50 days. The plots show that
the tumour density reducing with time.
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Figure 9. Virotherapy alone: Spatial distribution of fractional uninfected and infected tumour densities
with virotherapy treatment for times corresponding to (a) 10, (b) 25, and (c) 50 days. Both infected and
uninfected tumour densities begin to reduce from outside the tissue.
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Figure 10. Combining chemotherapy and virotherapy: spatial distribution of fractional uninfected and
infected tumour densities with both treatments for times corresponding to (a) 10, (b) 25, and (c) 50 days.
The infected tumour density increases fromoutside the tissue and uninfected tumour density is reduced
from both sides of body tissue.
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throughout body tissue and in a small time period. The viruses infect and directly lyse
tumour cells rendering them weaker and prone to lysis by the chemotherapeutic drug
[1, 3, 52]. Moreover, the chemotherapeutic drug directly kills uninfected tumour cells
as well.

These simulation results assert that combining chemotherapy and virotherapy to treat
cancer is more effective and a good alternative to either chemotherapy or virotherapy
alone, which is in agreement with the latest experimental studies [3, 6, 8, 12, 23, 24, 43,
45, 49, 61, 62]. These studies have shown that the right combination of oncolytic viruses
and chemotherapy agents resulted in enhanced therapeutic effects not attainable by either
therapy alone.

6. Uncertainty and sensitivity analysis

In this section, we study the dependence of the model solutions on the parameter values.
In doing so, we are able to determine a feasible range of parameter values and ascertain the
most critical parameters in the model. We employ two techniques which are discussed in
detail by Marino et al. [38], that is, Latin hypercube sampling (LHS) for studying uncer-
tainty analysis and partial rank correlation coefficient (PRCC) for calculating the sensitivity
analysis indexes of the parameters. We ran the LHS/PRCC analysis with a sample size of
100. The choice of this sample size is due to the fact that PRCC produces accurate results
for a lower sample size compared to other techniques like eFAST [38].

Uncertainty and sensitivity analysis were performed on all non-dimensional model
parameters in the homogeneous model (13)–(16) with the aim of determining the most
sensitive parameters to the model prediction of the cell densities. The parameter baseline
values in Equation (22) were varied in the range of 25%. We considered the same initial
cell densities as in the homogeneous model simulations. The indices were calculated at
t=5, a time just before all cell densities have reached equilibrium. Figure 11 displays a
bar graph of PRCCs plotted against the homogeneous parameter values with the infected
tumour density as the baseline dependent variable. The parameters which are significantly
positively correlated with infected tumour cell density, at p<0.01 level of significance, are
tumour growth rate α and drug decay μ, while lysis-induced rate of tumour by the drug,
δ0, is significantly negatively correlated. An increase in the intrinsic production of tumour
cells, α, leads to higher numbers of tumour cells, thus leading to an increase in the number
of infected tumour cells. An increase in the drug decay, μ, leads to a less drug concen-
tration in the body tissue, thus reducing the effect of the drug on the tumour cells and
thereby leading to an increase in the number of infected tumour cells. The higher the drug
lysis rate, δ0, the lower the number of uninfected tumour cells, thus leading to a decrease
in the number of tumour cells infected. Similarly, Figure 12 shows that the highest signifi-
cantly correlated parameters with the virus density are virus burst size bwhich is positively
correlated and lysis-induced rate of infected tumour by the drug δ1 which is negatively cor-
related. An increase in the virus burst size implies an increase in the production of virus
copies, thus increasing the virus density. On the other hand, an increase in the lysis rate of
infected tumour leads to an increase in their death, resulting in a decrease in the number
of virus copies made. Comparing Figures 11 and 12, we notice that b, δ1, and ψ have the
highest PRCCs and therefore possess a greater influence, compared to other parameters,
in determining the infected and virus densities although their ranks differ. We notice that
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Figure 11. PRCCs of homogeneousmodel parameterswith the infected cell density as the baseline vari-
able and at the 5th day. All parameter values were varied in 25% of their baseline values in Table 1.
The most sensitive parameters are shown to be α, δ1, b, and ψ . The p-values of α, δ1, δ0, b, and ψ are
all less than 0.002. Key: alpha = α, beta = β , delta_0 = δ0, delta_1 = δ1, ku = Ku, kc = Kc delta = δ,
gamma = γ , psi = ψ , and mu = μ.

much as other parameter values, for example, the virus infection rate, β , have a significant
p-value, they have less PRCCs, thus rendering them less sensitive to the model predictions
compared to α, b, δ0, δ1, and ψ .

7. Discussion

In this paper, we developed a mathematical model of the spatiotemporal dynamics of
chemovirotherapy treatment to cancer. Unique to this model is the inclusion of both
chemotherapy drugs and virotherapy treatments, which has not been investigated before
by means of mathematical modelling. The model describes an avascular solid tumour
growth under chemovirotherapy treatment in spherical coordinates under the assumption
of radial symmetry. We investigate the spatiotemporal distribution of infected and unin-
fected tumour cells as well as the outcome of chemovirotherapy treatments. We use the
minimum wave speed of tumour invasion, numerical simulations, and sensitivity analysis
to establish the key parameters that promote cancer remission during chemovirotherapy
treatment.

The model was analysed in two main phases. First without the consideration of space
and later with the inclusion of a space variable. The homogeneous model solution proper-
tieswere investigated and a stability analysis was carried out on the steady-state solutions. A
minimum wave speed of tumour invasion, in one dimension, was determined by convert-
ing the spatiotemporal model into a system of first-order ODEs and analysing its phase
space. Numerical simulations for both temporal and spatiotemporal models were car-
ried out using experimental data from the literature summarized in Table 1. A sensitivity
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Figure 12. PRCCs of homogeneousmodel parameterswith the virus density as the baseline variable ran
at the 5th day. All parameter values were varied in 25% of their baseline values in Table 1. The bar graph
shows δ1, b, and ψ as the most sensitive. alpha = α, beta = β , delta_0 = δ0, delta_1 = δ1, ku = Ku,
kc = Kc delta = δ, gamma = γ , psi = ψ , and mu = μ.

analysis was performed to identify critical parameters of the model. The main results
obtained from this study are:

(1) Chemotherapy, alone, may not be able to clear all tumour cells from body tissue. This
is depicted in Figure 2 which shows that even after 40 days, the tumour concentration
was only reduced to its steady state.

(2) The virus burst size and infection rates are key factors in determining the success of the
virotherapy treatment as was observed in Equation (21) that depicts the homogeneous
model equilibriums. The homogeneous model analysis showed that high values of the
virus burst size and the virus infection rate lead to lower tumour densities. This is in
agreement with the mathematical studies by [13, 57].

(3) As shown in Figures 3 & 4 and 9 & 10, chemovirotherapy, as a form of cancer treat-
ment, is more effective than chemotherapy and virotherapy treatments alone and is
capable of eliminating tumour cells from body tissue in less than a week.

(4) The most critical parameters during chemovirotherapy according to travelling wave
analysis in Section 5.1 are: tumour diffusivity and tumour growth rate. The most crit-
ical parameters in reference to sensitivity analysis in Section 6 are: virus burst size,
tumour growth rate, drug lysis rates, and drug injection rate. Some of these parameters
are as well depicted by the steady-state solutions in Section 4. Some of these parame-
ters have already been identified as highly important for successful cancer treatment
for in [13, 35, 57].

Despite the lack of longitudinal data for chemovirotherapy treatment, our analysis and
numerical results are in agreement with latest clinical [6, 8, 51], experimental [60, 71],
and mathematical studies [13, 25, 26, 36, 57] on virotherapy and chemovirotherapy. Tian
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[57] affirms that tumour concentration can diminish to low undetectable cell counts pro-
vided that the burst size is large. Similarly, we have shown in the homogeneous case and
sensitivity analysis that virus burst size and infection rates are critical in determining the
outcome of virotherapy and chemovirotherapy treatments. It is worth noting that the larger
the virus burst size, the higher the number of infected tumour cells, thus rendering them
weak to progress and damage body tissue as shown in [57]. Crivelli et al. [13] assert that
virus replication and virus-tumour cells fusion should be optimized in order to maximize
virotherapy.

The mathematical model presented in this study considers a couple of simplifying
assumptions and omits certain biological aspects during tumour invasion mainly the
immune response which has been shown to impede tumour development [33, 37, 40].
Despite this fact, the results of this study affirm that combining chemotherapeutic drugs
and viruses to treat cancer is more effective and a good alternative to either chemother-
apy or virotherapy, which is in agreement with [6, 60]. The parameter sets, highlighted
in this study, could be helpful in pointing out pertinent factors to consider in designing
treatment protocols for chemovirotherapy treatment. The present model may be viewed
as a stepping stone towards understanding the dynamics of chemovirotherapy treatment.
This study can be extended to consider a higher spatial domain such as 3D to better
describe the tumour geometry. A consideration of the tumour microenvironment, such
as the extracellular matrix, would be a good extension of this study to investigate the effect
of chemovirotherapy on normal body tissue cells. Our model is limited to a tumour that
has grown to maximum size, prior to angiogenesis. Another plausible extension would be
to model chemovirotherapy during the angiogenesis stage.
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