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DISSERTATION SUMMARY 

STOCHASTIC RAIL LIFE CYCLE COST MAINTENANCE 

MODELLING USING MONTE CARLO SIMULATION 

RICK VANDOORNE 

Supervisor:  Professor P.J. Gräbe 

Department:  Civil Engineering 

University:  The University of Pretoria 

Degree:   Master of Engineering (Transportation Engineering) 

 

The objective of this study was to quantify and determine trends in the uncertainty in the life cycle cost 

(LCC) associated with the maintenance and renewal (M&R) of the rail of a railway track under a fixed 

set of input parameters and conditions. Rail maintenance models were identified in the literature which 

use the mean or expected value of the input distributions to determine a corresponding mean or expected 

LCC. Although these models display important trends with regard to input parameters such as inspection 

intervals, they provide no means to quantify the uncertainty related to maintenance and renewal 

decisions. Thus, a numerical model was developed and programmed using MATLAB which allows the 

quantification of the uncertainty in the LCC estimated for a given set of conditions.  

 

The model uses Monte Carlo simulation to determine the LCC associated with the installation, 

maintenance and renewal of the rail. The model incorporates imperfect inspections, a hazard function 

for rail fatigue defects modelled using the Weibull probability distribution and a P-F interval for rail 

fatigue defects modelled using an exponential probability distribution. The model also allows the 

modelling of maintenance as either perfect or minimal maintenance as well as the use of either flash butt 

or alumino-thermic welds to conduct the maintenance. This allowed the development of a method to 

assess which weld type to use to minimise the minimum attainable mean LCC. 

 

The developed model was validated against a similar stochastic rail maintenance model from the 

literature. However, the model from the literature considers only the expected LCC and does not show 

any uncertainty related thereto. The novelty in this study therefore lies in the fact that the LCC 

uncertainty can be quantified in the form of a probability distribution at any given renewal tonnage for 

a given set of conditions.  
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It was found that the distribution of the LCC at a given renewal tonnage followed a lognormal probability 

distribution. The standard deviation of the lognormal distributions fitted using the method of maximum 

likelihood was used as a metric to quantify the uncertainty related to the life cycle cost at a given renewal 

tonnage. The LCC uncertainty was found to increase with an increase in inspection interval length. 

Furthermore, the uncertainty was also found to increase with a respective increase in renewal tonnage. 

For varying inspection interval lengths it was found that the uncertainty of combined maintenance costs 

(planned plus unplanned maintenance costs) tended more strongly towards the uncertainty in the planned 

maintenance costs for smaller inspection intervals and more strongly towards the uncertainty in 

unplanned maintenance costs for larger inspection intervals. A critical cost ratio was found of flash butt 

weld cost to alumino-thermic weld cost at which the minimum attainable mean LCC was equal. It is 

more economical to use flash butt welding for maintenance if the cost of flash butt welding maintenance 

produces a cost ratio lower than the critical cost ratio.  

 

The developed model could allow railway operators to assess the risk associated with renewal of the rail 

at varying renewal tonnages for given conditions such as inspection interval lengths, detectability of rail 

fatigue defects and the arrival rate of rail fatigue defects.  
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 cost of a planned maintenance action of a detected defect using flash butt welds 

𝑐𝑅  cost of rail renewal 

ℎ the total number of defects modelled using the Zhao et al. (2006) model 

ℎ𝑗 the number of Type B defects modelled in the Zhao et al. (2006) model 

𝑖 indexing variable 

𝑗 indexing variable 

𝑘 indexing variable 

𝑚  number of ultrasonic inspections conducted during the interval (0, 𝑇) 

𝑛0 the number of alumino-thermic welds at 𝑡 = 0 in the Zhao et al (2006) model 

𝑛0𝐴𝑇𝑊
 initial number of alumino-thermic welds  

𝑛0𝐹𝐵𝑊
 initial number of flash butt welds 

𝑛𝑏𝑖𝑛𝑠 the number of equiprobable bins to use in the Chi-Square goodness-of-fit test 

𝑛𝑑 the number of derailments which occurred during a life cycle 

𝑛𝑑𝑎𝑡𝑎 the number of data points in the sample to be tested using the Chi-square test 

𝑛0𝐹𝐵𝑊
 initial number of FBWs  

𝑝 indexing variable 

𝑞𝑔 annual grinding rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xv 

 

𝑠𝑔 rail grinding interval length 

𝑠𝐼 inspection interval length 

𝑡 relative tonnage or time 

𝑡𝐴𝑑 tonnage-to-defect initiation relative to the defect or weld for a Category A defect 

𝑡𝐴𝑃−𝐹
 P-F interval length for a Category A defect 

𝑡𝐵𝑃−𝐹
 P-F interval length for a Category B defect 

𝑡𝐵𝑑 tonnage-to-defect initiation relative to the defect or weld for a Category B defect 

𝑡𝑑 defect inter-arrival tonnage 

𝑡𝑃−𝐹 P-F interval length  

 

𝐶𝐴 maintenance case number for a Category A defect 

𝐶𝐵 maintenance case number for a Category B defect 

𝐿𝐶𝐶 the life cycle cost as calculated using the Zhao et al. (2006) model 

𝑁𝑑 expected number of defects detected by inspections using the Zhao et al. (2006) model 

𝑁𝑓 the number of rail failures as modelled using the Zhao et al. (2006) model 

𝑁𝑠𝑖𝑚  number of virtual life cycles simulated 

𝑇 cumulative tonnage 

𝑇𝐴𝑑
 virtual life cycle tonnage at defect initiation for a Category A defect 

𝑇𝐴𝑓
 virtual life cycle tonnage at failure for a Category A defect 

𝑇𝐴𝐼 virtual life cycle tonnage at weld installation for a Category A defect 

𝑇𝐴𝑚 virtual life cycle tonnage at which a Category A defect was maintained 

𝑇𝐵𝑑
 virtual life cycle tonnage at defect initiation for a Category B defect 

𝑇𝐵𝑓
 virtual life cycle tonnage at failure for a Category B defect 

𝑇𝐵𝑚 virtual life cycle tonnage at which a Category B defect was maintained 

𝑇𝑑 cumulative defect initiation tonnage 

𝑇𝑅 renewal tonnage 

𝑇𝑅𝑐𝑟
 renewal tonnage at which the mean life cycle cost is a minimum 

𝑈 a uniformly distributed random variable 

 

𝛼 Weibull probability distribution shape parameter 

𝛽 Weibull probability distribution scale parameter 

𝛾 hazard rate reduction factor for grinding 

𝜂𝑗 the probability that a defect of type 𝑗 will be detected by ultrasonic inspection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



xvi 

 

𝜆 expected rate of occurrence of an event 

𝜇𝑗 the expected P-F interval length for defect type 𝑗 

𝜇𝐿𝐶𝐶 the mean life cycle cost at a fixed renewal tonnage 

𝜆𝑎(𝑡) hazard function of a single Type A defect at tonnage 𝑡 in the Zhao et al. (2006) model 

𝜆𝑏(𝑡) hazard function of a single Type B defect at tonnage 𝑡 in the Zhao et al. (2006) model 

𝜈𝑎(𝑡) hazard function of all Type A defects for the Zhao et al. (2006) model 

𝜈𝑏(𝑡) hazard function of all Type B defects for the Zhao et al. (2006) model 

𝜉 probability that a rail failure will cause a derailment for the Zhao et al. (2006) model 

𝜌 Pearson’s correlation coefficient 

𝜎𝐿𝐶𝐶 standard deviation of the total life cycle cost at a fixed renewal tonnage 

𝜎𝐿𝐶𝐶𝑐𝑜𝑚
 standard deviation of the total combined maintenance cost at a fixed renewal tonnage 

𝜎𝐿𝐶𝐶𝑓
 standard deviation of the total unplanned maintenance cost at a fixed renewal tonnage 

𝜎𝐿𝐶𝐶𝑝
 standard deviation of the total planned maintenance cost at a fixed renewal tonnage 
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LIST OF ABBREVIATIONS 

%HA  percentage head area 

ATW  alumino-thermic weld 

CDF  cumulative distribution function 

CEN  European Committee for Standardization 

CM  corrective maintenance 

CWR  continuous welded rail 

DSS  decision support system 

ECDF  empirical cumulative distribution function 

FBW  flash butt weld 

IHHA  International Heavy Haul Association 

IM  infrastructure manager 

LCC  life cycle cost 

LCCA  life cycle cost analysis 

MGT  million gross tonnes 

M&R  maintenance and renewal 

NHPP  non-homogeneous Poisson process 

PDF  probability density function 

PEM  point estimation method 

P-F Interval potential failure – failure interval 

PM  preventive maintenance 

PMF  probability mass function 

RAMS  reliability, availability, maintainability and safety 

RCF  rolling contact fatigue 

RV  random variable 

SF  survivor function 

UIC  International Union of Railways 

UK  United Kingdom 

WILMA Wayside Intelligent Longstress Management System 
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1 INTRODUCTION 

Demands being placed on railway transport infrastructure assets by operators and users alike are 

increasing (Khouy et al., 2014; Morant et al., 2012; Zoeteman, 2001). These demands include increasing 

speeds, axle loads and number of trains per day and must be satisfied whilst maintaining strict 

requirements on reliability, availability and safety. Furthermore, operational and maintenance costs are 

rising which means that these increasing demands must be met under tightening budget limits (Shafiee 

et al., 2016). These challenging operational conditions may conflict with the scheduling and execution 

of maintenance works (Zoeteman, 2001). Therefore, a well-structured, efficient and effective 

maintenance strategy is required to ensure that the required level of reliability, availability, 

maintainability and safety (RAMS) is achieved at a minimum life cycle cost (LCC).  

1.1 BACKGROUND 

One of the most important assets of the entire railway operation remains the rail itself (Esveld, 2001). 

The performance of the rail is largely dictated by the maintenance and renewal (M&R) decisions made 

during its life cycle. Current practices in M&R suggest that decisions are made based largely on past 

experience and expert opinion. Thus, there is a need for a decision support system (DSS) in order to 

quantitatively justify M&R decisions based on minimising the estimated LCC. A LCC approach will 

take into account short term budget requirements as well as long term capital expenditure costs. 

 

Kumar et al. (2008) identify that the railway industry owns high risk in terms of potential loss of life 

and damage or destruction to freight and assets if the railway infrastructure is not operated and 

maintained effectively. As a component, the rail itself is particularly susceptible to high risk as it 

contains little redundancy (Cannon et al., 2003). There are numerous examples of the potential 

repercussions of poor infrastructure maintenance conditions in the railway industry. The Hatfield 

derailment in the United Kingdom (UK) in October 2000 killed 4 and injured 34 people and had serious 

financial repercussions for both the infrastructure manager (IM) and the maintenance company (The 

Guardian, 2006; Kumar et al., 2008). The derailment was caused by a fatigued rail which subsequently 

fragmented into more than 200 pieces as illustrated in Figure 1.1 (Smith, 2003). The overall 

consequential cost of the derailment to Network Rail was estimated at £733 million (Kumar et al., 2008). 

Another maintenance related incident saw the derailment of the German ICE at Eschede on 3 June 1998 

which claimed the lives of more than 100 people (Smith, 2003). This incident was caused by a fatigue 

fracture of a wheel and was thus not rail-related but still serves to illustrate the importance of 

maintenance. 
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Figure 1.1: Fragmented rail from the Hatfield derailment in October 2000 (a) (Smith, 2003) (b) 

(Witt, 2007) 

 

Infrastructure failures in the railway industry are more likely to manifest themselves as operational 

delays rather than derailments. However, these operational delays occur with much higher frequency 

than derailments. Furthermore, an exponential relationship between daily traffic volume and delay costs 

resulting from in-service failures has been suggested by Schlake et al. (2011) which provides a strong 

business case for investigating and understanding the relationship between costs associated with the 

implementation of different maintenance policies and the costs associated with train delay and 

derailments. A careful balance must be achieved between the costs associated with maintenance 

practices and the risk costs associated with the lack thereof in order to ensure the continued profitable 

operation of railways (Endrenyi et al., 2001). 

1.2 OBJECTIVES OF THE STUDY 

A model was developed using Monte Carlo simulation to determine the probabilistic distribution of LCC 

as a function of renewal tonnage. The objectives achieved through the model were to: 

 Illustrate the bivariate probability distribution of LCC versus renewal tonnage. 

 Determine whether an existing family of probability distributions can be fitted to the distribution 

of the LCC for a fixed renewal tonnage and given set of input parameters. 

 Identify and discuss trends with regard to the uncertainty in the LCC distribution using an 

appropriate metric. 

 Determine an appropriate method to determine whether flash butt welding or alumino-thermic 

welding should be used to minimise the minimum attainable mean LCC. 

 

(a) (b) 
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The model had to incorporate the following: 

 The modelling of the arrival of rail fatigue defects using an appropriate probability distribution. 

 Imperfect inspections. 

 The influence of preventive rail grinding on the arrival of rail fatigue defects. 

 The influence of derailments on the mean LCC. 

 The use of either alumino-thermic welds (ATWs) or flash butt welds (FBWs) for maintenance 

activities. 

 An increase in hazard rate due to the increase in weld quantity associated with maintenance 

activities. 

1.3 SCOPE OF THE STUDY 

The following assumptions apply with regard to the life cycle costing procedure: 

 No discount rate was taken into account. Therefore, implicitly the discount rate and inflation 

rate are equal. 

 Yearly maintenance costs are fixed. 

 The disposal cost of any assets at the end of the life time are not included. 

 All capital costs are assumed to occur at the beginning of the life cycle. 

 All costs specified include labour, plant and delay costs. 

 

Only rail fatigue defects were modelled in this study. The following defects were not considered: 

 Rail corrugations. 

 Rail wear. 

 Rail buckling or fracture due to thermally induced stresses. 

1.4 METHODOLOGY 

A literature study was conducted to understand the current state-of-the-art in maintenance modelling. 

Previous rail maintenance models published in the literature were studied. A mathematical background 

to the statistical techniques used in the model was also obtained during the literature study. Thereafter, 

a model was developed and programmed using MATLAB. The model took into account the knowledge 

acquired through the literature study and was aimed at modelling input parameters in a flexible manner 

such that assumptions of previous models studied in the literature review could be overcome. Thereafter, 

numerous analyses were run with varying input parameters. Data from the analyses were subsequently 
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interpreted, analysed and discussed with regard to the objectives of the study outlined in Section 1.2. 

Conclusions and recommendations for future research in the field were then made. 

1.5 ORGANISATION OF THE REPORT 

This dissertation is structured as follows: 

 Section 1 provides an introduction and background to the study. A summary is provided of the 

objectives, scope and methodology of the study. 

 Section 2 serves as a review of the applicable literature in the field of concern. 

 Section 3 describes the operation of the numerical model developed. 

 Section 4 presents the results of the model and provides an interpretation and discussion thereof. 

 Section 5 summarises the results and concludes the study providing recommendations for future 

research in the field. 
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2 LITERATURE REVIEW 

This section provides a review of the literature studied to supplement the study. Initially, a brief 

introduction to basic railway concepts and components is provided as considered relevant to this study. 

The focus is then shifted to a discussion of the physics of deterioration and failure with regard to rail 

defects and rail failure. Thereafter, incorporation of these concepts into stochastic analysis principles is 

discussed and basic life cycle cost (LCC) principles are reviewed. This section is concluded with a 

summary. 

2.1 TRACK COMPONENTS AND LOADING 

Conventional or ballasted railway track is the predominant track structure type used throughout the 

world. Although slab track structures are becoming progressively more popular for high speed railway 

lines, their use in freight railway lines is limited to sections of track passing through tunnels. Therefore, 

it should be noted that the focus of this study is on conventional track in a heavy haul setting.  

 

The components of a conventional permanent way structure may be broadly categorised into two groups 

namely the superstructure and the substructure. The superstructure consists of the rails, fastening system, 

pads and sleepers. The substructure consists of the ballast, subballast, placed soil and natural ground 

(Selig & Waters, 1994). 

 

Each track component has specific functions to fulfil in order to ensure efficient and safe operation of 

the railway track system as a whole. The rails specifically serve to (Esveld, 2001): 

 Guide the train wheels evenly and continuously. 

 Transfer the concentrated wheel loads to the sleepers without excessive deflection. 

 Act as conductors for the signal circuit. 

 Provide a traction return leg for the traction circuit. 

 

The remaining permanent way track components serve numerous functions too. However, these are not 

listed in order to maintain brevity. For a comprehensive description of the functions of the remaining 

track components refer to Esveld (2001). 

2.1.1 Rail Geometry and Terminology 

Numerous rail profiles are in existence across the globe. A list of approximately 40 different rail profiles 

is provided by Esveld (2001). Different national standards exist for the classification of rail profiles. On 
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South African heavy haul lines the 60 E1 profile (previously classified as the UIC 60 profile) is 

predominantly used as classified by the European Committee for Standardization (CEN). General 

terminology used with regard to a typical rail profile is illustrated in Figure 2.1. The rails are inclined at 

an angle of 1:20 from the vertical towards the gauge side of the track. This rail cant is provided by the 

sleeper shape. Figure 2.2 and Figure 2.3 show the terminology used to indicate directions and planes 

respectively with respect to the rail. 
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Figure 2.1: Rail profile terminology 

 

 

 

Figure 2.2: Rail cross section indicating the vertical, transverse and longitudinal directions 
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Figure 2.3: Rail cross section indicating the vertical, horizontal and transverse planes 

 

2.1.2 Track Forces 

Forces generated at the wheel-rail interface propagate upward into the wheel, axle and suspension before 

ultimately reaching the sprung body of the vehicle. These forces also propagate downward through the 

rail, fasteners, pads and ultimately into the substructure (Smith, 2003). The interactions between the 

components of the railway track structure are important when considering the influence of the condition 

of one component on the condition of other related components as it is known that the deterioration (and 

thus the condition of track components) is not independent of the condition of related components (Patra, 

2007). The focus of this study is on the rail. 

 

Rail forces are divided into vertical, lateral and longitudinal components as illustrated in Figure 2.4. The 

potential sources of each force component are indicated in Table 2.1. Depending on the nature of these 

rail forces they can be further divided into a static and a dynamic component. Dynamic loads are 

generally a result of (Esveld, 2001): 

 Track irregularities and track stiffness variations. 

 Discontinuities in the rail running surface such as corrugations. 

 Discontinuities at welds, joints and points. 

 Hunting of vehicle bogies and wheel flats or out of round wheels. 
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Figure 2.4: Rail force components 

 

 

Table 2.1: Rail force components and their sources (Selig & Waters, 1994; Esveld, 2001) 

Force Component Sources 

Vertical 

 Vertical wheel force 

 Uplift force ahead of wheel 

Lateral 

 Lateral wheel force 

 Buckling reaction force 

Longitudinal 

 Locomotive traction force 

 Braking force 

 Thermal force 

 Rail wave action 

 Track creep 

 Shrinkage stresses cause by welding 

 

2.1.3 Introduction to Continuous Welded Rail Concepts 

In jointed track thermal expansion and contraction of the rail is permitted at the joints. This results in no 

or insignificant build-up of longitudinal thermal stresses in the rail as it is allowed to breath at these 

joints. However, the discontinuous rail running surface at these joints tends to generate high dynamic 

loads which results in a maintenance intensive system due to the increased deterioration at these bolted 

joints. A popular alternative is the use of continuous welded rail (CWR) which creates a smoother rail 

running surface through the elimination of bolted joints in the rail. The advantages of CWR include a 

reduction in maintenance and an increase in rail service life (Esveld, 2001). CWR consists of sections 
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of rail manufactured using the rolling process, which are then joined on-site through the use of welds to 

form long continuous rail segments. The welding techniques used can generally be classified into two 

main groups namely: 

 Flash butt welding 

 Alumino-thermic welding 

 

In South Africa rail segments are typically joined off-site at production plants into long sections using 

flash butt welds (FBWs). These long sections which are approximately 240 m long are then transported 

to site using a Rail Car. Thereafter, the sections are joined on-site using alumino-thermic welds (ATWs). 

Mobile flash butt welding machinery was introduced by Plasser & Theurer in 1973 (Esveld, 2001). 

However, the use of mobile flash butt welding equipment on South African railways is limited. The 

alumino-thermic welding technique is easier to conduct on-site as mobile flash butt welding equipment 

is large and expensive. However, from a weld integrity viewpoint FBWs are preferred over ATWs, as 

FBWs are less prone to the development of internal defects originating from the welding process. 

Evidence of this can be seen when considering rail break statistics and their association with the different 

weld types (Sawley & Reiff, 2000; Marais & Mistry, 2003). Figure 2.5 (a) shows a mobile flash butt 

welding machine from Plasser & Theurer. Figure 2.5 (b) shows a completed FBW. The alumino-thermic 

welding process as conducted during the installation of the University of Pretoria’s Test Track is 

illustrated in Figure 2.6.  

 

   

 

Figure 2.5: (a) Mobile flash butt welding machine (Plasser South Africa, 2015) (b) New FBW 

(Lekule, 2015) 

 

(a) (b)
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Figure 2.6: The alumino-thermic welding process (a) alumino-thermic welding using a crucible 

(b) the ATW before being cleaned and grinded (c) the ATW being grinded to form a smooth rail 

profile (photos courtesy of Jaco Vorster) 

 

2.2 RAIL DEFECTS AND DETERIORATION 

A thorough understanding of rail defect origin, deterioration and failure behaviour is mandatory in order 

to model the effect of rail maintenance, inspection processes and renewal on the LCC associated with 

the management of the rail as the most important track infrastructure component (Esveld, 2001). Dekker 

(1996) reinforces this notion, stating that the analysis of failure data without regard for the underlying 

failure mechanism or failure modes can lead to incorrect results in maintenance model optimisation. 

Therefore, this section is dedicated to the discussion of rail fatigue defect origin, deterioration and failure 

behaviour. 

 

Precise definitions for the term failure varies in the literature. The Kumar et al. (2008) definition of a 

rail failure is defined as a termination of the ability of the rail to perform its functions (which were 

provided in Section 2.1) and is the preferred definition for use in this study. This definition is understood 

to include rail breaks, excessive corrugations as well as excessive wear.  

 

A rail break may occur as the final result of the rail deterioration process. UIC-712R (2002) as cited by 

Kumar et al. (2008) defines a rail break as a rail that has separated into two or more pieces or a rail from 

which a piece of metal becomes detached causing a gap of more than 50 mm in length or 10 mm in 

depth in the rail running surface. 

(a) (b) (c) 
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2.2.1 Rail Damage 

The nomenclature on rail damage is poorly standardised as noted by Reinschmidt et al. (2015). This 

situation is aggravated by the fact that many of the damage mechanisms are interrelated. This makes it 

challenging to group and compare rail defects according to failure modes and failure effects. 

Nonetheless, Reinschmidt et al. (2015) suggests a rail damage hierarchy as shown in Figure 2.7. 

 

Rail damage

Wear Cracking

Fatigue induced (RCF) Thermally induced

Surface-initiated Subsurface-initiated
 

Figure 2.7: Rail damage hierarchy (Reinschmidt et al., 2015) 

 

Fröhling (2007) defines two regimes of rail deterioration in line with Figure 2.7 namely the wear regime 

and the stress regime. Deterioration in the wear regime is fairly predictable whereas deterioration in the 

stress regime is non-linear and more difficult to measure, control and predict. With increasing track 

loading rail deterioration tends towards the stress regime rather than the wear regime. The stress regime 

is characterised by rolling contact fatigue (RCF) type defects and failures. Only stress regime damage 

mechanisms are considered for this study. 

 

Steel rails are subject to fatigue-type failures due to the cyclic nature of their loading. Thus, the 

predominant failure mode of in-service steel rails is fatigue induced. This fatigue-based mechanism is 

commonly referred to in railway literature as RCF. Cannon et al. (2003) describes three stages by which 

a fatigue initiated rail failure may occur. These three stages are: 

1) A fatigue crack or defect must be present within the rail. 

2) The fatigue crack then grows in size with loading cycles. 

3) The rail then ultimately breaks if this fatigue crack is not maintained and reaches a critical defect 

size. 
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Fatigue crack initiation may occur randomly or be related to the aging of the rail with use. The time or 

tonnage for a defect to progress from a potential failure (or defect) to a functional failure is termed the 

P-F interval (Moubray, 1997). Critical defect size for internal transverse defects was studied by Jeong 

et al. (1997) using a fracture mechanics approach. Some typical rail fatigue defects include but are not 

limited to (Kumar, 2006; Reinschmidt et al., 2015): 

 Shelling 

 Tache ovale or kidney defects 

 Head checks 

 Squats  

 Spalling 

 

RCF defects can be subdivided into surface-initiated defects and subsurface-initiated defects (Cannon 

& Pradier, 1996).  Surface-initiated RCF defects can be controlled to a certain extent through the use of 

preventive grinding measures. Generally, sub-surface RCF defects are a result of non-metallic 

imperfections originating from the manufacturing process which then grow with RCF load cycles. 

Examples of such defects are shelling and tache ovale defects.  

 

Shelling initiates near the surface at stress concentrations created by inclusions near the rail surface. 

Shelling typically occurs under lubricated heavy axle loading conditions where the peak shear stress 

occurs just below the surface of the rail due to low adhesion conditions. Cracking at the inclusions can 

cause loss of material in the rail running surface or can ultimately propagate downwards resulting in a 

transverse fracture of the rail (Reinschmidt et al., 2015). Shelling is commonly found on the gauge 

corner of the high rail in lubricated curves. Shelling resulting in the loss of material from the rail running 

surface can be seen in Figure 2.8 (Kumar, 2006).  

 

 

Figure 2.8: Severe shelling on the gauge corner of a high rail (Kumar, 2006) 
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Tache ovale defects (also called kidney defects) originate at non-metallic inclusions forming during the 

rail manufacturing or welding process. The number of these defects has substantially been reduced due 

to the introduction of more advanced rail production processes (Cannon et al., 2003). Figure 2.9 shows 

a rail break which occurred as a result of a tache ovale defect and describes the phases in the progression 

to ultimate failure. 

 

 

Figure 2.9: Tache ovale defect (Marais & Mistry, 2003) 

 

Surface initiated defects originate either at locations of high shearing stresses at or near the surface of 

the rail or as a result of slipping at the wheel-rail interface which can create high temperatures and lead 

to the formation of brittle martensite which subsequently cracks (Reinschmidt et al., 2015). Examples 

of surface-initiated RCF defects are head checking, squats and spalling.   

 

Head checking commonly occurs under high adhesion conditions. This results in the peak shear stress 

occurring at the rail surface itself. Head checking or cracking at the surface occurs due to the exhaustion 

of the steel’s fatigue resistance induced either by non-conformal wheel/rail profiles or thermally due to 

wheel burn or slip (Cannon et al., 2003). One of the consequences of head checking is spalling. This 

occurs if head checks intersect with other crack paths resulting in the loss of material from the rail 

running surface (Kumar, 2006). Alternatively, head checks can propagate vertically and cause a 

transverse fracture of the rail. Figure 2.10 shows an example of head checking. The development of 

squats is governed by a more complicated mechanism than that of head checks. A thorough review of 

squat defects is provided by Grassie (2012). Figure 2.11 shows pictures of a squat defect.  

 

Origin of crack 

Fatigue crack 

Transition to 
brittle mode 

Final brittle failure 
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Figure 2.10: (a) Head checks on the gauge corner of a rail (Cannon et al., 2003) (b) 

Macrophotograph of head check cracks (Olofsson & Nilsson, 2002) 

 

  

 

Figure 2.11: (a) Squat defect as seen on the rail running surface (b) Rail break caused by the 

propagation of a squat defect (Grassie, 2012) 

 

Spalling is the loss of material from the rail running surface. However, spalling is not solely caused by 

head checks but can also be thermally induced by wheel burn. Muster et al. (1996) describes the 

difference between shelling and spalling as being origin-based. Shelling originates internally and is 

related to an existing imperfection in the rail whereas spalling originates on the surface as a result of the 

exhaustion of the steel’s fatigue resistance by either high contact stresses or thermal overloading. 

Examples of what has been termed rail spalling by Cannon et al. (2003) and Kumar (2006) are shown 

in Figure 2.12 (a) and (b) respectively. 

 

(a) (b) 

(b) (a) 
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Figure 2.12: (a) Spalling caused by wheelburn (Cannon et al., 2003) (b) Spalling caused by head 

checking (Kumar, 2006) 

 

Other rail damage mechanisms not discussed include but are not limited to (Kumar, 2006): 

 Plastic flow 

 Corrugation (short-wave and long-wave) 

 Wear 

2.2.2 Rail Fatigue Defect Classification 

Rail defect classification and reporting is a vital part of improving rail defect modelling. Cannon et al. 

(2003) acknowledges the importance of rail defect classification and data reporting. With the aid of 

adequate data and thorough statistical analysis, effective measures can be developed to curb rail breaks 

from occurring. Numerous rail defect classification systems are in use around the world by different 

railway operators (Sawley & Reiff, 2000).  

 

In order to model rail defects it is important that they are categorised according to their failure mode 

type so that they can be grouped into homogeneous populations for statistical analysis. A few examples 

of rail defect classification as found in the literature is discussed. According to Cannon et al. (2003) rail 

defects may be classified as follows: 

 Defects which originate during rail manufacture. Examples of such defects include tache ovale 

and shelling defects. 

 Defects which originate through improper handling, installation and/or use. An example of such 

a defect is a wheel burn.  

 Defects which originate due to RCF. Examples of RCF defects are head checks, squats and 

spalling.  
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Alternatively, Marais & Mistry (2003) classify rail defects into two different groups namely: 

 Defects related to rail joints in the form of welds and fish plate joints. 

 Defects related to rail quality such as tache ovale defects. 

 

Generally, all the classifications present in reputable literature have merit and are useful in 

understanding the origin and location of rail defects. The most appropriate rail defect classification 

system to use for stochastic modelling is one which enables grouping of defects into homogeneous 

populations according to initiation and deterioration behaviour. 

2.2.3 Rail Fatigue Defect Growth and Deterioration Behaviour 

In a rail segment or weld, there will generally exist a state at which an anomaly becomes detectable with 

modern inspection technologies such as ultrasonic, eddy current, magnetic particle or wave inspection 

before a functional failure occurs. This state shall be referred to as a potential failure or defect (Zhao et 

al., 2006). 

 

In order to optimise maintenance and inspection activities associated with the rail, the deterioration 

behaviour of rail defects needs to be studied. The deterioration behaviour of a rail is a complex process 

which is influenced by numerous factors. A comprehensive study of the rail deterioration process by 

Kumar (2006) is summarised in the cause and effect diagram in Figure 2.13. 
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Figure 2.13: Cause and effect diagram for rail deterioration (Kumar, 2006) 
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Jeong et al. (1997) analysed transverse fractures (detail fractures) in a rail using fracture mechanics. In 

their research the transverse defect was simplified and modelled as elliptical in shape with an aspect 

ratio (minor axis over major axis) of 0.7. The effects of bending, thermal and residual stress were 

considered. Furthermore, factors taking into account local stress gradients and finite boundaries relative 

to the position of the defect within the rail head were used to determine the stress intensity factor for the 

transverse fracture as a function of major axis length and rail temperature. This was used to determine 

the critical defect size at which the rail will completely fracture or fail. 

 

Figure 2.14 shows the general relationship between defect size and the stress intensity factor as a 

function of rail temperature. From Figure 2.14 it can be seen that for a steel of given fracture toughness 

the critical defect size in percentage head area (%HA) at which the rail is expected to fail decreases in 

relation to a decrease in rail temperature. This is due to the increasing tensile stresses in the rail which 

correspond with decreasing temperatures. 

 

The critical defect size as a function of rail temperature is shown in Figure 2.15 as determined by Jeong 

et al. (1997) for a specific combination of rail profile type, vertical-lateral load combination, rail 

curvature, foundation stiffness, rail neutral temperature and fracture toughness of the rail. An 

approximately linear relationship is observed between rail temperature and critical defect size over the 

range of temperature values presented with the critical defect size increasing with rail temperature as 

expected. It should also be noted that dynamic loading may significantly reduce the critical defect size 

as given by these results (Cannon et al., 2003). 
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Figure 2.14: The effect of temperature variation on the critical defect size (redrawn from Jeong 

et al., 1997) 

 

 

Figure 2.15: Critical defect size versus rail temperature (interpreted from Jeong et al., 1997) 

 

Jeong et al. (1997) also considered the rate of growth of transverse fractures. The growth rate of 

transverse fractures was modelled using a relationship proposed by Orringer et al. (1984). Jeong et al. 

(1997) accounted for the fact that fatigue cracks only grow under the tensile portion of a stress cycle and 

that the stress cycle imparted under two adjacent bogies of two adjacent wagons is not of a constant 
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stress amplitude. The time for transverse fractures of varying initial size to reach critical defect size as 

a function of rail temperature is shown in Figure 2.16. It is of interest to note that the range of rail 

temperatures investigate by Jeong et al. (1997) is relatively low if viewed in the South African context. 

Furthermore, the traffic intensity used to relate cumulative traffic to safe-growth time in days was 

0.5 million gross tonnes (MGT) per day which is relatively high when compared to the tonnage on the 

South African Heavy Haul Coal Line. Therefore, using the same fracture mechanics approach used by 

Jeong et al. (1997) a longer safe-growth time for transverse fractures can be expected for a typical 

railway line in South Africa if all other parameters are kept constant. 

 

 

Figure 2.16: The influence of rail temperature on safe-growth time for transverse fractures in rail 

with varying initial defect size (redrawn from Jeong et al., 1997) 

 

Despite numerous studies on fatigue defect growth and advancements in rail inspection technologies, a 

great deal of variability and subjectivity are still present when sizing and reporting internal rail defects 

in-service. Furthermore, longitudinal stress variations in the rail which fluctuate with rail temperature 

are known to affect apparent defect size due to opening and closing of the fracture by these thermal 

stresses (Orringer et al., 1984). Thus, on a hot day the apparent defect area as measured by an ultrasonic 

inspection may be smaller than the true defect size. 

 

Tests by Jablonski et al. (1990) conducted on laboratory compact tension specimens to simulate 

transverse rail fractures reflected a significant dependency of the crack propagation rate on the loading 

stress spectra. Furthermore, the crack growth rate was found to be higher in curved track segments due 
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to the increased lateral load component. The loading cycles were applied to simulate stress spectra from 

typical train consist configurations in the United States. These load cycles were then rescaled to 

represent cumulative traffic in million gross tons. Figure 2.17 shows the effect that the loading spectra 

from the different typical consist configurations had on the rate of crack length propagation in the study 

by Jablonski et al. (1990). It should be noted that the stress spectra length in time units per train was not 

constant. The number of loading cycles per simulated train was also not constant and neither was the 

simulated axle load.  

 

 

Figure 2.17: The relationship between crack length propagation and simulated traffic as 

determined in a study by Jablonski et al. (1990) which serves to demonstrate the variability in rail 

defect growth rate under different loading spectra 

 

The results from these experiments suggest that rail transverse fracture defect growth rates should be 

determined for the actual loading conditions on the railway track under consideration. Due to the 

numerous variables which influence rail defect growth from a deterministic approach, a stochastic 

approach in the form of a P-F interval probability distribution is often used. This stochastic approach is 

discussed in Section 2.5.3. 

2.3 RAIL MAINTENANCE, RENEWAL AND INSPECTION  

In this section the maintenance, renewal, inspection and condition monitoring practices for a typical 

heavy haul line are discussed with regard to the rail of the track. Rail maintenance and renewal (M&R) 
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practices effect the deterioration of the rail and ballast and thus have an effect on the LCCs associated 

with rail breaks. 

2.3.1 Rail Inspection Practices 

A combination of rail inspection methods is generally used on a railway line. These methods include the 

use of ultrasonic inspection cars, handheld ultrasonic inspection probes as well as visual inspections. 

Once detected, defects may be either removed as part of a planned maintenance procedure or left in 

place if deemed non-critical and removed at a later stage (Kumar et al., 2008). Rail inspections are not 

perfect in the sense that it is possible that defects remain undetected after an inspection. One possible 

reason for this is attributed to shadowing of deeper defects by superficial defects such as head checks. 

The concept of shadowing is illustrated in Figure 2.18. Use of technologies such as eddy current 

inspection and improved ultrasonic probe arrangements can mitigate the shadowing effect (Cannon et 

al., 2003).  

 

 

Figure 2.18: Schematic illustration of the shadowing of ultrasound by shallow defects which can 

cause deeper more severe defects to remain undetected (redrawn from Cannon et al. (2003)) 

 

If defects remain undetected for an extended period of time they can reach the critical defect size and 

cause rail breaks or failures. However, rail breaks do not always manifest themselves as derailments. 

The use of signalling circuits to detect rail breaks significantly reduces the number of rail breaks which 

cause derailment (Kumar et al., 2008).  

2.3.2 Rail Grinding  

Hearle & Johnson (1983) as cited by Magel et al. (2005) state that new RCF cracks on the surface of the 

rail are only a fraction of a millimetre in size. At this stage of the crack life the growth rate of the crack 

remains relatively slow. It is only at depths of approximately 1 – 3 mm that the growth rate accelerates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2-19 

 

Natural wear of the rail can truncate these RCF cracks to a certain extent but often not enough. 

Preventive grinding introduces artificial wear and is aimed at truncating these RCF cracks at an early 

stage to prevent cracks propagating downward and causing rail fracture. Grinding strategies also ensure 

conformal wheel/rail profiles reducing stresses in the rail and further mitigating RCF crack initiation 

amongst other damage mechanisms (Fröhling, 2007). 

 

There are numerous influential factors to consider when assessing the effectiveness of a preventive 

grinding policy and it is not within the scope of this study to account for these factors within a LCC 

model. Preventive grinding policy optimisation remains a popular research field on its own due to these 

complexities. The reader is referred to studies by Magel et al. (2003), Wu et al. (2005) and Zoeteman et 

al. (2014). However, it is important that grinding should in some manner be incorporated with regard to 

its effect on surface-initiated RCF defects in a LCC model (Zhao et al., 2007).  

2.4 MAINTENANCE STRATEGIES AND MAINTENANCE MODELLING 

Modelling processes associated with the maintenance and deterioration of infrastructure are vital in 

determining LCCs. A deterioration model aims to describe the change in condition of an infrastructure 

asset over a specific period of time under specific operating conditions. These models may be either 

deterministic or stochastic, mechanistic or empirical. Furthermore, the complexity of a deterioration 

model may vary. The model may use either functional condition measures to quantify the health of the 

system being modelled or structural condition measures to quantify the health of the individual 

components of which the system is comprised. It should be noted that the deterioration and therefore the 

condition of interrelated systems or components will not be independent from each other (Andrade, 

2008). The focus of this section is to provide an overview of the literature available in the fields of 

deterioration and maintenance modelling. 

2.4.1 Maintenance Hierarchy 

A generalised hierarchy of maintenance strategies for a railway is shown in Figure 2.19. Maintenance 

hierarchies in the literature vary. For example Bevilacqua & Braglia (2000) use a different maintenance 

hierarchy than that of Van der Westhuizen & Gräbe (2013) and Kumar et al. (2008). Furthermore, the 

maintenance strategies in Figure 2.19 may be considered very broad with Wang (2002) identifying over 

14 different sub-categories of replacement and preventive maintenance policies alone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2-20 

 

OPERATION MAINTENANCE UPGRADATION DECOMMISIONING

Corrective 

maintenance

Preventive 

maintenance

Routine-based Condition-based

Traffic-based Time-based Opportunity-based
 

Figure 2.19: Maintenance strategy hierarchy (adapted from Kumar et al. (2008); Van der 

Westhuizen & Gräbe (2013)) 

 

The definitions supplied in MIL-STD-721B for corrective maintenance (CM) and preventive 

maintenance (PM) are adopted for this study. Thence, CM is defined as all actions performed as a result 

of failure in order to restore an item to a specified condition whereas PM is defined as all actions 

performed in an attempt to retain an item in a specified condition by providing systematic inspection, 

detection and prevention of incipient failures (Department of Defense, 1981). CM may be regarded as 

reactive in the sense that it is only initiated once failure has occurred. This maintenance strategy should 

only be purposely implemented for non-critical components of a system for which failure would not 

result in significant loss of reliability, availability or safety. Thus, CM should not be encouraged for the 

rail, as rail failures generally have significant effects on a railway operation. A rail break is an example 

of an event which results in CM which should be avoided (Van der Westhuizen & Gräbe, 2013). 

 

PM is aimed at mitigating failure and is subdivided into routine-based maintenance and condition-based 

maintenance. Routine-based maintenance takes place at time-, traffic- or opportunity-based intervals. 

Condition-based maintenance, unlike routine-based maintenance is initiated at a specific condition level 

of the asset or component (Van der Westhuizen & Gräbe, 2013). The condition of the asset can be 

determined at discrete intervals by inspections or continuously by modern condition monitoring 

equipment such as the Wayside Intelligent Longstress Management System (WILMA) on the Coal Line. 

The goal of a maintenance policy should be to minimise corrective maintenance and where possible 

implement condition-based instead of routine-based preventive maintenance (Kumar et al., 2008). 
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Figure 2.20 shows the general manner in which different types of PM and CM influence the hazard rate 

function and assists in understanding the differences between corrective and preventive maintenance. In 

Figure 2.20 a limiting hazard rate has been set at which preventive maintenance is conducted. A detailed 

discussion of different maintenance models and their associated influence on the hazard function is given 

in 2.4.3.  

 

 

Figure 2.20: Effect of perfect and minimal corrective and preventive maintenance on the hazard 

rate of a system (Lie & Chun, 1989) 

 

Nguyen & Murthy (1981) provide two important reasons justifying the development and 

implementation of PM models. Firstly, it is generally more cost effective to repair a non-failed system 

than it is a failed system and secondly, at some point in the life cycle of a system it becomes more 

economic to replace the system than to continue repairing it. 

 

A combination of maintenance strategies is often used to maintain an asset-base. This allows the 

minimisation of maintenance related interference and failures (Van der Westhuizen & Gräbe, 2013). 

Bevilacqua & Braglia (2000) developed a method for selecting the optimal maintenance strategies for 

different components of a system using an analytical hierarchy process. 

2.4.2 Maintenance Optimisation  

Maintenance optimisation models are concerned with determining the balance between costs and 

benefits of a specific maintenance policy using either a single or a combination of different maintenance 

Operating time

H
a
z
a
rd

 r
a
te

Limiting hazard rate value

Minimal CM
Perfect CM

Perfect PMImperfect PM

Failure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2-22 

 

strategies as discussed in Section 2.4.1 (Dekker, 1996). Furthermore, stochastic optimisation models can 

be constructed either on a risk-basis or an uncertainty-basis. The former assume that the time to failure 

distribution is known whilst the latter do not. According to Wang (2002) maintenance policies can be 

optimised in one of four ways: 

 Minimisation of the maintenance cost rate. 

 Maximisation of the system reliability. 

 Minimisation of the maintenance cost rate whilst satisfying system reliability constraints. 

 Maximisation of the system reliability whilst satisfying maintenance cost constraints.  

 

Minimising the maintenance cost rate alone is not necessarily the best approach to maintenance policy 

optimisation. Wang (2002) appreciates the contradiction that many maintenance optimisation models in 

the literature focus only on cost rate minimisation whilst one of the most important functions of 

preventive maintenance is the improvement of system reliability. Therefore, it is vital that an optimal 

maintenance policy addresses both cost and reliability.   

2.4.3 Maintenance Modelling 

Pham & Wang (1996) identify 5 different categories of maintenance quality according to the condition 

to which the system is restored by the maintenance activity. These categories are summarised in Table 

2.2. When modelling maintenance, Kijima (1989) suggested using perfect maintenance for a system 

containing a single, structurally simple component and suggested the use of minimal maintenance when 

modelling a system with many components each with unrelated failure modes. However, this 

differentiation is subjective and in reality the maintenance activity is likely to fall in-between these two 

extremes and is subsequently termed imperfect maintenance. Therefore, there is a need to study and 

model systems using the concept of imperfect maintenance (Pham & Wang, 1996). Worst maintenance 

occurs when the system fails immediately after maintenance of a component. Worse or worst 

maintenance can occur when faulty or incorrect parts are used in the maintenance service or if an 

incorrect part is repaired or replaced (Nakagawa & Yasui, 1987).  
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Table 2.2: Summary of system maintenance quality classification (Pham & Wang, 1996) 

Repair type Effect on hazard rate of system Laymen’s description 

Perfect 

maintenance 
Decreases to same value as when new As good as new 

Imperfect 

maintenance 
Decreases but not to same value as when new  

Between good as new 

and bad as old 

Minimal 

maintenance 
Not affected As bad as old 

Worse 

maintenance 
Increases  Worse than old 

Worst 

maintenance 
N/A Instant failure 

 

Pham & Wang (1996) reviewed numerous methods of modelling imperfect maintenance present in the 

literature at that time. Eight categories were identified by Pham & Wang (1996). The 8 methods for 

modelling imperfect maintenance all assume that the state of the system is always known with certainty 

and that the system exists in either an operational state or a failed state. The methods differ 

predominantly with regard to the manner in which they treat the change in hazard rate of the component 

or system with preventive or corrective maintenance actions.  

 

The first method assumes that there is a probability that the maintenance action (corrective or 

preventive) will be either perfect or minimal with the two probabilities being complementary. Thus, the 

hazard rate is either returned to “as good as new” or “as bad as old”. This method was adopted by 

Nakagawa (1979). The second method, developed by Block et al. (1985) is similar to the first with the 

exception that the probabilities of perfect or minimal repair are age-dependant. Thus, as the age of the 

component increases the probability that CM will restore the component to “as good as new” decreases. 

 

The third method assumes that the effect of maintenance can be represented by a reduction in the hazard 

rate for the component. This reduction is characterised by a so-called improvement factor which may be 

constant or proportional to the hazard rate at which the maintenance takes place (Malik, 1979; Chan & 

Shaw, 1993). The fourth model uses the concept of virtual age. By this model the probability distribution 

for the time until the next failure is dependent on the virtual age of the component when it previously 

failed (Kijima, 1989).  

 

The fifth model type does not work on the principle of hazard rate. The fifth model type is referred to 

as a shock model whereby a new component (with zero damage) is subjected to increments of shock at 

random times. With each shock increment a random damage increment is imposed. This damage 

accumulates until the component’s damage limit is reached and the component fails. The damage level 

remains constant between shock increments (Kijima & Nakagawa, 1991). The sixth method assumes 
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that after each maintenance activity the remaining life probability distribution of the component will be 

reduced by some fraction of the remaining life distribution immediately before the maintenance activity 

(Wang & Pham, 1996).  

 

The seventh method is simply a multivariate equivalent of the first method whereby multiple 

components of a system are modelled simultaneously. The eighth and final method discussed by Pham 

& Wang (1996) is a method proposed by Nakagawa & Yasui (1987) whereby the reduction in hazard 

rate after a maintenance activity is modelled as a function of the quantity of some resource consumed 

during the maintenance activity as well as an additional parameter. 

 

These are classical maintenance models which continue to form part of the basis for ongoing research 

in the field of maintenance modelling and reliability engineering. Two more recent publications are: 

 Lui et al. (2012), who considered goodness-of-fit tests to aid in determining the most accurate 

PM model using failure data. 

 Kim et al. (2007), who used the improvement factor approach as described in the third method 

above to develop an adaptive PM policy using Bayesian inference.  

 

Pham & Wang (1996) proceeded to identify 6 different preventive maintenance policy types in the 

literature namely: 

 Age-dependant – the component is maintained either preventively at predetermined age 

intervals or correctively if it fails before reaching the predetermined age.  

 Periodic – similar to the age-dependant policy except that the component is maintained at 

predetermined time intervals. 

 Failure limit – the component is preventively maintained at a predetermined hazard rate. 

 Sequential – in a sequential policy the component is maintained at predetermined intervals 

which reduce as the component ages. 

 Repair limit – at failure the component is repaired if the repair cost is below a predetermined 

threshold value and replaced if it is above this value. 

 Multicomponent. 

 

In order to justify selection of one model or policy over another it is necessary to analyse failure data 

and conduct a failure modes and effects analysis. A failure mode is the event associated with the cause 

of a functional failure whereas a failure effect describes what happens when a failure mode occurs. 

Studying failure modes is justified as it enables development of efficient preventive maintenance 

through identification of root causes (Moubray, 1997). As an elementary example, head checking may 

be regarded as a failure mode whereas a derailment would be the associated failure effect. 
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2.5 STOCHASTIC MODELLING 

Stochastic modelling of rail defects is not uncommon in the literature. Some basic principles thereof are 

introduced and discussed in this section. The use of the Weibull probability distribution for rail defect 

modelling is discussed with regard to different types of models present in the literature and their 

associated assumptions. Thereafter, the concept of a hazard function as well as a P-F interval are 

discussed.   

2.5.1 The Weibull Distribution and Poisson Process for Rail Defect Modelling 

Weibull methods used in the literature often differ with regard to their underlying assumptions and are 

thus not identical. The significance of this is that parameter values estimated for a particular Weibull 

method cannot be used as the parameter values for a different Weibull method due to their different 

underlying assumptions (Roth, 2008). The probability density function (PDF) and cumulative 

distribution function (CDF) for a generic 2-parameter Weibull probability distribution of a random 

variable (RV) 𝑋 are shown in Equations 2.1 and 2.2 respectively (Kobayashi, Mark & Turin, 2012): 

 

𝑓𝑋(𝑥) =
𝛼

𝛽𝛼
𝑥𝛼−1𝑒

−(
𝑥
𝛽
)
𝛼

    , 𝑥 > 0 ( 2.1 ) 

 

With: 

𝑥 = a specific value of the RV 𝑋 

𝛼 = shape parameter (dimensionless) 

𝛽 = scale parameter (same units as 𝑋) 

 

𝐹𝑋(𝑥) = 1 − 𝑒
−(

𝑥
𝛽
)
𝛼

    , 𝑥 > 0 
( 2.2 ) 

 

Three of the four Weibull methods reviewed by Roth (2008) were concluded as being rational and 

providing a good fit to trial data from a heavy haul line. Only the three methods considered adequate by 

Roth (2008) are discussed further. Table 2.3 shows a summary of some of the limitations as well as 

references to the Weibull methods discussed further. It should be noted that Weibull Method 3 is actually 

proposed by Roth (2008) and is not a review of a method found in previous literature. 
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Table 2.3: Summary of Weibull methods used to model rail defects 

Weibull 

Method # 

Number of 

defects limited 

Location 

simulated 
References 

1 Yes Yes 

 Besuner et al. (1978) 

 IHHA (2001) 

 Orringer et al. (1999) 

2 No No 

 Chattopadhyay et al. (2005) 

 Chattopadhyay & Reddy (2007) 

 Zhao et al. (2007) 

3 No Yes  Roth (2008) 

 

Weibull Method 1 divides the rail into equally sized segments. Each segment can develop at most a 

single defect. The tonnage at which a specific rail segment will develop this defect is assumed to follow 

a Weibull probability distribution. As a result the state of each segment follows Boolean logic. 

Therefore, the total number of defects over the total length of rail considered follows a binomial 

distribution with the probability an event (defect or no defect) occurring specified by the Weibull 

distribution. 

 

Weibull Method 2 assumes that defects arrive according to a non-homogenous Poisson process (NHPP) 

with an intensity function given by the hazard function of the Weibull probability distribution. Defects 

can be grouped into homogenous populations so that they can be modelled by a Weibull distribution 

with calculated parameter values. The hazard function for all defects can then be summed and used as 

the intensity function in the NHPP. The Poisson probability distribution is a discrete probability 

distribution which describes a counting process 𝑁(𝑡) for the number of events 𝑛 which occur during a 

period 𝑡 at an expected rate 𝜆 (also known as the intensity function). Arrivals following a NHPP may be 

described using a probability mass function (PMF) as given in Equation 2.3 with an intensity function 

given by Equation 2.4: 

 

𝑝𝑛(𝑡) = 𝑃[𝑁(𝑡) = 𝑛] =  
𝜇(𝑡)𝑛

𝑛!
𝑒−𝜇(𝑡)

 ( 2.3 ) 

 

 Where: 

𝜇(𝑡) =  ∫𝜆(𝜏) 𝑑𝜏

𝑡

0

 ( 2.4 ) 
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With: 

  𝑝𝑛(𝑡) = the probability that 𝑛 events occur during time 𝑡 

 𝜇(𝑡) = the expected number of occurrences during interval (0, 𝑡) 

 𝜆(𝜏) = the hazard function for the Weibull probability distribution 

 𝑡 = time or tonnage 

 𝜏 = dummy integration variable 

 

Weibull Method 3 is proposed by Roth (2008) and is based on the continuous approximation of Weibull 

Method 1. Instead of dividing the rail into equal segments which limits the maximum number of defects, 

it is assumed that potential defects are space according to an exponential distribution. Thus, the number 

of potential defects along a length of rail follows a Poisson process. The potential defects then develop 

into actual defects at a tonnage characterised by a Weibull distribution. This model has not been applied 

in the literature and Roth (2008) suggests that this model requires further investigation.  

2.5.2 The Hazard Function and Maintainable versus Non-Maintainable Failure Modes 

The probability distribution of the failure time of a component from a homogeneous population may be 

described in three different ways namely the survivor function (SF), the PDF or the hazard function. 

The most useful of these is the hazard function as it is able to fully specify both the PDF and the SF 

(Kalbfleisch & Prentice, 2002). A hazard function 𝜆𝑇(𝑡) (also commonly called a failure rate function 

or the force of mortality) is defined such that 𝜆𝑇(𝑡) ∙ 𝑑𝑡 represents the probability that a component’s 

life will end in the time interval (𝑡, 𝑡 + 𝑑𝑡] given that it has survived up to age 𝑡. Thus, the hazard 

function for a RV 𝑇 with a PDF 𝑓𝑇(𝑡), CDF 𝐹𝑇(𝑡) and SF 𝑆𝑇(𝑡) is defined as (Kobayashi et al., 2012): 

 

𝜆𝑇(𝑡) =
𝑓𝑇(𝑡)

𝑆𝑇(𝑡)
=

𝑓𝑇(𝑡)

1 − 𝐹𝑇(𝑡)
 ( 2.5 ) 

 

Specifically, for the 2-parameter Weibull probability distribution shown in Equation 2.1, the 

corresponding hazard function and survivor function is given by Equations 2.6 and 2.7 respectively: 

 

𝜆𝑇(𝑡) =
𝛼

𝛽𝛼
𝑡𝛼−1  ( 2.6 ) 

𝑆𝑇(𝑡) = 𝑒
−(

𝑡
𝛽
)
𝛼

  
( 2.7 ) 

 

With: 
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𝛼 = the shape parameter (dimensionless) 

𝛽 = the scale parameter (same units as 𝑡) 

 

It should be noted that the hazard function as shown in Equation 2.6 is synonymous with the power law 

process (Rigdon & Basu, 2000). Failure modes can be divided into those which are maintainable and 

those which are not. Maintainable failure modes will exhibit some change to their hazard function with 

maintenance. Non-maintainable failure modes are generally those which exhibit a random failure pattern 

displaying no identifiable trend with age or usage. This implies that the hazard function is constant. The 

hazard rate function of a non-maintainable failure mode will remain constant regardless of whether 

preventive maintenance is conducted or not (Endrenyi et al., 2001).   

2.5.3 The P-F Interval  

Failure modes can be separated into those which display an identifiable relationship between the 

probability of defect initiation occurring and the age or usage of the component and those which do not 

i.e. defects initiation occurs at random with no identifiable trend. For the former failure mode type the 

hazard function would be a strictly increasing function and for the latter failure mode type the hazard 

function would be constant (Endrenyi et al., 2001). Regardless of this relationship, failure modes are 

generally detectable before they result in functional failure. The time period between defect initiation 

and functional failure is referred to as the P-F interval (Moubray, 1997). A generic P-F interval is 

displayed in Figure 2.21. Point P in the diagram denotes the point at which an anomaly becomes 

detectable and is therefore subsequently termed a potential failure or defect and Point F denotes the 

point at which functional failure occurs, hence the name P-F interval. It is important to note that there 

will be a time period when the failure process has already initiated but is not yet detectable. This time 

period exists between point A and P in Figure 2.21.  
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Figure 2.21: Illustration of the concept of a P-F interval for a deteriorating component (Moubray, 

1997) 

 

The P-F interval is a vital concept when considering condition-based maintenance strategies. The P-F 

interval length dictates the inspection interval length. If the inspection interval is longer than the P-F 

interval then there is a chance that the failing component will not be detected before functional failure 

occurs. Regardless of inspection interval length there also exists a chance that inspection will not reveal 

defects. Therefore, multiple inspections within the P-F interval may be warranted to increase the chance 

of detecting defects (Vatn et al., 2003). However, if the inspection interval is much shorter than the P-F 

interval then unnecessary inspection costs will result (Moubray, 1997). Therefore, a balance is required 

between the inspection interval length and the P-F interval length. Thus, the concept of the nett P-F 

interval is introduced.  

 

The nett P-F interval is the time available after detection of a defect for maintenance or renewal works 

to be conducted which will permit mitigation or prevention of the failure effects associated with 

functional failure (Moubray, 1997). The length of the nett P-F interval is a function of the P-F interval 

itself as well as the inspection interval. Through the concept of a nett P-F interval is it conceivable that 

for certain failure modes condition-based maintenance may not be technically feasible. Moubray (1997) 

lists criteria to be used in order to determine whether condition-based maintenance is technically 

feasible: 

 It must be possible to clearly identify a state of potential failure i.e. a defect. 

 The P-F interval should be reasonably consistent for a specific failure mode.  
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 The condition of the component must be measurable at intervals which allow reasonable chance 

of detecting defects before functional failure occurs. 

 The nett P-F interval must be sufficient so that maintenance or renewal works can be conducted 

before functional failure occurs. 

 

The P-F interval for a failure mode can be lengthened through improved inspection and condition 

monitoring techniques which allow earlier detection of failing components or improved materials and 

manufacturing techniques. According to Moubray (1997) a lengthened P-F interval has two advantages 

namely increased possibility to avoid or mitigate failure effects and longer required inspection intervals 

both of which have the potential to reduce life cycle costs.  

 

A popular approach in the literature is to model the P-F interval stochastically using a probability 

distribution. Vatn et al. (2003) model the P-F interval of rail cracks using a gamma distribution. In their 

study a single P-F interval probability distribution is used to model all rail cracks independent of failure 

mode. Furthermore, Vatn et al. (2003) note that the P-F interval for rail crack defects will most likely 

be dependent on other operational factors such as train speed, axle load, seasonal temperature variations, 

rail quality and superstructure quality but do not investigate the effects thereof (some of these factors 

were discussed in Section 2.2.3). Zhao et al. (2006) model P-F intervals using an exponential probability 

distribution. Zhao et al. (2006) expand on Vatn et al.’s (2003) approach by using different P-F interval 

probability distributions depending on the failure mode type. Both studies assume that the P-F interval 

is independent of defect initiation time. 

2.6 LIFE CYCLE COST ANALYSIS AND UNCERTAINTY 

Track M&R decisions should be made on the basis of their associated LCC. Andrade (2008) states that 

if the principle of life cycle cost analysis (LCCA) is applied to M&R decisions, then the long-term cost 

of ownership of railway infrastructure can be minimised. The principle of using LCCA in M&R 

decisions is reinforced by Patra, Söderholm & Kumar (2008) who state that LCCA allows the inclusion 

of operating costs, maintenance costs, energy costs and taxes in addition to the initial capital cost. The 

outcomes of decision making processes which include LCC as opposed to ones which only include 

capital costs may well differ as the operation and maintenance costs of railway infrastructure form a 

significant portion of the total LCC. Thus, LCCA may be used as a decision support system (DSS) for 

M&R actions (Zoeteman, 2001).  

 

Zoeteman (2001) developed a framework for a DSS based on a LCC approach in order to combine the 

costs associated with construction, maintenance, financing and transport operations. The calculation 
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steps involved in the proposed LCC plan are summarised in Figure 2.22. A similar approach could be 

used when conducting a LCCA for a single infrastructure component such as the rail.  

 

 

Figure 2.22: Calculation steps and inputs required to develop a LCC plan (redrawn from 

Zoeteman (2001)) 

 

For a DSS based on a LCCA to be sufficiently accurate, adequate data needs to be available linking the 

relationships between transport volumes, infrastructure quality, maintenance, availability and reliability 

(Esveld, 2001). Thus, a great deal of good quality data is required to conduct a LCCA. Zoeteman (2001) 

identifies four components which must be established in order to analyse the effectiveness of different 

M&R policies: 

 Asset registration 

 Identification of maintenance concepts 

 Life cycle cost analysis 

 Computer-assisted work planning 

 

Nonetheless, the reliability of most data does infer certain uncertainties into the calculation of LCC. 

Thus, the robustness of a model should be tested. Zoeteman (2001) suggests the use of a sensitivity 
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analysis or an uncertainty analysis. Maintenance costs are considered the most complex costing 

component of a LCCA (Patra et al., 2009). Maintenance costs should include the following components 

within the maintenance cost itself: 

 Cost of materials, equipment and labour. 

 Cost of condition monitoring and inspections. 

 Cost related to track possession time. 

2.6.1 Uncertainty Estimation 

Uncertainty estimation related to LCCA has been studied by Patra (2007) and Patra et al. (2009). Patra 

et al. (2009) identified two levels of uncertainty namely level 1 uncertainty and level 2 uncertainty. 

Level 1 uncertainty is associated with external risk as a result of costs associated with train delay and 

derailment. Level 2 uncertainty is defined as originating internally due to variable contributions of 

uncertainty in the reliability and availability parameters to the total LCC. These concepts are not 

unrelated. In order to assess uncertainty in LCCA Patra et al. (2009) used a combination of design of 

experiment principles and Monte Carlo simulation.  

 

It is understood that the Bootstrap Method was used by Patra et al. (2009) in order to calculate confidence 

intervals for the reliability and maintainability parameters; namely: time to failure and time to repair. 

These point estimates were then used to infer corresponding point estimates for the LCC. The method 

of interval inference via point estimates is called the Point Estimation Method (PEM). Through the use 

of the above methods Patra et al. (2009) could minimise the number of simulations required to attain 

reliable results. However, this technique is only applicable to solutions where the LCC can be expressed 

as a closed-form solution. 

2.7 REVIEW OF PREVIOUS MAINTENANCE MODELS 

This section of the literature review describes the methodology, assumptions and limitations of some 

previous maintenance and renewal models identified in the literature.  

2.7.1 Age-Usage Renewal Model 

Shafiee et al. (2016) developed what they consider the first published hybrid age-usage maintenance 

model for railway infrastructure. In their research a cumulative damage shock model (see Qian et al. 

(2005)) was used to model the damage process of the railway track. The system is considered to be in a 

state of failure when the cumulative damage reaches a predetermined critical level. According to Shafiee 
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et al. (2016) the train movements are analogous to the shocks to the system and arrive according to a 

NHPP. The damage to the system is analogous to the gross tonnage borne by the rails. The magnitude 

of the damage associated with each train movement or shock is then proportional to the gross mass of 

the train in million gross tonnes (MGT). The variation in MGT associated with each train movement is 

modelled using an exponential distribution.  

 

Maintenance then takes place according to the following scheme: 

 If the cumulative usage reaches the predetermined failure usage-level of the system then 

corrective replacement is conducted. 

 If the cumulative usage reaches a critical usage-level (less than the failure usage-level) then 

unplanned perfect PM is conducted. This critical usage-level is one of the decision variables to 

be optimised in order to minimise the expected long-run maintenance cost for an infinite time 

span. 

 If the operational age of the system reaches a critical age-level before reaching the critical usage-

level then planned PM is conducted. This critical age-level is also a decision variable which 

should be optimised. 

 

The limitations of such a model is that the behaviour of the entire system is modelled in relation to the 

tonnage borne. This does not allow for individual consideration of different failure modes and different 

maintenance policies for the failure modes. No P-F interval is included and a failure cumulative tonnage 

has to be assumed. This failure tonnage is a vague concept. 

2.7.2 Stochastic Rail Defect Model 

The model discussed in this section is the model developed by Zhao et al. (2006). Zhao et al. (2006) 

studied the influence of inspection intervals on the LCC of rail. The LCC was calculated per km of rail 

and normalised against tonnage borne. The study was focused on the modelling of fatigue defects and 

ignored rail wear and corrugation. A schematic representation of the development and consequence of 

different types of rail failures is shown in Figure 2.23. From Figure 2.23 it can be seen that an 

interconnected relationship exists between maintenance activities and the occurrence of defects. For 

example, preventive rail grinding will influence rail wear and the occurrence of rail corrugations, 

however, it will also influence the occurrence of fatigue defects through truncation of RCF cracks as 

explained in Section 2.3.2. Rail grinding and inspections may prove beneficial to the maintenance of 

multitudinous defect types. However, the whole cost thereof is included in the maintenance of fatigue 

defects by Zhao et al. (2006). The LCC was minimised by finding an optimised inspection interval and 
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renewal tonnage for the rail. Important assumptions and components incorporated in the model may be 

summarised as follows: 

 It is assumed that rail fatigue defects arrive according to a Weibull probability distribution. 

 The inter-arrival tonnage for fatigue defects is independent and identically distributed. 

 The P-F interval for each defect type is modelled using an exponential probability distribution. 

 An increase in hazard rate for ATW defects was modelled in order to account for the fact that 

the number of ATWs in the rail is likely to increase with cumulative tonnage due to maintenance 

operations. 

 Imperfect inspections were modelled using a constant probability of detection per defect type. 

 The effect of preventive rail grinding practices was taken into account through a reduction of 

the associated RCF defect hazard rate. 
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Figure 2.23: The development and consequence of rail failures (Zhao et al., 2006) 

 

The maintenance costs modelled by Zhao et al. (2006) include: 

 Rail renewal cost 

 Planned maintenance cost 

 Unplanned maintenance cost 

 Derailment cost 

 Ultrasonic inspection cost 

 Rail grinding cost 
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Zhao et al. (2006) define a state before failure and refer to this as a potential failure or defect. A defect 

is considered to be detectable by modern ultrasonic inspection equipment thus enabling it to be repaired 

before a failure occurs. During the repair of defect in CWR, a new rail segment (called a closure rail) is 

typically installed and fixed into position using either ATWs or FBWs. Zhao et al. (2006) assumed that 

only ATWs are used for maintenance. Defects are categorised into two types by Zhao et al. (2006); 

namely: Type A and Type B defects.  

 

Type A defects consist only of ATW defects. All other rail defects are classified as Type B defects. 

Type B defects include FBW defects, tache ovale defects, shell defects and squat defects. Removing a 

Type A defect will introduce 1 additional ATW weld into the rail as the existing ATW will be removed 

and 2 additional ATWs be introduced resulting in a net increase in ATW count of 1. It follows intuitively 

that if a Type B defect is removed, 2 additional ATWs will consequently be introduced into the rail 

system. It is important to distinguish between additional and new ATWs. Removal of both Type A and 

Type B defects will introduce 2 new ATWs into the system, but only Type B defects will introduce 2 

additional ATWs into the system.  

 

Under the assumptions stated above, Zhao et al. (2006) derived Equation 2.8 for the hazard rate of Type 

A defects taking into account the increase in ATWs due to maintenance activities: 

𝜈𝑎(𝑡) = 𝜆𝑎(𝑡) ∙ 𝑒∫ 𝜆𝑎(𝜏)𝑑𝜏
𝑡

0 [𝑛0 + 2∫𝜈𝑏(𝜏) ∙ 𝑒−∫ 𝜆𝑎(𝑥)𝑑𝑥
𝜏

0 𝑑𝜏

𝑡

0

] ( 2.8 ) 

 

Where: 

𝜈𝑏(𝑡) =  ∑𝜆𝑏𝑗

ℎ𝑗

𝑗=1

(𝑡) ( 2.9 ) 

𝜆(𝑡) =
𝛼

𝛽𝛼
𝑡𝛼−1 ( 2.10 ) 

 

With: 

𝜆𝑎(𝑡) = hazard function of a single Type A defect at tonnage 𝑡 

𝜆𝑏(𝑡) = hazard function of a single Type B defect at tonnage 𝑡 

𝜈𝑎(𝑡) = hazard function of Type A defects taking into account the increase in ATWs at 

tonnage 𝑡 

𝜈𝑏(𝑡) = hazard function of all Type B defects, which is simply the sum of individual hazard 

functions of all individual Type B defects 

𝑛0 = initial number of ATWs in the system at 𝑡 = 0 
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ℎ𝑗 = the number of Type B defects modelled 

𝛼 = Weibull shape parameter for the specific defect under consideration 

𝛽 = Weibull scale parameter for the specific defect under consideration (MGT) 

 

It is important to note that the hazard function of a single Type A defect 𝜆𝑎(𝑡) must be specified with 𝛼 

and 𝛽 parameters such that it is representative of a single ATW. Contrary, the hazard function of a Type 

B defect 𝜆𝑏(𝑡) should be specified with 𝛼 and 𝛽 parameters such that it is representative of the entire 

km section of rail modelled. This is because the hazard function of Type A defects is assumed to be 

proportional to the number of ATWs whereas the hazard function of a Type B defect is assumed to be 

proportional to the length of rail modelled. 

 

Subsequently, Zhao et al. (2006) derived Equation 2.11 for the expected number of failures as a function 

of renewal tonnage 𝑁𝑓(𝑇𝑅). Equation 2.11 incorporates imperfect inspections and an exponentially 

distributed P-F interval for each defect type: 

 

𝑁𝑓(𝑇𝑅) = ∑ ∑ ∑ {(1 − 𝜂𝑗)
𝑖−𝑘

∫ 𝜈𝑗(𝜏)[𝐺𝑗(𝑡𝑖 − 𝜏) − 𝐺𝑗(𝑡𝑖−1 − 𝜏)]𝑑𝜏

𝑡𝑘

𝑡𝑘−1

}

𝑖

𝑘=1

𝑚+1

𝑖=1

ℎ

𝑗=1

 ( 2.11 ) 

  

 Where: 

𝐺𝑗(𝑥) = 1 − 𝑒
−(

𝑥
𝜇𝑗 

 )
 

( 2.12 ) 

 

 With: 

 ℎ = total number of defect types modelled (Type A and Type B) 

 𝑚  = number of ultrasonic inspections conducted during the interval (0, 𝑇) 

 𝜂𝑗  = the probability that a defect of type 𝑗 will be detected by ultrasonic inspection 

 𝑡𝑘 = tonnage at which the 𝑘𝑡ℎ inspection occurred 

 𝑡𝑖 = tonnage at which the 𝑖𝑡ℎ inspection occurred 

𝜈𝑗(𝜏) = the hazard function for defect type 𝑗 which is representative of the entire km section 

modelled 

 𝜇𝑗 = the expected P-F interval length for defect type 𝑗 
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Once the expected number of failures 𝑁𝑓(𝑇𝑅) has been calculated, the expected number of defects 

detected by inspections 𝑁𝑑(𝑇𝑅) can be calculated using Equation 2.13: 

 

𝑁𝑑(𝑇𝑅) =  ∑[∫𝜈𝑗(𝜏)𝑑𝜏

𝑇

0

] − 𝑁𝑓(𝑇𝑅)

ℎ

𝑗=1

 ( 2.13 ) 

 

 Where: 

ℎ = total number of modelled defect types 

𝜈𝑗(𝜏) = the hazard function for the 𝑗th defect type 

𝑁𝑓(𝑇𝑅) = expected number of failures for a life cycle with a renewal tonnage 𝑇𝑅 

 

The LCC as a function of renewal tonnage 𝐿𝐶𝐶(𝑇𝑅) is subsequently calculated using Equation 2.14: 

 

𝐿𝐶𝐶(𝑇𝑅) =  {𝑐𝑅 +
𝑐𝐼𝑇𝑅

𝑠𝐼
+

𝑐𝑔𝑇𝑅

𝑠𝑔
+ [(1 − 𝜉)𝑐𝑓 + 𝜉𝑐𝑑]𝑁𝑓(𝑇𝑅) + 𝑐𝑝𝑁𝑑(𝑇𝑅)}

1

𝑇𝑅
 ( 2.14 ) 

 

 Where: 

 𝑐𝑅  = cost of rail renewal (£/km) 

 𝑐𝐼 = cost of ultrasonic inspection (£/km) 

 𝑠𝐼 = interval of inspection (MGT) 

 𝑐𝑔 = cost of rail grinding (£/km) 

 𝑠𝑔 = interval of rail grinding (MGT) 

 𝜉 = probability that a rail failure will cause a derailment 

 𝑐𝑓 = cost of unplanned maintenance (£/repair) 

 𝑐𝑑 = cost of a derailment (£/derailment) 

 𝑐𝑝 = cost of planned maintenance (£/repair) 

 

Zhao et al. (2006) used an exponential distribution to define a specific P-F interval for each defect type; 

namely: ATW, FBW, tache ovale and squat defects. Zhao et al. (2006) based the 𝜇𝑗 parameter for the 

exponential distribution on research by Jeong et al. (1997) and Vatn et al. (2003). The study by Jeong 

et al. (1997) was discussed in Section 2.2.3. 
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The LCC as calculated by Zhao et al. (2006) is shown in Figure 2.24. The stochastic parameters used 

are shown in Table 2.4 and the costs as well as the non-stochastic parameters are shown in Table 2.5. 

The LCC can be split into a renewal cost component and a maintenance cost component. The 

maintenance cost component comprises the grinding cost, inspection cost, planned maintenance cost, 

unplanned maintenance cost and derailment cost. The renewal cost decreases with an increase in renewal 

tonnage 𝑇𝑅 whereas the maintenance cost increases with an increase in renewal tonnage 𝑇𝑅. These two 

costs oppose each other and the optimum tonnage for renewal occurs at the optimum trade-off between 

these two costs. The optimum LCC in Figure 2.24 occurs at approximately 308 MGT and has a value of 

£791.8/MGT/km. 

 

Table 2.4: Stochastic parameters used by Zhao et al. (2006) 

Defect 𝜶1 𝜷2 𝝁3 𝜼4 𝝃5 

ATW defects 1.01 315.8 10 0.7 

0.00056 
FBW defects 2.00 286.6 10 0.7 

Tache ovale defects 2.55 191.8 5 0.6 

Squat defects 2.17 182.3 7 0.7 
1 Weibull shape parameter 
2 Weibull scale parameter 
3 Expected P-F interval length 
4 Probability of detection by ultrasonic inspection 
5 Probability that a rail failure will cause a derailment 

 

Table 2.5: Costs and non-stochastic parameters used by Zhao et al. (2006) 

Renewal cost, 𝑐𝑅 (£/km) 87000 

Cost of a functional failure, 𝑐𝑓 (£/failure) 4850 

Cost of repairing a detected defect, 𝑐𝑑 (£/defect) 680 

Cost of a single ultrasonic inspection, 𝑐𝐼 (£/km) 100 

Cost of a derailment, 𝑐𝑥 (£/derailment) 2720000 

Cost of rail grinding, 𝑐𝑔 (£/km) 1860 

Initial number of ATWs, 𝑛0 22 

Hazard rate reduction factor for grinding, 𝛾 0.4 

Interval of grinding, 𝑠𝑔 (MGT) 10 

Interval of inspection, 𝑠𝐼 (MGT) 2.5 
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Figure 2.24: LCC expressed as the sum of maintenance cost and renewal cost (redrawn from Zhao 

et al. (2006)) 

 

Figure 2.25 illustrates the effect of varying the inspection interval length 𝑠𝐼 on the LCC curve (Zhao et 

al., 2006). The LCC curve remains steady near its minimum over a larger range of renewal tonnages 

when the inspection interval length is reduced. This allows a larger window of opportunity to renew the 

rail whilst still achieving a desirable LCC. Figure 2.26 illustrates the effect of varying the inspection 

interval length on the minimum attainable LCC. From Figure 2.26 it can be seen that reducing the 

interval of inspection beyond a critical point will cause an increase in the minimum attainable LCC. The 

optimum interval of inspection for the case considered by Zhao et al. (2006) is approximately 1.1 MGT.  
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Figure 2.25: Influence of inspection interval length 𝒔𝑰 on the LCC curve (redrawn from Zhao et 

al. (2006)) 

 

 

Figure 2.26: Influence of inspection interval length 𝒔𝑰 on the minimum attainable LCC (redrawn 

from Zhao et al. (2006)) 
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The model developed by Zhao et al. (2006) was modified and used in another paper by Zhao et al. 

(2007). The new model developed by Zhao et al. (2007) varies in the following ways from the model 

developed by Zhao et al. (2006): 

 A probability parameter was introduced to account for the possibility that a maintenance action 

may replace an existing adjacent ATW.  

 The hazard function of ATWs was divided into two separate functions. The first function 

accounted for early defects and the second for fatigue type defects. 

 Values for the hazard rate reduction factor for grinding 𝛾 were related to specific grinding rates 

in mm/year. 

2.8 SUMMARY 

Section 2.2 shows that the rail deterioration process can be divided into fatigue defects, wear and 

corrugations. The focus of this study is on fatigue defects only. Rail fatigue defects can be categorised 

according to their longitudinal location on the rail (i.e. at joints or on plain rail sections) and according 

to whether or not their hazard rate is effected by rail grinding. A short review of an analytical study by 

Jeong et al. (1997) showed that the progression of a transverse rail defect into a functional failure is 

influenced by the location, orientation, size, vertical-lateral load combination, rail curvature, foundation 

stiffness, rail neutral temperature and fracture toughness of the rail. Thermal stresses further affect the 

rate of defect propagation during loading cycles. Jablonski et al. (1990) used a field study to show that 

the loading stress spectra of various train consists also affect rail fatigue defect propagation. Due to these 

numerous influencing factors, modelling of rail fatigue defects for LCCA lends itself to a stochastic 

approach. 

 

Section 2.3 shows that inspection practices are not perfect and that a maintenance model should account 

for the probability that a defect is not detected by ultrasonic inspection. Furthermore, studies were cited 

indicating that RCF defects are mitigated through preventive rail grinding. Thus, a maintenance model 

should include some reduction in the hazard rate of RCF defects to model the influence of preventive 

rail grinding. 

 

A background to maintenance modelling concepts was provided in Section 2.4 followed by a 

mathematical introduction to stochastic maintenance modelling in Section 2.5. In Section 2.6 it was 

argued that LCCA is an important DSS for M&R decisions. Furthermore, it is important that LCCA 

takes into account the inherent uncertainties related to reliability and maintainability parameters. The 

literature study was concluded with a review of two maintenance models specific to rail maintenance 

developed by Shafiee et al. (2016) and Zhao et al. (2006) respectively.  
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Shafiee et al. (2016) used a cumulative damage shock model which requires an arbitrary predetermined 

critical cumulative damage level to be defined at which the system is assumed to have failed. The 

damage shock model considers the entire rail as a single system and does not provide any insight into 

specific defects and underlying M&R parameters which can influence the LCC. Furthermore, 

inspections are not explicitly taken into account by the damage shock model. No explicit derailment 

probability has been included by Shafiee et al. (2016). 

 

Zhao et al. (2006) explicitly model the effect of inspections on the LCC. Furthermore, a probability for 

derailment for undetected failures is also included. However, due to the closed-form nature of the LCC 

model derived by Zhao et al. (2006), certain assumptions are made which may inadvertently influence 

the final LCC calculated. Some of these assumptions are: 

 All closure rail is installed using ATWs. The derivation of the model does not allow the 

influence of using FBWs instead of ATWs for maintenance on the LCC to be quantified. 

 The hazard rate of “new” ATWs is not reset i.e. all maintenance is minimal maintenance.  The 

author is of the opinion that this may not be representative of reality. 

 FBWs are modelled with a hazard rate proportional to the length of the rail (they are defined as 

Type B defects; see Section 2.7.2). This is counter intuitive as the hazard rate of ATWs is 

modelled in proportion to the number of welds present in the modelled section.  

 Due to the fact that FBWs are modelled as Type B defects by Zhao et al. (2006) their hazard 

rate does not reduce over time despite the fact that FBWs will be maintained and replaced by 

ATWs.  

 The probability of a derailment occurring due to an undetected failures is constant across all 

defect types. 

 The hazard function of Type A defects 𝜈𝑎(𝑡) assumes that new welds are installed immediately 

when a defect initiates. Therefore, the P-F interval is essentially ignored and the hazard rate is 

essentially larger than it should be when the weld is actually installed. This could have a 

progressive effect with an increase in tonnage. 

 

The results of both the model by Shafiee et al. (2016) and Zhao et al. (2006) do not explicitly indicate 

the effect of any uncertainty related to the input parameters on the estimated LCC. The outputs of both 

these models are point estimates of a fairly complicated underlying process. A rail maintenance model 

is presented in Section 3 which aims to overcome the stated limitations of the models discussed. 
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3 NUMERICAL MODEL SETUP 

This section describes the operational logic and setup of the developed numerical model. The stochastic 

simulation model was developed based on the Monte Carlo method. In short, Monte Carlo simulation is 

the name given to any simulation which involves the use of random or pseudorandom numbers to 

introduce randomness in the underlying model (Rubinstein & Kroese, 2008). The model was 

programmed in MATLAB. All modelling was done for a single representative kilometre of track. It 

should be noted that the terms tonnage and time are used interchangeably in this section but should be 

understood to both mean tonnage. This is because the rail deterioration process due to fatigue is directly 

related to the tonnage borne by the rail and not the time which has passed. This study considers only the 

uncertainty related to technical parameters and not economical parameters such as the discount rate and 

inflation. Thence, no discount rate has been used in the model. This is common practice and the same 

assumption has been made by Zhao et al. (2006) and Shafiee et al. (2016). 

3.1 INTRODUCTION TO THE NUMERICAL MODEL 

Two unique types of rail fatigue defects are identified with regard to the manner in which they are 

modelled, namely: Category A and Category B defects. Category A defects are related to weld quality 

whereas Category B defects are related to longitudinal rail quality. No bolted joints are considered in 

the model.  The hazard rate of Category A defects 𝜆𝐴(𝑡) must be specified for a single weld whereas the 

hazard rate of Category B defects 𝜆𝐵(𝑡) must be specified in proportion to the length of rail modelled. 

Category A defects are sub-divided into alumino-thermic weld (ATW) defects and flash butt weld 

(FBW) defects only. However, Category B defects are sub-divided into defects such as tache ovale 

defects, squat defects, shelling, spalling and head checking. The number of Category B defect types 

which can be modelled is unlimited. The reason for defining these two categories of defects is in order 

distinguish between the manner in which their hazard functions are specified. The hazard functions of 

Category A defects are specified per defect whereas the hazard functions of Category B defects are 

specified per unit length of rail. The basic assumptions with regard to the modelling procedure may be 

summarised as follows: 

 Rail defect arrival is governed by a 2-parameter Weibull distribution as found by Zarembski 

(1991) and which has been used in numerous studies as highlighted by Roth (2008). These two 

parameters are 𝛼 (the shape parameter) and 𝛽 (the scale parameter). 

 The defect inter-arrival tonnages 𝑡𝑑  for a specific defect type are independent and identically 

distributed and hence follow a non-stationary exponential probability distribution with a mean 

value function specified by the hazard function of the Weibull distribution. This is also known 

as the power law process. 
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 The P-F interval 𝑡𝑃−𝐹 follows an exponential distribution as assumed by Zhao et al. (2006). 

 A defect of type 𝑗 is considered detectable with probability 𝜂𝑗 upon ultrasonic inspection. This 

accounts for imperfect inspections. 

 The hazard rate of rolling contact fatigue (RCF) defects is reduced by a factor 𝛾(𝑞𝑔) which is 

dependent on the annual grinding rate 𝑞𝑔 in mm/year. This is in order to model the effect of 

preventive rail grinding practices. This approach is suggested by Zhao et al. (2007). 

 The maintenance of defects can be divided into 3 categories with regard to the state in which 

the defect or weld was found at the time of maintenance. These 3 categories are planned 

maintenance, unplanned maintenance and renewal maintenance. Planned maintenance is 

conducted when the defect is detected before failure occurs i.e. during the P-F interval of the 

defect. Unplanned maintenance is conducted when a failure occurs. Renewal maintenance is 

conducted when a weld or defect is removed due to renewal of the rail at the end of its life cycle.  

 All maintenance actions are assumed to take place without delay. 

 The effect of maintenance on the hazard rate of the system can be modelled using either minimal 

maintenance (no effect on the hazard rate) or perfect maintenance (hazard rate decreases to same 

value as when new) as defined in Table 2.2 in Section 2.4.3. 

 The joining of the closure rail during maintenance work may be done using either alumino-

thermic welding or mobile flash butt welding technology.  

 

A single simulation produces 𝑁𝑠𝑖𝑚 virtual life cycles using unique values for the inter-arrival tonnage 

𝑡𝑑 and P-F interval length 𝑡𝑃−𝐹 for each defect. These unique values are attained through Monte Carlo 

sampling and the Inverse Transform Method as explained in Section 3.2. The model requires that the 

initial number of ATWs 𝑛0𝐴𝑇𝑊
 and initial number of FBWs 𝑛0𝐹𝐵𝑊𝑠

 be specified. This initial number of 

welds in combination with the hazard function of all Category A and Category B defects represents the 

condition of the rail as installed at tonnage 𝑇 = 0 MGT. It should be noted that tonnage relative to the 

life cycle being simulated is denoted by a capital letter ‘𝑇’ and tonnage relative to the defect or weld 

under consideration is denoted by a small letter ‘𝑡’.  

 

Calculation points need to be specified for the model. These calculation points are specified in the form 

of an array of increasing renewal tonnages 𝑻𝑹
⃗⃗⃗⃗  ⃗ . A life cycle cost (LCC) is calculated for each renewal 

tonnage in array 𝑻𝑹
⃗⃗⃗⃗  ⃗. The calculation procedure is described in detail using flow charts in Section 3.3. 
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3.2 INVERSION AND THE GENERATION OF RANDOM VARIABLES 

In the stochastic simulation model developed, the Inverse Transform Method is used to generate random 

variables according to specified probability distributions. The Inverse Transform Method is described 

in detail by Robert & Casella (2004). In short, the Inverse Transform Method states that if a random 

variable 𝑈 follows a uniform distribution on the open interval (0,1) then the inverse of the cumulative 

distribution function 𝐹, 𝐹−(𝑈) has the probability distribution 𝐹. This assumes that 𝐹 is a non-

decreasing function. The Inverse Transform Method is illustrated schematically in Figure 3.1 for a single 

variate 𝑢. The Inverse Transform Method is used to derive expressions describing the arrival behaviour 

of defects and the length of the P-F interval in Section 3.2.1 and 3.2.2 respectively.  

 

 

Figure 3.1: The Inverse Transform Method for generating a random variable (redrawn from 

Rubinstein & Kroese (2008)) 

 

It is important that the pseudorandom numbers generated in the Monte Carlo simulation do not have a 

significant correlation which would inadvertently influence the output LCC distribution. It may be 

warranted in certain cases to generate pseudorandom numbers with a specified correlation in order to 

appropriately model a phenomenon which displays correlation in the physical world. However, in the 

current model developed no specific correlation was assigned to the pseudorandom numbers as no 

evidence exists for a relationship between the inter-arrival tonnage of defects 𝑡𝑑, the length of the P-F 

interval 𝑡𝑃−𝐹 and the probability of detection 𝜂.  
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Latin hypercube samples were used in order to control pseudorandom number generation and ensure 

repeatability for the model in MATLAB. Latin hypercube sampling uses a stratified method to sample 

pseudorandom numbers. Therefore, a more uniform distribution of numbers is attainable in comparison 

to a congruential generator which means that fewer simulations need to be conducted. A built-in function 

in MATLAB allows the user to reduce the correlation of the numbers within the Latin hypercube sample 

by generating consecutive Latin hypercube samples and then selecting the sample with the smallest 

correlation coefficient 𝜌. 

 

Latin hypercube samples were generated of adequate length and with sufficient dimensions to account 

for each defect type which had to be modelled. The random numbers were then sampled consecutively 

from the Latin hypercube sample. Figure 3.2 shows the evolution of the Pearson’s linear correlation 

coefficient 𝜌 for a 4-dimensional Latin hypercube sample. The black dashed lines in Figure 3.2 indicate 

correlation coefficients of -2 % and 2 % respectively. The correlation is relatively high for 

pseudorandom samples of length less than 300 numbers but stabilises and remains less than |0.02| for 

pseudorandom samples of length greater than 20 000 numbers. 
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Figure 3.2: Correlation of a 4-dimensional Latin hypercube sample versus the length of the 

pseudorandom sample 

 

The 1st dimension of the pseudorandom sample is used for the generation of the inter-arrival tonnage of 

defects 𝑡𝑑 for ATWs. The 2nd is used for FBWs and so on. A similar Latin hypercube sample was 

generated for use during the Inverse Transform Method for the P-F interval length for each defect type 

modelled.  

3.2.1 Modelling the Arrival of Defects 

It is assumed that the arrival of rail defects is adequately modelled by a 2-parameter Weibull probability 

distribution and that the inter-arrival tonnages 𝑡𝑑 are independent and identically distributed. Thus, it 

follows that the inter-arrival tonnages of rail defects 𝑡𝑑 can be modelled using an exponential distribution 

with a mean value function 𝜇(𝑡) given by the integral of the hazard function of the Weibull distribution. 

A probability distribution of this nature has a cumulative distribution function (CDF) as shown in 

Equation 3.1: 
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𝐹(𝑡) = 1 − 𝑒−𝜇(𝑡)
 ( 3.1 ) 

 

 Where: 

𝜇(𝑡) =  ∫𝜆(𝜏)

𝑡

0

𝑑𝜏    ( 3.2 ) 

𝜆(𝜏) =  
𝛼

𝛽𝛼
𝜏𝛼−1    ( 3.3 ) 

 

With: 

𝑡 = the inter-arrival tonnage of defects (MGT) 

𝜇(𝑡) = the expected number of arrivals at tonnage 𝑡 

𝜆(𝜏) = hazard function of the Weibull distribution at tonnage 𝜏 

𝛼 = the Weibull shape parameter 

𝛽 = the Weibull scale parameter (MGT) 

𝜏 = a dummy integration variable 

 

Equation 3.3 needs to be modified in order to model both minimal maintenance and perfect maintenance. 

The variable 𝜏 is replaced with the expression 𝜏 + 𝑎, where 𝑎 represents the horizontal shift in the hazard 

rate for minimal maintenance. The variable 𝑎 is analogous to the life of the defect which has essentially 

been lost through minimal maintenance. Furthermore, a grinding reduction factor 𝛾(𝑞𝑔) is introduced 

into Equation 3.3 to represent a reduction in the hazard rate of defects due to preventive grinding 

maintenance. Thus, Equation 3.3 becomes: 

 

𝜆(𝑡) =  (1 − 𝛾(𝑞𝑔) ) ∙
𝛼

𝛽𝛼
(𝜏 − 𝑎)𝛼−1    ( 3.4 ) 

  

 

With: 

 𝑎 = the model tonnage at which the weld was installed 

𝛾(𝑞𝑔) = the grinding reduction factor which is a function of the grinding rate 𝑞𝑔 in mm/year 

 

Substituting Equation 3.4 into Equation 3.2 and subsequently Equation 3.1 and solving for 𝑡𝑑  gives 

Equation 3.5:  
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𝑡𝑑(𝑈1) =  [𝑎𝛼 −
𝛽𝛼 ln(1 − 𝑈1)

1 − 𝛾(𝑞𝑔)
]

1
𝛼

− 𝑎  ( 3.5 ) 

  

With: 

𝑈1 = a uniformly distributed variable sampled using Monte Carlo simulation 

 

Equation 3.5 is used to calculate the defect inter-arrival tonnages 𝑡𝑑. 𝑈1 is sampled using Monte Carlo 

simulation from the appropriate Latin hypercube sample. This produces values of 𝑡𝑑 distributed 

according to the desired non-stationary exponential distribution. 

 

Figure 3.3 illustrates the behaviour of the hazard function 𝜆(𝑡) shown in Equation 3.4. For all the curves 

in Figure 3.3, 𝛼 = 1.5 and 𝛽 = 200 MGT. The solid curve illustrates the case when 𝑎 = 0 and 𝛾(𝑞𝑔) = 0. 

This case is associated with Category A defects for welds installed during maintenance activities which 

are modelled using perfect maintenance. The dashed curve illustrates the hazard rate curve when 

𝑎 = 200 MGT and 𝛾(𝑞𝑔) = 0. This case is associated with the modelling of all Category B defects as 

well as Category A defects which are modelled using minimal maintenance. The dash-dot curve in 

Figure 3.3 demonstrates the effect of the hazard rate reduction factor for modelling the influence of rail 

grinding. For this case 𝛾(𝑞𝑔) = 0.4. 

 

Figure 3.4 shows plots of the CDF in Equation 3.1 for each respective hazard function shown in Figure 

3.3. The Inverse Transform Method is applied to these CDFs in order to determine the defect inter-

arrival tonnage 𝑡𝑑.  
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Figure 3.3: Comparison of the hazard rate for a defect modelled using perfect maintenance, 

minimal maintenance and perfect maintenance with a grinding reduction factor 
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Figure 3.4: CDF for the defect inter-arrival tonnage 𝒕𝒅 for a defect modelled using perfect 

maintenance, minimal maintenance and perfect maintenance with a grinding reduction factor 

 

Figure 3.5 is a schematic representation of the behaviour of the total system hazard rate 𝜈(𝑇) as 

influenced by different maintenance modelling assumptions. The figure represents a system with a single 

weld at tonnage 𝑇 = 0 MGT. The system hazard rate then increases according to the hazard function for 

that single weld 𝜆(𝑡). At a tonnage 𝑡𝑑 determined through Monte Carlo sampling the weld will birth a 

defect. It is important to note that the hazard function plays no part in determining the tonnage between 

the point where the defect initiates 𝑡𝑑 and the point where it is maintained 𝑇𝑚. This is fully governed by 

the length of the P-F interval 𝑡𝑃−𝐹 as well as the number if inspections conducted during the P-F interval 

in combination with the probability of detection for that defect 𝜂𝑗. This will be illustrated clearly in the 

flow charts in Section 3.3.  

 

Three different curves are shown in Figure 3.5. The solid line is the system hazard rate 𝜈(𝑇)  before 

maintenance occurs and is equal to the weld hazard rate 𝜆 (𝑡). Two different scenarios are possible after 

the maintenance action has occurred at 𝑇 = 200 MGT. If maintenance is modelled using minimal 

maintenance then the system hazard rate 𝜈(𝑇) will follow the dash-dot curve. This hazard rate will be 

equal to 2𝜆(𝑡) with 𝑎 = 200. If the maintenance is modelled using perfect maintenance then the system 

hazard rate 𝜈(𝑇) will follow the dashed curve. This hazard rate will be equal to 2𝜆(𝑡) with 𝑎 = 0. The 

reason that the hazard rate is multiplied by two is because two new welds are introduced by the 

maintenance activity. 
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Figure 3.5: The effect of maintenance on the total system hazard rate for maintenance modelled 

using perfect maintenance and minimal maintenance 

 

3.2.2 Modelling the P-F Interval 

It is assumed that the P-F interval for fatigue defects is adequately modelled by a stationary exponential 

distribution as shown in Equation 3.6: 

 

𝐹(𝑡) = 1 − 𝑒
−

𝑡
𝜇

 
( 3.6 ) 

 

 With:  

 𝜇 = the expected P-F interval length (MGT) 

 

Rearranging Equation 3.6 for 𝑡 gives Equation 3.7: 

 

𝑡𝑃−𝐹(𝑈2) = −𝜇 ln 1 − 𝑈2 ( 3.7 ) 
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With: 

𝑡𝑃−𝐹 = the P-F interval length (MGT) 

𝑈2 = a uniformly distributed variable sampled using Monte Carlo simulation 

 

Equation 3.7 is used to calculate the P-F interval length 𝑡𝑃−𝐹. 𝑈2 is sampled using Monte Carlo 

simulation from the appropriate Latin hypercube sample. This produces values of 𝑡𝑃−𝐹 distributed 

according to the desired stationary exponential distribution. 

3.3 PROCEDURAL LOGIC OF THE MODEL 

This section describes the procedural logic of the model developed for this study. Flow charts are used 

to describe the procedures implemented within MATLAB. The nomenclature used in this section is 

outlined below: 

 Arrays are denoted using a ⃗⃗  ⃗. 

 Arrays are indexed using a subscript outside of the ⃗⃗  ⃗. 

 The subscripts 𝐴 and 𝐵 are used to denote Category A and Category B defects respectively. 

 The symbols 𝑖, 𝑗, 𝑘 and 𝑝 are reserved for use in indexing array elements. 

 The symbol 𝑇 denotes tonnage relative to the virtual life cycle under consideration i.e. 

𝑇 = 0 MGT at the beginning of the virtual rail life. 

 The symbol 𝑡 denotes a tonnage relative to the life of the defect or weld under consideration i.e. 

if a weld is installed at 𝑇 = 200 MGT and a defect initiates for that weld at 𝑇 = 250 MGT, then 

the defect initiation tonnage may be described as 𝑇𝑑 = 250 MGT or 𝑡𝑑 = 50 MGT. 

 

The simulation procedure begins by simulating 𝑁𝑠𝑖𝑚 virtual life cycles with a renewal tonnage equal to 

𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑. Each virtual life cycle simulated produces varying quantities of Category A and Category B 

defects due to Monte Carlo sampling. Data for all the Category A defects and Category B defects are 

saved for each virtual life cycle. The data saved for Category A and Category B defects respectively are 

summarised in Table 3.1. There is no 𝑇𝐵𝐼
 parameter in Table 3.1 because Category B defects are 

modelled with hazard functions proportional to the length of the rail and thus do not have an associated 

installation tonnage as is the case with welds (Category A defects). 
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Table 3.1: Data stored for Category A and Category B defects for each virtual life cycle modelled 

Variable Description 
Symbol Used  for Category A 

defects (Welds) 

Symbol Used  for Category B 

defects 

Defect inter-arrival tonnage 

(relative to the defect or weld) 
𝑡𝐴𝑑 𝑡𝐵𝑑 

P-F interval length (relative to 

the defect) 
𝑡𝐴𝑃−𝐹 𝑡𝐵𝑃−𝐹 

Virtual life cycle tonnage at  

defect initiation 
𝑇𝐴𝑑 𝑇𝐵𝑑 

Virtual life cycle tonnage at  

failure 
𝑇𝐴𝑓 𝑇𝐵𝑓 

Virtual life cycle tonnage at  

weld installation 
𝑇𝐴𝐼 - 

Virtual life cycle tonnage at  

which defect was maintained 
𝑇𝐴𝑚 𝑇𝐵𝑚 

Maintenance case number 𝐶𝐴 𝐶𝐵 

 

The deterministic input parameters required to run the model are: 

 Initial number of FBWs 𝑛0𝐹𝐵𝑊
 and initial number of ATWs 𝑛0𝐴𝑇𝑊

 at 𝑇 = 0 MGT. 

 An array of tonnages at which ultrasonic rail inspections will be conducted, 𝑰 .  

 An array of tonnages at which preventive rail grinding will be conducted, 𝑰𝒈
⃗⃗⃗⃗ . 

 The hazard rate reduction factor for rail grinding, 𝛾. 

 The weld type used for maintenance. 

 Maintenance modelling type, namely: perfect maintenance or minimal maintenance. 

 Number of virtual life cycles to simulate, 𝑁𝑠𝑖𝑚. 

 An array of renewal tonnages at which the LCC is calculated, 𝑻𝑹
⃗⃗⃗⃗  ⃗. 

 

The following stochastic parameters need to be specified for each Category A and Category B defect 

modelled: 

 The Weibull parameters 𝛼 and 𝛽. 

 The Expected P-F interval length, 𝜇. 

 The probability that a defect will be detected by ultrasonic inspection, 𝜂. 

 

Whether or not grinding reduces the hazard rate of a defect can be set for each individual defect type 

modelled. The following costs need to be specified and should include all material, labour and delay 

costs: 

 Cost of planned maintenance using ATWs for a detected defect, 𝑐𝑝𝐴𝑇𝑊
. 

 Cost of planned maintenance using FBWs for a detected defect, 𝑐𝑝𝐹𝐵𝑊
. 

 Cost of unplanned maintenance using ATWs for a failed defect, 𝑐𝑓𝐴𝑇𝑊
. 
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 Cost of unplanned maintenance using FBWs for a failed defect, 𝑐𝑓𝐹𝐵𝑊
. 

 Cost of ultrasonic inspection, 𝑐𝐼. 

 Cost of rail grinding, 𝑐𝑔. 

 Rail renewal cost, 𝑐𝑅. 

 

The calculation procedure for a single virtual life cycle is described in Sections 3.3.1 and 3.3.2. The 

process described in these sections is repeated 𝑁𝑠𝑖𝑚 times to produce data for 𝑁𝑠𝑖𝑚 virtual life cycles. 

The calculation of the associated costs for each life cycle is described in Section 3.3.3. The entire 

procedure can be briefly summarised as follows: 

 Category B defects are created using pseudorandom numbers and Monte Carlo sampling. 

 The Category B defects are maintained using a combination of inspection interval data and the 

probability of detection for that defect type. 

 The initial Category A defects are created from the welds present at  𝑇 = 0 MGT.  

 Category A defects are created for welds installed during the maintenance of Category B 

defects.  

 All Category A defects are now maintained and new welds installed in a process which repeats 

until the cumulative tonnage of all the welds present in the system has reached the renewal 

tonnage. 

  

The flow charts used in the proceeding sections make use of different shapes and colours as summarised 

in Table 3.2. 
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Table 3.2: Description of the shapes used in the flow charts 

Shape Description 

 Indicates a starting condition or the start of a procedure. 

 Indicates the end of a procedure. 

 
Indicates that a decision must be made. 

 Indicates the assignment of a value to a variable. 

 Indicates the use of an equation or function of which the procedural logic is 

explained in a separate flow chart. 

 
Indicates that values are stored in memory. 

 Indicates that values are stored in memory and that the end of the procedure has 

been reached. 

 Indicates the input data required for a function or decision. 

 

3.3.1 Calculation Procedure for the Last Renewal Tonnage 

The first step in calculating the defects which will originate in a virtual life cycle is to determine the 

Category B defects which will form during the interval (0, 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑). Figure 3.6 illustrates this process. 

The formation of Category B defects is considered to be independent of Category A defects. This 

assumption implies that the quality of any closure rail installed during maintenance activities is the same 

as the existing rail to which it is welded. The variable 𝑗 indexes the different Category B defect types to 

model (𝑗 ∈ ℕ). The variable 𝑘 indexes the quantity of Category B defects across all 𝑗 types. The defect 

inter-arrival tonnage for the 𝑘𝑡ℎ Category B defect 𝒕𝑩𝒅
⃗⃗ ⃗⃗⃗⃗ 

𝑘
 is calculated using the 𝑗𝑡ℎ dimension of the 

appropriate Latin hypercube sample as well as the input parameters indicated in Figure 3.6. Category B 

defects of type 𝑗 are created while 𝑻𝑩𝒅
⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑘
< 𝑻𝑹

⃗⃗⃗⃗  ⃗
𝑒𝑛𝑑. This means that defects in each category indexed by 

𝑗 are created whilst their cumulative defect initiation tonnage is less than the renewal tonnage. This is 

logical in the sense that any defects which would initiate after the renewal tonnage would not influence 

the current system. For every defect created an associated P-F interval length 𝑻𝑩𝑷−𝑭
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑘
 is calculated using 

the appropriate dimension of the corresponding Latin hypercube sample and Equation 3.7. The 

theoretical failure tonnage for the 𝑘𝑡ℎ Category B defect is then calculated as 𝑻𝑩𝒇
⃗⃗⃗⃗⃗⃗  ⃗

𝑘
= 𝑻𝑩𝒅

⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑘
+ 𝑻𝑩𝑷−𝑭

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑘
. 
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Each defect created is given a unique identification number 𝑰𝑫𝑩
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑘 which is used for the procedures 

explained in Section 3.3.2. Furthermore, each defect can be categorised as either active or inactive. This 

is denoted by array 𝝍𝑩
⃗⃗ ⃗⃗  ⃗ which can take on only logical values of true or false; true indicating that the 

defect is active. This is used to identify which defects still need to be maintained and which have already 

been maintained and have thus been removed from the system.  Once all Category B defects have been 

created, arrays 𝑻𝑩𝒅
⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑻𝑩𝒇

⃗⃗⃗⃗⃗⃗  ⃗, 𝝍𝑩
⃗⃗ ⃗⃗  ⃗ and 𝑰𝑫𝑩

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  are saved for use at a later stage in the simulation. 

 

 

Figure 3.6: Flow chart illustrating the process of creating Category B defects in the model 

 

The next stage involves simulating the maintenance of all the Category B defects created. This procedure 

is summarised in Figure 3.7. The cumulative defect initiation tonnage array 𝑻𝑩𝒅
⃗⃗ ⃗⃗ ⃗⃗  ⃗ and the cumulative 

failure tonnage array 𝑻𝑩𝒇
⃗⃗⃗⃗⃗⃗  ⃗ as well as the inspection interval array 𝐼  are used to determine the maintenance 

case number and the cumulative tonnage at which the defect is maintained. The determination of the 

maintenance case number for the 𝑘𝑡ℎ defect 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑘 and cumulative tonnage at which the 𝑘𝑡ℎ defect is 

maintained 𝑻𝑩𝒎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑘
 is calculated within the Maintenance Function illustrated in Figure 3.8. As each 

Category B defect is maintained its active state 𝝍𝑩
⃗⃗ ⃗⃗  ⃗

𝑘 is changed to false (inactive). Within the 

Maintenance Function is another function namely the Detection Function. The Detection Function 

determines if (and then subsequently when) a defect is detected by an ultrasonic inspection and is 

illustrated in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3-16 

 

 

Figure 3.7: Flow chart illustrating the process of determining the tonnage at which maintenance 

of Category B defects occurs 𝑻𝑩𝒎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  as well as the maintenance case number 𝑪𝑩

⃗⃗⃗⃗  ⃗ 

 

The Maintenance Function illustrated in Figure 3.8 assigns a maintenance case number 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑘 ranging 

from 1 to 7 according to specific criteria shown in the figure. Despite the existence of 7 different 

maintenance case numbers, only 3 categories of maintenance exist. These categories are planned 

maintenance, unplanned maintenance and renewal maintenance. The different maintenance case 

numbers exist only to separate the modes by which one of the 3 maintenance types occur in the model. 

 

The first decision in Figure 3.8 determines whether the weld becomes defective before the renewal 

tonnage 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑 is reached. This decision only applies to Category A defects. If the weld only becomes 

defective after 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑 then it will be removed during renewal and thence be classified as renewal 

maintenance. Maintenance case number 𝑪𝑨
⃗⃗ ⃗⃗  

𝑖 = 7 is assigned to such a case. 

 

The next decision splits defects according to whether they fail before or after 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑. If a defect fails 

before 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑 then it can be further categorised according to whether it’s cumulative tonnage at defect 
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initiation 𝑻𝑨𝒅
⃗⃗⃗⃗ ⃗⃗  ⃗

𝑖
 occurs within the same inspection interval as the defect’s cumulative tonnage at failure 

𝑻𝑨𝒇
⃗⃗ ⃗⃗ ⃗⃗  

𝑖
. 𝑰𝒅
⃗⃗  ⃗ is a two element array indicating the inspection interval within which the defect originates. 

Similarly, 𝑰𝒇
⃗⃗  ⃗ is a two element array indicating the inspection interval within which the defect fails. If 

𝑰𝒅
⃗⃗  ⃗ = 𝑰𝒇

⃗⃗  ⃗ then there is no chance that the defect may have been detected by an inspection and thus a 

functional failure occurs. Maintenance case number 𝑪𝑨
⃗⃗ ⃗⃗  

𝑖 = 1 is assigned to such a case. 

 

If 𝑰𝒅
⃗⃗  ⃗ ≠ 𝑰𝒇

⃗⃗  ⃗ it indicates that the defect was present during at least a single inspection. Subsequently, the 

Detection Function determines whether the defect is detected or not. If it is detected then planned 

maintenance occurs and the maintenance case number 𝑪𝑨
⃗⃗ ⃗⃗  

𝑖 = 2 is assigned to that defect. If it remains 

undetected then maintenance case number 𝑪𝑨
⃗⃗ ⃗⃗  

𝑖 = 3 is assigned.  

 

If the defect fails after 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑 (𝑻𝑨𝒇
 ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖 > 𝑻𝑹

⃗⃗⃗⃗  ⃗
𝑒𝑛𝑑) then it can be further categorised according to whether 

the defect originated within the last inspection interval (meaning that the second element of array 𝑰𝒅
⃗⃗  ⃗, 

𝑰𝒅
⃗⃗  ⃗

2
 is equal to 𝑻𝑹

⃗⃗⃗⃗  ⃗
𝑒𝑛𝑑) or not. If the defect originated within the last inspection interval then there is no 

chance for detection and thus renewal maintenance will be conducted and maintenance case number 

𝑪𝑨
⃗⃗ ⃗⃗  

𝑖 = 4 is assigned. Alternatively, a maintenance case number of 𝑪𝑨
⃗⃗ ⃗⃗  

𝑖 = 5 or 6 will be assigned according 

to whether the defect was detected before 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑  or not which corresponds with planned maintenance 

and renewal maintenance respectively. 
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Figure 3.8: Flow chart illustrating the procedural logic contained within the Maintenance Function used to determine the tonnage at which 

maintenance is conducted 𝑻𝑴
⃗⃗ ⃗⃗  ⃗ as well as the maintenance case number �⃗⃗�  
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The Detection Function procedural logic illustrated in Figure 3.9 determines how many opportunities 

exist for the defect to be detected during the P-F interval. For each detection opportunity a random 

number is sampled using the Mersenne Twister pseudorandom number generator. If this number is less 

than the detection probability for the defect under consideration 𝜼𝑨⃗⃗ ⃗⃗  
𝑗 then the defect is considered to 

have been detected by that specific inspection.  

 

 

Figure 3.9: Flow chart illustrating the procedural logic contained within the Detection Function 

used to determine at which inspection (if at all) the defect is detected 

 

It should be noted that subscripts denoting Category A defects are shown for the functions illustrated in 

Figure 3.8 and Figure 3.9. However, these functions are used for Category B defects as well and the 

subscript shown is used for illustrative purposes only. 

 

The Category A defects for welds present at 𝑇 = 0 MGT are now modelled. Figure 3.10 illustrates this 

process. Each weld has a unique defect inter-arrival tonnage 𝒕𝑨𝒅
⃗⃗ ⃗⃗ ⃗⃗ 

𝑖
 and P-F interval length 𝒕𝑨𝑷−𝑭

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑖
. The 

procedure is similar to the process described at length in Figure 3.6. The difference in this process is 

that a limited number of Category A defects are created according to the specified number of ATWs 

𝑛0𝐴𝑇𝑊
 and FBWs 𝑛0𝐹𝐵𝑊

. Furthermore, 𝑎 = 0 in Equation 3.5 during this process as all these welds are 

installed at 𝑇 = 0 MGT. 
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Figure 3.10: Flow chart illustrating the creation of the Category A defects for welds present at  

𝑻 = 0 MGT 

 

Category A defects for the welds installed during maintenance of the Category B defects need are now 

modelled. This is illustrated in Figure 3.11. This process is similar to Figure 3.10.The differences are: 

 Welds are only created for Category B defects which triggered planned or unplanned 

maintenance. This includes all maintenance case numbers except 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑘 = 4 or 6. 

 The value of 𝑎 in Equation 3.5 is either equal to 0 or 𝑻𝑩𝒎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑘
 depending on whether the 

maintenance type is modelled as perfect maintenance or minimal maintenance respectively. 
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Figure 3.11: Flow chart illustrating the process whereby Category A defects are created for welds 

created by maintaining Category B defects 

 

Now only Category A defects remain which need to be maintained and new welds installed accordingly. 

Figure 3.12 illustrates this procedure. For each weld maintained using either planned or unplanned 

maintenance two new welds are created. The Category A defects for these new welds are then created 

with their associated 𝑻𝑨𝒅
⃗⃗⃗⃗ ⃗⃗  ⃗

𝑖
 and 𝑻𝑨𝒇

⃗⃗ ⃗⃗ ⃗⃗  
𝑖
. This process continues until the renewal tonnage is reached by all 

active welds in the system.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3-22 

 

 

Figure 3.12: Flow chart illustrating the process of modelling the maintenance of all Category A defects and the creation of additional welds as a result 

thereof 
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3.3.2 Calculation Procedure for the Remaining Renewal Tonnages 

The process described in Section 3.3.1 simulates all the rail defects for a renewal tonnage of 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑. The 

defects present at the renewal tonnages other than 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑒𝑛𝑑 in array 𝑻𝑹
⃗⃗⃗⃗  ⃗ must be determined in order to 

calculate the associated LCC for all renewal tonnages specified. Therefore, the defects produced during 

the simulation process described in Section 3.3.1 must be truncated accordingly and their maintenance 

case numbers changed if so required. In this procedure the renewal tonnages in 𝑻𝑹
⃗⃗⃗⃗  ⃗ are looped through 

in descending order and are indexed by the variable 𝑝.  

 

This process of truncation begins with the removal of any Category B defects which initiated at tonnages 

larger than the current renewal tonnage under consideration 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑝. Thereafter, any subsequent welds 

which originated from the Category B defects which have now been removed are also removed. This is 

illustrated in Figure 3.13. 

 

 

Figure 3.13: Flow chart illustrating the procedural logic followed to remove Category B defects 

which initiated at a tonnage larger than 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝒑 as well as any subsequent welds and Category A 

defects 
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The remaining Category B defects are now assessed to in order to ascertain whether any of their 

associated maintenance tonnages 𝑻𝑩𝒎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑖
 are larger than the current renewal tonnage under consideration 

𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑝. If 𝑻𝑩𝒎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑖
> 𝑻𝑹

⃗⃗⃗⃗  ⃗
𝑝 the tonnage at which maintenance is conducted is changed to the renewal tonnage. 

The maintenance case number is also changed accordingly. Thereafter, any child welds which originated 

from defects which had 𝑻𝑩𝒎
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝑖
> 𝑻𝑹

⃗⃗⃗⃗  ⃗
𝑝 are removed. This is illustrated in Figure 3.14. 

 

 

Figure 3.14: Flow chart illustrating the procedural logic followed to change the maintenance type 

of any remaining Category B defects with 𝑻𝑩
⃗⃗⃗⃗  ⃗

𝒎 > 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝒑 and removed any subsequent welds and 

Category A defects 

 

Any welds which were installed after 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑝 are removed. This is shown in Figure 3.15. Now a new set of 

arrays with the correct data is stored for the renewal tonnage under consideration. The process described 

in this section is repeated for all specified renewal tonnages in 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑝 in descending order. 
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Figure 3.15: Flow chart illustrating the procedural logic used to remove any welds installed at 

tonnages larger than 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝒑 and subsequent defects 

 

3.3.3 Life Cycle Cost Calculation 

The LCC for virtual life cycle 𝑁 at renewal tonnage 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘, 𝒄𝑳𝑪𝑪⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑁,𝑘

 is calculated using the defect data for 

that respective life cycle and renewal tonnage. Arrays 𝑪𝑨
⃗⃗ ⃗⃗   and 𝑪𝑩

⃗⃗⃗⃗  ⃗ are used in order to determine the 

planned and unplanned maintenance costs. For each maintenance case number within 𝑪𝑨
⃗⃗ ⃗⃗   and 𝑪𝑩

⃗⃗⃗⃗  ⃗  a 

corresponding maintenance cost of 𝑐𝑝𝐴𝑇𝑊
, 𝑐𝑝𝐹𝐵𝑊

, 𝑐𝑓𝐴𝑇𝑊
 or 𝑐𝑓𝐹𝐵𝑊

 is added to the LCC according to 

whether the maintenance case number corresponds with planned or unplanned maintenance and whether 

ATWs or FBWs are used for maintenance respectively. 

 

The ultrasonic inspection cost for a given virtual life cycle is equal to the number of inspections 

multiplied by the cost of a single inspection 𝑐𝐼. The rail grinding cost is calculated in a similar manner. 

The rail renewal cost is equal to 𝑐𝑅 for any given virtual life cycle. All costs are normalised against the 

tonnage borne by the rail. Therefore, if a single km of rail is modelled the associated LCC will be 

expressed in units of cost/MGT/km. 

 

The LCCs for a simulation of 𝑁𝑠𝑖𝑚 virtual life cycles across a series of renewal tonnages specified by 

𝑻𝑹
⃗⃗⃗⃗  ⃗ may be specified as a two dimensional array of size 𝑁𝑠𝑖𝑚 × length of 𝑻𝑹

⃗⃗⃗⃗  ⃗. Let 𝑁 index the virtual life 
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cycle under consideration and let 𝑘 index the renewal tonnage under consideration 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘. Then the LCC 

array 𝒄𝑳𝑪𝑪⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   may be calculated using Equation 3.8: 

 

𝒄𝑳𝑪𝑪⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑁,𝑘

=
(𝑐𝑅 + 𝑛𝐼𝑘

𝑐𝐼 + 𝑛𝑔𝑘
𝑐𝑔 + 𝑐𝑝 ∑ (𝑪𝑨

⃗⃗ ⃗⃗  
𝑁,𝑘

+ 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑁,𝑘
)𝑃𝑙𝑎𝑛𝑛𝑒𝑑 + 𝑐𝑓 ∑ (𝑪𝑨

⃗⃗ ⃗⃗  
𝑁,𝑘

+ 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑁,𝑘
)𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑 )

𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘

 ( 3.8 ) 

 

 Where: 

∑ (𝑪𝑨
⃗⃗ ⃗⃗  

𝑁,𝑘 + 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑁,𝑘)𝑃𝑙𝑎𝑛𝑛𝑒𝑑   ≜ the number of planned maintenance activities during the 

tonnage interval (0, 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘) 

∑ (𝑪𝑨
⃗⃗ ⃗⃗  

𝑁,𝑘 + 𝑪𝑩
⃗⃗⃗⃗  ⃗

𝑁,𝑘)𝑈𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑   ≜ the number of unplanned maintenance activities during the 

tonnage interval (0, 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘) 

 

 With: 

 𝑐𝑅 = the cost of renewing the rail per km of track 

 𝑛𝐼𝑘 = the quantity of ultrasonic inspections conducted during the tonnage interval (0, 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘) 

 𝑐𝐼 = the cost of an ultrasonic inspection per km of track 

 𝑛𝑔𝑘
 = the quantity of grinding activities conducted during the tonnage interval (0, 𝑻𝑹

⃗⃗⃗⃗  ⃗
𝑘) 

 𝑐𝑔 = the cost of rail grinding per km of track 

 𝑐𝑝 = the cost of a planned maintenance activity 

 𝑐𝑓 = the cost of an unplanned maintenance activity 

 𝑻𝑹
⃗⃗⃗⃗  ⃗

𝑘 = the 𝑘𝑡ℎ renewal tonnage in the renewal tonnage array 𝑻𝑹
⃗⃗⃗⃗  ⃗ 

 

The terms in the numerator of Equation 3.8 divide the LCC calculation procedure into its individual cost 

components respectively: 

 The cost of renewing the rail at the end of its life cycle. 

 The cost of inspecting the rail. 

 The cost of rail grinding for the rail. 

 The cost of all planned maintenance actions. 

 The cost of all unplanned maintenance actions. 

 

No salvage values are considered for the analyses as this model considers costs only. Any analysis period 

length may be used. However, an analysis period length of 𝑇𝑅 = 800 MGT was used in most analyses 

presented in Section 4 as this is large enough to demonstrate the behaviour of the uncertainty within the 
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LCC and this analysis window includes the renewal tonnage at which the minimum mean LCC is 

achieved. The LCC calculated can be analysed and interpreted in different ways and this is described in 

Section 4.2. The calculation procedure has now been fully defined. 
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4 ANALYSIS AND DISCUSSION OF RESULTS 

This section provides a thorough interpretation and discussion of the results of the simulation model 

developed and described in Section 3. A reference case analysis is defined in Section 4.1. Section 4.2 

shows the raw data produced by the model and discusses various methods to present and interpret the 

data. Section 4.3 is concerned with ascertaining the adequacy of the posterior distributions in the 

analyses run. Thereafter, the model is critically compared to a model developed by Zhao et al (2006) in 

Section 4.4. The results of various distribution analyses is presented in Section 4.5. Finally, the influence 

of the inspection interval length, the weld type used for maintenance as well as the effect of derailments 

is discussed in Sections 4.6, 4.7 and 4.8 respectively. 

4.1 REFERENCE CASE ANALYSIS 

A reference case analysis is defined such that comparisons can be made without specifying the entire 

input parameter set for each analysis run. The parameters which define the reference case analysis are 

as specified in Table 4.1 through Table 4.3. Table 4.1 shows the stochastic parameters used in the 

reference case analysis and are taken from Zhao et al. (2006). Table 4.2 shows the cost parameters used. 

These cost parameters are representative of typical costs which can be expected for a South African 

heavy haul scenario. Table 4.3 shows any deterministic parameters and further criteria specified for the 

reference case analysis. The values of the parameters in Table 4.3 were taken from Zhao et al. (2006) 

where applicable so that the two models could be compared. 

 

Table 4.1: Stochastic input parameters used for the reference case analysis 

Defect 𝜶 𝜷 (MGT) 𝝁 (MGT) 𝜼 

ATW1 defects 1.01 315.8 10 0.7 

FBW2 defects 2.00 286.6 10 0.7 

Squat defects 2.50 191.8 5 0.6 

Tach ovale defects 2.17 182.3 7 0.7 
1 alumino-thermic weld 
2 flash butt weld 

 

Table 4.2: Cost parameters used for the reference case analysis 

Cost parameter Symbol Value 

Planned repair cost using ATWs per defect 𝑐𝑝𝐴𝑇𝑊
 R 16 000.00 

Unplanned repair cost using ATWs per failure 𝑐𝑓𝐴𝑇𝑊
 R 115 000.00 

Ultrasonic inspection cost per km 𝑐𝐼 R 2 400.00 

Rail grinding cost per km 𝑐𝑔 R 45 000.00 

Rail renewal cost per km 𝑐𝑅 R 2 050 000.00 
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Table 4.3: Deterministic input parameters used for the reference case analysis 

Parameter Symbol Value 

Ultrasonic inspection interval (MGT) 𝑠𝐼 2.5 

Rail grinding interval (MGT) 𝑠𝑔 10.0 

Initial number of ATWs  𝑛0𝐴𝑇𝑊𝑠
 0 

Initial number of FBWs 𝑛0𝐹𝐵𝑊𝑠
 22 

Hazard rate reduction factor due to rail grinding 𝛾 0.4 

Number of simulated life cycles 𝑁𝑠𝑖𝑚 20 000 

Weld type used for maintenance - ATW 

Maintenance modelling type - Perfect maintenance 

 

4.2 TYPICAL RESULTS 

The results of the simulation model allow the life cycle cost (LCC) 𝑐𝐿𝐶𝐶 to be interpreted as either a 

point estimate (for example the mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅ ) or as a probability distribution with an estimated 

parameter set each with their own associated confidence intervals. 𝑁𝑠𝑖𝑚 = 20 000 virtual life cycles were 

simulated with parameters specified by the reference case analysis. Thereafter, the resulting LCC for 

each life cycle was grouped and interpreted in various ways. Grouping of the LCC by renewal tonnage 

and then calculating the mean LCC value at each renewal tonnage produces a plot as shown in Figure 

4.1. The curve in Figure 4.1 shall be referred to as the mean LCC curve. This interpretation of the LCC 

is comparable to that of Zhao et al. (2006) shown in Figure 2.24. From Figure 4.1 it can be seen that a 

minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 occurs at a critical renewal tonnage 𝑇𝑅𝑐𝑟 for a set of given input 

parameters and conditions. 
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Figure 4.1: Mean LCC versus renewal tonnage 𝑻𝑹 for the reference case analysis 

 

An alternative approach to interpret the data is to analyse the distribution of the LCC values 𝑐𝐿𝐶𝐶 at a 

fixed renewal tonnage 𝑇𝑅. This provides an indication of the uncertainty associated with the LCC at a 

given renewal tonnage. This approach is illustrated in Figure 4.2. Plots of both the relative frequency as 

well as the cumulative relative frequency are shown in Figure 4.2 (a) and (b) respectively.  
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Figure 4.2: Distribution of LCC at a renewal tonnage of 400 MGT for the reference case analysis 

presented as (a) a relative frequency plot and (b) a cumulative relative frequency plot 

 

The plots shown in Figure 4.1 and Figure 4.2 are in fact two-dimensional representations of a three-

dimensional distribution. The three-dimensional distribution of LCC 𝑐𝐿𝐶𝐶 versus renewal tonnage 𝑇𝑅 is 

illustrated in Figure 4.3 using a bivariate histogram. Figure 4.2 is the result of taking a section of constant 

renewal tonnage 𝑇𝑅 in the life cycle cost – relative frequency plane of Figure 4.3. Taking the mean (or 

expected) value of each two-dimensional distribution section as shown in Figure 4.2 and plotting it on 

axes of mean life cycle cost 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅  versus renewal tonnage 𝑇𝑅 results in Figure 4.1. 
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Figure 4.3: Distribution of LCC versus renewal tonnage in three-dimensional space 

 

4.3 POSTERIOR DISTRIBUTION ANALYSIS 

The behaviour of the posterior distributions produced by the model’s Monte Carlo simulation is 

addressed in this section. The effect of the number of simulations 𝑁𝑠𝑖𝑚 and the renewal tonnage 𝑇𝑅 on 

the adequacy of the posterior distributions is demonstrated. The posterior distributions of concern for 

each defect type are: 

 The tonnage-to-defect initiation 𝑡𝑑  

 The P-F interval length 𝑡𝑃−𝐹  

 Probability of detection 𝜂 

 

The parameters used for these distribution tests are as stated in Table 4.1 through Table 4.3 for the 

reference case analysis. The adequacy of the generated distributions are tested using the Pearson Chi-
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square goodness-of-fit test where applicable. It is known that the result of the Pearson Chi-square test is 

subject to the method of binning used. According to Moore (1986), accurate and repeatable results are 

obtained for the Pearson Chi-square goodness-of-fit test when using equiprobable bins and a number of 

bins as specified in Equation 4.1. The ⌊ ⌋  in Equation 4.1 indicates that the value calculated should be 

rounded down to the nearest integer. 

 

𝑛𝑏𝑖𝑛𝑠 = ⌊2(𝑛𝑑𝑎𝑡𝑎)
2
5⌋   ( 4.1 ) 

 

 With: 

 𝑛𝑏𝑖𝑛𝑠 = the number of equiprobable bins to use in the Chi-Square goodness-of-fit test 

 𝑛𝑑𝑎𝑡𝑎 = the number of data points in the sample to be tested 

 

Bin edges are thus calculated for the 𝑛𝑏𝑖𝑛𝑠 ensuring that each bin is equiprobable under the hypothesised 

distribution. Category A defects modelled using minimal maintenance and all Category B defects cannot 

be tested using the Pearson Chi-square goodness-of-fit test. This is because the value of 𝑎 in 

Equation 3.5 is not equal to zero except for the special case where 𝑇 = 0 MGT. This implies that the 

sampling distribution for each new defect (for 𝑇 > 0) is dependent on the value of 𝑎. Therefore, the 

resulting defect inter-arrival tonnages 𝑡𝑑 do not follow a single defined distribution against which the 

Pearson Chi-square goodness-of-fit test can be applied. Conducting a goodness-of-fit test for a non-

homogeneous Poisson process (NHPP) under these circumstances is not menial and is discussed by 

Lindqvist & Rannestad (2011). Thus, proving that the inter-arrival tonnages 𝑡𝑑 follow the correct 

distribution for Category A defects modelled using minimal maintenance and all Category B defects 

falls outside the scope of this study. However, the behaviour of these distributions is demonstrated in 

Section 4.3.1 in order to provide evidence of their correctness.  

 

The defect inter-arrival tonnage 𝑡𝑑 for Category A defects which are modelled using perfect 

maintenance are derived from a NHPP with 𝑎 = 0 in Equation 3.5. Therefore, the distribution of inter-

arrival tonnages 𝑡𝑑 for Category A defects modelled using perfect maintenance can be tested using the 

Pearson Chi-square goodness-of-fit test. 

 

The empirical cumulative distribution function (ECDF) and the desired cumulative distribution function 

(CDF) for the defect inter-arrival tonnages 𝑡𝑑 and P-F interval 𝑡𝑃−𝐹 for all defect types are compared 

for 𝑁𝑠𝑖𝑚 = 5000, 10 000, 20 000 and 40 000 virtual life cycles at renewal tonnages 𝑇𝑅 ranging from 

100 MGT to 800 MGT in 100 MGT increments where applicable as discussed above. The respective P-

value is also calculated for each case. The P-value is the probability that the test statistic (in this case 
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the Pearson Chi-square statistic) will take on a value that is at least as extreme as the observed value of 

the statistic when the null hypothesis is true (Montgomery & Runger, 2011). The null hypothesis is that 

the distribution derived through Monte Carlo simulation follows the desired distribution (specified using 

the input distribution parameter values). High P-values suggest strong evidence towards the null 

hypothesis and are thus desirable. P-values larger than 0.1 are deemed satisfactory for this study. 

4.3.1 Distribution of Defect Inter-Arrival Tonnages 

Figure 4.4 (a) shows the P-values for the Pearson Chi-square goodness-of-fit tests conducted on the 

distribution of inter-arrival tonnages 𝑡𝑑 of ATW defects for the reference case analysis. It can be seen 

that the P-value does not decrease below 0.3 regardless of the number of virtual life cycles simulated or 

the renewal tonnage considered. This indicates that there is insignificant evidence to reject the null 

hypothesis and it is therefore assumed that the distribution of inter-arrival tonnages 𝑡𝑑 for ATWs 

modelled using perfect maintenance does indeed follow the desired distribution. The number of inter-

arrival tonnage data points used for each calculation is indicated in Figure 4.4 (b). The number of welds 

appears to increase exponentially with an increase in tonnage during a simulated life cycle and therefore 

the number of data points appears to increase linearly with tonnage when plotted on a logarithmic scale. 

 

 

 

Figure 4.4: (a) P-value and (b) number of data points used in the calculation thereof at the 

respective renewal tonnages for varying number of simulated life cycles 𝑵𝒔𝒊𝒎 for the distribution 

of inter-arrival tonnages 𝒕𝒅 for ATWs assuming perfect maintenance 
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The behaviour of the CDF used to sample the inter-arrival tonnages 𝑡𝑑 of Category A defects modelled 

using minimal maintenance and all Category B defects is demonstrated in Figure 4.5. Equation 3.5 is 

used during the Inverse Transform Method to sample the defect inter-arrival tonnages. Equation 3.5 

gives rise to the CDFs plotted in Figure 4.5 for values of 𝑎 = 0, 100, 200, 300, 400 and 500 MGT 

respectively. The CDFs in Figure 4.5 were determined using the Weibull parameters for squat defects. 

It can be seen that the CDF of defect inter-arrival tonnages 𝑡𝑑 tends to rise more steeply with larger 

values of 𝑎. This behaviour is expected because an increasing value of 𝑎 indicates that the system is 

getting older and thus the defect inter-arrival tonnage 𝑡𝑑 would be expected to become less as the system 

ages with increasing tonnage. The rate of decrease of defect inter-arrival tonnage 𝑡𝑑 is governed by the 

Weibull shape parameter 𝛼. 

 

An infinite number of distributions exists corresponding to values of 𝑎 in the interval [0, 𝑇𝑅). Thus, it is 

not possible to test the goodness-of-fit of the defect inter-arrival tonnages 𝑡𝑑 sampled through Monte 

Carlo simulation using the Pearson Chi-square test under these conditions. However, the distribution of 

P-F interval lengths 𝑡𝑃−𝐹 for the different defect types can be tested using the Pearson Chi-square test 

in a similar manner as presented in Figure 4.4. 

 

 

Figure 4.5: Illustrative behaviour of the CDF used to sample the defect inter-arrival tonnages 𝒕𝒅 

of Category A defects modelled using minimal maintenance and all Category B defects 
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4.3.2 Distribution of P-F Interval Lengths 

The P-F interval lengths are modelled using a stationary exponential distribution as was described in 

Section 3.2.2. Pearson Chi-square goodness-of-fit tests were conducted to test the hypothesis that the 

distribution of values produced through Monte Carlo simulation follows the desired distribution 

specified by the mean value parameter 𝜇 for a specific defect type (see Equation 3.6). The P-value for 

each test was calculated at 100 MGT increments and for 𝑁𝑠𝑖𝑚 = 5 000, 10 000, 20 000 and 40 000 virtual 

life cycles respectively. The number of data points available for each test at each 100 MGT increment 

and each value of 𝑁𝑠𝑖𝑚 was also determined in order to visualise the size of each sample tested. The 

resulting P-values are shown in subplot (a) of Figure 4.6 through Figure 4.8 for ATW defects, squat 

defects and tache ovale defects respectively. The sample size for each test is shown in subplot (b) of the 

corresponding figure. 

 

The P-value does not drop below a value of 0.1 across all tests in Figure 4.6 through Figure 4.8. This is 

assumed to be sufficient evidence that the desired distribution of P-F interval lengths 𝑡𝑃−𝐹   for all defect 

types have been achieved by the Monte Carlo simulation. Note that the plots of renewal tonnage 𝑇𝑅 

versus number of data points for the Category B defects (Figure 4.7 (b) and Figure 4.8 (b)) does not 

follow a linear trend when plotted on a logarithmic scale as is the case for Category A defects (Figure 

4.6 (b)). The reason therefore is due to the slower increase in the number of Category B defects over 

time when compared to Category A defects. This is not a consequence of the Weibull parameters used 

for the defects but rather a consequence of the fact that each Category B defect is replaced by two new 

welds which then in turn produce their own Category A defects in a repetitive cycle. Therefore, the 

potential to generate Category A defects increases more rapidly than Category B defects. 
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Figure 4.6: (a) P-value and (b) number of data points used in the calculation thereof at the 

respective renewal tonnages for varying number of simulated life cycles 𝑵𝒔𝒊𝒎 for the distribution 

of P-F interval lengths 𝒕𝑷−𝑭 for ATWs 

 

 

 

Figure 4.7: (a) P-value and (b) number of data points used in the calculation thereof at the 

respective renewal tonnages for varying number of simulated life cycles 𝑵𝒔𝒊𝒎 for the distribution 

of P-F interval lengths 𝒕𝑷−𝑭 for squat defects 
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Figure 4.8: (a) P-value and (b) number of data points used in the calculation thereof at the 

respective renewal tonnages for varying number of simulated life cycles 𝑵𝒔𝒊𝒎 for the distribution 

of P-F interval lengths 𝒕𝑷−𝑭 for tache ovale defects 

 

4.3.3 Distribution of Detectability of Defects 

The probability of detecting a defect by ultrasonic inspection 𝜂 is specified for each defect individually. 

The ratio of the number of times defects were detected against the total number of times defects were 

passed (and either detected or not detected) by an inspection was investigated for renewal tonnages 𝑇𝑅 

varying from 100 MGT to 800 MGT in 100 MGT increments. This was done for 𝑁𝑠𝑖𝑚 = 5 000, 10 000, 

20 000 and 40 000 virtual life cycles respectively. This is to ensure that the correct probability of 

detection 𝜂 is achieved by the simulations.  

 

Subplot (a) of Figure 4.9 through Figure 4.11 shows the proportion of successful inspections as a ratio 

of the total number of inspections across all defects in the model for ATW defects, squat defects and 

tache ovale defects respectively. Subplot (b) of Figure 4.9 through Figure 4.11 shows the corresponding 

total number of defect inspections modelled for each renewal tonnage 𝑇𝑅 and number of virtual life 

cycles 𝑁𝑠𝑖𝑚 considered. No strict mathematical test was conducted on the accuracy of the achieved 

probability of detection 𝜂 for each defect. However, through visual inspection it can be seen that the 

probability of detection 𝜂 for each defect type rapidly approaches the desired value (see Table 4.1) as 

𝑇𝑅 and 𝑁𝑠𝑖𝑚 increases. However, significant deviation from the desired values occurs at 𝑇𝑅 = 100 MGT 

for 𝑁𝑠𝑖𝑚 = 5 000 and 10 000 virtual life cycles for squat defects (Figure 4.10(a)). This is due to non-
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uniform pseudorandom number generation for these cases. The deviation from the desired value is no 

longer present at 𝑁𝑠𝑖𝑚 = 20 000 virtual life cycles. 

 

 

 

Figure 4.9: (a) Proportion of successful inspections as well as (b) the total number of times defects 

were inspected at the respective renewal tonnages for varying number of simulated life cycle 𝑵𝒔𝒊𝒎 

for ATW defects 
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Figure 4.10: (a) Proportion of successful inspections as well as (b) the total number of times defects 

were inspected (b) at the respective renewal tonnages for varying number of simulated life cycle 

𝑵𝒔𝒊𝒎 for squat defects 

 

 

 

Figure 4.11: Proportion of successful inspections (a) as well as the total number of times defects 

were inspected (b) at the respective renewal tonnages for varying number of simulated life cycle 

𝑵𝒔𝒊𝒎 for tache ovale defects 
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4.3.4 Accuracy, Number of Simulations and Computational Time 

It is noticeable that the adequacy of the posterior distributions wavers at renewal tonnages 𝑇𝑅 in the 

interval (0,200] MGT across all 𝑁𝑠𝑖𝑚 considered in the figures in Sections 4.3.1 through 4.3.3. A single 

analysis with 𝑁𝑠𝑖𝑚 = 20 000 virtual life cycles took approximately 35 minutes to run, whereas a single 

analysis with 𝑁𝑠𝑖𝑚 = 40 000 virtual life cycles took approximately 1 hour and 15 minutes to run. 

Therefore, a trade-off had to be made between accuracy and computational time. All subsequent 

analyses were conducted using 𝑁𝑠𝑖𝑚 = 20 000 virtual life cycles. This is based on the evidence in the 

figures presented in Sections 4.3.1 through 4.3.3. Furthermore, the quantity of data produced poses 

potential problems with regard to the required quantity of random access memory required to analyse 

and process the data. 

4.4 VALIDATION AGAINST AN EXISTING STOCHASTIC MODEL 

The results of the developed model were compared with the results of a model developed under similar 

assumptions by Zhao et al. (2006). The model developed by Zhao et al. (2006) uses the expected value 

of all input distributions to determine an expected LCC. Thus, the mean LCC is calculated from the 

results of the model developed for this study and compared to the results obtained using the Zhao et al. 

(2006) model. The assumptions and limitations of the Zhao et al. (2006) model were thoroughly 

discussed in Section 2.7.2.  

 

The Zhao et al. (2006) model was programmed into MATLAB. An analysis was run using the 

parameters for the reference case model as shown in Table 4.1 through Table 4.3. However, the initial 

number of FBWs 𝑛0𝐹𝐵𝑊
 was set to zero and the initial number of ATWs 𝑛0𝐴𝑇𝑊

 was set to 22. This is 

due to a modelling limitation of the Zhao et al. (2006) model. Furthermore, the Zhao et al. (2006) model 

takes into account a derailment probability and a cost of derailment for undetected defects whereas the 

model developed for this study does not. Thus, the cost of derailment and the probability of derailment 

were both set to zero in order to make the results comparable. No FBWs were modelled for this analysis 

as FBWs are treated differently between the two models.  

 

Figure 4.12 shows a comparison of the results obtained for the two models. The mean LCC curves for 

the two models agree well for renewal tonnages 𝑇𝑅 less than 200 MGT. However, the two curves diverge 

with an increase in renewal tonnage 𝑇𝑅. Upon closer inspection it was found that the maintenance costs 

(sum of both planned and unplanned maintenance costs) were responsible for this behaviour. This can 

be seen from the maintenance cost curves (dashed lines) in Figure 4.12 which demonstrate the same 

divergent behaviour as the LCC curves.  
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Figure 4.12: Comparison of LCC and maintenance costs calculated from the model developed by 

Zhao et al. (2006) and the model developed for this study 

 

It is suspected that this illustrated difference between the two models results from an implicit assumption 

within the Zhao et al. (2006) model. The equations derived by Zhao et al. (2006) assume that the hazard 

rate of welds (Category A defects) increases in relation to the hazard rate of Category B defects. Whilst 

this makes logical sense, it is the exact nature of the relationship between these two hazard rates which 

results in the differences illustrated in Figure 4.12. The derivation by Zhao et al. (2006) is such that the 

hazard rate of Category A defects increases with initiation of Category B defects. In the derivation for 

this model the hazard rate of Category A defects only increases when the Category B defect is actually 

maintained and the new welds are installed. It is suspected that it is this slight offset in the hazard rate 

functions which cumulates with increasing renewal tonnage 𝑇𝑅 and causes the diverging behaviour of 

the curves illustrated in Figure 4.12. Despite this difference, the results of the two models tend to agree 

reasonably well with each other. 

4.5 ASSESSING LIFE CYCLE COST UNCERTAINTY 

In Section 4.2 it was shown that an empirical bivariate LCC-renewal tonnage distribution can be 

calculated in three-dimensional space for a given set of input parameters. Furthermore, it was shown in 
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Section 4.2 that empirical univariate LCC distributions can be obtained in two-dimensional space if 

sections of constant renewal tonnage are taken in the LCC-relative frequency plane of the corresponding 

bivariate distribution. Figure 4.13 shows relative frequency plots for the reference case analysis of the 

distribution of LCC 𝑐𝐿𝐶𝐶 for renewal tonnages 𝑇𝑅 = 400, 600 and 800 MGT respectively. A total of 40 

bins were used to group the data. It appears as if the distributions shown in Figure 4.13 belong to a 

common family of distributions.  

 

 

Figure 4.13: Relative frequency plot of observed total LCC 𝒄𝑳𝑪𝑪 at 𝑻𝑹 = 400, 600 and 800 MGT 

respectively 

 

4.5.1 Fitting of a Defined Probability Distribution 

The two-parameter normal, lognormal and Weibull probability distributions were fitted to the data using 

the method of maximum likelihood in an attempt to determine whether the univariate distribution of 

LCC at a specific renewal tonnage follows a defined family of probability distributions. Thereafter, the 

Pearson Chi-square test was used to determine the relative goodness-of-fit of the LCC data to the fitted 

distributions. From the analysis of the posterior distributions conducted in Section 4.3 it can be seen that 

the posterior distributions most closely followed the desired distributions at larger renewal tonnages. 

This is expected because the number of data points increases which naturally ensures a more uniform 
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distribution of sampled pseudorandom numbers. Thus, a renewal tonnage of 𝑇𝑅 = 800 MGT was 

selected for testing the fit of the normal, lognormal and Weibull distributions to the data sets.  

 

The probability distributions were fitted to the total LCC data 𝑐𝐿𝐶𝐶 for different inspection intervals. All 

other parameters were as specified for the reference case analysis. The P-values of the tests for each 

inspection interval length 𝑠𝐼 and probability distribution type are shown in Table 4.4. The P-values in 

Table 4.4 indicate that the lognormal probability distribution provides the best fit to the distribution of 

total LCC 𝑐𝐿𝐶𝐶 values.  

 

Table 4.4: P-value for fitted distributions at varying inspection intervals lengths for 

𝑻𝑹 = 800 MGT 

Inspection interval length, 𝒔𝑰 (MGT) Normal Lognormal Weibull 

0.1 4.68 × 10-40 7.48 × 10-15 0 

0.5 1.21 × 10-29 0.064 0 

1.0 4.99 × 10-28 0.951 0 

2.5 2.22 × 10-41 0.116 0 

5.0 4.13 × 10-35 0.488 0 

10.0 1.03 × 10-30 0.068 0 

20.0 3.11 × 10-27 0.521 0 

 

Figure 4.14 shows the CDFs of the fitted normal, lognormal and Weibull distributions alongside the 

ECDF for the total LCC 𝑐𝐿𝐶𝐶 for 𝑇𝑅 = 800 MGT and 𝑠𝐼 = 1 MGT. It is clear that the lognormal 

distribution provides the best fit to the ECDF as indicated by the respective P-value in Table 4.4. Figure 

4.15 (a) through (d) show the fitted lognormal distribution and the ECDF for 𝑇𝑅 = 200, 400, 600 and 

800 MGT respectively at 𝑠𝐼 = 1.0 MGT. The lognormal distributions fit the observed data well and the 

goodness-of-fit increases with an increase in renewal tonnage 𝑇𝑅.  
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Figure 4.14: Illustration of the goodness-of-fit of different probability distributions to the ECDF 

of the LCC 𝒄𝑳𝑪𝑪 for the reference case analysis with 𝒔𝑰 = 1 MGT and 𝑻𝑹 = 800 MGT 
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Figure 4.15: Fitted CDF and the ECDF for the univariate distribution of total LCC 𝒄𝑳𝑪𝑪 for the 

reference case analysis with 𝒔𝑰 = 1 MGT at 𝑻𝑹 = (a) 200 MGT, (b) 400 MGT, (c) 600 MGT and (d) 

800 MGT 

 

Based on the evidence presented, the lognormal distribution is used to describe the distribution of the 

LCC data for the remainder of this report. There are no zero values present within the total LCC data 

𝑐𝐿𝐶𝐶. However, when considering the maintenance component of the LCC data, zeros may be present at 

small renewal tonnages 𝑇𝑅 corresponding to instances where no maintenance occurred. It then becomes 

impossible to fit a lognormal distribution to the data because the natural logarithm of zero is undefined. 

Thus, a special case of a Box-Cox transformation is used as shown in Equation 4.2 (Box & Cox, 1964): 
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𝑐′ = ln(𝑐 + 1)   ( 4.2 ) 

 

 With: 

 𝑐 = the cost data in the natural coordinate system containing zeros 

 𝑐′ = the transformed data which is normally distributed if 𝑐 is lognormally distributed 

 

The key characteristic of this transformation is that it maps a value of zero in the natural coordinate 

system to a value of zero in the transformed coordinate system. A normal distribution is then fitted to 

the transformed data and the mean and standard deviation determined using the method of maximum 

likelihood. The transformed mean and standard deviation determined from the transformed data 𝑐′ are 

subsequently transformed to their natural values using the transformations shown in Equations 4.3 and 

4.4 respectively: 

 

𝜇𝐿𝐶𝐶 = 𝑒𝜇𝐿𝐶𝐶
′ +0.5𝜎𝐿𝐶𝐶

′ 2

   ( 4.3 ) 

𝜎𝐿𝐶𝐶 = 𝜇𝐿𝐶𝐶
2 ∙ (𝑒𝜎𝐿𝐶𝐶

′ 2

− 1)    ( 4.4 ) 

 

 With: 

 𝜇𝐿𝐶𝐶 = the mean expressed using the natural coordinate system 

𝜎𝐿𝐶𝐶   = the standard deviation expressed using the natural coordinate system 

𝜇𝐿𝐶𝐶
′  = the mean expressed using the transformed coordinate system 

𝜎𝐿𝐶𝐶
′  = the standard deviation expressed using the transformed coordinate system 

 

The remainder of the analyses conducted in this section are concerned with the lognormal distributions 

fitted to the data. The standard deviation 𝜎𝐿𝐶𝐶 of the distribution in the natural coordinate system is 

assumed to be proportional to the uncertainty present. Lognormal distributions were fitted to the 

observed distribution of LCC 𝑐𝐿𝐶𝐶 for renewal tonnages 𝑇𝑅 in 100 MGT increments. The resulting 

probability distributions are plotted in three-dimensional space in Figure 4.16 over the bivariate 

histogram of the observed LCC data 𝑐𝐿𝐶𝐶. The lognormal PDFs were re-scaled in order to align them 

with the relative frequency values of the bivariate histogram.  
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Figure 4.16: Lognormal probability distributions at fixed renewal tonnages fitted over the 

bivariate histogram of the original data from which they were fitted 

 

Figure 4.17 shows the lognormal distributions in Figure 4.16 as viewed in the LCC-relative frequency 

plane. It can be seen that the mean 𝜇𝐿𝐶𝐶 and standard deviation 𝜎𝐿𝐶𝐶 of the distributions do vary. 
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Figure 4.17: Lognormal PDFs at varying renewal tonnages for the reference case analysis with 

𝒔𝑰 = 1.0 MGT 

 

From Figure 4.17 it appears as if the standard deviation of the life cycle cost 𝜎𝐿𝐶𝐶 increases with an 

increase in renewal tonnage. In order to aid in visualising the difference in spread between the 

distributions, the distributions are normalised against their mean such that their modes all coincide with 

a value of 1. The result is illustrated in Figure 4.18. From Figure 4.18 it is clear that the uncertainty in 

the total LCC 𝜎𝐿𝐶𝐶 increases with an increase in renewal tonnage 𝑇𝑅. Trends between uncertainty as 

measured using the standard deviation 𝜎𝐿𝐶𝐶 as a metric, renewal tonnage 𝑇𝑅 and inspection interval 

length 𝑠𝐼 are explored in Section 4.6. 
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Figure 4.18: Normalised lognormal PDFs at varying renewal tonnages for the reference case 

analysis with 𝒔𝑰 = 1.0 MGT 

 

4.6 INFLUENCE OF INSPECTION INTERVALS 

This section is divided into two subsections, focusing on the influence of inspection intervals. 

Section 4.6.1 is concerned with the mean LCC and Section 4.6.2 is concerned with the distribution of 

LCC. 

4.6.1 Influence of Inspection Intervals on the Mean Life Cycle Cost 

The influence of the inspection interval length 𝑠𝐼 on the resulting mean LCC curve was investigated. 

The range of inspection intervals investigated was 𝑠𝐼 = 0.1, 0.5, 5, 10 and 20 MGT. All other parameters 

were as specified for the reference case analysis. The resulting mean LCC curves are shown in Figure 

4.19. It can be seen that an optimal inspection interval is attainable which would minimise the mean 

LCC. Inspection interval lengths larger or smaller than optimum raise the minimum attainable mean 

LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

. The minimum attainable mean LCC is extremely sensitive to short inspection intervals 

as can be seen for the case where 𝑠𝐼 = 0.1 and 0.2 MGT. However, shorter inspection intervals produce 

a flatter mean LCC curve allowing a longer window period for renewal operations whilst maintaining a 
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near optimum mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅ . This observation was also noted by Zhao et al. (2006). For larger 

inspection intervals, the LCC curve has a higher curvature and a shorter optimal window period for 

renewal operations. Furthermore, shorter inspection intervals shift the optimum renewal tonnage to a 

larger value and visa versa. 

 

 

Figure 4.19: The effect of the inspection interval 𝒔𝑰 on the resulting mean LCC curve 

 

The mean LCC shown in Figure 4.19 results from a combination of a decreasing renewal cost and an 

increasing maintenance cost with an increasing renewal tonnage 𝑇𝑅. The maintenance costs themselves 

can be divided into a planned maintenance cost originating from planned maintenance activities and an 

unplanned maintenance cost originating from unplanned maintenance activities. The combined 

maintenance cost is then the sum of the planned and unplanned maintenance cost. The planned, 

unplanned and combined maintenance cost curves are shown in Figure 4.20 for an inspection interval 

length 𝑠𝐼 = 0.5 and 10.0 MGT. The combined maintenance cost at an inspection interval length 

𝑠𝐼 = 10.0 MGT is higher than the combined maintenance cost for an inspection interval length 

𝑠𝐼 = 0.5 MGT. However, it also appears as if the proportion of unplanned maintenance cost in relation 

to the combined maintenance cost is higher for the larger inspection interval length. 
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Figure 4.20: Planned, unplanned and combined maintenance costs for inspection interval lengths 

𝒔𝑰 = 0.5 and 10.0 MGT 

 

To investigate the relative contribution towards the total maintenance cost of the planned and unplanned 

components respectively, the planned maintenance cost and unplanned maintenance cost were expressed 

as a percentage of the combined maintenance cost for each specific renewal tonnage 𝑇𝑅. It was found 

that this ratio was constant except for insignificant random fluctuation. Figure 4.21 shows the average 

contribution of the planned and unplanned maintenance costs towards the combined maintenance cost 

for inspection interval lengths of 𝑠𝐼 = 0.5 and 10.0 MGT. It is clear that the larger combined maintenance 

cost associated with a larger inspection interval length 𝑠𝐼 = 10.0 MGT is caused by a significant increase 

in the relative proportion of unplanned maintenance activities. 
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Figure 4.21: Proportion of combined maintenance cost originating from planned and unplanned 

maintenance activities for inspection interval lengths 𝒔𝑰 = 0.5 and 10.0 MGT respectively 

 

4.6.2 Influence of Inspection Intervals on Life Cycle Cost Uncertainty 

Figure 4.22 shows the same LCC curves shown in Figure 4.19 but only for 𝑠𝐼 = 0.1 and 5.0 MGT. Also 

shown in the figure are the 1st and 99th percentiles. It is evident form the diverging nature of the 1st and 

99th percentile plots that the variability in the LCC 𝑐𝐿𝐶𝐶 increases with renewal tonnage 𝑇𝑅 as was 

demonstrated in Figure 4.18. Furthermore, the interquartile distance at a given renewal tonnage is larger 

for 𝑠𝐼 = 5.0 MGT than for 𝑠𝐼 = 0.1 MGT.  

 

In order to investigate this phenomenon further, the fitted normalised lognormal distributions at 

𝑇𝑅 = 800 MGT were compared for 𝑠𝐼 = 0.1, 0.5, 1.0, 2.5, 5.0, 10.0 and 20.0 MGT respectively. These 

plots are shown in Figure 4.23. It is clear that the standard deviation and hence the uncertainty increases 

with an increase in the inspection interval length 𝑠𝐼. 
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Figure 4.22: Mean LCC curve showing the 1st and 99th percentiles for 𝒔𝑰 = 0.1 and 5.0 MGT 

 

 

Figure 4.23: Uncertainty in the form of standard deviation and its relationship with varying 

inspection interval lengths 𝒔𝑰 as measured using a standard lognormal PDF normalised against 

the mean LCC at 𝑻𝑹 = 800 MGT 
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If the standard deviation 𝜎𝐿𝐶𝐶 is plotted versus renewal tonnage 𝑇𝑅 at varying inspection intervals, the 

plots in Figure 4.24 are produced. Figure 4.24 clearly indicates that the standard deviation of the LCC 

𝜎𝐿𝐶𝐶 increases with an increasing renewal tonnage across all inspection interval lengths considered in 

this study. The plots in Figure 4.24 all demonstrate an inflection point after which the rate of increase 

in 𝜎𝐿𝐶𝐶 becomes positive. 

 

 

Figure 4.24: Influence of renewal tonnage 𝑻𝑹 on total LCC uncertainty 𝝈𝑳𝑪𝑪 at varying inspection 

intervals 𝒔𝑰 

 

Figure 4.25 illustrates the same data as Figure 4.24 but on a set of axes of standard deviation 𝜎𝐿𝐶𝐶 versus 

inspection interval length 𝑠𝐼. Plotting the data in such a manner clearly demonstrates the increasing 

uncertainty in the total LCC 𝜎𝐿𝐶𝐶 with an increase in inspection interval length 𝑠𝐼. 
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Figure 4.25: Influence of inspection interval length 𝒔𝑰 on LCC uncertainty 𝝈𝑳𝑪𝑪 at varying renewal 

tonnages 𝑻𝑹 
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 respectively. Figure 4.26 illustrates 

the development of the uncertainty of planned maintenance costs 𝜎𝐿𝐶𝐶𝑝
 with an increase in renewal 

tonnage 𝑇𝑅. The uncertainty 𝜎𝐿𝐶𝐶𝑝
 initially increases rapidly before dropping to a minimum after which 

a steady increasing trend is observed. 
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Figure 4.26: Influence of renewal tonnage 𝑻𝑹 on planned maintenance cost uncertainty at varying 

inspection intervals 𝒔𝑰 

 

The behaviour of the curves in Figure 4.26 for a renewal tonnage interval (0,200) is better observed on 

the re-scaled set of axes in Figure 4.27. The initial rapid increase in 𝜎𝐿𝐶𝐶𝑝
 is attributed to an increase in 

the number of maintenance activities conducted. The maximum uncertainty in planned maintenance 

costs increases for a respective decrease in inspection interval length 𝑠𝐼. This is because the number of 

planned maintenance activities increases with a decrease in inspection interval length 𝑠𝐼. Figure 4.26 

demonstrates that the planned maintenance cost uncertainty 𝜎𝐿𝐶𝐶𝑝
 in the steady region of the curves is 

less for a larger inspection interval length 𝑠𝐼. 
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Figure 4.27: Influence of renewal tonnage 𝑻𝑹 on planned maintenance cost uncertainty at varying 

inspection intervals 𝒔𝑰 on the renewal tonnage interval (𝟎, 𝟐𝟎𝟎) to illustrate the curve behaviour 

 

Figure 4.28 illustrates the development of the uncertainty of unplanned maintenance costs 𝜎𝐿𝐶𝐶𝑓
 with 

an increase in renewal tonnage 𝑇𝑅. The trend for a given inspection interval length 𝑠𝐼 in relation to an 

increasing renewal tonnage 𝑇𝑅 is similar to that displayed by the uncertainty in planned maintenance 

costs 𝜎𝐿𝐶𝐶𝑝
 in Figure 4.26. The difference between the planned maintenance cost uncertainty 𝜎𝐿𝐶𝐶𝑝

 and 

unplanned maintenance cost uncertainty 𝜎𝐿𝐶𝐶𝑓
 curves shown in Figure 4.26 and Figure 4.28 respectively 

is that in the steady region of the curves the uncertainty of unplanned maintenance costs 𝜎𝐿𝐶𝐶𝑓
 is less 

for a shorter inspection interval length 𝑠𝐼. This is opposite to that of the planned maintenance costs. This 

behaviour is a direct result of the proportion of planned to unplanned maintenance activities for a given 

inspection interval length 𝑠𝐼 as was shown in Figure 4.21. 
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Figure 4.28: Influence of renewal tonnage 𝑻𝑹 on unplanned maintenance cost uncertainty at 

varying inspection intervals 𝒔𝑰 

 

The combined stochastic maintenance cost component 𝑐𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 comprises the sum of planned 𝑐𝐿𝐶𝐶𝑝

 

and unplanned 𝑐𝐿𝐶𝐶𝑓
 maintenance costs. These two costs interact to form a combined maintenance cost 

uncertainty 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
. The combined maintenance cost uncertainty is not a straightforward 

summation of the two underlying uncertainties. It is influenced by the ratio of planned to unplanned 

maintenance actions as well as the ratio of planned to unplanned maintenance costs. Figure 4.29 (a) and 

(b) shows the planned 𝜎𝐿𝐶𝐶𝑝
, unplanned 𝜎𝐿𝐶𝐶𝑓

 and combined 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 maintenance cost uncertainty 

for inspection intervals 𝑠𝐼 = 0.1 and 10.0 MGT respectively. The figure illustrates how the uncertainty 

of the combined maintenance cost 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 for the smaller inspection interval 𝑠𝐼 = 0.5 MGT is more 

strongly influenced by the uncertainty of the planned maintenance costs 𝜎𝐿𝐶𝐶𝑝
. The combined 

maintenance cost uncertainty 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 tends more strongly towards the planned maintenance cost 
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uncertainty 𝜎𝐿𝐶𝐶𝑝
 in Figure 4.29 (a) and more strongly towards the unplanned maintenance cost 

uncertainty 𝜎𝐿𝐶𝐶𝑓
 in Figure 4.29 (b). 

 

 

 

Figure 4.29: Planned, unplanned and combined maintenance cost standard deviation for 

(a) 𝒔𝑰 = 0.5 MGT and (b) 𝒔𝑰 = 10 MGT 

 

The combined maintenance cost uncertainty 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 for all inspection intervals considered is 

plotted in Figure 4.30. The general trend in the curves remain the same as for the planned and unplanned 

maintenance cost uncertainties. In the steady region (𝑇𝑅 > 250 MGT) the standard deviation of the 

combined maintenance cost 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 is higher for a larger inspection interval length 𝑠𝐼. This 

relationship carries over to the total LCC uncertainty 𝜎𝐿𝐶𝐶 as shown in Figure 4.25. 
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Figure 4.30: Influence of renewal tonnage 𝑻𝑹 on total maintenance cost uncertainty at varying 

inspection intervals 𝒔𝑰 

 

4.7 SELECTING A WELD TYPE TO USE FOR RAIL MAINTENANCE 

The viability of using mobile flash butt welding versus alumino-thermic welding to conduct 

maintenance on the rail was investigated. Mobile flash butt welding is more costly to conduct due to the 

large and expensive equipment required. However, the integrity of FBWs is superior to that of ATWs. 

The superiority of FBWs over ATWs is taken into account in the model using the Weibull parameters 

which model the hazard function of the welds. Figure 4.31 (a) and (b) shows the PDF and CDF 

respectively for the Weibull probability distribution with the parameters as used to model the hazard 

function of ATWs and FBWs. From the PDF it is noticeable that a higher probability exists for early 

failures in ATWs. However, upon inspection of the CDF it can be seen that at 𝑇𝑅 = ±250 MGT the 

probability of a FBW defect occurring becomes greater than the probability of an ATW defect occurring. 
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This phenomenon is due to the high concentration of probability density of the FBW PDF at 

𝑇𝑅 = ±200 MGT. In order to more accurately model the superior integrity of FBWs throughout their 

life, a dual PDF approach may be used as suggested by Zhao et al. (2007). The one PDF models infant 

mortality of the ATWs and the other models the fatigue defect life of the ATWs. However, this approach 

has not been considered in this study. 

 

  

 

Figure 4.31: (a) PDF and (b) CDF for ATWs and FBWs 

 

Due to the higher probability of ATW defects forming earlier in the ATW life as compared to FBWs, it 

can be expected that using FBWs could reduce the minimum attainable LCC 𝑐𝐿𝐶𝐶𝑚𝑖𝑛
. However, the fact 

that flash butt welding is more costly than alumino-thermic welding must be taken into consideration. 

Therefore, an approach is used whereby the cost of planned maintenance using flash butt welding 𝑐𝑝𝐹𝐵𝑊
 

is specified as a ratio of the cost of planned maintenance using alumino-thermic welding 𝑐𝑝𝐴𝑇𝑊
. This 

cost ratio 𝑐𝑝𝐹𝐵𝑊
/𝑐𝑝𝐴𝑇𝑊

 is used to determine the point at which it is no longer financially viable to use 

FBWs as opposed to ATWs for maintenance. The cost of unplanned maintenance using FBWs 𝑐𝑓𝐹𝐵𝑊𝑠
 

is calculated using the cost ratio 𝑐𝑝𝐹𝐵𝑊
/𝑐𝑝𝐴𝑇𝑊

 and the cost of unplanned maintenance using ATWs 𝑐𝑓𝐴𝑇𝑊
 

as shown in Equation 4.5: 

 

𝑐𝑓𝐹𝐵𝑊
= (

𝑐𝑝𝐹𝐵𝑊

𝑐𝑝𝐴𝑇𝑊

) ∙ 𝑐𝑝𝐴𝑇𝑊
+ (𝑐𝑓𝐴𝑇𝑊

− 𝑐𝑝𝐴𝑇𝑊
)  ( 4.5 ) 
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 (
𝑐𝑝𝐹𝐵𝑊

𝑐𝑝𝐴𝑇𝑊

) = the cost ratio 

 

Equation 4.5  ensures that the proportion of the delay cost within the unplanned maintenance costs 𝑐𝑓𝐴𝑇𝑊
 

and 𝑐𝑓𝐹𝐵𝑊
 remains the same. Thence, it is assumed that no additional delays are experienced as a result 

of conducting FBW maintenance over ATW maintenance and that any additional costs resulting from 

FBW maintenance is only as a result of equipment and materials used. The cost ratio 𝑐𝑝𝐹𝐵𝑊
/𝑐𝑝𝐴𝑇𝑊

 was 

varied from 1 (𝑐𝑝𝐹𝐵𝑊
= 𝑐𝑝𝐴𝑇𝑊

) to 4 (𝑐𝑝𝐹𝐵𝑊
= 4 ∙ 𝑐𝑝𝐴𝑇𝑊

) and the resulting average LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅  calculated. 

The results are shown in Figure 4.32. Also plotted in Figure 4.32 is the result of the reference case 

analysis which used ATWs for maintenance. The shape of the curves vary according to the weld type 

used for maintenance. This is a result of the underlying shape difference in hazard functions used for 

ATWs and FBWs. The LCC curves for the analyses conducted using FBWs for maintenance show that 

the minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 rises as the cost ratio increases. Furthermore, the renewal 

tonnage coinciding with the minimum attainable LCC 𝑇𝑅𝑐𝑟
 decreases as the cost ratio increases.  

 

 

Figure 4.32: Average LCC 𝒄𝑳𝑪𝑪̅̅ ̅̅ ̅̅  versus renewal tonnage 𝑻𝑹 for varying 𝒄𝒑𝑭𝑩𝑾
/𝒄𝒑𝑨𝑻𝑾

 cost ratios  

 

Figure 4.33 shows a plot of the cost ratio 𝑐𝑝𝐹𝐵𝑊
/𝑐𝑝𝐴𝑇𝑊

 versus the minimum attainable mean LCC 

𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 for cost ratios varying from 1 through 6. The minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛
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ATWs for maintenance is also indicated in the figure. The cost ratio coinciding with the minimum 

attainable LCC for the ATW case shall be referred to as the critical cost ratio. Any cost ratios higher 

than the critical ratio would indicate that it would be more economical to use alumino-thermic welding 

than flash butt welding. The critical cost ratio is dependent on the hazard functions for ATW and FBW 

defects. Therefore, accurate estimates of both the hazard functions and the costs of ATWs versus FBWs 

would have to be determined before an informed decision could be made on which welds to use for 

maintenance. For the case considered it would be more economical to use FBWs if they cost less than 

approximately 2.75 that of ATWs. 

 

 

Figure 4.33: Minimum attainable LCC 𝒄𝑳𝑪𝑪𝒎𝒊𝒏
 versus cost ratio 𝒄𝒑𝑭𝑩𝑾

/𝒄𝒑𝑨𝑻𝑾
 

 

4.8 EFFECT OF DERAILMENTS 

The cost of derailments have not been considered in any previous analyses. Derailments are extreme 

events and are extremely costly. Due to the large cost associated with such an event and the low 

probability of such an event occurring, it is considered separately in this study. In a previous model to 

the one presented in this study, derailments were included as chance events which could occur with 

every unplanned maintenance action. However, a much larger number of simulations had to be 

conducted in these analyses in order to adequately represent the derailment probability due to the small 
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probability of a derailment occurring. On assessment of the resulting LCC distributions is was seen that 

unique distributions could be fitted to the LCC 𝑐𝐿𝐶𝐶 at a given renewal tonnage by grouping the life 

cycles according to the number of derailments that occurred within them. This approach was discarded 

due to the large number of simulations required. 

 

The effect of derailments on the mean LCC curve is taken into account by adding the result of 

Equation 4.6 to the mean LCC from the reference case analysis for a given renewal tonnage 𝑇𝑅: 

 

𝑐𝑑𝑛𝑜𝑟𝑚
= 𝑛𝑑

𝑐𝑑

𝑇𝑅
   ( 4.6 ) 

 

 With: 

 𝑐𝑑𝑛𝑜𝑟𝑚
 = the normalised cost of derailments during the life cycle 

𝑛𝑑 = the number of derailments which occurred during the life cycle 

𝑐𝑑 = the cost of a single derailment incident 

 

Figure 4.34 illustrates the influence of derailments on the mean LCC curve for varying numbers of 

derailment incidents. The cost of a derailment was set to 𝑐𝑑  = R 60 million. The modelling of derailments 

in this manner is not stochastic. Rather, it is assumed that a specified number of derailments has occurred 

during the life cycle. From Figure 4.34 it can be seen that derailments significantly influence the mean 

LCC curve. The mean life cycle cost curves are translated upwards indicating an overall higher mean 

LCC as well as being stretched in the renewal tonnage axis. This means that if a minimum mean LCC 

is to be attained, it will only occur at a much larger renewal tonnage 𝑇𝑅. However, this minimum mean 

LCC is still significantly larger than if no derailments had occurred. 

 

It is foreseeable that the probability that further derailments occur in a single life cycle after a previous 

derailment has occurred is increased. This is due to the large increase in the renewal tonnage at which 

the minimum mean LCC now occurs. The increased service life of the rail required to reach this new 

minimum LCC allows further opportunity for derailments to occur. It may therefore become advisable 

to renew the rail before 𝑇𝑅𝑐𝑟
 is reached if this effect were taken into account. However, this has not been 

considered in this study.  
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Figure 4.34: Influence of derailments on the mean LCC 𝒄𝑳𝑪𝑪̅̅ ̅̅ ̅̅  versus renewal tonnage 𝑻𝑹 curves 

 

Figure 4.35 (a) illustrates the relationship between the number of derailments that occur during a life 

cycle and the minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

. The relationship is not linear and the minimum 

attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 is not simply offset by the cost of derailments 𝑛𝑑𝑐𝑑. This is because 

normalised cost is considered and not the absolute cost. The consecutive differences between the 

minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 for scenarios representing 1, 2, 3 and 4 derailment incidents is 

R 57 598.00, R 51 739.00 and R 48 590.00 respectively indicating that the increase in 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 in relation 

to the number of derailments is not linear but rather hyperbolic or inversely exponential. The exact 

nature of this relationship is not investigated further. The value of 𝑇𝑅𝑐𝑟 in relation to the number of 

derailment incidents is shown in Figure 4.35 (b). This relationship appears to be logarithmic because 

when the same data was plotted on a logarithmic scale a linear plot resulted. The logarithmic plot has 

not been shown due to the small range of the values on the number of derailments axis. 

 

Renewal tonnage, TR (MGT)

0 200 400 600 800 1000 1200 1400

M
e
a
n
 l
if
e
 c

y
c
le

 c
o
s
t,
 c

L
C

C
 (

R
a
n
d
s
/M

G
T

/k
m

)

104

105

106

107

0 Derailments

1 Derailment

2 Derailments

3 Derailments

4 Derailments

M
e

a
n

 l
if
e
 c

y
c
le

 c
o

s
t,

 𝑐
𝐿
𝐶
𝐶

̅̅
̅̅
̅̅

 (
R

a
n
d

s
/M

G
T

/k
m

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



4-40 

 

 

 

Figure 4.35: The influence of derailments on (a) the minimum attainable mean LCC 𝒄𝑳𝑪𝑪̅̅ ̅̅ ̅̅
𝒎𝒊𝒏

 and 

(b) the renewal tonnage at which it occurs 𝑻𝑹𝒄𝒓
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5 CONCLUSIONS AND RECOMMENDATIONS 

The conclusions and recommendations of this study are presented in Sections 5.1 and 5.2 respectively.  

5.1 CONCLUSIONS 

The conclusions made with regard to this study are summarised with respect to the modelling procedure, 

the behaviour of the mean life cycle cost (LCC), the distribution of the LCC, the uncertainty in the LCC, 

the use of flash butt welds (FBWs) over alumino-thermic welds (ATWs) and the effect of derailments 

on the LCC in the respective subsections which follow. 

5.1.1 Modelling Procedure 

The following conclusions are made with regard to the general modelling procedure used for the study: 

 Monte Carlo simulation allows for flexible modelling and relaxation on assumptions otherwise 

required for simpler closed form solutions to LCC estimation. 

 Monte Carlo simulation allows quantification of the uncertainty in the LCC associated with the 

input parameters of the model. This allows properly informed decisions to be made with regard 

to the level of risk the infrastructure manager (IM) is willing to accept. 

 The accuracy of the results of the model are influenced by the repeatability of the pseudorandom 

numbers generated. Thus, the results of two simulations run with exactly the same parameters 

will vary. However, this did not have a significant influence on the data produced and 

interpreted for this study. 

 The distribution of defect inter-arrival times 𝑡𝑑 and P-F interval lengths 𝑡𝑃−𝐹 as produced by 

Monte Carlo sampling were tested for goodness-of-fit against the desired distribution using the 

Pearson Chi-square test where applicable. The P-value for all defects and all renewal tonnages 

considered was always larger than 0.1 indicating an adequate fit. 

5.1.2 Behaviour of the Mean Life Cycle Cost and its Cost Components 

The following conclusions are made with regard to the behaviour of the mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅  as a function 

of renewal tonnage 𝑇𝑅: 

 The mean LCC curve was found to strongly agree with the results of a similar model developed 

by Zhao et al. (2006) when the same input parameters were used. The minor differences are 

suspected to be as a result of underlying implicit assumptions in the Zhao et al. (2006) model 
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which influence the manner in which the hazard rate increases when a defect initiates and then 

subsequently fails or is maintained. 

 For a given set of conditions an optimal renewal tonnage 𝑇𝑅𝑐𝑟
 exists at which the rail should be 

renewed in order to achieve a minimum normalised mean life cycle cost 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

. 

 The minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 and the renewal tonnage at which it occurs 𝑇𝑅𝑐𝑟
 

are dependent on numerous factors such as inspection interval length, the weld type used for 

maintenance as well as the cost of maintenance, ultrasonic inspection and grinding. 

 The mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅  versus renewal tonnage 𝑇𝑅 curve becomes flatter with a reduction in the 

length of the inspection interval 𝑠𝐼. This allows a larger window for rail renewal at a near 

minimal mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

. However, the minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 becomes 

larger for inspection interval lengths shorter than optimum. 

 A decrease in the inspection interval length 𝑠𝐼 will cause the optimum renewal tonnage 𝑇𝑅𝑐𝑟
 to 

increase. 

 The proportional contribution of unplanned maintenance cost towards the total maintenance 

cost increases with an increase in the inspection interval length 𝑠𝐼. This indicates that the total 

increase in maintenance cost associated with a larger inspection interval length is as a result of 

a higher proportion of unplanned maintenance. 

5.1.3 Life Cycle Cost Distribution 

The following conclusions are made with regard to the distribution of the total LCC produced by the 

model developed: 

 The LCC for a given set of input parameters can be expressed as a bivariate LCC-renewal 

tonnage probability distribution. 

 The LCC can be expressed as an infinite number of univariate distributions corresponding to a 

given renewal tonnage. 

 The hypothesis that the univariate distribution of LCC at a renewal tonnage 𝑇𝑅 = 800 MGT 

follows a lognormal distribution was not rejected at a significance level of 1 % for all inspection 

intervals considered excepting 𝑠𝐼 = 0.1 MGT as determined using the Pearson Chi-square 

goodness-of-fit test. 

 Using the mean LCC does not provide a true indication of the risks associated with renewing 

the rail at a specific renewal tonnage 𝑇𝑅. Monte Carlo simulation provides a distribution for 

LCC which is more transparent and allows quantification of the uncertainty and risk involved 

with renewing the rail at a specific renewal tonnage 𝑇𝑅 under a given set of conditions. 
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5.1.4 Uncertainty Trends in the Life Cycle Cost Distribution 

The following conclusions are made with regard to the uncertainty of the LCC and its respective 

components using the standard deviation of the fitted lognormal distribution as a metric: 

 The uncertainty of the total LCC 𝜎𝐿𝐶𝐶 for a fixed renewal tonnage 𝑇𝑅 increases with an increase 

in inspection interval length 𝑠𝐼. 

 The uncertainty of the LCC 𝜎𝐿𝐶𝐶 for a fixed inspection interval length 𝑠𝐼 increases with an 

increase in renewal tonnage 𝑇𝑅. 

 The trend of the uncertainty of the planned 𝜎𝐿𝐶𝐶𝑝
, unplanned 𝜎𝐿𝐶𝐶𝑓

 and combined 𝜎𝐿𝐶𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑
 

maintenance costs with an increase in renewal tonnage 𝑇𝑅 can be divided into two distinct 

stages. The first stage occurs at renewal tonnages which are low relative to the inspection 

interval length. In this stage a rapid increase in uncertainty is experienced as a result of the 

increasing number of maintenance actions on the rail. The uncertainty then peaks and drops to 

a local minimum. The second stage occurs after this local minimum and may be described as a 

steady state of increase in uncertainty. The renewal tonnage at which this steady state occurs is 

dependent on the inspection interval length 𝑠𝐼. 

 It was observed that the uncertainty with regard to planned maintenance cost 𝜎𝐿𝐶𝐶𝑝
 increases 

with a decrease in inspection interval length 𝑠𝐼 during the steady region of the curve for a given 

renewal tonnage. This is because there is an increase in the number of planned maintenance 

activities associated with a decrease in inspection interval length 𝑠𝐼. 

 Furthermore, it was observed that the uncertainty with regard to unplanned maintenance cost 

𝜎𝐿𝐶𝐶𝑓
 decreases with a decrease in inspection interval length 𝑠𝐼 during the steady region of the 

curve for a given renewal tonnage. This is because there is a decrease in the number of 

unplanned maintenance activities associated with a decrease in inspection interval length 𝑠𝐼. 

 The combined maintenance cost uncertainty curve tended more towards the planned 

maintenance uncertainty curve for smaller inspection interval lengths and more towards the 

unplanned maintenance uncertainty curve for larger inspection interval lengths. 

5.1.5 Using Flash Butt Welds over Alumino-thermic Welds for Maintenance 

An approach was proposed which can be used to determine whether it would be more economical to use 

flash butt welding or alumino-thermic welding to conduct rail maintenance. The following was 

concluded: 

 For the reference case analysis, it was more economical to use flash butt welding over alumino-

thermic welding if the cost of flash butt welding did not exceed more than 2.75 times the cost 

of alumino-thermic welding. 
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 The critical cost ratio at which the cost of alumino-thermic welding and flash butt welding 

would produce the same minimum attainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 was found to dependant on 

the Weibull distribution used to model alumino-thermic weld and flash butt weld defects. 

5.1.6 The Effect of Derailments 

The following conclusions are made with regard to the modelling and effect of derailments on the mean 

LCC: 

 Due to their low probability of occurrence, derailments are better modelled separately from the 

Monte Carlo simulation process. 

 The effect of derailments during a life cycle was to increase the minimum attainable mean LCC 

𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

 in proportion to the normalised derailment cost.  

 Furthermore, derailments tend to shift the optimum renewal tonnage 𝑇𝑅𝑐𝑟
 to much larger values 

than for the case where no derailments occur. This is due to the high cost of a derailment which 

needs to be reduced through normalisation against the tonnage borne and counter balanced by 

an increasing maintenance cost. 

5.2 RECOMMENDATIONS 

The following recommendations are made for future research in the field: 

 Field or laboratory studies could be conducted to establish whether any correlation between the 

defect inter-arrival tonnage 𝑡𝑑 and the P-F interval length 𝑡𝑃−𝐹 exists in reality. This could 

provide influential information with regard to how these two important parameters should be 

modelled. 

 The correlation (if any) between the defect inter-arrival tonnage 𝑡𝑑 and the P-F interval length   

𝑡𝑃−𝐹 could be investigated for each weld defect in each virtual life cycle and related to the 

tonnage at which the weld was installed. The effect of this cross correlation between virtual life 

cycles could be investigated with regard to the resulting LCC. 

 Industry should promote effective data collection with regard to data which will aid in accurately 

determining the defect inter-arrival tonnage 𝑡𝑑 and P-F interval length 𝑡𝑃−𝐹 of rail defects 

experienced on the IM’s line. 

 The hazard rate of ATWs can be expressed using the superposition of two probability density 

functions as done by Zhao et al. (2007), one to represent infant mortality of the welds and the 

second to represent the fatigue life of the welds. This could aid in better estimation of the critical 

cost ratio 𝑐𝑝𝐹𝐵𝑊
/𝑐𝑝𝐴𝑇𝑊

 at which it becomes more economical to use flash butt welding over 

alumino-thermic welding to conduct rail maintenance. 
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 A sensitivity analysis could be conducted on the stochastic input parameters of the model in 

order to gauge the effect of the input distribution parameters on the resulting uncertainty of the 

LCC 𝜎𝐿𝐶𝐶. 

 Inspection intervals could be modelled to decrease with cumulative tonnage. The resulting effect 

on the development of uncertainty in the LCC could be investigated. It is suspected that a 

shortening inspection interval will reduce the uncertainty at larger renewal tonnages and lead to 

a reduced minimum obtainable mean LCC 𝑐𝐿𝐶𝐶̅̅ ̅̅ ̅̅
𝑚𝑖𝑛

. 
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