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Abstract

Current computing hardware supports parallelism at various levels. Conven-
tional programming techniques, however, do not utilise efficiently this growing
resource. This thesis seeks a better fit between software and current hardware
while following a hardware-agnostic software development approach. This al-
lows the programmer to remain focussed on the problem domain. The thesis
proposes process-based problem decomposition as a natural way to structure
a concurrent implementation that may also improve multicore utilisation and,
consequently, run-time performance.

The thesis presents four algorithms as case studies from the domain of string
pattern matching and finite automata. Each case study is conducted in the fol-
lowing manner. The particular sequential algorithm is decomposed into a num-
ber of communicating concurrent processes. This decomposition is described
in the process algebra CSP. Hoare’s CSP was chosen as one of the best known
process algebras, for its expressive power, conciseness, and overall simplicity.

Once the CSP-based process description has brought ideas to a certain level of
maturity, the description is translated into a process-based implementation. The
Go programming language was used for the implementation as its concurrency
features were inspired by CSP. The performance of the process-based imple-
mentation is then compared against its conventional sequential version (also
provided in Go).

The goal is not to achieve maximal performance, but to compare the run-time
performance of an “ordinary” programming effort that focussed on a process-
based solution over a conventional sequential implementation.

Although some implementations did not perform as well as others, some did
significantly outperform their sequential counterparts. The thesis thus provides
prima facie evidence that a process-based decomposition approach is promising
for achieving a better fit between software and current multicore hardware.

Keywords: CSP, concurrency, Go, finite automata, regular expressions, process
based decomposition
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1 Introduction

Concurrency is fundamental to the work-
ings of the universe. It exists at all levels
of granularity (e.g. nanoscale, human, as-
tronomic). Complex, interesting and useful
behaviour emerges from the concurrent ac-
tions of zillions of processes, each managing
its own – and only its own – state, and syn-
chronising and communicating to enable
and/or constrain each others’ individual
behaviours.

P. H.Welch and J. B. Pedersen

The term impedance mismatch has been used to describe the ill fit between
two widely used technologies: relational databases for storing data in
tables, and object orientation for building applications out of software ob-
jects (Ambler 2016). To alleviate the problem, object-relational frameworks
have been developed to map between the different domain models, Red
Hat’s (2016) Hibernate for the Java language being one such example.

There appears to be an analogous impedance mismatch when running
traditional sequential algorithms on hardware platforms that are increas-
ingly multicore and parallel in nature (Lee 2006; McDougall 2005; Meade,
Buckley and Collins 2011; Patterson 2010; Sutter 2005, 2012). Here too,
there has been some effort at providing tools to bridge the gap between
the different domain models, OpenMP (2016) being an example of an API
to support parallel programming in C, C++ and Fortran. However, use of
such a tool typically involves the alteration of an existing sequential imple-
mentation via a compiler directive and the invocation of library routines,
rather than by reconsidering problems in a new light. Conventional pro-
grammers are thus screened from the impact of this mismatch by layers
of systems software (compiler- and/or operating system) and this tends to
leave them in the comfort zone of a sequential software paradigm. Nev-
ertheless, a cursory examination of core activity on multicore machines
will reveal that, invariably, processing load is unevenly distributed over
the available cores when a sequential program is run.

The work reported here was inspired by this perception. The purpose is
to seek ways of bringing about a better fit between software and current
hardware by using process-based problem decomposition in the spirit of

1
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1 Introduction

process-oriented programming (Sampson 2008; Welch and Pedersen 2010).
There are many underlying questions. Is it feasible to re-conceptualise, in
a process-based fashion, solutions to problems that have traditionally been
solved in a sequential manner? To what extent do available specification
notations support such a re-conceptualisation? What are appropriate pro-
gramming languages that can be used to implement such specifications?
Do such process-based solutions result in better use of available cores?
And, most importantly, can process-based solutions result in interesting
speedups?

1.1 Scope

Naturally, in a limited-resource project such as this, one cannot provide
comprehensive answers to these many questions.

Instead, practical boundaries have to be determined to match the time
and resources available for the project, in the hope that future research
may more deeply explore some of the issues suggested by the conclusions
reached here. This section outlines those boundaries.

The main focus here is on gathering evidence to support the hypothesis
that process-based decomposition enables one to better utilise modern
hardware, yielding improved software run-time performance. For prag-
matic reasons, such evidence is gathered subject to the following limita-
tions:

• Only a limited number of problems commonly solved by sequential
algorithms are considered. Section 1.3 provides more details regard-
ing the specific domain.

• No formal attempt is made to develop a software development meth-
odology. Nor is an existing software development process (such as
Agile, RUP, etc) followed. Rather, concurrent software is developed
in an intuitive, ad hoc manner as described in Section 1.3. Neverthe-
less, the experiences in doing this are recorded and could inform fu-
ture research to develop an appropriate software methodology for
this kind of software development.

• A single machine will be used for performance experiments. It is for
future research to verify the results to various other hardware plat-
forms.

• After a preliminary investigation of concurrency formalisms it was
decided, as mentioned in Section 1.2, to use Communicating Sequen-
tial Processes (CSP). No attempt is made, therefore, to cross-compare

2
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1 Introduction

the advantages or disadvantages of such formalisms against one an-
other.

• In a similar manner, after a preliminary investigation into languages
that support concurrency, it was decided to use Go. No further com-
parison of different programming languages is made.

• Problem solutions are modelled in CSP and then implemented in Go.
No specific CSP verification tools are used to check the CSP for cor-
rectness with respect to safety and liveness properties. Neither is a
formal process followed in mapping from CSP to Go, although the
experiences recorded here could inform future attempts to develop
heuristics in this regard.

• The concern is not with fine-grained performance differences in vari-
ous implementations. Hence statistical hypothesis testing is not
done. Rather, descriptive statistics and graphs are used to highlight
course-grained order-of-magnitude performance differences.

• Only data relating to run-time speedup of the process-based im-
plementations against the sequential implementations is collected.
Other performance-related data such as memory, core or cache util-
isation, is not collected and no attempt is made to uncover deep ex-
planations for performance differences in terms of cache effects or
hardware configurations.

• No specific effort was made to maximally refine the process-based
implementations so as to squeeze out the last drop of performance!
Rather, the intent is to explore the run-time performance implica-
tions of an “ordinary” programming effort that is focussed ab initio
on a process-based decomposition, over and against a conventional
sequential implementation. The resulting process-based concurrent
architecture need not be the only or best way in which the problem at
hand may be formulated as a set of concurrent interacting processes.
The aspiration is more modest: to achieve better core utilisation with
at least moderate speedup and to do this with minimal refactoring of
an initial process-based solution.

Before outlining the study’s methodology, it is appropriate to contextualise
the notion of concurrency and to indicate why CSP and Go are well-suited
to be used as representative notations in the scope of the study.

1.2 Concurrent programming

Concurrency and parallelism are two related, but different ideas (Buhr and
Harji 2005; Gerrand 2013; Harper 2011; Pike 2012a). This text follows Turon

3
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1 Introduction

(2013) and defines concurrency as the arbitrarily overlapped execution of
processes whereas parallelism is seen as the simultaneous execution of
computations. Overlapped execution does not entail simultaneous execu-
tion. Consider, for example, the multiprogramming that takes place on a
uniprocessor computer. Here, execution is overlapped in the sense that
each of several programs is allocated a slice of time to execute on the single
processor, then swapped out for the next program to execute for its alloc-
ated time-slice, typically in a round-robin fashion.

These definitions (of concurrency versus parallelism) are congruent with
the idea of Buhr and Harji (2005) that concurrency is the logical concept of
actions happening at the same time and parallelism is the physical concept
of actions happening at the same time. Concurrency is a system structur-
ing mechanism and parallelism is a resource. A given machine has a cer-
tain capacity for parallelism and the goal is to maximise the throughput by
intelligently utilising this resource.

In concurrent programming a problem is decomposed into a set of activit-
ies with synchronising properties. Brinch Hansen (2002) traces the origins
of concurrent programming to Dijkstra (1965, 1968, 1971) and Hoare (1972).
Dijkstra articulates the correctness criteria for processes sharing data and
also introduces the problem of the dining philosophers. Hoare is the first to
attempt extending programming languages with features for concurrent
programming.

Since then various models or theories of concurrency have been developed.
These include transition systems like Petri nets (Petri and Reisig 2008) and
input/output automata (Lynch and Tuttle 1989). In the Actor model (Agha
1985; Hewitt 1977), a concurrent process passess messages asynchronously
to a particular process. Concurrent separation logic (Brookes 2007; O’Hearn
2007; Reynolds 2002), allows for correctness-proofs of concurrent pro-
grams in which “ownership” of critical variables is transferred dynamic-
ally between concurrent processes. Software transactional memory (Shavit
and Touitou 1995) offers an alternative to traditional lock-based synchron-
isation by employing the transaction concept of database systems. All
modifications to memory appear to happen at the moment a transaction
commits. Unsuccessful transactions are aborted and need to be reattemp-
ted. Process algebras provide notations for the description and analysis of
the interaction, communication, and synchronisation of concurrent pro-
cesses. Tools are available for several process algebras to assist in the ana-
lysis of the specified concurrent system. Some of the better known process
algebras are CSP (see Section 2.5), Calculus of Communicating Systems
(CCS) (Milner 1989), Algebra of Communicating Processes (ACP) (Bergstra
and Klop 1984), and the 𝜋-calculus (Milner, Parrow and Walker 1992a,b).

In this thesis the process algebra CSP is used to describe the behaviour of

4

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1 Introduction

concurrent processes. CSP was chosen as one of the best known process
algebras, for its expressive power, its conciseness, and overall simplicity.

Programming languages have also been developed to cater for concur-
rency. In the shared memory paradigm, processes have shared access to
data and access is controlled via locking mechanisms. OpenMP, mentioned
above, follows this approach. In contrast, processes in the message passing
paradigm share data by sending messages to one another. A well-known
example is the Message Passing Interface (MPI) (MPI Forum 2016) used in
high performance computing.

For this research project, it was decided to use a programming language
that supports message-passing concurrency. To select a suitable language,
considerable experimentation was initially carried out with various can-
didate programming languages. An important consideration was to en-
sure that the selected language should be conceptually close to CSP. Er-
lang (Armstrong 2007; Erlang 2016) and D (Alexandrescu 2010; D 2016)
were both considered since they support message passing in the language.
However, they follow the Actor model in which processes send messages
to other processes using the identity of the other process. In the CSP model
on the other hand, messages are sent via channel end points. Whichever
process is attached to the other end of the process receives the messages
sent on the channel.

Since the choice was made to use CSP as the description language for pro-
cesses, it is reasonable to use a programming language with concurrency
features close to CSP. Library-based options include: JCSP (Welch 2002;
Welch, Brown et al. 2007) for Java, C++CSP (Brown and Welch 2003) for
C++, and CHP (Brown 2008) for Haskell. These were not considered be-
cause the requirement is for support within the existing parent language.
Occam-𝜋 (Barnes and Welch 2016; Welch and Barnes 2005) was considered,
but defining new recursive data structures proved to be a problem. In the
end, the Go programming language (Go 2016) was chosen. It supports
lightweight processes and message passing via synchronous channels.

1.3 Methodology

The research method that this research project has used falls under the
heading of case study research. It should be noted that it is in the very
nature of such a case study that choices have to be made, both with re-
spect to the domain from which algorithms were selected for study and
with respect to the range of specific algorithms within that domain. In
principle, the algorithms chosen should, in some sense, be representative
of the spectrum of algorithms generally encountered in software develop-
ment. However, it is not immediately self-evident how to make such an
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1 Introduction

assessment in regard to the representivity. Neither was it considered crit-
ical in the present context to delve too deeply into this question. This is
because the intent was to gather prima facie evidence for the conclusions
reached, rather than to arrive at a final incontrovertible conclusion. Con-
sequently, an initial choice of algorithms was made, based on pragmatic
considerations, in a domain in which there was ready access to a local pool
of domain expertise. Whether and how the conclusions reached from this
present research are manifested in a wider range of algorithms, is a matter
for future research.

The cases considered here are algorithms from the domain of Stringology,
in particular: string pattern matching and finite automaton construction
and minimisation. An attempt was made to select not only embarrassingly
parallel An embarrassingly paral-

lel problem is one that can
naively be parallelised by
running in parallel several
instances of an existing
sequential algorithm on
partitions of the problem
and then appropriately
combining the results
from each instance.

problems (Moler 2013), but rather problems in which there may be
significant inter-dependence among tasks.

Of course the present project is only one of several efforts at developing
concurrent algorithms for Stringological problems. Some previous efforts
include Choi and Burgstaller (2013) and Ziadi and Champarnaud (1999)
for finite automaton construction, Burgstaller et al. (2011), Holub and Štekr
(2009) and Ko et al. (2012) for membership testing, and JáJá and Ryu (1996),
Ravikumar and Xiong (1996) and Tewari, Srivastava and Gupta (2002) for
minimisation. Hanneforth and B. W. Watson (2012) consider the parallel-
isation of finite automaton determinisation.

The case studies presented in the subsequent chapters have been conduc-
ted in the following manner.

First, the sequential algorithm was decomposed into communicating pro-
cesses and described in CSP. In this project, the intention in developing
a CSP description for the problem at hand has been limited to pragmatic
considerations: specifically, the intention was to provide robust descrip-
tions of concurrent, process-based, algorithms whose performance would
scale with increasing numbers of processor cores. Although it would be
relatively simple to use a model checker such as FDR3 (Gibson-Robinson
et al. 2015) to assess correctness properties such as deadlock- and livelock-
freedom, this has not been done in the research described below. Instead,
CSP has been used primarily as a communication mechanism to inter-
act with, to articulate, to refine, to challenge, and to evolve process-based
design ideas.

Once the CSP-based specification process has brought ideas to a certain
level of maturity, the specification is translated into a process-based Go
implementation. It is then confirmed that the sequential and concurrent
implementations produce the same results for a given input. The perform-
ance of the process-based algorithm is then compared against its conven-
tional sequential implementation (also provided in Go). If variants of the
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1 Introduction

process-based implementation suggest themselves, they too may be artic-
ulated in CSP, implemented in Go, and further performance comparisons
made.

1.4 Structure of thesis

The thesis is structured around four case studies. Before the case studies
are presented, Chapter 2 provides background information. It provides a
list of definitions from Stringology, and it also provides overviews of CSP,
Go, and multiprocessor hardware.

The first case study is presented in Chapter 3 and considers the Aho-
Corasick string pattern matching algorithm. The case focusses on one
aspect of the initialisation phase of the algorithm, rather than the actual
matching phase. This is followed by two case studies relating to finite
automata. In Chapter 4 a construction algorithm is considered in which
a deterministic finite automaton is constructed from an input regular ex-
pression. Minimisation of finite automata is the topic of Chapter 5. The al-
gorithm under consideration determines whether pairs of states in a finite
automaton are equivalent. The final case study returns to string match-
ing and attempts to perform multiple match attempts concurrently. The
latter example represents a problem that can be readily solved in an em-
barrassingly parallel fashion, and such an implementation is indeed also
assessed.

The thesis closes in Chapter 7 with general observations and lessons to be
learned from the case studies.
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2 Background

How complex or simple a structure is de-
pends critically upon the way in which we
describe it. Most of the complex structures
found in the world are enormously redund-
ant, and we can use this redundancy to
simplify their description. But to use it, to
achieve this simplification, we must find the
right representation.

Herbert A. Simon

This chapter presents the necessary mathematical preliminaries as well as
overviews of the languages used to describe algorithms in later chapters.

Section 2.1 introduces basic definitions such as quantification. Section 2.2
provides definitions relating to strings and formal languages, while Sec-
tion 2.3 defines automata and related concepts. The material in these sec-
tions provides the theoretical underpinnings of, for example, the determ-
inistic finite automaton (DFA) DFAs are defined in

Def 2.28.

construction algorithm whose implementa-
tions are studied in Chapter 4. Readers already familiar with this material
may wish to skip these sections. In reading subsequent chapters, use could
be made of the backward references to the relevant definitions found here,
whenever clarification is needed.

The remaining sections each provide a description of a notation that is em-
ployed in the thesis. Section 2.4 briefly overviews the Guarded Command
Language (GCL)—the notation used in the thesis for specifying sequen-
tial algorithms. The process-based decompositions of these algorithms are
presented in CSP, which is the theme of Section 2.5. Finally, Section 2.6
introduces the programming language Go that is used to implement the
algorithms.

2.1 General definitions

In this section, some general notational definitions are presented.
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2 Background

Notation 2.1 (Quantification). A basic understanding of the meaning of quan-
tification is assumed. The following notation is used

⟨⊕ 𝑎 ∶ 𝑅(𝑎) ∶ 𝑓 (𝑎)⟩

where ⊕ is an associative and commutative operator (to be quantified) with unit 1⊕,
𝑎 is a dummy variable, 𝑅 is a range predicate, and 𝑓 (𝑎) is the quantification
expression.

By definition, when the range is empty (i.e. when the range predicate 𝑅(𝑎)
is false), then the entire quantification evaluates to the unit 1⊕. For example,
if ⊕ stands for ∀ quantification and if 𝑅(𝑎) is an empty range, then ⟨∀ 𝑎 ∶
𝑅(𝑎) ∶ 𝑓 (𝑎)⟩ evaluates to true. This is because the unit, unit 1∀ is true.

Notation 2.2 (Conditional Boolean operators). Use cand and cor to refer to
the conditional (also known as ‘short circuit’) equivalents of ∧ and ∨, respect-
ively.

Notation 2.3 (Powerset). For any set 𝐴, use 𝒫(𝐴) to denote the set of all subsets
(including the empty set, ∅) of 𝐴.

2.2 Strings and languages

This section presents definitions and properties related to strings and lan-
guages. These definitions may be found in classical text such as Cro-
chemore and Rytter (2003), Hopcroft, Motwani and Ullman (2007), Hop-
croft and Ullman (1979), Smyth (2003) and B. W. Watson (1995).

Definition 2.4 (Alphabet). An alphabet is a finite nonempty set of symbols —
also known as letters.

Whenever an alphabet is required, Σ will be used to denote the alphabet.
In explicit form, it may be represented as {𝑎1, 𝑎2,… , 𝑎𝑛}.

Definition 2.5 (String). A string – or word – is a finite sequence of symbols
from Σ.

Notation 2.6. The length of a string 𝑤 is the number of symbols in 𝑤 and ex-
pressed |𝑤|.

Notation 2.7. The symbol of string 𝑤 in index position 𝑖 ∈ [0, |𝑤|) is 𝑤𝑖 ∈ Σ.
Hence, the first symbol of 𝑤 is 𝑤0 and the last symbol is 𝑤|𝑤|−1.

Notation 2.8 (Substring). If 𝑤 is a string, then, assuming valid indices,

• 𝑤[𝑖,𝑗) is the substring 𝑤𝑖𝑤𝑖+1 ⋯𝑤𝑗−1,
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2 Background

• 𝑤[𝑖,𝑗] is the substring 𝑤𝑖𝑤𝑖+1 ⋯𝑤𝑗,

• 𝑤(𝑖,𝑗] is the substring 𝑤𝑖+1𝑤𝑖+2 ⋯𝑤𝑗, and

• 𝑤(𝑖,𝑗) is the substring 𝑤𝑖+1𝑤𝑖+2 ⋯𝑤𝑗−1.

Notation 2.9. Σ∗ denotes the set of all words, or strings, over Σ — including the
empty string, written as 𝜀. Furthermore, Σ+ = Σ∗ − {𝜀}.

Definition 2.10 (Language). 𝐿 is a language over Σ if 𝐿 ⊆ Σ∗.

Definition 2.11 (Language concatenation). Language concatenation, denoted
by the dot infix operator ⋅ ∶ 𝒫(Σ∗) × 𝒫(Σ∗)⟶𝒫(Σ∗), is defined as:

𝐿0 ⋅ 𝐿1 = { 𝑣𝑤 ∣ 𝑣 ∈ 𝐿0 ∧ 𝑤 ∈ 𝐿1 }

As a notational short-hand, the infix dot may be omitted and one may write 𝐿0𝐿1
for the concatenation of 𝐿0 and 𝐿1.

Definition 2.12 (Language exponentiation). Define language exponentiation
recursively as follows:

𝐿𝑘 =
⎧{
⎨{⎩

{𝜀} if 𝑘 = 0
𝐿 ⋅ 𝐿𝑘−1 if 𝑘 > 0

Definition 2.13 (Closure of languages). The Kleene closure, also called the
star closure, of language 𝐿 is:

𝐿∗ = ⟨∪ 𝑖 ∶ 0 ≤ 𝑖 ∶ 𝐿𝑖⟩.

The plus closure is:
𝐿+ = ⟨∪ 𝑖 ∶ 1 ≤ 𝑖 ∶ 𝐿𝑖⟩.

Note that 𝐿∗ = 𝐿+ ∪ {𝜀}.

Definition 2.14 (Operations on languages). One may define the following op-
erations on languages 𝐿0 and 𝐿1 over Σ.

𝐿0 ∩ 𝐿1 = { 𝑣 ∣ 𝑣 ∈ 𝐿0 ∧ 𝑣 ∈ 𝐿1 } (intersection)
𝐿0 ⧵ 𝐿1 = { 𝑣 ∣ 𝑣 ∈ 𝐿0 ∧ 𝑣 ∉ 𝐿1 } (relative difference)

¬𝐿0 = Σ∗ ⧵ 𝐿0 (negation)
𝐿?

0 = 𝐿0 ∪ {𝜀} (optional)

Definition 2.15 (Regular languages). Define the set of regular languages REG
over alphabet Σ inductively.

∅ ∈ REG
{𝜀} ∈ REG
{𝑎} ∈ REG for 𝑎 ∈ Σ
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2 Background

For languages 𝐿0 and 𝐿1 ∈ REG:

𝐿∗
0 ∈ REG

𝐿0 ⋅ 𝐿1 ∈ REG
𝐿0 ∪ 𝐿1 ∈ REG

Nothing else is in REG.

Definition 2.16 (String operators). Define string head and tail operators
head ∶ Σ+⟶Σ and tail ∶ Σ+⟶Σ∗ for 𝑎 ∈ Σ, 𝑣 ∈ Σ∗ as

head(𝑎𝑣) = 𝑎

and
tail(𝑎𝑣) = 𝑣

Although the the two operators, head and tail, are defined above to oper-
ate on sequences of elements from Σ (i.e. on sequences of symbols) they
generalise to act upon sequences of elements from an arbitrary set.

Definition 2.17 (String and language reversal). Given string 𝑤, define 𝑤𝑅 to
be the reversal of 𝑤, that is, the letters appear in reverse order. Inductively, for
𝑎 ∈ Σ, 𝜀𝑅 = 𝜀 and (𝑎𝑤)𝑅 = 𝑤𝑅𝑎. For a language 𝐿, define 𝐿𝑅 = {𝑤𝑅 ∣ 𝑤 ∈ 𝐿 }.

Some algorithms require the lexicographic ordering (also known as the ‘tele-
phone book’ ordering) on words in Σ∗. For this, assume a total ordering ≤
on alphabet Σ. (This is typically the ASCII ordering.)

Definition 2.18 (Lexicographic ordering of Σ∗). Ordering ⊑𝑙 is a total order-
ing on Σ∗ that is defined inductively as follows. For all 𝑎, 𝑏 ∈ Σ and 𝑣, 𝑤 ∈ Σ∗

𝜀 ⊑𝑙 𝑣

and
𝑎 ⊑𝑙 𝑏 ≡ 𝑎 ≤ 𝑏

and

𝑎𝑣 ⊑𝑙 𝑏𝑤 ≡
⎧{
⎨{⎩

𝑣 ⊑𝑙 𝑤 if 𝑎 = 𝑏
𝑎 ⊑𝑙 𝑏 otherwise

Example 2.19 (Lexicographic order). The words had, hard, he, head, heard,
her, herd, and here are in lexicographic order.

Definition 2.20 (Regular expressions). Let RE be the set of regular expressions
over alphabet Σ. Define RE inductively as follows:

∅ ∈ RE
𝜀 ∈ RE
𝑎 ∈ RE for all 𝑎 ∈ Σ
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2 Background

For 𝐸0, 𝐸1 ∈ RE

𝐸0 ∪𝐸1 ∈ RE (union)
𝐸0 ⋅ 𝐸1 ∈ RE (concatenation)

𝐸∗
0 ∈ RE (Kleene closure)

𝐸+
0 ∈ RE (plus closure)

𝐸?
0 ∈ RE (optional)

¬𝐸0 ∈ RE (negation)
𝐸0 ∩𝐸1 ∈ RE (intersection)

The above is considered to be a definition of the extended regular expres-
sions. The basic regular expressions only contain the union, concatenation,
and Kleene closure operators. The symbol 𝜀 is used both for the empty
string and for the regular expression representing the regular language
comprising only the empty string. Similarly ∅ is used to represent the
empty language as well as the regular expression for that language.

Note that the infix dot for regular expression concatenation may be omit-
ted, so one may write 𝐸0𝐸1 for 𝐸0 ⋅ 𝐸1.

Definition 2.21 (Language of a regular expression). The language of a regular
expression 𝐸 is a set of strings ℒRE(𝐸) ⊆ Σ∗ determined as follows. For 𝐸0, 𝐸1 ∈
RE:

ℒRE(∅) = ∅
ℒRE(𝜀) = {𝜀}
ℒRE(𝑎) = {𝑎} for 𝑎 ∈ Σ

ℒRE(𝐸0 ∪𝐸1) = ℒRE(𝐸0) ∪ ℒRE(𝐸1)
ℒRE(𝐸0 ⋅ 𝐸1) = ℒRE(𝐸0) ⋅ ℒRE(𝐸1)

ℒRE(𝐸∗
0) = (ℒRE(𝐸0))∗

ℒRE(𝐸+
0 ) = (ℒRE(𝐸0))+

ℒRE(𝐸?
0) = (ℒRE(𝐸0))?)

ℒRE(¬𝐸0) = ¬ℒRE(𝐸0)
ℒRE(𝐸0 ∩𝐸1) = ℒRE(𝐸0) ∩ ℒRE(𝐸1)

Definition 2.22 (Nullability of a regular language). The nullability of a regu-
lar language 𝐿 ∈ REG is determined by the predicate nullREG(𝐿). The predicate’s
truth value is determined by the following equivalence

nullREG(𝐿) ≡ 𝜀 ∈ 𝐿

Definition 2.23 (Nullability of a regular expression). The nullability of a
regular expression 𝐸0 ∈ RE is determined by the truth value of the predicate
nullre(𝐸). The predicate’s truth value is specified by the following equivalences,
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where 𝐸0, 𝐸1 ∈ RE represent arbitrary regular expressions

nullre(∅) ≡ false
nullre(𝜀) ≡ true
nullre(𝑎) ≡ false for 𝑎 ∈ Σ

nullre(𝐸0 ∪𝐸1) ≡ nullre(𝐸0) ∨ nullre(𝐸1)
nullre(𝐸0 ⋅ 𝐸1) ≡ nullre(𝐸0) ∧ nullre(𝐸1)

nullre(𝐸∗
0) ≡ true

nullre(𝐸+
0 ) ≡ nullre(𝐸0)

nullre(𝐸?
0) ≡ true

nullre(¬𝐸0) ≡ ¬nullre(𝐸0)
nullre(𝐸0 ∩𝐸1) ≡ nullre(𝐸0) ∧ nullre(𝐸1)

Derivatives of regular expressions were originally defined by Brzozowski
(1964) and used inter alia for constructing DFAs (see below) from regular
expressions The construction of a DFA

from a regular expression,
using derivatives is the
theme of Chapter 4.

. More recently Owens, Reppy and Turon (2009) report on de-
rivatives’ elegance for developing regular expression recognisers.

Definition 2.24 (Derivative of a language). For a language 𝐿 ∈ 𝒫(Σ∗), the
derivative with respect to symbol 𝑎 ∈ Σ is defined as:

𝑎−1𝐿 = { 𝑣 ∣ 𝑎𝑣 ∈ 𝐿 }

Definition 2.25 (Derivatives of regular expressions). The derivative of a reg-
ular expression with respect to symbol 𝑎 ∈ Σ is defined inductively as follows. Let
𝐸0 and 𝐸1 be regular expressions.

𝑎−1∅ = ∅
𝑎−1𝜀 = ∅
𝑎−1𝑎 = 𝜀
𝑎−1𝑏 = ∅ for 𝑏 ≠ 𝑎

𝑎−1(𝐸0 ∪𝐸1) = 𝑎−1𝐸0 ∪𝑎−1𝐸1

𝑎−1(𝐸0 ⋅ 𝐸1) =
⎧{
⎨{⎩

𝑎−1𝐸0 ⋅ 𝐸1 ∪ 𝑎−1𝐸1 if nullre(𝐸0)
𝑎−1𝐸0 ⋅ 𝐸1 if ¬nullre(𝐸0)

𝑎−1(𝐸∗
0) = 𝑎−1𝐸0 ⋅ 𝐸∗

0
𝑎−1(𝐸+

0 ) = 𝑎−1𝐸0 ⋅ 𝐸∗
0

𝑎−1(𝐸?
0) = 𝑎−1𝐸0

𝑎−1(¬𝐸0) = ¬(𝑎−1𝐸0)
𝑎−1(𝐸0 ∩𝐸1) = 𝑎−1𝐸0 ∩𝑎−1𝐸1

Definition 2.26 (Equivalence of regular expressions). Regular expressions
𝐸0, 𝐸1 ∈ RE are equivalent when they define the same language:

equivre(𝐸0, 𝐸1) ≡ ℒRE(𝐸0) = ℒRE(𝐸1)

Definition 2.27 (Similarity of regular expressions). Two regular expressions
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𝐸0 and 𝐸1 are similar (written 𝐸0 ∼𝐸1) if and only if they are identical or one can
be transformed into the other using the following rules:

1. 𝐸0 ∪𝐸1 = 𝐸1 ∪𝐸0

2. (𝐸0 ∪𝐸1)∪𝐸2 = 𝐸0 ∪(𝐸1 ∪𝐸2)

3. 𝐸0 ∪𝐸0 = 𝐸0

Similarity is an equivalence relation on regular expressions. If 𝐸0 ∼𝐸1 then
ℒRE(𝐸0) = ℒRE(𝐸1). However, if ℒRE(𝐸0) = ℒRE(𝐸1), then it is not neces-
sarily the case that 𝐸0 ∼𝐸1.

Brzozowski also mentions that the derivatives of regular expressions may
be reduced by applying the following identities.

𝐸0 ∪∅ = 𝐸0

𝐸0 ⋅ ∅ = ∅ ⋅ 𝐸0 = ∅
𝐸0 ⋅ 𝜀 = 𝜀 ⋅ 𝐸0

This means that the regular expressions on the left-hand side and the right-
hand side of the identities are equivalent.

2.3 Automata

In this section, automata and related concepts are presented. These defin-
itions are pertinent to both Chapter 4 and Chapter 5. In Chapter 4 the con-
struction of automata from regular expressions, using derivatives of regu-
lar expressions, is considered. Likewise, Chapter 5 considers the so-called
minimisation of automata.

Definition 2.28 (Deterministic finite automata). A DFA is a quintuple
(𝑄,Σ, 𝛿, 𝑠, 𝐹) where

• 𝑄 is a finite nonempty set of states.

• Σ is an alphabet.

• 𝛿 ∶ 𝑄 × Σ⟶𝑄∪ {⊥} is the transition function. The symbol ⊥ is used to
denote the invalid destination state of a transition.

• 𝑠 ∈ 𝑄 is the start state.

• 𝐹 ⊆ 𝑄 is the set of final states.
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In the literature, a common interpretation is to view⊥ as a special state, such
as a sink state. Under such an interpretation, ⊥ ∈ (𝑄 ⧵ 𝐹), ⟨∀ 𝑎 ∶ 𝑎 ∈ Σ ∶
𝛿(⊥, 𝑎) = ⊥⟩ and 𝛿 is a total function. Under an alternative interpretation, 𝛿
is a partial function, and 𝛿(𝑞, 𝑎) = ⊥ is used as a notational convenience to
indicate that 𝛿(𝑞, 𝑎) is undefined—i.e. there is no transition from state 𝑞 on
symbol 𝑎.

Notation 2.29 (Drawing DFAs). As shown below, automata are drawn in the
standard way, whereby states are depicted as circles, a start state has an in-edge
from nowhere and each final state is depicted as two concentric circles. Transitions
are depicted as labelled directed edges. The state representing ⊥, as well as the
related transitions, are omitted from the drawing. Refer to this representation of 𝛿
as the transition graph of the DFA.

𝑞0start

𝑞1

𝑞2

𝑞3

a

b

b

a

Definition 2.30 (Acyclic DFA). An acyclic DFA is a DFA with an acyclic trans-
ition graph.

Definition 2.31 (Size of a DFA). The size of DFA 𝑀, written |𝑀|, is defined as
|𝑄|.

Notation 2.32. For a state 𝑝, Σ𝑝 denotes the subset of Σ on which 𝑝 has out-
transitions. That is,

Σ𝑝 = { 𝑎 ∣ 𝑎 ∈ Σ ∧ 𝛿(𝑝, 𝑎) ≠ ⊥ }

Definition 2.33 (Confluence state). A state 𝑝 is a confluence state, written
Is confl(𝑝), if and only if it has more than one in-transition. In Notation 2.29,
state 𝑞3 is a confluence.

Definition 2.34. A set of states 𝑋 are confluence-free, written Confl free(𝑋), if
and only if

⟨∀ 𝑝 ∶ 𝑝 ∈ 𝑋 ∶ ¬Is confl(𝑝)⟩

Definition 2.35 (Useless state). A state 𝑝 is useless if there is no path from the
start state to 𝑝, or there is no path from 𝑝 to a final state.

Definition 2.36 (Trie). The string matching
algorithm in Chapter 3
utilises a trie.

The DFA, 𝑀, is a trie, written Is trie(𝑀), if and only if
its transition graph is a tree rooted at start state 𝑠.

Property 2.37 (Tries). Tries have no confluence states.
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Example 2.38. The following DFA is a trie:

h

d
d

r

d

d
r

d
e

a

r

a
e0

start
1

2

3

4
5

6 7
8

9 10

11 12

13

Property 2.39. If a trie has no useless states then all leaves are final states.

Definition 2.40 (The extension of 𝛿). The extension of 𝛿 is defined as the func-
tion 𝛿∗ ∶ 𝑄 × Σ∗⟶𝑄 ∪ {⊥} where

𝛿∗(𝑝, 𝜀) = 𝑝

and for 𝑎 ∈ Σ, 𝑣 ∈ Σ∗

𝛿∗(𝑝, 𝑎𝑣) =
⎧{
⎨{⎩

𝛿∗(𝛿(𝑝, 𝑎), 𝑣) if 𝑎 ∈ Σ𝑝

⊥ otherwise

Definition 2.41 (Right language of a state). The right language of a state 𝑝,
denoted by ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑝), is defined as

⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑝) = {𝑤 ∣ 𝛿∗(𝑝, 𝑤) ∈ 𝐹 }

That is, ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑝) is the set of strings traced out by the labels on paths from 𝑝 to
any final state.

Property 2.42. Note that for 𝑞 ∈ 𝐹, 𝜀 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞).

Definition 2.43 (Left language of a state). The left language of a state 𝑝, denoted
by ⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ(𝑝), is defined as

⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ(𝑝) = {𝑤 ∣ 𝛿∗(𝑠, 𝑤) = 𝑝 }

Property 2.44. For a state 𝑝 that is not useless, we have ⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ(𝑝) ≠ ∅ and ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≠ ∅.

Example 2.45. Referring to the illustrative DFA example depicted in Nota-
tion 2.29, ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞0) = ⃖⃖⃖⃖ ⃖⃖ ⃖ℒ(𝑞3) = {𝑎𝑏, 𝑏𝑎}.
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Property 2.46 (Recursive definition of ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ). The recursive definition of 𝛿∗ can be
used to give a recursive definition for ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ as follows:

⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞) = ⎛⎜⎜
⎝

⋃
𝑎∈Σ𝑞

{𝑎} ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑞, 𝑎))⎞⎟⎟
⎠

∪ { {𝜀} if 𝑞 ∈ 𝐹
∅ if 𝑞 ∉ 𝐹

Phrased differently, a string 𝑣 is in ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞) if and only if

• 𝑣 is of the form 𝑎𝑤 where 𝑎 ∈ Σ is a label of an out-transition from 𝑞
to 𝛿(𝑞, 𝑎) (i.e. 𝑎 ∈ Σ𝑞) and 𝑤 is in the right language of 𝛿(𝑞, 𝑎), or

• 𝑣 = 𝜀 and 𝑞 is a final state.

A recursive definition of ⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ is not required in this thesis.

Definition 2.47 (Language of a DFA). The language accepted by DFA 𝑀, de-
noted ℒ(𝑀), is defined by

ℒ(𝑀) = ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑠)

Note that one could alternatively define ℒ(𝑀) using left languages as

ℒ(𝑀) = ⟨∪ 𝑓 ∶ 𝑓 ∈ 𝐹 ∶ ⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ(𝑓 )⟩

Definition 2.48 (Path through a DFA). For state 𝑝 and 𝑤 ∈ Σ∗,

[𝑝 𝑤
;]

is the sequence of states 𝛿∗(𝑝, 𝜀),… , 𝛿∗(𝑝, 𝑣) where 𝑣 is the longest prefix of 𝑤 such
that 𝛿∗(𝑝, 𝑣) ≠ ⊥. Refer to [𝑝 𝑤

;] as the single “𝑤-path from state 𝑝.”

The standard parentheses notation is used to denote state sequences that
are open at the beginning or end—for example, (𝑝 𝑤

;] does not include 𝑝
but does include the rest of [𝑝 𝑤

;]. One may pass a path [𝑝 𝑤
;] as a para-

meter to a predicate or function that expects a set, thereby implicitly treat-
ing the path as a set of states.

Property 2.49. Define [𝑝 𝑤
;] recursively as:

[𝑝 𝜀
;] = 𝑝

and, for all 𝑎 ∈ Σ,𝑤 ∈ Σ∗ (where ⋅ is sequence concatenation and 𝜀 is the empty
sequence which some authors write as [ ])

[𝑝 𝑎𝑤
;] = 𝑝 ⋅

⎧{
⎨{⎩

[𝛿(𝑝, 𝑎) 𝑤
;] if 𝑎 ∈ Σ𝑝

𝜀 otherwise
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Notation 2.50. Write Succ(𝑝) for the set of states that are direct successors of
state 𝑝 ∈ 𝑄.

Succ(𝑝) = { 𝛿(𝑝, 𝑎) ∣ 𝑎 ∈ Σ𝑝 }

The same notation may be used for the successors of a set of states 𝑃 ⊆ 𝑄,

Succ(𝑃) = ⟨∪ 𝑝 ∶ 𝑝 ∈ 𝑃 ∶ Succ(𝑝)⟩

Definition 2.51 (Longest right word length function). For an acyclic DFA
only This restriction is placed

because a cyclic DFA may
have infinitely long paths
from a state to a final
state.

, function ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ|𝑚𝑎𝑥| ∶ 𝑄⟶ℕ is defined as

⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ|𝑚𝑎𝑥|(𝑝) = ⟨MAX 𝑤 ∶ 𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ∶ |𝑤|⟩

⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ|𝑚𝑎𝑥|(𝑝) is the length of the longest path from 𝑝 to a final state in an acyclic
DFA. Revuz (1992) calls ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ|𝑚𝑎𝑥|(𝑝) the ‘height’ of 𝑝.

Definition 2.52 (Height levels). In an acyclic DFA, for 𝑘 ∈ ℕ, define a set of
states

HL𝑘 = { 𝑝 ∣ 𝑝 ∈ 𝑄 ∧ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ|𝑚𝑎𝑥|(𝑝) = 𝑘 }

to be the set of states at height level 𝑘.

Property 2.53. {HL0,HL1,… ,HL𝑛} is a partition of 𝑄, where 𝑛 ∈ ℕ is the
largest value for which HL𝑛 ≠ ∅.

Example 2.54. In the trie of Example 2.38,

HL0 = {3, 5, 8, 10, 12, 13}
HL1 = {4, 9, 11}
HL2 = {2, 7}
HL3 = {6}
HL4 = {1}
HL5 = {0}

Definition 2.55 (State depth function). Function ⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛| ∶ 𝑄⟶ℕ is defined as

⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(𝑝) = ⟨MIN 𝑤 ∶ 𝑤 ∈ ⃖⃖⃖⃖ ⃖⃖ ⃖ℒ(𝑝) ∶ |𝑤|⟩

⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(𝑝) is the length of the shortest path from 𝑠 to 𝑝. In the literature,
⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(𝑝) is also known as the ‘depth’ of 𝑝.

Definition 2.56 (Depth levels). In an acyclic DFA, for each 𝑘 ∈ ℕ, define a set
of states

DL𝑘 = { 𝑝 ∣ 𝑝 ∈ 𝑄 ∧ ⃖⃖⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(𝑝) = 𝑘 }

to be the set of states at depth level 𝑘.
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Property 2.57. {DL0,DL1,… ,DL𝑛} is a partition of 𝑄, where 𝑛 ∈ ℕ is the largest
value for which DL𝑛 ≠ ∅.

Example 2.58 (Depth levels). In the trie of Example 2.38,

DL0 = {0}
DL1 = {1}
DL2 = {2, 6}
DL3 = {3, 4, 7, 11}
DL4 = {5, 8, 9, 12, 13}
DL5 = {10}

Definition 2.59 (Minimality of a DFA). DFA 𝑀 is minimal – written Min(𝑀)
– if, and only if, it is the smallest Smallest with respect to

the number of states in 𝑀
as given in Definition 2.31

DFA accepting ℒ(𝑀). Any other such DFA 𝑀′

may not have fewer states.

Min(𝑀) ≡ ⟨∀ 𝑀′ ∶ 𝑀′ ∈ DFA ∧ ℒ(𝑀) = ℒ(𝑀′) ∶ |𝑀| ≤ |𝑀′|⟩

Property 2.60. A minimal DFA is unique up to isomorphism—see Hopcroft and
Ullman (1979, §3.4).

Definition 2.61 (State equivalence). Define E as an equivalence relation on
states where

E(𝑝, 𝑞) ≡ ( ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) = ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞))

If two states 𝑝, 𝑞 are equivalent under E, states 𝑝 and 𝑞 can be merged. For
example, to merge 𝑝 into 𝑞, remove all inbound transitions into 𝑝, replace
them by inbound transitions into 𝑞 and remove 𝑝.

Property 2.62. Assuming no useless states, start state 𝑠 is unique—that is, it is
not equivalent to any other state.

Property 2.63 (Recursive definition of E). The recursive definition of ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ (Prop-
erty 2.46) gives rise to a recursive definition of E as follows (from B. W. Watson
2010, Property 2.71)

E(𝑝, 𝑞)
≡ “ definition of E ”

⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑝) = ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)
≡ “ definition of language equality ”

⟨∀ 𝑣 ∶ 𝑣 ∈ Σ∗ ∶ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩
≡ “ split domain Σ∗ into {𝜀} ∪ Σ+ ”

⟨∀ 𝑣 ∶ 𝑣 ∈ {𝜀} ∪ Σ+ ∶ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩
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2 Background

≡ “ split quantification ”
⟨∀ 𝑣 ∶ 𝑣 ∈ {𝜀} ∶ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩ ∧
⟨∀ 𝑣 ∶ 𝑣 ∈ Σ+ ∶ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩

≡ “ one-point rule on the first universal quantification ”
(𝜀 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝜀 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)) ∧
⟨∀ 𝑣 ∶ 𝑣 ∈ Σ+ ∶ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑣 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩

≡ “ introduce dummies 𝑎 ∈ Σ,𝑤 ∈ Σ∗ such that 𝑣 = 𝑎𝑤 in second quantification ”
(𝜀 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝜀 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)) ∧
⟨∀ 𝑎,𝑤 ∶ 𝑎 ∈ Σ,𝑤 ∈ Σ∗ ∶ 𝑎𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑎𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩

≡ “ 𝜀 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑟) ≡ 𝑟 ∈ 𝐹 ”
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧
⟨∀ 𝑎,𝑤 ∶ 𝑎 ∈ Σ,𝑤 ∈ Σ∗ ∶ 𝑎𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ 𝑎𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)⟩

≡ “ in context, 𝑎𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) ≡ (𝑎 ∈ Σ𝑝 cand 𝑤 ∈ ⃗⃗⃗⃗⃗⃗ ⃗ℒ(𝛿(𝑝, 𝑎))) ”
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧
⟨∀ 𝑎,𝑤 ∶ 𝑎 ∈ Σ,𝑤 ∈ Σ∗ ∶ (𝑎 ∈ Σ𝑝 cand 𝑤 ∈ ⃗⃗⃗⃗⃗⃗ ⃗ℒ(𝛿(𝑝, 𝑎))) ≡ (𝑎 ∈ Σ𝑞 cand 𝑤 ∈ ⃗⃗⃗⃗⃗⃗ ⃗ℒ(𝛿(𝑞, 𝑎)))⟩

≡ “ split universal quantifier; cand no longer needed with 𝑎 ∈ Σ𝑝 ∩ Σ𝑞 in quantifier range ”
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧ ⟨∀ 𝑎 ∶ 𝑎 ∈ Σ ∶ 𝑎 ∈ Σ𝑝 ≡ 𝑎 ∈ Σ𝑞⟩ ∧
⟨∀ 𝑎,𝑤 ∶ 𝑎 ∈ Σ𝑝 ∩ Σ𝑞, 𝑤 ∈ Σ∗ ∶ 𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑝, 𝑎)) ≡ 𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑞, 𝑎))⟩

≡ “ definition of alphabet equality ”
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧ Σ𝑝 = Σ𝑞 ∧
⟨∀ 𝑎,𝑤 ∶ 𝑎 ∈ Σ𝑝 ∩ Σ𝑞, 𝑤 ∈ Σ∗ ∶ 𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑝, 𝑎)) ≡ 𝑤 ∈ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑞, 𝑎))⟩

≡ “ definition of language equality ”
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧ Σ𝑝 = Σ𝑞 ∧
⟨∀ 𝑎 ∶ 𝑎 ∈ Σ𝑝 ∩ Σ𝑞 ∶ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑝, 𝑎)) = ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑞, 𝑎))⟩

≡ “ definition of E ”
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧ Σ𝑝 = Σ𝑞 ∧ ⟨∀ 𝑎 ∶ 𝑎 ∈ Σ𝑝 ∩ Σ𝑞 ∶ E(𝛿(𝑝, 𝑎), 𝛿(𝑞, 𝑎))⟩

Definition 2.64 (Pairwise inequivalent states). Define predicate

Inequiv(𝑋) ≡ ⟨∀ 𝑝, 𝑞 ∶ 𝑝 ≠ 𝑞 ∧ 𝑝, 𝑞 ∈ 𝑋 ∶ ¬E(𝑝, 𝑞)⟩

Property 2.65 (Minimality of a DFA). Min is equivalent to:

• all states in 𝑄 ⧵ {𝑠} are useful, and

• Inequiv(𝑄).

This is shown by Hopcroft and Ullman (1979, §3.4).
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2.4 Guarded Command Language

Abstract algorithms are presented in this thesis in Dijkstra’s GCL (Dijk-
stra 1975, 1976; Gries 1980; Kourie and B. W. Watson 2012). In this section,
the aim is to provide sufficient detail to enable someone familiar with pro-
gramming to comprehend the notation. It is therefore not considered ne-
cessary to provide a formal specification of the semantics of the various
language constructs. The syntax is described and some semantic matters
are addressed informally. Formal semantics—based one pre- and post-
conditions—may be found in the references above.

GCL relies on the following basic constructs. Although program con-
structs are commonly
called statements, Dijk-
stra preferred the term
command.

The empty command (skip),
assignment (≔), composition (;), selection (if ), and repetition (do). A dis-
cussion of each of these commands now follow.

Empty command The skip command is simply a command that does
nothing. As it will be seen below, it is sometimes mandatory to use
skip as part of a selection command.

Assignment GCL allows for both single and multiple assignment. In both
cases assignment is denoted by the ≔ symbol. Multiple assignment
is not a necessary construct, but is does allow for shorter and more
elegant code specification. The example of swapping two variables
𝑥, 𝑦 ≔ 𝑦, 𝑥 is commonly used to illustrate this.

Composition The composition of two code segments 𝑆1 and 𝑆2 is denoted
𝑆1; 𝑆2. Composition assists in breaking up a task into a sequence of
smaller, more manageable, tasks.

Selection The syntax of the selection command appears similar to the
switch-statement of other languages and is as follows.

if 𝐺1 → 𝑆1
⫾ 𝐺2 → 𝑆2

⋯
⫾ 𝐺𝑛 → 𝑆𝑛
f i

The 𝐺𝑖 are predicates, called guards, and the 𝑆𝑖 are GCL commands
that could possibly be the composition of multiple commands. Each
𝐺𝑖 → 𝑆𝑖 constitutes a so-called guarded command—hence the name
guarded command language. The semantics of the GCL selection
command differs from that of typical switch-statements. The first
step in executing the command it to evaluate all the guards. From
the set of guarded commands that evaluate to true, one is non-
deterministically selected and executed. If no guard evaluates to true,

21

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2 Background

then the selection command may exhibit any behaviour. The inten-
tion behind this decision is that it should be made explicit what hap-
pens in every circumstance—there is no default behaviour. For this
reason the union of the guards should cover the entire universe of
possibilities.

When a selection command has the form

if 𝐺 → 𝑆
⫾ ¬𝐺 → skip
fi

some authors abbreviate this to

as 𝐺 → 𝑆 sa.

This abbreviation will not be used in this thesis.

Repetition The general syntax of the repetition command is:

do 𝐺1 → 𝑆1
⫾ 𝐺2 → 𝑆2

⋯
⫾ 𝐺𝑛 → 𝑆𝑛
od

As in the selection command above, the 𝐺𝑖 are predicates and the 𝑆𝑖
are GCL commands. The repetition command may execute zero or
more times. At the start of each iteration, all the guards are evalu-
ated and one of the 𝑆𝑖 for which a guard evaluated to true is non-
deterministically selected for execution. The command iterates until
all the guards evaluate to false. In that case the command termin-
ates successfully and control is passed to the next command in the
sequence.

The above form may appear strange at first glance and may be
changed into a repetition with a single guard:

do 𝐺 → 𝑆 od

where 𝐺 = 𝐺1 ∨ 𝐺2 ∨ ⋯∨ 𝐺𝑛 and 𝑆 is the select command:

if 𝐺1 → 𝑆1
⫾ 𝐺2 → 𝑆2

⋯
⫾ 𝐺𝑛 → 𝑆𝑛
f i

This latter form is typically used in the algorithms presented later
in the text. Another form of repetition that is used frequently is as
follows:
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for 𝑖 ∶ 𝐼 → 𝑆 rof

This describes a repetition in which 𝑖 is a loop variable that assumes,
in each iteration, a value from the set 𝐼. If 𝐼 is an ordered collection,
the elements are selected in order. If, on the other hand, the collection
is unordered, the elements are selected in an arbitrary order. If this
command is used, the contents of the set 𝐼 should not be changed by
𝑆.

Procedures and functions Sequences of commands may be encapsu-
lated into a procedure or a function with a given name. The following
defines a procedure 𝑃 that accepts two parameters.

proc 𝑃(𝑎, 𝑏) →
…

corp

The next definition is a function that returns a tuple ⟨𝑥, 𝑦⟩.

func 𝐹(𝑎, 𝑏) →
…
𝑥, 𝑦 ≔ …
…
return ⟨𝑥, 𝑦⟩

cnuf

Comments Comments may be added to GCL code by enclosing them in
a pair of braces. For example, { this is a comment } is a comment.

2.5 Communicating Sequential Processes

Baeten, Basten and Reniers (2010) describes the field of process algebra as
the field that studies parallel or distributed systems by algebraic means. It
allows one to describe or specify the behaviour of such systems and thus
has a means to refer to parallel composition. It also makes it possible to
reason about these systems using algebra which then allows for verification
of the systems.

According to Baeten (2005), the term process algebra was first defined by
Bergstra and Klop (1982). Over the years a number of process algebras
have been developed. Of these CCS (Milner 1989), ACP (Bergstra and Klop
1984), and CSP (Hoare 1985) are probably the best known.

CSP is used to describe processes in subsequent chapters. The original
language called CSP was created by Hoare (1978). This language was not
a process algebra, but rather an imperative programming language very
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similar to the GCL, but with the addition of point-to-point communica-
tion. Theoretical work by Brooks, Hoare, and Roscoe (Brookes 1983; Roscoe
1982; Roscoe and Barrett 1989; Roscoe and Brookes 1985; Roscoe, Brookes
and Hoare 1984) led to the abstraction and generalisation of the language.
This new language – now a process algebra and also called CSP – is de-
scribed in Hoare (1985, 2004). Development of CSP continued and the ver-
sion used here correponds to the version described by Roscoe (2010) and
Roscoe, Hoare and Bird (1997).

2.5.1 Overview

CSP is concerned with the studying of processes that interact with one an-
other and their environment by means of communication. Hence, the most
fundamental object in CSP is the communications event. These events are
assumed to be drawn from a set Σ Note that Σ is also used

for a string alphabet. The
context should make clear
which set is meant.

that contains all possible communica-
tions for processes in the universe under consideration. CSP abstracts away
from time in the sense that events are deemed to be atomic. An event there-
fore occurs either before or after some other event. One way of describing
a process is to specify all possible event sequences in which the process
may engage, that is, to specify the process’s set of traces. Various operators
are available to describe the sequence in which events may occur, as well
as to connect processes. Table 2.1 briefly outlines the main operators used
in this thesis.

Primitive processes The simplest process of all is STOP. It is the pro-
cess that never engages in any events. It is essentially a deadlocked
state. This is different from the notion of a process that reaches a
state where its execution is completed. This is modelled by process
SKIP which does nothing apart from indicating that it has terminated
successfully.

Prefixing Let 𝑎 ∈ Σ and 𝑃 be a process. Then 𝑎 → 𝑃 is the process that
is initially willing to communicate event 𝑎 to a process in its environ-
ment and then behaves as described by 𝑃. This operation is known
as prefixing since it changes 𝑃 into 𝑎 → 𝑃.

Recursion Recursion is used to specify repeating processes. Using a re-
cursively defined process’s name on the right-hand side of the equa-
tion means the same as the whole. For example, 𝑃 = 𝑎 → 𝑃 describes
the process that can indefinitely engage in event 𝑎. Instead of using a
single equation to describe a process, it is also possible to use mutual
recursion. For example, if 𝑃1 = 𝑎 → 𝑃2 and 𝑃2 = 𝑏 → 𝑃1, then 𝑃1
behaves the same as the single recursive process 𝑃3 = 𝑎 → 𝑏 → 𝑃3.

Guarded alternative With prefixing and recursion one may describe pro-
cesses with a single thread of execution. It is, however, possible in
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Σ The set of all possible communication events.
SKIP Successful termination.
STOP Deadlock.
𝑎 → 𝑃 Prefixing. Event 𝑎 then process 𝑃.
𝑎 → 𝑃 | 𝑏 → 𝑄 Guarded alternative. 𝑎 then 𝑃 choice 𝑏 then 𝑄.
?𝑥 ∶ 𝐴 → 𝑃(𝑥) Prefix choice. Choice of 𝑥 from set 𝐴 then 𝑃(𝑥).
𝑎.𝑏.𝑐 Compound or multipart event.
𝑐!𝑒 On channel 𝑐 output event 𝑒.
𝑐?𝑥 From channel 𝑐 input to variable 𝑥.
⦃𝑎, 𝑏⦄ The set of events associated with channels 𝑎 and 𝑏.
if 𝑏 then 𝑃 else 𝑄 Conditional choice. If 𝑏 then process 𝑃 else process

𝑄.
𝑃 ⊓ 𝑄 Non-deterministic choice between process 𝑃 and

process 𝑄.
𝑏&𝑃 Conditional guard. If 𝑏 then 𝑃 else STOP.
𝑃 ∥ 𝑄 Synchronous parallel. Synchronise on all events.
𝑃 ∥

𝑋
𝑄 Generalised parallel. Synchronise on events in set 𝑋.

𝑃 ⫴ 𝑄 Interleaving parallel. Do not synchronise.
𝑃 \ 𝑋 Hiding. The events in 𝑋 are not observable.
𝑃⟦𝑎/𝑏⟧ Renaming. All events 𝑏 is changed to 𝑎.
𝑙.𝑃 Process naming. Communicates 𝑙.𝑥 whenever 𝑃

communicates 𝑥.
𝑃;𝑄 Sequential composition. Process 𝑃 followed by pro-

cess 𝑄.
𝑃 2 𝑄 External choice. Process 𝑃 choice process 𝑄.
𝑃 [𝑎↔𝑏]𝑄 Link parallel. Synchronise on events over channels

𝑎 and 𝑏.

Table 2.1: Selected CSP notation used in the thesis.
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CSP to describe processes that offer a choice of events to their envir-
onments. The simplest way in which to do this is to make use of the
guarded alternative notation. Process (𝑎1 → 𝑃1 | ⋯ | 𝑎𝑛 → 𝑃𝑛) offers
𝑎1,… , 𝑎𝑛 to its environment and then behaves as 𝑃𝑖 if 𝑎𝑖 was the first
event interaction that occurred with the environment.

Prefix choice Prefix-choice generalises the guarded alternative. If 𝐴 ⊆ Σ
then ?𝑥∶ 𝐴 → 𝑃(𝑥) describes the process that offers initially any 𝑥 ∈ 𝐴
and then behaves as 𝑃(𝑥).

External choice The external choice operator is similar to the guarded al-
ternative operator. However, here the operands are processes and not
events. The process 𝑃 2 𝑄 offers the environment the initial events
of 𝑃 and of 𝑄 and then behaves according to the choice. If the first
event chosen is from 𝑃 only, then 𝑃 2 𝑄 behaves as 𝑃, and if the first
event is from 𝑄 only, 𝑃 2 behaves as 𝑄. If 𝑃 and 𝑄 have first events
in common, and one of those common events is selected for interac-
tion by the environment, then the process behaves nondeterministic-
ally—i.e its subsequent behaviour is non-deterministically described
by either 𝑃 or 𝑄. An important property of external choice is that
𝑃 2 STOP = 𝑃.

If 𝑆 = {1, 2,… , 𝑛} is a finite set that indexes a finite collection of pro-
cesses, then 2𝑖∈𝑆 𝑃𝑖 is short-hand for 𝑃1 2 𝑃2 2 ⋯ 2 𝑃𝑛. If 𝑆 is empty,
then 2𝑖∈𝑆 𝑃𝑖 behaves as STOP.

Nondeterministic choice CSP provides two ways of representing expli-
citly the nondeterministic choice of processes: 𝑃 ⊓ 𝑄 or ⨅𝑆. Here 𝑃
and 𝑄 are processes and 𝑆 is a non-empty set of processes. The pro-
cess 𝑃 ⊓ 𝑄 can behave like either process 𝑃 or process 𝑄. If 𝑆 is a set
of processes then ⨅𝑆 can behave like any member of 𝑆. The choice
of behaviour is determined by the processes itself, without influence
from its environment. Thus, 𝑃 ⊓ 𝑄 may at one time only permit
engagement with the environment via one of the first events of 𝑃, ig-
noring any environmental offering to engage in one of the first events
of 𝑄. At another time it may do the opposite—nondeterministically
only engage via one the first events of 𝑄 and ignore environmental
offerings of one of the first events in 𝑃.

Similarly to external choice, an indexed version of the internal choice
operator will also be used. Thus, if 𝐼 is a finite set that indexes a finite
collection of processes, then ⨅𝑖∈𝐼 𝑃𝑖 means the same as ⨅{𝑃𝑖 ∣ 𝑖 ∈ 𝐼 }.

Conditional choice Another form of choice is based on a Boolean expres-
sion and is also required when describing processes. CSP provides
an if … then … else … construct. Hence, when 𝑏 holds in (if 𝑏 then
𝑃 else 𝑄), then the process behaves as described by 𝑃, but like𝑄 when
𝑏 does not hold. As an aside, note that CSP also provides a binary
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operator to express conditional choice: 𝑃<I 𝑏>I 𝑄 means the same as
if 𝑏 then 𝑃 else 𝑄. This notation is not employed in this thesis.

Conditional guard When there is a conditional choice with STOP, one
may use a notational short-hand and write (𝑏&𝑃) for (if 𝑏 then 𝑃 else
STOP).

Multi-part events It is often useful to specify an event as a compound
object using an infix dot to combine a qualifier and an element of an
alphabet Σ. If 𝑐 is the name of a channel then 𝑐.𝑥 indicates that 𝑥 is
to be communicated over channel 𝑐, and if 𝑇 is the type of the event
communicated over the channel 𝑐, then 𝑐.𝑇 = { 𝑐.𝑥 ∣ 𝑥 ∈ 𝑇 } ⊆ Σ
denotes the set of all such events. Furthermore, one may specify a
process receives input and/or sends output of type 𝑇 over a channel
𝑐. In this case, input of type 𝑇 over channel 𝑐 is described using prefix
choice like this: ?𝑦∶𝑐.𝑇 → 𝑃(𝑦). Another form that allows one to state
explicitly the element 𝑥 from 𝑇, is as follows. 𝑐?𝑥∶𝑇 → 𝑃′(𝑥). This latter
form makes it clear that some element of 𝑇 is communicated over
channel 𝑐. When the type of communication allowed is clear from the
context, one may omit 𝑇 and simply write 𝑐?𝑥 → 𝑃′(𝑥). In this case
an exclamation mark (!) is used to designate output. For example, a
process that inputs some value on channel in and outputs the same
value on channel out may be described as 𝑃 = in?𝑥 → out!𝑥 → 𝑃.

In general it is permissible to have events with any finite number of
parts separated by infix dots. A channel is characterised by its name
and a finite sequence of data types. Σ then contains events of the
form 𝑐.𝑥1.𝑥2.⋯ .𝑥𝑛 with 𝑐 the channel name, 𝑇1,… , 𝑇𝑛 the data types,
and 𝑥𝑖 ∈ 𝑇𝑖.

The most common case for using such multipart channel types is
when an array of channels is used to communicate between simil-
arly indexed processes. Let 𝑃𝑖 and 𝑄𝑖 with 𝑖 ∈ 𝐼 ⊂ ℕ be such indexed
processes. They need to communicate objects of type 𝑇. Then 𝑐 may
be a channel of type ℕ.𝑇 and the event 𝑐.𝑖.𝑥 might represent the com-
munication of value 𝑥 from 𝑃𝑖 to 𝑄𝑖.

Another useful notation that is used often in the thesis is the ⦃…⦄
notation. It allows one to specify the set of events on a channel by
merely mentioning the channel name. Thus ⦃𝑐1, 𝑐2⦄ is the set of
events of channels 𝑐1 and 𝑐2.

Synchronous parallel Processes in CSP interact by agreeing – or syn-
chronising – on events. Synchronization is symmetric and instant-
aneous, and occurs only when both participants engage in it simul-
taneously. Like most process algebras, CSP has a parallel composi-
tion operator that specifies how processes interact. In fact, CSP has a
number of forms of parallel composition. The simplest form requires

27

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2 Background

that processes agree on all events that occur and is written 𝑃 ∥ 𝑄.
Hence, if 𝑃 = ?𝑥∶𝐴 → 𝑃′ and 𝑄 = ?𝑥∶𝐵 → 𝑄′ then

𝑃 ∥ 𝑄 = (?𝑥∶𝐴 → 𝑃′) ∥ (?𝑥∶𝐵 → 𝑄′) = ?𝑥∶𝐴 ∩ 𝐵 → (𝑃′ ∥ 𝑄′).

The ∥ operator is symmetric, associative and distributive.

Interleaving Parallel composition by interleaving (⫴) is another form of
parallel composition. In this case the processes need not agree on
any They do, however, syn-

chronise on termination.
𝑃 ⫴ 𝑄 terminates only
when both 𝑃 and 𝑄
terminate.

of their events—they execute independently. Any event commu-
nicated by 𝑃 ⫴ 𝑄 arose in exactly one of 𝑃 and 𝑄. If both could have
communicated an event, the ambiguity is resolved by selecting one
nondeterministically as shown in its step law: Let 𝑃 = ?𝑥∶𝐴 → 𝑃′ and
𝑄 = ?𝑥∶𝐵 → 𝑄′, then

𝑃 ⫴ 𝑄 = ?𝑥∶𝐴 ∪ 𝐵 → if 𝑥 ∈ 𝐴 ∩ 𝐵 then
𝑃′ ⫴ 𝑄 ⊓ 𝑃 ⫴ 𝑄′

else if 𝑥 ∈ 𝐴 then
𝑃′ ⫴ 𝑄

else
𝑃 ⫴ 𝑄′

The operator is also symmetric, associative, and distributive.

Generalised parallel The behaviour of the previous parallel composition
operators may be achieved by a single operator in which the interface
of interaction is specified. Process 𝑃 ∥

𝑋
𝑄 is the process in which all

the events in 𝑋 need to be synchronised and the events not in 𝑋 may
proceed independently. Hence it may be seen as a combination of
synchronous parallel and interleaving parallel. So 𝑃 ⫴ 𝑄 = 𝑃 ∥

∅
𝑄 and

𝑃 ∥ 𝑄 = 𝑃 ∥
Σ
𝑄. Let 𝑃 = ?𝑥∶𝐴 → 𝑃′ and 𝑄 = ?𝑥∶𝐵 → 𝑄′. Then the set of

initial events of 𝑃 ∥
𝑋
𝑄 is 𝐶 = (𝑋∩𝐴∩𝐵)∪(𝐴⧵𝑋)∪(𝐵⧵𝑋). The step law

is quite complex since events may be synchronised; independent, but
ambiguous; or from one process only.

𝑃 ∥
𝑋
𝑄 = ?𝑥∶𝐶 → if 𝑥 ∈ 𝑋 then

𝑃′ ∥ 𝑄′

else if 𝑥 ∈ 𝐴 ∩ 𝐵 then
𝑃′ ∥

𝑋
𝑄 ⊓ 𝑃 ∥

𝑋
𝑄′

else if 𝑥 ∈ 𝐴 then
𝑃′ ∥

𝑋
𝑄

else
𝑃 ∥

𝑋
𝑄′
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The operator is symmetric and distributive. It is associative when the
interface is the same for all instances of the operator.

Hiding Sometimes it is better to hide internal events so that they become
invisible and uncontrollable by the environment. Given a process 𝑃
and a set of events 𝑋, the process 𝑃 \ 𝑋 behaves like 𝑃 except that the
events in 𝑋 have been hidden. That means that the traces of 𝑃 \ 𝑋 are
the same as the traces of 𝑃, except that all events in 𝑋 are removed
from the traces of 𝑃 \ 𝑋.

Renaming and alphabet transformation It is possible to rename the
events in which a process engages. This is also called an alphabet
transformation. There are various ways in which this may be accom-
plished in CSP, but the two forms used in this text are shown here. A
common form is called process naming. A process 𝑃 may be labelled –
or named – 𝑙.𝑃. It then communicates 𝑙.𝑥 whenever 𝑃 communicates
𝑥. Some authors write 𝑙∶𝑃 instead of 𝑙.𝑃. Process labelling is typically
used where one requires multiple copies of a process in a system but
with disjoint alphabets.

In the second form of renaming, one may write 𝑃⟦𝑎/𝑏⟧ to mean that
the event or channel 𝑏 in 𝑃 is replaced by 𝑎. This is often used to
enable synchronisation with another process.

Linking parallel operator It is often desirable to hide the synchronising
action of the parallel composition of processes. A combination of hid-
ing and renaming with parallel composition may be used to achieve
this. Since this is used often, a succinct way of writing it down exists.
𝑃 [𝑎↔𝑏]𝑄 is the process in which 𝑃’s communications on channel 𝑎
are synchronised with 𝑄’s communications on channel 𝑏, and then
hidden. One may think of this as linking the two processes with a
wire. If 𝑐 is an unused channel name of the same type as 𝑎 and 𝑏,
then

𝑃 [𝑎↔𝑏]𝑄 = (𝑃⟦𝑐/𝑎⟧ ∥
⦃𝑐⦄

𝑄⟦𝑐/𝑏⟧) \ ⦃𝑐⦄.

This can be extended to any number of pairs of channels (𝑎𝑖, 𝑏𝑖) as
in 𝑃 [𝑎1 ↔ 𝑏1,… , 𝑎𝑛 ↔ 𝑏𝑛]𝑄. Each pair must be of the same type, but
different pairs may be of different types.

If the channel pairs are distinct and the visible alphabets of the pro-
cesses are disjoint, the operator is associative:

(𝑃 [𝑎↔𝑏]𝑄) [𝑐↔𝑑]𝑅 = 𝑃 [𝑎↔𝑏](𝑄 [𝑐↔𝑑]𝑅)

To help reduce typesetting and aid the reader, the following nota-
tional style is used. Instead of writing (𝑃 [𝑎↔𝑏]𝑄) [𝑐↔𝑑]𝑅, a ver-
tical style is used:
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𝑃
[𝑎↔𝑏]

𝑄
[𝑐↔𝑑]

𝑅

Note that the parentheses are omitted in the vertical style—the con-
vention is that the association is from the top. When a different
grouping is required, parentheses will be used to make the group-
ing explicit.

Sequential composition 𝑃;𝑄 is the process that behaves as 𝑃 until it ter-
minates successfully and then behaves as 𝑄.

Sequences The empty sequence is represented as ⟨⟩ and ⟨𝑎1, 𝑎2,… , 𝑎𝑛⟩ is
the sequence containing 𝑎1, 𝑎2,… , 𝑎𝑛, in that order. If 𝑠 and 𝑡 are fi-
nite sequences then 𝑠 𝑡 is the concatenation of 𝑠 and 𝑡. The length
of a sequence 𝑠 is usually written as #𝑠. In this thesis, a functional
form len(𝑠) will be used instead. Functions head and tail from Defin-
ition 2.16 may also be applied to CSP sequences. head(⟨𝑎⟩̂ 𝑠) = 𝑎 and
tail(⟨𝑎⟩̂ 𝑠) = 𝑠.

CSP traces are not often used explicitly in this thesis. The notation for
tuples also use the same brackets. It should be clear from the context
which interpretation is intended.

In deploying CSP, the following assumptions relating to atomic execu-
tion were made. First, if an event maps to a function call, then that func-
tion is assumed to be a sequence of code in the original sequential al-
gorithm that runs uninterruptedly to completion on some processor. Fur-
thermore, in the interest of conciseness and without loss of generality, it
will sometimes be convenient to subsume certain assignment operations
of the sequential program into the actual parameter list of a process invoc-
ation. For example, instead of specifying some recursive parameterised
process 𝑃(𝐷) as 𝑃(𝐷) = … → (𝐷 ≔ 𝐷 ∪ {𝑞}); 𝑃(𝐷), regard the specification
𝑃(𝐷) = … → 𝑃(𝐷 ∪ {𝑞}) as equivalent. This means that operations that
are needed to compute the actual parameters for a process invocation are
regarded as taking place atomically, that is they cannot be interrupted by
any other process’s activity.

Similarly, where the CSP syntax for a conditional is used, as in if 𝑏 then
𝑃 else 𝑄 it will be assumed that the computation of the condition, 𝑏, takes
place atomically and prior to the activation of any first event possible in the
constituent processes, 𝑃 and 𝑄.

These instances of atomic activity are highlighted, not because they devi-
ate from CSP syntax, but because they represent potential opportunities
for more fine-grained specifications of the algorithms than is given in the
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various specifications to follow. These fine-grained specifications have not
been provided because they were deemed unnecessary in the context of
the current work.

2.5.2 Buffer example

The following example serves two purposes. The first is to illustrate how
CSP processes are presented in the thesis, and the second is to define two
buffer processes that will be used in later chapters.

Define 𝑛 processes as follows. 𝑃𝑖 = in.𝑖?𝑥 → out.𝑖!𝑓 (𝑥) → 𝑃𝑖. Each 𝑃𝑖 process
accepts input on an input channel in.𝑖 and emits on the output channel
out.𝑖, the value of function 𝑓 applied to the input. These 𝑛 processes may
run independently and concurrently as ⫴𝑖=1..𝑛𝑃𝑖. Say one wants to provide
an interface to these processes via a single channel, such that a process may
send data to any one of the 𝑃𝑖 processes via this channel. The name DBUFF stands

for ‘distributing buffer’.

To achieve this –
and to also add buffering capabilities – define a process DBUFF as follows.
Its CSP definition is adapted from buffer definitions given in classical texts
such as Roscoe (2010).

DBUFF is parameterised by its size, the number of output channels, and
a sequence representing its current contents. It receives elements from a
channel left, provided that it is not full. If not empty, it may emit the least
recently stored element on any available one of an array of right.𝑖 channels
with . If more than one such channel is available, the choice of channel
may be made arbitrarily.

DBUFF(𝑠, 𝑁, 𝑛) =
if 𝑠 = ⟨⟩ then

left?𝑥 → DBUFF(⟨𝑥⟩,𝑁, 𝑛)
else if len(𝑠) < 𝑁 then

left?𝑥 → DBUFF(𝑠 ⟨𝑥⟩,𝑁, 𝑛)
2 right?𝑖∶{1, 2,… , 𝑛}!head(𝑠) → DBUFF(tail(𝑠),𝑁, 𝑛)

else
right?𝑖∶{1, 2,… , 𝑛}!head(𝑠) → DBUFF(tail(𝑠),𝑁, 𝑛)

One may define a similar buffer process MBUFF The nameMBUFF stands
for ‘multiplexing buffer’.

that receives elements
from an array of left.𝑖 channels. These elements are then emitted in FIFO
order on a single right channel.

MBUFF(𝑠, 𝑁, 𝑛) =
if 𝑠 = ⟨⟩ then

left?𝑖∶{1, 2,… , 𝑛}?𝑥 → MBUFF(⟨𝑥⟩,𝑁1)
else if len(𝑠) < 𝑁

left?𝑖∶{1, 2,… , 𝑛}?𝑥 → MBUFF(𝑠 ⟨𝑥⟩)
2 right!head(𝑠) → MBUFF(tail(𝑠),𝑁1)
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else
right!head(𝑠) → MBUFF(tail(𝑠),𝑁1)

Let PROC = ⫴𝑖=1..𝑛𝑃𝑖. One may compose PROC with instances of DBUFF
and MBUFF to form a process BUFFP that receives input on a single chan-
nel and emits results on a single channel. This idea is depicted in the fol-
lowing diagram.

P1

P2 BUFF2

Pn

BUFF1

BUFFP

⋮

outputinput

The buffer, BUFF1 in the diagram, may be described by an instance of
DBUFF. Let

BUFF1 = 𝑎.DBUFF(⟨⟩, 𝑁𝑎, 𝑛)⟦input/𝑎.left⟧.

The buffer is initially empty ⟨⟩, has capacity 𝑁𝑎, and may synchronise on
𝑛 output channels. The labelling by 𝑎 causes every event in DBUFF to be
prefixed with 𝑎 and the renaming ⟦input/𝑎.left⟧, causes the input channel
𝑎.left to become input. One may then connect the output channels of BUFF1
and the input channel of PROC by using the link parallel operator:

T = BUFF1 [𝑎.right↔ in]PROC.

In a similar fashion,

BUFF2 = 𝑏.MBUFF(⟨⟩, 𝑁𝑏, 𝑛)⟦output/𝑏.right⟧.

This buffer may then be linked to process 𝑇 to form

BUFFP = 𝑇 [out↔𝑏.left]BUFF2.

In the ‘vertical style’, the same may be expressed in one process definition
as:

BUFFP =
𝑎.DBUFF(⟨⟩, 𝑁𝑎, 𝑛)⟦input/a.left⟧

[𝑎.right↔ in]
PROC

[out↔𝑏.left]
𝑏.MBUFF(⟨⟩, 𝑁𝑏, 𝑛)⟦output/𝑏.right⟧
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This style is employed in the later chapters.

Note, therefore, that the overall effect of BUFFP is to accept data on channel
input, to store it in a buffer whose state is reflected in the first parameter
of the DBUFF process, to have that data passed on via 𝑃𝑖 processes to the
buffer whose state is reflected in the first parameter of the MBUFF process,
and then to subsequently have that data removed by some external process
interacting through the output channel.

2.6 Go overview

Go is a compiled, statically typed language providing concurrency features
and garbage collection. According to the Go FAQ (2016), Go was conceived
at Google by Robert Griesemer, Rob Pike, and Ken Thompson in Septem-
ber 2007. Russ Cox joined in 2008 and Go was publicly released as an open-
source project in November 2010.

Pike (2012b) states that the main design goal of the new language was
to eliminate cumbersomeness in systems programming. He mentions,
among other things, the following issues: long compilation times, uncon-
trolled dependencies, poor source code documentation, and cost of up-
dates. Go is an attempt to combine the ease of programming of an in-
terpreted, dynamically typed language with the efficiency and safety of a
statically typed, compiled language. They wanted a language that works at
scale, is familiar, and modern—meaning that is should support networked
computing and concurrency.

To keep the language familiar, Go’s syntax is C-like. Declarations are, how-
ever, in the style of Pascal in that the name goes before the type and there
is a keyword var. It also contains ideas from languages that were inspired
by CSP, namely the languages Limbo (Kernighan 2005; Ritchie 2005) and
Newsqueak (Pike 1990).

From the Go Language Specification (2016) it can be seen that the language
contains only 25 keywords. The grammar is also fairly small, allowing for
a simple parser.

Go’s approach to visibility of identifiers is a bit different from current con-
ventions. Instead of keywords like public and private, the visibility in-
formation is contained in the name of the identifier. If the first character
of the identifier is a capital, then the identifier is exported (public). If not,
then the identifier is not exported.

Go semantics is also very C-like. However, many small changes have been
made in the service of robustness. These include:

• There is no pointer arithmetic,

33

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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• there are no implicit numeric conversions,

• array bounds are always checked,

• there are no type aliases (after type T int, T and int are distinct types
and not aliases),

• ++ and -- are statements not expressions,

• an assignment is not an expression, and

• it is legal to take the address of a stack variable.

Go has no explicit memory-freeing operation: the only way allocated
memory returns to the pool is through the garbage collector.

Go takes an unusual approach to object-oriented programming, allowing
methods on any type, not just classes, but without any form of type-based
inheritance like subclassing. This means there is no type hierarchy. It uses
structs rather than classes.

The concurrency features of Go are inspired by CSP. Hence Go includes
first class channels that may be synchronous or asynchronous. Processes
interact via channels which allows for the concurrent composition of inde-
pendently executing functions of regular procedural code. Concurrently
running functions are called goroutines. Goroutines are multiplexed onto
threads by the Go runtime.

Unlike pure functional languages, Go does not take a write-once approach
to value semantics in the context of concurrent computation.

The remainder of the section provides examples of Go code that illustrates
the syntax and semantics of the language. These examples should be suffi-
cient to cover the features that are used by the code fragments in later
chapters.

Hello world

The following program prints the string "Hello world!" on the con-
sole.

1 package main

2 import "fmt"

3 // This is a comment.

4 func main() {

5 fmt.Println("Hello world!")

6 }
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The first line is the package declaration. Every Go file needs such a pack-
age declaration. The entry point to a Go program is the function main in
package main. Line 2 imports the package fmt. Once imported, one may
use any of the package’s exported identifiers by prefixing the name of the
package to the identifier. For example, calling Println Note that Println was

exported by the fmt
package since its first
letter is in upper case.

on line 5 is prefixed
by fmt.

Declarations

The following code fragment illustrates a number of declarations. Note
how variable declarations follow the Pascal tradition of identifier before
type.

1 var i int // Integer

2 var pointer1 *float // Pointer to a float

3 pointer2 := &i // Pointer to i

Pointers types are indicated using asterisks and & is the “address-of” oper-
ator. Line 3 shows an example of Go’s short-hand for declaring and initial-
ising a variable in one step using the := operator. The type of the variable
is determined by the type of the right-hand operand.

The next code fragment illustrates an unusual Go feature—functions may
return multiple values. In this case the function returns both an int and
a bool. The example goes further to also show the use of multiple assign-
ment and to show that Go’s switch statement is more general than C’s.

1 func f(a, b int) (int, bool) { // Specify return types.

2 ret, flag := 0, false // Declare and init variables.

3 switch {

4 case a == b:

5 ret, flag = 0, true // Use multiple assignment.

6 case a < b:

7 ret, flag = a, false

8 case a > b:

9 ret, flag = b, false

10 }

11 return ret, flag // Return the values.

12 }

13 min, equal := f(10, 5) // Call the function.

14 _, equal = f(12,1) // Ignore one return value.

In Go, the expression cases in a switch statement are evaluated top to bot-
tom and the first one that matches is executed. There is no automatic fall-
through.
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In the final two lines of the fragment, the function is called. If one is not
interested in one of the returned values, one may use the empty identifier
_ to discard the value.

Arrays, slices, and maps

In Go, an array is a fixed-length numbered sequence of elements of the
same type. The length of the array is part of the type. The declaration
var a [5]int declares an array of 5 integers. The first element is a[0] and
the last is a[len(a) - 1].

A slice grants access to a contiguous segment of an underlying array. The
length of a slice may change. To create a slice with a length of 5 integer ele-
ments x := make([]int, 5). The underlying array is created and accessed
through x. It is also possible to create a slice for which the underlying array
is larger than the slice by passing a third parameter to make. For example,
consider y := make([]int, 5, 10). Here, the third parameter is the capa-
city of the underlying array. Another way to create a slice is by using the
slice operator on a slice or an array. For example, x := a[low:high] creates
a slice from a[low] to a[high - 1]. It is possible to omit one or both of the
variables. a[:high] is the same as a[0:high] and a[low:] is the same as
a[low:len(a)].

The built-in function append is used to grow a slice by adding new ele-
ments.

To iterate through a slice one may use the following construct:

for i,e := range x {

fmt.Println("x[", i, "] = ", e)

}

In each iteration, i is the index position of element e, that is x[i] = e.

Another structure that is often used is a map, also sometimes called an asso-
ciative array or a hash table. It is an unordered collection of key-value pairs.
The example below declares on line 1 a map from strings to integers.

1 x := make(map[string]int)

2 x["key"] = 10

3 fmt.Println(x["key"])

Line 2 assigns integer value 10 to the key "key". The built-in function
delete is used to remove elements from a map. If a key is not found, Go
return a zero value for the value type. To distinguish between a zero value
and an absent value, Go allows the programmer to test whether a key is
present in the map as shown below.
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if val, ok := x["Missing"]; ok {

fmt.Println(val)

}

The statement between the if and the semicolon is executed before the
if-statement is evaluated. If x["Missing"] is not present, the Boolean vari-
able ok is false and val is the zero value. If the key is present, ok is true

and val may be used.

Object orientation

Go supports object-oriented programming. One may create objects and
call methods on them. However, Go does not provide classes and a class
hierarchy. Instead structures are defined and methods may be defined on
any type. The following code fragment defines a structure consisting of a
slice of integers and an integer.

1 type Structure struct {

2 data []int

3 i int

4 }

One may create instances of these structures in a number of ways. One pos-
sibility is to create a literal structure: s := &Structure{make([]int,100),0}.
A more object-oriented approach would be to define a constructor for the
new type.

1 func NewStructure(size int) *Structure {

2 this := new(Structure)

3 this.data = make([]int, size)

4 this.i = 0

5 return this

6 }

The constructor takes an integer size as argument and initialises the fields
of the structure. The constructor returns a reference to the newly created
object.

One may also define methods for the new type. A method declaration
is essentially a function declaration, but, unlike a standard function de-
claration, a method declaration has a receiver that specifies the type to
which this method belongs. In the code below, the receiver declaration
is (this *Structure).
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1 func (this *Structure) Insert(e int) {

2 this.data[this.i] = e

3 this.i++

4 }

Here an instance of the structure is created and the method is invoked.

1 s := NewStructure(10)

2 s.Insert(1)

Concurrency features

Two important features here are goroutines and channels. A goroutine is
a function that may run concurrently with other functions. To start a
goroutine, the keyword go is placed before a function invocation: go f().
These goroutines are multiplexed onto operating system threads by the Go
runtime engine. The maximum number of such threads may be set using
GOMAXPROCS.

Channels allow goroutines to communicate and synchronise. A channel
type is specified by the keyword chan and the type of the items to be
passed over the channel. In the following, two channels for integers are
created.

c1 := make(chan int)

c2 := make(chan int, 10)

The first channel is synchronous. That means that a send and a receive
need to occur together. A send can only complete when a corresponding
receive occurs. The sender or receiver will block until such time as the
corresponding operation occurs.

The second channel is buffered and hence asynchronous. The capacity is
given as the second argument to make. As long as there is space in the
buffer, a send will succeed. However, when the buffer is full, the send will
block until space becomes available. Similarly. a receive will succeed as
long as there are elements in the buffer and block on an empty buffer.

To send and receive on a channel the <- operator is used. out <- 5 means
“send 5 on channel out”. Receive is similar: n = <- cmeans receive a value
from channel c and store it in variable n.

Go also provides a multi-way communications mechanism through the
select statement. It is similar to a switch statement, but for channels. If
more than one communication is possible the runtime arbitrarily selects a
case. If no cases are ready, the statement blocks. To achieve non-blocking
communication, a default case may be added. It is selected if no other case
is ready for communication.

38

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2 Background

1 select {

2 case a := <-chanA:

3 // Received something into a

4 case b := <-chanB:

5 // Received something into b

6 case chanC <- c:

7 // Sent c

8 }

When declaring channel variables, it is possible to assign direction to the
channel. Consider the following function definition.

1 func f(in <-chan int, out chan<- int) {

2 for n := range in

3 out <- n

4 }

5 }

The function takes two channels as arguments. One may only be received
from and the other may only be sent upon. One may use the range of the
channel to repeatedly receive elements from the channel. The loop termin-
ates when the channel is closed by calling close.

Go provides another form of synchronisation through a special WaitGroup
structure. A WaitGroup waits for a collection of goroutines to finish execut-
ing. A driver goroutine calls Add to set the number of goroutines for which
to wait. Each of the goroutines then runs and calls Done when finished.
At the same time, Wait can be used to block the driver until all goroutines
have finished.

The following code fragment illustrates the use of such a WaitGroup.

1 var wg sync.WaitGroup

2 for _, task := range taskList {

3 // Increment the WaitGroup counter.

4 wg.Add(1)

5 // Launch a goroutine to do work.

6 go func(n int) {

7 // Decrement the counter when finished.

8 defer wg.Done()

9 // Do work.

10 doWork(n)

11 }(task)

12 }
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13 // Wait for all goroutines to complete.

14 wg.Wait()

2.7 Parallel computing

This section gives a brief overview of the parallel computing landscape in
general and provides more detail on shared memory multiprocessor com-
puters in particular. Recall that concurrency refers to the logical concepts
of overlapping processes and parallelism refers to the physical concept of
simultaneous execution of computations. Consequently, this section fo-
cuses on hardware. One class of computer is discussed in more detail and
the section closes with a brief overview of a particular Intel® This processor is the same

as the one used to run the
performance experiments
reported in the later
chapters.

Xeon® pro-
cessor.

2.7.1 The hardware landscape

It is possible to classify computer hardware in many ways. Here, the
presentation follows Hennessy and Patterson (2011) and first lists classes of
computers and then different classes of parallelism. The following classes
of computers may be identified. These range from small embedded devices
to large collections of computers.

Personal mobile devices These are small portable devices such as cellu-
lar phones and tablet computers. Important factors to consider are
cost and energy efficiency, since these devices are typically powered
by batteries. Responsiveness is a valued performance measure.

Desktop computing Devices range from low-end netbooks to high-end
workstations. The trend is moving towards more battery operated
laptop computers. Here the price-performance ratio is important.
High-end gaming stations require a lot of performance, but price is
an important factor since these devices are usually used by a single
person.

Servers In the 1980s a shift from mainframe computing to desktop com-
puting occurred and the role grew of servers to provide larger-scale
file and computing services. Nowadays servers form the backbone
of large-scale enterprise computing although there is a movement
towards so-called cloud computing. For servers, availability and
scalability are critical requirements. It is important to be able to scale
a server as demand increases. Responsiveness to individual requests
remains important. However, overall transaction throughput and
cost-effectiveness are key.
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Clusters Clusters are collections of desktop computers or servers connec-
ted via a local area network to act as single larger computer. Each
node in the cluster runs its own operating system and communicates
with others via communication protocols. When the nodes are com-
modities such as headless workstations or blade servers, the cluster
is called a commodity cluster. On the other hand, in custom clusters, the
nodes and the interconnect are customised and more tightly integ-
rated.

Very large clusters are called warehouse scale computers. These may be
used to provide services in the “cloud”. Large-scale multiprocessors
for scientific applications are often built using the custom cluster ap-
proach.

Embedded computers are lodged in other devices such as microwaves,
printers and even cars. These computers are purpose-specific and
do not have the ability to run third-party software. Embedded com-
puters cover a wide spread of processing power and cost.

Two basic kinds of parallelism are found in applications: data-level par-
allelism and task-level parallelism. In data-level parallelism many data
items may be operated on at the same time, whereas in task-level paral-
lelism tasks of work may be done independently and at the same time.
Computer hardware exploits these two kinds of parallelism in four major
ways:

1. Instruction-level parallelism exploits task-level parallelism at low levels
by using techniques such as pipelining In general, instructions

are executed in different
phases, e.g. fetch, decode,
and execute. During
pipelining, multiple
instructions may then
be executing at the same
time, but in different
phases.

to overlap the execution of
instructions in the processor. The hardware may discover and ex-
ploit parallelism dynamically or the compiler may identify parallel-
ism statically.

2. Vector-based approaches exploit data-level parallelism by applying a
single instruction to data in parallel. Vector instructions, graphical
processing units (GPUs), and vector architectures use this approach
to achieve parallelism.

3. Thread-level parallelism exploits data- or task-level parallelism in a
tightly-coupled hardware model that allows for interaction among
threads that execute simultaneously. These threads may be inde-
pendent or cooperating.

4. Request-level parallelism exploits parallelism among decoupled tasks
specified by the programmer or operating system.

Flynn (1966, 1972) classified computers according to the number of instruc-
tion streams and data streams that can be active in the processor during
processing. He placed all computers into one of four categories: SISD,
SIMD, MISD, and MIMD—each of which is described below.
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Single instruction stream, single data stream (SISD) A uniprocessor
machine conforms to this description. Programmers think of their
programs as if they execute in sequential terms. The machine may,
however, make use of instruction-level parallelism techniques such
as superscalar A superscalar processor

may execute more than
one instruction in a clock
cycle by dispatching
multiple instructions to
different ALUs.

execution (Smith and Sohi 1995).

Single instruction stream, multiple data streams (SIMD) The same in-
struction is executed by different processors using different data
streams. These computers thus exploit data-level parallelism. Ex-
amples of the SIMD approach include vector architectures, multime-
dia extensions to standard instruction sets, and GPUs.

Multiple instruction streams, single data stream (MISD) Multiple in-
structions operate on a single data stream. According to Hennessy
and Patterson (2011), no commercial multiprocessor of this type has
been built.

Multiple instruction streams, multiple data streams (MIMD) Each
processor fetches its own instructions and operate on its own data.
These computers exploit task-level parallelism and are more flexible
than SIMD computers, although at the expense of more overhead.
Tightly coupled MIMD computers, such as multiprocessors and mul-
ticores, exploit thread-level parallelism with cooperating threads
running in parallel. Loosely coupled MIMD computers—clusters—
exploit request-level parallelism where tasks require little to no
interaction.

Modern computers do not fall neatly into one of the above classes—they
are typically hybrids of one or more classes.

The focus in this thesis is on tightly coupled MIMD computers, in particu-
lar multicores, which are explored further below.

2.7.2 Multiprocessors and multicores

Hennessy and Patterson (2011) define a multiprocessor as a computer con-
sisting of tightly coupled processors that share memory through a shared
address space and that are under the coordination and control of a single
operating system. Such computers range in size from two to dozens of pro-
cessors, communicating and coordinating through shared memory. Multi-
processor computers also include single-chip systems with multiple cores,
multicores, as well as systems with multiple chips, each of which may be a
multicore.

Existing multiprocessors may be divided into two classes. The first class
consists of so-called symmetric multiprocessors (SMPs). An SMP features
a small number of processors and a single, centralised memory. Each of its
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processors has equal access to this centralised memory. Such an architec-
ture is only feasible if the number of processors is reasonably small. Since
the processors all have uniform latency to memory, SMP architectures are
also called uniform memory access (UMA) multiprocessors. Current mul-
ticores are typically examples of SMPs. A multi-chip system may also be
an SMP.

Processor

Private
cache

Processor

Private
cache

Processor

Private
cache

Processor

Private
cache

Shared
cache

Main memory I/O system

Figure 2.1: Basic structure of a symmetric multiprocessor as found in a multicore
chip.

Figure 2.1 shows a typical SMP configuration in a multicore chip. For
multi-chip systems, the shared cache would not be present and the inter-
connections from processors to memory would be between chips and not
within a single chip.

The second class of multiprocessor systems has physically distributed
memory and are called distributed shared memory (DSM) multipro-
cessors. Memory is distributed among processors in order to support lar-
ger processor counts. Because the distributed nature of such system re-
quires fast interconnections, standard buses are replaced by more sophist-
icated interconnection networks. Figure 2.2 shows the basic structure of a
DSM multiprocessor with four chips. Although each processor shares the
entire memory, access times to local memory is faster than access times to
remote memory. Hence these systems are also called non-uniform memory
access (NUMA) machines.

Note that in both SMP and DSM cases all processors can access memory
locations in all memories—it is only the access times that differ. This is
different from clusters, where one processor cannot directly access the
memory of another processor, but requires additional software support,
like message-passing protocols.
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Probably the most important performance factor in modern computer sys-
tems is the interaction between multiprocessing and the memory subsys-
tem (Drepper 2007). In these modern systems, the central processing units
(CPUs) are much faster than the random access memory (RAM). To ameli-
orate this performance disparity, caches are used to reduce memory latency.
However, in multicore systems each core may have its own cache. This re-
quires that cores should coordinate through a cache coherence protocol. A
cache coherence protocol is a mechanism to propagate a newly written data
value to a given core, thereby implementing the system’s memory consist-
ency model (Adve and Gharachorloo 1996). See Huang et al. (2013) and
Molka et al. (2015) for investigations into cache and memory performance
of two modern multiprocessors.

Multicore

Memory I/O Memory

Multicore

I/O

Interconnection network

Memory

Multicore

I/O Memory

Multicore

I/O

Figure 2.2: The basic structure of a distributed shared-memory multiprocessor.
Each processor shares the entire memory, but access times to local
memory is faster than access times to remote memory.

2.7.3 Intel Xeon E5 family

One example of DSM multiprocessors is the Intel® Xeon® E5 2600 family of
processors (Farrel 2012; Syamalakumari 2013). This section gives an very
brief overview of the processor family. This family was chosen because the
computer on which the performance experiments were conducted, utilises
one of these processors.

The processor is based on Ivy Bridge EP architecture (James 2012; Papazian
et al. 2015) with 22 nm manufacturing size.

A conceptual view is given in Figure 2.3 of a six-core member of the fam-
ily: the E5-2630 V2 (Intel 2014b, 2016b). This version allows for two sock-
ets connected via Intel® QuickPath Interconnect (QPI) (Intel 2009) links.
Each socket has four channels for local memory attachment and a local
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E5-2630 E5-2630
DDR3

4 channels
DDR3

4 channels

QPI

QPI

I/O I/O

core L1 L2

core L1 L2

core L1 L2

L3 (2.5MB)

L3 (2.5MB)

L3 (2.5MB)

L3 (2.5MB)

L3 (2.5MB)

L3 (2.5MB)

L2 L1 core

L2 L1 core

L2 L1 core

QPI I/O

Memory
controller

L1 instruction cache (32 KB) Instruction queue Decoders

Allocate/Rename/RetireBranch predictor

Scheduler

ALUALU ALU

L1 data cache (32 KB)

L2 cache
(256 KB)

in order
out of order

Figure 2.3: Conceptual view of a Xeon® E5-2630 V2 processor. The top level
shows two chips in a DSM fashion. The next level zooms into one
chip to show the multicore nature of the chip. The last level shows
the simplified internals of a single core. (Adapted from Farrel (2012,
Fig. 1, Fig. 5) and Intel (2016a, Fig. 2-5).)
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input/output controller. Due to the distributed nature of the memory at-
tachment, the system is an example of a NUMA system.

In a single socket there are six cores, each with local L1 and L2 cache. L3
cache is divided into slices, one for each core. All cores can, however,
address all slices of L3 cache. In this case the total L3 cache available is
6 × 2.5 MB = 15 MB.

A ring-style interconnect links the cores, L3 cache, input/output controller,
and integrated memory controller. The interconnect is made up of four in-
dependent rings—a data ring, request ring, acknowledge ring, and snoop
ring.

Cache coherence is ensured using the MESIF protocol (Hum and Goodman
2005). More details on the caching system may be obtained from Huang
et al. (2013) and Intel (2009, 2014a, 2016a).

Each core is a superscalar processor supporting pipelining. Multiple
ALUs thus allows for instruction-level parallelism. SIMD is supported
through vector-like instructions such as Intel® Advanced Vector Exten-
sions. Thread-level parallelism is clearly supported via multiple cores.
However, thread-level parallelism is also supported within a single core
through simultaneous multi-threading (SMT), or hyperthreading in Intel®
parlance. SMT allows a single core to run two threads in an interleaved
manner. This results in better resource utilisation, since one thread my use
available resources when the other is delayed. The threads do not truly
run in parallel since they share almost all the processing resources in the
core—it is only the state registers that are duplicated.

Intel® provides many features that may be enabled or disabled in the pro-
cessor. The following performance-related features are enabled by default
in an “out-of-the-box” configuration.

• Multicore support, i.e. all six cores are enabled.

• Intel® SpeedStep™. The processor’s clock speed may be changed dy-
namically by software.

• C-States. Enables additional processor sleep states.

• Intel® TurboBoost™ allows for increasing the processor’s clock rate
depending on energy and thermal limits, as well as the number of
active cores.

• Intel® HyperThreading enables SMT as described above.

• Cache prefetching. The hardware prefetcher automatically fetches
data and code for the processor. When a cache line is requested the
prefetcher also retrieves the adjacent cache line.
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The preceding discussion demonstrates the architectural complexity of the
multicore machine used for performance comparisons. No doubt, per-
formance is affected by the way in which the various architectural com-
ponents interact with respect to cacheing, hyperthreading, scheduling, etc.
Such interactions are determined by the underlying hardware and op-
erating system and lie largely outside of the control of the applications
programmer. This holds irrespective of whether the applications are de-
veloped as conventional sequential programs or in a process-based fashion.
While this thesis is concerned with comparing the performance of sequen-
tial solutions against process-based solutions, it was considered beyond
the scope of the thesis to seek explanations for such differences in terms of
the interaction of the architectural components of the multicore machine.
Consequently, the system was left at its factory settings for the purposes of
this study.
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3 Aho-Corasick failure function
construction

I have no data yet. It is a capital mistake to
theorise before one has data. Insensibly one
begins to twist facts to suit theories, instead
of theories to suit facts.

Sherlock Holmes

Multiple keyword pattern matching involves finding all occurrences in a
text 𝑇 of a set of keywords 𝐾 over an alphabet Σ. One finite automaton-
based solution to this problem is due to Aho and Corasick (1975). Their
algorithm constructs a special kind of string matching automaton from 𝐾
and then uses the automaton to find indices of 𝑇 at which elements of 𝐾
occur.

This chapter begins by outlining in Section 3.1 the classical sequential al-
gorithm for computing the Aho-Corasick (AC) failure function as well as
the sequential algorithm that uses this function for multiple keyword pat-
tern matching. The purpose of providing the sequential algorithm is to
indicate what parts were parallelised. It is not meant to describe or justify
fully the AC algorithm. Full details may be found in Aho and Corasick
(1975). Thereafter, Section 3.2 offers four alternative CSP descriptions to
show how the failure function could be computed in a process-based fash-
ion. Since the algorithm lends itself to a data-parallel implementation, Sec-
tion 3.3 briefly mentions how this may be implemented. Section 3.4 then
shows how these process-based descriptions are implemented in Go. Fi-
nally, Section 3.5 reports on the performance of the implementations and
shows how a small refinement on the initial process-based implementa-
tions results in significant speedup improvements.

3.1 Sequential AC algorithm

To match the set of keywords 𝐾 = {𝑦1, 𝑦2,… , 𝑦𝑘}, a classical algorithm for
constructing an automaton from a given regular expression (B. W. Wat-
son 1993) could be applied to the regular expression Σ∗(𝑦1 ∪𝑦2 ∪⋯∪𝑦𝑘)Σ∗.
The resulting automaton could then be used as the basis for matching the
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3 Aho-Corasick failure function construction

multiple keywords in 𝐾. Aho and Corasick (1975, Section 6) and B. W.
Watson (1995, Section 4.3) show such DFA-based approaches. The AC al-
gorithm discussed here also uses an automaton-based approach. However,
it deviates from the classical DFA approach in that it builds an automaton
described by two transition functions. For this reason, this chapter em-
ploys the terminology of Aho and Corasick (1975) rather than that of Sec-
tion 2.3.

In the description of the algorithm, the automaton’s states are represen-
ted by numbers, zero being the initial state. Two transition functions are
required: a so-called “goto” function The function 𝑔 corres-

ponds with the transition
function in a DFA, usually
denoted with 𝛿.

, 𝑔, and a failure function, 𝑓. The 𝑔
function is total, mapping every (state, character) pair either to a state or to
a special label ⊥. The failure function 𝑓 is a state to state mapping. Both of
these functions will be explained in more detail below. A function output
associates a (possibly empty) set of keywords with each state. A state 𝑞 for
which output(𝑞) ≠ ∅ is an accepting state.

Before scanning the text 𝑇, the algorithm requires that the functions 𝑔, 𝑓 and
output be constructed (each typically implemented as a finite set of pairs
from the respective function’s domain and range). A brief explanation of
their construction will be provided later. Assuming at this point that their
construction has taken place, a left-to-right sweep through 𝑇 takes place.
For each character of 𝑇 that is examined, the automaton goes from its cur-
rent state to a next state via one of two kinds of transitions: a goto transition,
where 𝑔 determines the next state; or a failure transition, where 𝑓 determines
the next state.

Suppose that the current state is 𝑞 and the current character to be examined
is 𝑇𝑖. If (𝑔(𝑞, 𝑇𝑖) = 𝑞′) ∧ (𝑞′ ≠ ⊥), then a goto transition is made and 𝑞′

becomes the new current state. On the other hand, if 𝑔(𝑞, 𝑇𝑖) = ⊥ then
the failure function is used to determine the new current state. This new
current state is provisionally set as 𝑞′ = 𝑓 (𝑞). However, both in theory
and in practice, it is possible that in this new current state, 𝑔(𝑞′, 𝑇𝑖) = ⊥
continues to hold. In such a case, it is necessary to move the next new
current state to 𝑞″ = 𝑓 (𝑞′), etc. In other words, before arriving at a current
state from which a goto transition can be made, it might be necessary to
make a sequence of failure function transitions.

Pseudocode Here and elsewhere,
pseudocode is provided
in the GCL developed by
Dijkstra. See Section 2.4
for details.

for the algorithm is shown in Algorithm 3.1. The goto and
failure functions are computed respectively by the functions computeG and
computeF. In each case, they augment the output function as needed. In the
pseudocode, q represents the current state of the automaton and i repres-
ents the index of the current character of the text, 𝑇𝑖.

As will be seen in the algorithm, a do-loop is used to move along a se-
quence of failure function transitions. For as long as this loop’s condition,
𝑔(𝑞, 𝑇𝑖) = ⊥, continues to hold, a failure transition is made, as expressed by
the assignment statement in the loop’s body, 𝑞 ≔ 𝑓 (𝑞). Once 𝑔(𝑞, 𝑇𝑖) ≠ ⊥
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3 Aho-Corasick failure function construction

Algorithm 3.1 (AC pattern matching):
proc 𝐴𝐶(Σ,𝐾, 𝑇) →

{ Construct automaton. }
⟨𝑔, output⟩ ≔ computeG(𝐾);
⟨𝑓 , output⟩ ≔ computeF(Σ, 𝑔, output);
{ Use automaton to do matching. }
𝑞 ≔ 0;
for (𝑖 ∶ 0 . . |𝑇| − 1) →

do (𝑔(𝑞, 𝑇𝑖) = ⊥) → 𝑞 ≔ 𝑓 (𝑞) od;
𝑞 ≔ 𝑔(𝑞, 𝑇𝑖);
if (output(𝑞) = ∅) → skip
⫾ (output(𝑞) ≠ ∅) → print(‘Match ending at ’, 𝑖);

print(output(𝑞))
f i

rof
corp

2

holds, the loop terminates and the transition 𝑞 ≔ 𝑔(𝑞, 𝑇𝑖) is made. At this
point this new current state is tested by the 𝑜𝑢𝑡𝑝𝑢𝑡 function to determine
whether a match has been found.

3.1.1 How computeG computes the goto function

In Algorithm 3.1 it was seen that computeG(𝐾) returns both the
goto function and the partially defined output function. Note that
computeF(Σ, 𝑔, output) is subsequently called and it, in turn, returns the
fully-defined function output.

Instead of providing full algorithmic details of how computeG(𝐾) determ-
ines the goto function, 𝑔, and partially completed output function from
a given keyword set, 𝐾, this subsection walks through a small example
that sufficiently illustrates the broad algorithmic ideas for the purposes at
hand.

The goto function, 𝑔, represents a trie Trie is the term used
for a deterministic finite
automaton graph that is a
tree. See Def. 2.36.

such that 𝑔(𝑞, 𝑇𝑖) = 𝑞′ if and only if
an arc labelled by 𝑇𝑖 exits state 𝑞 and enters state 𝑞′. If, instead, 𝑔(𝑞, 𝑇𝑖) = ⊥
then there is no arc labelled 𝑇𝑖 exiting state 𝑞.

computeG(𝐾) may be seen as incrementally building up this trie. Each new
keyword is added into the trie to date by following the longest possible
path in the trie that corresponds to a prefix of the current keyword. The
suffix that remains of the keyword is then entered by adding a new branch
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3 Aho-Corasick failure function construction

in the trie that starts at the state at which the longest prefix path of the
keyword ended.

0start 1 2 8 9

6 7

3 4 5

h

s

Σ ⧵ {h, s}

e
i

r s

s

h e

DL3

𝑞 output(𝑞)
2 {he}
5 {she}
7 {his}
9 {hers}

Figure 3.1: Trie for the keywords in 𝐾 = {he, she, his, hers}. DL3 = {5, 7, 8} is the
set of states at depth 3.

Consider the example trie in Figure 3.1 representing the keyword set 𝐾 =
{he, she, his, hers}. Initially the trie consists of the root state, 0, alone.
When the first keyword, he, is entered, no prefix of he exists in the trie
and the new states 1 and 2 are created with transitions on the correspond-
ing symbols. The second keyword to be added is she. Again, since there is
no prefix of she already in the trie, the new states 3, 4, and 5 are created to
form a path from the root, 0. When his is entered, the prefix h is already in
the trie and the rest of the keyword is appended to the trie with a split at
state 1. When hers is added, the prefix he is already in the trie at state 2, so
the rest of the keyword is appended there. After inserting all the keywords,
a loop is added at the root to itself on all the alphabet characters for which
there are no transitions out of the root. Note that the absence of transition
on an alphabet character at a state indicates a transition to ⊥. For example,
𝑔(2, 𝑎) = ⊥.

Figure 3.1 shows the trie On adding the loop at the
trie’s root, the structure
is strictly no longer a trie
since the root is now a
confluence. However, the
term trie still will be used
to refer in the text to this
structure.

after the keywords in 𝐾 have been inserted and
the loop at the root added. At this stage the output function can be defined
as shown on the right hand side of Figure 3.1. The function indicates for
each state 𝑞 the set of keywords in 𝐾 that start at the root and end at 𝑞. Not
shown in the figure is that output(𝑞) = ∅ for 𝑞 = 0, 1, 3, 4, 6, 7 and 8. Indeed,
once the trie has been built, for any state, 𝑞, output(𝑞) will either be ∅ or
a singleton set. It is only during later construction of the failure function
that a state may possibly be identified as a final state for more than one
keyword.

Recall from Definition 2.55 that the depth of a state 𝑞, ⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(𝑞), is the length
of the shortest path Shortest since a path that

loops over the root before
following a path to 𝑞 is
excluded.

from the start state to 𝑞. In Figure 3.1 one finds that
⃖⃖ ⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(5) = ⃖⃖⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(7) = ⃖⃖⃖⃖ ⃖⃖ ⃖ℒ|𝑚𝑖𝑛|(8) = 3. Also, from Definition 2.56, refer to the
set of states at depth 𝑑 as DL𝑑. The figure shows that the states in DL3 =
{5, 7, 8}.
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3 Aho-Corasick failure function construction

Note also from the figure that one may uniquely associate a state with the
string that is spelled out along the shortest path from root to that state.
Hence one may legitimately speak, for example, of a prefix or suffix of a
state’s string. For example, hi is the string of state 6, and s is a prefix of the
string of state 4, that string being sh. Examples of state suffices are h and
he, which are suffices of state 3.

3.1.2 Computing the failure function

After Algorithm 3.1 has called computeG to compute the goto functin, 𝑔, the
next step in constructing the AC machine is to construct the failure func-
tion, 𝑓. Notice in Algorithm 3.1 that 𝑓 is returned by the function computeF
and it is called immediately after computeG has run. It will be seen be-
low that computeF does a level-order traversal of the trie constructed by
computeG(𝐾). The function 𝑓 is designed to record that a suffix of a state’s
string is also a prefix of some other state’s string. Thus, 𝑓 (𝑞) = 𝑝 means that
a suffix of state 𝑞’s string is also a prefix of state 𝑝’s string. For example, in
Figure 3.1, 𝑓 (5) = 2. However, since there may be several suffixes of 𝑞’s
string and several states whose prefixes meet this criterion, the definition
of 𝑓 requires that the longest possible suffix of 𝑞’s string should be used. This
ensures that there is only one possible state, 𝑝, in the trie whose prefix cor-
responds to that suffix.

Algorithm 3.2 lists GCL pseudocode for the function computeF. This func-
tion constructs 𝑓 and also updates output. (Note that before being passed
to computeF as a parameter, output(s) would have been assigned initial val-
ues for each state, 𝑠, in the prior call to computeG.) The construction of 𝑓
proceeds in two distinct phases.

In a first phase, computeF identifies DL1, the states that directly descend
from the root state, 0 (excluding the root itself). In the example, DL1 =
{1, 3}. These states are then enqueued so as to be processed in the second
phase of the function. Additionally, all these states are assigned failure
transitions back to the root.

The second phase of computeF processes the rest of the trie in a level-order
fashion. This is achieved by using a FIFO queue to store states for pro-
cessing. When a state is removed from the head of the queue, two actions
take place.

• The first is to find the state’s direct descendants, if any, and to en-
queue them in the tail (i.e. to compute 𝑠 = 𝑔(𝑟, 𝑎) and assign 𝑠 to the
queue provided 𝑠 ≠ ⊥). As a consequence, queue starts off with states
only from a given level, DL𝑑, but these are progressively dequeued
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3 Aho-Corasick failure function construction

Algorithm 3.2 (Constructing the failure function):
func computeF(Σ, 𝑔, output) →

queue ≔ ∅;
{ Phase 1: Build first level, i.e. DL1 in queue. }
for each (a ∈ Σ) →

𝑠 ≔ 𝑔(0, 𝑎);
if (𝑠 = 0) → skip
⫾ (𝑠 ≠ 0) → queue.enqueue(s);

𝑓 (𝑠) ≔ 0
f i

rof ;
{ Phase 2: Determine DL𝑑 from DL𝑑−1. }
do (queue ≠ ∅) →

{ Invariant: ∀ℓ ∈ queue ∶ 𝑓 (ℓ) has been defined }
𝑟 ≔ queue.dequeue();
for each (a ∈ Σ) →

𝑠 ≔ 𝑔(𝑟, 𝑎);
if (𝑠 = ⊥) → skip
⫾ (𝑠 ≠ ⊥) → 𝑞 ≔ 𝑓 (𝑟);

do (𝑔(𝑞, 𝑎) = ⊥) → 𝑞 ≔ 𝑓 (𝑞) od;
{ 𝑔(𝑞, 𝑎) ≠ ⊥ }
𝑓 (𝑠) ≔ 𝑔(𝑞, 𝑎);
queue.enqueue(s);
output(𝑠) ≔ output(𝑠) ∪ output(𝑓 (𝑠))

f i
rof
{ (𝑟 /∈ queue) ∧ (Succ(𝑟) ∈ queue) ∧ Invariant }

od;
return ⟨𝑓 , output⟩

cnuf

2
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3 Aho-Corasick failure function construction

from its head and states from DL𝑑+1 are enqueued to its tail. Eventu-
ally queue will contain states only from DL𝑑+1 and these will be pro-
cessed from the front of queue with states from DL𝑑+2 being added to
the back, etc. In this way, states are processed one level at a time.

• The second is to update 𝑓 and output respectively. When the queue is
empty, 𝑓 and output are returned.

From the perspectives of this study, the precise details of how 𝑓 and output
are constructed are of secondary importance. For completeness, Figure 3.2
shows their final values for the running example, 𝑓 being represented by
the dashed arrows in the graph and output being shown in the table in the
figure. A formal derivation of computeF can be found in B. W. Watson and
Zwaan (1993), albeit in slightly different notation to Algorithm 3.2.

0start 1 2 8 9

6 7

3 4 5

h

s

Σ ⧵ {h, s}

e

i

r s

s

h e

𝑞 output(𝑞)
2 {he}
5 {she, he}
7 {his}
9 {hers}

Figure 3.2: Example trie with failure transitions included. Solid lines represent
goto transitions and dashed arcs represent failure transitions.

What is important is to note the following features about the
for each loop:

• First, the order of selection of elements from Σ is unimportant, in-
dicating that the various iterations of the loop’s body could execute
concurrently, so long as concurrent updates to the queue are man-
aged safely.

• Second, from Aho and Corasick (1975, Lemma 1) it can be shown that,
in the loop’s body, there is never a reference to 𝑓 values of states still
in the queue. Instead, only 𝑓 values of states already dequeued are
referenced. Put differently, 𝑓 values of states at depth 𝑑 depend only
on 𝑓 values of states at depth less than 𝑑. This indicates that it is pos-
sible to process the trie in level order, and to process concurrently the
states within a level. In Section 3.2, CSP is used to describe various
process-based architectures that exploit this opportunity for concur-
rency.
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3 Aho-Corasick failure function construction

3.2 Process-based decomposition of the failure
function construction

Section 3.1 describes that the failure function construction should happen
one trie level at a time, but that the states within a level may be processed
concurrently. This section describes an approach in which the algorithm
is decomposed into communicating processes; hence the use of CSP to de-
scribe the implementations.

Assume that 𝐿𝑑 To streamline the notation
and narrative, level will be
used for depth level and
𝐿𝑑 will mean DL𝑑.

represents the set of states at trie depth 𝑑 and that
LAUNCHER(𝐿𝑑) is a process responsible for launching worker processes
associated with each of these states. As a first conceptual approximation,
what one wants is the following sequential composition of n processes:
LAUNCHER(𝐿1);LAUNCHER(𝐿2);⋯ ;LAUNCHER(𝐿max) where 𝐿max is the
deepest level of the trie. Using WORKER(𝑠) to represent the process that
does the work associated with an arbitrary state 𝑠, one could then model the
concurrent and independently processed work associated with all states
at level 𝐿𝑑 as ⫴𝑠∈𝐿𝑑

WORKER(𝑠). However, since one does not know ab
initio the states in level 𝐿𝑑, one cannot simply use ⫴𝑠∈𝐿𝑑

WORKER(𝑠) as
a refined description of the LAUNCHER(𝐿𝑑) process. Before launching
⫴𝑠∈𝐿𝑑

WORKER(𝑠), a process has to execute that dynamically gathers the
states of level 𝑑 into 𝐿𝑑 as they become known by the processing taking
place at level 𝑑 − 1. Additionally, worker processes at level 𝑑 have to pass
on information about successor states in 𝐿𝑑+1 before terminating. A de-
scription of a process-based solution that works through one trie level at
a time is thus somewhat more complicated than the mere sequential com-
position of a process per level. The subsections that follow describe four
alternative process-based implementations of the computeF function from
Algorithm 3.1.

These alternative implementations, however, only relate to phase 2 of
computeF. Phase 1 is treated as an abstract process, PHASE1, that iden-
tifies the state elements of 𝐿1 and enqueues them for subsequent pro-
cessing. Thus, abstracting from parameters, see computeF as: computeF =
PHASE1;PHASE2 where four variants of PHASE2 are considered below.

3.2.1 Variant 1

In the first variant, the processing work associated with each state is per-
formed in a separate process. Processes within a given trie level execute
concurrently, but are only created and launched once all processes execut-
ing at one level earlier have completed.

The first variant is modelled as two concurrent processes, LAUNCHER and
GATHERER, that interact through a channel called result.
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3 Aho-Corasick failure function construction

VARIANT1 = LAUNCHER(𝐿1) ∥
⦃result⦄

GATHERER(∅, |𝐿1| × |Σ|))

LAUNCHER has as parameter a set of states. Initially the parameter is 𝐿1
as shown above. It represents the set of states at level 1 of the trie, made
available in PHASE1 mentioned above. LAUNCHER is responsible for the
processing associated with each state in its state set parameter. This pro-
cessing corresponds with the body of the for each loop in Algorithm 3.2.
Part of this processing entails that LAUNCHER should communicate to
GATHERER the direct descendants of each state that it processes. Another
part of this processing is that it should communicate whether the state that
it is processing, say 𝑠, has no transition on a given symbol, say 𝑎. In other
words, LAUNCHER has to communicate to GATHERER the value of 𝑔(𝑠, 𝑎).
The communication takes place via channel result. Before specifying these
actions of LAUNCHER in greater detail, the functioning of GATHERER is
explained.

GATHERER takes two parameters. The first is a set of states and the second
is an integer. The first parameter identifies the states passed to it to date
via the result channel. Initially this is the empty set as shown above. The
second parameter indicates the number of messages it still needs to receive
along the result channel before terminating. Initially this is |𝐿1| × |Σ| since it
needs to receive the outcome 𝑔(𝑠, 𝑎) for all 𝑠 ∈ 𝐿1 and for all 𝑎 ∈ Σ. The task
of GATHERER, therefore, is to accumulate all the states of the next level
that will need to be processed by a new instance of LAUNCHER.

Let us now consider GATHERER in more detail, where the state set 𝑄 and
a counter Cnt are its parameters.

GATHERER(𝑄,Cnt) =
if (Cnt > 0) then

result?𝑟 →
if (𝑟 ≠ ⊥) then

GATHERER(𝑄 ∪ {𝑟},Cnt − 1)
else

GATHERER(𝑄,Cnt − 1)
else

if (𝑄 ≠ ∅) then
LAUNCHER(𝑄) ∥

⦃result⦄
GATHERER(∅, |𝑄| × |Σ|)

else
SKIP

• Each GATHERER runs in parallel with a LAUNCHER instance that
is responsible for processing a given level of the trie. If there are |𝐿𝑖|
states in level 𝑖, then the associated LAUNCHER instance will send
exactly |Σ|×|𝐿𝑖| messages to GATHERER, using the result channel. The
above specification assumes that LAUNCHER has exactly Cnt state
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3 Aho-Corasick failure function construction

values left to send. When LAUNCHER has sent these Cnt values, it
sends no more and should terminate LAUNCHER does not

quite terminate since, for
simplicity of presenta-
tion, its internal buffer,
described later in this sec-
tion, has no termination
code.

.

• If Cnt > 0 then GATHERER recurses Cnt number of times, decre-
menting Cnt at each recursion instance. Before recursing, it reads a
state from channel result and adds it to the state set 𝑄 for the next
recursion. If the special ⊥ value is read, it is not inserted into 𝑄.

• If 𝐶𝑛𝑡 = 0 and 𝑄 ≠ ∅, the process’s behaviour is de-
scribed by LAUNCHER(𝑄) concurrently communicating with
GATHERER(∅, |𝑄|×|Σ|) over the result channel. This concurrent com-
position of LAUNCHER and GATHERER describes the processing
to take place at a level whose state set is 𝑄. Note that this instance
of LAUNCHER does not compete with the previous LAUNCHER for
the result channel, since that previous LAUNCHER has terminated
(or should have—see first bullet above).

• If 𝑄 = ∅ and Cnt = 0 then GATHERER terminates.

In this way the levels are processed sequentially. Consider now how the
processing within a level can be done.

Recall that in VARIANT1, the processing associated with each state is car-
ried out in a separate process. To identify the processes associated with
states, map each state 𝑠 ∈ 𝐿𝑗 to an integer in 1 . . |𝐿𝑗|. Let WORKER𝑖(𝑠) de-
note the 𝑖th worker process that is associated with some generic state, 𝑠. We
can then model all the workers running independently and concurrently
as follows.

WORKERS(𝐿𝑗) = ⫼
𝑖=1..|𝐿𝑗|

WORKER𝑖(𝑠𝑖)

where 𝑠𝑖 denotes the 𝑖th state at level 𝑗 of the trie.

WORKER𝑖(𝑠) is described below by a local process, P𝑖(Σ, 𝑠). Here the two
parameters are the text alphabet Σ and the generic state 𝑠. The generic
description of this process for a non-empty symbol set 𝑆 and generic state 𝑠
is the non-deterministic choice between several sub-processes, one for each
state, 𝑎, in 𝑆. Each such sub-process entails a trace of two events followed
by a recursion to the same process with altered parameters.

• The first event reflects the update to the failure table based on symbol
𝑎, denoted for convenience by the event updateF.𝑎.𝑠.

• The last event is the communication of 𝑔(𝑠, 𝑎) on the channel out.𝑖.
(Recall that 𝑔(𝑠, 𝑎) is the descendant of state 𝑠 on symbol 𝑎, if such a
descendent exists. If there is no descendant of state 𝑠 on symbol 𝑎,
then 𝑔(𝑠, 𝑎) assumes a special value, ⊥.)
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3 Aho-Corasick failure function construction

After engaging in these events, local process P𝑖 recurses, but with a symbol
set reduced by the elimination of symbol 𝑎. When the symbol set has been
reduced to the empty set, the local process, P𝑖, terminates, and hence also
the WORKER𝑖(𝑠).

As a result, exactly |Σ| events are communicated on out.𝑖, some of which
are ⊥ events and the remainder, state descendant events. When all of these
|Σ| events have been communicated, the worker terminates. The following
CSP specification defines the behaviour of WORKER𝑖(𝑠):

WORKER𝑖(𝑠) = P𝑖(Σ, 𝑠)

P𝑖(𝑆, 𝑠) =
if (𝑆 ≠ ∅) then

⨅𝑎∈𝑆 updateF.𝑎.𝑠 → out.𝑖!𝑔(𝑠, 𝑎) → P𝑖(𝑆 ⧵ {𝑎}, 𝑠)
else

SKIP

In this variant, the output from each WORKER𝑖(𝑠) is deposited via channel
out.𝑖 into a multiplexing buffer, BUFF1. As will be shown below, BUFF1 is
one of two components of LAUNCHER—the other being WORKERS, the
interleaving of a set of workers defined above. BUFF1 reads input from
an array of left channels, one for each worker, and outputs values on the
single right channel. LAUNCHER’s definition links each worker’s output
channel out.𝑖 to left.𝑖, the corresponding input channel of BUFF1. As shown
below, it also renames BUFF1’s right channel to result to synchronise with
GATHERER.

LAUNCHER(𝐿) =
(WORKERS(𝐿) [out↔ left]BUFF1)⟦result/right⟧

The purpose of BUFF1 is to smooth the data flow between the WORKERs
and GATHERER. In order to ensure this, the capacity of BUFF1, namely 𝑁1,
has to be suitably large. BUFF1 = MBUFF(⟨⟩, 𝑁1, |𝐿|), where MBUFF is the
multiplexing buffer defined as an example in Section 2.5.2.

Figure 3.3 illustrates how the processes interact for the states at depth 𝑗 in
the trie. |𝐿𝑗| workers are created and they send their results via BUFF1 to a
GATHERER process. This process should read |𝐿𝑗|×|Σ| results and construct
𝐿𝑗+1.

3.2.2 Variant 2

In order to test whether or not an implementation of Variant 1 would be
needlessly inefficient in associating a process with every single state of a
level, a second variant was considered. In this second variant a WORKER
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3 Aho-Corasick failure function construction

WORKER1(𝑠1)

WORKER2(𝑠2) BUFF1

WORKER|𝐿𝑗|(𝑠|𝐿𝑗|)

LAUNCHER(𝐿𝑗)

GATHERER(∅, |𝐿𝑗| × |Σ|)
⋮

result

Figure 3.3: Processes involved in computing the failure function for states at
depth 𝑗 in the trie.

process handles more than one state and there are a fixed number of such
processes. Instead of being parameterised by a state, a WORKER process
now starts by reading in a state, 𝑠, from an input channel, in. It then behaves
the same as the previously described local process in Variant 1, 𝑃(Σ, 𝑠).
Once 𝑃(Σ, 𝑠) has completed, the WORKER process repeats itself, waiting
to read another state from the in channel.

WORKER𝑖 = in.𝑖?𝑠 → (P𝑖(Σ, 𝑠);WORKER𝑖)

In Variant 2, there are a fixed number (𝑛) of such workers working in-
dependently. The composite process, WORKERS, describes the resulting
overall process.

WORKERS = ⫼
𝑖=1..𝑛

WORKER𝑖

Two buffer processes facilitate communication to and from the workers.
The first is BUFF1, the same multiplexing buffer as in Variant 1. Recall that
this buffer reads a state as input from any one of an array of left channels
and then emits these state elements on a single right channel.

The second buffer, BUFF2, has capacity 𝑁2 and also operates on a FIFO
basis. Its behaviour is described by the process, DBUFF, from Section 2.5.2.
It receives state elements from a channel left, provided that it is not full.
While not empty, DBUFF may emit the least recently stored state on any
available one of an array of right channels. If more than one such channel
is available, the choice of channel may be made arbitrarily.

One may compose the workers with the buffers by chaining and renaming
the relevant channels as shown below.

BWORKERS =
BUFF2⟦work/left⟧

[right↔ in]
WORKERS

[out↔ left]
BUFF1⟦result/right⟧
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3 Aho-Corasick failure function construction

The right hand side of Figure 3.4 illustrates the chaining. The figure indic-
ates that the number of WORKER processes is fixed at 𝑛 and no longer given
by |𝐿𝑗| (the number of states in the given level) as shown in Figure 3.3.

WORKER1

WORKER2 BUFF1

WORKERn

BUFF2

BWORKERS

LAUNCHER(𝐿𝑗)
⋮

result

work

Figure 3.4: Processes active while processing the states in level 𝐿𝑗.

A process is needed to dispatch the states in the current level to these 𝑛
workers. To do this we rely on a new LAUNCHER process that models the
processing of states in the state set, 𝐿, of the current level. LAUNCHER’s
actions are described by the sequential composition of a SENDER followed
by a GATHERER process. We therefore model it as follows.

LAUNCHER(𝐿) = SENDER(𝐿);GATHERER(∅, |𝐿| × |Σ|)

The SENDER process dispatches all the elements of 𝐿 to the workers via the
work channel. Its CSP description corresponds to that of the local process
𝑃(Σ, 𝑠) described for Variant 1, namely:

SENDER(𝑆) =
if (𝑆 ≠ ∅) then

⨅𝑎∈𝑆 work!𝑎 → SENDER(𝑆 ⧵ {𝑎})
else

SKIP

SENDER thus transfers the elements of its parameterised set of states to
the workers on the work channel and then terminates.

GATHERER then dynamically constructs the set containing the states of
the next level based on information received from the workers via the result
channel. GATHERER is slightly modified from Variant 1. As in Variant 1,
the parameters of GATHERER are a set of states, 𝑄 and a counter 𝐶𝑛𝑡. Its
description is given below:

GATHERER(𝑄,Cnt) =
if (Cnt > 0) then

result?𝑟 →
if (𝑟 ≠ ⊥) then
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3 Aho-Corasick failure function construction

GATHERER(𝑄 ∪ {𝑟},Cnt − 1)
else

GATHERER(𝑄, 𝐶𝑛𝑡 − 1)
else

if (𝑄 ≠ ∅) then
LAUNCHER(𝑄)

else
SKIP

As before, if 𝐶𝑛𝑡 > 0 then the process recursively reads the next level’s
states from result, at each recursive instance accumulating the most re-
cently read state into 𝑄 and decrementing 𝐶𝑛𝑡. Also as before, if the spe-
cial ⊥ signal is read, it is not inserted into 𝑄. However, the description of
GATHERER(𝑄, 𝐶𝑛𝑡) differs slightly from its description for Variant 1 when
𝐶𝑛𝑡 = 0 and 𝑄 ≠ ∅. In this case it is simply described by LAUNCHER(𝑄)—
that is, it behaves as the LAUNCHER process that deals with the set of
states, 𝑄.

As in Variant 1, assume that PHASE1 has discovered 𝐿1 so that Variant 2 of
PHASE2 is:

VARIANT2 = LAUNCHER(𝐿1) ∥
⦃work,result⦄

BWORKERS

Note that VARIANT2 deadlocks if the buffers are not sufficiently large. For
example, suppose that states from level 𝐿 are being processed, and that
|𝐿| is very large. SENDER(L) emits states on work and the workers’ results
are buffered in BUFF1. Eventually BUFF1 fills up and the workers cannot
make progress. SENDER then fills up BUFF2 and waits for more space to
become available. Space will be made available when GATHERER starts
to consume elements via result. Unfortunately GATHERER is waiting for
SENDER to complete before it can start—a classic wait-for-cycle. A neces-
sary and sufficient condition to guarantee that the variant is deadlock-free
in terms of buffer usage is that: ⟨∀ 𝑖 ∶ 𝑖 ∈ [1,max + 1) ∶ |𝐿𝑖| ≤ 𝑁1 + 𝑁2 + 𝑛⟩ Recall that 𝑁1 and 𝑁2

are the capacities of the
two buffers and that 𝑛 is
the number ofWORKER
processes.

should hold.

3.2.3 Variant 3

Variant 3 is very similar to Variant 2, but the potential deadlock issue is
addressed. Instead of sending out all the state elements of the current
level 𝐿 and then reading in the elements of the new level, there is a choice
between sending out elements of the current level and reading in elements
of the next level. This means that the LAUNCHER process is no longer
the sequential composition of the SENDER and GATHERER processes as
in Variant 2. Instead, these two processes are reformulated in such a way
that each next trace event of LAUNCHER can either be the sending of a
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3 Aho-Corasick failure function construction

state element along channel work or the reception of a state indicator along
channel result. To this end, the LAUNCHER process is defined in terms of
a local process, SAG SAG is an acronym for

Sender And Gatherer.
parameterised by the set of states still to send on the

work channel, the set of states received to date on the result channel and the
number of transmissions still to be made on the result channel. Initially, for
LAUNCHER(𝐿) these are 𝐿, ∅ and |𝐿| × |Σ| as shown below:

LAUNCHER(𝐿) = SAG(𝐿, ∅, |𝐿| × |Σ|)

The CSP elaboration of the SAG process given below shows that the status
of its parameters has to be evaluated in order to describe the next pos-
sible events. If there are still states to be transmitted on the work channel
and still the possibility of receiving a state indicator message on the result
channel, then there is a choice between the initial events of the SENDER
and GATHERER processes. If the parameters of the SAG process are such
that one, but not both, of the SENDER or GATHERER processes may en-
gage in a next event, then the appropriate process is invoked. If neither of
these processes can engage in a next event (because all states at the current
level have been transmitted down the work channel and all state indicator
messages have been received from the result channel), then LAUNCHER is
invoked with the set of states received to date—the states of the next level.
Of course, if there are no states at the next level, then the process termin-
ates.

SAG(𝑆,𝑄,Cnt) =
if (𝑆 ≠ ∅ ∧ Cnt > 0) then

SENDER(𝑆,𝑄,Cnt) 2 GATHERER(𝑆,𝑄,Cnt)
else if (Cnt > 0) then

GATHERER(𝑆,𝑄,Cnt)
else if (𝑆 ≠ ∅) then

SENDER(𝑆,𝑄,Cnt)
else if (𝑄 ≠ ∅) then

LAUNCHER(𝑄)
else SKIP

The definitions of SENDER and GATHERER are practically the same as
before. However, they now recurse to the local SAG process, rather than to
a new instance of themselves, as in Variant 2.

SENDER(𝑆,𝑄,Cnt) = ⨅𝑎∈𝑆 work!𝑎 → SAG(𝑆 ⧵ {𝑎},𝑄,Cnt)

GATHERER(𝑆,𝑄,Cnt) =
result?𝑟 →

if (𝑟 ≠ ⊥) then
SAG(𝑆,𝑄 ∪ {𝑟},Cnt − 1)

else
SAG(𝑆,𝑄, 𝐶𝑛𝑡 − 1)
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3 Aho-Corasick failure function construction

3.2.4 Variant 4

Instead of a repeated choice between sending a node and receiving a node,
one could allow the sending and receiving of nodes to continue independ-
ently and concurrently, yielding the fourth and final variant.

LAUNCHER(𝐿) = SENDER(𝐿)⫼ GATHERER(∅, |𝐿| × |Σ|)

SENDER and GATHERER are the same as in VARIANT2.

3.2.5 Process termination

It should be pointed out that termination has not been addressed fully in
the above process descriptions. A special sentinel could be used to termin-
ate the processes when there are no more states to process. Note that the same ter-

mination approach may
be used in the CSP mod-
els found in subsequent
chapters. To keep the
models concise, termina-
tion is also not addressed
completely in those
models. Terminating com-
pletely is treated as an
implementation matter.

GATHERER
could be modified to send out a special term event when 𝑄 = ∅ and
WORKER could be modified to terminate when it receives term after send-
ing it along. The BUFF2 processes would need to be modified to emit term
on all its right channels only after all the existing elements have been emit-
ted. Similarly, BUFF1 would need to accept a term from all its left channels
before it may terminate when empty. A full elaboration of this “poison-
ing” approach in CSP is beyond the scope of this thesis as it would not add
insight into the focus here, namely to explore process-based architectural
alternatives for implementing phase 2 of computeF in Algorithm 3.2.

3.3 Concurrency through data partitioning

The multiple keyword string matching problem also lends itself to a more
direct concurrent solution that is purely data-driven: the keyword set may
be arbitrarily partitioned and multiple instances of the AC algorithm’s con-
struction phases (computeG and computeF) may be run on each of those par-
titions. The result is a set of disjoint AC automata, each of which could then
be used to search, concurrently or sequentially, for keywords in a text. For
completeness, such a data-parallel approach has also been implemented The implementation

is labelled “Split” in
Figure 3.6.

and its performance will be compared to the process-based implementa-
tions.
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3 Aho-Corasick failure function construction

3.4 Implementation

The sequential algorithm of Section 3.1 as well as the four variants of Sec-
tion 3.2 were implemented in the programming language Go. As men-
tioned in Section 2.6, Go was chosen because it supports light-weight pro-
cesses called goroutines and it also contains typed channels as part of the
language.

The CSP descriptions are mapped to Go in the following manner. Concur-
rent CSP processes are mapped to concurrent goroutines and CSP external
choice is mapped to Go’s select statement. A buffered Go channel shared
by concurrent goroutines was used to communicate states between pro-
cesses. This means that in Variant 1’s implementation a buffered channel
results was used to communicate the output of the WORKER goroutines
to GATHERER. Similarly were two buffered channels (work and results)
used in the implementations of Variants 2, 3, and 4. Consequently it is not
required to implement explicit Go processes for BUFF1 and BUFF2.

Extracts from the Go implementations for Variants 1 to 4 are given be-
low. Please note that the listings are not complete, since they are meant
to illustrate how the processes interact. Ellipses indicate omitted code.
Complete source code will be made available at http://fastar.org. Sec-
tion 2.6 provides an overview of Go in which enough of the syntax and
semantics of the language are covered to comprehend the following code
fragments.

3.4.1 Variant 1

The Go outline for the first variant of a worker is given in Go code 3.1. Recall
that in the first variant, a worker only processes a single state and then
terminates. It accepts the state as a parameter and then, for each symbol in
Σ, updates the failure and output functions and communicates on channel
out the state’s direct descendants. These descendants are the elements of
the next level. The process terminates once it has iterated though Σ.

Go code 3.1: AC worker code, Variant 1.

1 func worker(curState State, out chan<- State) {

2 for _, ch := range this.sigma {

3 curDest, ok := this.gotoTable[deltaPair{curState, ch}]

4 if ok {

5 // Communicate next level state.

6 out <- curDest

7 // Update failure function and output function.

8 ...
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3 Aho-Corasick failure function construction

9 } else {

10 // Communicate failure.

11 out <- FAIL

12 }

13 }

14 }

Go code 3.1, line 3 shows how the worker obtains 𝑔(𝑠, 𝑎), where 𝑠 is the
state being processed and 𝑎 ∈ Σ is the current alphabet symbol. The goto
function, 𝑔, is implemented in Go as a map Recall from Section 2.6

that a map is an associat-
ive array that maps a key
to a value.

from a deltaPair to a State.
Here the destination curDest is looked up using a struct literal as key. If
the key is present, then variable ok is true and curDest holds the destina-
tion state. This state is sent out on channel out and the failure and output
functions are updated. If, however, the key is not present, ok will be false

and curDestwill be the zero value of the State type. In this case no updates
are made and a special value FAIL is emitted on channel out.

The driver goroutine for computing the failure function in shown in
Go code 3.2.

Go code 3.2: Implementation of Variant 1 driver routine.

func (this *AC_Matcher) computeFVar1() {

todoQ := make([]State, 0)

// Phase 1: find level 1 states, enqueue them on todoQ

// and set their failure state to START.

...

// Phase 2:

for len(todoQ) > 0 {

nodes := len(todoQ)

results := make(chan State, nodes*len(this.sigma))

// Launch workers for current level.

for i := nodes; i > 0; i-- {

cS := todoQ[0]

todoQ = todoQ[1:]

go worker(cS, results)

}

// Gather all results from workers.

var tmp State

for k := 0; k < nodes*len(this.sigma); k++ {

tmp = <-results

if tmp != FAIL {

todoQ = append(todoQ, tmp)

}

}

close(results)
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}

}

The function computeFVar1 performs Phase 1 and then starts the level-
order traversal of the trie, launching goroutines (workers) for each state
in a level, before proceeding to gather and process their results. This
takes a small licence with the concurrency in the CSP specification (Sec-
tion 3.2.1) in that termination of the LAUNCHER and GATHERER compon-
ents is not synchronised—the forking of the LAUNCHER worker processes
is not matched by a corresponding join. This does not matter here because
nothing is specified to happen afterwards. The benefit from this licence is
that the recursion in GATHERER becomes tail-recursion and can be imple-
mented with loops. The other simplification in this code is that the multi-
plexed buffering of communications between the worker processes and the
GATHERER (Figure 3.3) is managed automatically by a single Go channel
results.

3.4.2 Variant 2

Recall that the number of worker processes is fixed in the second variant.
A given worker repeatedly receives work on an input channel and emits
the results on an output channel. The remainder of the worker code is the
same as in Variant 1.

Go code 3.3: Implementation of Variant 2 worker

func worker(in <-chan State, out chan<- State) {

for curState := range in {

// Implementation as in Variant 1

...

}

}

As shown in Go code 3.4, all the states for a given level are first sent out
on channel work, and after that, all the responses are gathered from the
workers via channel results.

Go code 3.4: Driver routine for Variant 2.

func (this *AC_Matcher) computeFVar2(numW int, b1S, b2S int) {

todoQ := make([]State, 0)

// Phase 1: find level 1 states, enqueue them on todoQ

// and set their failure state to START.

...

// Phase 2:

66

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3 Aho-Corasick failure function construction

work := make(chan State, b1S)

results := make(chan State, b2S)

// Start up workers

for i := 0; i < numW; i++ {

go worker(work, results)

}

for len(todoQ) > 0 {

// Send out current level

nodes := len(todoQ)

for i := nodes; i > 0; i-- {

work <- todoQ[0]

todoQ = todoQ[1:]

}

// Gather the elements of the next level.

var tmp State

cnt := 0

for k := 0; k < nodes*len(this.sigma); k++ {

tmp = <-results

if tmp != FAIL {

todoQ = append(todoQ, tmp)

cnt++

}

}

}

close(work)

close(results)

}

3.4.3 Variant 3

In this variant, the workers are implemented exactly as in the previous vari-
ant. The driver goroutine is modified to send out a state of the current level
on channel work or receive on channel results a state of the next level. This
choice between alternatives is implemented with a Go select statement.

Go code 3.5: Driver routine for Variant 3.

func (this *AC_Matcher) computeFVar3(numW int, b1S, b2S int) {

todoQ := make([]State, 0)

// Phase 1: find level 1 states, enqueue them on todoQ

// and set their failure state to START.

...

// Phase 2:
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// Channels for communication.

work := make(chan State, b1S)

results := make(chan State, b2S)

// Start up workers

for i := 0; i < numW; i++ {

go worker(work, results)

}

for len(todoQ) > 0 {

nodes := len(todoQ)

pending := nodes * len(this.sigma)

var tmp, cS State

cS = FAIL

for nodes > 0 {

if cS == FAIL {

cS = todoQ[0]

todoQ = todoQ[1:]

}

// Choice between sending and receiving

select {

case work <- cS:

cS = FAIL

nodes--

case tmp = <-results:

if tmp != FAIL {

todoQ = append(todoQ, tmp)

}

pending--

}

}

// Only need to receive since all nodes have been sent.

for pending > 0 {

tmp = <-results

if tmp != FAIL {

todoQ = append(todoQ, tmp)

}

pending--

}

}

close(work)

close(results)

}
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3.4.4 Variant 4

In the final variant, shown in Go code 3.6, a sender process sends out all
the elements of the current level on channel work. This sender process runs
concurrently with the driving goroutine which gathers the elements of the
next level from channel results. Line 19 shows where the sender is defined
for the current level and line 24 shows where the goroutine is started, caus-
ing it to run concurrently with the receiving code on line 27.

Go code 3.6: Driver routine for Variant 4.

1 func (this *AC_Matcher) computeFVar4(numW int, b1S, b2S int) {

2 // Phase 1: find level 1 states, enqueue them on todoQ

3 // and set their failure state to START.

4 ...

5 // Phase 2:

6 work := make(chan State, b1S)

7 results := make(chan State, b2S)

8 // Start up workers

9 for i := 0; i < numW; i++ {

10 go worker(work, results)

11 }

12 for len(todoQ) > 0 {

13 numnodes := len(todoQ)

14 nodes := todoQ

15 todoQ = todoQ[numnodes:]

16 pending := numnodes * len(this.sigma)

17 var r State

18 // Send the current level in a new goroutine

19 sender := func() {

20 for _, cS := range nodes {

21 work <- cS

22 }

23 }

24 go sender()

25 // Gather the next level

26 for pending > 0 {

27 r = <-results

28 if r != FAIL {

29 todoQ = append(todoQ, r)

30 }

31 pending--

32 }

33 }

34 close(work)
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35 close(results)

36 }

3.5 Performance analysis

Section 3.2, has described four related ways of concurrently implement-
ing the failure function construction in the AC algorithm. Naturally, it is
of interest to determine whether such a process-based decomposition can
result in performance improvement over a purely sequential algorithm. In
order to test this, one needs to compare the runtimes of the different Go
implementations.

3.5.1 Experimental setup

The aim of the experiment described here was simply to determine
whether the concurrent implementations can construct the AC failure func-
tion faster that the sequential version. No attempt was made to investigate
completely the performance characteristics of the concurrent implement-
ations, nor was any attempt made to further refine or refactor the Go im-
plementations to maximise possible speedups in comparison with the se-
quential implementation.

Consider first the input to the problem. To construct the AC automaton,
a set of keywords is required. In order to observe the performance of the
implementations over a range of input, one needs to vary the keyword sets.
It was decided to vary in terms of two aspects: the number of keywords and
the shape of the trie as explained below.

The set {10, 100, 1000, 10 000, 100 000} represents the different sizes of
keyword sets that were used in the experiments.

Varying the shape of the trie was achieved by using three sources for
keywords. The first source is simply a text file with 200 000 lines, where
each line is the concatenation of a single symbol 𝑎. The text on line 𝑖 of the
file is 𝑎𝑖, that is, 𝑎 repeated 𝑖 times. To construct a keyword set of 𝑘 elements,
pseudo-randomly select a line 𝑟 in the text file and then use the words on
lines 𝑟 to 𝑟 + 𝑘 − 1 as the keyword set. In this manner a number of differ-
ent keyword sets may be generated. Essentially the keyword

sets in this case only vary
in terms of the length of
the keywords.

In this case the alphabet size was two
symbols—one symbol used in the keywords and another symbol on which
to make failure transitions.

The second source is derived from an English word list by ScrapMaker.com
(2015). The 213 557 words from the list were randomly ordered and written
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3 Aho-Corasick failure function construction

to a text file, one word per line. Finally, the third source is simply the same
list of words, but lexicographically ordered, one word per line. The same
approach as for the single-symbol case was used to generate keyword sets
from these sources: For a keyword set of 𝑘 elements, randomly select a line
𝑟 in the text file and then use the words on lines 𝑟 to 𝑟 + 𝑘 − 1 as the set
of keywords. The alphabet size in these two cases was 256 symbols. This
provides for the possibility that the text to be searched might contain more
than just the 26 letters used for English words.

The single symbol keyword data ensures that each keyword that is inserted
has a maximal proper prefix in the trie. This then results in a deep, nar-
row trie since only one symbol is used and the longest possible keyword is
200 000 symbols long.

In the shuffled English source, the probability of including, in the same
keyword set, words with common prefixes, is small. This should cause the
trie to branch out early, resulting in a wide but shallow tree. On the other
hand, the sorted English case has a high probability of including words
with common prefixes. This should result in a trie with some branching,
but also some reuse of states. The trie should be fairly shallow (limited to
the length of the longest keyword) and narrow close to the root.

Fifty keyword sets were randomly generated for each keyword set size and
type combination. In the case of the single symbol keywords, the very
largest keyword set size of 100 000 was not tested since the runtimes were
expected to be excessive. For all the keyword sets, the AC automaton was
generated using the sequential algorithm as well as the four concurrent
variants. In each case, the time to construct the failure function was recor-
ded. In order to mitigate transient operating system effects, each execution
was repeated five times and the minimum of these was recorded as the
data point for that case.

In the implementation of Variant 1, the capacity of the buffered channel
results was |𝐿| × |Σ|, large enough to contain all the results for a level |𝐿|.
In Variants 2 to 4, the number of concurrent worker goroutines numW was
set to 24 Setting numW to 24 cor-

responds with twice the
number of virtual cores in
the machine used for the
experiments. The number
was chosen to ensure that
all the cores have work.

. Very large buffers were used in order to avoid blocking due to
buffer-space limitations. Buffer work had a capacity of 100 000 elements
and results had a capacity of numW × 100 000.

Go version 1.5.1 was used to compile the implementations on a machine
running Linux 3.10.17. The experiments were run on the same machine. It
had a single six-core CPU Specifically an Intel®

Xeon® E5-2630 v2 at
2.60GHz. See Sec-
tion 2.7.3 for more details.

with two hardware threads per core and 16 GB
of RAM. The Go runtime was configured to run at most twelve operating
system threads concurrently. The goroutines are then internally scheduled
onto these threads.
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3 Aho-Corasick failure function construction

3.5.2 Observations

In order to gain an appreciation of the size of the input and to assess
whether the generated trie structures do vary between the different text
types, the following characteristics of the generated tries were recorded:
the depth of the trie, the total number of states in the trie, and the number
of states for each level in the trie. Table 3.1 shows a summary of the ob-
servation grouped by text type and keyword set size. Note that an entry
under “Level” is a median number of states per level over all the tries for
that particular text type and keyword set size combination.

Table 3.1: Observed sizes of the generated tries grouped by text type and size of
the keyword set. “Depth” contains the median number of levels in the
tries and “States” the median total number of states in the tries. “Level”
shows the median number of states per level over all the levels in all the
tries in a particular group.

Depth States Level
Pattern |𝐾| median s.d. median s.d. median s.d.

Single Symbol 10 116 127 63 470 116 127 63 470 1 —
100 99 863 63 769 99 863 63 769 1 —

1000 102 151 45 585 102 151 45 585 1 —
10 000 93 390 52 321 93 390 52 321 1 —

100 000 — — — — — —

English Unsorted 10 15 2 94 9 7 4
100 18 2 856 26 38 37

1000 21 1 7348 91 182 347
10 000 24 1 59 489 222 1001 2948

100 000 25 0 415 520 415 3324 20 980

English Sorted 10 15 2 38 7 2 2
100 17 2 336 35 12 20

1000 21 2 3392 431 64 195
10 000 24 1 34 496 1773 433 1795

100 000 25 0 350 172 1994 3152 17 569

From the table it can be seen that the single symbol tries do not branch,
but that they are typically very deep because of the large keywords. This
is clearly seen from the fact that the depth and the number of states are
the same. The natural language cases, however, are different in that they
are not very deep—only up to 25 levels—but they are wide as can be seen
from the large level sizes. The depth is bound by the length of the longest
keyword, which is not very large for the English word list. Comparing
the sorted and shuffled cases, one sees that the sorted case tries tend to be
“narrower”—their levels have fewer elements.
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3 Aho-Corasick failure function construction

Earlier it was reasoned that the sorted-keyword tries would have smaller
levels earlier in the trie since there are more common prefixes in a sorted
keyword set. To confirm this, the relative number of states per level was
calculated. That is, for each level, the number of states in the level was
divided by the total number of states in the trie, giving a fraction of how
many of the trie’s states are in a given level. The data is visualised in Fig-
ure 3.5. From the figure it can be seen that it is indeed the case that the
tries for the non-sorted keywords branch out earlier than those of the sor-
ted case, since the levels closer to the root contain a larger fraction of the
tries’ states. This difference is most pronounced for small keyword sets, but
reduces as |𝐾| increases. Recall that the two sources from which keywords
are selected are fixed at ≈200 000 words each. As the keyword sets grow
larger, the probability of having many keywords in common between the
sorted and unsorted cases increases. In the extreme case, where each of the
fifty keyword sets contain approximately half of the source words, there is
clearly very little difference between the sorted an unsorted cases.
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Figure 3.5: The relative number of states per trie depth level, grouped by text type
and size of the keyword set.

Since the scope of the present work is to determine whether the concur-
rent implementations can construct the failure function faster than the se-
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3 Aho-Corasick failure function construction

quential implementation, we do not consider the raw run times. Rather
consider the speedup of the concurrent implementations relative to the se-
quential implementation. This speedup is defined as the execution time of
the sequential algorithm divided by the execution time of the concurrent
algorithm. Clearly a speedup greater than one is desired.

Table 3.2: Observed mean speedup for the different implementations grouped by
text type and keyword set size. The table also shows the run-time of the
sequential algorithm. Each entry is the mean over 50 observations.

Type |𝐾| 𝑇𝑠 (ms) Variant 1 Variant 2 Variant 3 Variant 4

Single
Symbol

All 67.83 0.38 ± 0.18 0.35 ± 0.19 0.32 ± 0.18 0.30 ± 0.18
10 33.29 0.27 ± 0.01 0.24 ± 0.03 0.21 ± 0.02 0.20 ± 0.02

100 31.75 0.28 ± 0.01 0.24 ± 0.04 0.21 ± 0.03 0.19 ± 0.03
1000 33.82 0.28 ± 0.01 0.26 ± 0.01 0.23 ± 0.01 0.20 ± 0.01

10 000 172.47 0.67 ± 0.12 0.66 ± 0.12 0.62 ± 0.10 0.59 ± 0.12
100 000 — — — — —

English
Unsorted

All 1699.18 0.18 ± 0.03 0.17 ± 0.03 0.16 ± 0.04 0.17 ± 0.03
10 1.06 0.16 ± 0.00 0.12 ± 0.00 0.11 ± 0.00 0.12 ± 0.00

100 9.49 0.14 ± 0.00 0.14 ± 0.00 0.13 ± 0.00 0.14 ± 0.00
1000 102.49 0.17 ± 0.01 0.17 ± 0.01 0.17 ± 0.01 0.18 ± 0.01

10 000 956.66 0.21 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00
100 000 7426.22 0.23 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00

English
Sorted

All 1193.87 0.18 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03
10 0.45 0.21 ± 0.03 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

100 3.73 0.14 ± 0.00 0.13 ± 0.00 0.13 ± 0.00 0.13 ± 0.00
1000 45.76 0.16 ± 0.02 0.16 ± 0.02 0.16 ± 0.02 0.17 ± 0.02

10 000 477.74 0.18 ± 0.00 0.17 ± 0.00 0.17 ± 0.00 0.17 ± 0.00
100 000 5441.67 0.20 ± 0.00 0.18 ± 0.00 0.18 ± 0.00 0.18 ± 0.00

Table 3.2 shows the speedup obtained by the implementations. For each
variant, the mean speedup is grouped by keyword type and size of the
keyword set. Each entry in the table is the mean of fifty observations. To
give an idea of absolute run-times, column 𝑇𝑠 contains the run-times for
the sequential algorithm.

It is clear from the table that none of the variants outperformed the sequen-
tial algorithm. Moreover, the concurrent implementations typically took 5
to 10 times longer than the sequential version. Clearly these results were
not expected.

In order to understand better the reason for the poor performance, Go’s
built-in profiling tools were used to capture a CPU profile. When CPU pro-
filing is enabled, the executing program is stopped about a 100 times per
second and the program counters of all the goroutines are recorded. In-
specting the profile suggested that excessive channel communication may
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3 Aho-Corasick failure function construction

be the reason for the concurrent variants’ poor performance. Section 3.5.3
describes how this issue is addressed.

3.5.3 Reducing communication

Recall from Section 3.2.1 that a worker process dealing with state 𝑠 finds
𝑔(𝑠, 𝑎) (the successor state of 𝑠 on symbol 𝑎) and then communicates 𝑔(𝑠, 𝑎)
on an out channel. It does this repeatedly for each 𝑎 ∈ Σ and consequently
sends out |Σ| messages on the out channel. A simple tactic to reduce com-
munication would be to change a worker so that it does not communic-
ate every single 𝑔(𝑠, 𝑎) directly on the channel, but stores these successor
states in a collection instead, only communicating the entire collection on
out when the worker has dealt with all |Σ| symbols. This reduces the com-
munication on the out channel by a factor of |Σ|. The process below captures
the modified worker behaviour. 𝑅 is used to collect all the 𝑔(𝑠, 𝑎) instances
for a given state and then the process communicates the collection 𝑅 on the
out channel before terminating.

WORKER𝑖(𝑠) = P𝑖(Σ, 𝑠, ∅)
P𝑖(𝑆, 𝑠, 𝑅) =

if (𝑆 ≠ ∅) then
⨅𝑎∈𝑆 updateF.𝑎.𝑠 → P𝑖(𝑆 ⧵ {𝑎}, 𝑠, 𝑅 ∪ {𝑔(𝑠, 𝑎)})

else
out.𝑖!𝑅 → SKIP

Naturally the other processes also need to be modified in order to accept
the collection and to process the elements. This means that BUFF1 en-
queues collections and that result transmits these collections. Additionally,
GATHERER needs to unpack the collection and process the states individu-
ally. The BUFF2 process and the work channel remain unchanged. These
changes were implemented in Go and the modified Variant 1 becomes Vari-
ant 1a. The other variants were similarly modified and renamed. In the Go
implementation 𝑅 was implemented as an array of states and a reference
to the array was communicated over the channel. Go code 3.7 shows the
Go implementation of the modified worker process for Variant 1a.

Go code 3.7: Modified worker to reduce communication.

func worker(curState State, out chan<- []State) {

calc := make([]State, len(this.sigma))

i := 0

for _, ch := range this.sigma {

curDest, ok := this.gotoTable[deltaPair{curState, ch}]

if ok {

// Collect for processing as next level.
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3 Aho-Corasick failure function construction

calc[i] = curDest

// Update failure function and goto function.

...

} else {

calc[i] = FAIL

}

i++

}

out <- calc

}

Table 3.3: Observed mean speedup for the modified variants where communic-
ation was reduced. The table is grouped by text type and size of the
keyword set.

Type |𝐾| 𝑇𝑠 (ms) Variant 1a Variant 2a Variant 3a Variant 4a

Single
Symbol

All 67.83 0.34 ± 0.16 0.29 ± 0.14 0.27 ± 0.14 0.25 ± 0.14
10 33.29 0.25 ± 0.01 0.21 ± 0.05 0.18 ± 0.04 0.17 ± 0.03

100 31.75 0.25 ± 0.01 0.21 ± 0.05 0.19 ± 0.04 0.17 ± 0.04
1000 33.82 0.26 ± 0.01 0.23 ± 0.02 0.20 ± 0.01 0.18 ± 0.01

10 000 172.47 0.60 ± 0.09 0.52 ± 0.07 0.49 ± 0.06 0.47 ± 0.06
100 000 — — — — —

English
Unsorted

All 1699.18 3.78 ± 1.53 2.45 ± 1.75 2.44 ± 1.75 2.44 ± 1.74
10 1.06 1.27 ± 0.08 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01

100 9.49 2.98 ± 0.16 0.65 ± 0.02 0.65 ± 0.02 0.65 ± 0.02
1000 102.49 5.51 ± 0.10 3.29 ± 0.09 3.21 ± 0.38 3.27 ± 0.09

10 000 956.66 4.99 ± 0.34 3.94 ± 0.16 3.91 ± 0.20 3.91 ± 0.18
100 000 7426.22 4.17 ± 0.12 4.29 ± 0.07 4.34 ± 0.07 4.29 ± 0.05

English
Sorted

All 1193.87 3.28 ± 1.48 1.92 ± 1.59 1.87 ± 1.63 1.87 ± 1.60
10 0.45 1.03 ± 0.09 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

100 3.73 2.17 ± 0.19 0.23 ± 0.09 0.25 ± 0.08 0.25 ± 0.08
1000 45.76 4.93 ± 0.18 2.11 ± 0.31 1.75 ± 0.66 1.84 ± 0.58

10 000 477.74 4.32 ± 0.51 3.18 ± 0.14 3.23 ± 0.13 3.17 ± 0.14
100 000 5441.67 3.93 ± 0.12 4.04 ± 0.06 4.07 ± 0.06 4.05 ± 0.06

The earlier experiments were repeated and the new speedup numbers can
be found in the relevant columns in Table 3.3. Figure 3.6 plots the speedup
against keyword set size, grouped by pattern set type. Note that the data
set labelled “Split” will be discussed in Section 3.5.4.

Here are the main observations that can be made about these new meas-
urements.

1. In the single symbol case the buffer modification did not improve
the speedup. This is to be expected, since the alphabet in this case
has only two symbols, and the modification was essentially aimed at

76

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3 Aho-Corasick failure function construction
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Figure 3.6: Observed speedup per keyword set size grouped by text type for the
reduced communication. Each point is the mean over 50 observations.

ameliorating the effect of a large number of channel messages gen-
erated by a large number of alphabet symbols being processed per
state. Additionally, the trie only has a single node per level since
all the keywords comprise only a single repeated character. Con-
sequently this scenario offers no opportunities for concurrency but
incurs all the overhead costs of setting up and taking down processes.
The observations that follow do not refer to the single symbol case.

2. In the other pattern types with a large alphabet and where the un-
derlying trie could therefore contain many states per level, one does
indeed observe speedup, sometimes even coming close to the num-
ber of physical cores, six.

3. For all variants, speedup is low for small keyword sets and then im-
proves as keyword set size increases. This supports the findings seen
in the single symbol keyword case: that a certain threshold of con-
currency opportunities is needed to amortise the initial overhead cost
of supporting concurrency. Nevertheless, Variant 1a manages a spee-
dup of more than one for the smallest keyword set size of ten. On the
other hand, Variant 2a to 4a achieve speedups greater than one only
with a thousand or more keywords.

77

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3 Aho-Corasick failure function construction

4. Across all scenarios, speedup increases monotonically as keyword
set size increases, with one notable exception: the speedup attained
by Variant 1a peaks at a thousand keywords and then degenerates. It
starts off as being the best of the four variants but becomes the worst
for the largest keyword set. It would seem that eventually the cost of
setting up and taking down processes accumulates, thereby reducing
performance.

5. Since the trie for the unsorted English keywords is typically wider
than that for the sorted keywords, the potential for concurrency in
the former case is greater. This is reflected throughout in the speedup
data: the unsorted speedups are consistently greater than those in
the sorted case. The relative impact is greatest on small keyword set
sizes.

6. Buffer sizes could undoubtedly influence speedup. Not only could
delays (and perhaps even livelock or deadlock) arise because pro-
cesses have to wait for full buffers to have contents consumed by
other processes; cache-related delays could also make an impact. In
this study, buffers were selected to be sufficiently large to not only
guarantee deadlock freedom, but also to eliminate the possibility of
delays caused by full buffers. However, an exploration of the effect
of the size of buffers on speedup was beyond the scope of the present
study.

3.5.4 The data-driven solution

In order to compare this process-based approach to a data-driven ap-
proach that is built directly on the sequential solution, the following simple
strategy was also implemented. The keyword set was split into 𝑚 num-
ber of subsets, where 𝑚 = 5 for the keyword set size of 10, and 𝑚 = 12 The number was chosen

as it equals the number of
virtual cores of the plat-
form. This was deemed
to be enough to keep the
cores busy.

otherwise. Each subset was then used as a keyword set to construct an
AC string matching automaton. The idea is to have 𝑚 smaller AC auto-
mata processing the text concurrently. The regular sequential algorithm
was used to construct concurrently these smaller machines.

In this case it is not feasible to capture the failure function construction
times alone, so the total construction time was recorded instead—building
the trie and constructing the failure function—of the 𝑚 automata and used
this with the total construction time for the regular (non-split) sequen-
tial algorithm to compute speedup. The resulting speedups are shown as
“Split” in Figure 3.6. The split performance follows a similar curve to Vari-
ant 1a, but at an improved speedup level.

The speedup increases beyond six (the number of physical cores) in four of
the experiments could be associated with the hyperthreading implemen-
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3 Aho-Corasick failure function construction

ted by Intel® on the CPU or perhaps it could be due to favourable caching.
However, the details of exactly how this occurs have not been pursued in
this study.

3.6 Conclusion and Future Work

This case study exploited opportunities for concurrency that are not quite
as obvious as merely splitting up data to run multiple instances of a given
algorithm. Four ways in which to do this for the problem at hand were
tested. This enabled one to exploit the concurrency potential available
on multicore platforms that typically remain unused for conventional se-
quential solutions. In general, the speedup gain was highly significant for
larger data sets, but performance degenerates significantly for very small
data sets and collapses for degenerate examples such as a set of single-
symbol keywords. Moreover, it has been shown that for larger alphabets
and keyword set sizes, speedups are comparable to those obtained by fol-
lowing a more traditional approach to obtaining concurrency, namely by
partitioning the input data. Indeed there is even a slight hint in the spee-
dup measurements that process-based solutions may eventually outper-
form the traditional approach for data sets larger than those used to date.

Additional work regarding the present case study may include

• studying the effect of buffer size on performance and determining
heuristics for optimising buffer size based on trie structure;

• finding ways in which to reduce communication that does not de-
pend on the alphabet, allowing for performance gains in the single
symbol case;

• determining whether the speedups of Variants 2a and 3a decline
when |𝐾| > 105; and

• experimenting with other aspects of the AC algorithm such as con-
structing the trie and failure function concurrently.

Of course, there are numerous alternatives to- and refactorings of the
three architectural variants proposed here. One suggestion is to consider
whether it is possible and effective to move beyond the breadth-first tra-
versal of the pre-constructed trie implicit in the sequential algorithm. Re-
call that the sequential algorithm of Algorithm 3.2 requires that the trie
levels have to be processed in sequential order and all concurrent vari-
ants to date have respected this requirement. The requirement ensures that
when the assignment 𝑞 ∶= 𝑓 (𝑟) in the sequential code is executed, the value
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of 𝑓 (𝑟) is available from an earlier level traversal, as required by the invari-
ant of the loop. It may be possible to ignore the constraints of a breadth-
first sweep in a refactored concurrent implementation, provided that the
assignment 𝑞 ∶= 𝑓 (𝑟) in the code is blocked until 𝑓 (𝑟) is indeed defined. The
details of how this might be done and whether it would result in significant
speedup is left for future research.
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4 Brzozowski’s DFA
construction

Increasingly, people seem to misinter-
pret complexity as sophistication, which
is baffling—the incomprehensible should
cause suspicion rather than admiration.
Possibly this trend results from a mistaken
belief that using a somewhat mysterious
device confers an aura of power on the user.

Niklaus Wirth

The second case study focuses on the problem of developing concurrent
versions of Brzozowski’s (1964) algorithm for constructing a deterministic
finite automaton (DFA) from an arbitrary regular expression. The language
of the resulting DFA is, of course, the same as that represented by the reg-
ular expression.

The chapter starts with a discussion of Brzozowski’s classical sequential
DFA construction algorithm. Section 4.2 then presents two process-based
decompositions of the algorithm that are suitable for concurrent execution.
This is followed by a performance comparison of a number of implement-
ations based on these decompositions in Section 4.4.

4.1 Sequential algorithm

The DFA construction algorithm by Brzozowski (1964) employs derivatives
of regular expressions to construct a DFA. The algorithm takes a regular
expression Regular expressions and

related concepts are
defined in Section 2.2.
DFAs are defined in
Def. 2.28.

𝐸 as input and constructs a DFA 𝑀 such that ℒ(𝑀) = ℒ(𝐸).

The algorithm identifies with each DFA state a regular expression. Ele-
ments of 𝑀 may therefore interchangeably be referred to either as regular
expressions or as states, depending on the context of the discussion. The
start state corresponds to the input regular expression, 𝐸. Each remaining
state is identified with a regular expression, say 𝑑, such that if 𝛿(𝑎, 𝑞) = 𝑑,
then 𝑑 corresponds with the derivative The rules for finding the

derivative of a regular
expression may be found
in Def. 2.25.

𝑎−1𝑞. In fact, it can be shown that
the language of each state’s associated regular expression is also the right
language of that state.

81

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4 Brzozowski’s DFA construction

Algorithm 4.1 (Brzozowski’s DFA construction algorithm):
func 𝐵𝑟𝑧𝑆(𝐸, Σ) →

𝛿, 𝑠, 𝐹 ≔ ∅, 𝐸, ∅;
𝐷, 𝑇 ≔ ∅, 𝑠;
do (𝑇 ≠ ∅) →

let 𝑞 be some state such that 𝑞 ∈ 𝑇;
𝐷, 𝑇 ≔ 𝐷 ∪ {𝑞}, 𝑇 ⧵ {𝑞};
{ build out-transitions from q on all alphabet symbols }
for (𝑎 ∶ Σ) →

{ find derivative of q with respect to a }
𝑑 ≔ 𝑎−1𝑞;
if 𝑑 ∉ (𝐷 ∪ 𝑇) → 𝑇 ≔ 𝑇 ∪ {𝑑}
⫾ 𝑑 ∈ (𝐷 ∪ 𝑇) → skip
fi;
{make a transition from q to d on a }
𝛿(𝑞, 𝑎) ≔ 𝑑

rof ;
if 𝜀 ∈ ℒ(𝑞) → 𝐹 ≔ 𝐹 ∪ {𝑞}
⫾ 𝜀 ∉ ℒ(𝑞) → skip
fi

od;
return (𝐷,Σ, 𝛿, 𝑠, 𝐹)

cnuf

2

The well-known sequential version of the algorithm is given in Dijkstra’s
GCL As in the previous chapter,

GCL is employed as nota-
tion for the sequential
algorithms. An over-
view may be found in
Section 2.4.

in Algorithm 4.1. The notation assumes that the set operations ensure
uniqueness of the elements at the level of regular expression equivalence
(Def. 2.26), that is, 𝑎 ∈ 𝐴 implies that there is no 𝑏 ∈ 𝐴 such that 𝑎 and 𝑏 are
equivalent regular expressions.

The algorithm maintains two sets of regular expressions (or states): a set
𝑇 (‘to do’) containing the regular expressions for which derivatives need
to be calculated; and another set 𝐷 (‘done’) containing the regular expres-
sions for which derivatives have been found already. When the algorithm
terminates, 𝑇 is empty and 𝐷 contains the states of the automaton that re-
cognises ℒ(𝐸).

The algorithm iterates through all the elements 𝑞 ∈ 𝑇, finding derivatives
with respect to all the alphabet symbols and depositing these new states
(regular expressions) into 𝑇 in those cases where no equivalent regular ex-
pression has already been deposited into 𝑇 ∪ 𝐷.

Each 𝑞, once processed in this fashion, is then removed from 𝑇 and added
into 𝐷.
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4 Brzozowski’s DFA construction

In each iteration of the inner for-loop (i.e. for each alphabet symbol), the
𝛿 function is updated to contain the mapping from state 𝑞 to its derivative
with respect to the relevant alphabet symbol.

Finally, if state 𝑞 represents a regular expression whose language contains
the empty string 𝜀, that state is included in the set of final states 𝐹.

Since computing equivalence of regular expressions is expensive (Aho,
Hopcroft and Ullman 1974), in practice the set membership tests 𝑑 ∈ (𝐷∪𝑇)
and 𝑑 ∉ (𝐷∪𝑇) in the algorithm may use a weaker notion of equivalence—
that of similarity as defined in Definition 2.27. Two regular expressions are
similar if they are identical, or if one can be turned into the other using the
rules given in the definition. Brzozowski (1964) shows that every regular
expression has only a finite number of dissimilar derivatives. Hence, the
algorithm above is guaranteed to terminate when similarity is used as an
approximation for equivalence. Furthermore, since two dissimilar regular
expressions may be equivalent, the resulting DFA is not guaranteed to be
minimal.

The forthcoming section presents two process-based decompositions of the
algorithm. In each case the CSP description is structured as a number of
communicating sequential processes that may be executed concurrently.

4.2 Concurrent DFA construction

When one considers the sequential algorithm shown in Algorithm 4.1, a
number of independent activities can be identified: derivatives of regular
expressions are computed, the transition function 𝛿 is populated, finality is
determined, and the sets𝑇 and𝐷 are updated until no more regular expres-
sions need to be processed. These activities can be modelled as processes
in CSP.

The next section describes two alternative ways in which these processes
may be arranged. The main difference between the two configurations is in
the way in which the computation of derivatives is split among processes.
In the first configuration, a single CSP process is associated with a symbol
𝑎𝑖 from the alphabet Σ. This process then computes derivates of regular ex-
pressions with respect to this symbol. Consequently one requires |Σ| such
processes to compute derivatives over the entire alphabet. In the second
configuration, a single CSP process computes the derivatives of regular
expressions with respect to every 𝑎𝑖 ∈ Σ. An arbitrary number of such
processes may be executed concurrently. This number is determined by
the implementer.
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4 Brzozowski’s DFA construction

4.2.1 Configuration A

The first obvious process to model is that of computing derivatives of reg-
ular expressions. Let DERIV𝑎𝑖

be the process that calculates the derivative
of a regular expression with respect to a symbol 𝑎𝑖 from the alphabet Σ.
Each DERIV𝑎𝑖

repeatedly reads a regular expression 𝑟𝑒 from its input chan-
nel in.𝑖, calculates the derivative with respect to 𝑎𝑖 and then sends out the
result as a triple ⟨𝑟𝑒, 𝑎𝑖, 𝑎−1

𝑖 𝑟𝑒⟩ on channel out.𝑖.

DERIV𝑎𝑖
= in.𝑖?𝑟𝑒 → out.𝑖!⟨𝑟𝑒, 𝑎𝑖, 𝑎−1

𝑖 𝑟𝑒⟩ → DERIV𝑎𝑖

These processes may execute independently and concurrently and are thus
modelled in process DERIVS as the interleaving of |Σ| processes. Addition-
ally, DERIVS multiplexes the output of the individual DERIV𝑎𝑖

processes
onto a single output channel. This multiplexing is achieved by composing
the DERIV𝑎𝑖

processes with MBUFF from Section 3.2.1. Recall that MBUFF
accepts input from an array of left.𝑖 channels and outputs the input in FIFO
fashion on a single output channel right.

DERIVS = (⫼
𝑖∶1..|Σ|

DERIV𝑎𝑖
) [out↔ left]MBUFF(⟨⟩, 𝑁1)

DERIVS is thus modelled as the interleaving of |Σ| processes, each respons-
ible for calculating the derivative with respect to a given 𝑎𝑖 ∈ Σ. Each DE-
RIVS output channel out.𝑖 is chained to a corresponding input channel left.𝑖
of MBUFF.

The next task to model is updating the transition function. This is the re-
sponsibility of UPDATED. It is modelled as a repeating process that reads
a triple ⟨𝑟𝑒, 𝑎, 𝑑⟩ from its input channel in and records 𝛿(𝑟𝑒, 𝑎) = 𝑑. It also
sends one element of the triple, 𝑑, on via channel out. This 𝑑 is potentially a
new state from which transitions should be calculated and hence it should
be added into 𝑇 if a similar node has not been processed before.

UPDATED(𝛿) = in?⟨𝑟𝑒, 𝑎, 𝑑⟩ → out!𝑑 → UPDATED(𝛿 ∪ {⟨𝑟𝑒, 𝑎, 𝑑⟩})

The actions performed in the outer loop of the pseudo-code in Al-
gorithm 4.1 are modelled as process OUTER. It is responsible for main-
taining the sets 𝐷, 𝑇, and 𝐹. It sends out regular expressions for which
derivatives are computed and it receives these new regular expressions.
The parameter 𝑝 is used for termination as explained shortly.

OUTER(𝑇,𝐷, 𝐹, 𝑝) =
if |𝑇| > 0 ∨ 𝑝 > 0 then

SENDER(𝑇,𝐷, 𝐹, 𝑝) 2 RECEIVER(𝑇,𝐷, 𝐹, 𝑝)
else

SKIP

84

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4 Brzozowski’s DFA construction

• In the sequential algorithm, the outer loop continues while 𝑇 is not
empty. In the concurrent version, however, the termination condition
needs to be modified. The process should not terminate immediately
when 𝑇 is empty, since it may happen that the last element of 𝑇 has
been sent out by SENDER, but that some regular expression is still
to be received by RECEIVER. For this reason 𝑝 is used to model the
number of pending results. Every time a regular expression is sent
out, 𝑝 is incremented and every time a regular expression is received,
𝑝 is decremented. When both 𝑇 is empty and 𝑝 = 0, then the process
terminates.

• While OUTER has not terminated it is modelled as a choice It seems sensible to let
OUTER and SENDER
run concurrently us-
ing ⫴. However, in the
present model they both
manipulate 𝑇 and 𝑝.
Consequently, they can-
not run concurrently by
simply changing 2 into
⫴. A larger refactoring is
required and left as future
work.

between
the following behaviours. It may choose some 𝑞 ∈ 𝑇 and write it to
a channel (SENDER) and repeat the choice, or it may receive a new
regular expression 𝑑 from its input channel (RECEIVER) and repeat
the choice. The details of these two processes are described next.

RECEIVER describes the part of OUTER that receives the derivatives and
updates 𝑇 as necessary. The process receives a regular expression 𝑑 on
channel results and then deposits 𝑑 in 𝑇 if no similar regular expression is
found in 𝑇 ∪ 𝐷. The process also decrements 𝑝 since there is one fewer
derivative pending.

RECEIVER(𝑇,𝐷, 𝐹, 𝑝) =
results?𝑑 →

if 𝑑 ∉ 𝑇 ∪ 𝐷 then
OUTER(𝑇 ∪ {𝑑},𝐷, 𝐹, 𝑝 − 1)

else
OUTER(𝑇,𝐷, 𝐹, 𝑝 − 1)

The part of OUTER that sends out regular expressions is modelled as pro-
cess SENDER. It repeatedly sends out an arbitrary element of 𝑇 on chan-
nel deriv. This arbitrary choice is modelled as the internal choice over |𝑇|
subprocesses, one for each element of 𝑇. When OUTER sends out 𝑞, 𝑞 is
removed from 𝑇 and added to 𝐷 and, since |Σ| more derivatives need to be
computed, 𝑝 is incremented by |Σ|. Further, if 𝜀 ∈ ℒ(𝑞), then 𝑞 is added into
𝐹.

SENDER(𝑇,𝐷, 𝐹, 𝑝) =
⨅𝑞∈𝑇(deriv!𝑞 →

if 𝜀 ∈ ℒ(𝑞) then
OUTER(𝑇 ⧵ {𝑞},𝐷 ∪ {𝑞}, 𝐹 ∪ {𝑞}, 𝑝 + |Σ|)

else
OUTER(𝑇 ⧵ {𝑞},𝐷 ∪ {𝑞}, 𝐹, 𝑝 + |Σ|))
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4 Brzozowski’s DFA construction

All the actions of the sequential algorithm are now described by CSP pro-
cesses. However, since SENDER sends out regular expressions to be pro-
cessed by DERIVS, an additional process is needed to distribute the single
regular expression to each of the DERIV𝑎𝑖

processes. This process is called
FANOUT. It repeatedly reads a regular expression from its input channel
deriv and concurrently replicates it to the |Σ| output channels out.𝑖.

FANOUT = (deriv?𝑟𝑒 → ⫼
𝑖∶Σ

(out.𝑖!𝑟𝑒 → SKIP));FANOUT

When FANOUT is composed below with DERIVS, one obtains a process
with a single input channel and a single output channel.

DERIVERS = FANOUT [out↔ in]DERIVS

OUTER

UPDATED′

DERIVERS′

FANOUT DERIVS
DERIV𝑎1

DERIV𝑎|Σ|

⋮⋮

results

deriv

toDelta

Figure 4.1: The communications network of the BRZ𝐴 process. Note that there is
a DERIV𝑎𝑖

process for each 𝑎𝑖 ∈ Σ. A single regular expression is sent
to all DERIV𝑎𝑖

for processing. The MBUFF process is represented by
.

The final step is to get the processes to interact by connecting them
as shown in Figure 4.1. Since interaction takes place through shared
channels, it means that one needs to rename certain channels to be
common among the interacting processes. First let UPDATED′(𝛿) =
UPDATED(𝛿)⟦toDelta, results/in, out⟧. Here the original in and out channels
are renamed to toDelta and results, respectively. Second, let DERIVERS′ =
DERIVERS⟦toDelta/right⟧. In this case channel right is renamed toDelta.

The concurrent version of the algorithm can be modelled as a process BRZ𝐴
that is the parallel composition of the previously defined processes. The
processes only interact through shared channel events as shown below.

BRZ𝐴(𝐸) =
OUTER({𝐸}, ∅, ∅, 0) ∥

⦃deriv,results⦄
(DERIVERS′ ∥

⦃toDelta⦄
UPDATED′(∅))
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4 Brzozowski’s DFA construction

The regular expression 𝐸 for which a DFA is to be constructed, is passed as
input parameter to the process. Note the modelling decision of not passing
in Σ as a parameter One could, of course,

make Σ a parameter, but
that would increase the
number of parameters in
the process descriptions,
making them slightly
more complex.

. Rather, it is seen as a global constant known by the
relevant processes. The initial values of the process paramaters, corres-
pond with the initialisation in Algorithm 4.1. OUTER’s 𝑇 consists only of
𝐸, the first regular expression for which to find derivatives. 𝐷 and 𝐹 are
both empty and 𝑝 = 0. The transition function 𝛿 is also empty.

Before considering the implementation and performance of the present
process-based decomposition, a second, alternative, decomposition is
presented next.

4.2.2 Configuration B

The FANOUT process of the previous section sends out from 𝑇 one single
regular expression, 𝑞, at a time to |Σ| processes. These processes concur-
rently compute the derivatives of 𝑞, each process dealing with one specific
symbol from Σ. Only when all of these |Σ| processes have run to completion
can FANOUT send out the next regular expression. This seems unneces-
sarily restrictive.

Instead, define a second process configuration in which the derivatives of
an arbitrarily predetermined number of regular expressions, 𝑛, can be com-
puted in 𝑛 separate processes, each process finding the derivatives of its
current regular expression with respect to all 𝑎 ∈ Σ. This configuration
thus relies on the implementer preselecting 𝑛, the number of separate pro-
cesses to be run. One may define DERIVS(𝑛) as the concurrent composition
of 𝑛 independent DERIV𝑖 processes.

DERIVS(𝑛) = ⫼
𝑖=1..𝑛

DERIV𝑖

Each of these DERIV𝑖 processes reads a regular expression from an input
channel in.𝑖 and then computes the derivative with respect to each 𝑎 ∈ Σ.
Once all these derivatives have been computed and communicated, the
process repeats. Another minor change to the process is that it now has two
output channels: outd.𝑖 and out.𝑖. The process sends out triples to populate
the transition function on outd.𝑖 and out.𝑖 is used to send out the potentially
new regular expressions back to OUTER.

DERIV𝑖 = in.𝑖?𝑟𝑒 → (𝑃𝑖(Σ, 𝑟𝑒);DERIV𝑖)
𝑃𝑖(𝑆, 𝑟𝑒) =

if 𝑆 ≠ ∅ then
⨅𝑎∈𝑆 outd.𝑖!⟨𝑟𝑒, 𝑎, 𝑎−1𝑟𝑒⟩ → out.𝑖!𝑎−1𝑟𝑒 → 𝑃𝑖(𝑆 ⧵ {𝑎}, 𝑟𝑒)

else
SKIP
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4 Brzozowski’s DFA construction

Other minor modifications are also present in this configuration. The first
is to remove updating the set of final states 𝐹 from OUTER and to create a
new process UPDATEF that is responsible for this. This change allows for
the nullability checking to occur concurrently with the other operations.
UPDATEF reads a regular expression 𝑠 from an input channel toFinal and
then inserts 𝑠 into 𝐹 when 𝜀 ∈ ℒ(𝑠).

UPDATEF(𝐹) =
toFinal?𝑠 →

if 𝜀 ∈ ℒ(𝑠) then
UPDATEF(𝐹 ∪ {𝑠})

else
UPDATEF(𝐹)

The addition of UPDATEF necessitates a revision of the OUTER process.
The references to 𝐹 should be removed meaning that 𝐹 should no longer be
a parameter of OUTER and its subprocesses, SENDER and RECEIVER and
OUTER should communicate regular expressions to UPDATEF. OUTER is
still described as the choice between SENDER and RECEIVER.

OUTER(𝑇,𝐷, 𝑝) =
if |𝑇| > 0 ∨ 𝑝 > 0 then

SENDER(𝑇,𝐷, 𝑝) 2 RECEIVER(𝑇,𝐷, 𝑝)
else

SKIP

The behaviour of RECEIVER remains unchanged as shown below.

RECEIVER(𝑇,𝐷, 𝑝) =
results?𝑑 →

if 𝑑 ∉ 𝑇 ∪ 𝐷 then
OUTER(𝑇 ∪ {𝑑},𝐷, 𝑝 − 1)

else
OUTER(𝑇,𝐷, 𝑝 − 1)

SENDER’s behaviour, however, does change because it does not need to
determine whether 𝜀 ∈ ℒ(𝑞) for some 𝑞 ∈ 𝑇. It only needs to send 𝑞 out to
UPDATEF on channel toFinal.

SENDER(𝑇,𝐷, 𝑝) =
⨅𝑞∈𝑇(toFinal!𝑞 → deriv!𝑞 → OUTER(𝑇 ⧵ {𝑞},𝐷 ∪ {𝑞}, 𝑝 + |Σ|))

Since each DERIV𝑖 process communicates the derivatives directly to
OUTER, UPDATED does not need to do that anymore. Hence it repeatedly
reads a triple from its input channel and updates the transition function.
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4 Brzozowski’s DFA construction

UPDATEF

OUTER

DERIVS(𝑛)

DERIV𝑛

DERIV1

⋮

DERIVERS

UPDATED

toFinal toDelta

results

deriv
𝑎

𝑏

𝑐

Figure 4.2: Configuration B process diagram. Note that the number of DERIV
processes is determined by the implementation and not by |Σ|.

UPDATED(𝛿) = toDelta?⟨𝑟𝑒, 𝑎, 𝑑⟩ → UPDATED(𝛿 ∪ {⟨𝑟𝑒, 𝑎, 𝑑⟩})

Now the processes can be connected as shown in Figure 4.2. Since each
DERIV𝑖 has an input and two output channels, DERIVS(𝑛) has 3𝑛 channels
that need connecting. In order to simplify this, DERIVS(𝑛) is composed
with instances of DBUFF and MBUFF. Recall from Section 2.5.2 that these
processes provide not only buffering, but also a way to link a single chan-
nel to multiple channels. The CSP description of the composite process is
shown next. An explanation follows the definition.

DERIVERS(𝑛) =
(𝑎.DBUFF(⟨⟩, 𝑁𝑎, 𝑛)

[a.right ↔ in]
DERIVS(𝑛)

[out↔ b.left]
𝑏.MBUFF(⟨⟩, 𝑁𝑏, 𝑛)

[outd↔ c.left]
𝑐.MBUFF(⟨⟩, 𝑁𝑐, 𝑛))⟦deriv, results, toDelta/𝑎.left, 𝑏.right, 𝑐.right⟧

The first step in connecting the processes is to connect all the input channels
of the DERIV𝑖 processes to an instance of DBUFF The first parameter is

the state of the buffer,
initially empty. The
second is the capacity of
the buffer, while the third
is the number of output
channels.

. This 𝑎.DBUFF receives
elements on a single input channel 𝑎.left and emits an element on any one of
an array of output channels 𝑎.right.𝑖. In the present case 𝑎.DBUFF is used to
move a regular expressions from OUTER to one of the DERIV𝑖 processes.
Contrast this with FANOUT from Configuration A in which a given regular
expression is delivered to all the DERIV𝑖 processes.
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4 Brzozowski’s DFA construction

Next, the output channels of the DERIV𝑖 processes are multiplexed onto
two channels using two instances of MBUFF. The first, 𝑏.MBUFF, aggreg-
ates the elements from all the outd.𝑖 channels to deliver to UPDATED. The
second, 𝑐.MBUFF, does the same for the out.𝑖 channels and connects to
OUTER.

Now, rename channels so that DERIVERS may interact with OUTER and
UPDATED via common channel names. 𝑎.DBUFF’s input channel 𝑎.left is
renamed to deriv, the output channel of 𝑏.MBUFF is renamed from 𝑏.right to
results, and 𝑐.MBUFF’s output channel is renamed from 𝑐.right to toDelta.

The final step is to define BRZ𝐵 in which all the processes are interacting
via the channels as shown in Figure 4.2.

BRZ𝐵(𝐸, 𝑛) =
(UPDATEF(∅) ∥

⦃toFinal⦄
OUTER({𝐸}, ∅)) ∥

⦃results,deriv⦄
(DERIVERS(𝑛) ∥

⦃toDelta⦄
UPDATED(∅))

These two process-based decompositions can now be used to guide a num-
ber of implementations.

4.3 Implementation

Regular expressions are implemented as expression trees, following the
same approach as B. W. Watson (1994). A total ordering is defined over the
regular expressions and, to assist in similarity checking, the expressions
are kept in a canonical form. To test whether two regular expressions are
similar, one may then simply consider their ordering. If they are equal then
they are similar. Full details are not included here, but the source code will
be made available at http://fastar.org.

The two CSP configurations from the previous section were used to guide
a number of Go implementations. As before, processes are mapped to
goroutines. The synchronous channels of CSP are mapped to Go channels.
However, in Go, channels provide buffering and may be shared among
goroutines. This eliminates the need for buffering and multiplexing pro-
cesses (e.g. MBUFF,DBUFF) in the implementations.

In addition to the sequential version of the algorithm, five process-based
variants of the algorithm were implemented. Three (BrzA1, BrzA2 and
BrzA3) are based on Configuration A and two (BrzB1 and BrzB2) are based
on Configuration B. The sequential version and variants may be described
briefly as follows.
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4 Brzozowski’s DFA construction

BrzS — A direct sequential implementation of Algorithm 4.1. This im-
plementation serves as the baseline against which the concurrent
implementations are measured. In this implementation, as in the
others, no attempt was made to optimise performance. ‘

BrzA1— An implementation based on configuration A in which channels
are synchronous, that is the channels do not provide buffering.

BrzA2— This implementation is the same as BrzA1, but this time the chan-
nels are buffered. The buffer sizes used in the performance com-
parison may be found in Table 4.1.

BrzA3— This is the final implementation based on configuration A. How-
ever, a small modification is made that should potentially reduce
channel communication. The DERIV𝑎𝑖

processes send out results
only when 𝑎−1

𝑖 𝑞 ≠ ∅. This means that OUTER cannot anymore
rely on counting the derivatives to decide when to terminate. In-
stead an alternative scheme is employed.

When OUTER has no more regular expressions to send, i.e. 𝑇 =
∅, then it may terminate only if there are no more regular expres-
sions on their way from the DERIV𝑎𝑖

processes. Since regular ex-
pressions are processed by the DERIV𝑎𝑖

processes in the order in
which they are received, the following scheme may be adopted
to ensure that OUTER does not terminate while there are states
“in transit”.

When 𝑇 = ∅, then OUTER sends out a special token on channel
deriv to the DERIV𝑎𝑖

processes. Upon receiving the token, each
of them simply sends the token on. Once |Σ| tokens, one for each
DERIV𝑎𝑖

process, have arrived consecutively back at OUTER,
it may terminate. If, however, a regular expression arrives at
OUTER before all |Σ| tokens were received, OUTER aborts the
termination attempt by resetting the token counter and inserts
the regular expression into 𝑇.

BrzB1— An implementation of Configuration B, with buffers sizes as
shown in Table 4.1.

BrzB2— An alternate Configuration B implementation in which commu-
nication is reduced by changing the way in which the DERIV𝑖
processes emit their results. Recall that each process computed
the derivative over all alphabet symbols. Instead of communic-
ating each such derivative, a DERIV𝑖 collects all |Σ| derivatives
and communicates this collection over its output channel.

The next section reports on the performance of these implementations.
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4 Brzozowski’s DFA construction

4.4 Performance comparison

One of the objectives of the present study is to determine whether an im-
plementation of a process-based decomposition may yield improvements
in run time over the sequential algorithm. For this purpose the following
experiments were conducted.

4.4.1 Experimental setup

Regular expressions were pseudo-randomly generated via a simple recurs-
ive procedure gen(Σ, 𝑑). The procedure takes as input two parameters: an
alphabet Σ and an integer 𝑑. If 𝑑 = 0 the procedure returns a random sym-
bol from Σ. If 𝑑 > 0 then gen(Σ, 𝑑) randomly chooses a regular expression
operator and then recursively generates the required operands for the op-
erator by calling gen(Σ, 𝑑 − 1). The size of the regular expression is thus
controlled by 𝑑 since 𝑑 defines the depth of the expression tree for the reg-
ular expression. The upper bound for the number of operators in the tree is
2𝑑−1 and for the number of symbols (leaves) it is 2𝑑. Many generated regu-
lar expressions will be smaller since some regular expression operators are
unary operators which result in a tree that is smaller than a complete bin-
ary tree. It should be mentioned that more flexible generation is possible
using the method by Héam and Nicaud (2011).

Regular expression were generated with depths 𝑑 = 5, 6,… , 10. In order to
cover a wide range of alphabet sizes, alphabets of sizes, 4, 95, 256 and 512
were considered. For each of the elements in {4, 95,256, 512} × {5, 6,… , 10}
a hundred regular expressions were generated. Each of these regular ex-
pressions was used as input to each of the six implementations described
above. A given regular expression and implementation combination was
executed twenty times and the minimum run time was taken as the data
point for that particular combination. The reason for this is that very large
run times occasionally were observed for the sequential implementation.
However, when repeating the runs, these cases would record reasonable
run times, while others would suddenly run very long. This suggests that
the long run times are not due to the particular input test cases, but rather
due to other factors. These factors could be, inter alia, operating system
effects and the Go garbage collector. Instead of trying to identify and, if
possible, remove the factors, it was decided to mitigate the effect of these
by repeating each input twenty times. In each execution the number of
states in the generated automaton was also recorded.

Go 1.5.3 was used to compile the implementations. They were executed
on the same Linux 3.10.17 machine with a six-core hyperthreaded CPU Intel® Xeon® CPU E5-2630

v2 @ 2.60GHz. See
Section 2.7.3 for more
information.

as
in the previous chapter. The Go runtime was configured to run twelve
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4 Brzozowski’s DFA construction

processes concurrently and the number of DERIV𝑖 processes in Configur-
ation B was 24. The buffer sizes are listed in Table 4.1. The sizes of the
buffers were chosen to allow the goroutines to communicate in an asyn-
chronous fashion without using very large buffers. The approach was to
have enough buffer space to allow for a message per process sharing the
buffer.

Table 4.1: Buffer sizes for the different channels. Note that 𝑛 = 24 is the number of
DERIV𝑖 processes in Configuration B. A dash implies that the channel
is not present in the implementation.

Channel BrzA1 BrzA2 BrzA3 BrzB1 BrzB2

outNode 0 1 1 2𝑛 2𝑛
inNode 0 |Σ| |Σ| |Σ|𝑛 𝑛
toDelta/deriv 0 |Σ| |Σ| |Σ|𝑛 𝑛
outf .𝑖 0 1 5 — —
tofinal — — — 2𝑛 2𝑛

4.4.2 Observations

To gain insight in the size of the output, first consider the sizes of the DFAs
constructed by the algorithm. Figure 4.3 contains box plots of the number
of states per automaton for each of the different alphabet sizes. It is clear
that the average size of the automata increases as the depth of the regular
expressions increases. This is expected since a greater depth means that
the tree representing the regular expression is larger, potentially yielding
more states in the DFA. Furthermore, it can be seen that the four-symbol
alphabet regular expressions resulted in automata with the most states.
The exact reason for this has not been investigated because it is not of im-
mediate concern to the objectives of this study.

It is clear from the plots that the automata are fairly small, since most have
fewer than fifty states. It is only the four-alphabet regular expressions that
yielded automata with more than a hundred states.

Recall that for a given regular expression, each of the implementations was
used to construct the corresponding DFA. Hence each regular expression
yields six data points—one per implementation. In order to visually as-
sess the performance of a concurrent implementation against the sequen-
tial benchmark implementation, one may plot a point for each pair of con-
current and sequential observations. Let the 𝑥-coordinate of the point be
the sequential run time and let the 𝑦-coordinate be the concurrent run time.
If the run times are always equal, the points should form a line with slope of
one. If, however, the concurrent run times are smaller than the sequential
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4 Brzozowski’s DFA construction
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Figure 4.3: Box plots of the number of states per DFA against the regular expres-
sion depth, for each of the four alphabet sizes.

run times, the points will be below this line and, conversely, if the concur-
rent run times are greater than the sequential run times, the points will lie
above this line.

Figure 4.4 shows the paired observations for each the concurrent imple-
mentations. Each plot shows the observations for all the alphabet sizes and
depths: 4×6×100 = 2400 points. The plots confirm that the concurrent run
times tend to be lower than the corresponding sequential run times since
the 𝑦-coordinates of the points tend the be smaller than the 𝑥-coordinates.
Also there seems to exist a linear relationship between the concurrent and
sequential times.

To verify the linear relationship, a regression line was fitted to each of the
groups of observations. The fitted lines are shown in Figure 4.4 together
with the parameters for the lines and the correlation coefficients.

Since all the correlation coefficients are close to 1, one may conclude with
a high level of confidence that the linear regression lines fit the data well.
Further, the slope parameters confirm that the concurrent implementations
tend to run faster than the sequential implementations. The slope of a line
gives an indication of how fast the concurrent run times grow relative to the
sequential run times. From the data in Figure 4.4 one can see that the con-
current run times tend to be about half the sequential run times. According
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4 Brzozowski’s DFA construction

̂𝑦 = 35.14 + 0.49 ⋅ 𝑥, 𝑅2 = 0.95

̂𝑦 = 19.89 + 0.54 ⋅ 𝑥, 𝑅2 = 0.94

̂𝑦 = −13.49 + 0.49 ⋅ 𝑥, 𝑅2 = 0.99

̂𝑦 = 21.03 + 0.5 ⋅ 𝑥, 𝑅2 = 0.96

̂𝑦 = 26.38 + 0.35 ⋅ 𝑥, 𝑅2 = 0.96

BrzA
1

BrzA
2

BrzA
3

BrzB1
BrzB2

0 5000 10000 15000 20000

0

5000

10000

0

5000

10000

0

5000

10000

0

5000

10000

0

5000

10000

Sequential runtime (ms)

C
on

cu
rr

en
tr

un
tim

e
(m

s)

Figure 4.4: Scatter plot of concurrent times against sequential times. The solid
line represents a regression line with parameters as shown in the plot.
The dashed line represents the line with slope 1. The plots show that
the concurrent implementations tend to outperform the sequential
implementation.

to this measure, BrzB2 is the best performer with a slope of approximately
a third.

Let us now consider the performance of the implementations based on
speedup relative to the sequential implementation. As in Chapter 3, the
speedup of the concurrent implementations was calculated by dividing the
sequential run time by the concurrent run time. From the slopes above, one
would expect mean speedup numbers around two. The observed mean
speedup numbers together with the mean sequential run times are shown
in Table 4.2.

The table provides mean speedup grouped by |Σ| and regular expression
depth. Recall that there are 100 observations in each such group. The
table’s first row shows the mean speedup over all alphabet sizes and all
regular expression depths. Figure 4.5 plots the mean speedup against the
regular expression depth, grouped by alphabet size.

The following are the main observations from the speedup data.
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4 Brzozowski’s DFA construction

Table 4.2: Observed mean speedup and standard deviation for the concurrent im-
plementations grouped by alphabet size and regular expression depth.
The mean sequential run time is also shown in the column 𝑇𝑆. Each
entry is the mean over 100 observations.

|Σ| Depth 𝑇𝑆(ms) BrzA1 BrzA2 BrzA3 BrzB1 BrzB2

All All 357.63 1.38 ± 0.55 2.05 ± 0.96 2.39 ± 0.86 1.66 ± 0.53 1.77 ± 0.57

4 All 187.28 1.77 ± 0.57 1.94 ± 0.59 1.78 ± 0.56 1.87 ± 0.82 1.82 ± 0.77
5 0.29 1.03 ± 0.38 1.23 ± 0.47 1.06 ± 0.36 0.95 ± 0.35 0.96 ± 0.35
6 1.17 1.47 ± 0.50 1.73 ± 0.58 1.51 ± 0.50 1.39 ± 0.55 1.37 ± 0.52
7 12.91 1.95 ± 0.47 2.22 ± 0.48 1.94 ± 0.45 1.97 ± 0.72 1.88 ± 0.64
8 18.33 2.07 ± 0.45 2.27 ± 0.47 2.10 ± 0.44 2.25 ± 0.76 2.13 ± 0.72
9 195.77 2.18 ± 0.29 2.25 ± 0.31 2.19 ± 0.26 2.44 ± 0.56 2.37 ± 0.55

10 895.21 1.90 ± 0.36 1.94 ± 0.40 1.91 ± 0.37 2.24 ± 0.73 2.20 ± 0.68

95 All 136.97 1.22 ± 0.31 2.71 ± 1.08 2.61 ± 0.62 1.80 ± 0.40 1.71 ± 0.38
5 2.82 0.93 ± 0.28 2.75 ± 0.71 2.48 ± 0.68 1.65 ± 0.47 1.46 ± 0.39
6 7.82 1.11 ± 0.29 3.21 ± 0.85 2.81 ± 0.65 1.85 ± 0.45 1.59 ± 0.40
7 24.53 1.20 ± 0.29 3.36 ± 1.29 2.65 ± 0.80 1.84 ± 0.58 1.70 ± 0.37
8 62.89 1.32 ± 0.28 3.12 ± 1.07 2.60 ± 0.59 1.81 ± 0.27 1.77 ± 0.27
9 193.30 1.39 ± 0.24 2.24 ± 0.68 2.64 ± 0.51 1.79 ± 0.26 1.81 ± 0.33

10 530.44 1.35 ± 0.26 1.58 ± 0.45 2.49 ± 0.32 1.85 ± 0.23 1.93 ± 0.32

256 All 331.98 1.05 ± 0.42 1.53 ± 0.63 2.56 ± 0.74 1.57 ± 0.30 1.74 ± 0.47
5 10.52 0.64 ± 0.28 1.52 ± 0.70 2.35 ± 0.75 1.46 ± 0.43 1.45 ± 0.43
6 23.91 0.73 ± 0.28 1.67 ± 0.89 2.42 ± 0.91 1.49 ± 0.36 1.52 ± 0.36
7 70.98 0.94 ± 0.22 1.65 ± 0.71 2.61 ± 0.90 1.52 ± 0.24 1.59 ± 0.35
8 177.81 1.05 ± 0.16 1.46 ± 0.56 2.67 ± 0.72 1.58 ± 0.20 1.77 ± 0.33
9 500.02 1.26 ± 0.18 1.26 ± 0.33 2.66 ± 0.37 1.66 ± 0.19 1.95 ± 0.41

10 1208.67 1.67 ± 0.31 1.60 ± 0.26 2.63 ± 0.57 1.71 ± 0.22 2.16 ± 0.51

512 All 774.28 1.49 ± 0.56 2.02 ± 1.03 2.60 ± 1.12 1.41 ± 0.26 1.81 ± 0.58
5 25.21 1.08 ± 0.45 2.50 ± 1.47 2.90 ± 1.56 1.19 ± 0.36 1.42 ± 0.56
6 79.41 1.28 ± 0.47 2.27 ± 1.20 2.96 ± 1.33 1.34 ± 0.19 1.53 ± 0.34
7 158.25 1.37 ± 0.51 1.97 ± 0.99 2.95 ± 1.38 1.37 ± 0.15 1.67 ± 0.33
8 401.47 1.36 ± 0.21 1.61 ± 0.72 2.40 ± 0.63 1.44 ± 0.12 1.79 ± 0.32
9 922.60 1.56 ± 0.28 1.55 ± 0.59 2.29 ± 0.55 1.48 ± 0.18 1.98 ± 0.49

10 3058.73 2.27 ± 0.47 2.20 ± 0.53 2.14 ± 0.17 1.63 ± 0.25 2.46 ± 0.67
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4 Brzozowski’s DFA construction
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Figure 4.5: Mean observed speedup against regular expression depth, grouped
by alphabet size. Each point is the mean over 100 observations. The
numbers, together with standard deviations are shown in Table 4.2.

1. Based on the mean speedup over all alphabet sizes and regular ex-
pression depths, BrzA3 performed the best with a mean speedup of
2.39. This is different from the earlier measure where BrzB2 was the
best, based on the slope of the regression line. This difference is re-
visited below when the actual run times are discussed.

2. All but one of the concurrent implementations achieved mean spee-
dup above one in all the subgroups. Only BrzA1 failed to improve
on the sequential implementation in some of the subgroups.

3. The best speedup (3.36) was obtained by BrzA2 at depth 7 and |Σ| =
95. The lowest speedup (0.64) was by BrzA1 at depth 5 and |Σ| = 256.

4. From Figure 4.5 one notices that when |Σ| = 4, the different imple-
mentations behave similarly. Speedup grows as regular expression
depth grows, but when the depth reaches 10, the speedup drops.
This suggests that when larger regular expressions are used, memory
management may affect performance. For a definitive explanation,
however, more tests are required and this was deemed to be outside
the scope of the present work.

5. In the cases where |Σ| > 4, the implementations obtained signi-
ficantly different speedups. The unbuffered BrzA1 implementation
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4 Brzozowski’s DFA construction

typically performed the worst. Its buffered equivalent BrzA2, how-
ever, often performed well for smaller regular expressions.

6. From the performance of BrzA3 in which communication is reduced
by not communicating the empty regular expression, it is clear that
this modification is indeed an improvement.

7. The speedup of the two implementations based on Configuration B
tend to improve as regular expression depth grows. This effect gets
more pronounced as the alphabet size grows. BrzB2 is best with large
alphabets and large regular expression depths.
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Figure 4.6: Mean run times of the different Brzozowski implementations. The
run time is plot against the depth of the regular expression. Note the
logarithmic scale on 𝑦-axis.

Finally, consider the run times of the different implementations. The mean
run time of the implementations are shown in Figure 4.6. It plots the mean
run time of each implementation against the regular expression depth.
Note the logarithmic scale on the 𝑦-axis. It is clear from the plot that the run
times grow exponentially as the depth increases. It is also evident that the
sequential implementation (BrzS) is the slowest on average in most cases
and BrzA3 the fastest. This is consistent with the observation earlier, where
BrzA3 achieved the greatest mean speedup. But how does one reconcile
this with the observation that BrzB2 is the best based on the slope of the
regression line in Figure 4.4?
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4 Brzozowski’s DFA construction

The lower slope of a regression line does not state that the average run time
of the implementation is better than that of another. It simply asserts that
the run time of the concurrent implementation grows at a slower rate relat-
ive to the run time of the sequential implementation. Compare the lines of
the mean run times of BrzA3 and BrzB2 in Figure 4.6. The line for BrzB2 is
above the line for BrzA3 for all depths up to nine. The lines cross just after
depth nine. For the cases under consideration BrzA3 achieved the best
average performance, but BrzB2 seems to be more scalable for larger reg-
ular expressions. For smaller regular expressions, however, the overhead
of BrzB2 puts it at a disadvantage compared to BrzA3.

4.5 Conclusion

This case study differs from the previous in that there is no obvious way
to employ data-level parallelism. The algorithm starts with a single regu-
lar expression and more are computed as the algorithm progresses. The
processes-based approach allowed one to exploit some task-level parallel-
ism.

The decomposition exercise enabled one to identify opportunities for al-
ternatives in the implementation. The resulting implementations did out-
perform the plain sequential implementation, but significant speedup was
not achieved. Speedup of around two on a six-core CPU suggests room for
improvement.

The present work may be extended in a number of ways. The perform-
ance analysis could also consider, for example, the effects of different buffer
sizes. As mentioned earlier, a better regular expression generation method
(Héam and Nicaud 2011) could be employed to create larger regular expres-
sions. The current regular expression implementation could also be im-
proved. The current implementation creates many objects when perform-
ing operations on regular expressions. This puts strain on the Go runtime
and garbage collector.
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5 Incremental DFA
minimisation

Design is the art of separation, grouping,
abstraction, and hiding. The fulcrum of
design decisions is change. Separate those
things that change for different reasons.
Group together those things that change
for the same reason.

Robert C. Martin

The third case study considers the minimisation of finite automata. As in
the earlier chapters, a particular sequential algorithm will be the starting
point for a process-based implementation of DFA minimisation. The prob-
lem of minimising a finite state automaton has been studied quite extens-
ively over the years and many sequential algorithms have been proposed
to address this problem. See B. W. Watson (1995, Chap. 7), Almeida, Mor-
eira and Reis (2012) and Berstel et al. (2010) for a comprehensive coverage
of the area.

For this chapter, the algorithm under consideration is due to B. W. Watson
(2001). Before the algorithm is presented, Section 5.1 summarises the relev-
ant mathematical preliminaries from Chapter 2. Section 5.2 then describes
the sequential DFA minimisation algorithm that is the focus of this chapter.
Three CSP decompositions are presented in Section 5.3 and the perform-
ance of the implementations based on these decompositions is studied in
Section 5.4.

5.1 Preliminaries

The purpose of this section is to present the necessary terminology and
definitions from Section 2.3 in a convenient manner. For full details, links
to the relevant definitions in Chapter 2 are provided in the margin.

Throughout this chapter, consider a specific DFA A formal definition of
a DFA can be found in
Def. 2.28.

(𝑄,Σ, 𝛿, 𝑞0, 𝐹). Recall that
𝑄 is the finite set of states, Σ is the input alphabet, 𝛿 ∶ 𝑄 × Σ⟶𝑄∪ {⊥} is
the transition function, 𝑞0 ∈ 𝑄 is the start state, and 𝐹 ⊆ 𝑄 is the set of
final states. Assume further that no state in the automaton is useless. That
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5 Incremental DFA minimisation

means that, for every state 𝑞 ∈ 𝑄, there is a path from the start state to 𝑞 as
well as a path from 𝑞 to a final state. The size of a DFA, |(𝑄,Σ, 𝛿, 𝑞0, 𝐹)|, is
defined as the number of states, |𝑄|.

The shorthand Σ𝑞 is used to refer to the set of all alphabet symbols that
appear as out-transition labels from state 𝑞. When it is the case thatΣ𝑝 = Σ𝑞,
it will be written as Σ𝑝𝑞 instead of Σ𝑝 or Σ𝑞 to emphasise their equality.

Recall from Definition 2.40 that 𝛿∗ ∶ 𝑄 × Σ∗⟶𝑄 ∪ {⊥} is the extension of 𝛿
and maps a state to another state, based on a word.

The right language See Def. 2.41.of a state 𝑞, written ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞), is the set of all words spelled
out on paths from 𝑞 to a final state. Formally, ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞) = {𝑤 ∣ 𝛿∗(𝑞, 𝑤) ∈ 𝐹 }.
Using the recursive definition of 𝛿∗, one can give a recursive definition of
⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞) See Pty. 2.46.:

⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝑞) = ⎛⎜⎜
⎝

⋃
𝑎∈Σ𝑞

{𝑎} ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ(𝛿(𝑞, 𝑎))⎞⎟⎟
⎠

∪ { {𝜀} if 𝑞 ∈ 𝐹
∅ if 𝑞 ∉ 𝐹

Predicate E indicates ‘equivalence’ of states:

E(𝑝, 𝑞) ≡ ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑝) = ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞)

With the inductive definition of ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℒ, one may rewrite See Pty. 2.63 for a full
derivation.

E as follows:

E(𝑝, 𝑞) ≡
(𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧ Σ𝑝 = Σ𝑞 ∧ ⟨∀ 𝑎 ∶ 𝑎 ∈ Σ𝑝 ∩ Σ𝑞 ∶ E(𝛿(𝑝, 𝑎), 𝛿(𝑞, 𝑎))⟩

The language accepted See Def. 2.47.by DFA 𝑀 is simply the right language of its initial
state.

ℒ(𝑀) = ⃗⃗⃗⃗ ⃗⃗ ⃗ℒ(𝑞0)

The primary definition of minimality See Def. 2.59.of a DFA 𝑀 is:

Min(𝑀) ≡ ⟨∀ 𝑀′ ∶ 𝑀′ ∈ DFA ∧ ℒ(𝑀) = ℒ(𝑀′) ∶ |𝑀| ≤ |𝑀′|⟩

Using right languages, minimality can also be written as the following pre-
dicate: See Pty. 2.65.

⟨∀ 𝑝, 𝑞 ∶ 𝑝, 𝑞 ∈ 𝑄 ∧ 𝑝 ≠ 𝑞 ∶ ¬E(𝑝, 𝑞)⟩

E indicates whether two states are interchangeable. If they are, then one
can be eliminated in favour of the other. Of course, in-transitions to the
eliminated state are redirected to the equivalent remaining one. This re-
duction step is not addressed here.
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5 Incremental DFA minimisation

5.2 Sequential algorithm

This section briefly explains the sequential algorithm, Algorithm 5.2, as
presented by B. W. Watson (2001). The algorithm takes a DFA as input
and returns a set of pairs of states that are equivalent—that is, it returns an
equivalence relation on the states. Note that in the text below ComputeEquiv
refers to the name of the function in Algorithm 5.2,Equiv refers to the name
of the equivalence relation, and equiv is the name of the function that com-
putes the truth value of the predicate E(𝑝, 𝑞) for given values of 𝑝 and 𝑞.

Algorithm 5.2 is different from most traditional DFA minimisation al-
gorithms in the sense that it is incremental. By this is meant that the al-
gorithm may be halted at any time before all equivalent pairs of states
have been found. (Almeida, Moreira and Reis (2014) also developed an
incremental algorithm, but that algorithm is not considered in the present
work.) Because each equivalent pair of states in the relation may be col-
lapsed into a single state, the equivalence relation attained to date can be
used to reduce the size of the automaton. The resulting automaton will
only be guaranteed to be minimal if the algorithm has run to completion,
assuring that all equivalent state pairs have been identified. Optimising
improvements were made by B. W. Watson and Daciuk (2003), but these
are not considered here.

In essence, Algorithm 5.2 examines pairs of states for equivalence. The
equivalence of two states is determined by the recursive functional pro-
gram, equiv, shown in Algorithm 5.1 that is a translation the recursive defin-
ition of E. An invocation of the function equiv with state parameters 𝑝 and
𝑞 returns via the local boolean variable eq the truth value of E(𝑝, 𝑞).

Note, however, that if the definition of E were to be used directly as a func-
tional program, then there is the possibility of non-termination when the
input DFA is cyclic. In order for the functional program equiv to terminate,
it takes a third parameter, 𝑆, along with the two states. 𝑆 is the set of state
pairs visited to date in the recursion. During the recursion, it is assumed
that the two states are equivalent (by placing the pair of states in 𝑆) until
shown otherwise.

It is known (B. W. Watson 1995, §7.3.3) that the depth of recursion is
bounded by the larger of |𝑄| − 2 and 0 without affecting the result. Hence
one may add a fourth parameter, 𝑘, to the function equiv to count down
the number of recursive calls. An invocation equiv(𝑝, 𝑞, ∅, (|𝑄| − 2)max 0 The expression 𝑎max 𝑏

evaluates to the greater of
𝑎 and 𝑏.

)
returns E(𝑝, 𝑞) after no more than (|𝑄| − 2)max 0) recursions.

The function equiv is used by ComputeEquiv to compute the relation (i.e. set
of state pairs) Equiv.

Algorithm 5.2 maintains in variable 𝐺 a set consisting of the pairs of states
known to be inequivalent (distinguished), while in 𝐻, it accumulates pairs of
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5 Incremental DFA minimisation

Algorithm 5.1 (Pointwise computation of E(𝑝, 𝑞)):
func equiv(𝑝, 𝑞, 𝑆, 𝑘) →

if 𝑘 = 0 → 𝑒𝑞 ≔ (𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹)
⫾ 𝑘 ≠ 0 ∧ {𝑝, 𝑞} ∈ 𝑆 → 𝑒𝑞 ≔ true
⫾ 𝑘 ≠ 0 ∧ {𝑝, 𝑞} /∈ 𝑆 →

𝑒𝑞 ≔ (𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹) ∧ (Σ𝑝 = Σ𝑞);
for 𝑎 ∶ 𝑎 ∈ Σ𝑝 ∩ Σ𝑞 →

𝑒𝑞 ≔ 𝑒𝑞 ∧ equiv(𝛿(𝑝, 𝑎), 𝛿(𝑞, 𝑎), 𝑆 ∪ {{𝑝, 𝑞}}, 𝑘 − 1)
rof

fi;
return 𝑒𝑞

cnuf

2

Algorithm 5.2 (Computing the set Equiv):
func ComputeEquiv((𝑄,Σ, 𝛿, 𝑠, 𝐹)) →

𝐺,𝐻 ≔ ((𝑄 ⧵ 𝐹) × 𝐹) ∪ (𝐹 × (𝑄 ⧵ 𝐹)), { (𝑞, 𝑞) ∣ 𝑞 ∈ 𝑄 };
{ invariant: 𝐺 ⊆ ¬Equiv ∧ 𝐻 ⊆ Equiv }
do (𝐺 ∪ 𝐻) ≠ 𝑄 × 𝑄 →

let 𝑝, 𝑞 ∶ (𝑝, 𝑞) ∈ ((𝑄 × 𝑄) ⧵ (𝐺 ∪ 𝐻));
if equiv(𝑝, 𝑞, ∅, (|𝑄| − 2)max 0) →

𝐻 ≔ 𝐻 ∪ {(𝑝, 𝑞), (𝑞, 𝑝)};
𝐻 ≔ 𝐻+

⫾ ¬equiv(𝑝, 𝑞, ∅, (|𝑄| − 2)max 0) →
𝐺 ≔ 𝐺 ∪ {(𝑝, 𝑞), (𝑞, 𝑝)}

f i
od; { 𝐻 = Equiv }
return 𝐻

cnuf

2
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5 Incremental DFA minimisation

states belonging to the set Equiv. To initialise 𝐺 and 𝐻, note that final states
are never equivalent to non-final ones, and that a state is always equivalent
to itself. Since Equiv is an equivalence relation, the algorithm ensures that
𝐻 is transitive at each step. This is indicated by 𝐻 ≔ 𝐻+. The repetition in
this algorithm can be interrupted and the partially computed 𝐻 can safely
be used to merge states.

5.3 Process-based decomposition

In the sections that follow, the sequential algorithm of the previous sec-
tion is decomposed into a number of sequential processes. These processes
then interact to form concurrent systems that compute the equivalence re-
lation 𝐻.

In these decompositions as well as in the later implementations (sequen-
tial and concurrent), two deviations are made from Algorithm 5.2: 𝐺, the
set of distinguished states, is not computed and the transitive closure 𝐻+

is not computed. The consequence of this simplification is that all equi-
valence pairs will have to be computed explicitly. Also, if the program is
interrupted, then 𝐻 will not be an equivalence relation since it is not trans-
itive. However, the elements in 𝐻 may still be used to reduce the size of the
automaton.

Three decomposition variants are presented. These variants evolved in
an iterative fashion after reflecting on possible process-based architectures
to implement the above sequential algorithms. In the first variant (Sec-
tion 5.3.1), a predetermined number of processes compute pairwise equi-
valence while the transition function is accessed through a server process.
In the second variant (Section 5.3.2), this server process is eliminated. In
the third and final variant (Section 5.3.3), there is no server and also no
longer a fixed, predetermined number of processes computing pairwise
equivalence—the processes are created dynamically, one for each pair of
states to compare. Each of these variants was implemented and their run
time performance is compared against the sequential implementation in
Section 5.4.

5.3.1 Access to transition function via server process

In the first decomposition, shown in Figure 5.1, the process network com-
prises the following processes. SENDER has access to a set of state pairs.
It sends out one randomly chosen pair of states at a time for which pair-
wise equivalence is then determined by any one of a number of EQUIV
processes. Each EQUIV process sends the verdict about whether or not its
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5 Incremental DFA minimisation

input pair of states is equivalent to the GATHERER process which records
the equivalent states. A SERVER𝑆 The subscript 𝑆 stands for

sequential. An alternate
concurrent server is
defined later.

process encapsulates the transition func-
tion 𝛿. The various EQUIV processes interact with SERVER𝑆 in order to do
their computation—they do not directly access 𝛿.

SENDER
EQUIV1

EQUIV𝑛

𝑎 𝑏

𝑐

SERVER𝑆

GATHERER⋮
equiv result

delta

resp.1 resp.𝑛

Figure 5.1: Process network structure for the first variant in which a server pro-
cess interacts with the EQUIV𝑖 processes for access to the transition
function. Requests are multiplexed onto channel delta, but responses
are returned on dedicated channels, resp.𝑖.

The first process described is the SENDER process. It is responsible for
sending out all the pairs for which equivalence is to be determined.

SENDER(𝑇) =
if |𝑇| = 0 then

SKIP
else

⨅(𝑝,𝑞)∈𝑇 (if 𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹 then
equiv!(𝑝, 𝑞) → SENDER(𝑇 ⧵ {(𝑝, 𝑞), (𝑞, 𝑝)})

else
SENDER(𝑇 ⧵ {(𝑝, 𝑞), (𝑞, 𝑝)}))

The process is parameterised by a set 𝑇 containing the pairs of states. It
arbitrarily selects a pair (𝑝, 𝑞) from 𝑇. If 𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹, meaning both
are elements of 𝐹 or both are not elements of 𝐹, then the pair are possibly
equivalent. To check whether or not this is the case, the pair is sent out on
channel equiv. Both (𝑝, 𝑞) and (𝑞, 𝑝) are removed from 𝑇 and SENDER is
re-invoked. If it is not the case that 𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹, then 𝑝 and 𝑞 are defin-
itely not equivalent. Once again, both (𝑝, 𝑞) and (𝑞, 𝑝) are removed from 𝑇
and SENDER is re-invoked. Once all the pairs in 𝑇 have been processed,
SENDER terminates.

The process responsible for updating the equivalence relation 𝐻 is
GATHERER.

105

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



5 Incremental DFA minimisation

GATHERER(𝐻) =
result?⟨𝑝, 𝑞, 𝑒𝑞⟩ →

if 𝑒𝑞 then
GATHERER(𝐻 ∪ {(𝑝, 𝑞), (𝑞, 𝑝)})

else
GATHERER(𝐻)

It repeatedly reads triples ⟨𝑝, 𝑞, 𝑒𝑞⟩ from its input channel result. The triple
⟨𝑝, 𝑞, 𝑒𝑞⟩ represents E(𝑝, 𝑞) = 𝑒𝑞 for some 𝑝, 𝑞 ∈ 𝑄. If 𝑝 and 𝑞 are equivalent,
the equivalence relation, 𝐻, is appropriately updated. If one were to follow
Algorithm 5.2, one should also compute the transitive closure of 𝐻. For
simplicity, this step is omitted Note that the compu-

tation of the transitive
closure is omitted in all
implementations, in-
cluding the sequential
implementation.

in the current presentation.

The next process encapsulates the transition function 𝛿. One may think
of it as a server that receives queries for lookups into the implemented
transition function structure and then responds with the relevant value. In
the process definition the actual data is abstracted away. Rather, the model
only captures the behaviour that a query is received and then responded to.
In principle, such a sever could operate in either a sequential or concurrent
fashion. In the former case, it would handle one item of incoming data at a
time to completion before reading in the next item. In the concurrent case,
it would read in the next item data at any stage, even while processing
earlier data items.

A sequential server SERVER𝑆 may be described as follows. It reads a query
from channel delta and then replies to the query on the channel dedicated
to the process that performed the query. After responding, the server is
ready to receive a new query.

SERVER𝑆 = delta?id → REPLY(id);SERVER𝑆

In the CSP model a query is modelled as an event on channel delta. The
event identifies the process that issued the query through id. This index is
used to identify the channel on which to send the response, as shown in
process REPLY below.

REPLY(id) = resp.id → SKIP

It is fairly simple to describe a concurrent server. Section 5.4.1 shows that
the two server versions
resulted in two imple-
mentations for this
variant. One in which
the sequential server is
utilised, and another in
which the concurrent
server is utilised.

Here the query is read
and the REPLY process executes concurrently with the server process.

SERVER𝐶 = delta?id → (REPLY(id) ⫴ SERVER𝐶)

The only behaviour remaining to be modelled is that of the EQUIV𝑖 pro-
cesses. Very abstractly, each of these processes repeatedly reads in a pair
of states and then emits whether or not they are equivalent. A rough de-
scription might be as follows:
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5 Incremental DFA minimisation

𝑃 = in?(𝑝, 𝑞) → out!E(𝑝, 𝑞) → 𝑃

This description, however, does not capture the interactions between the
EQUIV𝑖 processes and SERVER𝑆 that are required to compute E(𝑝, 𝑞).

Below a description of EQUIV𝑖 is given that attempts to model the commu-
nication behaviour of the execution of Algorithm 5.1. The actual computa-
tion of E(𝑝, 𝑞), however, is not modelled, but abstracted away. Instead, CSP
nondeterministic choice is used to model the possible paths of the compu-
tation. Also, to reduce clutter, mrd This is a mnemonic for

maximum recursion
depth.

is used for expression (|𝑄| − 2)max 0.

Initially EQUIV𝑖 reads in a pair of states (𝑝, 𝑞) from its input channel in.𝑖.
The process should now behave like an invocation of equiv(𝑝, 𝑞, ∅,mrd). In-
spection of the pseudo-code in Algorithm 5.1 shows that such an invoca-
tion may either return a result, or it may recurse after looking up entries
in the transition function structure. Consequently, the next step in EQUIV𝑖
is modelled as the choice between OUTPUT𝑖 and INTERACT𝑖. This choice
is modelled as CSP internal choice to highlight that the choices are not
determined by the environment, but rather by the computation and thus
internal to the process.

EQUIV𝑖 =
in.𝑖?(𝑝, 𝑞) → (OUTPUT𝑖(𝑝, 𝑞) ⊓ INTERACT𝑖(𝑝, 𝑞,mrd))

OUTPUT𝑖 describes that part of EQUIV𝑖 that produces output. It simply
emits either true or false for the given pair (𝑝, 𝑞) on the output channel out.𝑖.
These results are then received by GATHERER as described earlier.

OUTPUT𝑖(𝑝, 𝑞) =
(out.𝑖!⟨𝑝, 𝑞, true⟩ → EQUIV𝑖) ⊓ (out.𝑖!⟨𝑝, 𝑞, false⟩ → EQUIV𝑖)

INTERACT𝑖 is used to describe the interaction between EQUIV𝑖
and SERVER𝑆. It also models the bounded recursive nature of
equiv(𝑝, 𝑞, ∅,mrd). For this reason an extra parameter 𝑘 is used. When
𝑘 reaches zero, the recursion may not continue and a result will be emitted
through the process OUTPUT𝑖. While 𝑘 > 0 the process has a choice
between repeating or emitting output. Note that the query and the corres-
ponding response are abstracted away—only the events of sending some
query (qry.𝑖!𝑖) and receiving a response (ans.𝑖) are modelled.

INTERACT𝑖(𝑝, 𝑞, 𝑘) =
if 𝑘 > 0

qry.𝑖!𝑖 → ans.𝑖 → (OUTPUT𝑖(𝑝, 𝑞) ⊓ INTERACT𝑖(𝑝, 𝑞, 𝑘 − 1))
else

OUTPUT𝑖(𝑝, 𝑞)
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5 Incremental DFA minimisation

A predetermined number (𝑛) of independent EQUIV𝑖 processes may run
concurrently:

EQUIVS(𝑛) = ⫼
𝑖=1..𝑛

EQUIV𝑖

To simplify the interface to the array of EQUIV𝑖 processes as well as to
provide buffering, EQUIVS is linked to one instance of DBUFF of size 𝑁𝑎
and two instances MBUFF of sizes 𝑁𝑏 and 𝑁𝑐 respectively, as shown be-
low.

Recall The definitions of DBUFF
andMBUFF my be found
in Section 2.5.2.

that DBUFF receives input from a single left channel and emits out-
put on any of an array of right channels. Here the input channel is renamed
equiv to allow interaction with SENDER and the output channels are linked
to the input channels of EQUIVS.

The output of the EQUIV𝑖 processes are multiplexed onto a single channel
by 𝑏.MBUFF. This process reads input from an array of 𝑏.left.𝑖 channels and
multiplexes them onto 𝑏.right. Hence the output channels of EQUIVS are
linked to the input channels of 𝑏.MBUFF and 𝑏.right is renamed result. A
second multiplexing process 𝑐.MBUFF is used to multiplex the queries of
the EQUIV𝑖 processes onto a single channel for input to SERVER𝑆. Thus
the qry.𝑖 channels are linked to the 𝑐.left channels.

BEQUIVS(𝑛) =
𝑎.DBUFF(⟨⟩, 𝑁𝑎, 𝑛)⟦equiv/a.left⟧

[a.right↔ in]
EQUIVS(𝑛)

[out↔𝑏.left]
𝑏.MBUFF(⟨⟩, 𝑁𝑏, 𝑛)⟦result/𝑏.right⟧

[qry↔𝑐.left]
𝑐.MBUFF(⟨⟩, 𝑁𝑐, 𝑛)

Next, one may link BEQUIVS and SERVER𝑆 to form BEQUIVSERVER. This
is done by linking 𝑎.right to delta and the ans channels to the resp channels.

BEQUIVSERVER =
BEQUIVS(𝑛) [𝑐.right ↔ delta, ans ↔ resp]SERVER𝑆

The complete system may then be modelled as three top-level processes
interacting through two channels as shown in Figure 5.1.

MIN1 = (SENDER(𝑄 × 𝑄) ∥
⦃equiv⦄

BEQUIVSERVER) ∥
⦃result⦄

GATHERER(∅)
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5 Incremental DFA minimisation

5.3.2 Direct access to the transition function

Since all access to the transition function is read-only, it is not necessary to
restrict access to it through a process. In the second process-based decom-
position this process (SERVER𝑆 in MIN1) is eliminated. This change sim-
plifies significantly the CSP description of EQUIV𝑖 since there is no longer a
need to model communication with a server process. Figure 5.2 shows the
simplified structure. The definitions of SENDER and GATHERER remain
the same as in Section 5.3.1.

SENDER
EQUIV′

1

EQUIV′
𝑛

𝑎 𝑏 GATHERER⋮
equiv result

Figure 5.2: Process network for the second variant in which the server process is
eliminated. The EQUIV𝑖 processes directly access the transition func-
tion data.

EQUIV′
𝑖 now reads from its input channel in.𝑖 a pair of states (𝑝, 𝑞) and emits

the result of executing equiv(𝑝, 𝑞, ∅,mrd) on out.𝑖.

EQUIV′
𝑖 =

in.𝑖?(𝑝, 𝑞) → out.𝑖!⟨𝑝, 𝑞, equiv(𝑝, 𝑞, ∅,mrd)⟩ → EQUIV′
𝑖

As before, a predetermined number of such processes may execute inde-
pendently, each with its own input channel.

EQUIVS′(𝑛) = ⫼
𝑖=1..𝑛

EQUIV′
𝑖

In order to connect the single channel of SENDER to the multiple channels
of EQUIVS′, an instance of DBUFF is used. This ensures that a pair of
states that is sent out on equiv may be received by any one of the EQUIV′

𝑖
processes. Similarly, an instance of MBUFF is used to multiplex the results
of the EQUIV′

𝑖 processes onto channel result.

BEQUIVS′ =
𝑎.DBUFF(⟨⟩, 𝑁𝑎, 𝑛)⟦equiv/𝑎.left⟧

[𝑎.right↔ in]
EQUIVS′

[out↔𝑏.left]
𝑏.MBUFF(⟨⟩, 𝑁𝑏, 𝑛)⟦result/𝑏.right⟧

Putting all these components together, one may define the second variant
as follows.

MIN2 = (SENDER(𝑄 × 𝑄) ∥
⦃equiv⦄

BEQUIVS′) ∥
⦃result⦄

GATHERER(∅)
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5.3.3 Many short-lived processes

A third variant may be created by simply starting, for each pair of states, a
process to compute their equivalence. Instead of a SENDER process send-
ing out pairs, define a LAUNCHER process that starts a process for each
pair of states for which equivalence needs to be determined. Figure 5.3
shows the structure, where the BLAUNCHER process is the LAUNCHER
process combined with appropriate buffering, as explained below.

BLAUNCHER EQUIV″
1

EQUIV″
2

EQUIV″
𝑛

⋮
𝑎 GATHERER

result

Figure 5.3: An EQUIV𝑖 only computes the equivalence of a single pair of states
and then terminates. Many of these processes are created during the
execution of the system and 𝑛 is thus not determined by the imple-
menter, but is equal to the number of pairs that require comparison.

LAUNCHER is parametrised with a counter, 𝑖, and a set of pairs of states,
𝑇. The counter is used to identify each of the launched processes and 𝑇
contains the pairs of states from the automaton. When the 𝑇 is empty
LAUNCHER terminates. While there are still elements in 𝑇, LAUNCHER
selects an arbitrary element (𝑝, 𝑞) ∈ 𝑇 and if 𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹 then it launches
a new EQUIV″

𝑖 (𝑝, 𝑞) process. This new process runs concurrently with a re-
cursive instance of LAUNCHER that has appropriately updated paramet-
ers.

LAUNCHER(𝑖, 𝑇) =
if |𝑇| = 0 then

SKIP
else

⨅(𝑝,𝑞)∈𝑇(if 𝑝 ∈ 𝐹 ≡ 𝑞 ∈ 𝐹 then
EQUIV″

𝑖 (𝑝, 𝑞) ⫴ LAUNCHER(𝑖 + 1, 𝑇 ⧵ {(𝑝, 𝑞), (𝑞, 𝑝)})
else

LAUNCHER(𝑖, 𝑇 ⧵ {(𝑝, 𝑞), (𝑞, 𝑝)}))

The new EQUIV″
𝑖 process does not read from an input channel any more,

but rather accepts the states as parameters when it is created. It simply
communicates the result of the computation on its output channel out.𝑖 and
then terminates.

EQUIV″
𝑖 (𝑝, 𝑞) = out.𝑖!⟨𝑝, 𝑞, equiv(𝑝, 𝑞, ∅,mrd)⟩ → SKIP
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LAUNCHER is composed with an instance of MBUFF in order to combine
all the different output channels into one from which GATHERER may then
collect the results. Hence LAUNCHER and 𝑎.MBUFF are linked by con-
necting the out.𝑖 channels to the 𝑎.left.𝑖 channels. 𝑎.MBUFF’s output chan-
nel is renamed to results which allows it to synchronize with GATHERER.
𝑎.MBUFF has capacity 𝑁𝑎 and 𝑛 is the number of 𝑎.left.𝑖 channels. In this
case, 𝑛 should at least equal the number of EQUIV𝑖 processes created by
LAUNCHER.

BLAUNCHER =
LAUNCHER(1,𝑄 × 𝑄)

[out↔𝑎.left]
𝑎.MBUFF(⟨⟩, 𝑁𝑎, 𝑛)⟦results/𝑎.right⟧

The third variant MIN3 is then defined as the parallel composition of
BLAUNCHER and GATHERER.

MIN3 = BLAUNCHER ∥
⦃results⦄

GATHERER(∅)

As in the previous case studies, termination is not completely addressed in
the above CSP descriptions, but left as an implementation matter. A similar
approach to the “poisoning” alluded to in Section 3.2.5 could be followed
to address termination fully. One could extend the models to allow for the
process network to be “poisoned” when SENDER—or LAUNCHER in the
MIN3 case—has sent out all the pairs requiring comparison.

5.4 Performance comparison

Using the three process-based variants discussed above, a number of Go
implementations were developed. This section compares the run-time per-
formance of these implementations against a sequential implementation.

5.4.1 Implementation

The following Go implementations were developed.

MinS — A sequential implementation of Algorithm 5.2. The implement-
ation deviates slightly from the description in that the set of dis-
tinguished states 𝐺 is not computed and the transitive closure of
the equivalence relation 𝐻+ is not computed. These simplifica-
tions are carried through to all the concurrent implementations.

111

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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Min1a — An implementation based on the CSP specification MIN1 from
Section 5.3.1. Recall that a predetermined number of EQUIV𝑖
processes interact with a sequential SERVER𝑆 process to access
the transition function.

Min1b— This implementation is a slight modification of MIN1. Instead
of using a sequential SERVER𝑆 process, a concurrent server
SERVER𝐶 is used. That is

SERVER𝐶 = delta?id → (REPLY(id) ⫴ SERVER𝐶)

Each request is serviced in a new goroutine that runs concur-
rently with the server process.

Min2 — An implementation of MIN2. Recall that the server process is
eliminated and that each EQUIV′

𝑖 process accesses the transition
function structure directly.

Min3 — This is an implementation of MIN3 where a new goroutine is
created for each pair of states for which equivalence needs to be
determined.

5.4.2 Experimental setup

Complete, randomly generated automata of various sizes were used as in-
put to the implementations. The automata were generated using a method
by Bassino, David and Nicaud (2008). The method was implemented in Go
based on version 1.08.0929 of REGAL REGAL is a library to ran-

domly and exhaustively
generate automata.

(Bassino, David and Nicaud 2007). In
order to have a range of alphabet- and automaton sizes, three alphabet sizes
were used {4, 95,256} to generate automata with states {10, 50, 100, 500}.
For each combination a hundred automata were generated and for each
automaton the minimum time over three In cases where the total

run time for the three
runs exceeded 3min, the
minimum run time of
the completed runs was
taken.

runs was recorded for each of
the implementations listed above.

Go 1.5.3 was used to compile the implementations and they were executed
on the same machine as the earlier case studies. It ran Linux 3.10.17 with
a six-core hyper-threaded CPU Intel® Xeon® CPU

E5-2630 v2 @ 2.60GHz.
See Section 2.7.3 for more
details.

with 16 GB of RAM. The Go runtime
was configured to run twelve processes concurrently and the number of
EQUIV𝑖 goroutines that were created in Min1a, Min1b and Min2 was 𝑛 =
24.

The buffers sizes used in the runs are shown in Table 5.1. Note that in the
Min3 case the same buffer size was used as in the other cases even though
the number of EQUIV𝑖 processes is greater than 𝑛. This was done to keep
the scenarios similar in terms of channel configurations.
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5 Incremental DFA minimisation

Table 5.1: Buffer sizes for the channels used in the Go implementations. Note that
𝑛 = 24 is the number of EQUIV𝑖 processes.

Channel Min1a Min1b Min2 Min3

equiv 2𝑛 2𝑛 2𝑛 —
results 2𝑛 2𝑛 2𝑛 2𝑛
qry 𝑛 𝑛 — —
resp.𝑖 1 1 — —

5.4.3 Observations

The results of the experiments are described in this section. The mean spee-
dup obtained by the different implementations are shown Table 5.2. Also
shown is the mean duration of the sequential implementation MinS. The
table is grouped by |Σ| and the number of states |𝑄| in the automata. A des-
ignator ‘All’ indicates the mean has been taken over all the groups for that
variable. Hence the first row shows the mean speedup over all alphabet
sizes and all automaton sizes.

Table 5.2: Average speedup of the implementations grouped by alphabet size and
automaton size. The mean run time of the sequential implementation
is shown in column 𝑇𝑆. The columns show mean speedup as well as
the standard deviation.

|Σ| |𝑄| 𝑇𝑆(ms) Min1a Min1b Min2 Min3

All All 440 243.00 0.93 ± 0.16 5.48 ± 1.69 5.65 ± 1.40 5.02 ± 1.70

4 All 16 085.55 0.81 ± 0.21 4.20 ± 1.98 4.68 ± 1.72 4.78 ± 1.82
10 0.34 0.45 ± 0.08 0.83 ± 0.17 1.72 ± 0.86 1.72 ± 0.76
50 14.33 0.81 ± 0.03 4.13 ± 0.16 4.95 ± 0.29 5.86 ± 0.23

100 108.53 0.88 ± 0.02 4.62 ± 0.10 5.14 ± 0.12 5.02 ± 0.36
500 14 669.33 1.00 ± 0.01 6.09 ± 0.06 6.02 ± 0.06 5.64 ± 1.09

1000 115 184.93 0.99 ± 0.00 6.42 ± 0.05 6.51 ± 0.05 6.54 ± 0.06

95 All 318 154.55 0.99 ± 0.07 6.05 ± 1.10 6.10 ± 0.90 4.89 ± 1.81
10 3.07 0.95 ± 0.13 4.09 ± 0.68 4.55 ± 0.70 4.55 ± 0.92
50 317.92 0.99 ± 0.03 6.40 ± 0.18 6.38 ± 0.18 6.62 ± 0.22

100 2514.33 1.01 ± 0.01 6.63 ± 0.10 6.53 ± 0.09 6.72 ± 0.13
500 286 768.80 1.02 ± 0.00 6.71 ± 0.03 6.59 ± 0.03 2.39 ± 0.24

1000 2 284 182.73 1.00 ± 0.00 6.73 ± 0.01 6.77 ± 0.02 3.41 ± 0.20

256 All 986 488.90 1.00 ± 0.07 6.20 ± 0.96 6.19 ± 0.84 5.39 ± 1.37
10 7.25 0.97 ± 0.14 4.56 ± 0.74 4.82 ± 0.81 5.03 ± 0.87
50 777.99 1.01 ± 0.03 6.54 ± 0.21 6.49 ± 0.19 6.69 ± 0.18

100 6109.03 1.01 ± 0.01 6.58 ± 0.10 6.50 ± 0.10 6.68 ± 0.10
500 889 141.64 1.02 ± 0.00 6.81 ± 0.02 6.60 ± 0.02 3.40 ± 0.35

1000 7 086 328.31 1.00 ± 0.00 6.80 ± 0.01 6.83 ± 0.01 4.89 ± 0.08
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5 Incremental DFA minimisation

From the table it can be seen that Min1a performs the poorest. For all
groups the observed speedup is close to one or lower. The other three
implementations, however, do achieve mean speedup greater than one in
most cases. In fact, the difference between Min1a and the others is dra-
matic.

In order to visually assess in which combinations of alphabet and auto-
maton size the different implementation performed well, the plot in Fig-
ure 5.4 was created. It visualises in a grid the mean speedup achieved by
the four implementations. Rows represent alphabet sizes, columns repres-
ent automaton sizes, and the shade of a grid cell represents the speedup
achieved. Darker shades indicate lower speedup and lighter shades indic-
ate higher speedup.

Min1a Min1b Min2 Min3
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|𝑄|

|Σ|

2
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6
Speedup

Figure 5.4: Average speedup observed by alphabet size and automaton size. The
shading represents the speedup. Darker shades imply lower speedup
and lighter shades imply higher speedup. The sequential server im-
plementation (Min1a) clearly does not perform well. The other im-
plementations tend to perform better for greater alphabet sizes and
larger automata.

From the figure it is immediately evident that Min1a performs poorly in
all cases and that all implementations perform poorly when |Σ| = 10. The
figure also shows that, in the cases of Min1b and Min2, speedup improves
both as |𝑄| increases and as |Σ| increases. The performance of Min3 follows
a similar performance pattern provided that |𝑄| < 500. Indeed, speedup
continues to improve as |𝑄| increases to 500 or more, provided |Σ| = 4.
However, Min3 does not perform well when the |𝑄| = 500 and |Σ| = 95 but
improves somewhat from this poor performance as |𝑄| and |Σ| increase.
This drop in performance is probably caused, in part, by the large number
of goroutines that are created during execution, causing runtime scheduler
and memory management overhead. However, the fact that the speedup
improves when |𝑄| = 1000 suggests that other factors are also involved. The
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5 Incremental DFA minimisation

precise identification of these factors are beyond the scope of this present
study.

From Figure 5.4 one cannot easily compare the performance of the different
implementations relative to one another. For this reason Figure 5.5 shows
the mean speedup of each implementation against the number of states
grouped by |Σ|. The dashed line represents speedup of one. It is again
clear that Min1a does not perform well—being on or under the dashed line.
This makes sense because the server process in this implementation essen-
tially serialises the execution of the processes computing pairwise equival-
ence.

The earlier observation that the speedups under Min1b and Min2 increase
as automaton sizes increases, is also shown clearly in Figure 5.5.

For automata with up to a hundred states, Min3 usually achieves slightly
greater speedup than the other implementations. For automata with more
than a hundred states, Min3 performs much worse than the Min1b and
Min2 implementations (though not when |Σ| = 4). As mentioned earlier,
this drop in performance is likely due to, inter alia, the large number of pro-
cesses which cause greater overhead compared to the other implementa-
tions.

The speedup behaviours of Min1b and Min2 are fairly similar. Typically,
for smaller automata Min2 performs better than Min1b. For larger auto-
mata, however, Min1a performs better. This observation may be explained
by the server process in Min1b that causes overhead that penalises smaller
automata. In larger automata, however, the server process may have an
advantage if the transition function data may be kept in cache. The cost
of communication is then lower than the cost of fetching individually the
transition function data. When |𝑄| = 1000 then Min2 again slightly out-
performs Min1b, suggesting that the transition function structure does not
effectively fit in cache any more and that it is more efficient for each indi-
vidual EQUIV𝑖 to fetch the transition data.

It was found that the input automata generated in the above experiments
were usually minimal. This implies that the processes usually found pairs
of states distinguished rather then equivalent. It was deemed prudent to
determine whether using automata that are typically not minimal would
alter significantly the speedup performance of the implementations. For
this reason automata were generated using the Brzozowski construction
from Chapter 4. Regular expressions were generated using the method
described in Section 4.4.1. A thousand regular expressions of depth 9 and
four symbols were generated. These were then used to construct a thou-
sand automata.

Table 5.3 and Figure 5.6 show the mean speedup obtained by the imple-
mentations when using these newly created automata as input. Since the
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Figure 5.5: Mean run time and mean speedup of each concurrent implement-
ation against automaton size, grouped by alphabet size. Note the
logarithmic scale on both the 𝑥-axes as well as on the 𝑦-axis of the
run time plots. Each point is the mean over 100 observations. The
plots clearly show that the sequential server implementation performs
much poorer than the others.
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5 Incremental DFA minimisation

Table 5.3: Mean speedup achieved when using Brzozowski’s DFA construction
algorithm using random regular expressions of depth 9 and |Σ| = 4.

|𝑄| 𝑁 𝑇0(ms) Min1a Min1b Min2 Min3

All 1000 3834 0.53 ± 0.19 1.69 ± 1.34 4.39 ± 2.26 4.56 ± 2.31
[0, 30) 527 4 0.39 ± 0.12 0.75 ± 0.42 2.95 ± 1.98 3.03 ± 2.00

[30, 75) 317 245 0.62 ± 0.10 2.13 ± 0.83 5.80 ± 1.30 6.45 ± 0.75
[75, 300) 154 24 103 0.79 ± 0.08 3.93 ± 1.04 6.40 ± 1.00 5.92 ± 1.61

[300, 750) 2 21 431 0.87 ± 0.00 5.20 ± 0.16 6.15 ± 0.23 3.05 ± 1.72
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Figure 5.6: Mean speedup against DFA size for a thousand automata generated
from random regular expressions with |Σ| = 4.

automata vary in size, they were grouped into intervals. Only a small num-
ber of larger automata were generated. From the table and figure it is clear
that the performance of the implementations are fairly similar to the earlier
observations. Min1a performs poorly throughout and Min3 achieves the
greatest speedup for smaller automata but slows down when larger auto-
mata are considered. The speedup of both Min1b and Min2 tend to increase
as the automata grow larger. Moreover, Min2 outperforms Min1b, but their
performance grow closer as automaton size increases. This is all consistent
with the results seen earlier. It is interesting to note, however, that the dif-
ference between the performance of Min1b and Min2 is somewhat greater
than before.

5.5 Conclusion

In this case study fairly good speedup was obtained using CSP models to
guide Go implementations. Using CSP to model the descriptions allows
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5 Incremental DFA minimisation

one to discover alternative approaches. The CSP system structures in this
case study was slightly different from this in the Brzozowski case study.
In the previous case study the process network formed a loop since feed-
back was required to continue. In the present case study, all the states that
need to be compared are known ab initio, and hence the network form a
pipeline.

In future work, one should also compute the transitive closure of the equi-
valence relation. Perhaps one may be able to perform the computation in
a concurrent process that is separate from the rest of the system. This will
then reduce the number of pairs of states to compare explicitly. Also, in-
stead of endlessly creating processes in Min3, one could dynamically create
goroutines up to a set bound and then wait for some of them to terminate
before creating more. This should reduce the load on the Go runtime envir-
onment. However, a more detailed investigation into the poor performance
of Min3 for larger automata is required in order to identify the reasons—
apart from the large number of goroutines—for the drop in performance
when |𝑄| ≥ 500.
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6 Single keyword pattern
matching

Simplicity and elegance are unpopular be-
cause they require hard work and discipline
to achieve and education to be appreciated.

Edsger W. Dijkstra

The final case study returns to the problem of string pattern matching.
However, in Chapter 3 one had to find all occurrences of multiple keywords
in a text. In this case, one has to find all occurrences of a single keyword. See
Cleophas (2003) and Faro and Lecroq (2013) for surveys of pattern match-
ing algorithms.

Since the text is known ab initio, one may employ In fact, the implement-
ation DZ5, described
below, employs such an
approach.

an embarrassingly par-
allel approach by partitioning the text and searching each partition before
combining the results. However, here an attempt is made to employ task-
level parallelism by means of a process-based decomposition.

The chapter starts with an overview of the abstract DZ algorithm in re-
cursive form—a particular sequential algorithm in Section 6.1 for single
keyword pattern matching, initially proposed by B. W. Watson and R. E.
Watson (2003). Two process-based decompositions are then given in Sec-
tion 6.2. These decompositions were used to guide Go implementations.
However, a number of other implementations were also developed. Sec-
tion 6.3.1 describes these implementations, while Section 6.3.3 shows a
performance comparison of these implementations against their sequen-
tial counterparts.

6.1 Sequential algorithm

The recursive version of the abstract DZ algorithm derived by B. W. Watson
and R. E. Watson (2003) has been reproduced in Algorithm 6.1 in a slightly
modified form. The intention in this section is to give a high-level intuitive
account of this algorithm. See B. W. Watson and R. E. Watson (2003) for a
detailed account of its correctness. Note that there are many concrete ways
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6 Single keyword pattern matching

in which this abstract algorithm can be instantiated, so that the abstract ver-
sion really represents a family of pattern matching algorithms. See Awid,
Cleophas and B. W. Watson (2016), Mauch et al. (2012) and B. W. Watson,
Kourie and Strauss (2012) for various studies of concrete versions of this
abstract algorithm.

The abstract recursive procedure is called dzmat. It searches in text 𝑆 for all
occurrences of pattern 𝑝. However, it does not search all of 𝑆. Instead, its
search is limited to a so-called “live” zone—a range of integer indices into
𝑆 designated as [low, high). Recall String definitions and

notation may be found in
Section 2.2.

the convention that indexing in a string 𝑆
starts at 0 and ends at position |𝑆|− 1. Also by convention, integer intervals
are generally indicated as closed from below and open from above. Thus,
the indices into 𝑆 are in the interval [0, |𝑆|), while 𝑆𝑖 is the symbol in 𝑆 at
index 𝑖, and 𝑆[𝑖,𝑗) denotes the substring from index 𝑖 to 𝑗 − 1.

The nomenclature live was chosen to indicate that searching in this interval
is still a live concern because the algorithm has yet to explore whether some
indices in the live zone correspond to matches in 𝑆.

In earlier versions of the abstract algorithm, a variable dead was used to
represent a set of “dead” indices—“dead” in the sense that it has already
been established whether or not 𝑆 indexed by an integer in dead will lead
to a match. Note that some indices in dead may be match positions A match position is an

index position in 𝑆 at
which an occurrence of
the pattern 𝑝 is found.
Thus, if ⟨∀ 𝑖 ∶ 𝑖 ∈ [0, |𝑝|) ∶
𝑆mp+𝑖 = 𝑝𝑖⟩, then mp is a
match position.

in 𝑆 that
have already been reported. All of those that are indeed match positions
are recorded by the algorithm in a set MS, as they are encountered. In
B. W. Watson and R. E. Watson (2003), variable dead was used to rigorously
express the invariants; since the proofs are not shown here, the variable
dead is also omitted from the current version of dzmat. Nevertheless, the
phrase DZ algorithms is still used to characterise the family of algorithms
that are based on growing a dead-zone of indices.

Note that dzmat assumes that 𝑆, 𝑝 and MS are globally available to all its
invocations, including recursive invocations. MS is initially the empty set.
The algorithm also assumes that [low, high) designates an interval of live
indices in 𝑆 that an invocation dzmat is to handle. Finally, it assumes that
mo(0),mo(1),…mo(|𝑝| − 1) specifies some predefined ordering sequence to
be used when matching elements of 𝑝 against 𝑆. This ordering could be, for
example, a conventional left to right sequence, or a right to left sequence,
or indeed any other permutation of indices in the interval [0, |𝑝|).

The first invocation of dzmat is parameterised by the initial boundaries of
the live zone as follows: dzmat(0, |𝑆| − |𝑝| + 1); that is, the live zone encom-
passes all except the last |𝑝| − 1 indices of 𝑆. The last |𝑝| − 1 indices are
already in the dead-zone as there is no possibility of a match of length |𝑝|
occurring there. All those indices are therefore implicitly relegated to the
dead-zone.
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6 Single keyword pattern matching

Algorithm 6.1 (Abstract DZ Matcher):
proc dzmat(low, high) →

if (low ≥ high) → skip
⫾ (low < high) →

mid ≔ ⌊(low + high)/2⌋;
𝑖 ≔ 0;
{ invariant: ⟨∀ 𝑘 ∶ 𝑘 ∈ [0, 𝑖) ∶ 𝑝mo(𝑘) = 𝑆mid+mo(𝑘)⟩ }
do ((𝑖 < |𝑝|) cand (𝑝mo(𝑖) = 𝑆mid+mo(𝑖))) →

𝑖 ≔ 𝑖 + 1
od;
{ postcondition: ⟨∀ 𝑘 ∶ 𝑘 ∈ [0, 𝑖) ∶ 𝑝mo(𝑘) = 𝑆mid+mo(𝑘)⟩

∧ if 𝑖 < |𝑝| then 𝑝mo(𝑖) ≠ 𝑆mid+mo(𝑖) }
if 𝑖 = |𝑝| → MS ≔ MS ∪ {mid}
⫾ 𝑖 < |𝑝| → skip
fi;
left ≔ mid − shleft(𝑖,mid);
right ≔ mid + shright(𝑖,mid);
dzmat(low, left);
dzmat(right, high)

f i
corp

2
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6 Single keyword pattern matching

Turning now to the algorithmic steps within the algorithm, it is immedi-
ately clear that low ≥ high (i.e. live = ∅) serves as the recursion base case for
terminating the recursion. If, alternatively, low < high (i.e. live ≠ ∅) then
mid is computed as an index into 𝑆 from which the next match attempt will
take place. Note that although mid is computed as the midpoint of live, this
is not entirely necessary. Other starting positions within the live range are
also legitimate.

Using 𝑖 to reference into 𝑝 and 𝑖 and mid to reference into 𝑆, a loop matches
symbols of 𝑝 against those of 𝑆. Recall that the order in which this match-
ing takes place is not necessarily left-to-right, i.e. 𝑝0 against 𝑆mid, 𝑝1 against
𝑆mid+1, etc. Instead, the match order is determined by the bijective func-
tion mo ∶ [0, |𝑝|)⟶[0, |𝑝|). The abstract DZ algorithm therefore allows for
any permuted order to be predetermined by the implementer of the al-
gorithm.

The loop terminates upon the first mismatch, or when a complete match
is found. In the latter case, mid, the starting position in 𝑆 of the match, is
added to MS.

The next step in the abstract DZ algorithm is the computation of the new
portion of dead territory that can be inferred as a result of the matchings
that have taken place. Two functions, shright and shleft, are used for this
purpose. The returned value of shright is added to mid, and is considered
to be the (open) upper bound of an interval that can be added into the (im-
plicit) dead-zone region. Similarly, the returned value of shleft is subtracted
from mid and is regarded as the (closed) lower bound of this interval—the
interval [left, right) is seen as augmenting the dead-zone of 𝑆 as determ-
ined to date. However, no explicit bookkeeping of this dead-zone region is
needed. Instead, two recursive calls are made to dzmat. The first probes the
remaining live zone in the (contiguous) interval [low, left), and the second
the rest of the live zone in the contiguous interval [right, high).

Note that, as with dzmat, the shift functions are assumed to have global
access to 𝑆 and 𝑝. The abstract DZ algorithm leaves it up to the imple-
menter to determine how these shift functions determine their respective
shift distances. In the abstract format, the shift functions are shown as hav-
ing two parameters: mid, the start of the window in 𝑆 where the pattern 𝑝
is to be matched against the contents of 𝑆; and 𝑖, indicating how far into the
pattern 𝑝 matching has proceeded before an outcome has been obtained
as to whether or not the match attempt has been successful. Not all shift
functions require all this information and in some cases, a shift function
implementation could infer additional information—such as 𝑆𝑚𝑖𝑑+𝑝−1, the
text character aligned with the rightmost symbol of the pattern—from the
globally accessible data. Virtually all of the shift functions in the Boyer-
Moore (BM)-type of algorithms are adaptable for use in DZ. These include
variants and combinations of the functions employed by Boyer and Moore
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6 Single keyword pattern matching

(1977), Horspool (1980) and Knuth, Morris and Pratt (1977). See Mauch
(2016) for an investigation into the performance of various of these shift
functions in the context of DZ.

6.2 Process-based decompositions

In this section two process-based decompositions of the abstract DZ al-
gorithm are presented. In the first, a fixed number of processes concur-
rently both compare the text and the pattern, and determine new live zones
based on their input live zones. In the second, a fixed number of processes
compare the text and pattern given a starting position in the text. The com-
putation of new live zones, however, is not done by these processes, but
rather by a separate process.

6.2.1 Decomposition 1

In the first decomposition, a number of DZONER𝑖 processes is used to
model the execution of dzmat from Algorithm 6.1. A DZONER𝑖 receives
a live zone on its input channel and emits on its output channel the results
of its computation as elaborated below.

DZONER𝑖 =
in.𝑖?⟨low, high⟩ →

if low ≥ high then
DZONER𝑖

else
let

mid = ⌊(low + high)/2⌋
left = mid − shleft()
right = mid + shright()

within
⨅

𝑝∈{−1,mid}
(out.𝑖!⟨⟨low, left⟩, ⟨right, high⟩, 𝑝⟩ → DZONER𝑖)

• DZONER𝑖 receives a pair of numbers ⟨low, high⟩ on its input channel
in.𝑖. This pair represents the interval [low, high) and the process now
models an invocation dzmat(low, high).

• In the case where the interval is empty, i.e. low ≥ high, the process
simply reads in a new interval from its input channel.
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6 Single keyword pattern matching

• If, however, the interval is not empty, the process should model the
behaviour of searching for a match at mid = ⌊(low + high)/2⌋ and of
computing two new live zones. Instead of modelling explicitly in CSP
the comparison of 𝑝𝑗 and 𝑆mid+𝑗 for every 𝑗 ∈ [0, |𝑝|), the comparisons
are abstracted away using non-deterministic choice. Only one of two
outcomes is possible: either a match is found or no match is found.
If a match is found, then mid is sent out on the output channel and if
no match is found, the special value of −1 is sent out. The calculation
of the shift distances is similarly abstracted away. The functions shleft
and shright simply return an arbitrary distance in the range [1, |𝑝|+1).

• A DZONER𝑖 communicates output as triples over channel out.𝑖. The
first two elements of the triple are the two new live zones and the
third is a random element from {−1,mid} as described above.

• Multiple DZONER𝑖 processes execute independently as shown be-
low. In this case 𝑛 processes run concurrently, where 𝑛 is determined
by the implementer of the system.

DZONERS(𝑛) = ⫼
𝑖=1..𝑛

DZONER𝑖

A MANAGER process keeps track of all the live zones as well as the set of
matches found. MANAGER has three parameters. The first, 𝑇, is a set of in-
tervals, each interval The phrase live zones will

be used in the narrative
to refer to intervals into
which probes are still to
be made.

being part of the live zone that needs to be processed;
the second, 𝑀𝑆, is the set of index positions where the pattern matches the
text; and the third, Cnt, is a counter to aid in termination.

MANAGER(𝑇,𝑀𝑆,Cnt) =
if |𝑇| > 0 ∨ Cnt > 0 then

SEND(𝑇,MS,Cnt) 2 RECEIVE(𝑇,MS,Cnt)
else

SKIP

• MANAGER terminates when there are no more elements in 𝑇 and
also no pending responses (Cnt = 0).

• While MANAGER is running it may send out an element of 𝑇 on its
output channel or it may receive new live zones and match inform-
ation on its input channel. Depending on whether a receive or send
event occurred, the variables 𝑇, MS, and Cnt are updated in the ap-
propriate manner. Sending is described in process SEND and receiv-
ing is described in process RECEIVE.

SEND(𝑇,MS,Cnt) =
if 𝑇 ≠ ∅ then

let
⟨𝑙, ℎ⟩ = choose(𝑇)
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within
if 𝑙 ≥ ℎ then

SEND(𝑇 ⧵ {⟨𝑙, ℎ⟩},MS,Cnt)
else

feeder!⟨𝑙, ℎ⟩ → MANAGER(𝑇 ⧵ {⟨𝑙, ℎ⟩},MS,Cnt + 1)
else

SKIP

RECEIVE(𝑇,MS,Cnt) =
results?⟨new1,new2,match⟩ →

if match = −1 then
MANAGER(𝑇 ∪ {new1,new2},MS,Cnt − 1)

else
MANAGER(𝑇 ∪ {new1,new2},MS ∪ {match},Cnt − 1)

• SEND sends out a non-empty live zone ⟨𝑙, ℎ⟩ on channel feeder and
then behaves as MANAGER(𝑇 ⧵ {⟨𝑙, ℎ⟩},MS,Cnt + 1). The element
from 𝑇 to be sent out is selected using function choose. If an imple-
menter uses a stack for 𝑇, then choose(𝑇) should correspond to the
element at the top of the stack. If the interval is empty, another inter-
val is chosen and, if the interval is not empty, it is sent out and Cnt is
incremented to indicate that a live zone has been sent out and that a
match response is required.

• When 𝑇 is empty there are no more elements to send and SEND
simply terminates.

• RECEIVE accepts triples on input channel results. The first two ele-
ments are new live zones to be inserted into 𝑇 and the third element is
a match position. If the match position is −1 it indicates a mismatch
and the result is ignored. For any other value, it corresponds with
a start position in the text at which the pattern was matched and as
such the position is recorded in 𝑀𝑆.

• When a result is received, the counter Cnt is decremented. For every
live zone that is sent out, a result should be recorded. Cnt represents
the number of pending results. MANAGER may thus only terminate
once 𝑇 is empty and all pending results have been received.

In order to connect the processes together, instances of DBUFF and MBUFF
are used as shown in BDZONERS below.

BDZONERS(𝑛) =
𝑎.DBUFF(⟨⟩, 𝑁𝑎)⟦feeder/𝑎.left⟧

[𝑎.right↔ in]
DZONERS(𝑛)

[out↔𝑏.left]
𝑏.MBUFF(⟨⟩, 𝑁𝑏)⟦results/𝑏.right⟧
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6 Single keyword pattern matching

BDZONERS

MANAGER
DZONER1

DZONER𝑛

𝑎 𝑏⋮
feeder results

Figure 6.1: Process network for DZ1. MANAGER sends out live zones to an array
of DZONER𝑖 processes. These check for matches and compute new
live zone that are communicated back to MANAGER.

The input channel of 𝑎.DBUFF, 𝑎.left, is renamed feeder. The input channels
in.𝑖 of DZONERS are linked to the output channels 𝑎.right.𝑖 of 𝑎.DBUFF.
The output channel of each DZONER𝑖 process, out.𝑖, is linked to the in-
put channel 𝑏.left.𝑖 of 𝑏.MBUFF. The output channel of 𝑏.MBUFF, 𝑏.right, is
renamed results. BDZONERS thus provides a single channel feeder as in-
put interface to the array of DZONER𝑖 processes. Furthermore, the results
produced by the various DZONER𝑖 are read from a single output channel,
results.

The complete system DZ1 may be composed as shown in Figure 6.1.

DZ1(𝑆, 𝑝, 𝑛) = MANAGER({⟨0, |𝑆| − |𝑝| + 1⟩}, ∅, 0) ∥
⦃results, feeder⦄

BDZONERS(𝑛)

MANAGER and BDZONERS interact via the channels feeder and results.
The set of live zones initially consists of the single interval [0, |𝑆| − |𝑝| + 1),
the set of matchers is empty, and the number of pending results is zero.
To simplify the process definitions, it is assumed that the text 𝑆 and the
pattern 𝑝 are known to all the relevant processes.

6.2.2 Decomposition 2

The second decomposition differs from the first in terms of which processes
compute new live zones. In the first decomposition above, the DZONER𝑖
processes were responsible for determining a match and also for comput-
ing new live zones. In the present decomposition these processes only re-
ceive an index position at which to probe for a match—they do not com-
pute new ranges and subsequently are called MATCHER𝑖. This computa-
tion of new live zones is done in a new MANAGER′ process. As discussed
in B. W. Watson, Cleophas and Kourie (2014) this is only feasible when the
shift function does not require the index position of the mismatch as input.
For example, in Horspool’s (1980) algorithm Horspool’s shifter is used

in the implementations in
Section 6.3.

, only the rightmost symbol of
the text at the current keyword alignment is required to compute the shift.
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6 Single keyword pattern matching

Similarly, Quicksearch (Hume and Sunday 1991) uses the symbol to the
right of that rightmost symbol to calculate the shift.

The CSP description of the new MATCHER𝑖 processes is simple. A
MATCHER𝑖 accepts an index position from its input channel in.𝑖 and then
arbitrarily emits on its output channel out.𝑖 either the index, corresponding
to a match, or −1, representing a mismatch.

MATCHER𝑖 = in.𝑖?mid → ⨅𝑝∈{−1,mid}(out.𝑖!𝑝 → MATCHER𝑖)

As before, a number of matchers may run independently.

MATCHERS(𝑛) = ⫼
𝑖∶1..𝑛

MATCHER𝑖

As in Decomposition 1, instances of DBUFF and MBUFF are used to add
buffers and to simplify the interface to the array of MATCHER𝑖 processes.
A single feeder channel now distributes indices to the MATCHER𝑖 processes
and all the results are multiplexed onto a results channel.

BMATCHERS(𝑛) =
𝑎.DBUFF(⟨⟩, 𝑁𝑎)⟦feeder/𝑎.left⟧

[𝑎.right↔ in]
MATCHERS′(𝑛)

[out↔𝑏.left]
𝑏.MBUFF(⟨⟩, 𝑁𝑏)⟦results/𝑏.right⟧

The new MANAGER′ process now both computes and sends out the live
zones. A further modification is made: it does not obtain the match res-
ults anymore. This is now the responsibility of a new process GATHERER.
Thus MANAGER′ only maintains 𝑇 and sends out indices for matching.

MANAGER′(𝑇) =
if |𝑇| = 0 then

SKIP
else

let
𝑧 = choose(𝑇)

within
SEND′(𝑧, 𝑇 ⧵ {𝑧})

MANAGER′ selects some live zone 𝑧 from 𝑇 based on the policy encoded in
function choose. MANAGER′ then behaves as process SEND′ parameterised
by 𝑧 and by 𝑇 from which 𝑧 has been removed. If 𝑧 is not empty, SEND′

computes the midpoint mid and sends that out for matching on channel
feeder. It also computes two new live zones and recurses to MANAGER′ that
now has these two new intervals added into 𝑇. The behaviour of process
SEND′ is modelled below.
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MANAGER′

MATCHER1

MATCHER𝑛

𝑎 𝑏

BMATCHERS

GATHERER⋮
feeder results

Figure 6.2: Process network diagram for DZ2. The MANAGER sends out probe
points to an array of MATCHER𝑖 processes that send out the match
results to GATHERER. MANAGER′ is responsible for computing new
live zones.

SEND′(⟨low, high⟩, 𝑇) =
if low ≥ high then

MANAGER′(𝑇)
else

let
mid = ⌊(low + high)/2⌋
left = mid − shleft()
right = mid + shright()

within
feeder!mid → MANAGER′(𝑇 ∪ {⟨low, left⟩, ⟨right, high⟩})

GATHERER is responsible for maintaining the set of indices where the pat-
tern matches the text. It reads results from its input channel results and
updates 𝑀𝑆 when necessary.

GATHERER(MS) =
results?match →

if match = −1 then
GATHERER(MS)

else
GATHERER(MS ∪ {match})

The processes can now be combined to form the system shown in Fig-
ure 6.2.

DZ2(𝑆, 𝑝, 𝑛) =
(MANAGER′({⟨0, |𝑆| − |𝑝| + 1⟩}) ∥

⦃feeder⦄
BMATCHERS(𝑛)) ∥

⦃results⦄
GATHERER(∅)

As before, it is assumed that both the text 𝑆 and the pattern 𝑝 are available
to all processes that reference them. The parameter 𝑛 to DZ2 is the number
of MATCHER𝑖 processes that concurrently search for matches.

These two decompositions may now be used to develop a number of
process-based implementations of the abstract DZ algorithm in which pat-
tern match attempts occur concurrently.
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6 Single keyword pattern matching

6.3 Performance comparison

In this section various DZ implementations are compared based on their
run-time performance. The two process-based decompositions of the pre-
vious section guided some of the implementations. In addition, other im-
plementations were also developed by executing recursive calls in separate
processes and by partitioning the input data.

6.3.1 Implementation

For completion, a very broad description of the sequential version of the
DZ algorithm, as implemented in this thesis, now follows. For a fuller de-
scription of this version the reader may refer to B. W. Watson, Kourie and
Strauss (2012). Recall from Section 6.1 that two aspects of Algorithm 6.1,
the abstract sequential DZ algorithm, need to be determined in an actual
implementation. These are the order in which characters are compared,
represented by the function mo, and the choice of the shift functions shleft
and shright.

In all the implementations discussed below, simple left-to-right matching
is used, i.e. mo(𝑖) = 𝑖. This means that, when evaluating the guard of the
do-loop, 𝑝0 is compared against 𝑆mid, then 𝑝1 against 𝑆mid+1, etc.

The specific implementations discussed here use a right shift function cor-
responding to that of Horspool (1980) and a left shift function symmetric-
ally adapted for left shifts. This means that, to determine a shift distance
(to the left or right respectively), only the current probe position mid is re-
quired. The index 𝑖 indicating how far across the pattern the matching had
progressed (before a mismatch is encountered or a match is established) is
not required to invoke the respective shift functions.

As indicated below, the shifter uses the character of the text that is aligned
with the rightmost character of the pattern (i.e. the character 𝑆mid+|𝑝|−1) to
make a right shift. Symmetrically, it uses 𝑆mid, the leftmost character to
make a left shift. As a result it is possible to compute a new live zone (i.e.
to compute new right and left values) independently of executing the next
match attempt (i.e. independently of executing the do-loop of the sequen-
tial algorithm).

Let 𝑚 = |𝑝| denote the length of the pattern. When 𝑝 is compared to the
text window 𝑆[𝑚𝑖𝑑,𝑚𝑖𝑑+𝑚) and the character, 𝑐ℎ, is found at 𝑆𝑚𝑖𝑑+𝑚−1, then
the right shift function of Horspool (1980) uses the following formula to
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compute the shift distance to the right:

shright(𝑐ℎ) =
⎧{
⎨{⎩

𝑚 if 𝑐ℎ /∈ 𝑝[0,𝑚−1)

⟨MIN 𝑖 ∶ [0,𝑚 − 1) ∶ 𝑐ℎ = 𝑝𝑚−1−𝑖⟩ if 𝑐ℎ ∈ 𝑝[0,𝑚−1)

Thus, the shift to the right is 𝑚 if 𝑐ℎ is any character that does not occur
in the first 𝑚 − 1 positions of the pattern. Otherwise, if the character oc-
curs one or more times in the first 𝑚 − 1 positions of the pattern, then the
shift to the right must correspond to the distance to the end of the pattern
of the rightmost occurrence of that character in the pattern. Thus, if that
rightmost occurrence is at 𝑝𝑖 then the shift will be 𝑚 − 1 − 𝑖.

The computation of the shift to the left is symmetrical. It is based upon
the character, 𝑐ℎ found at 𝑆𝑚𝑖𝑑 when 𝑝 is compared to the text window
𝑆[𝑚𝑖𝑑,𝑚𝑖𝑑+𝑚). It is given by the following formula:

shleft(𝑐ℎ) =
⎧{
⎨{⎩

𝑚 if 𝑐ℎ /∈ 𝑝(0,𝑚−1]

⟨MIN 𝑖 ∶ (0,𝑚 − 1] ∶ 𝑐ℎ = 𝑝𝑖⟩ if 𝑐ℎ ∈ 𝑝(0,𝑚−1]

Thus, the shift to the left is 𝑚 for any character 𝑐ℎ that does not occur in the
last 𝑚 − 1 positions of the pattern. Otherwise, if the character occurs one
or more times in the last 𝑚− 1 positions of the pattern, then the shift to the
left must correspond the distance from the beginning of the pattern to the
leftmost occurrence of that character in the pattern. Thus, if that leftmost
occurrence is at 𝑝𝑖 then the shift will be 𝑖.

The following Go code shows how the precomputed shift tables were
set up. Strings are implemented as byte arrays. The alphabet thus has
256 elements and the length is stored in SIGMAlen. Given a pattern, p,
NewShifter(p) creates a structure consisting of two integer arrays Strictly, they are not Go

arrays, but rather slices.
Array is used in the
generic sense.

. These
arrays store the shift distances for each symbol in the alphabet based on
pattern p.

Go code 6.1: Computing shift tables.

func NewShifter(p []byte) *Shifter {

sh := new(Shifter)

sh.left = make([]int, SIGMAlen)

sh.right = make([]int, SIGMAlen)

m := len(p)

for i := 0; i < SIGMAlen; i++ {

sh.left[i] = m - 1

sh.right[i] = m

}

for i := m - 1; i > 0; i-- {

sh.left[p[i]] = i - 1
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}

for i := 0; i < m - 1; i++ {

sh.right[p[i]] = m - 1 - i

}

return sh

}

The left and right tables set up by NewShifter(p), namely sh.left and
sh.right, can then be accessed using the functions shleft and shright

defined below, whereby sh.shleft(ch) returns the value of the array ele-
ment sh.left[ch] and sh.shright(ch) returns sh.right[ch].

Go code 6.2: Accessors to shift tables.

func (this *SK_Shifter) shleft(ch byte) int {

return this.left[ch]

}

func (this *SK_Shifter) shright(ch byte) int {

return this.right[ch]

}

Note, however, that sh.shright(ch) returns shright(ch), whereas
sh.shleft(ch) returns shleft(ch) − 1. The subtraction of 1 at this point
removes the need to add 1 to the value of left in the recursive call on
Line 15 of the code below.

The code below is a recursive implementation of the DZ algorithm The code corresponds
with implementation
DZ𝑟𝑒𝑐

. If 1
had not been subtracted in the sh.shleft(ch) call, then the call on Line 15
would have to change to this.match(text, low, left + 1). This is in fact
seen in the implementation described by B. W. Watson, Kourie and Strauss
(2012).

Go code 6.3: Recursive implementation of DZ.

1 func (this *Matcher) match(text []byte, low int,high int) int{

2 numMatches := 0

3 plen := len(this.pattern)

4 if high <= low {

5 } else {

6 mid := (low + high) / 2

7 var i int

8 for i = 0; i < plen && this.pattern[i] ==

(text[mid+i]); i++ {↪

9 }

10 if i == plen {

11 numMatches++
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12 }

13 left := mid - this.sh.shiftleft(text[mid])

14 right := mid + this.sh.shiftright(text[mid+plen-1])

15 numMatches += this.match(text, low, left)

16 numMatches += this.match(text, right, high)

17 }

18 return numMatches

19 }

The following implementations are considered in the performance com-
parison.

DZrec — The implementation shown above of the recursive algorithm in
Algorithm 6.1. Instead of recording the actual match positions
MS, only the number of matches is counted. This modification is
carried through to all the other implementations.

DZ1a — This is an implementation of Decomposition 1 with one
MANAGER process and twelve DZONER𝑖 processes: DZ1(𝑆, 𝑝, 12).
The capacity of the feeder buffer is 48 elements and the capacity
of results is double that. The set of live zones 𝑇 is implemented as
a stack using Go slices.

DZ1b— This is essentially the same implementation as DZ1a. The only
change is that multiple instances of process DZ1 execute concur-
rently and independently. Instead of starting with a single live
zone [0, |𝑆| − |𝑝| − 1), partition this live zone into a number of
disjoint subsets and start a DZ1 process for each of these sub-
sets. This is the same as subsetting the string 𝑆 appropriately and
searching for matches in the substrings 𝑆0, 𝑆1,… . In the present
implementation the number of such DZ1 processes is twelve, with
each running a single DZONER process. It may be expressed
as the following CSP process DZ1(𝑆0, 𝑝, 1) ⫴ DZ1(𝑆1, 𝑝, 1) ⫴ ⋯ ⫴
DZ1(𝑆11, 𝑝, 1). Each feeder buffer can store 8 elements and each
results buffer can store 16 elements.

DZ2 — Decomposition 2 is implemented as DZ2. In this implementation
twelve The reason for using

twelve processes is that
it equals the number
of virtual cores in the
machine that is used for
the experiments.

MATCHER𝑖 processes execute, which corresponds with
DZ2(𝑆, 𝑝, 12). The MANAGER process stores the live zones in a
stack data structure. Both the feeder and results buffers has a ca-
pacity of 1024 elements.

DZ3 — Here DZ2 is modified so that the MATCHER𝑖 processes are cre-
ated dynamically and there is not a predetermined number of
such processes. Each dynamically created process receives a
probe point upon creation, performs its matching attempt, com-
municates the result on a shared channel, and then terminates.
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This implementation may cause many short-lived goroutines to
be created during execution since there is no limit set for the cre-
ation of new goroutines. The channel over which the processes
communicate their results has a capacity of 1024 elements.

DZ4 — The remaining implementations are not based on either of the two
decompositions described in Section 6.2. In the present imple-
mentation, the two recursive calls in Algorithm 6.1 are handled
by separate goroutines and the results are returned on a single
channel, with capacity 1024, shared by all goroutines. This imple-
mentation could also cause many goroutines to be created during
run time.

DZiter — An iterative sequential implementation of the DZ algorithm is de-
rived by B. W. Watson, Cleophas and Kourie (2014). Instead of us-
ing recursion, live zones are explicitly represented and stored in
a stack. Initially the stack contains the live zone [0, |𝑆|− |𝑝|−1). In
each iteration an element is removed from the stack and, if the in-
terval is not empty, a match is attempted and two new live zones
are then computed and added to the stack. The iteration contin-
ues until the stack is empty.

DZ5 — Multiple instances of DZ𝑖𝑡𝑒𝑟 execute concurrently on subsets of the
live zone. The live zone [0, |𝑆| − |𝑝| − 1) is partitioned into twelve Similar to DZ2, twelve

partitions is used in DZ5
since that is the same
number as virtual cores in
the machine used for the
experimnets.

disjoint subsets. An instance of DZ𝑖𝑡𝑒𝑟 is initialised with each of
these subsets. After all the instances have terminated, their match
results are aggregated to form the final result.

Note that, in the cases where the input is partitioned, the schema allows
for finding matches that start in one partition and end in another.

6.3.2 Experimental setup

The above-mentioned implementations were compiled with Go 1.5.3 and
executed on a Linux 3.10.17 platform with a six-core hyperthreaded CPU

Intel® Xeon® CPU E5-2630
v2 @ 2.60GHz. See
Section 2.7.3 for more
information.

and 16 GB of RAM. The Go runtime was configured to run twelve processes
concurrently.

Several different text types were considered and patterns lengths
ranged from 2 to 131 072 symbols, incremented by a factor of four:
{2, 8, 32,… , 131 072}. The following text and pattern combinations were
used for the experiments. All the texts are 50 MB in size.

SSB — This text simply comprises the character ‘a’ repeated
52 428 800 times. The patterns are repetitions of the sym-
bol ‘b’. This will cause the implementations to never find
matches of the pattern in the text. The shift distances will
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also be maximal since no match is possible in the pattern. The
iteration in Algorithm 6.1 where characters in the text and the
pattern are compared will be short, since a mismatch will be
found immediately.

SSA — Here, the text again comprises only ‘a’ characters. The pat-
terns, however, are now also repetitions of the character ‘a’.
In this case the pattern will match at all possible positions
and the shift distances will be minimal, since a match will be
found when shifting by a single character. The iteration in Al-
gorithm 6.1 will be maximal since the entire pattern needs to
be compared in order to detect a match.

English — The remaining texts were obtained from the Pizza & Chili text
collection (Ferragina and Navarro 2005). The first is a concat-
enation of English text files selected Gutenberg Project (http:
//www.gutenberg.org). The headers relating to the project has
been deleted so as to leave only the real text.

Pitches — A sequence of pitch values (bytes in 0 to 127, plus a few extra
special values) obtained from MIDI files freely available on the
Internet.

Proteins — A sequence of newline-separated protein sequences (without
descriptions, just the bare proteins). Each of the 20 amino
acids is coded as one uppercase letter.

In the single symbol text types only one keyword per pattern length was
used while 100 keywords per pattern length were used in the other text
types. The keywords were generated by selecting an arbitrary portion of
the text equal to the pattern length. This approach ensures that there is
always at least one occurrence of the pattern in the text.

Each keyword and text combination was executed in all the implementa-
tions listed above. Each execution was repeated five times and the min-
imum run time was recorded as the data point for that keyword and text
combination.

6.3.3 Results

The results of the experiments are presented next.

The mean observed speedup is shown in Table 6.1 and visualised in Fig-
ure 6.3 which also shows the mean run times against pattern length,
grouped by text type. Note the logarithmic scale on the 𝑦-axis of the run-
time plot.
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The performance metric of interest is the speedup of the concurrent im-
plementation over the sequential implementation, that is, the run time of
the sequential implementation divided by the run time of the concurrent
implementation. In the present case, there are two sequential implement-
ations: DZ𝑟𝑒𝑐 and DZ𝑖𝑡𝑒𝑟. All concurrent implementations apart from DZ5,
are compared against DZ𝑟𝑒𝑐. The speedup of DZ5, however, is calculated
against DZ𝑖𝑡𝑒𝑟, since DZ5 is a concurrent version of DZ𝑖𝑡𝑒𝑟.

• For all but the SSA case, run times go down as pattern length in-
creases. This is due to the fact that it is possible to make larger shifts
and grow the dead zone more rapidly for larger patterns than smaller
patterns. This is, however, not the case with the SSA texts. Since the
text and the patterns always match, the number of iterations compar-
ing characters just grows, while the shift distance is always only one
symbol.

• Typically DZ5 has the lowest run time of all the implementations. It
is also the only implementation that usually outperforms the sequen-
tial implementations. It is only for large patterns in the SSB case that
it is outperformed by the sequential algorithms. The two sequen-
tial implementations are then second and third fastest. All the other
implementations are typically slower than the sequential implement-
ations. This is clearly seen in the speedup plots where they achieve
speedups smaller than one.

• It is only in the SSA case where the sequential algorithms are out-
performed by the concurrent implementations when the patterns get
large enough. For DZ1b this happens when pattern length reaches
128 symbols. At 512 symbols, DZ2 and DZ3 exceed the sequential
implementations and they are followed by DZ1a and DZ4 at 2048
symbols.

• In SSA, DZ5 also is outperformed by other concurrent implement-
ations for very long patterns. Specifically, DZ1b is the best, closely
followed by DZ3 when patterns are 131 072 symbols.
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Table 6.1: Observed mean speedup for the DZ implementations. The table is grouped by text type and pattern length. The column
𝑇0 contains the mean run time of the recursive sequential implementation. Note that the single symbol cases only have one
observation per pattern length, so no standard deviation is shown in those cases. Recall that there are 100 observations per
entry for the other cases.

Text |𝑝| 𝑇0(ms) DZ1a DZ1b DZ2 DZ3 DZ4 DZ5

SSB All 56.37 0.03 ± 0.015 0.14 ± 0.092 0.08 ± 0.026 0.05 ± 0.022 0.25 ± 0.154 2.87 ± 2.200
2 352.60 0.02 0.11 0.05 0.03 0.17 4.95
8 99.76 0.02 0.12 0.06 0.04 0.21 4.71

32 33.68 0.03 0.16 0.08 0.05 0.29 5.32
128 18.43 0.07 0.35 0.14 0.11 0.61 5.25
512 2.23 0.04 0.17 0.07 0.06 0.30 2.80

2048 0.50 0.03 0.13 0.07 0.05 0.26 1.32
8192 0.13 0.04 0.10 0.08 0.06 0.22 0.62

32 768 0.02 0.02 0.06 0.07 0.04 0.12 0.62
131 072 0.01 0.03 0.03 0.08 0.04 0.06 0.25

SSA All 1 977 914.11 2.18 ± 2.445 3.04 ± 2.398 2.78 ± 2.655 2.66 ± 2.593 2.30 ± 2.562 5.83 ± 0.344
2 1054.00 0.02 0.15 0.05 0.04 0.02 6.50
8 1720.77 0.03 0.23 0.08 0.06 0.03 6.27

32 4798.58 0.09 0.61 0.19 0.17 0.07 5.94
128 15 272.15 0.26 1.62 0.59 0.53 0.23 5.79
512 54 073.28 0.78 3.45 2.16 1.91 0.86 5.65

2048 210 315.09 2.84 4.97 5.09 4.79 3.12 5.61
8192 836 697.01 4.38 4.84 5.30 4.95 4.95 5.57

32 768 3 340 051.99 5.59 5.67 5.79 5.69 5.69 5.62
131 072 13 337 244.10 5.59 5.83 5.78 5.80 5.72 5.54

Table continues on the next page…136
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Table 6.1…continued from previous page.

Text |𝑝| 𝑇0(ms) DZ1a DZ1b DZ2 DZ3 DZ4 DZ5

English All 129.89 0.03 ± 0.004 0.22 ± 0.043 0.07 ± 0.008 0.05 ± 0.006 0.27 ± 0.035 7.12 ± 1.041
2 463.87 0.02 ± 0.002 0.13 ± 0.015 0.06 ± 0.004 0.04 ± 0.003 0.19 ± 0.014 6.25 ± 0.519
8 179.86 0.03 ± 0.001 0.18 ± 0.016 0.07 ± 0.002 0.05 ± 0.002 0.25 ± 0.009 6.91 ± 0.475

32 106.95 0.03 ± 0.001 0.25 ± 0.009 0.08 ± 0.002 0.06 ± 0.002 0.29 ± 0.009 8.13 ± 0.101
128 85.24 0.04 ± 0.001 0.26 ± 0.010 0.08 ± 0.002 0.06 ± 0.002 0.31 ± 0.009 8.36 ± 0.095
512 75.33 0.04 ± 0.002 0.26 ± 0.016 0.08 ± 0.004 0.06 ± 0.003 0.30 ± 0.019 8.04 ± 0.154

2048 68.53 0.03 ± 0.002 0.25 ± 0.018 0.08 ± 0.004 0.06 ± 0.003 0.29 ± 0.020 7.41 ± 0.204
8192 62.76 0.03 ± 0.001 0.23 ± 0.012 0.07 ± 0.003 0.05 ± 0.002 0.27 ± 0.010 6.94 ± 0.351

32 768 63.59 0.03 ± 0.001 0.23 ± 0.009 0.07 ± 0.002 0.05 ± 0.002 0.27 ± 0.009 6.35 ± 0.811
131 072 62.85 0.03 ± 0.001 0.23 ± 0.010 0.07 ± 0.003 0.05 ± 0.002 0.27 ± 0.011 5.65 ± 1.160

Pitches All 71.19 0.05 ± 0.021 0.28 ± 0.124 0.10 ± 0.043 0.07 ± 0.036 0.39 ± 0.152 5.09 ± 1.655
2 391.67 0.02 ± 0.001 0.11 ± 0.005 0.05 ± 0.001 0.04 ± 0.001 0.18 ± 0.007 5.44 ± 0.167
8 124.86 0.03 ± 0.001 0.14 ± 0.010 0.06 ± 0.002 0.04 ± 0.001 0.23 ± 0.007 5.62 ± 0.333

32 54.26 0.04 ± 0.001 0.21 ± 0.018 0.08 ± 0.003 0.06 ± 0.002 0.31 ± 0.010 6.59 ± 0.489
128 30.63 0.05 ± 0.007 0.32 ± 0.037 0.11 ± 0.012 0.08 ± 0.010 0.45 ± 0.061 6.85 ± 0.580
512 16.79 0.07 ± 0.038 0.43 ± 0.161 0.14 ± 0.091 0.11 ± 0.079 0.58 ± 0.204 6.21 ± 0.677

2048 7.44 0.05 ± 0.013 0.35 ± 0.101 0.11 ± 0.021 0.08 ± 0.018 0.45 ± 0.116 5.26 ± 1.415
8192 5.40 0.05 ± 0.014 0.32 ± 0.081 0.11 ± 0.028 0.08 ± 0.022 0.43 ± 0.112 4.06 ± 1.293

32 768 4.88 0.05 ± 0.008 0.31 ± 0.063 0.11 ± 0.012 0.08 ± 0.010 0.41 ± 0.075 3.42 ± 0.968
131 072 4.78 0.05 ± 0.010 0.33 ± 0.068 0.12 ± 0.019 0.09 ± 0.014 0.45 ± 0.083 2.34 ± 0.669

Proteins All 132.01 0.03 ± 0.004 0.22 ± 0.039 0.07 ± 0.008 0.05 ± 0.006 0.26 ± 0.030 7.40 ± 0.668
2 453.72 0.02 ± 0.001 0.13 ± 0.008 0.06 ± 0.002 0.04 ± 0.002 0.20 ± 0.006 6.18 ± 0.272
8 169.62 0.03 ± 0.000 0.18 ± 0.010 0.07 ± 0.001 0.05 ± 0.001 0.25 ± 0.004 6.73 ± 0.231

32 101.90 0.03 ± 0.001 0.25 ± 0.007 0.08 ± 0.001 0.06 ± 0.001 0.29 ± 0.006 7.97 ± 0.113
128 88.29 0.03 ± 0.001 0.26 ± 0.010 0.08 ± 0.002 0.06 ± 0.002 0.30 ± 0.010 8.13 ± 0.114
512 82.84 0.03 ± 0.001 0.25 ± 0.009 0.08 ± 0.002 0.06 ± 0.002 0.29 ± 0.010 7.98 ± 0.109

2048 78.45 0.03 ± 0.002 0.23 ± 0.015 0.07 ± 0.004 0.05 ± 0.003 0.27 ± 0.017 7.67 ± 0.141
8192 70.90 0.03 ± 0.001 0.22 ± 0.007 0.07 ± 0.002 0.05 ± 0.002 0.25 ± 0.010 7.61 ± 0.150

32 768 70.43 0.03 ± 0.001 0.22 ± 0.011 0.07 ± 0.003 0.05 ± 0.002 0.26 ± 0.010 7.35 ± 0.447
131 072 71.94 0.03 ± 0.001 0.22 ± 0.009 0.07 ± 0.002 0.05 ± 0.001 0.26 ± 0.007 6.99 ± 0.443
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Figure 6.3: Mean run time and speedup of the DZ implementations plot against pattern length, grouped by text type. Note the logarithmic
scale on the 𝑦-axis of the run-time plot. Each point is the mean over 100 observations.
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6 Single keyword pattern matching

• DZ5 achieved speedup greater than one on nearly all cases. It is only
when |𝑝| > 2048 in the SSB case that the sequential implementations
beat it. This is probably due to the fact that the run times are very
short because of the large shift distances. The cost of consolidat-
ing the results then outweighs the benefits of splitting the matching
space among processes.

• It is interesting that the runtime of the sequential algorithms grow
exponentially in the SSA case. However, the concurrent implement-
ations’ curves are flat up to pattern lengths of 512 symbols.

6.4 Conclusion

In the present case study, the process-based implementations did not per-
form well. Only DZ5 produced speedup in most cases. It seems as if
the costs of setting up the process-based systems outweigh the benefits of
matching concurrently. The tasks are rather small. The only real “work”
that happens concurrently is the matching of characters. This is not compu-
tationally intensive. For this reason, following an embarrassingly parallel
approach of splitting the input into smaller parts, worked better.
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7 Conclusion

Ring the bells that still can ring,
Forget your perfect offering.
There is a crack in everything—
That’s how the light gets in.

Leonard Cohen

The thesis draws to a close with this, the final chapter. Section 7.1 summar-
ises the work that has been done. It then briefly reflects on the process-
based method that has been explored, commenting on strengths, on les-
sons that have been learned and on limitations experienced. This is fol-
lowed by suggestions for future work in Section 7.2.

7.1 Reflection

The primary aim of this work was to explore whether a process-based ap-
proach to designing and implementing algorithmic solutions on multicore
hardware platforms improves the effectiveness of the resulting software.
Would the resulting programs effectively use the available cores to de-
liver performance improvements? To explore the approach’s effectiveness,
a case study was conducted on several algorithms from the Stringology
domain. The case study affirms that such a process-based approach to
implementing algorithms is indeed a useful software development tech-
nique and can be effectively used for exploring a wide-range of concurrent
solutions. The empirical results reported in Chapters 3–6 provide prima
facie evidence that runtime performance is frequently improved, some-
times very significantly, when employing this software development tech-
nique.

In summary, the project entailed the following.

1. Each of four problems with known sequential algorithmic solutions
were studied. Each was solved by decomposing it into a number of
collaborating concurrent processes that produce the same results as
its sequential counterpart. These decompositions were encoded in
the process algebra CSP. In most cases several variants of the initial
concurrent solution were also developed.
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7 Conclusion

2. These decompositions, as well as the sequential algorithms, were im-
plemented in the Go programming language. The implementations
will be made available online at http://fastar.org.

3. The run-time performance of each implementation was investigated
and presented. It was found that the concurrent implementations
can outperform the sequential implementations. However, some
algorithms require more fine-grained concurrency which resulted
in overheads that erase the benefits gained by using multiple pro-
cessors.

4. The empirical results together with the experience of developing
concurrent versions of the sequential algorithms provide prima facie
evidence that such a process-based approach is feasible and gener-
ally effective for delivering improved performance on multicore com-
puters.

In retrospect, the following broad approach for developing the concurrent
implementations emerged. The first step was to inspect the sequential al-
gorithm for opportunities to exploit concurrency. In general, task-level par-
allelism was favoured over data-level parallelism. However, when data-
level parallelism was deemed appropriate, it was exploited (e.g. ‘Split’ in
Chapter 3 and DZ5 in Chapter 6).

Tasks that can execute independently were identified and modelled as CSP
processes. These processes also encapsulate data and state. Data elements
that needed to be shared with other processes were identified and CSP
channels were defined to facilitate the sharing. Only the “owner” of a data
structure may modify it. This exercise gave an idea of the required pro-
cesses and their interactions. These structures can be represented as pro-
cess diagrams that were exemplified in this thesis. Such diagrams were
found to be pedagogically useful for strengthening insight and intuition.
When multiple design options presented themselves, a limited number of
additional variants were defined.

These individual processes were then refined into a high-level CSP spe-
cification. Specific computations were abstracted away—the only concern
was how the processes interact and modify their states to achieve the res-
ults of of the sequential algorithm.

An aspect that proved challenging was how to decide that the computation
is complete both at the CSP specification level and at the implementation
level. Typically, the algorithms run until all the elements of some collection
have been processed. Some algorithms initially populate this structure and
then the elements monotonically decrease as the system executes. Others,
on the other hand, dynamically add and remove elements to the structure,
complicating termination.
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7 Conclusion

In the CSP models, the termination question was not addressed completely.
Only the main “driver” process terminates, based on a terminating condi-
tion. Other “supporting” processes do not terminate. It was decided to
address termination during implementation. This results in simpler, more
comprehensible CSP processes.

If needed for example, if one wanted to run the CSP model in a model
checker such as FDR3, it would be fairly simple, though perhaps tedious,
to terminate all the CSP processes using the following approach. Once the
“driver” process reaches its termination condition, it sends out a termina-
tion signal on all its output channels and terminates. Whenever a process
receives this signal, it forwards the signal and terminates. In such a way
the entire process network may be “poisoned” to terminate This is essentially how

the Go implementations
terminate, though an
explicit signal is not
required. A downstream
process executes until its
input channel is closed by
an upstream process.

.

Once a CSP model reached a certain level of maturity, it was used to guide
a Go implementation. The following heuristics were used when translat-
ing from CSP to Go. Processes were programmed as functions that could
then be started using the go keyword. Since Go supports channels, these
were used to trivially implement CSP channels. In addition, Go supports
buffered channels and this feature allows one to implement CSP buffers
without additional Go buffer processes. Go’s select statement was used
to implement CSP’s external choice.

At times, the implementation effort suggested changes to the CSP models
and at other times it suggested additional design variants. These changes
were used to update the CSP descriptions and/or create additional vari-
ants of the existing CSP models which, in turn, necessitated further im-
plementation work. Such iterative incremental development is, of course,
common in most software development paradigms.

Finally, when presenting the CSP models in the chapters, it was at times
convenient to adapt some of the CSP descriptions for presentation pur-
poses. For example, variable or channel names may have changed to fit
the narrative. Also large process descriptions may have been refined into
a smaller subprocesses to enhance comprehensibility.

CSP was found to be useful for broadly describing the process decom-
position. By abstracting away from details such as process termination
and the details of data structures, one is able to keep process descriptions
reasonably uncluttered and to focus on the composition of- and interac-
tion between processes. What is more, it seems to have an effect on one’s
thinking. Initially it is hard to stay in a mode of thinking in terms of pro-
cesses and interaction together with states and state transitions. One at-
tempts to express processes in an imperative style due to years of imperat-
ive programming conditioning. As the project progressed, the thinking in
a process-oriented manner became more natural.
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7 Conclusion

Go served well as implementation language, despite the fact that it had to
be learnt as the project progressed. Since Go features channels, it is fairly
easy to map the CSP descriptions onto Go code, albeit in an ad-hoc manner.
Developing more structured heuristics for the translation from CSP into
Go is left as future work. It seems as if channels are more effectively used
for synchronisation than for high-intensity data exchange. Furthermore,
goroutines appear to be very lightweight, as witnessed in the relatively
good performance of, for example, Variant 1a in Chapter 3 in which each
element in a level was processed by its own goroutine. However, there
also appears to be a point at which too many goroutines are detrimental to
performance as demonstrated by the performance of Min3 in Chapter 5.

In a project with limited time and resources, certain compromises had to
be made. The following limitations can be pointed out.

• As discussed above, process termination was not completely ad-
dressed in the CSP models.

• Verification using formal- or semi-formal methods were not done.
Using a process algebra invites the use of model checking tools. In
the present project the output of a process-based implementation was
compared against the that of the corresponding sequential imple-
mentation. If the output agrees, the result is accepted. Nevertheless,
there is a small chance of deadlock and livelock, although never en-
countered.

• The Go implementation was not done by a Go expert. Rather, the lan-
guage was learnt as the project progressed. This means that idioms,
conventions, and potential optimisations of Go experts might not
have been implemented. However, the fact that decent performance
was achieved could be seen as a commendation of Go for its simpli-
city and elegance.

• The performance analysis only considers the run times of the im-
plementations. Other measures such as memory consumption and
cache effects were excluded from the scope of the present project.

• The computer used for the experiments only had six cores. A larger
number of cores could perhaps yield other interesting behaviours.

• Since the sequential algorithms were used as the starting point, one is
inclined to remain trapped in a sequential mode of thinking. Would
one obtain different solutions if one went back to the problem and
attempt to find a concurrent algorithm from scratch?

These limitations naturally lead to potential extensions of the current pro-
ject.
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7 Conclusion

7.2 Future work

The project suggests a number of dimensions in which the work may be
extended. In the present project, the domain from which algorithms were
selected is Stringology. An obvious step is to find process-based imple-
mentations of more algorithms in this domain, thereby covering more of
this particular domain. A logical progression is then to extend the effort
into other problem domains where process-based implementations might
be beneficial.

Instead of (or in addition to) going wider, one could go deeper into the
present case studies. More detailed performance analyses may be carried
out, focussing, inter alia, on the extent to which memory consumption and
cache utilisation characteristics affect performance. Particular perform-
ance bottlenecks may then be identified and rectified. Atachiants, Doherty
and Gregg’s (2016) taxonomy of performance problems could be used to
guide such an effort.

The present Go implementations are intended as proof-of-concept. Differ-
ent designs or data structures could be used to improve performance at
the implementation level. Process-oriented patterns (Sampson 2008) may
prove useful to improve implementations.

In terms of implementation, one might also attempt to develop tools to sup-
port a more mechanical or automated translation from CSP specification to
Go implementation.

CSP was used only as a notation for describing process models. An advant-
age of using such a formalism that was not exploited in the present work, is
the ability to verify correctness properties of the system before implement-
ation. In future this verification could be added to the design process. One
could then check, for example, termination, liveness, and other correctness
properties using model checking tools such as FDR3.

Even though it was sought to view the domain afresh from a process-
based perspective, obviously the resulting process-based architecture and
code were heavily influenced by the existing sequential algorithms. Ig-
noring the existing sequential algorithm and going back to the problem
could yield different process-based solutions. In addition may it be also to
use other formalisms to arrive at and reason about concurrent solutions to
the problem. For instance, it might be possible to use the correctness-by-
construction approach to programming (Kourie and B. W. Watson 2012)
together with concurrent separation logic (Brookes 2007; O’Hearn 2007) to
derive correct concurrent programs from problem specifications.

In summary, the work described in this thesis affirms that it is often pos-
sible to improve algorithmic efficiency on multicore processors, sometimes
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7 Conclusion

radically, by following a process-based development approach to imple-
menting the software. CSP was found to be a handy notation for expressing
a process-based design as it emerges from considering known sequential
implementations.

Other than using CSP, no specific attempt has been made to develop a
set of heuristics, and/or a checklist of “things to do” or “steps to follow”
in order to arrive at an effective, efficient, maintainable, understandable
(i.e. high-quality) process-based implementation. It will take significantly
more person-power and experience to come up with a credible software
process (whether of an agile variety such as extreme programming (XP),
or a more structured variety such as RUP) to be followed for process-based
software construction.

One of the contributions of this work is to provide solid evidence that de-
veloping such a well thought-out software process, advocating it into the
software engineering community and ensuring that future developers fol-
low it, could well contribute to significantly more efficient code in many
domains, without requiring more expenditure on improved hardware.

145

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Bibliography

Adve, S. V. and K. Gharachorloo (1996). ‘Shared memory consistency mod-
els: a tutorial’. In: Computer 29.12, pp. 66–76.

Agha, G. A. (1985). ‘Actors: a model of concurrent computation in distrib-
uted systems’. PhD thesis. University of Michigan, Ann Arbor, MI.

Aho, A. V. and M. J. Corasick (1975). ‘Efficient String Matching: An Aid to
Bibliographic Search’. In: Communications of the ACM 18.6, pp. 333–340.
url: http://doi.acm.org/10.1145/360825.360855.

Aho, A. V., J. E. Hopcroft and J. D. Ullman (1974). The Design and Analysis
of Computer Algorithms. Addison-Wesley.

Alexandrescu, A. (2010). The D Programming Language. Pearson Education.
Almeida, M., N. Moreira and R. Reis (2012). ‘Finite Automata Minimiza-

tion’. In: Handbook of Finite State Based Models and Applications. Ed. by J.
Wang. Chapman and Hall/CRC, pp. 145–169. url: http://dx.doi.org/
10.1201/b13055-8.

Almeida, M., N. Moreira and R. Reis (2014). ‘Incremental DFA minimisa-
tion’. In: RAIRO - Theoretical Informatics and Applications 48.2, pp. 173–186.
url: http://dx.doi.org/10.1051/ita/2013045.

Ambler, S. W. (2016). The Object-Relational Impedance Mismatch. url: http:
/ / www . agiledata . org / essays / impedanceMismatch . html (visited on
29/08/2016).

Armstrong, J. (2007). ‘A History of Erlang’. In: Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages. HOPL III. San
Diego, California: ACM, pp. 6-1–6-26. url: http://doi.acm.org/10.
1145/1238844.1238850.

Arnold, J. B. (2016). ggthemes: Extra Themes, Scales and Geoms for ’ggplot2’.
R package version 3.3.0. url: https://CRAN.R-project.org/package=
ggthemes.

Atachiants, R., G. Doherty and D. Gregg (2016). ‘Parallel Performance Prob-
lems on Shared-Memory Multicore Systems: Taxonomy and Observa-
tion’. In: IEEE Transactions on Software Engineering 42.8, pp. 764–785.

Awid, K., L. Cleophas and B. W. Watson (2016). ‘Using Human Compu-
tation in Dead-zone based 2D Pattern Matching’. In: Proceedings of the
Prague Stringology Conference 2016, Prague, Czech Republic, August 29-31,
2015. Ed. by J. Holub and J. Zdárek. Department of Theoretical Computer
Science, Faculty of Information Technology, Czech Technical University
in Prague, pp. 22–32. url: http://www.stringology.org/event/2016/
p03.html.

146

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://doi.acm.org/10.1145/360825.360855
http://dx.doi.org/10.1201/b13055-8
http://dx.doi.org/10.1201/b13055-8
http://dx.doi.org/10.1051/ita/2013045
http://www.agiledata.org/essays/impedanceMismatch.html
http://www.agiledata.org/essays/impedanceMismatch.html
http://doi.acm.org/10.1145/1238844.1238850
http://doi.acm.org/10.1145/1238844.1238850
https://CRAN.R-project.org/package=ggthemes
https://CRAN.R-project.org/package=ggthemes
http://www.stringology.org/event/2016/p03.html
http://www.stringology.org/event/2016/p03.html


Bibliography

Baeten, J. C. M. (2005). ‘A brief history of process algebra’. In: Theoretical
Computer Science 335.2, pp. 131–146.

Baeten, J. C. M., T. Basten and M. A. Reniers (2010). Process algebra: equational
theories of communicating processes. Vol. 50. Cambridge university press.

Barnes, F. R. M. and P. H. Welch (2016). occam-pi: blending the best of CSP
and the pi-calculus. url: http://www.cs.kent.ac.uk/projects/ofa/kroc/
(visited on 16/09/2016).

Bassino, F., J. David and C. Nicaud (2007). ‘REGAL: A Library to Randomly
and Exhaustively Generate Automata’. In: Implementation and Application
of Automata: 12th International Conference, CIAA 2007, Praque, Czech Repub-
lic, July 16-18, 2007, Revised Selected Papers. Ed. by J. Holub and J. Žďárek.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 303–305. url: http:
//dx.doi.org/10.1007/978-3-540-76336-9_28.

Bassino, F., J. David and C. Nicaud (2008). ‘Random generation of possibly
incomplete deterministic automata.’ In: Génération Aléatoire de Structures
COMbinatoires, pp. 31–40.

Bergstra, J. A. and J. W. Klop (1982). Fixed point semantics in process algeb-
ras. swireport IW 206/82. preprint. Amsterdam: Stichting Mathematisch
Centrum.

Bergstra, J. A. and J. W. Klop (1984). ‘Process algebra for synchronous com-
munication’. In: Information and control 60.1-3, pp. 109–137.

Berstel, J., L. Boasson, O. Carton and I. Fagnot (2010). ‘Minimization of
Automata’. In: CoRR abs/1010.5318. url: http://arxiv.org/abs/1010.
5318.

Boyer, R. S. and J. S. Moore (1977). ‘A fast string searching algorithm’. In:
Communications of the ACM 20.10, pp. 62–72.

Brinch Hansen, P. (2002). ‘The Origin of Concurrent Programming: From
Semaphores to Remote Procedure Calls’. In: ed. by P. Brinch Hansen.
New York, NY, USA: Springer-Verlag New York, Inc. Chap. The Inven-
tion of Concurrent Programming, pp. 3–61. url: http://dl.acm.org/
citation.cfm?id=762971.762973.

Brookes, S. D. (1983). ‘A Model for Communicating Sequential Processes’.
PhD thesis. Oxford University.

Brookes, S. D. (2007). ‘A semantics for concurrent separation logic’. In:
Theoretical Computer Science 375.1, pp. 227–270. url: http : / / www .

sciencedirect.com/science/article/pii/S0304397506009248.
Brown, N. C. C. (2008). ‘Communicating Haskell Processes: Composable

Explicit Concurrency Using Monads’. In: Communicating Process Archi-
tectures 2008. Ed. by P. H. Welch, S. Stepney, F. A. Polack, F. R. Barnes,
A. A. McEwan, G. S. Stiles, J. F. Broenink and A. T. Sampson. Vol. 66. Con-
current Systems Engineering. Amsterdam, The Netherlands: IOS Press,
pp. 67–83. url: http://kar.kent.ac.uk/24103/.

Brown, N. C. C. and P. H. Welch (2003). ‘An Introduction to the Kent
C++CSP Library’. In: Communicating Process Architectures 2003. Ed. by J. F.
Broenink and G. H. Hilderink. Vol. 61. Concurrent Systems Engineering

147

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.cs.kent.ac.uk/projects/ofa/kroc/
http://dx.doi.org/10.1007/978-3-540-76336-9_28
http://dx.doi.org/10.1007/978-3-540-76336-9_28
http://arxiv.org/abs/1010.5318
http://arxiv.org/abs/1010.5318
http://dl.acm.org/citation.cfm?id=762971.762973
http://dl.acm.org/citation.cfm?id=762971.762973
http://www.sciencedirect.com/science/article/pii/S0304397506009248
http://www.sciencedirect.com/science/article/pii/S0304397506009248
http://kar.kent.ac.uk/24103/


Bibliography

Series. Conference Information: 26th WoTUG Technical Meeting UNIV
TWENTE, ENSCHEDE, NETHERLANDS, SEP 07-10, 2003. Amsterdam,
The Netherlands: IOS Press, pp. 139–156. url: http://kar.kent.ac.uk/
13921/.

Brzozowski, J. A. (1964). ‘Derivatives of Regular Expressions’. In: Journal of
the ACM 11.4, pp. 481–494.

Buhr, P. A. and A. S. Harji (2005). ‘Concurrent urban legends’. In: Con-
currency and Computation: Practice and Experience 17.9, pp. 1133–1172. url:
http://dx.doi.org/10.1002/cpe.885.

Burgstaller, B., Y.-S. Han, M. Jung and Y. Ko (2011). On the parallelization of
DFA membership tests. Tech. rep. Technical Report. TR-0003, Department
of Computer Science, Yonsei University, Seoul 120–749, Korea. url: http:
//elc.yonsei.ac.kr/PDFA.pdf.

Choi, H. and B. Burgstaller (2013). ‘Non-blocking parallel subset construc-
tion on shared-memory multicore architectures’. In: Proceedings of the
Eleventh Australasian Symposium on Parallel and Distributed Computing-
Volume 140. Australian Computer Society, Inc., pp. 13–20.

Cleophas, L. (2003). ‘Towards SPARE Time: A New Taxonomy of Keyword
Pattern Matching Algorithms’. MA thesis. Faculty of Computing Sci-
ence, Eindhoven University of Technology, the Netherlands.

Crochemore, M. A. and W. Rytter (2003). Jewels of Stringology. World Sci-
entific Publishing Company.

D (2016). D programming language. url: http : / / dlang . org/ (visited on
07/11/2016).

Dijkstra, E. W. (1965). ‘Solution of a Problem in Concurrent Programming
Control’. In: Communications of the ACM 8.9, p. 569. url: http://doi.acm.
org/10.1145/365559.365617.

Dijkstra, E. W. (1968). ‘Cooperating sequential processes’. url: http://www.
cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF. Published as: ‘Cooper-
ating sequential processes’. In: Programming Languages: NATO Advanced
Study Institute. Ed. by F. Genuys. Academic Press, 1968, pp. 43–112.

Dijkstra, E. W. (1971). ‘Hierarchical Ordering of Sequential Processes’. In:
Acta Informatica 1, pp. 115–138. url: http : / / dx . doi . org / 10 . 1007 /
BF00289519.

Dijkstra, E. W. (1975). ‘Guarded Commands, Nondeterminacy and Formal
Derivation of Programs’. In: Communications of the ACM 18.8, pp. 453–
457. url: http://doi.acm.org/10.1145/360933.360975.

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice Hall.
Drepper, U. (2007). What Every Programmer Should Know About Memory. url:

http://lwn.net/Articles/250967/ (visited on 14/11/2016).
Erlang (2016). Erlang programming language. url: http://www.erlang.org/

(visited on 07/11/2016).
Faro, S. and T. Lecroq (2013). ‘The Exact Online String Matching Problem:

A Review of the Most Recent Results’. In: ACM Comput. Surv. 45.2, 13:1–
13:42. url: http://doi.acm.org/10.1145/2431211.2431212.

148

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://kar.kent.ac.uk/13921/
http://kar.kent.ac.uk/13921/
http://dx.doi.org/10.1002/cpe.885
http://elc.yonsei.ac.kr/PDFA.pdf
http://elc.yonsei.ac.kr/PDFA.pdf
http://dlang.org/
http://doi.acm.org/10.1145/365559.365617
http://doi.acm.org/10.1145/365559.365617
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://dx.doi.org/10.1007/BF00289519
http://dx.doi.org/10.1007/BF00289519
http://doi.acm.org/10.1145/360933.360975
http://lwn.net/Articles/250967/
http://www.erlang.org/
http://doi.acm.org/10.1145/2431211.2431212


Bibliography

Farrel, K. (2012). Intel® Xeon® Processor E5-2600/4600 Product Family Tech-
nical Overview. url: https://software.intel.com/en-us/articles/
intel - xeon - processor - e5 - 26004600 - product - family - technical -

overview (visited on 29/09/2016).
Ferragina, P. and G. Navarro (2005). Pizza&Chili Corpus: Compressed Indexes

and their Testbeds. url: http://pizzachili.dcc.uchile.cl (visited on
16/08/2016).

Flynn, M. J. (1966). ‘Very high-speed computing systems’. In: Proceedings of
the IEEE 54.12, pp. 1901–1909.

Flynn, M. J. (1972). ‘Some Computer Organizations and Their Effective-
ness’. In: IEEE Transactions on Computers C-21.9, pp. 948–960.

Gerrand, A. (2013). Concurrency is not parallelism. url: https : / / blog .
golang.org/concurrency-is-not-parallelism (visited on 02/10/2016).

Gibson-Robinson, T., P. Armstrong, A. Boulgakov and A. Roscoe (2015).
‘FDR3: a parallel refinement checker for CSP’. English. In: International
Journal on Software Tools for Technology Transfer, pp. 1–19. url: http://dx.
doi.org/10.1007/s10009-015-0377-y.

Go (2016). The Go Programming Language. url: https://golang.org (visited
on 29/08/2016).

Go FAQ (2016). The Go Programming Language: Frequently Asked Questions
(FAQ). url: https://golang.org/doc/faq (visited on 29/08/2016).

Go Language Specification (2016). The Go Programming Language Specifica-
tion. url: https://golang.org/ref/spec (visited on 29/08/2016).

Gries, D. (1980). The Science of Computer Programming. second. Springer-
Verlag.

Hanneforth, T. and B. W. Watson (2012). ‘An Efficient Parallel Determinisa-
tion Algorithm for Finite-state Automata’. In: Stringology. Ed. by J. Holub
and J. Zdárek. Department of Theoretical Computer Science, Faculty of
Information Technology, Czech Technical University in Prague, pp. 42–
52.

Harper, R. (2011). Parallelism Is Not Concurrency. url: https : / /

existentialtype.wordpress.com/2011/03/17/parallelism-is-not-

concurrency/ (visited on 24/09/2016).
Héam, P. and C. Nicaud (2011). ‘Seed: An Easy-to-Use Random Generator

of Recursive Data Structures for Testing’. In: Fourth IEEE International
Conference on Software Testing, Verification and Validation, ICST 2011, Ber-
lin, Germany, March 21-25, 2011. IEEE Computer Society, pp. 60–69. url:
http://dx.doi.org/10.1109/ICST.2011.31.

Hennessy, J. L. and D. Patterson (2011). Computer Architecture: A Quantitative
Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.

Hewitt, C. (1977). ‘Viewing control structures as patterns of passing mes-
sages’. In: Artificial Intelligence 8.3, pp. 323–364.

Hoare, C. A. R. (1972). ‘Towards a Theory of Parallel Programming’. In:
Operating System Techniques. Academic Press, pp. 61–71.

149

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://software.intel.com/en-us/articles/intel-xeon-processor-e5-26004600-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-26004600-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-26004600-product-family-technical-overview
http://pizzachili.dcc.uchile.cl
https://blog.golang.org/concurrency-is-not-parallelism
https://blog.golang.org/concurrency-is-not-parallelism
http://dx.doi.org/10.1007/s10009-015-0377-y
http://dx.doi.org/10.1007/s10009-015-0377-y
https://golang.org
https://golang.org/doc/faq
https://golang.org/ref/spec
https://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
https://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
https://existentialtype.wordpress.com/2011/03/17/parallelism-is-not-concurrency/
http://dx.doi.org/10.1109/ICST.2011.31


Bibliography

Hoare, C. A. R. (1978). ‘Communicating Sequential Processes’. In: Commu-
nications of the ACM 21.8, pp. 666–677. url: http://doi.acm.org/10.
1145/359576.359585.

Hoare, C. A. R. (1985). Communicating Sequential Processes. London:
Prentice-Hall.

Hoare, C. A. R. (2004). Communicating Sequential Processes. Ed. by J. Davis.
(Electronic version). url: http://www.usingcsp.com/cspbook.pdf (vis-
ited on 16/09/2016).

Holub, J. and S. Štekr (2009). ‘On Parallel Implementations of Deterministic
Finite Automata’. In: Implementation and Application of Automata. Ed. by S.
Maneth. Vol. 5642. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 54–64. url: http://dx.doi.org/10.1007/978-3-642-
02979-0_9.

Holub, J. and J. Zdárek, eds. (2014). Proceedings of the Prague Stringology
Conference 2014, Prague, Czech Republic, September 1-3, 2014. Department
of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague.

Hopcroft, J. E., R. Motwani and J. D. Ullman (2007). Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Pearson/Addison Wesley.

Hopcroft, J. E. and J. D. Ullman (1979). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley.

Horspool, R. N. (1980). ‘Practical fast searching in strings’. In: Software —
Practice & Experience 10.6, pp. 501–506.

Huang, M., M. Mehalel, R. Arvapalli and S. He (2013). ‘An Energy Efficient
32-nm 20-MB Shared On-Die L3 Cache for Intel® ; Xeon®; Processor E5
Family’. In: IEEE Journal of Solid-State Circuits 48.8, pp. 1954–1962.

Hum, H. H. J. and J. R. Goodman (2005). ‘Forward state for use in cache
coherency in a multiprocessor system’. 6,922,756 (US Patent). url: https:
//www.google.com/patents/US6922756 (visited on 19/10/2016).

Hume, A. and D. Sunday (1991). ‘Fast string searching’. In: Software — Prac-
tice & Experience 21.11, pp. 1221–1248.

Intel Corporation (2009). An Introduction to the Intel® QuickPath Intercon-
nect. url: http://www.intel.com/content/www/us/en/io/quickpath-
technology/quick-path-interconnect-introduction-paper.html (vis-
ited on 11/10/2016).

Intel Corporation (2014a). Intel® Xeon® Processor E5 v2 and E7 v2 Product
Families Uncore Performance Monitoring Reference Manual. Reference Num-
ber: 329468-002. url: http://www.intel.com/content/dam/www/public/
us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf (vis-
ited on 15/10/2016).

Intel Corporation (2014b). Intel® Xeon® Processor E5-1600/E5-2600/E5-
4600 v2 Product Families: Datasheet Volume One. Reference Number:
329187-003I. url: http://www.intel.com/content/dam/www/public/us/
en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf (visited
on 19/10/2016).

150

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585
http://www.usingcsp.com/cspbook.pdf
http://dx.doi.org/10.1007/978-3-642-02979-0_9
http://dx.doi.org/10.1007/978-3-642-02979-0_9
https://www.google.com/patents/US6922756
https://www.google.com/patents/US6922756
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf


Bibliography

Intel Corporation (2016a). Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual. Order Number: 248966-033. url: http : / / www . intel .
com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-optimization-manual.pdf (visited on 27/09/2016).
Intel Corporation (2016b). Intel® Xeon® Processor E5-2630 v2 (15M Cache,

2.60 GHz). url: http://ark.intel.com/products/75790/Intel-Xeon-
Processor-E5-2630-v2-15M-Cache-2_60-GHz (visited on 29/09/2016).

JáJá, J. and K. W. Ryu (1996). ‘An Optimal Randomized Parallel Algorithm
for the Single Function Coarsest Partition Problem’. In: Parallel Processing
Letters 6.2, pp. 187–193.

James, D. (2012). ‘Intel Ivy Bridge unveiled—The first commercial tri-gate,
high-k, metal-gate CPU’. In: Proceedings of the IEEE 2012 Custom Integrated
Circuits Conference, pp. 1–4.

Kernighan, B. W. (2005). A Descent into Limbo. url: http://doc.cat-v.org/
inferno/4th_edition/limbo_language/descent (visited on 18/09/2016).

Knuth, D. E., J. Morris and V. R. Pratt (1977). ‘Fast pattern matching in
strings’. In: SIAM Journal of Computing 6.2, pp. 323–350.

Ko, Y., M. Jung, Y.-S. Han and B. Burgstaller (2012). ‘A speculative parallel
DFA membership test for multicore, SIMD and cloud computing envir-
onments’. In: International Journal of Parallel Programming, pp. 1–34.

Kourie, D. G. and B. W. Watson (2012). The Correctness-by-Construction Ap-
proach to Programming. Springer Verlag.

Kuehner, M. (2016). LaTeX Thesis Template. url: https://bedienhaptik.de/
latex-template/ (visited on 26/10/2016).

Lee, E. A. (2006). ‘The problem with threads’. In: IEEE Computer 39.5,
pp. 33–42.

Lynch, N. A. and M. R. Tuttle (1989). ‘An introduction to input/output
automata’. In: CWI Quarterly, pp. 219–246.

Mauch, M. (2016). ‘An Investigation of Dead-Zone Pattern Matching Al-
gorithms’. Thesis (MA). Stellenbosch University. Faculty of Arts and So-
cial Sciences. Dept. of Information Science. url: http://hdl.handle.
net/10019.1/98487.

Mauch, M., D. G. Kourie, B. W. Watson and T. Strauss (2012). ‘Perform-
ance assessment of dead-zone single keyword pattern matching’. In:
2012 South African Institute of Computer Scientists and Information Technolo-
gists Conference, SAICSIT ’12, Pretoria, South Africa, October 1-3, 2012. Ed.
by J. H. Kroeze and R. de Villiers. ACM, pp. 59–68. url: http://doi.acm.
org/10.1145/2389836.2389844.

McDougall, R. (2005). ‘Extreme software scaling’. In: ACM Queue 3.7,
pp. 36–46.

Meade, A., J. Buckley and J. J. Collins (2011). ‘Challenges of Evolving Se-
quential to Parallel Code: An Exploratory Review’. In: Proceedings of the
12th International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution. IWPSE-EVOL ’11. Szeged,

151

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://ark.intel.com/products/75790/Intel-Xeon-Processor-E5-2630-v2-15M-Cache-2_60-GHz
http://ark.intel.com/products/75790/Intel-Xeon-Processor-E5-2630-v2-15M-Cache-2_60-GHz
http://doc.cat-v.org/inferno/4th_edition/limbo_language/descent
http://doc.cat-v.org/inferno/4th_edition/limbo_language/descent
https://bedienhaptik.de/latex-template/
https://bedienhaptik.de/latex-template/
http://hdl.handle.net/10019.1/98487
http://hdl.handle.net/10019.1/98487
http://doi.acm.org/10.1145/2389836.2389844
http://doi.acm.org/10.1145/2389836.2389844


Bibliography

Hungary: ACM, pp. 1–5. url: http://doi.acm.org/10.1145/2024445.
2024447.

Milner, R. (1989). Communication and Concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc.

Milner, R., J. Parrow and D. Walker (1992a). ‘A calculus of mobile pro-
cesses, I’. In: Information and Computation 100.1, pp. 1–40. url: http://
www.sciencedirect.com/science/article/pii/0890540192900084.

Milner, R., J. Parrow and D. Walker (1992b). ‘A calculus of mobile processes,
II’. In: Information and Computation 100.1, pp. 41–77. url: http://www.
sciencedirect.com/science/article/pii/0890540192900095.

Moler, C. (2013). The Intel Hypercube, part 2, reposted. url: http://blogs.
mathworks.com/cleve/2013/11/12/the-intel-hypercube-part-2-

reposted/ (visited on 04/10/2016).
Molka, D., D. Hackenberg, R. Schöne and W. E. Nagel (2015). ‘Cache Co-

herence Protocol and Memory Performance of the Intel Haswell-EP Ar-
chitecture’. In: Parallel Processing (ICPP), 2015 44th International Conference
on, pp. 739–748.

MPI Forum (2016). url: http://mpi-forum.org/ (visited on 07/11/2016).
O’Hearn, P. W. (2007). ‘Resources, concurrency, and local reasoning’. In:

Theoretical Computer Science 375.1, pp. 271–307. url: http : / / www .

sciencedirect.com/science/article/pii/S030439750600925X.
OpenMP (2016). The OpenMP® API specification for parallel programming.

url: http://openmp.org (visited on 28/10/2016).
Owens, S., J. Reppy and A. Turon (2009). ‘Regular-expression derivatives

reexamined’. In: Journal of Functional Programming 19.2, pp. 173–190.
Papazian, I. E., S. Kottapalli, J. Baxter, J. Chamberlain, G. Vedaraman and

B. Morris (2015). ‘Ivy Bridge Server: A Converged Design’. In: IEEE Micro
35.2, pp. 16–25.

Patterson, D. (2010). The Trouble With Multicore: Chipmakers are busy design-
ing microprocessors that most programmers can’t handle. url: http : / /

spectrum.ieee.org/computing/software/the-trouble-with-multicore

(visited on 20/10/2016).
Petri, C. A. and W. Reisig (2008). ‘Petri net’. In: Scholarpedia 3.4. revision

#91646, p. 6477. url: http://www.scholarpedia.org/article/Petri_net
(visited on 01/11/2016).

Pike, R. (1990). ‘The implementation of Newsqueak’. In: Software: Practice
and Experience 20.7, pp. 649–659. url: http://dx.doi.org/10.1002/spe.
4380200703.

Pike, R. (2012a). Concurrency is not Parallelism. url: https://talks.golang.
org/2012/waza.slide#1 (visited on 02/10/2016).

Pike, R. (2012b). Go at Google: Language Design in the Service of Software En-
gineering. url: https://talks.golang.org/2012/splash.article (visited
on 25/08/2016).

152

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://doi.acm.org/10.1145/2024445.2024447
http://doi.acm.org/10.1145/2024445.2024447
http://www.sciencedirect.com/science/article/pii/0890540192900084
http://www.sciencedirect.com/science/article/pii/0890540192900084
http://www.sciencedirect.com/science/article/pii/0890540192900095
http://www.sciencedirect.com/science/article/pii/0890540192900095
http://blogs.mathworks.com/cleve/2013/11/12/the-intel-hypercube-part-2-reposted/
http://blogs.mathworks.com/cleve/2013/11/12/the-intel-hypercube-part-2-reposted/
http://blogs.mathworks.com/cleve/2013/11/12/the-intel-hypercube-part-2-reposted/
http://mpi-forum.org/
http://www.sciencedirect.com/science/article/pii/S030439750600925X
http://www.sciencedirect.com/science/article/pii/S030439750600925X
http://openmp.org
http://spectrum.ieee.org/computing/software/the-trouble-with-multicore
http://spectrum.ieee.org/computing/software/the-trouble-with-multicore
http://www.scholarpedia.org/article/Petri_net
http://dx.doi.org/10.1002/spe.4380200703
http://dx.doi.org/10.1002/spe.4380200703
https://talks.golang.org/2012/waza.slide#1
https://talks.golang.org/2012/waza.slide#1
https://talks.golang.org/2012/splash.article


Bibliography

R Core Team (2016). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria. url: http://
www.R-project.org/.

Ravikumar, B. and X. Xiong (1996). ‘A Parallel Algorithm for Minimization
of Finite Automata’. In: IPPS. IEEE Computer Society, pp. 187–191.

Red Hat (2016). Hibernate. Everything data. url: http://hibernate.org/
(visited on 28/10/2016).

Revuz, D. (1992). ‘Minimisation of acyclic deterministic automata in linear
time’. In: Theoretical Computer Science 92, pp. 181–189.

Reynolds, J. C. (2002). ‘Separation logic: a logic for shared mutable data
structures’. In: Logic in Computer Science, 2002. Proceedings. 17th Annual
IEEE Symposium on, pp. 55–74.

Ritchie, D. M. (2005). The Limbo Programming Language. url: http://doc.
cat-v.org/inferno/4th_edition/limbo_language/limbo (visited on
18/09/2016).

Roscoe, A. W. (1982). ‘A mathematical theory of communicating processes’.
D.Phil thesis. Oxford University. url: http://www.cs.ox.ac.uk/people/
bill.roscoe/publications/2.pdf.

Roscoe, A. W. (2010). Understanding Concurrent Systems. 1st. New York, NY,
USA: Springer-Verlag New York, Inc.

Roscoe, A. W. and G. Barrett (1989). ‘Unbounded nondeterminism in CSP’.
In: Proceedings of MFPS89. LNCS 298. Springer. url: http://www.cs.ox.
ac.uk/people/bill.roscoe/publications/29.pdf.

Roscoe, A. W. and S. D. Brookes (1985). ‘An improved failures model for
communicating processes’. In: Proceedings of the Pittsburgh seminar on con-
currency. Ed. by A. W. Roscoe, S. D. Brookes and G. Winskel. LNCS 197.
Springer, pp. 281–305. url: http://www.cs.ox.ac.uk/people/bill.
roscoe/publications/9.pdf.

Roscoe, A. W., S. D. Brookes and C. A. R. Hoare (1984). ‘A theory of commu-
nicating sequential processes’. In: Journal of the ACM. 31st ser. 3, pp. 560–
599. url: http://www.cs.ox.ac.uk/people/bill.roscoe/publications/
4.pdf.

Roscoe, A. W., C. A. R. Hoare and R. Bird (1997). The Theory and Practice of
Concurrency. Upper Saddle River, NJ, USA: Prentice Hall PTR.

Sampson, A. T. (2008). ‘Process-oriented Patterns for Concurrent Software
Engineering’. D.Phil thesis. University of Kent.

ScrapMaker.com (2015). Useful lists for geeks, machine learning, and linguists.
url: http://scrapmaker.com/view/dictionaries/Unabr.dict (visited
on 01/06/2015).

Sharpsteen, C. and C. Bracken (2016). tikzDevice: R Graphics Output in LaTeX
Format. R package version 0.10-1. url: https://CRAN.R-project.org/
package=tikzDevice.

Shavit, N. and D. Touitou (1995). ‘Software Transactional Memory’. In: Pro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of Distrib-

153

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.R-project.org/
http://www.R-project.org/
http://hibernate.org/
http://doc.cat-v.org/inferno/4th_edition/limbo_language/limbo
http://doc.cat-v.org/inferno/4th_edition/limbo_language/limbo
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/2.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/2.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/29.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/29.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/9.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/9.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/4.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/4.pdf
http://scrapmaker.com/view/dictionaries/Unabr.dict
https://CRAN.R-project.org/package=tikzDevice
https://CRAN.R-project.org/package=tikzDevice


Bibliography

uted Computing. PODC ’95. Ottowa, Ontario, Canada: ACM, pp. 204–213.
url: http://doi.acm.org/10.1145/224964.224987.

Smith, J. E. and G. S. Sohi (1995). ‘The microarchitecture of superscalar pro-
cessors’. In: Proceedings of the IEEE 83.12, pp. 1609–1624.

Smyth, W. F. (2003). Computing Patterns in Strings. Addison-Wesley.
Strauss, T., D. G. Kourie and B. W. Watson (2008a). ‘A Concurrent Specific-

ation of an Incremental DFA Minimisation Algorithm’. In: Proceedings
of the Prague Stringology Conference 2008, Prague, Czech Republic, Septem-
ber 1-3, 2008. Ed. by J. Holub and J. Zdárek. Prague Stringology Club,
Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague, pp. 218–226.

Strauss, T., D. G. Kourie and B. W. Watson (2008b). ‘A Concurrent Spe-
cification of Brzozowski’s DFA Construction Algorithm’. In: International
Journal of Foundations of Computer Science 19.1, pp. 125–135.

Strauss, T., D. G. Kourie, B. W. Watson and L. Cleophas (2014). ‘A
Process-Oriented Implementation of Brzozowski’s DFA Construction
Algorithm’. In: Proceedings of the Prague Stringology Conference 2014,
Prague, Czech Republic, September 1-3, 2014. Ed. by J. Holub and J. Zdárek.
Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, pp. 17–29.

Strauss, T., D. G. Kourie, B. W. Watson and L. Cleophas (2015). ‘Process-
Based Aho-Corasick Failure Function Construction’. In: Communicating
Process Architectures 2015. Proceedings of the 37th WoTUG Technical Meet-
ing, 23–26 August 2015, University of Kent, UK. Ed. by K. Chalmers, J. B.
Pedersen, F. R. M. Barnes, J. F. Broenink, R. Ivimey-Cook, A. Sampson
and P. H. Welch. Open Channel Publishing Ltd., pp. 183–206. url: http:
//wotug.org/cpa2015/programme.shtml.

Strauss, T., D. G. Kourie, B. W. Watson and L. Cleophas (2017). ‘CSP for
Parallelising Brzozowski’s DFA Construction Algorithm’. In: The Role of
Theory in Computer Science: Essays Dedicated to Janusz Brzozowski. Ed. by S.
Konstantinidis, N. Moreira, R. Reis and J. Shallit. To appear, pp. 217–243.
url: http://www.worldscientific.com/worldscibooks/10.1142/10239.

Sutter, H. (2005). The Free Lunch Is Over: A Fundamental Turn Toward Con-
currency in Software. Graphs updated in 2009. url: http://www.gotw.ca/
publications/concurrency-ddj.htm (visited on 04/11/2016).

Sutter, H. (2012). url: https://herbsutter.com/welcome-to-the-jungle/
(visited on 04/11/2016).

Syamalakumari, S. (2013). Intel® Xeon® Processor E5-2600 V2 Product Family
Technical Overview. url: https://software.intel.com/en-us/articles/
intel - xeon - processor - e5 - 2600 - v2 - product - family - technical -

overview (visited on 11/10/2016).
Tewari, A., U. Srivastava and P. Gupta (2002). ‘A Parallel DFA Minimiza-

tion Algorithm’. In: HiPC. Ed. by S. Sahni, V. K. Prasanna and U. Shukla.
Vol. 2552. Lecture Notes in Computer Science. Springer, pp. 34–40.

154

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://doi.acm.org/10.1145/224964.224987
http://wotug.org/cpa2015/programme.shtml
http://wotug.org/cpa2015/programme.shtml
http://www.worldscientific.com/worldscibooks/10.1142/10239
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://herbsutter.com/welcome-to-the-jungle/
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-2600-v2-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-2600-v2-product-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-e5-2600-v2-product-family-technical-overview


Bibliography

Turon, A. (2013). ‘Understanding and Expressing Scalable Concurrency’.
AAI3558728. PhD thesis. Boston, MA, USA.

Watson, B. W. (1993). A taxonomy of finite automata construction algorithms.
Tech. rep. 43. Faculty of Computing Science, Eindhoven University of
Technology, the Netherlands.

Watson, B. W. (1994). The design of the FIRE Engine: A C++ toolkit for FInite
automata and Regular Expressions. Tech. rep. 22. Faculty of Computing Sci-
ence, Eindhoven University of Technology, the Netherlands.

Watson, B. W. (1995). ‘Taxonomies and Toolkits of Regular Language Al-
gorithms’. PhD thesis. Faculty of Computing Science, Eindhoven Uni-
versity of Technology, the Netherlands.

Watson, B. W. (2001). ‘An Incremental DFA Minimization Algorithm’. In:
Proceedings of the Second International Workshop on Finite State Methods in
Natural Language Processing. Ed. by L. Karttunen, K. Koskenniemi and G.
van Noord. Helsinki, Finland.

Watson, B. W. (2010). ‘Conctructing Minimal Acyclic Deterministic Auto-
mata’. PhD thesis. Department of Computer Science, University of Pre-
toria, South Africa.

Watson, B. W., L. Cleophas and D. G. Kourie (2014). ‘Using Correctness-
by-Construction to Derive Dead-zone Algorithms’. In: Proceedings of the
Prague Stringology Conference 2014, Prague, Czech Republic, September 1-3,
2014. Ed. by J. Holub and J. Zdárek. Department of Theoretical Computer
Science, Faculty of Information Technology, Czech Technical University
in Prague, pp. 84–95. url: http://www.stringology.org/event/2014/
p09.html.

Watson, B. W. and J. Daciuk (2003). ‘An Efficient Incremental DFA Minim-
ization Algorithm’. In: Journal of Natural Language Engineering 9.1, pp. 49–
64.

Watson, B. W., D. G. Kourie and T. Strauss (2012). ‘A Sequential Recurs-
ive Implementation of Dead-Zone Single Keyword Pattern Matching’. In:
Combinatorial Algorithms, 23rd International Workshop, IWOCA 2012, Tamil
Nadu, India, July 19-21, 2012, Revised Selected Papers. Ed. by S. Arumugam
and W. F. Smyth. Vol. 7643. Lecture Notes in Computer Science. Springer,
pp. 236–248. url: http://dx.doi.org/10.1007/978-3-642-35926-2.

Watson, B. W. and R. E. Watson (2003). ‘A New Family of String Pattern
Matching Algorithms’. In: South African Computer Journal 30, pp. 34–41.

Watson, B. W. and G. Zwaan (1993). ‘A taxonomy of keyword pattern
matching algorithms’. In: Proceedings of the Symposium on Computing Sci-
ence in the Netherlands. Ed. by H. Wijshoff. Utrecht, The Netherlands,
pp. 25–39.

Welch, P. H. (2002). ‘Process Oriented Design for Java: Concurrency for All’.
In: Proceedings of the International Conference on Computational Science-Part
II. ICCS ’02. London, UK: Springer-Verlag, p. 687.

155

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://www.stringology.org/event/2014/p09.html
http://www.stringology.org/event/2014/p09.html
http://dx.doi.org/10.1007/978-3-642-35926-2


Bibliography

Welch, P. H. and F. R. M. Barnes (2005). ‘Communicating mobile processes:
Introducing occam-pi’. In: Communicating Sequential Processes. The First 25
Years. Springer, pp. 175–210.

Welch, P. H., N. C. C. Brown, J. Moores, K. Chalmers and B. H. C. Sputh
(2007). ‘Integrating and Extending JCSP’. In: Communicating Process Ar-
chitectures 2007. Ed. by S. A. Schneider, A. A. McEwan, W. Ifill and P. H.
Welch. Vol. 65. Concurrent Systems Engineering. Amsterdam, The Neth-
erlands: IOS, pp. 349–370. url: http://kar.kent.ac.uk/24001/.

Welch, P. H. and J. B. Pedersen (2010). ‘Santa Claus: Formal Analysis of
a Process-oriented Solution’. In: ACM Transactions on Programming Lan-
guages and Systems 32.4, 14:1–14:37. url: http://doi.acm.org/10.1145/
1734206.1734211.

Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York. url: http://ggplot2.org.

Wickham, H. (2011). ‘The Split-Apply-Combine Strategy for Data Ana-
lysis’. In: Journal of Statistical Software 40.1, pp. 1–29. url: http://www.
jstatsoft.org/v40/i01/.

Ziadi, D. and J.-M. Champarnaud (1999). ‘An optimal parallel algorithm to
convert a regular expression into its Glushkov automaton’. In: Theoretical
Computer Science 215, pp. 69–87.

156

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

http://kar.kent.ac.uk/24001/
http://doi.acm.org/10.1145/1734206.1734211
http://doi.acm.org/10.1145/1734206.1734211
http://ggplot2.org
http://www.jstatsoft.org/v40/i01/
http://www.jstatsoft.org/v40/i01/


Acronyms and Abbreviations

AC Aho-Corasick

ACP Algebra of Communicating Processes

ALU Arithmetic logic unit

BM Boyer-Moore

CCS Calculus of Communicating Systems

CPU Central processing unit

CSP Communicating Sequential Processes

DFA Deterministic finite automaton

DSM Distributed shared memory

DZ Dead Zone

FAQ Frequently asked questions

FDR3 Failures Divergence Refinement 3

FIFO First in, first out

GCL Guarded Command Language

GPU Graphical processing unit

MIDI Musical Instrument Digital Interface

MIMD Multiple instruction streams, multiple data streams

MISD Multiple instruction streams, single data stream

MPI Message Passing Interface

NUMA Non-uniform memory access

QPI Intel® QuickPath Interconnect

RAM Random access memory

RE Regular expression

RUP Rational Unified Process

SIMD Single instruction stream, multiple data streams
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Acronyms and Abbreviations

SISD Single instruction stream, single data stream

SMP Symmetric multiprocessor

SMT Simultaneous multi-threading

UMA Uniform memory access

XP Extreme programming
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Colophon

This document was produced using LuaLATEX. The LATEX source is based on
a template by Kuehner (2016) using KOMA-Script. Diagrams were drawn
using TikZ.

The main fonts are TEX Gyre Pagella and TEX Gyre Pagella Math. The
Sans-serif font is Libertinus Sans and the monospaced font is DejaVu Sans
Mono.

Statistical computations were done using R (R Core Team 2016), often mak-
ing use of Wickham’s (2011) plyr package. Statistical plots were produced
using ggplot2 (Wickham 2009) and ggthemes (Arnold 2016). These plots
were converted into TikZ code using the tikzDevicepackage by Sharpsteen
and Bracken (2016).
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