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Abstract 

 

Aspects of seasonal forecast skill using global climate models (GCMs) are assessed over South 

Africa. The GCMs output is configured to predict low and high number of rainfall days exceeding 

predefined threshold values for the summer rainy seasons and to predict the rainfall totals of the 

onset of the rainy seasons for eight homogeneous rainfall regions of South Africa. Using canonical 

correlation analysis (CCA) as statistical downscaling tool the forecast skill levels of both coupled 

ocean-atmosphere and uncoupled atmospheric models are determined through retro-actively 

generated hindcasts. Both approaches have skill in predicting the low and high number of rainfall 

days exceeding predefined threshold values for the summer rainy seasons as well as rainfall 

totals of onset of the rainy seasons for the homogeneous rainfall regions. In addition to the 

forecast verification results, CCA pattern analysis is also performed to determine the dominating 

atmospheric circulation systems predicted to be controlling rainfall variations for the seasons of 

interest. CCA pattern analysis for both the GCMs indicate that when there are anomalously 

negative (positive) predicted 850hPa geopotential heights over South Africa, there are 

anomalously wet (dry) rainfall conditions over the most part of South Africa for the different 

seasons of interest. This work has paved the way for the operational production of seasonal 

rainfall characteristics over South Africa. 
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Preface 

The southern Africa region is prone to droughts and flooding due to its significant rainfall variability 

on a range of temporal and spatial scales. For example in late 2015 almost the whole of South 

Africa experienced one of the most severe drought since 1982. Such extreme rainfall variability 

is a challenge since most countries in southern Africa depend significantly in rain-fed agriculture. 

In fact, agriculture is the backbone of most economies in African countries, including South Africa. 

Therefore, accurate predictions of rainfall at different time scales including seasonal and intra-

seasonal predictions are very important for decision-makers in sectors such as agriculture, 

energy, and health, among others. The character of the rainfall within the season often exerts a 

greater influence than does the seasonal total, as a result the seasonal forecasts are only 

marginally useful. Studies in predicting seasonal rainfall totals in South Africa have been 

conducted in the past and they show that climate models have skill in predicting summer rainfall 

totals. Moreover, most of the climate models show that the highest skill is found in the 

northeastern parts of South Africa. In contrast to seasonal rainfall totals predictions, very few 

studies have been conducted so far to test for the feasibility in predicting intra-seasonal rainfall 

characteristics in an operational environment in South Africa. However, intra-seasonal predictions 

are regarded as most important because they provide detailed information needed by users of 

climate information. 

 
The chaotic nature of the atmosphere makes prediction of about two weeks to two months not 

easy. Furthermore, the intra-seasonal range is influenced by initial conditions of the atmosphere 

and land, as well as the ocean. Hence, intra-seasonal forecasts tend to be less skillful than 

seasonal climate forecasts. For that reason most researchers do not take interest in studying the 

intra-seasonal time-scale. It is well documented that seasonal rainfall totals during summer in 

South Africa is predictable due to the predictability of the Pacific El Niño-Southern Oscillation 

(ENSO), which is known to be the main climate driver of seasonal predictions. Recently it was 

found that there is a possible interconnection between ENSO and winter rainfall season of South 

Africa. At this stage it is not clear if there is an ENSO-rainfall relationship for the intra-seasonal 

climate predictions over South Africa.    
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The main aim of this research is to investigate forecast skill levels of both coupled ocean-

atmosphere and uncoupled atmospheric GCMs in predicting seasonal rainfall characteristics over 

South Africa. The aim will be achieved through the following objectives: 

 To evaluate the forecast skill levels of coupled and uncoupled GCM’s in predicting 3-

months seasonal rainfall totals for October to December (OND), November to January 

(NDJ), December to February (DJF) and January to March (JFM) seasons.    

 To evaluate the forecast skill levels of coupled and uncoupled GCM’s in predicting number 

of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 40mm and 50mm 

threshold values for OND, NDJ, DJF and JFM seasons.  

 To evaluate the forecast skill levels of coupled and uncoupled GCM’s in predicting the 

onset months of the rainy seasons. 

 To determine the dominating atmospheric circulation systems predicted to be controlling 

rainfall variations for the seasons as well as onset months. 

 

This dissertation comprises of six chapters as follows. Chapter 1 is the introduction discussing 

the climate of South Africa, rainfall characteristics and circulation patterns as well as the status of 

seasonal rainfall predictions in South Africa. The aim and approach of this research as well as 

the summary of the chapter is included. Data used and methods for forecasts verification are 

described in Chapter 2. Verification results for the predictability of 3-months seasonal rainfall 

totals is presented in Chapter 3. Chapter 4 and Chapter 5 present the verification results for the 

predictability of seasonal rainfall characteristics, the number of rainfall days exceeding predefined 

threshold values and the onset months of the rainy seasons, respectively. Finally the results are 

summarized and conclusions are made in Chapter 6.    
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CHAPTER 1 

 INTRODUCTION    

The southern Africa is a region characterized by significant climate variability on a range of 

temporal and spatial scales which have an impact on agriculture, water resources and economy 

at large. In fact, the variations of rainfall is a major concern for agricultural production in the region. 

The variability of rainfall makes southern Africa vulnerable to extreme climate events (Shongwe 

et al. 2009). The most severe impacts of climate on human society and natural environment over 

southern Africa are as a result of the extreme climate events such as droughts and floods, among 

others. The devastating floods in Mozambique during February/March 2000 and severe droughts 

of 1991/92, 2002/03 and 2003/04 over northern South Africa are the example of such extreme 

events (Cook et al., 2004). Therefore, better understanding of the climatology and variability of 

the climate characteristics variables could be invaluable to the users of weather and climate 

information. Different institutions in South Africa such as the South African Weather Service 

(SAWS) and the Council for Scientific and Industrial Research (CSIR) are currently producing 

rainfall and temperature forecasts at different time scale, including seasonal forecasts. However, 

seasonal forecasts does not give detailed information of specific needs of the users. In addition, 

there has been an increasing demand for intra-seasonal forecasts from agricultural and other user 

communities in decision making (Hudson et al., 2011; Tadross et al., 2005), The intra-seasonal 

forecasts are needed mainly because seasonal forecasts have limited benefits without medium-

term information (Landman and Tennant, 2000). Moreover, intra-seasonal forecasts bridge the 

gap between weather and seasonal forecasting, covering the time scale of about 10 to 60 days 

(Hudson et al., 2011). Intra-seasonal forecasts are regarded as the most difficult to predict but 

are of great importance for the economic and agricultural sectors. The chaotic nature of the 

atmosphere makes prediction of about two weeks to two months difficult (Luo and Wood, 2006). 

Furthermore, the intra-seasonal range is influenced by initial conditions of the atmosphere and 

land, as well as the ocean (Hudson et al., 2011), hence intra-seasonal forecasts tend to be less 

skillful than seasonal climate forecasts. The objective of this study is to test the skill of both the 

coupled and uncoupled general circulation models (GCMs) in predicting the intra-seasonal rainfall 

variables, viz. the number of rainfall days exceeding different rainfall thresholds for the austral 

summer seasons as well as the onset months of the rainy seasons over South Africa.  
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1.1. Climate of South Africa 

 
South Africa is located in the subtropics and is affected by atmospheric circulation in the tropics, 

subtropics and temperate latitudes (Taljaard 1996). Rainfall in South Africa is variable spatially 

and temporally (Schulze, 2005). The variation is due to the topography as well as the sea-surface 

temperatures (SSTs) adjacent the country with the warm Agulhas current pushing warm water to 

the east coast while the west coast is cold due to the cold Benguela current (van Heerden and 

Taljaard, 1998). The topography of South Africa varies from the altitudes of less than 300 metres 

along the coastal areas and above 3000 metres over the eastern escarpment (Figure 1.1). The 

high resolution topography data was obtained from http://eros.usgs.gov. The annual average 

rainfall calculated on high-resolution (0.5 x 0.5 degree) grids from Climate Research Unit (CRU) 

data (http://browse.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_3.23/data) from the University of East 

Anglia increases from west to east with the maximum rainfall occurring over the eastern 

escarpment and the minimum rainfall occurring north-western parts of the country (Figure 1.2).  

 

Figure 1.1. The topography of South Africa in metres above sea level.  
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Figure 1.2. CRU observed mean annual rainfall over South Africa. 

The majority of the rainfall in South Africa is received during austral summer seasons (November 

to March), except for the south western and south coast which receives its rainfall during austral 

winter and throughout the year, respectively (e.g. Phillipon et al., 2011; Fauchereau et al., 2009; 

Cretat et al., 2010).  Summer rainfall is mostly of convective nature, whereas the winter rains 

which is maximum from May to August when the track of the temperate weather systems such as 

extratropical cyclones, cold fronts and cut-off lows shift northward (Phillipon et al., 2011). Average 

seasonal rainfall totals for summer December-January-February (DJF) and winter June-July-

August (JJA) seasons calculated from CRU dataset are shown in Figure1.3 and Figure 1.4, 

respectively. The maximum rainfall occurs over the eastern escarpment during summer seasons 

and southern escarpment during winter.    
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Figure 1.3. CRU observed mean DJF rainfall seasons. 

 
Figure 1.4. As in Figure 1.3, but for JJA seasons. 
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1.2. Rainfall characteristics variables and their effects over South Africa 

1.2.1. Droughts  

 
Southern Africa is prone to drought events (Ambrosino et al., 2011; Usman and Reason, 2004). 

For example, severe droughts of 1991/92, 2002/03 and 2003/04 over northern South Africa and 

surrounding areas (Cook et al., 2004). During the 1991/1992 summer drought approximately 3 

million tons of grain productions were lost in southern Africa (Lyon, 2009). In South Africa alone 

during the drought of 1992 it was estimated that 50 000 jobs in the agriculture sector were lost 

and a further 20 000 in related sectors, affecting 250 000 people. During the same event the gross 

domestic product (GDP) loss was US$ 500 Million. In the 2007/2008 drought event, South Africa 

spent R 285 Million on drought relief, with R 20 Million and R 25 Million of that amount allocated 

to the Eastern Cape and Free State provinces, respectively (Ngaka, 2012). Most severe droughts 

over the subtropical southern Africa are influenced either by strong El Niño events or regional 

anomalies over the southeast Atlantic Ocean (Reason et al., 2006). There are four main 

definitions of drought in the literature: meteorological, agricultural, hydrological and socio-

economic. They were described by Usman et al. (2005) as follows 

 
1.2.1.1. Meteorological droughts  

 
Meteorological drought is defined on the basis of the degree of dryness, in comparison to a normal 

or average amount, and the duration of the dry period. Definitions of meteorological drought must 

be region-specific, since the atmospheric conditions that result in deficiencies of precipitation are 

highly region-specific.  

 

1.2.1.2. Agricultural droughts 

 
Agricultural drought links various characteristics of meteorological drought to agricultural impacts, 

focusing on precipitation shortages, differences between actual and potential evapotranspiration, 

soil-water deficit, reduced groundwater or reservoir levels. A good definition of agricultural drought 

should account for the susceptibility of crops during different stages of crop development. 

Deficient topsoil moisture at planting may hinder germination, leading to low plant populations per 

hectare and a reduction of yield. 
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1.2.1.3. Hydrological droughts 

 
Hydrological drought refers to a persistently low discharge and/or volume of water in streams and 

reservoir, lasting for months to years. Hydrological drought is a natural phenomenon, but it may 

be exacerbated by human activities. They are related to meteorological droughts and their 

recurrence interval varies according. Changes in land use and land degradation can affect the 

magnitude and frequency of hydrological drought. 

 

1.2.1.4. Socio-economic droughts 

 
Socioeconomic definitions of drought associate the supply and demand of some economic good 

with elements of meteorological, hydrological and agricultural drought. It differs from the other 

type of drought in that its occurrence depend on the processes of supply and demand. Due to the 

natural variability of climate, water supply is ample in some years, but insufficient to meet human 

and environmental needs in other year.  

 
1.2.2. Wet and dry spells 
 

The frequency and intensity distribution of rainfall have an effect on dry and wet spells (Cook et 

al., 2004). The temporal distribution and nature of wet and dry spells have an impact to agriculture 

in South Africa. The amount and timing of rainfall determines the rainy season and in turn affect 

the agricultural activities (Kijazi and Reason, 2011). The occurrence of extreme dry conditions 

over southern Africa during the austral summer (DJF) are associated with high dry spell 

frequency, while the extreme wet conditions are associated with high wet spell frequency (Usman 

and Reason 2004). According to Usman and Reason (2004) wet (dry) spells are occurring when 

at least 3 consecutive days having area-average rainfall above (below) 1 mm per day. Dry spell 

frequency parameter can be used to provide another measure of a season’s rainfall 

characteristics besides the totals and its deviation from the mean (Usman and Reason, 2004).  

As an example, Usman and Reason (2004) used the 1997/98 where good rains were received 

over large parts of the region but the dry spell frequency was above average, the results was due 

to the above-average rainfall in March received during a few heavy rainfall events.  
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1.2.3. Floods    

 
Floods are defined as the overflowing of the normal confines of a stream or other body of water 

or the accumulation of water over area that are not normally submerged (Kundzewicz et al., 2014). 

Floods includes river floods, flash floods, urban floods and coastal floods among others. Floods 

are as a result of various characteristics of the climate system, most notable precipitation 

(intensity, duration, amount and timing), drainage conditions (such as pre-existing water levels in 

rivers), soil character and status (permeability, soil moisture content and its vertical distribution), 

the rate of urbanization, and the dams and reservoirs (Kundzewicz et al., 2014). Southern Africa 

is equally vulnerable to flood events as it is to droughts. Examples include floods in Mozambique 

and northeastern parts of South Africa during 2000/2001 which left hundreds of people dead and 

affected about 200 000 people, with the total cost of the damage to approximately US$ 500 million 

(Washington and Preston, 2006). As a result of these recurring flood events a warning system for 

flash flood-prone regions, called the South African Flash Flood Guidance (SAFFG) is developed 

and used operationally at the SAWS to monitor floods (de Coning, 2013).  

 
1.2.4. Onset and cessation of the rainy seasons 
 

The onset and cessation of rainy seasons are regarded as the most critical rainfall characteristics 

for agricultural activities (Camberlin and Mbeye, 2003; Marengo et al., 2001; Ati et al., 2002; 

Kniveton et al., 2008; Majisola, 2010). Typically the onset of the rainy season occurs towards the 

end of October and beginning of November over the summer rainfall region of South Africa, 

however there is considerable variation of these dates between different parts of the region. A 

delay in the onset of rains may result in poor seasonal distribution, even when the total amount 

of rainfall received within the same season is normal (Otun and Adewuni, 2009). The late onset 

and early cessation of rainy seasons may lead to drought, sometimes even loss of animals and 

human lives, as occurred during the El Niño episodes of 1982/1983 and 1991/1992 (Cheruiyot 

and Osunmakinde, 2010). On the other hand early onset and late cessation can lead to flooding, 

damage of property and loss of lives. Various definitions of the onset and the cessation of the 

rainy season for different regions exist in literature (e.g. Liebmann et al., 2007; Mhita and Nassib, 

1987; Ndomba, 2010; Nicholls, 1984; Omotosho et al., 2000; Kijazi and Reason, 2011; Reason 

et al., 2005; Sivakumar, 1988).  
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1.2.4.1. Agro-climatological definitions 

 
In agro-climatology, the rainy season onset and cessation dates are often defined from rainfall 

thresholds. These thresholds are parameterized empirically in order to fit the requirements of a 

given crop and to account for local-scale climatic conditions.  For Tanzania for instant, Kijazi and 

Reason (2011) defined the onset of the rainy season as the first pentad of rainfall exceeding 10 

mm followed by three consecutive pentads having rainfall amount of not less than 10 mm per 

pentad. They defined cessation occurring when three consecutive pentads have a mean rainfall 

of less or equal to 2mm per day, the preceding pentad is considered to be the cessation of the 

rainy season. Reason et al. (2005) defined onset of the rainy season over Limpopo province of 

South Africa as the first date of the two pentads with at least 25mm of rainfall, given the following 

five pentads within which at least 20mm of rainfall occurs. They considered the cessation as when 

six consecutive pentads each with less than 10mm of rainfall occurs. Marengo et al. (2001) 

defined the onset (cessation) date of the rainy season in Amazon Basin as that pentad with daily 

average precipitation greater (less) than 4mm per day, provided that six of eight subsequent 

(subsequent) pentads had precipitation of greater (less) than 4.5mm per day. 

 
1.2.4.2. Meteorological definitions 

 
Climatologists use objective methodologies to determine onset and cessation of the rainy season. 

The advantage of using the objective methodology is that they are not using any threshold values. 

Objective methods determine the climatological onset and cessation rather than for specific crops 

of interest. In order to determine the onset and cessation of the rainy season in South America, 

Liebmann and Marengo (2001) and Liebmann et al. (2007) firstly summed the climatological daily 

rainfall average minus the climatological annual-mean daily rainfall average at each grid point. 

Then defined the onset (cessation) of rains as the first day after the anomalous accumulation 

reaches the minimum (maximum) values, computed as departure from the long term average. In 

North Australia, Lo et al. (2007) defined onset of wet season as the date at which an accumulation 

of 15% of station’s climatological mean wet season (September to April) rainfall is reached. For 

this study meteorological definition is used to define the onset since the study is interested in 

climatological definition rather than that of specific crops. 
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1.3. Large-scale circulation patterns, synoptic systems and climate drivers influencing 

rainfall in southern Africa 

 
There are a number of different large-scale climate phenomena and synoptic systems that 

influence the characteristics of rainfall in southern Africa.  

 
1.3.1. Pacific El Niño-Southern Oscillation   

 
The Pacific El Niño-Southern Oscillation (ENSO) is the disturbance of the ocean-atmosphere 

system in the equatorial eastern Pacific Ocean and has large influence on global weather systems 

(e.g. Horel and Wallace, 1981; Ropelewski and Halpert, 1987; Matthews, 2000; Rautenbach and 

Smith, 2001; Ashok et al., 2007; Izumo et al., 2010). At the larger scale, ENSO is known to be an 

important control of rainfall variability on seasonal scale in southern Africa (Cook et al., 2004; 

Cretat et al., 2010). The Southern Oscillation refers to variations in the temperature of the surface 

of the tropical eastern Pacific Ocean, with the warming known as El Niño and the cooling known 

as La Niña, and in air surface pressure in the tropical western Pacific (Trenberth, 1997). The two 

variations are coupled, with the warm phase (El Niño) accompanies high air surface pressure in 

the western Pacific, while the cold phase (La Niña) accompanies low air surface pressure in the 

western Pacific.  ENSO events are usually studied in order to understand the seasonal climate 

variability over a lead time of a few months to a year (Oldenborgh, 2004). ENSO influence 

generally results in anomalously wet (dry) conditions during La Niña (El Niño) events during 

austral summer over southern Africa (Barnston and He, 1996; Landman et al., 2001; Washington 

and Preston, 2006; Cretat et al., 2010). However, it must be noted that not all El Niño events 

result in dry conditions over southern Africa. For instant, the strong 1997/98 event did not result 

in the anticipated drought over a larger part of South Africa (Lyon and Mason, 2007; Richard et 

al., 2001). Pohl et al. (2007) established that the intra-seasonal variability is higher during El Niño 

events. According to Padon and Dorado (2008) there is an ENSO effect in monthly precipitation 

in different regions. El Niño (La Niña) events are associated with higher (lower) dry spell 

frequencies over most parts of southern Africa (Tadross et al., 2009) and their occurrence is 

associated with shifts in the location of the tropical-temperate trough systems (Thomas et al., 

2007). 
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1.3.2. Tropical-Temperate Troughs 
 

The high frequency variability of South African rainfall is mainly related to tropical-temperate 

troughs (TTTs) (Cretat et al., 2010). The TTTs are synoptic-scale cloud bands that link tropical 

disturbance over the sub-continent with an upper-tropospheric frontal system embedded in the 

mid-latitude westerly circulation (Cretat et al., 2010; Pohl et al., 2007, 2009). The TTT systems 

are associated with the northwest to southeast cloud bands extending from tropical southern 

Africa to the southwest Indian Ocean and which have been linked to the occurrence of intense 

rainfall (about 30-60% of summer rainfall totals) in December through February (Cretat et al., 

2012). However, most of southern Africa tends to receive significantly less rainfall when the TTTs 

are located further east (Usman and Reason, 2004). Tropical areas of southern and central Africa 

rainfall regimes are largely dependent on deep convection processes and water vapour 

convergence at different tropospheric levels (Vigaud et al., 2006; Cretat et al., 2012).   

 
1.3.3. Inter-Tropical Convergence Zone 

 
The tropical circulation consists of a pair of large convective cells known as Hadley cells (HC). 

HC is defined as a zonally symmetric meridional circulation with an ascending motion over the 

Inter-tropical Convergence Zone (ITCZ) associated with the zone of maximum global heating and 

a descending motion over the subtropical high-pressure belt (Tanaka et al., 2004). The ITCZ is a 

zone of convergence of north-eastern and south-eastern trade winds and is characterized by 

convective activity. The ITCZ is the major rainfall-bearing system in southern Africa (Cretat et al., 

2012). According to Todd et al. (2004) the January to February rainfall in southern Africa is 

associated with the ITCZ, located over central  southern Africa at about 10 degree south extending 

eastward over Indian Ocean. Wet (dry) summers are often associated with a southward 

(northward) shift and strengthening (weakening) of the ITCZ over tropical southeastern Africa 

(Cook et al., 2004). 

 
1.3.4. Madden-Julian Oscillation  

 
The Madden-Julian Oscillation (MJO) is regarded as the dominant mode of intra-seasonal 

variability in the tropical atmosphere (Jones et al., 2004; Liess et al., 2005; Pohl et al., 2007; 

Padon and Dorado, 2008; Sultan et al., 2009; Tam and Lou, 2005; Wang et al., 2011). The MJO  
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is characterized by a slow eastward propagation of large-scale tropical deep convection clusters 

from the Indian Ocean to the western Pacific Ocean (Ambrosino et al., 2011; Pohl et al., 2007).  

MJO has been found to significantly influence rainfall in the east and south of southern Africa 

(Ambrosino et al., 2011; Pohl et al., 2007). At longer timescales, the MJO seem to have an 

influence on wet and dry phases over southern Africa during the summer rainy season (Pohl et 

al., 2007). The MJO modifies the direction of the lower-layer moisture fluxes, through an influence 

on the Indian Ocean High (IOH) over the southern African region (Pohl et al., 2007). In their study 

Pohl et al. (2008) established that the IOH anomalies generate easterly flux anomalies in the 

southern low latitudes, resulting in moisture transport from the Indian basin to the southern Africa 

and above average rainfall totals.  

 
1.3.5. Sea-Surface Temperatures 

The sea-surface temperatures (SSTs) over the adjacent Atlantic and Indian Oceans play an 

important role in the climate variability of South Africa. At regional scale the inter-annual rainfall 

fluctuations are influenced by SST variations in the South Atlantic and South Indian Oceans 

(Cretat et al., 2010). South Atlantic SSTs partially influence moisture fluxes between the South 

Atlantic and southern Africa, whereas the positive SST anomalies in the South West Indian Ocean 

(SWIO) are linked with wetter conditions over eastern and central South Africa (Cretat et al., 

2010). According to Williams et al. (2008) decreasing SST anomalies in the central South Atlantic 

and increasing SST anomalies off the coast of southwestern Africa are associated with increasing 

daily rainfall and extreme rainfall over southern Africa. In addition, specific pattern of SSTs in the 

SWIO, with warm anomalies in the subtropical SWIO and cool anomalies in the northern SWIO 

plays a crucial role in generating extreme rainfall conditions (Washington and Preston 2006).   

1.4. Climate Predictions  

 
Climate predictions can be achieved by using the GCMs (Murphy 1999). GCMs are usually 

configured at a very course resolution of about 100-300km and have demonstrated skill at global 

or even regional scale. They are, however, unable to represent local sub-grid features and 

subsequently overestimate rainfall over southern Africa (Landman and Beraki, 2012). In addition, 

the representation of rainfall at mid-to-high latitudes is complex and often not well estimated. Such 

systematic biases have created the need to downscale GCM simulations over southern Africa 

(Landman and Beraki, 2012). Semi-empirical relationship exist between observed large-scale  
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circulations and rainfall, hence, mathematical equations can be constructed to predict local 

precipitation from the forecast large-scale circulations. In addition, empirical remapping of GCM 

fields to regional rainfall has been demonstrated successfully over southern Africa (Landman and 

Beraki, 2012). In order to address this problem GCM simulations need to be downscaled to 

generate the required higher resolution data. There are two main downscaling techniques that 

are widely used, namely statistical downscaling and dynamical downscaling.  

 

1.4.1. Statistical Downscaling 

 
Statistical downscaling (SDS) seek to establish a statistical relationship between the GCM 

simulated large-scale circulation variables and the required regional or local scale climate 

variables such as rainfall and temperature (Hewitson and Crane, 1996). This approach is mostly 

preferred because of its relative ease to use and lower cost compared to dynamical approach. 

According to Busuioc et al. (2001) any successful SDS should satisfy three main conditions: (i) 

the link between predictors and predictands has to be strong in order to explain satisfactorily the 

local climate variability; (ii) the predictor variable should be well simulated by the GCM; and (iii) 

the relationship between predictors and predictands should not change in time, and should remain 

the same in a changed future climate. SDS is sub-divided into three categories, viz. weather 

classification, regression models, and weather generators.  

 
1.4.1.1. Weather Classification 

 
Weather classification (WC) downscaling methods involve grouping local meteorological 

variables in relation to different classes of atmospheric circulation based on a given weather 

classification scheme (Chen et al., 2012). The synoptic climatology provides a powerful tool for 

the purpose of studying regional climatic conditions by classifying large scale atmospheric 

circulation variables into a small number of categories (synoptic patterns) on a physical 

meaningful basis. Typically synoptic patterns are defined by applying a cluster analysis 

techniques such as fuzzy classification method (e.g. Yang et al., 2014), self-organizing maps 

(SOM. e.g. Hewitson and Crane, 2002, 2006) and K-nearest neighbour algorithm (e.g. Oyelade 

et al., 2010; Zhang et al., 2013) or using subjective circulation classification schemes. In both 

cases, synoptic patterns are grouped according to their similarity with nearest neighbours or 

reference set. Within a classification scheme, weather types are grouped and the relationships 

between large-scale variables and local meteorological variables may be established separately  
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for each weather type (Chen et al., 2012). The main advantage of weather typing schemes is that 

local variables are sensitively linked to large-scale atmospheric circulations and its disadvantage 

is that the reliability depends on the stationary relationship between large-scale circulation and 

local climate, and that it requires the additional task of weather classification (Chen et al., 2012). 

 

1.4.1.2. Regression Models 

 
Regression models (RM) approach involve establishing statistical linear or non-linear 

relationships between predictands and the large scale atmospheric predictors (Chen et al., 2012). 

The most commonly applied RM techniques include multiple linear regression (MLR, e.g. Spak et 

al., 2007), principal component analysis (PCA, e.g. Jolliffe et al., 2003), canonical correlation 

analysis (CCA, e.g. Landman and Tennant, 2000; Landman et al., 2012), and artificial neural 

networks (ANN, e.g. Hewitson and Crane, 1996). The main strength of RM approach to future 

climate scenario generation is the relative ease of application and its disadvantage is the probable 

lack of a temporally stable and strong relationship between predictors and predictands (Chen et 

al., 2012). There is often a problem of under prediction of variance associated with regression 

approaches. The problem is particularly evident for daily precipitation downscaling because of the 

relatively low predictability of local amounts by large scale forcing alone. 

 
1.4.1.3. Weather Generators 

 
Weather generator (WG) downscaling approach is achieved by perturbing their parameters 

according to the changes projected by climate models (Chen et al. 2012). There are two main 

approaches for parametric adjustment of WG. The first involves day-to-day changes to the 

weather generator parameters based on daily variations in atmospheric circulation; the other one 

and the most commonly used involves changes in weather generator parameters on changes of 

monthly statistics projected by climate models (Chen et al., 1012). To represent the longer-term 

variability and climate change signal, WGs can be used through employing in a perfect prognosis 

(PP) setting, i.e., their parameters can be conditioned on the large-scale circulation (Wong et al., 

2014). The advantage of using WG approach is its ability to rapidly produce sets of climate 

scenarios for studying the impacts of rare climate events, and its disadvantages are that the 

precipitation occurrence parameters cannot be easily adjusted for future climate condition as well 

as that parameter modification for future climate scenarios can lead to unanticipated outcomes 

(Chen et al., 2012).  
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1.4.2. Dynamical Downscaling 

 
Dynamical downscaling (DDS) approaches achieve higher resolution by nesting high resolution 

regional climate models (RCMs) into GCMs (Murphy, 1999; Schmidli et al., 2007). RCMs are 

formulated in terms of physical principles and therefore have the potential for capturing fine 

spacial-scale nonlinear effect, which increases confidence in their abilities to downscale future 

climate (Xu and Yang, 2012). In addition, RCMs can better resolve orographic effects than the 

course-resolution GCMs. The GCM data are directly used to provide initial conditions, lateral 

boundary conditions, SSTs, and initial land surface conditions to the nested RCM (Xu and Yang, 

2012). DDS simulations is however computationally demanding and expensive. Moreover, there 

is a challenge to balance the performance of RCMs in adding small-scale features while 

simultaneously retaining large-scale features (Wang and Katamarthi, 2013). Most RCMs have 

systematic errors associated with uncertainties in their dynamics, physical parameterization, 

boundary conditions, initialization, and domain choice, as well as the resolution of the numerical 

models (Jakob et al., 2011; Wang and Katamarthi, 2013).  

 
1.5. Predictability of rainfall in Southern Africa 

 
1.5.1. Seasonal rainfall predictions 

 
The most common and powerful predictor of seasonal climate is the state of ENSO (e.g. Yuan et 

al., 2013). Seasonal forecasts provide information on the development of the climate up to 6 to 

12 months ahead of time rather than detailed day-by-day variations (Winsemius et al. 2014). 

Previous studies showed that seasonal rainfall totals is predictable over South Africa. Landman 

et al. (2001) found the COLA T30 GCM to have forecast skill in predicting seasonal rainfall over 

the summer rainfall region of southern Africa. Furthermore, Landman et al. (2012) compared 

coupled and uncoupled prediction systems referred to as One- and Two-Tiered systems, 

respectively, in predicting seasonal rainfall over South Africa. They found both systems to have 

forecast skill, however the coupled system generally outperform the uncoupled one. Multi-model 

forecasts were also compared with single model forecasts and the former outperformed the latter 

in predicting mid-summer rainfall over southern Africa (Landman and Beraki, 2012). Engelbrecht 

et al. (2011) using conformal-cubic atmospheric model (CCAM) over southern Africa successfully 

simulated the climate variables across a wide range of spatial and temporal scales.    
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1.5.2. Intra-seasonal rainfall predictions 

 
Seasonal predictions of rainfall totals and of minimum and maximum temperatures are mostly 

appreciated by users, but they do not provide detailed information for user specific needs. Users 

of the climate information are more interested in the characteristics of climate variables within the 

seasons. Hence intra-seasonal climate predictions are the most important to the users of climate 

information. In recent study Winsemius et al. (2014) demonstrated that climate models are 

capable of predicting the characteristics of intra-seasonal climate variables. They assessed the 

skill of the European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal 

forecasting system in predicting the frequency of dry spells as well as the frequency of heat stress 

conditions expressed in the temperature heat index over southern Africa. From their investigation 

they found that the forecasting system have skill in predicting the frequency of the dry spells (5 

days) for the DJF seasons for up to 2-months lead-time. According to Bouagila and Sushama 

(2013) most GCMs overestimate light precipitation (1 to 10mm/day) and underestimate heavy 

precipitation (>10 mm/day).    

 
1.6. Aim and approach of research 

The main aim of this research is to investigate the forecast skill of coupled ocean-atmosphere 

and uncoupled atmospheric GCMs in predicting intra-seasonal rainfall characteristics over South 

Africa. The aim will be achieved through the following objectives: 

 To evaluate the forecast skill of coupled and uncoupled GCM’s in predicting 3-months 

seasonal rainfall totals for October to December (OND), November to January (NDJ), 

December to February (DJF) and January to March (JFM) seasons.    

 To evaluate the forecast skill of coupled and uncoupled GCM’s in predicting number of 

rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 40mm and 50mm 

threshold values for OND, NDJ, DJF and JFM seasons.  

 To evaluate the forecast skill of coupled and uncoupled GCM’s in predicting the onset 

months of the rainy seasons. 
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These objectives are going to be realized: 

 By calculating monthly and 3-months seasonal rainfall total over South Africa. 

 By calculating indices for number of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 

20mm, 30mm, 40mm and 50mm for OND, NDJ, DJF and JFM seasons over South Africa.  

 By downscaling the output of both coupled and uncoupled GCM’s to seasonal rainfall 

totals and number of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 

40mm and 50mm for OND, NDJ, DJF and JFM, as well as the onset months of the rainy 

seasons over South Africa. 

 By verifying the forecasting systems (coupled and uncoupled) in predicting seasonal 

rainfall totals and the number of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 

20mm, 30mm, 40mm and 50mm for OND, NDJ, DJF and JFM seasons, as well as the 

onset of the rainy seasons over South Africa. 

 
1.7. Summary  

The southern Africa region is characterized by significant climate variability on a range of temporal 

and spatial scales. The variability of rainfall makes southern Africa vulnerable to extreme climate 

events. The most severe impacts of climate on human society and the natural environment over 

southern Africa are as a result of droughts and floods. There are a number of distinct large-scale 

atmospheric and synoptic systems, namely, ENSO, TTTs, ITCZ, MJO and SSTs that influence 

the characteristics of climate variables in southern Africa. Climate predictions can be achieved by 

using the GCMs, however their course resolution limits their ability to provide the detailed climate 

information at regional time scale. In order to address this problem GCM simulations need to be 

downscaled to generate the required higher resolution data. There are two main downscaling 

techniques that are widely used, namely statistical downscaling and dynamical downscaling. 

Although seasonal rainfall and temperature forecasts are currently produced in South Africa, 

these forecasts does not give detailed information to address some of the specific needs of the 

users. These forecasts need to also include a reliable estimation of intra-seasonal climate 

characteristics that may benefit decision making in agricultural and other user communities. This 

study seek to investigate the skill of both the coupled and uncoupled GCMs in predicting seasonal 

rainfall totals and number of rainfall days exceeding 1mm, 5mm, 10mm, 20mm, 30mm, 40mm 

and 50mm within OND, NDJ, DJF and JFM seasons as well as the onset months of the rainy 

seasons over South Africa.  
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CHAPTER 2 

 

Data and Methodology 

 

2.1.   Observed rainfall data 

 
Quality controlled observed daily rainfall data from 563 selected rainfall stations distributed across 

South Africa obtained from SAWS are used. The climate databank of SAWS collates, maintains 

and runs a quality control process of South Africa’s meteorological and climate data. Only rainfall 

stations with no missing data from 1982 to 2009 are considered in this study. The station rainfall 

data are used to calculate monthly and 3-month seasonal rainfall totals as well as indices of the 

number of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 25mm, 30mm, 35mm, 

40mm, 45mm and 50mm threshold values for OND, NDJ, DJF and JFM seasons. Figure 2.1 show 

the climatological seasonal rainfall totals calculate from stations distributed across South Africa. 

The climatological seasonal rainfall totals show that most parts of the country receives more 

rainfall during summer months, mostly the eastern half of the country, whereas the south coast 

receiving the highest rainfall during winter. The number of rainfall days exceeding 1mm, 5mm, 

10mm, 15mm, 20mm and 30mm rainfall thresholds within OND, NDJ, DJF and JFM seasons are 

depicted in Figure 2.2, Figure 2.3, Figure 2.4 and Figure 2.5, respectively. The rainfall frequency 

show that most of the summer rains is received from days with lower threshold values.  

 
2.2.   GCM output data 
 
 
The 850hPa geopotential height fields of the fourth generation of the ECHAM4.5 atmospheric 

general circulation model (AGCM, Roeckner et al., 1996; Beraki et al., 2015) developed at the 

Max Planck Institute for Meteorology (MPIM) in Hamburg, Germany is used in this study. The 

ECHAM evolve originally from the spectral weather prediction model of the European Centre for 

Medium Range Weather Forecasts (ECMWF; Simmons et al., 1989). The model is configured at 

a triangular spectral truncation 42 (T42) and at a resolution of about 2.8 degrees latitude and 

longitude with 19 vertical layers. The 850hPa geopotential height fields of the ocean-atmosphere 

coupled general circulation model (OAGCM) developed in partnership between South Africa and  
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the International Research Institute for Climate and Society (IRI), referred to as SAWS Coupled 

Model (SCM, Beraki et al. 2014) is also used. The AGCM feeds the ocean model (OGCM) called 

modular oceanic model version 3 (MOM3) with heat, momentum, freshwater, and surface solar 

flux. In turn, the OGCM feeds the AGCM with SST information.  

 

 

 

Figure 2.1. Climatological seasonal rainfall totals for MAM, JJA, SON and DJF over South Africa 

from 1982 to 2009. 
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Figure 2.2. Number of days exceeding 1mm, 5mm, 10mm, 15mm, 20mm and 30mm rainfall 

threshold values for OND seasons over South Africa from 1982 to 2009. 
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Figure 2.3. As in Figure 2.2, but for NDJ seasons. 
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Figure 2.4. As in Figure 2.3, but for DJF seasons.  
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Figure 2.5. As in Figure 2.4, but for JFM seasons. 
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Large-scale 850hPa geopotential height fields of both the OAGCM and the AGCM from 1982 to 

2009 are used as predictor fields. The 850hPa geopotential heights are used in this study because 

they are found to be a good predictor of seasonal rainfall over South Africa (e.g. Landman and 

Goddard, 2002; Landman and Beraki, 2012; Landman et al., 2012, 2014). A number of various 

large-scale parameters as predictors in MOS downscaling has been tested before and found that 

850hPa geopotential heights are the single field predictor providing marginally better forecast skill 

for rainfall over southern Africa (Landman and Goddard, 2002). This result has been used in a 

number of follow-up papers that successfully demonstrated the use of this variable as predictor 

(Landman and Beraki 2012, Landman et al. 2012, 2014). The reason why this variable is so 

successfully applied in statistical downscaling is because the circulation at this atmospheric level 

is effectively surface circulation over our region.   

 
Both the two-tiered or uncoupled and coupled GCMs covers the global domain, however for the 

purpose of this study the domain used for statistical downscaling is set to 10N-50S latitudes and 

20W-70E longitudes. The hindcast fields of both the GCMs are initialized at different lead-times 

for OND, NDJ, DJF and JFM seasons. For a 1-month lead-time for the two-tiered system, there 

are about 3 weeks from the issuance of the forecast to the beginning of the forecast season, 

meaning that a 0-month lead-time forecast for the DJF season is produced at the beginning of 

December, 1-month lead-time forecast in early November, 2-month lead-time forecast in early 

October, 3-month lead-time forecast in early September, and so on (Landman et al., 2012).   For 

the coupled system, there are at least 4 weeks between the production of the forecast and the 

first month of the forecast season (Landman et al., 2012). For example, DJF forecasts at a 0-

month lead-time are produced near the end of November, 1-month lead-time forecast at the end 

of October, 2-month lead-time forecast at the end of September, 3-month lead-time forecasts at 

the end of August, 4-month lead-time forecasts at the end of July, and so forth.  

 
2.3.    Model Output Statistics 
 
 
Due to the relatively low spatial resolution of GCMs downscaling of the global model output to a 

higher resolution to capture local observations through the correction of systematic deficiencies 

in the global model is required (Landman and Beraki, 2012). Using the canonical correlation 

analysis (CCA) option of the Climate Predictability Tool (CPT) developed at the IRI 

(http://iri.columbia.edu) the hindcast outputs of both the AGCM and the OAGCM are statistically  
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recalibrated and downscaled to the observed seasonal rainfall totals and number of rainfall days 

exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 40mm and 50mm rainfall threshold values 

as well as onset months of the rainy seasons over South Africa by using the model output statistics 

(MOS). MOS is a multiple linear regression technique in which predictands are related to one or 

more predictors. CCA is a multivariate statistical technique to determine optimal linear 

combination of two sets of data (predictors and predictands) that are highly correlated and is also 

used to build statistical downscaling models (Landman et al., 2009). MOS equations are 

developed to correct systematic biases in weather forecasts, as well as statistically correct climate 

model biases (Landman and Beraki, 2012; Wong et al., 2014). It must be noted that in this work 

we did not run the models, but only done statistical downscaling. A schematic diagram on how 

downscaling has been done can be found in Bartman et al. (2003).  

 

For climate models, MOS infers a correction function between model simulations and the 

corresponding observations and applies this correction function to a future simulation with the 

same model (Wong et al., 2014). In constructing the CCA model, the empirical orthogonal function 

(EOF) analysis is performed because the predictor and the predictand fields contain a large 

number of highly correlated variables and few observations (Landman et al., 2001; 2009). EOF 

analysis provides a set of orthogonally-based vectors to convert a data set containing a large 

number of variables into a set containing fewer new variables. These new variables are linear 

combinations of the original ones, which are chosen to represent a larger fraction of the variability 

contained in the original data. The number of EOF modes to be retained in the analysis is 

determined using cross-validation forecast skill sensitivity tests. The combination producing the 

highest area-average correlation is used as the best estimate of the number of predictor and 

predictand modes. The first CCA pair gives the maximum correlation between the two 

parameters, followed by the second CCA pair, and so on. CCA has the main advantage of 

selecting pairs of spatial patterns that are optimally correlated, making a physical interpretation of 

the connection between the observations and the retroactive forecasts or hindcasts possible 

(Busuioc et al., 2001).     

 

The CPT tool have two options to train the MOS models, namely cross-validation and retro-active 

options. The cross-validation is performed to determine the relation between the forecasts 

(predictor) and the observed (predictand) at each location over the domain of interest. The cross-

validation procedure applied here is as follows: firstly leave the first year out of the training sample;  
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secondly reconstruct the model using the new smaller training sample, i.e., without the omitted 

year; thirdly forecast the omitted year; and lastly repeat by omitting subsequent years until a 

forecast has been made for each year of the training sample. In this study for a training sample 

from 1982 to 2009, firstly the1982 year is left out and an initial training period of 1983 to 2009 is 

used to construct a model and predict the 1982 year. The 1983 year is omitted and the 1984 to 

2009 including 1982 is used as training period and to reconstruct a model as well as to predict 

the 1983 year. The process is repeated until a forecast of each year has been made.  However 

cross-validation has a tendency of overestimating forecast skill (Landman et al., 2001).  

 

On the other hand, retro-active forecast validation is a robust method to assess forecast model 

performance and give unbiased skill levels (Landman et al., 2001). The retro-active procedure is 

as follows: firstly usually half of the training sample is used as training period; secondly reconstruct 

the model using that training period; thirdly forecast the year that follows the last year of the 

training period; lastly repeat the process by adding one year to the training period and then predict 

subsequent year until a forecast has been made for each year of the training sample. For this 

study an initial training period of 14 years from 1982 to 1995 out of a training sample of 28 year 

from 1982 to 2009 is used to construct the model and to forecast the 1996 year. A training period 

of 1982 to 1996 is used to reconstruct a model and forecast the 1997 year.  The process is 

repeated for each of the subsequent years until a forecast of each year has been made.  

 

2.4.    Verification of forecasts   

 
Forecast verification is the process of determining the quality of a forecast through assessment 

of the degree of similarity between that forecast and the observed conditions (Mandal et al., 2007). 

Verification of forecasts is mostly performed to check if there is a strong relationship between the 

forecasts and the observations and if the results provide an accurate indication of how good or 

bad subsequent forecast will be (Mason, 2008). For verifying seasonal probabilistic forecasts 

relative operating characteristics (ROC) and reliability or attribute diagrams are mostly used (e.g. 

Landman et al., 2012; Landman and Beraki, 2012)  
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2.4.1.    ROC  

 
ROC is based on signal detection theory and seeks to measure the signal and noise contained in 

the forecast information in the form of hits to misses ratios when measured against performance 

level (Zhang and Casey, 2000). The idea of ROC comes from quality control and signal detection 

theory where the quality of performance is assessed by the correlation between hit and false 

alarm rates as the decision criterion varies (Zhang and Casey, 2000). The graph in Figure 2.6 

shows a typical ROC curve diagram for a skillful model. The ROC curve has the following 

properties as in Zhang and Casey (2000) as follows:  A perfect model locates at the point (0, 1) 

in the coordinates of false alarm rate and hit rate; The worst forecasting model locates at the point 

(1, 0) in which the model gives either 0% or 100% probabilistic forecasts but no correct forecasts 

against observations. Constant value forecasts and random forecasts will locate on the no skill 

line (diagonal line). The shape of the ROC curve gives a total description of the skill of the model 

forecasts at all probability thresholds. A model with good skill will have its ROC curve located 

above and to the left of the diagonal line and a model with no skill compared with the random or 

constant forecast will be located below and to the right of the diagonal. ROC can be quantified by 

calculating the area beneath the ROC curve. The larger the area, the better the model skill. If the 

area is equal to or less than 0.5 of the whole (unit area), then the model is less skillful than a 

random or constant forecast.  

 
2.4.2.     Reliability Diagrams 
 
 
The Reliability Diagram explain the resolution and reliability attributes which together determine 

the usefulness of probabilistic forecast systems (e.g. Brocker and Smith, 2007). Resolution 

measures the ability of a forecast system to resolve situations in which the observed frequency 

of the event is different to the climatological frequency, while reliability is a measure of the bias in 

predicted probabilities for the event, relative to the verified event frequency. A forecast with a 

good reliability is closer to the perfect reliability line (diagonal line) as in Figure 2.7. A forecast 

with good resolution has a wide range of frequency of observations corresponding to forecast 

probabilities. Resolution is considered the more fundamental of the two attributes, because 

reliability may generally be improved by calibration of the forecast probabilities, while resolution 

cannot. A forecast system that underestimate (overestimate) forecasts will have the forecast line 

positioned above (below) the perfect reliability line. The line halfway between climatology and 

perfect reliability is the no skill line and that is where the reliability and resolution are equal and  
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the brier skill score goes to zero. The histogram of forecasts in each probability bin shows the 

sharpness of the forecast. 

  

 
Figure 2.6. ROC curve diagram showing the hit rate and false alarm rate (adapted from 

www.cawcr.gov.au/progects/verification ).  

 

 

Figure 2.7. Reliability diagram (adapted from www.cawcr.gov.au/progects/verification). 
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2.4.3.     Spearman’s rank correlation 

 

The Spearman’s correlation coefficient is a statistical measure of the strength of a monotonic 

relationship between the independent variable (X) and the dependent variable (Y), and is 

computed as follows.  
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where n  a sample size and yxd iii
 , is the difference between ranks.  

 
The sign of the Spearman correlation indicates the direction of association between X and Y. If Y 

tends to increase when X increases, the Spearman correlation coefficient is positive, whereas if 

Y tends to decrease when X increases, the Spearman correlation coefficient is negative. A 

Spearman correlation of zero indicates that there is no tendency for Y to either increase or 

decrease when X increases. The Spearman correlation increases in magnitude as X and Y 

becomes close to being perfect monotone functions of each other. When X and Y are 

monotonically related, the Spearman correlation coefficient becomes 1. A perfect monotone 

increasing relationship implies that for any pairs of data values Xi, Yi and Xj,Yj, that Xi minus Xj 

and Yi minus Yj always have the same sign. A perfect monotone decreasing relationship implies 

that these differences always have opposite signs.  

  

2.5.      CCA pattern analysis 

 
CCA is a way of measuring the linear relationship between two multidimensional variables. CCA 

can be defined as the problem of finding two sets of basis vectors, one for x and the other for y, 

such that the correlations between the projections of the variables onto these basis vectors are 

mutually maximized. The purpose of performing CCA is to construct a model based on a truncated 

subset of EOF coefficients instead of using the original fields. The benefits of this truncation 

include reducing the amount of noise in the problem by eliminating the higher EOF modes, which 

poorly represent small-scale features of the fields, as well as using orthogonal functions to simplify 

to the mathematics. CCA pattern analysis is performed here to determine the relationship 

between the atmospheric circulation pattern and the observed variable of interest (e.g. rainfall).  
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The CCA analysis is achieved using the following formula, 

 

Physical fields = Spatial pattern x Time scores 

 

The sign of the product of spatial pattern and time scores (positive or negative) determine the 

relationship between the circulation pattern and the observed variable. For example, when using  

geopotential heights to predict rainfall, if the product sign of the geopotential heights and the time 

scores is positive (negative) and the product sign of the rainfall and time scores is negative 

(positive). It imply that when there are high (low) pressure systems over a domain of interest there 

are tendency of an area of interest to receive less (more) rainfall. 

 

2.6.     Synopsis  

 

This chapter described the data and methodology that are going to be used in the verification of 

results and a discussion thereof. The ROC, the reliability diagrams and the Spearman’s 

correlation will be used to verify the forecasting systems. In addition to the verification of the 

forecasting system, CCA pattern analysis will be used to determine the relationship between the 

atmospheric circulation patterns and the observed variables. The following chapter presents a 

thorough details of the results of the predictability of seasonal rainfall totals over South Africa.   
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 CHAPTER 3 

PREDICTABILITY OF SEASONAL RAINFALL TOTALS FOR SUMMER SEASONS   

 
This chapter describes the verification results for both the OAGCM and the AGCM administered 

at SAWS in predicting 3-months seasonal rainfall totals for OND, NDJ, DJF and JFM over South 

Africa. The predictions are a result of statistical downscaling the low-level circulation (i.e. the 

850hPa geopotential heights fields) of the models to rainfall stations distributed across South 

Africa. The models’ forecast skill levels are assessed using ROC scores and reliability diagrams, 

as well as the Spearman’s correlations. Although the aim of this research is to evaluate the models 

in predicting intra-seasonal rainfall characteristics over South Africa, in this chapter the models 

are first evaluated in predicting seasonal rainfall totals to determine whether the results of this 

study are comparable with previous studies. By doing this part of the work first it will subsequently 

be shown that the model configurations have been set up properly and from these configurations 

additional properties of the season may be predicted. In addition to the forecast verification, CCA 

pattern analysis is also performed in order to determine the dominating atmospheric circulation 

systems predicted to be controlling rainfall totals for the summer seasons. 

 

3.1.   Probabilistic forecast skill 

 
3.1.1. ROC scores 
 
 
Using the predicted 850hPa geopotential heights of both the OAGCM and the AGCM at 0- to 4-

month lead-times the ROC scores in downscaling the rainfall stations for OND, NDJ, DJF and 

JFM seasons over South Africa are calculated. A model that has acceptable forecast skill must 

have a ROC score of above 0.5, with a score close to 1 the better.  The ROC scores values for 

the OAGCM and the AGCM are shown in Table 1 and Table 2, respectively. Both models show 

to have skill in predicting both the above-normal (wet conditions) and below-normal (dry 

conditions) at different lead-times. For the OAGCM prediction system, highest scores are found 

during NDJ and DJF seasons, with lowest scores found during OND and JFM seasons (Figure 

3.1).  In predicting wet conditions highest scores are found at 3- and 4-month lead-times during 

NDJ seasons as well as at 2-month lead-time during DJF seasons. When predicting dry conditions 

highest scores are found at 3-month and 0-month lead-times during NDJ and DJF, respectively.  
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The lowest score of less than 0.5 are found at 1- and 3-month lead-times in predicting wet 

conditions for OND seasons as well as at 3-month lead-time for JFM seasons. When predicting 

dry conditions lowest scores are found at 3- and 4-month lead-times during OND seasons. 

 
For  the AGCM prediction system, highest ROC scores in predicting wet conditions are found at 

3-month lead-time during the NDJ seasons and at 0-, 2-, 3- and 4-month lead-times during DJF 

seasons as well as at 1-month lead-time during JFM seasons. When predicting dry conditions the 

highest scores are found at 2- and 3-month lead-times during NDJ as well as 4- and 1-month 

lead-times during DJF and JFM, respectively. The system is performing poorly when predicting 

wet conditions for OND at 1- to 3-month lead-times as well as for JFM at 3- and 4-month lead-

times. In predicting dry conditions the lowest scores are found at 1- and 3-month lead-times for 

OND, whereas for JFM are found at 3- and 4-month lead-times.  

 

Table 3.1. ROC scores of the OAGCM at 0- to 4-months lead-times in predicting seasonal rainfall 

totals for OND, NDJ, DJF and JFM over the 14 years retro-active forecasts from 1996 to 2009. 

ROC SCORES: OAGCM 

ABOVE-NORMAL CATEGORIES 

SEASONS   0-MONTH 1-MONTH 2-MONTH 3-MONTH 4-MONTH 

OND 0.506 0.490 0.502 0.478 0.510 

NDJ 0.581 0.625 0.637 0.677 0.650 

DJF 0.639 0.562 0.662 0.623 0.615 

JFM 0.502 0.596 0.518 0.479 0.560 

BELOW-NORMAL CATEGORIES 

SEASONS 0-MONTH 1-MONTH 2-MONTH 3-MONTH 4-MONTH 

OND 0.531 0.517 0.552 0.405 0.494 

NDJ 0.561 0.604 0.601 0.632 0.622 

DJF 0.648 0.586 0.612 0.616 0.577 

JFM 0.540 0.582 0.573 0.550 0.542 
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Table 3.2. As in Table 1, but for the AGCM. 

 

ROC SCORES: AGCM 

ABOVE-NORMAL CATEGORIES 

SEASONS   0-MONTH 1-MONTH 2-MONTH 3-MONTH 4-MONTH 

OND 0.518 0.429 0.481 0.459 0.561 

NDJ 0.603 0.546 0.619 0.654 0.587 

DJF 0.643 0.588 0.597 0.611 0.602 

JFM 0.524 0.625 0.543 0.494 0.464 

BELOW-NORMAL CATEGORIES 

SEASONS 0-MONTH 1-MONTH 2-MONTH 3-MONTH 4-MONTH 

OND 0.534 0.470 0.532 0.474 0.569 

NDJ 0.584 0.552 0.605 0.622 0.551 

DJF 0.597 0.562 0.567 0.534 0.613 

JFM 0.533 0.607 0.563 0.471 0.405 

 

 
Although both prediction systems have skill in predicting seasonal rainfall totals for stations across 

South Africa, the OAGCM outperforms the AGCM in predicting both wet and dry conditions. As 

anticipated OAGCM is superior to AGCM because the former is able to explain the feedback 

between the ocean and atmosphere, while the latter assumed that the atmosphere respond to 

SST but does not in turn affect the oceans (Landman et al., 2012). In fact, Landman et al. (2012) 

also found that ocean-atmospheric climate models outperform atmospheric models when 

predicting austral summer rainfall seasons over South Africa.     

 
The results of the ROC scores presented here in predicting seasonal rainfall over South Africa 

are in agreement with the results found in Landman et al. (2012). They also found the highest 

scores during NDJ and DJF with higher scores found when predicting wet seasons as compared 

to dry seasons over South Africa. According to Landman et al. (2012) most of the predictability is 

found during these two seasons because tropical influence start to dominate the atmospheric 

circulation across South Africa. They further indicated that there is almost no predictability during  
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austral spring because during this time the seasonal rainfall of South Africa is mostly influenced 

by transient weather systems. In fact, the ROC scores for OND seasons in this study are close to 

0.5 for all the lead-times, especially for the AGCM. Such transient systems are usually not 

predictable at seasonal time scales. In addition, the seasonal forecast verification statistics of the 

IRI Climate Forecast Verification page (http://iri.columbia.edu) entirely based on AGCMs including 

ECHAM4.5 indicates that the season of highest rainfall predictability over South Africa is found 

during NDJ seasons (Landman et al., 2012), which is in agreement with the results presented in 

this chapter.  

 

 
Figure 3.1: ROC scores of both the OAGCM (left panel) and the AGCM (right panel) at 0- to 4-

month lead-times in predicting the seasonal rainfall for the summer rainy seasons over the 14 

years retro-active forecasts from 1996-2009. 
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3.1.2. Reliability diagrams 
  

 
Only the reliability diagrams for NDJ and DJF seasons are considered here since these two 

seasons have been found to be associated with the highest ROC scores. The reliability diagrams 

in Figure 3.2 indicates that when predicting wet conditions for NDJ seasons both the OAGCM and 

the AGCM at 0- to 3-month lead-times, the forecasts are generally over-confident, except that the 

OAGCM at 1- and 3-months lead-times as well as the AGCM at 3-month lead-time are under-

confident. The forecasts for predicting wet conditions are reliable since the weighted least square 

regression lines are closer to the perfect reliability line as compared to predicting dry conditions. 

The frequency histograms indicates that the forecasts for both systems lack sharpness when 

predicting both wet and dry conditions. In general, the forecasts display a lack of sharpness 

because forecasts rarely deviate much from the climatological value of 33.3%. Low sharpness is 

common for South African rainfall prediction studies (Landman et al., 2012, 2014). 

 

When predicting both wet and dry conditions for DJF seasons the forecasts are also over-

confident for both the systems, except for 2- and 3-month lead-times for the OAGCM and 3-month 

lead-time for the AGCM (Figure 3.3). The forecasts of both the systems show a high level of 

reliability when predicting wet conditions since the slopes of wet season regression lines are close 

to the slope of perfect reliability. In contrary, both the systems lack reliability when predicting dry 

conditions. The frequency histograms again indicate that both the systems lack sharpness when 

prediction both wet and dry conditions.  

 

From the reliability diagrams presented here, it is evident that both the OAGCM and the AGCM 

systems are reliable when predicting wet conditions during DJF seasons. Generally forecasts for 

both the systems are under-confident (over-confident) when predicting wet (dry) conditions during 

DJF seasons. In fact, the climate models are over-confident when predicting dry conditions over 

South Africa. Forecasts display lack of sharpness when predicting rainfall over South Africa. Both 

the prediction systems predict DJF rainfall totals better as compared to NDJ, with the OAGCM 

outperforming the AGCM. 
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Figure 3.2.   Reliability diagrams and frequency histograms for both the OAGCM (top panel) and 

the AGCM (bottom panel) at 0- to 3-months lead-time in predicting above- normal and below-

normal rainfall totals for NDJ seasons.                                                                                                                                          

 

Figure 3.3.   As in figure 3.2, but for DJF seasons. 
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3.2. Deterministic forecast skill 

 

3.2.1. Spearman’s rank correlations 

  

Again only the Spearman’s rank correlations for NDJ and DJF seasons are considered for the 

same reason that the two seasons have been found to be associated with highest ROC scores 

when predicting seasonal totals. The Spearman’s correlations and their level of confidence for 

the stations distribution across South Africa in predicting NDJ rainfall totals at 0- to 3-month lead-

times with retroactively downscaled forecasts for the OAGCM and the AGCM are shown in Figure 

3.4 and Figure 3.5, respectively. For both models, positive highest correlations are found over the 

interior and towards the eastern parts of the country, as well as the southeastern parts. The lowest 

(negative) correlations are found over the northeastern and southwestern parts of the country. 

For the OAGCM, highest positive correlations are found when predicting rainfall totals during NDJ 

at 0- and 2-month lead-times, whereas for the AGCM, highest positive correlations are found at 

0- and 1-month lead-times.    

 

For DJF seasons, highest positive values are scattered across the country, except for the Western 

Cape and the South coast having highest negative correlations for both the OAGCM (Figure 3.6) 

and the AGCM (Figure 3.7). As compared to the NDJ seasons, positive values are extending into 

the northeastern parts of South Africa during DJF seasons. Once again the skill of the OAGCM 

system outperforms that of the AGCM, except for the 3-month lead-time where the AGCM 

correlations outscores the OAGCM during DJF seasons, especially over the central parts. Highest 

positive correlations are found at 0- and 3-month lead-times for the OAGCM and the AGCM, 

respectively, during DJF seasons. 

 

The Spearman’s rank correlation maps presented here show that both the prediction systems 

have high skill in predicting seasonal rainfall totals during DJF seasons as compared to NDJ 

seasons over South Africa. The high skill over the northeastern interior, east coast and part of the 

central as well as western interior during DJF seasons are in agreement with the results found by 

Landman et al. (2012).  Both the models seem to have no skill over the Western Cape during NDJ 

and DJF seasons for all the lead-times. 
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Figure 3.4. Spearman’s rank correlations of the OAGCM (left panel) and their p-values level of 

significance (right panel) at 0- to 3-months lead-times (L0, L1, L2 and L3) for NDJ seasons over 

the 14 year retro-active forecasts from 1996 to 2009. 
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Figure 3.4. Continues. 

 

 

 
 
3.5. As in Figure 3.4, but for the AGCM. 
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Figure 3.5. Continues. 
 

 
 
Figure 3.6. Spearman’s rank correlations of the OAGCM (left panel) and their level of significance 

(right panel) at 0- to 3-months lead-times (L0, L1, L2 and L3) for DJF seasons over the 14 year 

retro-active forecasts from 1996 to 2009. 
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Figure 3.6. Continues. 
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Figure 3.7. As in Figure 3.6, but for the AGCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

42 
 

 

 
 
Figure 3.7. Continues. 

 

3.3. CCA pattern analysis 

 
When predicting climate variables such as rainfall, insight into the physical mechanism 

responsible for forecast skill is beneficial. In order to understand how the predicted atmospheric 

circulation patterns are configured so that skillful forecast can be made, several analysis methods 

such as cluster analysis, self-organizing maps (SOM) and canonical correlation analysis (CCA), 

among others, can be considered. In this study CCA pattern analysis is performed to investigate 

the relationship between the predicted 850hPa geopotential heights (predictors) for both the 

OAGCM and the AGCM at 1-month lead-time and the downscaled rainfall totals (predictands) for 

OND, NDJ, DJF and JFM, respectively. CCA maps for both the OAGCM and the AGCM indicate 

that in when there are anomalously negative (positive) 850hPa geopotential heights (x spatial 

loadings) over South Africa there are anomalously wet (dry) rainfall conditions (y spatial loadings) 

over South Africa for summer seasons as depicted in Figure 3.8 and Figure 3.9.  

 
For NDJ and DJF seasons during 1982 and 2006, for example, the predictor’s spatial loadings for 

both models are anomalously negative and the temporal scores are also negative as shown in 

Figure 3.8 (b and c) and Figure 3.9 (b and c), respectively. The product of the predictor’s spatial 

loadings and the time scores is positive. During the same years over most parts of South Africa, 

the rainfall spatial loadings are positive and the temporal scores are negative, and their product 

is negative. This result implies that when there are anomalously positive 850hPa geopotential  
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heights over South Africa there are anomalously dry conditions over South Africa. In fact, when 

there is a high pressure system over the interior of South Africa it draws out the moist air out of 

the country and usually the country remain dry.  

 
For both the OAGCM and the AGCM during NDJ and DJF seasons but this time during 1999 and 

2007 there are anomalously negative predictor’s spatial loadings over South Africa and the time 

scores are positive, and their product is negative. During the same years the rainfall spatial 

loadings over most parts of South Africa are anomalously positive and the time scores are 

positive. The product of rainfall spatial loadings and the time scores is positive. Likewise this 

implies that when there are anomalously negative 850hPa geopotential heights over South Africa 

there are anomalously wet conditions over most parts of South Africa. Usually when there is a 

low pressure system over the interior of South Africa during summer seasons, it advects the moist 

air into the country and usually results in rainfall events.   

 
During most of the El Niño years, e.g. 1982, 1986, 1991, 1994, 2003 and 2006         

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) during 

NDJ and DJF seasons for both the OAGCM and the AGCM there were high pressure systems 

over South Africa, which suppressed rainfall and results in dry conditions over the country. This 

results support the notion that during most of the El Niño episodes South Africa tend to be drier 

than normal. Most notably, during the strong events of 1982 and 1991 where South Africa 

experienced severe droughts. It must be noted however that during the 1997 and 2009 El Niño 

events most parts of South Africa was not dry as anticipated. In fact, most parts received above-

normal rainfall.  

 
On the other hand, during most of the La Niña years, namely, 1984, 1988, 1995, 1999 and 2007 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) also 

during NDJ and JFM seasons for both the OAGCM and the AGCM there were low pressure 

systems over South Africa which draw moist air into the country resulting in wet conditions. This 

results also agrees with the fact that during La Niña events South Africa mostly experience wet 

conditions than normal. For example, the 1999 event left most of the summer rainfall areas of 

South Africa wetter than normal, including floods in some areas.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml


 

44 
 

      

(a) 

 
(b) 

 
(c) 

 
(d)    

 

Figure 3.8. Mode 1 CCA maps of the 850hPa geopotential heights of the OAGCM and the 

downscaled seasonal rainfall totals for (a) OND, (b) NDJ, (c) DJF, and (d) JFM. The X spatial 

loadings and the Y spatial loadings maps are for the predictors and the predictands, respectively.  
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(a) 

 
 (b) 

(c) 

 
(d) 

 
Figure 3.9. As in Figure 3.8, but for the AGCM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

46 
 

 

3.4. Synopsis 

  

In this chapter the skill levels of both the OAGCM and the AGCM in predicting the 3-month 

seasonal rainfall totals for OND, NDJ, DJF and JFM over South Africa are evaluated. The ROC 

scores show that both the models have skill in predicting seasonal rainfall totals over South Africa, 

especially during NDJ and DJF seasons. The coupled model seem to outperform the uncoupled 

one. The reliability diagrams indicate that the predicted 850hPa geopotential heights of both the 

models are over-confident (under-confident) when predicting dry (wet) conditions during NDJ 

seasons. For the DJF seasons the reliability diagrams indicate that both models are reliable in 

predicting wet conditions, however the forecasts for both systems are always over-confident when 

predicting dry conditions. The Spearman’s rank correlation coefficients also indicate that the 

OAGCM outperforms the AGCM in predicting the seasonal rainfall totals during NDJ and DJF 

seasons, and both models predict DJF rainfall better as compared to NDJ rainfall. CCA pattern 

analysis results presented here suggest that same physical mechanism of atmospheric circulation 

patterns are responsible for rainfall during summer seasons. It was found that when there are 

anomalously negative (positive) predicted 850hPa geopotential heights over South Africa it is 

associated with anomalously wet (dry) conditions for most parts of South Africa. In addition ENSO 

episodes have significant influence in rainfall of South Africa, with the El Niño associated with dry 

seasons and La Niña with wet seasons. In fact, the results presented in this chapter are in 

agreement with previous studies of seasonal rainfall predictions in South Africa and subsequently 

it shows that the model configurations have been set up properly and from these configurations 

additional properties of the season can be predicted. The following chapter presents the results 

of the predictability of number of rainfall days exceeding pre-defined threshold values over South 

Africa.  
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CHAPTER 4 

PREDICTABILITY OF RAINFALL DAYS EXCEEDING PRE-DEFINED THRESHOLD 

VALUES WITHIN SUMMER RAINY SEASONS  

 
In this chapter the verification results of both the OAGCM and the AGCM in predicting intra- 

(within) seasonal rainfall characteristics are presented. For this purpose the number of predicted 

rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 40mm and 50mm threshold 

values for the six run-on seasons of OND, NDJ, DJF and JFM over South Africa are verified. The 

predictions are a result of retro-active statistical downscaling the 850hPa geopotential height 

fields of the global models to the number of rainfall days exceeding the above mentioned 

thresholds for the rainfall stations distributed across South Africa. Like in the previous chapter, 

the downscaled skill levels are assessed using ROC scores and reliability diagrams, as well as 

the Spearman’s rank correlations. CCA pattern analysis is once again performed in order to 

determine the dominating atmospheric circulation systems predicted to be controlling rainfall and 

in turn the number of rainfall days exceeding the pre-defined threshold values for the various 

seasons considered. 

 
4.1.  ROC scores 
 
 
The predicted 850hPa geopotential heights of both the OAGCM and the AGCM at 1-month lead-

time are downscaled to the number of rainfall days exceeding the pre-defined threshold values 

for OND, NDJ, DJF and JFM seasons over South Africa. ROC scores for high- and low-number 

of rainfall days exceeding threshold values are then calculated for both the GCMs. As mentioned 

in the previous chapter the ROC scores higher than 0.5 are considered skillful. Table 1 and Table 

2 show ROC score values for the OAGCM and the AGCM, respectively, in predicting the 

statistically downscaled threshold values. Both models have skill because the scores are higher 

than 0.5.  
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The skill is high during NDJ and DJF seasons for the OAGCM system as compared to OND and 

JFM seasons, with highest skill found in predicting 1mm and 5mm during DJF as well as 10mm 

during NDJ (Figure 4.1). In fact, the forecast skill of the OAGCM in predicting the high-number of 

rainfall days is limited to 30mm. However, it must be noted that in predicting the number of days 

exceeding 5mm threshold the ROC score is less than 0.5 for NDJ seasons. Furthermore, the skill 

is decreasing with higher threshold values when predicting the high-number of rainfall days. On 

the other hand, the skill in predicting the low-number of rainfall days is increasing with higher 

threshold values. The increasing of skill is due to the fact that there are fewer low-number of 

rainfall days to count for higher thresholds. 

 
For the AGCM prediction system, the highest scores is found when predicting the high-number of 

rainfall days exceeding 1mm and 5mm during NDJ and DJF, respectively, as well as 10mm during 

JFM seasons (Figure 4.1). As with the OAGCM, the skill of the AGCM in predicting the high-

number of rainfall days is limited to 30mm and is also decreasing with higher threshold values as 

well as increasing with higher threshold values when predicting low-number of rainfall days. Like 

the OAGCM, the AGCM perform poorly with ROC score of less than 0.5 in predicting the 5mm 

threshold during NDJ seasons.  

 
Although both prediction systems have skill in predicting the number of rainfall days exceeding 

the pre-defined threshold values over South Africa, the OAGCM seem to outperform the AGCM 

in predicting both the high- and low-number of rainfall days. As mentioned in the previous chapter 

the OAGCM outperforms the AGCM because the former is able to explain the feedback between 

the ocean and atmosphere, while the latter assumed that the atmosphere respond to SST but 

does not in turn affect the oceans. The OAGCM is thus a better description of reality than the 

AGCM.   

 
The ROC scores results presented here indicate that the predicted 850hPa geopotential heights 

for both the OAGCM and the AGCM can be used to predict the number of rainfall days exceeding 

the pre-defined thresholds. However, both models seem to predict better lower threshold values 

as compared to higher thresholds. In fact, both models can only be use to predict thresholds less 

than 30mm. Accurate predictions of high and low number of rainfall days exceeding threshold 

values can add value to seasonal rainfall predictions, since it provides detailed information on the  
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number rainy days within the season of interest. In fact, it can be deduced that a season with high 

(low) number of rainfall days is likely to receive above (below) normal rainfall, in turn wet (dry) 

spells. According to Tennant and Hewitson (2002) wet seasons generally have higher number of 

heavy rainfall days (> 20mm), suggesting that wet seasons are mostly dominated by heavier 

rainfall events as compared to numerous light rain events.     

 
Table 4.1. ROC scores of the OAGCM at 1-month lead-time in predicting number of days 

exceeding seasonal rainfall totals for OND, NDJ, DJF and JFM over the 14 years retro-active 

forecasts from 1996 to 2009. 

ROC SCORES: OAGCM 

HIGH-NUMBER OF RAINFALL DAYS 

SEASONS > 1mm > 5mm > 10mm > 15mm > 20mm > 30mm > 40mm > 50mm 

OND 0.557 0.545 0.507 0.479 0.452 0.435 0.354 0.327 

NDJ 0.612 0.453 0.656 0.583 0.578 0.501 0.429 0.359 

DJF 0.682 0.657 0.632 0.590 0.548 0.499 0.448 0.394 

JFM 0.637 0.636 0.629 0.589 0.546 0.472 0.405 0.333 

 LOW-NUMBER OF RAINFALL DAYS 

SEASONS > 1mm > 5mm > 10mm > 15mm > 20mm > 30mm > 40mm > 50mm 

OND 0.542 0.588 0.561 0.537 0.541 0.624 0.721 0.790 

NDJ 0.589 0.496 0.604 0.609 0.605 0.647 0.696 0.724 

DJF 0.643 0.633 0.636 0.614 0.601 0.624 0.669 0.766 

JFM 0.637 0.643 0.639 0.628 0.620 0.675 0.714 0.751 
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Table 4.2. ROC scores of the AGCM at 1-month lead-time in predicting number of days exceeding 

seasonal rainfall totals for OND, NDJ, DJF and JFM over the 14 years retro-active forecasts from 

1996 to 2009. 

 ROC SCORES: AGCM  

HIGH-NUMBER OF RAINFALL DAYS 

SEASONS > 1mm > 5mm > 10mm > 15mm > 20mm > 30mm > 40mm > 50mm 

OND 0.564 0.557 0.539 0.547 0.503 0.437 0.347 0.329 

NDJ 0.660 0.401 0.611 0.585 0.559 0.485 0.429 0.367 

DJF 0.642 0.653 0.627 0.576 0.549 0.502 0.468 0.444 

JFM 0.642 0.587 0.669 0.612 0.592 0.492 0.443 0.397 

LOW-NUMBER OF RAINFALL DAYS 

SEASONS > 1mm > 5mm > 10mm > 15mm > 20mm > 30mm > 40mm > 50mm 

OND 0.554 0.568 0.569 0.583 0.546 0.615 0.696 0.772 

NDJ 0.628 0.497 0.608 0.619 0.646 0.681 0.707 0.801 

DJF 0.588 0.605 0.608 0.608 0.616 0.613 0.666 0.759 

JFM 0.631 0.595 0.696 0.636 0.636 0.619 0.703 0.804 
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Figure 4.1: ROC scores for both the OAGCM and the AGCM at 1-month lead-time in predicting 

high- and low-number of rainfall days exceeding different threshold values over the 14 years retro-

active forecasts from 1996 to 2009. 
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4.2. Reliability diagrams 
 
 
Only the reliability diagrams for NDJ, DJF and JFM seasons are considered here since these 

three seasons have been found to be associated with the highest ROC scores. The reliability 

diagrams for the OAGCM (Figure 4.2) and the AGCM (Figure 4.3) indicate that when using the 

predicted 850hPa geopotential heights to predict the high (low) number of rainfall exceeding 1mm, 

5mm, 10mm, 15mm, 20mm, 30mm, 40mm and 50mm within the NDJ seasons, the forecasts are 

generally under-confident (over-confident). The forecasts for all the above mentioned thresholds 

lack reliability since the weighted least square regression lines are far apart from the perfect 

reliability lines. In fact, for days with 5mm and heavier rainfall (> 20mm) the forecasts have no 

skill and no resolution. As mentioned in the previous chapter the forecasts display a lack of 

sharpness because the forecasts rarely deviate much from the climatological value of 33.3%.  

 

The reliability diagrams in Figure 4.4 and Figure 4.5 for the OAGCM and the AGCM, respectively, 

show that forecasts are over-confident in predicting the high- and low-number of rainfall days 

exceeding the pre-defined threshold values for the DJF seasons. However, as compared to 

predicting the low-number of rainfall days, the high-number of rainfall days are more reliably as 

they are close to the perfect reliability line, especially for 1mm and 5mm threshold values. Again 

for the days with heavier rainfall (> 20mm) both the GCMs show to have no skill and no resolution. 

The frequency histograms included in the reliability diagrams indicate that the forecasts lack 

sharpness, for the same reason mentioned in previous paragraph.  

 

When predicting the high-number of rainfall days exceeding 1mm, 5mm, 10mm, 15mm and 20mm 

for the JFM seasons the forecasts for both the global models are highly reliable as depicted in 

Figure 4.6 and Figure 4.7, respectively. In contrast, the forecasts for thresholds greater than 

20mm have no skill and no resolution as well as lacking sharpness. From the reliability diagrams 

presented here, it is evident that both the models have some level of reliability in predicting the 

high- and low-number of rainfall days for the lower thresholds for the seasons considered. In fact, 

both the models are reliable in predicting the high-number of rainfall days less than or equal to 

20mm during DJF and JFM seasons as compared to predicting the low-number of rainfall days. 

In addition, the OAGCM generally outperforms the AGCM, specifically during DJF and JFM 

seasons. 
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Figure 4.2.   Reliability diagrams of the OAGCM at 1-month lead-time in predicting low (orange) 

and high (blue) number of rainfall days exceeding pre-defined threshold values within NDJ 

seasons. 

 

 

Figure 4.3. As in Figure 4.2, but for AGCM.  
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Figure 4.4.   Reliability diagrams of the OAGCM at 1-month lead-time in predicting low (orange) 

and high (blue) number of rainfall days exceeding pre-defined threshold values within DJF 

seasons. 

 

 

Figure 4.5. As in Figure 4.4, but for AGCM.  
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Figure 4.6.   Reliability diagrams of the OAGCM at 1-month lead-time in predicting low (orange) 

and high (blue) number of rainfall days exceeding pre-defined threshold values within JFM 

seasons. 

 

 

Figure 4.7. As in Figure 4.6, but for AGCM. 
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4.3. Spearman’s rank correlations 

  

Only the Spearman’s rank correlation for threshold values less than or equal to 20mm for the 

NDJ, DJF and JFM seasons are considered since higher thresholds display a lack of reliability. 

The spearman’s correlations for both the OAGCM (Figure 4.8) and the AGCM (Figure 4.9) in 

predicting the number of rainfall days exceeding 1mm, 10mm and 20mm for stations distribution 

across South Africa during the NDJ seasons. For both models significant skill (positive 

correlations at 95% level of significance) is found over the interior and towards the eastern parts 

of the country, as well as the southeastern parts when predicting number of rainfall days 

exceeding 1mm and 10mm. The lowest (negative) correlations are found over the northeastern 

and southwestern parts of South Africa.  

 

For both models during the DJF seasons, the Spearman’s correlations show that the highest 

positive correlations for the OAGCM (Figure 4.10) and the AGCM (Figure 4.11) are scattered 

across the country, except for the Western Cape and the South coast having highest negative 

correlations. As compared to the NDJ seasons, the positive correlations extend into the 

northeastern parts of South Africa during DJF seasons. The highest skill (positive correlations at 

95% level of confidence) is found when predicting 1mm, 5mm and 10mm for both the OAGCM 

and the AGCM during DJF seasons. 

 

The Spearman’s correlation maps indicate that both the OAGCM (Figure 4.12) and the AGCM 

(Figure 4.13) have skill (positive correlations at 95% level of confidence) in predicting the number 

of rainfall days exceeding the pre-defined threshold values during JFM seasons. The positive 

correlations are distributed across the country, except for the Western Cape and the southern 

coast where negative correlations are found. The distribution of the skill during JFM is almost the 

same as that of DJF, however, DJF skill is in general higher than that of JFM. In fact, DJF seasons 

are highly predictable as compared to the NDJ and JFM. This results indicate that the predicted 

850hPa geopotential height fields can be used to predict the number of days exceeding threshold 

values up to 20mm during DJF and JFM seasons. 
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Figure 4.8. Spearman’s rank correlations of the OAGCM (left panel) and their p-values level of 

significance (right panel) at 1-month lead-time for NDJ seasons over the 14 year retro-active 

forecasts from 1996 to 2009. 
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Figure 4.9. As in Figure 4.8, but for the AGCM. 
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Figure 4.10. Spearman’s rank correlations of the OAGCM (left panel) and their p-values level of 

significance (right panel) at 1-month lead-time for DJF seasons over the 14 year retro-active 

forecasts from 1996 to 2009. 
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Figure 4.11. As in Figure 4.10, but for the AGCM. 
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Figure 4.12. Spearman’s rank correlations of the OAGCM (left panel) and their p-values level of 

significance (right panel) at 1-month lead-time for JFM seasons over the 14 year retro-active 

forecasts from 1996 to 2009. 
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Figure 4.13. As in Figure 4.12, but for the AGCM. 
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4.4. CCA pattern analysis 

 
The CCA pattern analysis is performed here to investigate the relationship between the predicted 

850hPa geopotential heights of both the OAGCM and the AGCM at 1-month lead-time and the 

downscaled number of rainfall days exceeding 1mm, 10mm, 20mm and 30mm threshold values 

for NDJ, DJF and JFM seasons, respectively. The CCA maps (mode 1) for both the OAGCM and 

the AGCM indicate that when there are anomalously negative (positive) 850hPa geopotential 

heights over South Africa there are anomalously high (low) number of rainfall days exceeding the 

mentioned threshold values over South Africa for NDJ (Figure 4.14 (OAGCM) and Figure 4.15 

(AGCM)), DJF (Figure 4.16 (OAGCM) and Figure 4.17 (AGCM)) and JFM (Figure 4.18 (OAGCM) 

and Figure 4.19 (AGCM)) seasons. 

  
Only CCA pattern analysis for DJF seasons are discussed here since the results are similar to 

that of NDJ and JFM seasons. For DJF seasons during 1982, 1986, 1991, 1994 and 2006, for 

example, the predicted 850hPa geopotential heights for both the OAGCM and the AGCM are 

anomalously negative and their temporal scores are also negative as shown in Figure 4.16 and 

Figure 4.17, respectively. The product of the predictor loadings and their time scores is positive. 

During the same years over South Africa, the downscaled number of rainfall days exceeding 

1mm, 10mm, 20mm and 30mm for both the OAGCM and the AGCM are positive and their 

temporal scores are negative. The product of the spatial loadings and their scores is negative. 

This results implies that when there are anomalously positive 850hPa geopotential heights over 

South Africa there are anomalously low number of rainfall days exceeding the mentioned 

threshold values over South Africa. This in turn implies that when there is a high pressure system 

over South Africa during DJF seasons, it draws out the moist air of the country and usually the 

country remain dry, resulting in low number of rainfall days. 

  
For both models during DJF seasons, but this time during 1984, 1988, 1993, 1999 and 2007, CCA 

pattern analysis maps indicate that there are anomalously negative predictor’s loadings over 

South Africa and their corresponding time scores are positive. The product of the spatial loadings 

and the scores is negative. The predictand spatial loadings are anomalously positive over most 

parts of South Africa and their temporal scores are positive. The product of the spatial loadings  
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and their scores is positive. This again implies that when there are anomalously negative 850hPa 

geopotential heights over South Africa there are anomalously high number of rainfall days 

exceeding the pre-defined threshold values over South Africa. In fact, when there is a low 

pressure system over South Africa it advects the moist air into the country usually results in rainfall 

events, in turn leading to high number of rainfall days.  

  
The years that are associated with low number of rainfall days are actually El Niño years and 

usually during El Niño years large part of South Africa receives below-normal rainfall, sometimes 

even drought. Most notably, during the events of 1982 and 1991 South Africa experienced severe 

droughts. This implies that for DJF seasons during these El Niño events there were high pressure 

systems over the country suppressing rainfall activities and reducing the number of rainfall days.  

In contrast, during the La Niña events large part of South Africa receive above-normal rainfall as 

well as floods at times. For example, the 1999 and 2010 events left most of the summer rainfall 

areas of South Africa wetter than normal, including floods in some areas. In fact during the 1984, 

1988, 1995, 1999 and 2007 La Niña events there were low pressure systems and associated 

ridging highs bringing moist air into the country resulting in wet conditions, in turn leading to high 

number of rainfall days.  

  
CCA analysis results presented in this chapter show that the atmospheric circulation patterns 

responsible for rainfall totals (shown in Chapter 3, Figures 3.6 and 3.7) are similar to the analysis 

for the number of rainfall days during NDJ, DJF and JFM seasons (e.g. Figures 4.13 and 4.14).  

For both the GCMs systems during NDJ, DJF and JFM seasons most of the El Niño years 

produced low-number of rainfall days exceeding pre-defined threshold values, resulting in dry 

seasons as well as drought in some cases over the summer rainy season areas of South Africa. 

On the other hand, for both models during NDJ, DJF and JFM seasons most of the La Niña years 

produced high number of rainfall days exceeding different threshold values, resulting in wet 

seasons leading to flooding in some areas. 
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(a)

 
(b)  

 
(c)

 
(d) 

 
Figure 4.14. Mode 1 CCA maps of the 850hPa geopotential heights of the OAGCM and the 

number of rainfall days exceeding 1mm (a), 10mm (b), 20mm c) and 30mm (d) for NDJ seasons. 

The X and Y are the spatial loadings of the predictors and predictands, respectively.  
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(a)

  
(b)

 
 
(c) 

 
(d) 

 
 
Figure 4.15. As in Figure 4.14, but for the AGCM. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.16. Mode 1 CCA maps of the 850hPa geopotential heights of the OAGCM and the 

number of rainfall days exceeding 1mm (a), 10mm (b), 20mm c) and 30mm (d) for DJF seasons. 

The X and Y are the spatial loadings of the predictors and predictands, respectively.  
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(a) 

 
(b) 

(c) 

 
(d) 

 
Figure 4.17. As in Figure 4.16, but for the AGCM. 
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(a) 

 
(b) 

 
(c) 

 
(d)

 
Figure 4.18. Mode 1 CCA maps of the 850hPa geopotential heights of the OAGCM and the 

number of rainfall days exceeding 1mm (a), 10mm (b), 20mm c) and 30mm (d) for JFM seasons. 

The X and Y are the spatial loadings for the predictors and predictands, respectively. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.19. As in Figure 4.18, but for the AGCM. 
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4.5. Synopsis 

 
This chapter evaluated the skill levels of both the OAGCM and the AGCM in predicting the number 

of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 40mm and 50mm threshold 

values over South Africa. The ROC scores show that both models have the attribute of 

discrimination in predicting the number of days exceeding threshold values less than or equal to 

20mm. The highest ROC scores are found during NDJ and DJF for the OAGCM system and 

during DJF and JFM for the AGCM system. The reliability diagrams also indicate that both 

systems can reliably predict number of rainfall exceeding thresholds less or equal to 20mm, 

especially during DJF and JFM seasons. The Spearman’s correlations also show that both 

systems have skill (positive correlations at 95% level of significance) in predicting number of 

rainfall days, especially during DJF seasons. The ROC scores, the reliability diagrams and the 

Spearman’s correlations have shown that the OAGCM outperforms the AGCM in predicting 

number of rainfall days exceeding the pre-defined threshold values over South Africa. CCA 

analysis showed that when there are anomalously negative (positive) predicted 850hPa 

geopotential heights over South Africa there are anomalously high (low) number of rainfall days 

exceeding the pre-defined threshold values for NDJ, DJF and JFM seasons over most parts of 

South Africa. Such configuration is also found for modelling seasonal rainfall totals (Chapter 3). 

The next chapter presents the results of the predictability of the onset of the rainy seasons over 

South Africa. 
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CHAPTER 5 

 PREDICTABILITY OF ONSET OF THE RAINY SEASONS   

This chapter presents the verification results for both the OAGCM and the AGCM in predicting 

the onset of the rainy seasons across eight homogeneous rainfall regions over South Africa 

(Landman et al., 2009). Firstly the onset of the rainy seasons is defined. The models’ forecast 

skill levels are again evaluated using ROC scores and reliability diagrams, as well as Spearman’s 

rank correlations. As with previous chapters, CCA pattern analysis is performed in order to 

determine the dominating atmospheric circulation systems predicted to be controlling rainfall and 

subsequently the onset of the main rainfall seasons. 

  

5.1. Definition of the onset of the rainy seasons 

 

The onset is defined here as the first month of a three month season on condition that the season 

consists of the wettest consecutive three months of the year as calculated over several decades 

(climatological values). According to this definition of onset, the onset month for Region 1 is May, 

October for Region 2 and 3, November for Region 4, 5 and 6, December and January for Region 

7 and 8, respectively and are indicated with black arrows on the climatological annual rainfall 

circles (Figure 5.1).  

 

 

Figure 5.1. The eight homogeneous rainfall regions calculated using cluster analysis and their 

annual rainfall cycles from 1982 to 2009.  
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5.2. ROC scores 
 
The 850hPa geopotential heights of both the OAGCM and the AGCM at 1-month lead-time are 

statistically downscaled to the rainfall totals of the onset months for the eight homogeneous 

rainfall regions of South Africa.  The ROC scores for above-normal rainfall (wet conditions) and 

below-normal rainfall (dry conditions) for the onset months are then calculated for both models 

(Table 5.1 and Table 5.2). It was found from the ROC scores that both models have a variation 

of skill distributed across all eight rainfall regions when predicting wet and dry conditions for the 

onset months. All the ROC scores are greater than 0.5 for all the onset months for the two models.  

 
The ROC scores bar graphs in Figure 5.2 indicate that the OAGCM is more skillful in predicting 

dry conditions as compared to wet conditions for the onset months of Region 1, Region 3, Region 

4, Region 5 and Region 8. The highest ROC scores are found when predicting dry conditions for 

the onset months for Region 1 (May), Region 4 (November) and Region 8 (January). On the other 

hand highest scores in predicting wet conditions for the onset months are found in Region 8 and 

Region 7, followed by Region 1 and Region 5. In fact the OAGCM system in more skillful when 

predicting dry conditions as compared to wet conditions.  

 
The AGCM system also has skill in predicting both wet and dry conditions for all the onset months 

of the rainfall regions (Figure 5.3). The AGCM seem to have high ROC scores when predicting 

wet conditions as compared to dry conditions of the onset months. The highest scores are found 

when predicting wet conditions for the onset months for Region 5 (November) followed by Region 

4 (November) and Region 1 (May), whereas in predicting dry conditions highest scores are found 

in Region 2 (October), Region 3 (October), Region 5 (November) and Region 8 (February). In 

contrast to the OAGCM, the AGCM is more skillful when predicting wet conditions as compared 

to dry conditions.  

 
The findings of the ROC scores presented here indicate that the 850hPa geopotential heights at 

1-month lead-time of both the OAGCM and the AGCM can be used to predict the onset months 

for the eight homogeneous rainfall regions of South Africa. The skill for summer rainfall regions is 

due to the fact that there is rainfall-ENSO teleconnection for those areas (Landman et al., 2001). 

For the austral winter rainfall region (i.e. Region 1), it was found that when the winter season 

includes May there is rainfall-ENSO teleconnection (Philippon et al., 2011). Possible that is the 

reason for the high skill for the May onset months of Region 1. Although both prediction systems  
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have skill in predicting wet and dry conditions for the onset months, the AGCM seems to 

outperform the OAGCM in predicting wet conditions. The OAGCM, on the other hand seem to be 

more skillful in predicting dry conditions as compared to wet conditions. However, the level of skill 

distributed across the eight rainfall regions varies for the two models. 

 

Table 5.1. ROC scores of the forecasts downscaled from the OAGCM 1-month lead-time in 

predicting above-normal and below-normal rainfall totals of the onset months for the eight 

homogeneous rainfall regions of South Africa over the 14 year retro-active forecasts from 1996 

to 2009. 

REGION ONSET MONTH ABOVE-NORMAL BELOW-NORMAL 

1 May 0.590 0.708 

2 October 0.574 0.556 

3 October 0.545 0.630 

4 November 0.563 0.754 

5 November 0.580 0.594 

6 November 0.574 0.547 

7 December 0.601 0.592 

8 January 0.618 0.676 

 

Table 5.2. As in Table 5.1, but for the AGCM. 

REGION ONSET MONTH ABOVE-NORMAL BELOW-NORMAL 

1 May   0.607 0.598 

2 October 0.553 0.612 

3 October 0.578 0.645 

4 November 0.629 0.603 

5 November 0.682 0.614 

6 November 0.578 0.540 

7 December 0.564 0.534 

8 January 0.564 0.636 
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Figure 5.2. ROC scores of the forecasts downscaled from OAGCM 1-month lead-time in 

predicting above-normal and below-normal rainfall totals of the onset months for the eight 

homogeneous rainfall regions of South Africa over the 14 year retro-active forecasts from 1996 

to 2009. 

 

 
 

Figure 5.3. As in Figure 5.2, but for the AGCM. 
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5.3. Reliability diagrams 
 
 

The reliability diagrams (Figure 5.4) show that the forecasts of both the OAGCM and the AGCM 

1-month lead-time are over-confident when predicting both wet and dry conditions for Region 1 

onset months. However, the forecasts are more reliable when predicting wet conditions since the 

weighted least square regression line is closer to the perfect reliability line. On the other hand, 

the forecasts for predicting dry conditions lack reliability. As with previous chapters, the frequency 

histograms included in the reliability diagrams indicate that the forecasts lack sharpness.   

 

The OAGCM (AGCM) forecasts are over-confident (under-confident) in predicting dry conditions 

for Region 2 onset months (Figure 5.5), while both models are over-confident in predicting wet 

conditions. The forecasts for both models are reliable in predicting dry conditions as compared to 

predicting wet conditions for the onset months of Region 2. Again the frequency histograms show 

that in general the forecasts lack sharpness in predicting both dry and wet conditions for the onset 

months.  

 

Forecasts for both the systems are over-confident in predicting both wet and dry conditions for 

the October onset months of Region 3 (Figure 5.6). As with Region 2, the forecasts for Region 3 

are more reliable when predicting dry conditions as compared to predicting wet conditions. As 

indicated before the frequency histograms included in the reliability diagrams show that the 

forecasts display lack of sharpness in predicting both wet and dry conditions for Region 3 onset 

months.   

   

The two systems are over-confident in predicting both dry and wet conditions for Region 4, 6, 7 

and 8 (Figures 5.7, 5.9, 5.10 and 5.11) onset months. Both models seem to be more reliable in 

predicting wet conditions for the onset months as compared to predicting dry conditions for the 

onset months of the mentioned regions. As in previous paragraphs, the frequency histograms 

included in the reliability diagrams indicate that the forecasts lack sharpness in predicting both 

wet and dry conditions for the onset months of Region 4, 6, 7 and 8.  
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Figure 5.8 show that the OAGCM (AGCM) forecasting system is under-confident (over-confident) 

in predicting wet conditions for Region 5 onset months. On the other hand, both models are over-

confident in predicting dry conditions. In fact, both models have some degree of reliability in 

predicting both wet and dry conditions for Region 5 onset months. The frequency histograms once 

again indicate that the forecasts lack sharpness.    

 

From the reliability diagrams presented here, it is evident that both the OAGCM and the AGCM 

systems have some level of reliability in predicting both wet and dry conditions for the onset 

months for the eight homogeneous rainfall regions. In fact, both models seem to perform better 

when predicting wet conditions as compared to dry conditions. The two forecasting systems lack 

sharpness when predicting both wet and dry conditions for the onset months for the different 

rainfall regions over South Africa.  

 

 

Figure 5.4. Reliability diagrams and frequency histograms for the downscaled forecasts produced 

by both the OAGCM (Coupled) and AGCM (Uncoupled) 1-month lead-time in predicting above-

normal and below-normal rainfall totals of the onset month for Region 1 over 14 year retro-active 

forecasts from 1996 to 2009.  
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Figure 5.5. As in Figure 5.4, but for Region 2. 

 

 

Figure 5.6. As in Figure 5.5, but for Region 3. 

 

 

Figure 5.7. As in Figure 5.6, but for Region 4. 
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Figure 5.8. As in Figure 5.7, but for Region 5. 

 

 

Figure 5.9. As in Figure 5.8, but for Region 6. 

 

 

Figure 5.10. As in Figure 5.9, but for Region 7. 
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Figure 5.11. As in Figure 5.10, but for Region 8.    

 

5.4. Spearman’s rank correlations 

  

ROC scores and reliability diagrams presented in this work explored how the models performed 

in terms of forecast skill. The Spearman’s rank correlations is used here to estimate the spatial 

distribution of forecast skill. Figure 5.12 depicts the Spearman’s rank correlations between the 

simulated rainfall totals from the two models at 1-month lead-time and the observed rainfall totals 

for the onset months as well as the correlations level of significance. The correlations of the 

distribution of skill in predicting rainfall totals for the onset months for all the regions varies for 

both the OAGCM and the AGCM. The variations of the distribution of skill is due to the fact that 

the onset months for rainfall regions differ. In fact, it been found that skill over South Africa is a 

function of time of the year and location (e.g. Landman et al. 2012).    

 

The OAGCM system have positive correlations at different level of significance for all the eight 

rainfall regions, with the highest correlations (and high level of significance) found when predicting 

rainfall totals for the onset months of Region 1, Region 2, Region 4 and Region 5. In fact, the 

highest positive correlation is found when predicting rainfall totals for onset month of Region 1 

and the lowest correlations are found for the onset months of Region 7, followed by Region 3. For 

the AGCM system positive correlations are found for the seven rainfall regions, except for Region 

2 with negative correlation at a very low significant level. Furthermore, the highest positive 

correlations are found when predicting rainfall totals for the onset months for Region 1, Region 4, 

Region 5, Region 7 and Region 8. The lowest and negative correlation is found when predicting 

rainfall totals for onset months of Region 2.   
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The Spearman’s rank correlations presented here indicates that the simulated rainfall from the 

two models are correlated with the observed rainfall totals for onset months for different rainfall 

regions of South Africa. However, the correlation varies across the rainfall regions. This in turn, 

imply that the forecast skill distributed across the regions varies for both the OAGCM and the 

AGCM systems. In fact the OAGCM have higher Spearman’s correlations as compared to the 

AGCM. 

 

 

Figure 5.12. Spearman’s rank correlations and their level of significance between simulated 

rainfall from both the OAGCM and the AGCM at 1-month lead-time and rainfall totals of the onset 

months for the eight homogeneous rainfall regions over the 14 year retro-active forecasts from 

1996 to 2009.  

 

 

5.5. CCA pattern analysis 

 

5.5.1. OAGCM 

The CCA maps in Figure 5.13 indicate that when there are anomalously negative (positive) 

850hPa geopotential heights (predictor spacial loadings) for the OAGCM positioned southeast of 

South Africa there are anomalously dry (wet) conditions for Region 1 onset months. During 1983, 

1998 and 2006 for example, the predictor spatial loadings are anomalously negative and their 

temporal scores are also negative. The product of the spatial loadings and their temporal scores 

is positive. The rainfall totals (predictand loadings) are anomalously negative and their temporal  
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scores are negative, and their product is positive. During 1982 and 2003 the predictor spatial 

loadings are anomalously negative and their temporal scores are positive, and their product is 

negative. The predictand loadings for the onset months are anomalously negative and their 

temporal scores are positive, and their product is negative. This result implies that when there is 

a strong low (high) pressure system at 850hPa situated southeast of South Africa the onset 

months for Region 1 tend to be drier (wetter) than normal. 

It was found that when there are anomalously negative (positive) predictor spatial loadings south 

of South Africa there are anomalously wet (dry) conditions for Region 2, 3 and 4 (Figures 5.14, 

5.15 and 5.16) onset months. For example, during 1998 and 2006 the predictor loadings are 

anomalously negative and their temporal scores are negative, and their product is positive. The 

predictand loadings are positive and their temporal scores are negative, and the product of the 

loadings and scores is negative. During 1985 and 1997 the predictor spatial loadings are 

anomalously negative and their temporal scores are positive, and their product is negative. The 

predictand loadings for onset months are positive and their temporal scores are positive, and their 

product is positive. This finding mean that when there is a strong high (low) pressure system at 

850hPa situated south of South Africa the onset months for Region 2, 3 and 4 tend to be drier 

(wetter) than normal.   

For Region 5, 6, 7 and 8 (Figures 5.17, 5.18, 5.19 and 5.20) when there are anomalously negative 

(positive) predictor spatial loadings over South Africa, there are anomalously wet (dry) conditions 

for onset months. During 1987 and 2006 the predictor spatial loadings are anomalously negative 

and their temporal scores are negative, and their product is positive. The predictand loadings are 

positive and their temporal scores are negative, and the product of the loadings and scores is 

negative. During 1983 and 1997 the predictor spatial loadings are anomalously negative and their 

temporal scores are positive, and their product is negative. The predictand loadings for onset 

months are positive and their temporal scores are positive, and their product is positive. This 

result implies that when there is a strong low (high) pressure system at 850hPa over South Africa 

the onset months for Region 5, 6, 7 and 8 tend to be wet (dry). 
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Figure 5.13. Mode 1 CCA maps for the 850hPa geopotential heights of the OAGCM 1-month 

lead-time and rainfall totals for onset months for Region 1 from 1982 to 2009. 

 

Figure 5.14. As in Figure 5.13, but for Region 2.  

 

Figure 5.15. As in Figure 5.14, but for Region 3.  

 

Figure 5.16. As in Figure 5.15, but for Region 4. 
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Figure 5.17. As in Figure 5.16, but for Region 5. 

 

Figure 5.18. As in Figure 5.17, but for Region 6. 

 

Figure 5.19. As in Figure 5.18, but for Region 7. 

 

Figure 5.20. As in Figure 5.19, but for Region 8. 
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5.5.2. AGCM 

 
Region 1 onset months tend to be wetter (drier) than normal when there are anomalously negative 

(positive) predictor spatial loadings for the AGCM positioned southwest of South Africa (Figure 

5.21). During 1982 and 2003 for example, the predictor spatial loadings are anomalously negative 

and their temporal scores are also negative. The product of the spatial loadings and their temporal 

scores is positive. The predictand loadings are positive and their temporal scores are negative, 

and their product is negative. During 1984 and 2006 the predictor loadings are anomalously 

negative and their temporal scores are positive, and their product is negative. The predictand 

loadings are anomalously positive and their temporal scores are positive, and their product is 

positive. This finding imply that when there is a strong low (high) pressure system at 850hPa 

southwest of South Africa the onset months for Region 1 tend to be dry (wet). 

 
Figure 5.22 depicts that when there are anomalously positive (negative) predictor spatial loadings 

southwest of South Africa there are anomalously dry (wet) conditions for the onset months for 

Region 2. For example, during 1985 and 1992 the predictor spatial loadings are anomalously 

positive and their temporal scores are negative, and their product is negative. The predictand 

loadings are negative and their temporal scores are negative, and the product of the loadings and 

time scores is positive. During 1998 the predictor spatial loadings are anomalously positive and 

their temporal scores are positive, and their product is positive. The predictand loadings are 

negative and their temporal scores are positive, and their product is negative. This result mean 

that when there is a strong high (low) pressure system at 850hPa situated southwest of South 

Africa the onset months for Region 2 tend to be dry (wet).   

 
The CCA maps for Region 3 and 4 (Figures 5.23 and 5.24) show that when there are anomalously 

negative (positive) spatial loadings for the AGCM over of South Africa accompanied by positive 

(negative) anomalies east of the country there are anomalously wet (dry) conditions for the onset 

months. During 1986 the predictor spatial loadings are anomalously negative over South Africa 

and their temporal scores are negative, and their product is positive. The predictand loadings are 

positive and their temporal scores are negative, and the product of the loadings and scores is 

negative. During 1999 the predictor spatial loadings are anomalously negative and their temporal 

scores are positive, and their product is negative. The predictand loadings are positive and their 

temporal scores are positive, and their product is positive. This finding implies that when there is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

86 
 

 
a strong high (low) pressure system at 850hPa over South Africa accompanied by low (high) 

pressure system east of the country the onset months for Region 3 and 4 tend to be wetter (drier) 

than normal. 

 
When there are anomalously negative (positive) predictor spatial loadings over South Africa 

extending to SWIO, there are anomalously wet (dry) conditions for the onset months of Region 5 

and 6 (Figures 5.25 and 5.26). During 1982 and 2002 the predictor spatial loadings are 

anomalously negative and their temporal scores are negative, and their product is positive. The 

predictand loadings are positive and their temporal scores are negative, and their product is 

negative. During 1986 and 1999 the predictor loadings are anomalously negative and their 

temporal scores are positive, and their product is negative. The predictand loadings are positive 

and their temporal scores are positive, and their product is positive. This results mean that when 

there is a strong high (low) pressure system at 850hPa over South Africa extending to SWIO the 

onset months for Region 5 and 6 tend to be dry (wet). 

 
For Region 7 the CCA maps (Figure 5.27) indicate that when there are anomalously negative 

(positive) predictor spatial loadings over South Africa there are anomalously wet (dry) conditions 

for the onset months. During 1993 and 2009 for example, the predictor spatial loadings are 

anomalously negative and their temporal scores are negative, and their product is positive. The 

predictand loadings are positive and their temporal scores are negative, and the product of the 

loadings and scores is negative. During 1988 and 2007 the predictor spatial loadings are 

anomalously negative and their temporal scores are positive, and their product is negative. The 

predictand loadings are positive and their temporal scores are positive, and their product is 

positive. This mean that when there is a strong high (low) pressure system at 850hPa over South 

Africa the onset months for Region 7 tend to be drier (wetter) than normal.   

 
Figure 5.28 show that when there is a high (low) pressure system situated west of South Africa 

the onset months for Region 8 tend to be wet (dry). For example, during 1986 and 1998 the 

predictor spatial loadings are anomalously negative and their temporal scores are negative, and 

their product is positive. The predictand loadings are positive and their temporal scores are 

negative, and their product is negative. During 1985 and 1996 the predictor spatial loadings are 

anomalously negative and their temporal scores are positive, and their product is negative. The  
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predictand loadings are positive and their temporal scores are positive, and their product is 

positive. This finding implies that when there is a strong high (low) pressure system at 850hPa 

situated southwest of South Africa the onset months for Region 8 tend to be wet (dry). 

 

 

Figure 5.21. Mode 1 CCA maps for 850hPa geopotential heights of the AGCM at 1-month lead-

time and rainfall totals of the onset months for Region 1 from 1982 to 2009. 

 

 

Figure 5.22. As in Figure 5.21, but for Region 2. 

 

 

Figure 5.23. As in Figure 5.22, but for Region 3. 
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Figure 5.24. As in Figure 5.23, but for Region 4. 

 

Figure 5.25. As in Figure 5.24, but for Region 5. 

 

Figure 5.26. As in Figure 5.25, but for Region 6. 

 

 

Figure 5.27. As in Figure 5.26, but for Region 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

89 
 

 

 

Figure 5.28. As in Figure 5.27, but for Region 8. 

 

5.6. Synopsis 

 
This chapter evaluated the skill levels of both the OAGCM and the AGCM in predicting rainfall 

totals for the onset months of the eight homogeneous rainfall regions of South Africa. The ROC 

scores have shown that the 850hPa geopotential heights at 1-month lead-time for both the models 

can be used to predict the onset months. The reliability diagrams also showed that both systems 

are reliable in predicting wet and dry conditions. However, both the prediction systems lack 

sharpness when predicting the onset months. The Spearman’s rank correlations showed that the 

simulated rainfall of both the OAGCM and the AGCM are correlated with the observed rainfall 

totals for the onset months of the different rainfall regions. The skill of the forecasting systems in 

predicting summer rainfall region onset months is due to the already known fact that there is 

rainfall-ENSO teleconnection, more especially from November to February. For the austral winter 

rainfall region it was also found that when May is included in the season (i.e. May to September) 

there is rainfall-ENSO teleconnection, hence the May onset months of Region1 are predictable. 

The CCA pattern analysis showed that different atmospheric circulation systems are responsible 

for rainfall for most of the onset months. In fact, the atmospheric circulation systems controlling 

the individual onset months seem to be different from the systems responsible for the seasonal 

rainfall totals as well as the number of rainfall days exceeding pre-defined thresholds considered 

in this study. Furthermore, the circulation systems produced by the OAGCM are also different to 

the ones produced by the AGCM for most of the onset months.   
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 
 
  
This study evaluates the forecast skill levels of an ocean-atmospheric coupled model (OAGCM) 

and an atmospheric model ECHAM4.5 (AGCM) in predicting seasonal rainfall totals, number of 

rainfall days exceeding pre-defined thresholds as well as the onset of the rainy seasons over 

South Africa. Although the aim of this research is to evaluate the models’ ability in predicting intra-

seasonal rainfall characteristics over South Africa, the models are first evaluated in predicting 

seasonal rainfall totals to determine whether the results of this study are comparable with previous 

studies of seasonal climate predictions. By evaluating seasonal predictability first it is 

subsequently shown that the model configurations have been set up properly and from these 

configurations additional properties of the season are predicted.  

 

The model’s forecast skill is assessed using ROC scores, reliability diagrams as well as 

Spearman’s rank correlations. In addition to these measures of skill, CCA pattern analysis is also 

performed to determine the relationship between the dominant atmospheric circulation pattern 

and the observed variables. It was established that both the GCMs have skill (high ROC scores) 

in predicting the 3-month seasonal rainfall totals for OND, NDJ, DJF and JFM over South Africa. 

In fact the highest ROC scores are found during NDJ and DJF seasons. The reliability diagrams 

for NDJ seasons showed that both forecasting systems are over-confident (under-confident) in 

predicting dry (wet) conditions over South Africa. For DJF seasons the reliability diagrams indicate 

that both models are reliable in predicting wet conditions, however the forecast systems are 

always over-confident in predicting dry conditions. The Spearman’s rank correlation coefficients 

for both systems also showed that simulated and observed seasonal rainfall totals are significantly 

(95%) correlated. High correlations are found when predicting DJF season totals as compared to 

NDJ seasons. The OAGCM seem to outperform the AGCM in predicting the seasonal rainfall 

totals during NDJ and DJF seasons. However, both models predict DJF totals better as compared 

to NDJ seasons. CCA pattern analysis is performed to determine the physical mechanism of 

atmospheric circulation patterns that are seen by the global models as responsible for rainfall 

during summer seasons. CCA maps for both prediction systems have shown that when there are 

strong high (low) pressure systems at the surface over South Africa, there are anomalously dry 

(wet) conditions for NDJ, DJF and JFM seasons over of South Africa.  
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When predicting the number of rainfall days exceeding 1mm, 5mm, 10mm, 15mm, 20mm, 30mm, 

40mm and 50mm threshold values over South Africa both forecasting systems also have skill. 

The ROC scores have shown that both models have the attribute of discrimination in predicting 

the number of days exceeding threshold values less than or equal to 20mm. The highest ROC 

scores are found during NDJ and DJF for the OAGCM system and during DJF and JFM for the 

AGCM system. The reliability diagrams also indicate that both systems can reliably predict 

number of rainfall exceeding thresholds less or equal to 20mm, especially during DJF and JFM 

seasons. The Spearman’s rank correlations for both systems also showed that simulated and 

observed number of rainfall days are significantly (95%) correlated, especially during DJF 

seasons. CCA analysis showed that when there are anomalously negative (positive) predicted 

850hPa geopotential heights over South Africa, there are anomalously high (low) number of 

rainfall days exceeding the pre-defined threshold values for NDJ, DJF and JFM seasons over 

South Africa. Such configuration is also found for modelling seasonal rainfall totals as described 

earlier.  

 
Both the forecasting systems also have skill (high ROC scores) in predicting rainfall totals for the 

onset months of the eight homogeneous rainfall regions of South Africa. The reliability diagrams 

also showed that both systems are reliable in predicting rainfall totals for the onset months, but 

both the prediction systems lack sharpness. The Spearman’s correlations showed that both the 

OAGCM and the AGCM have skill (positive correlations) in predicting rainfall totals for onset 

months for the rainfall regions. CCA maps showed that in general a variety of atmospheric 

circulation systems are responsible for rainfall for the onset months of the eight rainfall regions of 

South Africa. In fact, the systems produced by the OAGCM are different from the ones produced 

by the AGCM. 

 
The similarities of the CCA pattern analysis for the seasonal totals and the rainfall frequencies 

are a consequence of the fact that the same 3-month seasons were used for both predictands. 

Moreover, these patterns are similar to what has already been found with such statistical 

downscaling with an older version of the GCM (Landman and Goddard, 2001). When we applied 

equivalent downscaling for single month data, the months of onset are not the same throughout 

and consequently may lead to CCA patterns that are generally different for each month and from 

the 3-month seasons. Different atmospheric states may also be found for different months, for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



 

92 
 

 

example, December rainfall is often subject to both baroclinic and barotropic atmospheres, while 

January may be much more affected by barotropic atmospheres. 

 
The following conclusions can be drawn out of this study: 

1. The 850hPa geopotential heights of both the OAGCM and the AGCM can be used to 

predict the number of rainfall days exceeding 1mm, 5mm, 10mm and 20mm during NDJ, 

DJF and JFM seasons over South Africa. However, the OAGCM outperforms the AGCM. 

2. The 850hPa geopotential heights of both the OAGCM and the AGCM can also be used to 

predict the rainfall totals of onset months for the homogeneous regions of South Africa. 

3. Atmospheric circulation patterns that are responsible for seasonal rainfall totals are the 

same as the one responsible for number of rainfall days for summer seasons. 

4. Different atmospheric circulation patterns are responsible for rainfall totals for the onset 

months of the homogeneous regions. Furthermore, atmospheric circulation systems 

produced by the OAGCM are different from that produced by the AGCM.      

 
The format of seasonal forecasts issued by institutions such as SAWS has been for the most part 

focused on the likelihood of receiving predefined seasonal rainfall totals. That is, the forecasts 

have focused almost exclusively on predicting droughts or flood seasons as defined by 

accumulated rainfall totals over a season. Users of forecasts are interested to also find out what 

forecast for rainfall characteristics within a season might be like. For this reason, this study was 

conducted to test if our current forecast models can in fact skillfully predict such characteristics. 

Here the focus was on predicting the number of rainfall days exceeding predefined thresholds as 

well as the onset months of rainy seasons. The levels of skill in predicting these characteristics 

are similar to what has been known, and again demonstrated here, for South Africa. This work 

has paved the way for SAWS to issue forecasts for such rainfall characteristics, in addition to the 

traditional seasonal forecasts. 
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