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Abstract 

 

Wheat consumption has become more widespread and is increasing in South Africa 

especially in the urban areas. The wheat industry contributes four billion rands to the 

gross value of agriculture and is a source of employment to approximately 28 000 

people. Wheat yield forecasting is crucial in planning for imports and exports 

depending on the expected yields and wheat health monitoring is important in 

minimizing crop losses. However, current crop surveying techniques used in South 

Africa rely on manual field surveys and aerial surveys, which are costly and not timely 

(after harvest). This research focuses on wheat health monitoring and wheat yield 

prediction using remote sensing, which is a cost effective, reliable and time saving 

alternative to manual surveys. Hence, the research objectives were: (i) to identify 

remotely sensed spectral indices that comprehensively describe wheat health status. 

(ii) Develop an Normalized Difference Vegetation Index (NDVI) based wheat yield 

forecasting model and (iii) to evaluate the impact of selected agrometeorological 

parameters on the NDVI based forecasting model. Landsat 8 images were used for 

determining spectral indices suitable for wheat health monitoring by relating the 

spectral indices to the land surface temperature. Results show that the Normalized 

Difference Water Index (R2 between 0.65 and 0.89) and NDVI (R2 between 0.36 and 

0.62) were the most suitable indices for wheat health status monitoring. Whereas, the 
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Normalized Difference Moisture Index (R2 between 0.53 and 0.79) and the Green 

Normalized Difference Vegetation Index (R2 between 0.28 and 0.41) were found to be 

less suitable for wheat health monitoring. Moderate Resolution Spectroradiometer 

(MODIS) derived NDVI for fourteen years was used to build and test a wheat yield 

forecasting model. The model was significant with an R2 value of 0.73, a p-value of 

0.00161 and an RMSE of 0.41 tons ha-1. The study established that the period 30 days 

before harvest during the anthesis growth stage, is the best period to use the linear 

regression model for wheat yield forecasting. Satellite derived agrometeorological 

parameters such as: soil moisture, evapotranspiration and land surface temperature 

were added to the NDVI based model to form a multi-linear regression model. The 

addition of these parameters to the NDVI model improved it from an R2 of 0.73 to an 

R2 of 0.82. Through the use of a correlation matrix, the NDVI (r=0.88) and 

evapotranspiration (r=0.58) were highly correlated to wheat yield as compared to soil 

moisture (r=0.27) and land surface temperature (r=-0.02). This research provided 

evidence that remote sensing can be used at acceptable levels of accuracy for wheat 

monitoring and wheat yield predictions compared to manual field surveys which are 

costly and time consuming.  
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Chapter 1 

General Introduction 

 

1.1. Introduction 

 

South Africa is a producer of different crops such as maize, wheat, sorghum, canola, 

barley, groundnuts, sunflower seeds, sweet lupines, soybeans and dry beans (DA, 

2006). The wheat industry contributes four billion rands to the gross value of 

agriculture and is a source of employment to approximately 28 000 people (DAFF, 

2012). The provinces, which produce large quantities of wheat within South Africa, are 

the Western Cape, Northern Cape and Free State (DAFF and Agbiz, 2014). The wheat 

produced in South Africa is mainly used for human consumption (bread, rusks, biscuits 

etc.) and a smaller proportion is used for the production of pasta. Additionally, low 

quality wheat is used as seeds, feed stock and has other industrial uses (DAFF, 2006).  

 

Current methods for wheat monitoring and yield estimations are reliant on ground 

based surveys and aerial surveys, which are time consuming and expensive. In 

addition to these techniques, field interviews are also conducted with farmers who are 

often reluctant to give information on their crop yields; the estimates given by farmers 

are sometimes inaccurate. Using these manual techniques provides wheat yield 

estimates after harvest, which affects the planning of imports and exports. The use of 

low cost Unmanned Aerial Vehicles (UAVs) can overcome these limitations and have 

an improved accuracy as compared to low resolution satellite imagery on a farm scale 

or field trails. However, these techniques are not suitable for regional crop yield 

forecasting (Grenzdörffer et al., 2008; Berni et al., 2009). In addition to these 

challenges, climate variability in most summer rainfall areas has decreased soil 

moisture, which has affected the yield of dryland crops. This has led to a significant 

number of farmers converting to sustainable crops due to the low productivity of wheat 

(Breitenbach and Fényes, 2000).  

 

Satellite remote sensing can be used in agricultural applications because it is cost 

effective, reliable and time saving (Sethi et al., 2014). Through the use of remotely 

sensed imagery, wheat monitoring and wheat yield forecasting can be done prior to 
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harvest as compared to manual surveys of yields. Hence, this research focused on 

developing satellite remote sensing based methods for modelling dryland wheat yields 

in terms of wheat health status monitoring and wheat yield forecasting.  

 

1.1.1. Remote Sensing for crop yield estimation 

 

Agricultural applications that rely on remotely sensed data are based on the 

assumption that spectral data are related to canopy reflectance parameters, which in 

turn, are related to the final yields (Singh et al., 2002; Ferencz et al., 2004). Different 

indices such as the normalized difference vegetation index (NDVI), vegetation 

condition index (VCI) and the temperature condition index (TCI) are derived from 

remote sensing imagery to determine the health status of certain crops (Kogan, 2001; 

Kogan, 2002; Singh et al., 2003). The NDVI values range between 1 and -1 where 

values close to 1 represent healthy dense vegetation and values close to -1 represent 

unhealthy vegetation (Singh et al., 2003). The VCI and TCI are dimensionless indices, 

derived using the NDVI and brightness temperature. When these two indices are 

greater than 70, then vegetation is healthy and conversely, an opposite trend is 

observed when vegetation is stressed (Kogan, 2001; Kogan, 2002). 

 

Numerous studies have used remotely sensed satellite imagery for crop yield 

estimations. Labus et al., (2002) demonstrated that multi-temporal NDVI satellite 

imagery can be used for wheat yield estimates in Montana, United States of America. 

In that study, it was established that Advanced Very High Resolution Radiometer 

(AVHRR)-NDVI biweekly satellite imagery provides accurate wheat yield estimates at 

a regional scale but has uncertainties at a farm level. Shao et al., (2001) developed a 

method to monitor rice growth for production estimation utilizing multi-temporal 

Radarsat data in China. In that study, it was established that classifying multi-temporal 

Radarsat imagery has an accuracy of 91% in mapping rice. Jackson et al., (2004) 

demonstrated that Landsat derived Normalized Difference Water Index (NDWI) can 

be used for yield estimation and also compared its accuracy with the NDVI for maize 

and soybeans. In the study, the NDWI proved to be superior as compared to the NDVI 

derived from Landsat data. Prasad et al., (2006) developed a crop prediction model 

using different kinds of remote sensing data such as AVHRR, National Oceanic and 
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Atmospheric Administration (NOAA), Système Pour l’Observation de la Terre (SPOT) 

and Landsat Multispectral Scanner (MSS) for maize and soybean yield in Iowa USA. 

 

Crops such as maize, wheat, soybean and rice form part of the staple diet of South 

Africans. However, few studies have been done on using remote sensing data for yield 

estimation in South Africa. For example, Unganai and Kogan (1998) demonstrated 

that maize yields can be estimated using AVHRR data. In the study, it was found that 

VCI and TCI derived from AVHRR data are highly correlated with maize yield. Frost et 

al., (2013) demonstrated that the Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite sensor data products can be applied for maize 

yield estimation in South Africa. In that study, the window method was utilized and the 

resulting window periods proved that average NDVI and average Enhanced 

Vegetation Index (EVI) data can be used for maize yield estimations. There is a need 

for more studies to be done in South Africa on using remote sensing for yield 

predictions. This need arises as current crop yield estimates rely on manual field 

surveys that are done at the end of the growing season, which is not timely for wheat 

management. During field interviews, farmers are reluctant to give exact yield 

estimates for their crops. 

 

1.1.2. Remote Sensing for crop health monitoring 

 

Crop health status monitoring is crucial for food security. Through the knowledge of 

the current crop growing conditions, improvements can be made during the season to 

maximize crop yields. For example, water shortages can be determined early in the 

season using remote sensing technologies and the irrigation patterns can be altered 

for better yields at harvest. The commonly used remote sensing based methods for 

crop monitoring are classification methods and crop models. Classification methods 

use remotely sensed satellite images to classify farmland into different classes (Ji-hua 

and Bing-fang, 2008). Principally, supervised and unsupervised classification methods 

have been reliable for this purpose (Abuzar et al., 2000; Kuenzer and Knauer, 2013). 

These approaches can be used for the identification of farms, which have healthy or 

unhealthy crops. The main challenge of the mentioned methods is discriminating 
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between pixels (i.e. an ambiguity exists), which correspond to a certain crop type when 

there are mixed land uses (Löw and Duveiller, 2014).  

 

Crop growth models are used to simulate the biophysical processes, which take place 

in the soil, crop and atmosphere to understand the growth and development of a crop 

(Doraiswamy et al., 2003). Crop growth models are commonly linked with remotely 

sensed data for crop monitoring applications (Moulin et al., 1998). The limitations of 

crop growth models are that they are less accurate when applied in non-optimal 

growing conditions. This limitation can be overcome by coupling crop growth models 

with remotely sensed data (i.e. Leaf Area Index (LAI)) to represent the actual growing 

conditions (Clevers and van Leeuven, 1996). Crop models often require input data 

that might not be available for a particular site for example, solar radiation 

(Hoogenboom, 2000). 

 

1.1.3. General study area description 

 

The Free State province (Figure 1) covers an area of approximately 129 825 km² in 

South Africa. The province is intersected by the Vaal River in the north and the Orange 

River in the south. Towards the South East, the Free State shares an international 

border with Lesotho. Within the province, there are five-district municipalities-Thabo 

Mofutsanyana, Mangaung, Xhariep, Lejweleputswa and Fezile Dabi (DRDLR, 2009; 

DRDLR, 2013). The Thabo Mofutsanyana district consists of hills and fruit farms. The 

Mangaung district is the main trade and administrative centre. The Xhariep district 

consists of farmlands and dispersed towns; it is mostly covered by grassland. The 

Lejweleputswa district is important for the Gross Domestic Product (GDP) of South 

Africa as the district hosts gold mining industries and maize production areas. The 

Fezile Dabi district is an important agricultural producer of maize (FSP, 2005).  
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Figure 1. Location of the Free State study area and the wheat production farms within 

each municipal district. 

 

The temperatures of the Free State are low in winter (minimum of -5 °C) and high 

(maximum of 35 °C) in summer. The eastern areas experience low temperatures and 

infrequent light snowfall due to the high mountain ranges, whereas, the western areas 

experience high temperatures. The rainy season occurs during the summer months, 

from September to March. The annual average rainfall is between 600 mm and 750 

mm in the east and less than 300 mm in the west. There is an occurrence of frost from 

May to September in the west although the frost can extend to October in the East 

(DRDLR, 2013). 

 

The soils of the Free State have a soil depth ranging from 600 mm to 900 mm in the 

eastern, western and northern parts of the province. Deeper soils are found in the 

Northern and Western Free State, which contribute to its higher crop yield. The 

topography is suitable for agriculture. The eastern and north eastern areas are high 

lying while the eastern and southern borders are mountainous (NDA, 2002).  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

6 
 

 

Figure 2. The relative distribution of maize and wheat in the Free State. 

 

Agricultural activity in the Free State is divided between mixed livestock and crop 

farming. The cultivated land covers approximately 3.2 million hectares and the grazing 

land covers approximately 8.7 million hectares of land (NDA, 2002). In terms of crop 

production, the Free State contributes 41% of the maize in South Africa and 30% of 

the wheat in South Africa (NDA, 2005; SAGL, 2013). In Figure 2, the wheat production 

areas of Free State are depicted relative to the maize production areas. The Thabo 

Mofutsanyana district is one of the largest wheat producers. The other food crops 

grown in the province are sorghum, canola, barley, groundnuts, sunflower seeds, 

sweet lupines, soybeans and dry beans (DA, 2006). The crops produced are mostly 

rain-fed and only a small portion of approximately 10% is irrigated (Moeletsi and 

Walker, 2012). 
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1.2. Problem statement 

 

The use of remote sensing technologies has allowed many scientists to manage 

environmental challenges due to its non-invasiveness and ability to give a synoptic 

view of features on ground targets (Lamb and Brown, 2001). In agricultural 

applications, there is a need for crop yield estimation and crop health monitoring. In 

South Africa, crop yield estimation methods rely on field visits, interviewing farmers 

and aerial surveys of crops. These methods are time consuming, costly, inconsistent 

and labour intensive and the information collected is not timely for decision-making. 

However, the use of low cost UAVs can overcome the challenges of timeliness and 

consistency on a farm scale or field trails, but not on a regional scale (Grenzdörffer et 

al., 2008; Berni et al., 2009). 

 

The use of satellite remotely sensed imagery provides a timely, cost effective and 

reliable alternative to traditional methods for surveying crop yield. However, there are 

limited studies on remote sensing based crop yield forecasting in South Africa. Most 

studies are done on small areas and do not integrate agrometeorological parameters 

in the yield models for example Unganai and Kogan, (1998) and Frost et al., (2013). 

Meanwhile, the addition of agrometeorological parameters in crop yield forecasting 

models incorporates information about the environmental conditions, which influence 

crop growth. These factors have made it necessary to use satellite remote sensing 

technology to predict crop yield on large areas.  

 

Crop health monitoring is another important process during the physiological growth 

of a crop. The use of remote sensing for crop health monitoring is not well explored in 

South Africa. Knowledge of the health status of crops can help farmers to apply 

mitigation methods to prevent or decrease crop losses earlier on in the season by 

adding fertilizers, applying herbicides or changing irrigation methods. Remote sensing 

can be used for both crop yield estimation and crop health monitoring. Additional 

applications of remote sensing in agriculture are in estimating crop parameters such 

as biomass, potential evapotranspiration, and surface soil moisture (Bastiaanssen et 

al., 2000).  
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1.3. Aim and objectives 

 

The aim of the study was to assess the application of remotely sensed spectral indices 

derived from MODIS, and Landsat 8 and, agrometeorological parameters to monitor 

dryland winter wheat health and forecast yields in the Free State Province. The 

following specific objectives provided guidance to achieve the overarching research 

goal: 

 

1. To identify remotely sensed spectral indices that comprehensively describe 

wheat health status. 

2. To develop a Normalized Difference Vegetation Index (NDVI) based wheat yield 

forecasting model. 

3. To evaluate the impact of agrometeorological parameters on the NDVI based 

wheat yield forecasting model. 

 

1.4. Significance of the research 

 

This research aids in understanding the historic and current trends in wheat yield by 

integrating remotely sensed satellite imagery and agrometeorological parameters. 

This application is of particular importance as large amounts of wheat are currently 

being imported into South Africa as the current domestic production of wheat only 

meets 55% of the national demand (DAFF and Agbiz, 2014). Crop forecasting allows 

decision makers in various sectors to plan for exports if there is an excess amount of 

wheat and imports if there is a shortage of wheat. However, manual field surveys for 

crop yield estimations are done at the end of the growing season and are expensive. 

Remote sensing provides a cost effective and non-obtrusive method of forecasting 

crop yields during the growing season. 

 

This research is also significant in terms of food security, which is defined as the 

availability of food that is nutritious and safe, acquired in a socially acceptable way 

(Labadarios et al., 2011). With the application of remote sensing techniques, accurate 

estimates of wheat yields and an indication of wheat health status can be obtained 

before harvest to determine wheat availability, thereby, improving food security.  
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With the increasing human population in South Africa, agricultural land is becoming 

limited and built up areas are increasing. This puts pressure on the current agricultural 

land to produce more food. Whereas, more farmers are converting from wheat farming 

to profitable crops such as soybeans or maize (Breitenbach and Fényes, 2000), this 

poses a threat to the current wheat supply. Therefore, it is important to use wheat yield 

forecasting and monitoring techniques, which are accurate to enhance the current 

management of wheat.  

 

1.5. Thesis structure  

 

This thesis contains five chapters. The thesis is written in a format such that, each 

chapter has an abstract, introduction, background, data and methods, result and 

discussion, conclusion and references section (with exception to Chapter 1 and 

Chapter 5 which do not have abstracts, methods, results and discussion sections). 

There is some repetition of information (i.e. references and study area) in the chapters 

due to this structure. After each introduction section, a literature review is given (with 

exception to Chapter 5), thus, an independent literature review section is not included 

in the thesis. This adopted structure aids in categorizing information relating to each 

of the three objectives together.  

 

Chapter 2: Evaluating spectral indices for winter wheat health status 

monitoring 

 

In Chapter 2, spectral indices derived from Landsat 8 images were evaluated for the 

objective of identifying indices, which are closely related to wheat health status. 

Monitoring wheat health during the growing season is vital for minimizing crop losses 

and predicting crop yield. This chapter outlines the phenological growth of wheat, 

fundamentals of remote sensing and methods for crop monitoring. Then, statistical 

analyses are performed to verify the performance of each of the spectral indices. The 

results are summarized and discussed to make conclusions. The spectral index 

related to wheat health status evaluated in this chapter is used in Chapter 3 and 

Chapter 4 for the development of wheat yield forecasting models.  
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Chapter 3: Forecasting dryland winter wheat yields using MODIS NDVI data 

 

In this chapter, the second objective of developing a wheat yield forecasting model 

from MODIS derived NDVI imagery is addressed. Crop yield forecasting is often done 

at critical stages of crop growth. Hence, this chapter also focuses on investigating 

whether the anthesis wheat growth stage is suitable for wheat yield forecasting. A 

review of remote sensing for crop yield prediction and the MODIS vegetation products 

is provided. The procedure of processing fourteen years of MODIS data and wheat 

yield data for the generation, validation and testing of a wheat-forecasting model is 

described. The results are summarized and discussed to make conclusions. The 

model derived in this chapter was modified in Chapter 4 to evaluate the influence of 

integrating agrometeorological parameters in the model for wheat yield forecasting. 

 

Chapter 4: Evaluating the influence of agrometeorological parameters for 

winter wheat yield forecasting 

 

In this chapter, satellite derived agrometeorological parameters are incorporated to 

the NDVI based model from Chapter 3 to investigate their influence on wheat yield 

forecasting. The use of agrometeorological parameters in yield models incorporates 

information on the environmental conditions, which influence crop growth and how 

they affect the accuracy of the NDVI based model. The background on the two 

common agrometeorological parameter based methods used for crop forecasting are 

presented in this chapter. In particular, the parameters important for non-irrigated 

wheat forecasting comprising the NDVI, soil moisture, evapotranspiration and surface 

temperature were used for the development of the wheat yield forecasting model. 

Statistical tests were done to validate and test the calibrated model. The relative 

importance of each parameter was determined. The results were then summarized 

and discussed to draw conclusions.  
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Chapter 5: Conclusion and Recommendations 

 

Chapter 5 deals with an overview of the research findings and links each chapter in 

the context of wheat yield modelling. The first group of questions concerned the 

broader issues of assessing and identifying i) which indices were suitable for 

application in forecasting wheat yields and ii) whether the anthesis growth stage was 

relevant for use in developing yields models? The second involved assessing the 

influence of incorporating agrometeorological parameters in wheat yield forecasting 

models. These are discussed in the context of the three research objectives and 

recommendations for future research using satellite imagery for crop forecasting and 

crop monitoring are provided.  
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Chapter 2 

Evaluating spectral indices for winter wheat health status 

monitoring 

 

Based on: Mashaba, Z., Chirima, G., Botai, J., Combrinck, L. and Munghemezulu, C., 
2016. Evaluating spectral indices for winter wheat health status monitoring in 
Bloemfontein using Landsat 8 data. South African Journal of Geomatics. 5(2), 227-
243, http://dx.doi.org/10.4314/sajg.v5i2.10 
 

Abstract 

 

Monitoring wheat growth under different weather and ecological conditions is vital for 

a reliable supply of wheat yield estimations. Remote sensing techniques have been 

applied in the agricultural sector for monitoring crop biophysical properties and 

predicting crop yields. This study explored the application of Land Surface 

Temperature (LST)-vegetation index relationships for winter wheat in order to 

determine indices that are sensitive to changes in the wheat health status. The indices 

were derived from Landsat 8 scenes over the wheat growing area across 

Bloemfontein, South Africa. The vegetation abundance indices evaluated were the 

Normalized Difference Vegetation Index (NDVI) and the Green Normalized Difference 

Vegetation Index (GNDVI). The moisture indices evaluated were the Normalized 

Difference Water Index (NDWI) and the Normalized Difference Moisture Index (NDMI). 

The results demonstrated that LST exhibited an opposing trend with the vegetation 

abundance indices and an analogous trend with the moisture indices. Furthermore, 

NDVI proved to be a better index for winter wheat abundance as compared to the 

GNDVI. The NDWI proved to be a better index for determining water stress in winter 

wheat as compared to the NDMI. These results indicate that NDVI and NDWI are very 

sensitive to LST. These indices can be comprehensive indicators for winter wheat 

health status. These pilot results prove that LST-vegetation index relationships can be 

used for agricultural applications with a high level of accuracy. 

 

Keywords: Wheat, Land Surface Temperature, Indices 
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2.1. Introduction 

 

Wheat is a staple food for most South Africans after maize, and thus, contributes 

significantly to the agricultural economy of the country (Meyer and Kirsten, 2005). 

When the Wheat Board of South Africa was abolished in 1997, wheat markets were 

deregulated (Meyer and Kirsten, 2005). Consequently, farmers diverted to other 

economically sustainable crops due to the ensued low profitability of wheat 

(Breitenbach and Fényes, 2000). Furthermore, climate change and climate variability 

affected wheat production causing economic instabilities for farmers, especially those 

in rural communities who depend solely on rain-fed agriculture as their main source of 

sustenance (Tadross et al., 2005). Subsequently, wheat production declined in South 

Africa over the years (Breitenbach and Fényes, 2000). The downward trend in 

production has necessitated monitoring the wheat health status. 

 

Remote Sensing is an essential tool for estimating crop biophysical variables, 

particularly, the Land Surface Temperature (LST)-vegetation index relationship is 

related to the canopy health (Huete et al., 1997). However, this relationship has been 

applied mainly for studying Urban Heat Islands, land use change, and urban 

expansion (Jiang and Tian, 2010; Guo et al., 2012). Parida et al., (2008) reported that 

the MODIS derived Soil Moisture Index (SMI) computed from LST-Normalized 

Difference Vegetation Index (NDVI) relationships is linked to rice yields; low SMI 

values were associated with a decline in rice productivity. Johnson (2014) linked maize 

and soybean yields to LST and NDVI for the Corn Belt region in the United States. The 

study documented that maize and soybean yields were positively correlated with 

NDVI, and had a negative correlation with daytime LST in the middle of summer. With 

the application of the LST-vegetation index relationship, water stress and vegetation 

abundance can be studied earlier during the growing season. This can help farmers 

modify their irrigation programs or applications of fertilizers, pesticides or herbicides 

to improve wheat growth at stressed areas. This approach can prevent or minimize 

crop losses and enhances agricultural productivity. 
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The aim of this research was to explore indices suitable for monitoring winter wheat 

health status based on the LST-vegetation index relationship. This application is 

important because numerous studies have focused on using the LST-NDVI 

relationship for monitoring global vegetation health or responses of vegetation to 

drought. However, these studies have not evaluated the performances of other 

spectral indices for such purposes (Kawabata et al., 2001; Julien et al., 2006; 

Raynolds et al., 2008; Julien and Sobrino, 2009; Karnieli et al., 2010; Swain et al., 

2011; Son et al., 2012). Few studies have focused on using the LST-vegetation index 

relationship for a specific crop, for example Nemani et al., (1993). Thus, research 

questions addressed in this study are: can the LST-vegetation relationships be applied 

for wheat health status monitoring? Which spectral indices are best related to LST for 

wheat health status monitoring? Moisture indices and vegetation abundance indices 

derived for Landsat 8 were evaluated against LST. The index sensitive to winter wheat 

can then be applied in predicting wheat yields in advance before harvesting or even 

modifying farm management practices during the season for better yields at harvest. 

 

The limitations of the study were that some of the Landsat 8 images were 

contaminated with cloud cover. Furthermore, because of crop rotations, some of the 

wheat farmers were not planting wheat at the same places consistently. This limited 

the samples and Landsat 8 images, which could be analyzed. Although, this study 

could be extended with a longer time series, the Landsat 8 satellite was only launched 

recently, in 2013. Another challenge is that optical remote sensing is adversely 

affected by Precipitable Water Vapour (PWV) in the atmosphere, which can limit the 

amount of energy recorded by the optical sensor. Thus, reducing the contrast between 

the visible and near-infrared spectrum (Srivastava et al., 2014). This affects the 

potential of detecting optimal values for the derived parameters. Most studies do not 

correct for PWV (e.g., Julien and Sobrino, 2009; Jiang and Tian, 2010; Guo et al., 

2012). This correction requires accurate determination of the PWV at the area of 

interest. Techniques such as Global Navigation Satellite Systems (GNSS) and 

Radiosondes can provide PWV parameters at millimetre accuracies (Combrink et al., 

2007). However, the instrumentation involved are costly to be directly applied to optical 

remote sensing unless a dedicated campaign is established. As the Trignet Network 
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increases its density and the GNSS stations are collocated with meteorological 

stations, PWV values will be easily accessible to the general public (Hackl et al., 2011). 

 

2.2. Background  

2.2.1. The phenological growth of wheat 

 

Wheat is grown in winter and summer in South Africa. Winter wheat needs a certain 

period of cold temperatures between 0 ̊C and 10 ̊C to advance from vegetative growth 

stage to the flowering stage (anthesis stage). This cold requirement is called 

vernalisation. Different cultivars of winter wheat need varying periods of vernalisation. 

Winter wheat requires temperatures varying between 5 ̊C and 25 C̊ throughout the 

growth cycle (DAFF, 2010). Spring wheat does not require a period of vernalisation as 

it can be damaged by low temperatures or frost, resulting in lower yields. Spring wheat 

grows in response to increasing temperature (DAFF, 2010). The ideal temperatures 

for spring wheat growth are between 22 ̊C and 34 ̊C (DAFF, 2010). In general, wheat 

requires a rainfall of 600 mm per annum and a soil pH between 6 and 7.5 as it is 

adversely affected by soils with a high aluminium content during the early stages of 

development (ARC, 2014). The growth of stages of wheat are detailed in Appendix 

A1. 

 

2.2.2. The spectral reflectance of vegetation 

 

Through the use of the spectral characteristics of radiation, whether it is reflected, 

transmitted or absorbed by vegetation, an understanding of physiological responses 

to growth conditions and plant adaptation to the environment is gained (Lee et al., 

2007). The spectral reflectance of green vegetation is distinctive. In the visible part of 

the electromagnetic spectrum (Figure 3), plants absorb light in the red (620–750 nm) 

and blue (450–495 nm) bands and reflect more light in the green (495–570 nm) 

portion.  

 

The main controlling factor is chlorophyll, which is the primary photosynthetic pigment 

in green plants. In certain instances, when plants are subjected to stresses which 
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hamper normal growth and chlorophyll production, the absorption decreases in the red 

and blue regions and the amount of reflection in the red waveband increases 

(Nandibewoor et al., 2014; Thenkabail et al., 2012; Carter and Knaapp, 2001). The 

reflectance of vegetation is altered more consistently at the visible wavelengths (~400-

750 nm) than the remainder of the incident solar spectrum (Lee et al., 2007). 

 

 

Figure 3. Spectral response characteristics of green vegetation (Source: http://www.r-

s-c-c.org/). 

 

In the near infrared region, green vegetation reflects between 40-60 %, this is due to 

the scattering of light in the intercellular volume of the leaves’ mesophyll (Nandibewoor 

et al., 2014; Thenkabail et al., 2012; Carter and Knaapp, 2001). These reflectance 

properties of plants in the visible and near infrared portion of the electromagnetic 

spectrum make it possible to utilize remote sensing techniques. 

 

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

20 
 

2.2.3. Spectral indices  

 

Spectral indices (Table 1) make it possible to model relationships between vegetation 

variables and reflectance data (Cohen et al., 2003). The Normalized Difference 

Vegetation Index (NDVI) is a commonly used spectral vegetation index. Through the 

use of the NDVI, crop properties such as leaf biomass, canopy cover, chlorophyll 

content, nitrogen content, and leaf area are understood (Chavez and Mackinnon, 

1994; Gamon et al., 1995). The NDVI is best applied in sparse canopies as it loses its 

sensitivity in moderate to dense canopies (Gamon et al., 1995). 

 

Table 1. Landsat 8 derived spectral indices utilized in determining the health status of 

wheat. 

Index Equation Reference 

Normalized Difference 

Vegetation Index 

5- 4

5 4

B B
NDVI

B B



  

 

Elmore et al., 

(2000) 

Green Normalized Difference 

Vegetation Index 

5- 3

5 3

B B
GNDVI

B B



  

 

Moges et al., 

(2004) 

Normalized Difference Water 

Index 

3- 6

3 6

B B
NDWI

B B



  

 

Xu (2006) 

 

Normalized Difference Moisture 

Index 

5 6

5 6

B B
NDMI

B B





  

Jin and Sader 

(2005) 

 

The Green Normalized Difference Vegetation Index (GNDVI) is a modified version of 

NDVI, which substitutes the green band in place of the red band in the NDVI equation. 

The GNDVI is sensitive to the chlorophyll concentration in vegetation when the leaf 

area index is moderately high. Therefore, the GNDVI overcomes the problems with 
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saturation, which NDVI exhibits for some vegetation types at later growth stages 

because it is more sensitive to low chlorophyll concentrations (Gitelson et al., 1996). 

 

The Normalized Difference Water Index (NDWI) is a moisture index for determining 

vegetation water content (Jackson et al., 2004). The index is designed to enhance the 

reflectance of water by using the green wavelengths, decreasing the low reflectance 

of near infrared (NIR) by water features and taking into account that vegetation and 

soil features have a high reflectance of NIR (McFeeters, 1995). 

 

The Normalized Difference Moisture Index (NDMI) is correlated to the canopy water 

content and is an indicator of water stress (Hardisky et al., 1983). The NDMI uses the 

near infrared band, which is used for the detection of reflectance of leaf chlorophyll 

content, and the mid-infrared band used for detecting the absorbance of leaf moisture 

(Wilson and Sader, 2002). This index is not as widely applied due to the complexity of 

interpreting indices that use the mid-infrared band as compared to other indices, which 

use the red and near-infrared bands (McDonald et al., 1998). 

 

The LST-vegetation index space provides a comprehensive view of vegetation 

dynamics. There is a negative relationship between LST and vegetation indices 

(Nemani et al., 1993). This relationship can be applied in studying the spatial variation 

of LST and vegetation indices for the determination of surface soil moisture or 

evapotranspiration (Julien and Sobrino, 2009). This is done by deriving drought indices 

such as the Temperature Dryness Vegetation Index (TDVI) from the LST and NDVI 

feature space for drought monitoring applications (Sandholdt et al., 2002). The slope 

of the LST-NDVI is closely related to the evapotranspiration of a surface. Thus, an 

increase in evapotranspiration causes the soil moisture and NDVI to decline whereas; 

dense vegetation has more evapotranspiration and a lower LST (Prihodko and 

Godward, 1997; Boegh et al., 1998). Additionally, the LST-vegetation relationship can 

be applied for vegetation monitoring (Julien and Sobrino, 2009). This is done by 

mapping the land cover and land use change patterns (Jiang and Tian, 2010). 
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2.3. Data and methods 

2.3.1. Study area 

 

Bloemfontein covers an area of about 6300 km2 in the Free State province of South 

Africa (see Figure 4). The region is semi-arid and experiences summer rainfall from 

January to March with a mean annual precipitation of approximately 421 mm. 

Temperatures are low in winter (minimum of -5°C) and high (maximum of 35°C) in 

summer. The average altitude is less than 1200 m above sea level (Moeletsi, 2011). 

During the study period, there were 50 farms, which had planted wheat. Of the 50 

farms, 24 sample farms had planted wheat in the same area consistently for both years 

(2013 and 2014). A buffer of 2 km was applied to these 24 sample farms to eliminate 

samples, which are close to each other, to obtain the final samples depicted in Figure 

4.  

 

Figure 4. Location map of Bloemfontein within the Free State Province. The sample 

points are illustrated by the red-dots and the wheat farms are represented by the green 

polygons. 
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2.3.2. Data acquisition and data pre-processing  

 

Landsat 8 scenes, depicted in Table 2  for Bloemfontein were acquired from the United 

States Geological Survey (USGS) site. Landsat 8 images for day of year 180 and 183 

for both 2013 and 2014 were selected as wheat is at its greenest during this period. 

Landsat 8 images were preprocessed by doing radiometric calibration, for the 

conversion of digital numbers (0 – 255) to radiances. The thermal bands, band 10 

(thermal infrared 1) and band 11 (thermal infrared 2) of Landsat 8 were converted to 

Top of Atmosphere (TOA) spectral radiance for each of the bands using the Interactive 

Digital Language (IDL) according to: 

 

            
L cal L

L M Q A

                  (2.1) 

 

where, L =TOA spectral radiance (Watts/(m2*srad*μm)), LM = Multiplicative rescaling 

factor for band 10 and 11, calQ  = Satellite image for band 10 and 11 and LA  = Additive 

rescaling factor for band 10 and 11. The band multiplicative rescaling factor had a 

constant value of 0.0003342 and a constant additive rescaling factor of 0.1 according 

to the metadata file for both thermal bands. Atmospheric corrections were done using 

the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) in the 

ENVI software, this tool converts the radiance collected at the detector to radiance at 

the surface (Cooley et al., 2002). These images were used for the computation of Land 

Surface Temperature. 

 

Reflectance’s were computed from the Landsat 8 digital number images to 

radiometrically calibrate them for the derivation of spectral indices using IDL. The TOA 

planetary reflectances were computed individually for bands 3 (green), 4 (red), 5 (near 

infrared) and 6 (short wave infrared 1) using: 

 

 '

p cal pM Q A                                              (2.2) 
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In Equation (2.2), '

  = TOA planetary reflectance, 
pM = Multiplicative rescaling factor 

for band 4, 5 and 11, calQ  = Satellite image for band 4, 5 and 11, 
pA  = Additive rescaling 

factor for band 4, 5 and 11. Additionally, corrections for the sun angle had to be made, 

according to: 

                                                       

'

(sin )SE








                                                    (2.3) 

 

where,
  = TOA planetary reflectance with correction for sun angle, '

  = TOA 

planetary reflectance and SE  = Sun elevation angle. 

 

Table 2. Landsat 8 scenes for Bloemfontein selected for the study (Source: 

http://earthexplorer.usgs.gov/). 

Path/row DOY Latitude Longitude Sun 

elevation (°) 

Scene cloud 

cover (%) 

171/80 180 -28.8691 

 

26.22283 

 

29.71951 

 

0.03 

 

171/80 183 

 

-28.8691 26.22283 

 

29.53000 

 

2.63 

 

 

2.3.3. Computing the Land Surface Temperature and Vegetation indices  

 

The TOA radiance images ( L ) were used to calculate the brightness temperature. 

However, both images had different values for the thermal conversion constants 

according to the metadata file; these were taken into account during the computation. 

The brightness temperature ( BT )  was calculated individually for both band 10 and 

band 11 according to: 

     
2

1 1

B

K
T

K

L


 

 
 

                                                   (2.4) 
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where, 
2K =Thermal conversion constant (band 10 = 1321.08 and band 11 = 1201.14), 

1K = Thermal conversion constant (band 10 = 774.89 and band 11 = 480.89) and L = 

TOA spectral radiance (Watts/(m2*srad*μm)). Thereafter, the land surface temperature 

( sT ) was computed for band 10 and band 11 separately using the brightness 

temperature images (Equation 2.4) according to Artis and Carnahan (1982): 

 

 
1 ( / ) ln

B
s

B

T
T

T  



                                        (2.5) 

 

where,   = Wavelength of emitted radiance (11.5x10-6m),    /hc  , h  = Planck 

constant (6.626x10-34Js), c  = Velocity of light (2.998x108m/s),  = Boltzmann constant 

(1.38x10-23J/K),   = Surface emissivity. The emissivity had to be taken into account, 

this was assumed to be 0.99 because NDVI falls between the range of (0.2< NDVI > 

0.5) (Sobrino et al., 2004), hence, the fractional vegetation proportion ( Pv ) was not 

necessary to calculate.   

 

                         
0.990                    ( 0.2,  0.5)

0.004 0.986   (0.2 0.5)

NDVI NDVI

Pv NDVI


 
 

  
   (2.6) 

 

The NDVI, GNDVI, NDWI and NDMI spectral indices were computed from the 

reflectance images '

  using IDL according to Table 1. 

 

2.3.4. Statistical analysis 

 

Least squares linear regression models were developed in R-Studio for the LST-

vegetation index relationships. The LST was considered a dependent variable and the 

spectral indices were considered independent variables. The coefficient of 

determination (R2) was calculated to determine the fit of the linear models. The p-value 

was calculated to determine the significance of the relationships. The Root Mean 

Square Error (RMSE) to evaluate the validity of the models. Thereafter, the 

scatterplots were made to understand the LST-vegetation index slope and the 

distribution of the sample points. 
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2.4. Results and discussion 

2.4.1. Spatial variation of the LST-vegetation index relationships at a farm level 

 

The spatial distribution of LST and the vegetation indices for selected winter wheat 

farms are illustrated in Figure 5. The LST is low at vegetated wheat farms, whereas, 

the NDVI and GNDVI are high at these wheat farms, the opposite trend is observed 

for fallow or harvested farms. This observation is expected for wheat; healthy 

vegetation reflects more radiation in the near infrared section of the solar spectrum as 

compared to the visible section. Additionally, healthy vegetation emits less thermal 

radiation in the infrared section because of cooler transpiration from the canopy 

(Kogan et al., 2005). The moisture indices are positively related to LST and indicate 

that wheat farms, which are flourishing have a high moisture content. Since 

Bloemfontein is characterized by summer rainfall, this could be indicative that these 

areas have a higher residual soil moisture during the winter season because of a high 

water table. These qualitative relationships were verified statistically. 

 

Figure 5. The performance of each vegetation index at a farm level for winter wheat. 

The farms were selected as examples from the wheat farms in Figure 1.   
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2.4.2. Statistical analysis of the LST-vegetation index relationships 

 

The results of regression analysis between LST and vegetation indices are depicted 

in Table 3. Through the use of R2, moderate relationships were observed between 

LST and NDVI for the selected vegetation indices. The LST and NDWI exhibited a 

strong relationship for the selected moisture indices. The LST-GNDVI and LST-NDMI 

both had a moderate relationship. This indicated that the LST-NDVI and the LST-

NDWI were better estimates of the wheat health status. The relationships were not the 

same over the years; this could be a result of changes in the soil conditions due to 

agricultural management practices and fluctuations in the weather patterns. 

Significance levels were calculated in order to determine the relationship between LST 

and the vegetation indices. Most of the derived linear relationships indicated a good 

level of significance with p-values less than 0.05 for all the years (Table 3). The RMSE 

values were lower in 2014 compared to 2013, this indicated improvements in the 

accuracy of the models. 

 

The scatterplots in Figure 6 are for the winter wheat sample points displayed in Figure 

4. The scatterplots indicate a decrease in the wheat health status from 2013 to 2014 

because the values for LST and the spectral indices for the sample points decreased 

over these years. Steeper slopes on the LST-vegetation index plots are observed on 

periods of reduced soil moisture and vegetation amount (Goetz, 1997). The slope of 

the LST-vegetation index scatterplots were negative, consistent with previous 

research. Nemani et al., (1993) observed a negative relationship between NDVI and 

LST for grasses, crops, and forests, and established that fractional canopy cover was 

an important variable in controlling surface temperatures. Hope (1988) observed a 

negative relationship when determining the actual canopy resistance for wheat by 

combining the remotely sensed spectral reflectance and land surface temperature. 

Weng et al., (2004) observed a negative relationship between cropland and land 

surface temperature. These relationships arise due to the cooling effects of canopy 

transpiration (Kogan et al., 2005). The use of the LST-vegetation relationships for crop 

health status monitoring described in this research can be used to replace the Crop 

Water Stress Index (CWSI), which is more computationally intensive as it requires the 

computation of the vegetation index-temperature trapezoid (Moran et al., 1994; Clarke, 
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1997). However, the disadvantage of using satellite remotely sensed imagery is that 

they give an indication of the crops water status only during the time the image was 

taken, therefore, it is important to select an image at the critical growth stages. To 

overcome this problem in time delay, Unmanned Aerial Vehicles (UAVs) can be used. 

Overall, this research has proven that the LST-vegetation index relationships can be 

used for wheat health status monitoring and has determined the best indices, which 

comprehensively describe wheat health. 
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Table 3. The LST-vegetation index regression models, coefficient of determination (R2) and significance level for winter wheat. 

Relationship Year Regression Model R2 Significance(p-value) 

LST-NDVI 2013 LST=-8.890*NDVI+289 
 

0.3552 0.031600 

 2014 LST=-9.841*NDVI+292 
 

0.6200 0.001400 

LST-GNDVI 2013 LST=-15.462*GNDVI+293 
 

0.2810 0.062380 

 2014 LST=-12.485*GNDVI+294 
 

0.4124 0.017195 

LST-NDWI 2013 LST=-25.734*NDWI+275 
 

0.6502 0.000870 

 2014 LST=-19.110*NDWI+281 
 

0.8949 0.000001 

LST-NDMI 2013 LST=-9.855*NDMI+286 
 

0.5269 0.004970 

 2014 LST=-8.256*NDMI+289 
 

0.7916 0.000040 
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Figure 6. The LST-vegetation index scatter plots for 2013-2014 at the selected sample points. The LST-vegetation index plots have 

negative relationships. 
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2.5. Conclusion 

 

This research was important because wheat is one of the staple crops for South Africa. 

With Landsat 8 derived remotely sensed data, the indices sensitive to changes in 

wheat health were identified. The LST has an inverse relationship with the vegetation 

abundance indices; this indicates that healthy wheat releases more transpiration as 

compared to unhealthy wheat. The NDVI and NDWI were found to be suitable indices 

for monitoring the wheat health status as compared to the GNDVI and NDMI. A better 

fit was observed for the moisture indices as compared to the vegetation abundance 

indices. To improve these findings, more sample points can be added depending on 

how consistently farmer’s plant wheat at the same areas. The performance of other 

vegetation indices can be compared with the ones used in this research. These pilot 

results indicate that the LST-vegetation index relationships can be applied to monitor 

wheat health status in the Bloemfontein area at the critical stages of growth. Using the 

LST-vegetation index relationship, farmers can mitigate conditions hampering wheat 

growth such as a lack of moisture, fertilizer, pesticides or herbicides at stressed areas. 

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

32 
 

2.6. References 

 

1. ARC, 2014. Guideline for the production of small grains in the summer rainfall 

areas. University of Free State. Free State.  

2. Artis, D.A. and Carnahan, W.H., 1982. Survey of emissivity variability in 

thermography of urban areas. Remote Sensing of Environment, 12(4), 313-329. 

3. Boegh, E., Soegaard, H., Hanan, H., Kabat, P. and Lesch, L., 1998. A remote 

sensing study of the NDVI-Ts relationship and the transpiration from sparse 

vegetation in the Sahel based on high resolution data. Remote Sensing 

Environment, 69, 224 – 240. 

4. Breitenbach, M.C. and Fényes, T.I., 2000. Maize and wheat production trends in 

South Africa in a deregulated environment. Agrekon, 39, 292-312.  

5. Carter, G.A. and Knapp, A.K., 2001. Leaf optical properties in higher plants: linking 

spectral characteristics to stress and chlorophyll concentration. American Journal 

of Botany, 88(4), 677-684.  

6. Chavez, P.S. and MacKinnon, D.J., 1994. Automatic detection of vegetation 

changes in the southwestern United States using remotely sensed images. 

Photogrammetric Engineering and Remote Sensing, 60(5), 571-583.  

7. Clarke, T.R., 1997. An empirical approach for detecting crop water stress using 

multispectral airborne sensors. HortTechnology, 7(1), 9-16. 

8. Cohen, W.B., Maiersperger, T.K., Gower, S.T. and Turner, D.P., 2003. An improved 

strategy for regression of biophysical variables and Landsat ETM+ data. Remote 

Sensing of Environment, 84(4), 561-571. 

9. Combrink, A.Z., Bos, M.S., Fernandes, R.M., Combrinck, W.L. and Merry, C.L., 

2007. On the importance of proper noise modelling for long-term precipitable water 

vapour trend estimations. South African Journal of Geology, 110(2-3), 211-218. 

10. Cooley, T., Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Chetwynd, 

J.H., Gardner, J.A., AdlerGolden, S.M., Matthew, M.W., Berk, A. and Bernstein, L., 

2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its 

application and validation, In Geoscience and Remote Sensing Symposium, 2002. 

IGARSS'02. 2002 IEEE International, 3, 1414-1418.  

11. DAFF, 2010. Wheat production guideline. Department of Agriculture Forestry and 

Fisheries. Pretoria.  

12. Elmore, A.J., Mustard, J.F., Manning, S.J. and Lobell, D.B., 2000. Quantifying 

vegetation change in semiarid environments: precision and accuracy of spectral 

mixture analysis and the normalized difference vegetation index. Remote Sensing 

of Environment, 73(1), 87-102. 

13. Gamon, J.A., Field, C.B., Goulden, M.L., Griffin, K.L., Hartley, A.E., Joel, G., 

Peñuelas, J. and Valentini, R., 1995. Relationships between NDVI, canopy 

structure, and photosynthesis in three Californian vegetation types. Ecological 

Applications, 5(1), 28-41.  

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

33 
 

14. Gitelson, A.A., Kaufman, Y.J. and Merzlyak, M.N., 1996. Use of a green channel in 

remote sensing of global vegetation from EOS-MODIS. Remote Sensing of 

Environment, 58(3), 289-298. 

15. Goetz, S.J., 1997. Multi-sensor analysis of NDVI, surface temperature and 

biophysical variables at a mixed grassland site. International Journal of Remote 

Sensing, 18(1), 71-94. 

16. Guo, Z., Wang S.D., Cheng, M.M. and Shu, Y., 2012. Assessing the effect of 

different degrees of urbanization on land surface temperature using remote sensing 

images. Procedia Environmental Sciences, 13, 935-942. 

17. Hackl, M., Malservisi, R., Hugentobler, U. and Wonnacott, R., 2011. Estimation of 

velocity uncertainties from GPS time series: Examples from the analysis of the 

South African TrigNet network. Journal of Geophysical Research: Solid Earth, 

116(B11404).  

18. Hardisky, M.A., Klemas, V. and Smart, R.M., 1983. The influence of soil salinity, 

growth form, and leaf moisture on the spectral radiance of Spartina alterniflora 

canopies. Photogrammetric Engineering and Remote Sensing, 49, 77-83. 

19. Hope, A.S., 1988. Estimation of wheat canopy resistance using combined remotely 

sensed spectral reflectance and thermal observations. Remote Sensing of 

Environment, 24(2), 369-383. 

20. Huete, A.R., Liu, H.Q., Batchily, K. and Van Leeuwen, W.J.D.A., 1997. A 

comparison of vegetation indices over a global set of TM images for EOS-MODIS. 

Remote Sensing of Environment, 59, 440-451.  

21. Jackson, T.J., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, 

P. and Hunt, E.R., 2004. Vegetation water content mapping using Landsat data 

derived normalized difference water index for corn and soybeans. Remote 

Sensing of Environment, 92(4), 475-482. 

22. Jiang, J. and Tian, G. 2010. Analysis of the impact of Land use/Land cover change 

on Land Surface Temperature with Remote Sensing. Procedia Environmental 

Sciences, 2, 571-575.  

23. Jin, S. and Sader, S.A., 2005. Comparison of time series tasseled cap wetness and 

the normalized difference moisture index in detecting forest disturbances. Remote 

Sensing of Environment, 94(3), 364-372.  

24. Johnson, D.M., 2014. An assessment of pre-and within-season remotely sensed 

variables for forecasting corn and soybean yields in the United States. Remote 

Sensing of Environment, 141, 116-128.  

25. Julien, Y., Sobrino, J.A. and Verhoef, W., 2006. Changes in land surface 

temperatures and NDVI values over Europe between 1982 and 1999. Remote 

Sensing of Environment, 103(1), 43-55. 

26. Julien, Y. and Sobrino, J.A., 2009. The Yearly Land Cover Dynamics (YLCD) 

method: An analysis of global vegetation from NDVI and LST parameters. Remote 

Sensing of Environment, 113(2), 329-334. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

34 
 

27. Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., 

Panov, N. and Goldberg, A., 2010. Use of NDVI and land surface temperature for 

drought assessment: Merits and limitations. Journal of Climate, 23(3), 618-633. 

28. Kawabata, A., Ichii, K. and Yamaguchi, Y., 2001. Global monitoring of interannual 

changes in vegetation activities using NDVI and its relationships to temperature and 

precipitation. International Journal of Remote Sensing, 22(7), 1377-1382.  

29. Kogan, F., Yang, B., Wei, G., Zhiyuan, P. and Xianfeng, J., 2005. Modelling corn 

production in China using AVHRR‐based vegetation health indices. International 

Journal of Remote Sensing, 26(11), 2325-2336.  

30. Lee, K.S., Kook, M.J., Shin, J.I., Kim, S.H. and Kim, T.G., 2007. Spectral 

characteristics of forest vegetation in moderate drought condition observed by 

laboratory measurements and spaceborne hyperspectral data. Photogrammetric 

Engineering & Remote Sensing, 73(10), 1121-1127.  

31. McDonald, A.J., Gemmell, F.M. and Lewis, P.E., 1998. Investigation of the utility of 

spectral vegetation indices for determining information on coniferous forests. 

Remote Sensing of Environment, 66(3), 250-272. 

32. McFeeters, S.K., 1995. The use of the Normalized Difference Water Index (NDWI) 

in the delineation of open water features. International Journal of Remote Sensing, 

17(7), 1425-1432. 

33. Meyer, F. and Kirsten, J., 2005. Modelling the wheat sector in South Africa, 

Agrekon, 44, 225-237.  

34. Moges, S.M., Raun, W.R., Mullen, R.W., Freeman, K.W., Johnson, G.V. and Solie, 

J.B., 2004. Evaluation of green, red, and near infrared bands for predicting winter 

wheat biomass, nitrogen uptake, and final grain yield. Journal of Plant Nutrition, 

27(8), 1431-1441.  

35. Moran, M.S., Clarke, T.R., Inoue, Y. and Vidal, A., 1994. Estimating crop water 

deficit using the relation between surface-air temperature and spectral vegetation 

index. Remote Sensing of Environment, 49(3), 246-263. 

36. Nandibewoor, A., Adiver, P. and Hegadi, R., 2014. Identification of vegetation from 

Satellite derived Hyper Spectral Indices. IEEE, 1215-1219. 

37. Nemani, R., Pierce, L., Running, S. and Goward, S., 1993. Developing satellite-

derived estimates of surface moisture status. Journal of Applied Meteorology, 32(3), 

548-557. 

38. Parida, B.R., Collado, W.B., Borah, R., Hazarika, M.K. and Samarakoon, L., 2008. 

Detecting drought-prone areas of rice agriculture using a MODIS-derived soil 

moisture index. GIScience & Remote Sensing, 45(1), 109-129.  

39. Prihodko, L. and Goward, S.N., 1997. Estimation of air temperature from remotely 

sensed surface observations. Remote Sensing of Environment, 60(3), 335-346. 

40. Raynolds, M.K., Comiso, J.C., Walker, D.A. and Verbyla, D., 2008. Relationship 

between satellite-derived land surface temperatures, arctic vegetation types, and 

NDVI. Remote Sensing of Environment, 112(4), 1884-1894.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

35 
 

41. Sandholt, I., Rasmussen, K. and Andersen, J., 2002. A simple interpretation of the 

surface temperature/vegetation index space for assessment of surface moisture 

status. Remote Sensing of Environment, 79(2), 213-224.  

42. Sobrino, J.A., Jiménez-Muñoz, J.C. and Paolini, L., 2004. Land surface 

temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 

90(4), 434-440. 

43. Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y. and Minh, V.Q., 2012. Monitoring 

agricultural drought in the Lower Mekong Basin using MODIS NDVI and land 

surface temperature data. International Journal of Applied Earth Observation and 

Geoinformation, 18, 417-427. 

44. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T., Gupta, M. and 

Dai, Q., 2014. Estimation of land surface temperature from atmospherically 

corrected LANDSAT TM image using 6S and NCEP global reanalysis product. 

Environmental Earth Sciences, 72(12), 5183-5196. 

45. Swain, S., Wardlow, B.D., Narumalani, S., Tadesse, T. and Callahan, K., 2011. 

Assessment of vegetation response to drought in Nebraska using Terra-MODIS 

land surface temperature and normalized difference vegetation index. GIScience 

& Remote Sensing, 48(3), 432-455. 

46. Tadross, M.A., Hewitson, B.C. and Usman, M.T., 2005. The interannual variability 

of the onset of the maize growing season over South Africa and Zimbabwe. Journal 

of Climate, 18, 3356-3372. 

47. Thenkabail, P.S., Lyon, J.G. and Huete, A., 2012. Hyperspectral remote sensing 

of vegetation, CRC Press, London, United Kingdom, 293.  

48. Weng, Q., Lu, D. and Schubring, J., 2004. Estimation of land surface temperature–

vegetation abundance relationship for urban heat island studies. Remote Sensing 

of Environment, 89(4), 467-483. 

49. Wilson, E.H. and Sader, S.A., 2002. Detection of forest harvest type using multiple 

dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396. 

50. Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance 

open water features in remotely sensed imagery. International Journal of Remote 

Sensing, 27(14), 3025-3033. 

 

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

36 
 

Chapter 3 

Forecasting dryland winter wheat yields using MODIS NDVI data 
 

Based on: Mashaba, Z., Chirima, G., Botai, J., Combrinck, L., Munghemezulu, C and 
Dube, E., 2016. Forecasting winter wheat yields using MODIS NDVI data for the 
Central Free State Region. South African Journal of Science. (Accepted, manuscript 
ID: SAJS-2016-0201.R2) 
 

Abstract 

 

Consumption of wheat is widespread and increasing in South Africa. However, global 

wheat production is projected to decline. Hence, wheat yield forecasting is crucial for 

ensuring food security for the country. The objectives of this study were to investigate 

whether the anthesis wheat growth stage was suitable for forecasting dryland wheat 

yields in Central Free State using satellite imagery and linear predictive modelling. Ten 

years of Normalized Difference Vegetation Index (NDVI) data smoothed with a 

Savitsky-Golay filter and ten years of wheat yield data were used for model calibration. 

Diagnostic plots and statistical procedures were used for model validation and 

assessing model adequacy. The period 30 days before harvest during the anthesis 

stage was established to be the best period to use the linear regression model. The 

calibrated model had a coefficient of determination of (R2) value of 0.73, p-value of 

0.00161 and a Root Mean Squared Error (RMSE) of 0.41 ton ha-1. Residual plots 

confirmed that a linear model had a good fit for the data. The quantile-quantile (Q-Q) 

plot provided evidence that the residuals were normally distributed. This meant that 

assumptions of linear regression were fulfilled and hence, the model can be used as 

a forecasting tool. Model validation showed high levels of accuracy. The evidence 

indicates that use of Moderate Resolution Imaging Spectroradiometer (MODIS) data 

during the anthesis growth stage is reliable, cost effective, and could be a time saving 

alternative to ground based surveys when forecasting dryland wheat yields in Central 

Free State. 

 

Keywords: dryland wheat, wheat yield, NDVI, MODIS, food security 
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3.1. Introduction 

 

Wheat (Triticum aestivum L.) is an important crop in many parts of the world including 

South Africa, where it is the second largest component of the staple diet after maize 

(Breitenbach and Fenyes, 2000; Ren et al., 2008). Consequently, it is crucial to predict 

wheat yields as global wheat production is expected to decrease under conventional 

management due to climate variability (Parry et al., 2004; Ortiz et al., 2008). 

Additionally, a challenge exists to feed a growing human population while avoiding 

environmental problems such as deforestation and land degradation (Balkovič et al., 

2014). The Central Free State province of South Africa is a land locked, dryland wheat 

production region, which exhibits variable agricultural production due to droughts, a 

reduced capacity to operate in world markets owing to high transport costs and foreign 

exchange constraints (Hammer et al., 2001; Byerlee et al., 2006). In order to ensure 

food security, there is a need for generating timely and accurate information on crop 

yields (Becker-Reshef et al., 2010). This section focuses on the development of a 

reliable, large scale estimate of wheat yields using the Moderate Resolution Imaging 

Spectroradiometer–Normalized Difference Vegetation Index (MODIS-NDVI). Accurate 

forecasting of the yield potential of dryland wheat in the Central Free State will aid 

agricultural decision makers in balancing the trade of agricultural commodities and 

reducing short-term price instabilities (Bastiaanssen et al., 2003). 

 

Commonly, yield-forecasting models are more reliable if applied during specific critical 

plant growth stages. For wheat, the anthesis stage (flowering stage), appears to be an 

important stage (Aparicio et al., 2002; Moriondo et al., 2007; Lopresti et al., 2015). 

During this time, water deficiencies lead to yield losses via reducing the spike and 

spikelet numbers, as well as fertility of the remaining spikelets (Giunta et al., 1993). 

Water shortages during this stage also accelerates leaf senescence and reduces the 

rate of grain filling, and thus, consequently, reducing the mean kernel weight (Royo et 

al., 1999). High temperature reduces the number of grains per ear, kernel weight and 

harvest index, leading to reduced grain yields (Wheeler et al., 1996). 
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However, a few studies have been done on using remote sensing data for yield 

estimation in South Africa (Unganai and Kogan, 1998; Frost et al., 2013). For example, 

Unganai and Kogan, (1998) demonstrated that maize yields can be estimated using 

Advanced Very High Resolution Radiometer (AVHRR) data with a spectral resolution 

of 0.58-12.5 micrometres. In that study, it was found that Vegetation Condition Index 

(VCI) and Temperature Condition Index (TCI) derived from AVHRR data were highly 

correlated with maize yields. Frost et al., (2013) demonstrated that Terra MODIS (0.6-

1.1 micrometres) satellite sensor data products can be applied for maize yield 

estimation in South Africa. In that study, the window method was utilized and the 

resulting window periods showed that average NDVI and average Enhanced 

Vegetation Index (EVI) data can be used for maize yield estimations.  

 

There is a need for more studies to be done in South Africa using remote sensing for 

yield predictions. This is important because wheat production is decreasing due to 

weather variability within summer rainfall areas, the deregulation of the wheat industry, 

and farmers converting to sustainable crops (i.e. soybean and canola) (Breitenbach 

and Fenyes, 2000). Furthermore, timeous generation of yield projections will support 

timeous decisions concerning either importation or exportation of wheat. Therefore, 

the overall objective of this section is to develop a large scale yield model for dryland 

winter wheat for the Central Free State production region using MODIS data. This was 

done by investigating whether wheat yields in Central Free State are correlated with 

the MODIS-NDVI during the anthesis stage (Aparicio et al., 2002; Moriondo et al., 

2007; Lopresti et al., 2015), and validating the performance and adequacy of the 

calibrated model. 

 

3.2. Background 

3.2.1. Remote sensing for crop yield prediction 

 

Vegetation indices derived from remote sensing technology are often used for crop 

monitoring and crop yield estimates (Ren et al., 2008). This technique is based on the 

assumption that spectral data are related to canopy reflectance parameters which in 

turn, are related to the final yield (Carlson and Ripley, 1997; Singh et al., 2002). The 

Normalized Difference Vegetation Index (NDVI) used in this study, is an indicator of 
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the photosynthetic potential of a vegetation canopy (Reed et al., 1994). The NDVI 

makes use of the near infrared (NIR) band and visible red band in the electromagnetic 

spectrum (Tucker, 1979). The limitation of this index is that it gets saturated in areas 

with dense biomass, however, hyperspectral data can overcome this limitation (Asner 

et al., 2003; Chen et al., 2006). However, hyperspectral imaging is costly as it requires 

a dedicated campaign, has a limited extent and a complex data structure compared to 

MODIS data, which is freely available. 

 

Numerous studies have used NDVI derived from various remotely sensed images for 

crop yield estimations (Yang et al., 2006; Nuarsa et al., 2011; Mutanga et al., 2013). 

For example, Yang et al., (2006) evaluated the accuracy of QuickBird satellite imagery 

and airborne imagery for mapping grain sorghum yield patterns. The results illustrated 

that Quickbird and airborne imagery had similar correlations with grain yield at 2.8 and 

8.4 m resolutions. Nuarsa et al., (2011) estimated rice yields using an exponential 

model derived from Landsat Enhanced Thematic Mapper plus (ETM+) NDVI and field 

observed rice yield in the Tabanan Regency. The study observed a coefficient of 

determination (R2) and standard error (SE) of 0.852 and 0.077 tons ha-1 respectively. 

Mutanga et al., (2013) determined the optimal time for predicting sugarcane yield to 

be two months before harvest using NDVI derived from SPOT images.  

 

3.2.2. The Moderate Resolution Imaging Spectroradiometer vegetation products 

 

The MODIS instrument, mounted on board the Terra and Aqua satellites collects data 

in 36 spectral bands to provide global coverage of the land, ocean and atmosphere 

(Wu et al., 2010; Salomonson et al., 1989). Data acquired by MODIS are intended for 

the continuity of the AVHRR time series of 20 years at an improved spatial resolution 

(250 m–1 km), spectral resolution (36 bands), temporal resolution (1-2 days) and 

geolocation accuracy (Gallo et al., 2005; Wolfe et al., 2002). Additionally, MODIS has 

a better cloud screening and atmospheric correction system (Justice et al., 1998).  

 

The MODIS land products include: vegetation indices, leaf area index, fraction of 

photosynthetically active radiation, bidirectional reflectance distribution function, land 

surface temperature, fire, net primary productivity, land cover/use change and snow 
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(Justice et al., 1998). The MODIS vegetation index product is reviewed in this section, 

further details on the MODIS bands and uses are in Appendix A4. The standard 

vegetation index products are provided at 250 m, 500 m, 1 km and 0.05° (5600 m) 

resolutions by means of 16-day composites. The two MODIS vegetation index 

products are the NDVI and the EVI given by Equation (3.1) and Equation (3.2):  
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,                                  (3.2) 

 

where, G  is the gain factor, ρ is the reflectance, L is the canopy background 

adjustment, 1C  and 2C are coefficients related to aerosol correction, EVI is sensitive to 

high biomass areas and dense forest regions. The blue band for EVI is derived from 

the 500 m blue band surface reflectance because there is no 250 m blue band for the 

MODIS instrument (Huete et al., 2002).  

 

Composting techniques are applied to the MODIS vegetation index products to 

remove the effects of clouds, aerosols and cloud shadows. There are three 

composting techniques applied to MODIS data, namely, the maximum value 

composting (MVC), constrained view maximum value composting (CV-MVC) and 

bidirectional reflectance distribution function (BRDF). These techniques were 

developed based on the experiences from the AVHRR-NDVI composting algorithm. 

The AVHRR-NDVI selects the maximum NDVI value per pixel at 14-day intervals, this 

is referred to as MVC. This technique decreases atmospheric effects; data quality 

checks are also included during the procedure (Wang et al., 2002). However, this 

method selects pixels, which have larger viewing angles and sun angles that are not 

always cloud free, atmospherically clear or closest to nadir (Goward et al., 1991).  

 

The CV-MVC method is also used for composting MODIS vegetation data products. 

This technique compares two highest NDVI values and selects the observation closest 

to nadir to represent the 16-day composite cycle. The use of CV-MVC aids in reducing 
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the spatial and temporal discontinuities in the composted product. There is no different 

method used for composting EVI, both products are derived using the same pixel 

observation (Huete, 2002). 

 

The BRDF model is used to interpolate nadir-equivalent band reflectance values from 

all bidirectional reflectance observations, which have an acceptable quality for the 

computation of vegetation indices. The Walthall BRDF model (Walthall et al., 1985) is 

used when there are five clear pixels. The criteria used by MODIS for composting is 

to first use the CV-MVC method if there are less than five acceptable pixel values, the 

BRDF composite model is used when there are at least five clear pixels or the MVC 

method is used if none of the observations are acceptable (Huete, 2002). 

 

3.3. Data and methods 

3.3.1. Study Area 

 

The Free State province hosts four distinct dryland wheat production regions: Central 

Free State, North Western Free State, South Western Free State, and Eastern Free 

State (Hensley et al., 2006; ARC, 2014). These regions receive summer rainfall and 

experience frequent droughts. Therefore, farmers adopt farm management practices, 

which make efficient use of rain for crop production. The underlying geology of the 

Free State are rocks from the Beaufort and Ecca Groups of the Karoo Supergroup, 

which make up the parent material for the soils (Hensley et al., 2006). The study sites, 

Arlington, Tweespruit and Excelsior are in the Central Free State Production Region 

(Figure 7). These sites are part of the National Wheat Cultivar Evaluation Programme 

(NWCEP) conducted by the Agricultural Research Council Small Grains Institute 

(ARC-SGI). The programme delivers information about the performance of wheat 

varieties from the major breeding companies of South Africa. The sites were selected 

systematically in a manner such that they are representative of all the production 

conditions of this geographic region (Dube et al., 2015). Dryland wheat planting 

normally takes place from the first week of July (ARC, 2014). 
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Figure 7. Map of the Central Free State wheat production region depicting the three 

study sites. 

 

3.3.2. MODIS-NDVI 

 

The 16-day composite MODIS NDVI (MOD13Q1) product images with a 250 m 

resolution used in this study are freely available from the National Aeronautical Space 

Agency (NASA) Earth Observing System (EOS) website. The data were obtained for 

a ten-year period from 2000 to 2013 (excluding 2001/2002/2008/2011) based on the 

available wheat yield data collected for at the study sites. The MOD13Q1 product is 

computed from the surface reflectance of each band (red and near infrared) as it would 

have been measured at ground level if there was no atmospheric scattering or 

absorption (Vermote et al., 2002). During data processing, corrections are made for 

the effects of atmospheric gases, aerosols and thin cirrus clouds (Vermote et al., 

1997). 
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The downloaded MODIS-NDVI images were reprojected from Sinusoidal Projection to 

Geographic Projection using the MODIS Reprojection Tool (Dwyer and Schmidt, 

2006). Additionally, rescaling of the raster images had to be done to correct the range 

of NDVI values to range from -1 to 1. The raster images were cropped with the wheat 

boundaries obtained from the ARC in collaboration with Geo Terra Image (GTI) and 

Spatial Business Intelligence (SIQ). The values for NDVI were extracted for each of 

the wheat boundary pixels at the three localities. 

 

3.3.3. Wheat yield data 

 

Annual wheat yield data for ten seasons (2000-2013 excluding 2001/2002/2008/2011) 

were used for this study. These data were collected by the ARC-SGI under the 

NWCEP programme. A randomised complete block design was used for the entire 

trials layout. The trials are planted inside non-irrigated wheat fields, in line with crop 

management practices with regard to tillage practices, seeding rates, weed control, 

fertilizer application, pest and disease control as well as planting date. The dryland 

wheat trials consist of five rows that are 5 m long with an inter-row spacing of 0.45 m. 

The harvest area is 5 × 1.35 m2, represented by three central rows. In order to 

adequately test the cultivars on the planting date spectrum, which is as wide as three 

months, two independent randomised trials (early and late planting) are planted at all 

sites within geographic regions. 

 

3.3.4. Savitzky-Golay filter: applied to NDVI time-series 

 

The Savitzky-Golay (S-G) (Savitzky and Golay, 1964) filter algorithm was used to 

smooth out the MODIS-NDVI data. The S-G filter is based on local least-squares 

polynomial approximation. The advantages of the S-G filter are that it preserves 

features of the data such as relative maxima, minima and widths (Kim et al., 2014). 

The S-G smoothing algorithm is given in Equation (3.3): 
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where, *

jY  is the filtered value, iC  is the coefficient for the i-th NDVI value of the filter, 

1jY   represents the original NDVI value, and N  is the number of convoluting integers 

equal to smoothing window size (2m+1) (Savitzky and Golay, 1964). The larger the 

value of m , the smoother the results at the expense of flattening sharp peaks (Kim et 

al., 2014).  

 

3.3.5. Model development  

 

A linear regression model was developed between the average yield of different late 

planted wheat cultivars (this is the observed yield) and the average NDVI for the three 

study sites. The average yield was considered an independent variable and the 

average NDVI was considered a dependent variable according to: 

 

 ( | )   P Y x x  (3.4) 

 

where, ( | )P Y x  is the predicted yield as function of NDVI, x  is the NDVI, 0  is the 

coefficient and 1  is the constant for winter wheat yield. Different models (logarithmic, 

exponential and power) were compared for the purpose of evaluating the models so 

that the best fitting model is selected (Mkhabela et al., 2005). Elsewhere, studies found 

that the linear model to be ideal between winter wheat yield and NDVI in various 

regions (Ren et al., 2008; Lopresti et al., 2015; Franch et al., 2015). 

 

3.3.6. Model validation 

 

Statistical tests were performed to validate the performance of the model. The 

goodness of fit of the model and the percentage of variance explained by the model 

were assessed using the coefficient of determination (R2). The significance of the 

model was tested by means of p-values. The Root Mean Squared Error (RMSE) was 

also included in the analysis. Diagnostic plots were constructed to compare the 

observed yield and the predicted yield. The residuals were plotted vs. the wheat yield, 
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this was necessary to check for linearity of the data and the presence or absence of 

inhomogeneity of variance (Larsen and McCleary, 1972). Additionally, a quantile-

quantile (Q-Q) residual plot was used to assess how close the theoretical distribution 

is to the model distribution. A normal distribution is indicated by a strong linear pattern 

for the sample points, outliers can also be detected by visual inspection of the plot 

(Ben and Yohai, 2012). These validation methods differ from the widely used methods, 

in previous studies which mostly focus on the RMSE and comparing the correlation 

between observed yield and predicted yield. The validation techniques also aided in 

understanding the underlying trends in the data. 

 

3.3.7. Model testing 

 

The NDVI data for the years 2001/2002/2008/2011/2014 were used for model testing. 

These years were not used for model building, calibration, and model validation. The 

NDVI of these years was used to predict the expected wheat yield. The predicted yield 

was then subtracted from the observed yield and the percentage error was calculated 

for the observed yield. The standard error was used as a measure of the accuracy of 

the predicted yield where values close to zero indicate high accuracy. The year 2015 

could not be used in the analysis due to severe drought in the non-irrigated wheat 

regions. 

 

3.4. Results and discussion 

3.4.1. Relationships between wheat yield and NDVI data 

 

The best fitting model between wheat yield and NDVI was developed by using the 

Zadoks scale (Zadoks et al., 1974) to identify the critical growth stages of wheat. 

According to previous research carried out in other regions, the most critical growth 

stage for dryland wheat is anthesis (Aparicio et al., 2002; Moriondo et al., 2007; 

Lopresti et al., 2015). This stage was also highly correlated with the final wheat yield 

at Central Free State as with other regions. This time occurs approximately 30 days 

prior to harvest during the first week of November (Day of year 305 on regular years).   
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The linear relationship between the average yield and average NDVI are represented 

in Equation (3.5): 

 

    212.1136 2.7307 0.73,  0.0016 .1|Y x x R pP      (3.5) 

 

In this study, the seasonal maximum NDVI was used to correlate with average wheat 

yields. The range of NDVI values for the model are between 0.32 and 0.49. These 

values fall within the threshold indicated by Ren et al., (2008) for winter wheat of 0.2 

to 0.8. The observed yield was similar to the predicted yield (Table 4), the negative 

residuals indicated periods when the model underestimated yield and positive values 

indicated periods when the model overestimated yield. The model was calibrated 

using NDVI however, other parameters such as Growing Degree Days or Heat Units, 

soil conditions, weather conditions can also be considered in order to improve the 

accuracy of the model. 

 

Table 4. The observed and predicted wheat yield derived using a simple linear 

regression model. 

Year 

 

 

Observed  

Yield 

(tons/ha) 

Predicted  

Yield 

(tons/ha) 

Residuals 

 

 

2000 2.8971 2.2542 -0.64291 

2003 1.0742 1.0736 -0.00063 

2004 1.2697 1.3914 0.12172 

2005 1.1170 1.6640 0.54699 

2006 2.7885 2.5650 -0.22344 

2007 2.8460 2.4662 -0.37975 

2009 2.7575 3.1708 0.41329 

2010 2.3952 2.2656 -0.12956 

2012 2.2734 2.7527 0.47936 

2013 2.6513 2.4662 -0.18504 
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3.4.2. Model validation 

 

The regression models’ predicted yield was compared to the observed yield from the 

ten-year winter wheat yield data (Figure 8). The p-value was 0.00161 (p<0.05) 

indicating a good significance and the R2 explained 73% of the variability in wheat 

yield. These results are similar to those reported by Lopresti et al., (2015) of an R2 of 

0.75 for winter wheat yield in Northern Buenos Aires province, Argentina. The similarity 

of these results could be due to spatial location of Argentina and South Africa in the 

Southern Hemisphere. Periods for winter wheat production are similar for both 

countries because the seasonal cycles (winter is from June to September) coincide. 

However, Ren et al., (2008) observed an R2 of 0.88 for Shandong (China) when 

relating the production of winter wheat with the accumulated MODIS derived NDVI.  

 

The RMSE of the calibrated model was validated against the observed yield. An RMSE 

of 0.41 tons ha-1 results from using the least squares regression line to predict the 

wheat yield. Becker-Reshef et al., (2010) reported a similar RMSE of 0.44 tons ha-1 for 

Kansas using MODIS-NDVI for wheat forecasting. Moriondo et al., (2007) observed 

an RMSE of 0.44 tons ha-1 and 0.47 tons ha-1 respectively when using AVHRR-NDVI 

data to develop a wheat yield model for two Italian provinces.  

 

Diagnostic plots were constructed to assess the fit of the model and whether the 

residuals are normally distributed. Residual plots (Figure 9A) were used to determine 

if the model was linear. Linear models have a random scatter of data points whereas 

non-linear models have a distinctive pattern (Larsen and McCleary, 1972). A random 

dispersal of the residuals was observed, which means that the linear model is an ideal 

fit between the wheat yield and NDVI. The Q-Q plot depicted in Figure 9B indicated 

that the residuals are homogeneous although small variations were present at the 

lower and upper tails of the plot. Periods of drought could induce such variations 

(outliers) and reduce the wheat yield since dryland wheat relies on residual soil 

moisture for growth. Overall, the residuals are normally distributed as they lie close to 

a straight line.  
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These diagnostic plots were necessary, as other studies have observed different 

relationships between vegetation indices and crop yields. Hayes and Decker (1998) 

observed a quadratic relationship between a satellite data variable, Vegetation 

Condition Index (VCI), Crop Moisture Index (CMI) and a climatological variable for 

predicting maize production. The R2 value of the model was 0.73. Ma et al. (2001) 

reported a power function to be representative of the relationship between soybean 

yield and canopy reflectance measurements at different soil types. The R2 value of the 

model was 0.80. Benedetti and Rossini (1993), Ren et al., (2008) and Lopresti et al., 

(2015) all observed a linear relationship between wheat yield and NDVI. However, 

Mkhabela et al., (2011) observed that a power function was representative of the 

relationship between NDVI and spring wheat at different environments. The 

differences in models for spring wheat and winter wheat could be induced by different 

weather conditions and irrigation as winter wheat in South Africa is not irrigated. 
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Figure 8. Central Free State predicted yield as a function of observed yield. Each point represents the observed and predicted yield 

for a particular year during the 10-year study period. 
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Figure 9. Model validation diagnostic plots. Panel (A) is the residual plot displaying randomly distributed residuals indicating that 

the linear model is the appropriate fit for the data. Panel (B) is the Q-Q plot; this clearly indicates that the residuals are normally 

distributed. 
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3.4.3. Model testing 

 

The percentage errors in Table 5 indicate that the model slightly overestimated yield 

in 2002/8/11 because the values are above 10%. However, the model performed well 

in 2001 as the percentage errors are within the threshold of ±10%. The model 

predicted wheat yield well in 2014 since this year was not falling within the 2000-2013 

period for which the model was calibrated. The standard errors were close to zero, 

which meant that the predicted yield has a reasonable level of accuracy and thus, the 

model was reliable.  

 

Table 5. Model testing results for the observed and predicted yield. 

Year Observed 
Yield (O) 

ton/ha 

Predicted 
Yield (P) 
ton/ha 

Difference 
(O-P) 
ton/ha 

%Diff for 
observed 

yield 

Standard 
Error 

tons/ha 

2001 2.7700 2.9627 -0.1927 -6.9567 0.0862 

2002 1.9900 1.2300 0.7600 38.1910 0.3399 

2008 1.2400 1.0003 0.2397 19.3306 0.1072 

2011 1.7100 1.1730 0.5370 31.4035 0.2402 

2014 2.4000 2.1300 0.2700 11.2500 0.1207 

 

Throughout this study, MODIS data from an optical sensor was used but Synthetic 

Aperture Radar (SAR) data can also be used. The advantages of SAR are that it can 

operate during the day or night, and in rainy or cloudy conditions. However, SAR data 

requires complex processing, often specialized software such as the INAHOR (Oyoshi 

et al., 2015) and thus, was not a focus of this study. Data provided by satellites at a 

high resolution such as SPOT or RapidEye are better for small scale estimates of crop 

yield because many tiles are needed to cover a large area and thus costly. 
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3.5. Conclusion 

 

The prospect of using MODIS-NDVI for winter wheat yield forecasts in the Central 

Free State production region was investigated using regression models. Findings 

suggest the best time to relate MODIS-NDVI to final wheat yields for this area is the 

period leading to 30 days before harvest (first week of November). This period 

coincides with the anthesis stage, and at this time, wheat yield is highly correlated to 

NDVI. The relationship between NDVI and wheat yield was significant with an R2 value 

of 0.73, a p-value of 0.00161 and an RMSE of 0.41 tons ha-1. Furthermore, diagnostic 

plots, model testing and validation provided evidence of the reasonable levels of model 

accuracy, model reliability, and a good fit. These techniques complement the widely 

used techniques of comparing the correlation between the observed yields and 

predicted yields and using the RMSE.  

  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

53 
 

3.6. References 

 

1. Aparicio, N., Villegas, D., Araus, J.L., Casadesus, J. and Royo, C., 2002. 

Relationship between growth traits and spectral vegetation indices in durum 

wheat. Crop science, 42(5), 1547-1555.  

2. ARC, 2014. Guideline for the production of small grains in the summer rainfall 

areas. Free State.  

3. Asner, G.P., Scurlock, J.M. and Hicke, J., 2003. Global synthesis of leaf area 

index observations: implications for ecological and remote sensing studies. 

Global Ecology and Biogeography, 12(3), 191-205. 

4. Balkovič, J., van der Velde, M., Skalský, R., Xiong, W., Folberth, C., Khabarov, 

N., Smirnov, A., Mueller, N.D. and Obersteiner, M., 2014. Global wheat 

production potentials and management flexibility under the representative 

concentration pathways. Global and Planetary Change, 122, 107-121.  

5. Bastiaanssen, W.G. and Ali, S., 2003. A new crop yield forecasting model based 

on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, 

Ecosystems & Environment, 94(3), 321-340. 

6. Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, 

A., Small, J., Pak, E., Masuoka, E., Schmaltz, J. and Hansen, M., 2010. 

Monitoring global croplands with coarse resolution earth observations: The 

Global Agriculture Monitoring (GLAM) project. Remote Sensing, 2(6), 1589-

1609.  

7. Ben, M.G. and Yohai, V.J., 2012. Quantile–quantile plot for deviance residuals in 

the generalized linear model. Journal of Computer and Graph Statistics, 13(1), 

36-47.  

8. Benedetti, R. and Rossini, P., 1993. On the use of NDVI profiles as a tool for 

agricultural statistics: the case study of wheat yield estimate and forecast in 

Emilia Romagna. Remote Sensing of Environment, 45(3), 311-326. 

9. Breitenbach, M.C. and Fényes, T.I., 2000. Maize and wheat production trends in 

South Africa in a deregulated environment. Agrekon, 39, 292-312.  

10. Byerlee, D., Jayne, T.S. and Myers, R.J., 2006. Managing food price risks and 

instability in a liberalizing market environment: Overview and policy options. 

Food Policy, 31(4), 275-287.  

11. Carlson, T.N. and Ripley, D.A., 1997. On the relation between NDVI, fractional 

vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 

241-252.  

12. Chen, P.Y., Fedosejevs, G., Tiscareno-Lopez, M. and Arnold, J.G., 2006. 

Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite 

data using agricultural measurements: an example at corn fields in western 

Mexico. Environmental Monitoring and Assessment, 119(1-3), 69-82.  

13. Dube, E., Mare-Patose, R., Kilian, W., Barnard, A. and Tsilo, T.J., 2015. 

Identifying high-yielding dryland wheat cultivars for the summer rainfall area of 

South Africa. South African Journal of Plant and Soil, 1-5.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

54 
 

14. Dwyer, J. and Schmidt, G., 2006. The MODIS reprojection tool. In: Qu, J.J., Gao, 

W., Kafatos, M., Murphy, R.E., Salomonson, V.V. (Eds.), Earth Science Satellite 

Remote Sensing. Springer Berlin Heidelberg, Berlin Heidelberg, 162–177. 

15. Franch, B., Vermote, E.F., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J., 

Justice, C. and Sobrino, J.A., 2015. Improving the timeliness of winter wheat 

production forecast in the United States of America, Ukraine and China using 

MODIS data and NCAR growing degree day information. Remote Sensing of 

Environment, 161, 131-148 

16. Frost, C., Thiebaut, N. and Newby, T., 2013. Evaluating Terra MODIS Satellite 

Sensor Data Products for Maize Yield Estimation in South Africa. South African 

Journal of Geomatics, 2, 106-119.  

17. Gallo, K., Lei, J., Reed, B., Eidenshink, J. and Dwyer, J., 2005. Multi-platform 

comparisons of MODIS and AVHRR normalized difference vegetation index 

data. Remote Sensing of Environment, 99(3), 221-231. 

18. Giunta, F., Motzo, R. and Deidda, M., 1993. Effect of drought on yield and yield 

components of durum wheat and triticale in a Mediterranean environment. Field 

Crops Research, 33(4), 399-409. 

19. Goward, S.N., Markham, B., Dye, D.G., Dulaney, W. and Yang, J., 1991. 

Normalized difference vegetation index measurements from the Advanced Very 

High Resolution Radiometer. Remote Sensing of Environment, 35(2-3), 257-277. 

20. Hammer, G.L., Hansen, J.W., Phillips, J.G., Mjelde, J.W., Hill, H., Love, A. and 

Potgieter, A., 2001. Advances in application of climate prediction in agriculture. 

Agricultural Systems, 70(2), 515-553.  

21. Hayes, M.J. and Decker, W.L., 1998. Using satellite and real-time weather data 

to predict maize production. International Journal of Biometeorology, 42(1), 10-

15. 

22. Hensley, M., Le Roux, P., Du Preez, C., Van Huyssteen, C., Kotze, E. and Van 

Rensburg, L., 2006. Soils: the Free State's agricultural base. South African 

Geographical Journal, 88(1), 11-21. 

23. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G., 

2002. Overview of the radiometric and biophysical performance of the MODIS 

vegetation indices. Remote Sensing of Environment, 83(1), 195-213.  

24. Justice, C.O., Vermote, E., Townshend, J.R., Defries, R., Roy D.P., Hall, D.K., 

Salomonson, V.V., Privette, J.L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. 

B., Knyazikhin, Y., Running, S.W., Nemani, R.R., Wan, Z., Huete, A.R., van 

Leeuwen, W., Wolfe, R.E., Giglio, L., Muller, J., Lewis, L. and Barnsley M.J., 

1998. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land 

remote sensing for global change research. IEEE Transactions on Geoscience 

and Remote Sensing, 36(4), 1228-1249.  

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

55 
 

25. Kim, S.R., Prasad, A.K., El-Askary, H., Lee W.K., Kwak, D.K. and Lee, S.H., 

2014. Application of the Savitzky-Golay filter to land cover classification using 

temporal MODIS vegetation indices. Photogrammetry, Engineering & Remote 

Sensing, 80(7), 675-685. 

26. Larsen, W.A. and McCleary, S.J., 1972. The use of partial residual plots in 

regression analysis. Technometrics, 14(3), 781-790. 

27. Lopresti, M.F., Di Bella, C.M. and Degioanni, A.J., 2015. Relationship between 

MODIS-NDVI data and wheat yield: A case study in Northern Buenos Aires 

province, Argentina. Information Processing in Agriculture, 2(2), 73-84.  

28. Ma, B.L., Dwyer, L.M., Costa, C., Cober, E.R. and Morrison, M.J., 2001. Early 

prediction of soybean yield from canopy reflectance measurements. Agronomy 

Journal. 93(6), 1227-1234. 

29. Mkhabela, M.S., Mkhabela, M.S. and Mashinini, N.N., 2005. Early maize yield 

forecasting in the four agro-ecological regions of Swaziland using NDVI data 

derived from NOAA's-AVHRR. Agricultural and Forest Meteorology, 129(1), 1-9. 

30. Mkhabela, M.S., Bullock, P., Raj, S., Wang, S. and Yang, Y., 2011. Crop yield 

forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural and 

Forest Meteorology, 151(3), 385-393. 

31. Moriondo, M., Maselli, F. and Bindi, M., 2007. A simple model of regional wheat 

yield based on NDVI data. European Journal of Agronomy, 26, 266–274. 

32. Mutanga, S., van Schoor, C., Olorunju, P.L., Gonah, T. and Ramoelo, A., 2013. 

Determining the Best Optimum Time for Predicting Sugarcane Yield Using 

Hyper-Temporal Satellite Imagery. Advances in Remote Sensing, 2(03), 269-

275. 

33. Nuarsa, I.W., Nishio, F. and Hongo, C., 2011. Rice yield estimation using 

Landsat ETM+ data and field observation. Journal of Agricultural Science, 4(3), 

45-56. 

34. Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, 

D., Dixon, J.M., Ortiz-Monasterio, J.I. and Reynolds, M., 2008. Climate change: 

Can wheat beat the heat?. Agriculture, Ecosystems & Environment, 126(1), 46-

58. 

35. Oyoshi, K., Tomiyama, N., Okumura, T. and Sobue, S., 2015. Mapping rice-

planted areas using time-series synthetic aperture radar data for the Asia-RiCE 

activity. Paddy Water Environment, 14(4), 463-472.  

36. Parry, M.L., Rosenzweig, C., Iglesias, A., Livermore, M. and Fischer, G., 2004. 

Effects of climate change on global food production under SRES emissions and 

socio-economic scenarios. Global Environmental Change, 14(1), 53-67.  

37. Reed, B.C., Brown, J.F., Van der Zee, D., Loveland, T.R., Merchant, J.W. and 

Ohlen, D.O., 1994. Measuring phenological variability from satellite imagery. 

Journal of Vegetation Science, 5(5), 703-714. 

38. Ren, J., Chen, Z., Zhou, Q. and Tang, H., 2008. Regional yield estimation for 

winter wheat with MODIS-NDVI data in Shandong, China. International Journal 

of Applied Earth Observation and Geoinformation, 10(4), 403-413.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

56 
 

39. Royo, C., Voltas, J. and Romagosa, I., 1999. Remobilization of pre-anthesis 

assimilates to the grain for grain only and dual-purpose (forage and grain) 

triticale. Agronomy Journal, 91(2), 312-316. 

40. Salomonson, V.V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., Ostrow, 

H., 1989. MODIS: advanced facility instrument for studies of the earth as a 

system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145–

153. 

41. Savitzky, A. and Golay, M.J., 1964. Smoothing and differentiation of data by 

simplified least squares procedures. Analytical Chemistry, 36(8), 1627-1639. 

42. Singh, R., Semwal, D., Rai, A. and Chikara, R.S., 2002. Small area estimation of 

crop yield using remote sensing satellite data. International Journal of Remote 

Sensing, 25, 49-56.  

43. Tucker, C.J., 1979. Red and photographic infrared linear combinations for 

monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.  

44. Unganai, L.S. and Kogan, F.N., 1998. Drought Monitoring and Corn Yield 

Estimation in Southern Africa from AVHRR Data. Remote Sensing of 

Environment, 63, 219-232.  

45. Vermote, E.F., El Saleous, N., Justice, C.O., Kaufman, Y.J., Privette, J.L., 

Remer, L., Roger, J.C. and Tanre, D., 1997. Atmospheric correction of visible to 

middle‐infrared EOS‐MODIS data over land surfaces: Background, operational 

algorithm and validation. Journal of Geophysical Research: Atmospheres, 102 

(D14), 17131-17141. 

46. Vermote, E.F., El Saleous, N.Z. and Justice, C.O., 2002. Atmospheric correction 

of MODIS data in the visible to middle infrared: first results. Remote Sensing of 

Environment, 83(1), 97-111. 

47. Walthall, C.L., Norman, J.M., Welles, J.M., Campbell, G. and Blad, B.L., 1985. 

Simple equation to approximate the bidirectional reflectance from vegetative 

canopies and bare soil surfaces. Applied Optics, 24(3), 383-387. 

48. Wang, Z., Liu, C. and Huete, A., 2002. From AVHRR-NDVI to MODIS-EVI: 

Advances in vegetation index research. Acta Ecologica Sinica, 23(5), 979-987. 

49. Wheeler, T.R., Hong, T.D., Ellis, R.H., Batts, G.R., Morison, J.I.L. and Hadley, 

P., 1996. The duration and rate of grain growth, and harvest index, of wheat 

(Triticum aestivum L.) in response to temperature and CO2. Journal of 

Experimental Botany, 47(5), 623-630.  

50. Wolfe, R.E., Nishihama, M., Fleig, A.J., Kuyper, J.A., Roy, D.P., Storey, J.C. and 

Patt, F.S., 2002. Achieving sub-pixel geolocation accuracy in support of MODIS 

land science. Remote Sensing of Environment, 83(1), 31-49. 

51. Wu, C., Niu, Z. and Gao, S., 2010. Gross primary production estimation from 

MODIS data with vegetation index and photosynthetically active radiation in 

maize. Journal of Geophysical Research: Atmospheres, 115(D12), 1-11. 

52. Yang, C., Everitt, J.H. and Bradford, J.M., 2006. Comparison of QuickBird 

satellite imagery and airborne imagery for mapping grain sorghum yield patterns. 

Precision Agriculture, 7(1), 33-44.  

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

57 
 

53. Zadoks, J.C., Chang, T.T. and Konzak, C.F., 1974. A decimal code for the 

growth stages of cereals. Weed research, 14(6), 415-421.   

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

58 
 

Chapter 4 

Evaluating the influence of agrometeorological parameters for 

winter wheat yield forecasting 

 

Based on: Mashaba, Z., Chirima, G., Botai, J. and Munghemezulu, C., 2017. 

Evaluating the influence of agrometeorological parameters for winter wheat yield 

forecasting. South African Geographical Journal. (Submitted, manuscript ID: RSAG-

2017-0021) 

 
Abstract 
 

Crop yield forecasting is a crucial process for ensuring food security in a country. 

However, current crop yield prediction techniques used in South Africa rely on manual 

field surveys, which are costly and not timely for decision making. Therefore, there is 

a need for using remotely sensed data, which is freely available for crop yield 

forecasting. Ten years of wheat yield data, NDVI and agrometeorological data such 

as: soil moisture, evapotranspiration and surface temperature were used to calibrate 

and validate a multi-linear regression forecasting model. The model was tested using 

five years of independent data. The importance of each agrometeorological parameter 

in wheat yield forecasting was investigated using a correlation matrix. The calibrated 

model had a coefficient of determination (R2) of 0.82 and a p-value of 0.0444. The 

Root Mean Square Error (RMSE) was close to zero indicating a good level of accuracy. 

Computed Mean Bias Errors (MBE) gave an indication that the predicted yield was 

similar to the observed yield. Percentage relative errors were ±10% for the model 

testing data with exception to 2010 and 2013, which indicated a reasonable level of 

accuracy. Parameters identified as important for wheat yield forecasting using a 

correlation matrix were the NDVI (r=0.88) and evapotranspiration (r=0.58). This study 

proved that remote sensing can be used at high levels of accuracy for forecasting 

wheat yield to aid timely decision making regarding imports and exports.  

 

Keywords: wheat yield, agrometeorological parameter, food security, remote sensing 
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4.1. Introduction 

 

Global food security is threatened by a declining investment in agricultural research, 

variable water resources for irrigation, and a lack of development of rural infrastructure 

(Rosegrant and Cline, 2003). Additionally, environmental factors in semi-arid regions 

such an increasing temperature and a decrease in precipitation have the potential of 

reducing the yields of essential crops such as maize, wheat, and rice (Lobell et al., 

2008). In South Africa, wheat is the second most important component forming part of 

the staple diet after maize (Breitenbach and Fenyes, 2000). Therefore, accurate 

predictions of wheat yields early in the season are vital for food security. In this 

research, different meteorological factors influencing wheat yield are integrated for the 

development of a wheat yield forecasting model for the Central Free State region.  

 

Several studies have been done using statistical models based on agrometeorological 

indices such as: growing degree days, temperature difference, photothermal units, 

heliothermal units, vapour pressure deficit, potential evapotranspiration, and relative 

deviation for predicting wheat yield (Bazgeer et al. 2007; Esfandiary et al., 2009; 

Kingra and Prabhjyot-Kaur, 2013). However, the combination of NDVI with other 

parameters such as surface temperature, precipitation, and soil moisture is not well 

studied for estimating crop yields (Bakker et al., 2005; Prasad et al., 2006; Balaghi et 

al., 2008). The addition of such parameters in crop yield forecasting models 

incorporates information about the environmental conditions, which influence crop 

growth. However, most studies focus on the NDVI as a primary predictor of crop yield 

(Prasad et al., 2006). 

 

In South Africa, there is a lack of studies using remote sensing for crop yield 

predictions. However, yield predictions rely on farmer interviews, manual field surveys 

and aerial surveys. These methods are not timely for decision making and are costly. 

The use of low cost UAVs can overcome the challenges of timeliness and consistency 

on a farm scale or field trails, but not on a regional scale as compared to satellite 

remote sensing imagery (Grenzdörffer et al., 2008; Berni et al., 2009). Establishing a 

method based on remotely sensed data such as the one developed in this research is 

of vital importance.   
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4.2. Background 

 

Crop models are a simplified representation of a crop used to understand crop growth 

and the growth responses to the environment (Miglietta and Bindi, 1993). The 

development stages on research regarding yield estimation research using crop 

simulation models are summarized in Sun (2000): prior to the 1940s, quantitative 

analysis through comparison between meteorological conditions and crop yield were 

used. In the 1950s, regression models (empirical statistical approach) between crop 

yield and weather conditions were developed. In the 1960s, advances in the 

development and application of computers led to researchers developing different crop 

simulation models. The two commonly used approaches for estimating crop yields 

integrating agrometeorological variables are reviewed. The empirical statistical 

approach is adopted in the current research. 

 

4.2.1. Empirical statistical approaches 

 

Empirical statistical approaches characterize the relationship between crop yield and 

meteorological variables using regression relationships. The accuracy of the results 

obtained from statistical models is dependent on the representativeness of the 

meteorological input data, variables used for model calibration and the accuracy of the 

data (Baier, 1979; Nonhebel, 1994). Statistical models are particularly useful for large 

area crop estimates and are often not possible to extrapolate to other areas (Liu, 

2009). The cause and effect relationships are not defined by statistical models but they 

provide a basis for understanding the past, present and future crop yield expected 

(Baier, 1979).  

 

The availability of remotely sensed data and field observed data has made it possible 

to have studies characterizing the relationship between agrometeorological data and 

yields (Ceglar et al., 2016). Balaghi et al., (2008) developed an ordinary least squares 

model to predict the grain yield of wheat for Morocco by making use of NDVI, rainfall 

and temperature data. The model forecasting ability was better at a provincial level as 

compared to a national level. Prasad et al., (2006) used the Quasi-Newton method to 

predict maize and soybean yields by incorporating NDVI, soil moisture, surface 

temperature and rainfall data for Iowa state in the United States. In the study, the 
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Quasi-Newton method minimized inconsistencies in yield prediction, which improved 

the R2 values. Bakker et al., (2005) investigated the factors, which contribute to the 

variability and trends in wheat yields across Europe by using climate, soil and 

economic variables. In the study, it was reported that the Nomenclature of Territorial 

Units for Statistics (NUTS3) level climate and soil conditions where explanatory 

variables for the variability of wheat yields in Europe. 

 

Different statistical techniques have been used for predicting crop yields. Ji et al., 

(2007) used artificial neural networks in predicting rice yield. Wendroth et al., (2003) 

used autoregressive state-space models for predicting barley yield. Foody (2003) 

demonstrated how geographical weighting can improve regression models for crop 

yield using the NDVI and rainfall. Ma et al., (2001) used an exponential model to 

predict soybean yields. Hansen et al., (2002) used least squares regression model for 

wheat and barley yield prediction. The commonly used statistical method of crop yield 

forecasting are regression relationships combining NDVI and crop yields (Prasad et 

al., 2007). 

 

4.2.2. Crop growth simulation models 

 

Crop growth simulation models simulate the growth, development and yield of a crop 

using soil, weather, crop varieties and management practices data as input (Jones et 

al., 2003). The meteorological parameters used in these type of models are: the solar 

radiation, temperature, humidity and precipitation (Baier, 1979). There is a challenge 

of obtaining these weather data for model calibration especially solar radiation data 

because it is usually not measured at experimental sites. The common practice is to 

derive the solar radiation from sunshine hours if the Amström coefficients are known 

(Hoogenboom, 2000). Crop models are point or site specific and are often not applied 

at a national scale (Liu, 2009). 

 

Different crop models simulation models which make use of agrometeorological 

parameters for yield estimations are used in agriculture. The CropSyst crop model has 

proven capabilities in the estimation of rice, alafa and water yam (Confalonieri and 

Bechini, 2004; Confalonieri and Bocchi, 2005; Macros et al., 2011). The WOFOST 
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crop model has been applied modelling sunflower growth and compared to the 

AquaCrop and CropSyst crop simulation models (Todorovic et al., 2009). The EPIC 

crop model has been applied in simulating cotton yield (Ko et al., 2009). Farre et al., 

(2002) applied APSIM crop model for simulating canola yield.  

 

This research focuses specifically on forecasting winter wheat yield. Palosuo et al., 

(2011) compared the performance of eight crop simulation models in estimating winter 

wheat yield. In the study it was observed that DAISY and DSSAT were the most 

accurate in predicting wheat yields. The CropSyst crop simulation model 

underestimated the yield. The HERMES, STICS, FASSET, APES and WOFOST 

models overestimated the yield. Recently, Castañeda-Vera et al., (2015) compared 

the performance of AquaCrop, CERES-Wheat, CropSyst and WOFOST crop 

simulation models for simulating winter wheat yield. In the study, it was observed that 

CERES-Wheat and CropSyst are superior in simulating winter wheat yield at field 

levels in semi-arid conditions. The WOFOST model was found to be best applied in 

situations where data on soil is limited and the AquaCrop model is best applied when 

water availability is not limited. 

 

4.3. Data and methods 

4.3.1. Study area 

 

The Free State province contributes 41% of the maize production in South Africa and 

30% of the wheat (NDA, 2005; SAGL, 2013). Temperatures of Free State can be low 

as -5 °C in winter and high as 35 °C in summer. The average rainfall is 600 mm to 750 

mm in the east and less than 300 mm in the west (DRDLR, 2013). There are four 

dryland wheat production regions in Free State divided into: Central Free State, North 

Western Free State, South Western Free State, and Eastern Free State (ARC, 2014). 

The 3803 wheat fields of Central Free State considered in the study are represented 

as points in Figure 10. 
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Figure 10. The wheat farms within Central Free State depicted as points. 

 

4.3.2. Data 

 

Wheat yield data for the period of 2000-2014 was used in the study. This data was 

related to surface parameters important for dryland winter wheat growth such as: 

NDVI, soil moisture, evapotranspiration and surface temperature depicted in Figure 

11. The surface temperature increased over the years as compared to the other 

surface parameters which showed slight fluctuations. These parameters were derived 

from monthly satellite imagery described in section 4.3.4 - 4.3.7 instead of in situ 

measurements because meteorological stations are not well distributed throughout the 

study area. The period selected for modelling was November since wheat harvesting 

takes place in December.  
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Figure 11. Annual variation of the parameters important for winter wheat growth. 

The mean of the 3803 wheat fields of Central Free State are depicted.  

 

4.3.3. Wheat yield data 

 

The wheat yield data (Figure 12) was obtained from the Agricultural Research Council 

Small Grain Institute (ARC-SGI). The wheat production sites part of the National 

Wheat Cultivar Evaluation Programme (NWCEP) were used to obtain wheat yield 

data. Planting takes place from the first week of July for the late wheat plantings (ARC, 

2014). The wheat farm boundaries were obtained from the ARC which collaborates 

with Geo Terra Image (GTI) and Spatial Business Intelligence (SIQ). 
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Figure 12. Wheat yield data for the period of 2000-2014 for Central Free State. 

 

4.3.4. Normalized Difference Vegetation Index 

 

The MOD13A3 MODIS NDVI monthly images at a 1 km spatial resolution were 

obtained from the National Aeronautical Space Agency (NASA) Earth Observing 

System (EOS). The NDVI images were reprojected from Sinusoidal to Geographic 

coordinates using the MODIS Reprojection Tool (MRT). The two tiles h20v11 and 

h20v12 were mosaicked and rescaled to range between -1 and 1. The NDVI values 

were extracted per pixel for wheat fields depicted in Figure 10 for each year. The same 

procedure was followed for extracting the soil moisture, evapotranspiration and 

surface temperature values. 

 

4.3.5. Soil moisture 

 

The soil moisture content for a depth of 0-10 cm underground was obtained from 

NASA Earth data. The monthly data are collected at a spatial resolution of 1° with units 

of m3.m-3. The soil moisture content is derived using the Global Land Data Assimilation 

System (GLDAS) which integrates satellite data from the Advanced Microwave 

Scanning Radiometer (AMSR) and ground based data to generate land parameters 

(Rodell et al., 2004).  
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4.3.6. Evapotranspiration 

 

The monthly MOD16 evapotranspiration product of a spatial resolution of 1 km was 

obtained from the University of Montana’s Numerical Terradynamic Simulation group. 

The evapotranspiration is derived using the algorithm detailed in Mu et al., (2011). 

MODIS Aqua tiles of h20v11 and h20v12 were mosaicked and projected to geographic 

co-ordinates using the MRT before extracting the evapotranspiration values.  

 

4.3.7. Surface temperature 

 

The monthly surface skin temperature was obtained from NASA Earth data. The 

product has a spatial resolution of 0.5×0.667° and is derived using the MERRA model 

which assimilates satellite data from the National Oceanic and Atmospheric 

Administration (NOAA), MODIS Aqua, Geostationary Operational Environmental 

Satellite system (GEOS) etc. (Rienecker et al., 2011). Surface skin temperature was 

in units of Kelvin but converted to degrees Celsius before extraction of the values. 

 

4.3.8. Statistical Analysis 

 

The meteorological parameters were related to wheat yields by means of a multiple 

linear regression model depicted in Equation (4.1) for the years 2000-2013 (excluding 

2001, 2002, 2008, 2011, and 2014). The p-value was used to assess the significance 

of the model and the coefficient for determination (R2) was used to test the goodness 

of fit of the calibrated model. The model was validated by means of the Root Mean 

Square Error (RMSE) in Equation (4.2) and the Mean Bias Error (MBE) in Equation 

(4.3). Additionally, the observed yield was plotted against the predicted yield. Model 

testing was done using independent data for 2001, 2002, 2008, 2011, and 2014 not 

used for model calibration and validation. The period of 2015 was not included in the 

analysis due to drought conditions in summer rainfall areas of Free State. Statistical 

test used to test the calibrated model were the RMSE in Equation (4.2) and the 

percentage relative error (RE) in Equation (4.4). The following equations were used 

for data analysis: 
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where, 𝑐𝑥 are the respective coefficients, 𝜀 is the error term which indicates factors 

not accounted for in the model, N is the number of observations, O is the observed 

yield, and P is the predicted yield. 

 

4.4. Results and discussion 

4.4.1. Model development 

 

The calibrated wheat forecasting model incorporating NDVI, soil moisture, 

evapotranspiration and surface temperature related well with the observed yield. The 

model explained 82% of the variability and a p-value of 0.0444 (<0.05) which meant 

that the model was statistically significant. The results are similar to those observed 

by Balaghi et al., (2008) of R2 values of 0.64 to 0.98 for wheat grain yields in Morroco. 

In that study, NDVI, rainfall, and temperature were used as predictors of wheat yield. 

Prasad et al., (2006) observed R2 values of 0.78 for maize and 0.86 for soybean. The 

study combined NDVI, precipitation, temperature, and soil moisture for crop yield 

predictions in Iowa (United States). The model calibrated in the current research is 

given in Equation (4.5): 

                                    
2

10.9483 6.3938 0.0075

             0.02133 4.1967

         0.8156, 0.0444.
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                    (4.5) 

The observed yield compared well with predicted yield, the results are depicted in 

Figure 13 and Table 6. The RMSE was close to zero which indicated that the predicted 

yield was similar to the observed yield and there was low level of inaccuracy. This 
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meant that the parameters selected for model calibration were descriptive of wheat 

yield. The MBE gave an indication whether the model underestimated (negative 

values) or overestimated yield (positive values). These differences in yield could be 

induced by factors such as: pests, changes in planting date, weeds, and pathogens 

(Oerke, 2006; Pathak et al., 2003) which affect non-irrigated wheat yield not accounted 

for in the model. The final wheat yield can also be affected by sudden meteorological 

event which occurring before harvest (Becker-Reshef et al., 2010). In this model, 

changes in the soil moisture, evapotranspiration and surface temperature can cause 

yield variabilities because forecasts are done a month before harvesting which takes 

place in December. 

 

Figure 13. The predicted wheat yield related to the observed yield. Each point 

represents a year for the period of 2000-2009. 
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Table 6. The observed and predicted wheat yield derived using an agrometeorological 

parameter based multiple linear regression model and statistical tests to validate the 

model. 

Years Observed 

Yield 

(ton/ha) 

Predicted 

yield 

(ton/ha) 

RMSE MBE 

2000 2.8971 2.8090 0.0279 0.0088 

2003 1.0742 1.1056 0.0099 -0.0031 

2004 1.2697 1.1455 0.0393 0.0124 

2005 1.1170 1.7130 0.1885 -0.0596 

2006 2.7885 2.5298 0.0818 0.0259 

2007 2.8459 2.4975 0.1102 0.0348 

2009 2.7575 3.1514 0.1246 -0.0394 

2010 2.3952 2.2264 0.0534 0.0169 

2012 2.2734 2.5657 0.0924 -0.0292 

2013 2.6513 2.3259 0.1029 0.0325 

 

4.4.2. Model Testing 

 

The calibrated model was tested using data from 2001, 2002, 2008, 2011, and 2014, 

which was not used to develop the model. Model testing assesses the validity of a 

regression model and provides statistical evidence on whether the model estimates 

the yield accurately. The model testing results are depicted in Table 5 indicating how 

the predicted yield varied from the observed yield. The percentage relative errors were 

close to ±10% for the years 2001, 2008, 2011, and 2014, which is statistically 

significant. However, variations were observed for 2002, with relative errors greater 

than 10%. The RMSE was close to zero, which indicated that the predicted yield was 

similar to the observed yield and the level of accuracy was reasonable. 
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Table 5. Model testing results for the agrometeorological parameter based model. 

Year Observed 

Yield 

(ton/ha) 

Predicted 

Yield 

(ton/ha) 

%Relative 

error 

RMSE 

2001 2.7700 2.7097 2.1754 0.0121 

2002 1.9900 1.4585 26.7063 0.1063 

2008 1.2400 1.2622 -1.7935 0.0044 

2011 1.7100 1.5332 10.3405 0.0354 

2014 2.4000 2.5095 -4.5625 0.0219 

 

The consistency at which the yield estimates are derived from field surveys can affect 

the predicted yield, thereby, causing variations in the errors. Changes in 

agrometeorological parameters within the season can also cause yield variations. The 

model developed in the current study can be updated with the data used for model 

testing because the data has an acceptable level of accuracy for future wheat 

forecasting. This is recommended because agrometeorological parameters change 

every season and forecasts are more accurate if the model is updated continuously. 

 

4.4.3. The relative influence of the selected agrometeorological parameters on 

wheat yield 

 

The importance of each of the agrometeorological parameters used to develop the 

yield forecasting model was investigated. A correlation matrix was derived to assess 

the strength of the relationships amongst the parameters with relation to wheat yield, 

the resulting matrix depicted in Figure 14. The NDVI is strongly related to wheat yield, 

with correlation value of 0.88 followed by the evapotranspiration, which had a 

correlation value of 0.58. These results are expected because the wheat in Central 

Free State is non-irrigated and the area experiences summer rainfall. This means that 

the evapotranspiration is an important component, typical of other semi-arid areas as 

determined by Moussa et al., (2007). In terms of NDVI, many studies have proven that 

the NDVI is related to wheat yield (Benedetti and Rossini, 1993; Ma et al., 2001; Ren 

et al., 2008; Lopresti et al., 2015). Though the soil moisture and surface temperature 
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are not directly related to wheat yield, these variables can be used to improve NDVI 

based models, but not as sole predictors of wheat yield.  

 

Figure 14. Correlation matrix of the agrometeorological factors influencing wheat 

yield. 

 

4.5. Conclusion 

 

The potential of using an agrometeorological parameter based model for wheat yield 

forecasting in Central Free State was investigated in this research. The importance of 

selected agrometeorological parameters in wheat forecasting was also investigated. 

The NDVI was related to satellite derived soil moisture, evapotranspiration and surface 

temperature through a multi-linear regression model for wheat yield forecasting. The 

calibrated model explained 82% of the variability and a p-value of 0.0444 (<0.05) which 

meant that the model was statistically significant. Differences between the observed 

yield and the predicted yield were attributed to factors not accounted for in the model. 

Model testing with independent data confirmed that the model had reasonable level of 

accuracy. The parameters important for wheat yield modelling in the Central Free 

State were the NDVI and the evapotranspiration. This study proved that remote 

sensing can be used for wheat yield modelling to overcome the problems of timeliness 

and cost of manual surveys for yield predictions in South Africa. The incorporation of 

agrometeorological parameters in the wheat yield model increased the predictive 

capacity of the model.   
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Chapter 5 

Conclusion and Recommendations 

 

5.1. Conclusion 

 

This research was complementary to a bigger research programme aimed at 

understanding the application of satellite data and models to forecast grain yields and 

generate agricultural statistics for the summer rainfall regions of South Africa. The aim 

of the study was to assess the application of remotely sensed spectral indices derived 

from MODIS, and Landsat 8 with agrometeorological parameters to monitor dryland 

winter wheat health and forecast yields in the Free State Province. To guide this work, 

key research questions for the study were categorized into the following two groups: 

 

a) The first group of questions concerned the broader issues of assessing and 

identifying; 

i. which indices were suitable for application in forecasting wheat yields 

and 

ii. whether the anthesis growth stage was relevant for use in developing 

yields models?  

b) Group two dealt with assessing the influence of incorporating 

agrometeorological parameters in wheat yield forecasting models.  

 

The research questions, main findings and limitations for each objective are 

summarized below: 

 

Objective 1. To identify remotely sensed spectral indices that comprehensively 

describe wheat health status. 

 

The research questions addressed in this objective were: can the LST (Land Surface 

Temperature) – vegetation index relationships be applied for wheat health status 

monitoring? Which spectral indices are best related to LST for wheat health status 

monitoring? The LST-vegetation index relationship has been applied mainly for 

studying Urban Heat Islands, land use change, and urban expansion (Jiang and Tian, 
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2010; Guo et al., 2012), in this objective, this relationship was applied for wheat health 

status monitoring. Moisture indices and vegetation abundance indices derived for 

Landsat 8 were evaluated against LST.  

 

The LST was low at vegetated wheat farms, whereas, the Normalized Difference 

Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) 

were high at these wheat farms, the opposite trend was observed for fallow or 

harvested farms. The moisture indices were positively related to LST and wheat farms 

that were flourishing had a high moisture content. This observation is expected for 

wheat, the results demonstrated that healthy wheat releases more transpiration as 

compared unhealthy wheat (Kogan et al., 2005). The NDVI and Normalized Difference 

Water Index (NDWI) were suitable indices for monitoring the wheat health status as 

compared to the GNDVI and Normalized Difference Moisture Index (NDMI). A better 

fit was observed for the moisture indices as compared to the vegetation abundance 

indices.  

 

The limitations of the study were that some of the Landsat 8 images were 

contaminated with cloud cover. Furthermore, because of crop rotations, some of the 

wheat farmers were not planting wheat at the same places consistently. This limited 

the samples and Landsat 8 images, which could be analyzed. Using the LST-

vegetation index relationship, farmers can mitigate conditions hampering wheat 

growth such as a lack of moisture, fertilizer, pesticides or herbicides at stressed areas. 

 

Objective 2. To develop a NDVI based wheat yield forecasting model. 

 

The research questions addressed in this objective were: can the anthesis growth 

stage give accurate forecasts of yield? Can Moderate Resolution Imaging 

Spectroradiometer (MODIS) derived NDVI give accurate forecasts of wheat yield? The 

prospect of using MODIS-NDVI for winter wheat yield forecasts in the Central Free 

State production region was investigated using regression models. Findings suggest 

that the best time to relate MODIS-NDVI to final wheat yields for this area is the period 

leading to 30 days before harvest (first week of November). This period coincides with 

the anthesis stage, and at this time, wheat yield is highly correlated to NDVI. Aparicio 
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et al., (2002), Moriondo et al., (2007) and Lopresti et al., (2015) all determined that this 

stage was ideal for wheat yield estimations, forecasting wheat during this stage in 

Central Free State gave accurate forecasts of wheat yield.  

 

The NDVI based linear regression model was accurate with an R2 value of 0.73, a p-

value of 0.00161 and an RMSE of 0.41 tons ha-1. These results were similar to those 

observed by Lopresti et al., (2015) of an R2 of 0.75 for winter wheat yield in Northern 

Buenos Aires province, Argentina. The similarities were because periods for winter 

wheat production are similar for both countries because the seasonal cycles coincide. 

However, Ren et al., (2008) observed an R2 of 0.88 for Shandong (China) when 

relating the production of winter wheat with the accumulated MODIS derived NDVI. 

Becker-Reshef et al., (2010) reported an RMSE of 0.44 tons ha-1 and Moriondo et al., 

(2007) observed an RMSE of 0.44 tons ha-1 and 0.47 tons ha-1, which are similar to 

those observed in this study. Diagnostic plots, model testing and validation provided 

evidence of the reasonable levels of model accuracy, model reliability, and a good fit.  

 

The limitation of this study was that in some years, wheat farmers were not planting- 

this limitation was overcome by applying the threshold suggested by Ren et al., (2008) 

that NDVI values between 0.2 to 0.8 correspond to winter wheat. The evidence 

indicates that the use of MODIS data is reliable for wheat yield forecasting during the 

anthesis growth stage. 

 

Objective 3. To evaluate the impact of agrometeorological parameters on the NDVI 

based wheat yield forecasting model. 

 

The research questions addressed in this objective were: what is the impact of 

incorporating agrometeorological parameters to an NDVI based model? Which of the 

selected agrometeorological parameters are closely related to wheat yield? The NDVI 

was related to satellite derived soil moisture, evapotranspiration and surface 

temperature through a multi-linear regression model for wheat yield forecasting. The 

calibrated model explained 82% of the variability and a p-value of 0.0444 (<0.05) which 

meant that the model was statistically significant. These results were similar to those 

observed by Balaghi et al., (2008) of R2 values of 0.64 to 0.98 for wheat grain yields 
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and Prasad et al., (2006) of R2 values of 0.78 for maize and 0.86 for soybean. Model 

testing with independent data confirmed that the model had reasonable level of 

accuracy. Differences between the observed yield and the predicted yield were due to 

factors not accounted for in the model such as: pests, changes in planting date, weeds, 

and pathogens (Oerke, 2006; Pathak et al., 2003). The addition of agrometeorological 

parameters improved the NDVI based model from an R2 of 0.73 to an R2 of 0.82.  

 

The parameters important for wheat yield modelling in the Central Free State were 

investigated using a correlation matrix. The NDVI (r=0.88) and evapotranspiration 

(r=0.58) were highly correlated to wheat yield compared to soil moisture (r=0.27) and 

land surface temperature (r=-0.02). These results were expected, as Moussa et al., 

(2007) determined that evapotranspiration is important for non-irrigated crops and 

there is evidence from prior studies that NDVI is related to crop yield, the same trend 

is observed for wheat in Central Free State (Benedetti and Rossini, 1993; Ma et al., 

2001; Ren et al., 2008; Lopresti et al., 2015). 

 

The limitation of this study was that in some years, wheat farmers were not planting, 

this limitation was overcome by applying the threshold suggested by Ren et al., (2008) 

that NDVI values between 0.2 to 0.8 correspond to winter wheat. This study 

demonstrated that remote sensing can be used for wheat yield modelling to overcome 

the problems of timeliness and cost of manual surveys for yield predictions in South 

Africa. The incorporation of agrometeorological parameters in the wheat yield model 

increased the predictive capacity of the yield models. 
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5.2. Recommendations 

 

The recommendations based on the findings of this research are as follows: 

 

 The study found that integrating agrometeorological parameters in wheat yield 

forecasting models improves their performance. Therefore, it is recommended 

that agrometeorological parameters should be integrated in wheat yield models 

to comprehensively describe the yield potential of an area when forecasting 

crop yield. The yield models should be updated annually where possible 

because they lose accuracy over time as the environmental conditions change. 

 

 Cloud cover limited the Landsat 8 images analysed in the study during the 

process of evaluating spectral indices for wheat health status monitoring. 

Therefore, it is recommended that microwave sensors such as Synthetic 

Aperture Radar (SAR) should be considered for yield predictions because they 

operate on all weather conditions. Optical sensors are often not useful when 

cloud cover is present. 

 

 Selected spectral indices were evaluated for wheat health in this research. 

However, different spectral indices from other satellite payloads such as the 

modified red edge NDVI (MRENDVI) and the Enhanced Vegetation Index (EVI) 

can be compared to the ones used in this study for wheat health status 

monitoring. 

 

 This research made use of satellite derived agrometeorological data because 

the spatial distribution of weather stations was poor. However, data from ground 

stations e.g., weather stations can also be used if present where agricultural 

activity is prominent.  
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Appendices 

Appendix A1: The phenological growth of wheat 

 

Wheat yields and quality are determined by a number of factors such as water 

availability (Asseng et al., 2002), changes in the planting date or climatic variables (i.e. 

temperature) and pests (Pathak et al., 2003). Water stress due to reduced rainfall is a 

dominant factor which causes decreased wheat yields (Dogan et al., 2007; Innes et 

al., 2015). Delays in the planting date of wheat causes late flowering, which forces the 

grain filling period to overlap with the high temperature regime, which affects the wheat 

quality (Singh et al., 2010). Additionally, high temperatures accelerate wheat 

development and decrease the grain filling period, which reduces wheat yields 

(Sharma, 1992; Sharma et al., 2008). Furthermore, pests such as weeds, pathogens 

and animals are responsible for 50% of the global potential loss of wheat (Oerke, 

2006). The growth stages of wheat are described using the Feekes scale (Figure 15) 

which is outlined by Miller (1992) and Fageria et al., (1997). 

 

Figure 15. The growth stages of wheat according to the Feekes scale (Source: 

http://www.uky.edu/). 
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i. Feekes 1.0 - Seedling Emergence 
 

The adapted seeds are planted in a fertile seedbed, which has enough moisture. It is 

important to plant the seeds at the right time as late planted wheat has less time to 

tiller and should be planted at high quantities to account for fewer tillers. At this stage, 

leaves are visible on the first shoot. 

 

ii. Feekes 2.0 - Beginning of tillering 

 

A tiller is a shoot, which emerges in the axil of a leaf (where the leaf joins the stem), 

or the coleoptile node (originates from the seed). The tillers have the same root mass 

as the original shoot or main stem. Once these tillers emerge, secondary tillers follow 

them from the axil of the primary tiller and the tertiary tillers develop from the axil of 

the secondary tillers and the process continues to form the tillers. 

 

iii. Feekes 3.0 - Tillers formed 

 

Winter wheat can tiller for many weeks. This process is dependent on factors such as 

the planting date and weather conditions. When there is winter dormancy, the process 

will be completed or disturbed. Measures should be taken to prevent weed infestation, 

which compete with the wheat for water, nutrients and light as a large number of tillers 

that are significant for grain yield are formed. At this stage, the leaves are twisted 

spirally.  

 

iv. Feekes 4 .0 - Beginning of erect growth, leaf sheaths lengthen 

 

The leaf sheaths continue elongating. Most of the tillers are formed prior to this stage 

and the secondary root system is starting to develop. The winter wheat begins to grow 

upright. Insect and weed control continues. 

 

v. Feekes 5.0 - Leaf sheaths strongly erect 

 

The tillers stop developing and the wheat grows vertically. Even wheat types, which 

grow horizontally or are low growing, start to grow upwards. This growth pattern is due 

to the leaf cover on the ground, which forms a false stem. The growth and size of 
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heads is determined. This takes place after vernalisation has completed, which causes 

the growing point below the soil at the crown to differentiate. 

 

vi. Feekes 6.0 - 7.0- First node is visible followed by the second node 

 

There is a change from vegetative growth to reproductive growth. The nodes are 

formed before this stage, but they are fused together and are not easy to visualize with 

the naked eye. The node gets swollen and is visible above the soil at Feekes stage 6. 

The head is above the node that gets pushed upwards, and the true stem starts to 

form, all the potential spikelets and florets are present. Then, the second node starts 

to appear above the soil next to the last leaf visible and the spike expands. 

 

vii. Feekes 8.0 - 9.0 - Flag leaf is visible followed by the ligule of the flag leaf 

 

The flag leaf starts to appear which is the last leaf. This leaf makes up 75% of the leaf 

area which contributes to grain fill. At this stage irrigation scheduling is important and 

the farmer can determine whether there are fungal disease on the wheat and whether 

there wheat is under stress. When the flag leaf has fully emerged at Feekes 9.0, army 

worms can cause significant damage to the yield potential. 

 

viii. Feekes 10.0 –10.5 Boot stage and flowering 

 

The first ears of wheat appear and the heading process proceeds until all the ears are 

out of the sheath. When the heading process is complete, flowering begins at the top 

and the base of the ear. The wheat undergoes self-pollination before the anthers come 

out. 

 

ix. Feekes 11.0 - Ripening 

 

The kernels of wheat go through the stages of milky ripening, when a milky fluid is 

present in the kernel, mealy ripening, when the kernel is starting to solidify and the 

kernels harden when the harvest is ready. 
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Appendix A2: The wheat growing calendar for Free State Province 

 

 

Figure 16. A schematic presentation of dryland wheat crop planting dates and duration 

in geographic regions of the summer rainfall area, (Free State) South Africa. SWFS - 

South Western Free State; NWFS - North Western Free State; CFS - Central Free 

State and EFS - Eastern Free State (Courtesy: Ernest Dube). 
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Appendix A3: Landsat 8 satellite characteristics 

 

Table 7. Landsat 8 satellite bands (Source: http://landsat.usgs.gov). 

Band number Band Wavelength 
(μm) 

Resolution 
(m) 

1 Coastal 
aerosol 

0.43-0.45 30 
 

2 Blue 0.45-0.51 30 
3 Green 0.53-0.59 30 
4 Red 0.64-0.67 30 
5 Near Infrared 0.85-0.88 30 
6 Short Wave 

Infrared 
(SWIR) 1 

1.57-1.65 30 

7 Short Wave 
Infrared 

(SWIR) 2 

2.11-2.29 30 

8 Panchromatic 0.50-0.68 15 
9 Cirrus 1.36-1.38 30 
10 Thermal 

Infrared (TIRS) 
1 

10.60-11.19 100 
(resampled to 

30m) 
11 Thermal 

Infrared (TIRS) 
2 

11.50-12.51 100 
(resampled to 

30m) 
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Appendix A4: The Moderate Resolution Image Spectroradiometer technical 

specifications 

 

Table 8. The Moderate Resolution Image Spectroradiometer characteristics (Source: 

http://modis.gsfc.nasa.gov). 

Primary Use Band Bandwidth 
(μm) 

Spectral 
Radiance 
(W/m2.μm.
sr) 

SNR* Spatial 
Resolution 
at Nadir (m) 

Land/cloud  

Boundaries 

1 0.620-0.670 21.8 128 250 

2 0.841-0.876 24.7 201  

Land/cloud  

Properties 

3 0.459-0.479 35.3 243 500 

4 0.545-0.565 29.0 228  

5 1.230-1.250 5.4 74  

6 1.628-1.652 7.3 275  

 7 2.105-2.155 1.0 110  

Ocean colour/ 

phytoplankton/ 

biogechemistry 

8 0.405-0.420 44.9 880 1000 

9 0.438-0.448 41.9 838  

10 0.483-0.493 32.1 802  

11 0.526-0.536 27.9 754  

12 0.546-0.556 21.0 750  

13 0.662-0.672 9.5 910  

14 0.673-0.683 8.7 1087  

15 0.743-0.753 10.2 586  

16 0.862-0.877 6.2 516  

Atmospheric water 

vapour 

17 0.890-0.920 10.0 167 1000 

18 0.931-0.941 3.6 57  

19 0.915-0.965 15.0 250  

 

*Signal-to-noise ratio 
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Table 8. continued 
 

Primary Use Band Bandwidth  

(μm) 

Spectral 

Radiance 

(W/m2.μm.

sr) 

Required 

NEΔT* 

(K) 

Spatial 

Resolution 

at Nadir (m) 

Surface/cloud 

temperature 

20 3.660-3.840 0.45 0.05 1000 

21 3.929-3.989 2.38 2.00  

22 3.929-3.989 0.67 0.07  

23 4.020-4.080 0.79 0.07  

Atmospheric  24 4.433-4.498 0.17 0.25 1000 

Temperature 25 4.482-4.549 0.59 0.25  

Cirrus clouds 26 1.360-1.390 6.00 150 

(SNR) 

1000 

27 6.535-6.895 1.16 0.25  

28 7.175-7.475 2.18 0.25  

29 8.400-8.700 9.58 0.05  

Ozone 30 9.580-9.880 3.69 0.25 1000 

Surface/cloud 

Temperature 

31 10.780-11.280 9.55 0.05 1000 

32 11.770-12.270 8.94 0.05  

Cloud Top 

Altitude 

33 13.185-13.485 4.52 0.25 1000 

34 13.485-13.785 3.76 0.25  

35 13.785-14.085 3.11 0.25  

36 14.085-14.385 2.08 0.35  

 

*Noise-equivalent temperature difference  
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Appendix A5: The Moderate Resolution Image Spectroradiometer tiles for 

Central Free State 

 

 

Figure 17. The MODIS tiles for Central Free State in Sinusoidal projection (Source: 

http://modis-land.gsfc.nasa.gov). 
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Appendix A6: Parameters for the yield models 

 

Table 9. The parameters used for developing the NDVI and agrometeorological 

parameter based models. 

Years Yield NDVI SM ET ST 

2000 2.8971 0.4115 0.2764 32.7896 22.8568 

2001 2.7700 0.4419 0.1866 47.8624 24.2016 

2002 1.9900 0.3685 0.1593 14.4091 23.1671 

2003 1.0742 0.3141 0.1868 17.4989 25.2286 

2004 1.2697 0.3403 0.1556 12.0075 24.9303 

2005 1.1170 0.3628 0.1918 22.5237 25.4442 

2006 2.7885 0.4372 0.1774 33.1656 26.1245 

2007 2.8459 0.4290 0.1922 30.4485 25.3217 

2008 1.2400 0.3055 0.2132 27.2331 25.6317 

2009 2.7575 0.4872 0.1920 31.3410 25.8742 

2010 2.3952 0.4125 0.1875 20.0611 26.1694 

2011 1.7100 0.3667 0.1694 12.8948 25.0812 

2012 2.2734 0.4527 0.1713 21.3315 25.8417 

2013 2.6513 0.4290 0.1773 17.2055 26.4126 

2014 2.4000 0.4307 0.1974 22.8780 26.1047 
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