
Strehl ratio and amplitude-weighted generalized orthonormal Zernike-
based polynomials

COSMAS MAFUSIRE* AND TJAART P. J. KRÜGER
Department of Physics, Faculty of Natural and Agricultural Science, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa

*Corresponding author: cosmasmafusire@gmail.com

The concept of orthonormal polynomials is revisited by developing a Zernike-based orthonormal set for a non-circular 
pupil that is transmitting an aberrated, non-uniform field. We refer to this pupil as a general pupil. The process is 
achieved by using the QR form of the Gram Schmidt procedure on Zernike circle polynomials and is interpreted as a 
process of balancing each Zernike circle polynomial by adding those of lower order in the general pupil, a procedure 
which was previously performed using classical aberrations. We numerically demonstrate this concept by comparing the 
representation of phase in a square-Gaussian pupil using the Zernike-Gauss square and Zernike-circle polynomials. As 
expected, using the Strehl ratio, we show that only specific lower-order aberrations can be used to balance specific 
aberrations, for example, tilt cannot be used to balance spherical aberration. In the process, we present a possible 
definition of the Maréchal criterion for the analysis of the tolerance of systems with apodized pupils.

OCIS codes: (080.1005) Aberration expansions; (120.5050) Phase measurement; (110.0110) Imaging systems; (000.4430) 
Numerical approximation and analysis.

1. Introduction
The phase of a weakly aberrated uniform optical field through a
circular pupil can be represented by expansion of an infinite
discrete set, known as the Zernike circle (ZC) polynomial set
[1–5]. The ZC set is the only polynomial set derived by
balancing Seidel aberrations that are normalized in a unit circle.
For this reason, ZC expansion coefficients are associated
with experiencing specific optical effects by the field, and so
they were initially applied to the problem of diffraction theory
of light beams carrying aberrations [6]. The advantages of
exploiting the orthonormality of such polynomials include
the following:

(1) Each expansion coefficient is unique in that it is inde-
pendent of the number of polynomials used in a particular
expansion.

(2) Only piston has a non-zero mean; therefore, the mean
value of a linear combination of an orthonormal set is the pis-
ton coefficient, which defines the mean of the wavefront.

(3) The wavefront variance is calculated from the sum of
the squares of the non-piston terms.

(4) Each coefficient, except the piston, represents the
minimum variance associated with the aberration and, by ex-
tension, represents the standard deviation of the respective
aberration term.

The last two statements have implications in the design of
systems with circular pupils. In a specific phase expansion, re-
moval of one ZC coefficient results in a lower wavefront error,
making the phase less deformed. This is the basis of the oper-
ation of adaptive optical systems, whether in large telescope sys-
tems or in small-scale microscopy applications. They operate by
removing aberrations and taking wavefront error measurements
until a selected value is achieved. [7].

It is apparent that the advantages of using orthonormal pol-
ynomials are lost if the pupil is no longer circular. The case that
has been extensively studied is the one that pertains to modern
telescope systems, which utilize non-circular mirrors, specifi-
cally annular, elliptical, hexagonal, square, rectangular and bin-
ocular shapes [8–14]. Polynomials that are orthogonal to these
shapes have been available for at least ten years [8]. They were
achieved using methods such as the recursive Gram–Schmidt
procedure [8–15] and nonrecursive methods that include
the Cholesky decomposition [16] and diffeomorphism [17].
Collectively, this work has shown that it is indeed possible
to generate a polynomial basis set orthonormal in a pupil of
any shape and thereby restore the advantages of orthonormality.
Moreover, these polynomials are derived from the ZC set,
meaning that the process creates the same aberrations, but they
are normalized in the non-circular pupil. For this reason, they
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can be referred to as orthonormal Zernike-based (OZ) polyno-
mials, of which the ZC set is a special case. The whole process
can be summarized as follows: ZC polynomials are derived by
balancing classical Seidel aberrations by adding lower-order
Seidel polynomials to minimize the variance in circular pupils,
whereas OZ polynomials are created by balancing ZC polyno-
mials by adding lower-order ZC polynomials to balance them
in non-circular pupils. It is a one-to-one relationship that is
carried over from Seidel polynomials to any pupil of choice,
indicating that for every Seidel spherical aberration term, there
is an equivalent ZC spherical aberration term and an OZ
spherical aberration term. By extension, it is possible to derive
one OZ set from another, for example, by deriving the Zernike
annular set from the Zernike elliptical set. It is also possible to
determine an OZ set from the Seidel series [4].

However, minimal effort has been spent on non-uniform or
apodized fields [18–20]. These fields are generally described as
having an amplitude in which the energy is concentrated about
the beam axis but decreases as one moves to the margins.
Practical realization of these systems includes installing an ap-
propriate absorbing filter at the pupil or using laser transmit-
ters. The finite size of the pupil has the effect of truncating the
energy of the field; the bigger the pupil, the less the truncation
such that if the beam is sufficiently small, the effects of trun-
cation can be ignored. In 1995, Mahajan introduced the
Zernike-Gauss circle and Zernike-Gauss annular polynomials
and then investigated their use on weakly truncated, weakly
aberrated Gaussian pupils with circular and annular shapes, re-
spectively [21]. In this paper, we extend Mahajan’s model to the
case of non-uniform fields with general non-circular shapes.
Our approach is based on diffraction theory to show the ne-
cessity of developing an OZ set for the non-uniform fields
in any aperture shape, which we collectively refer to as “general
pupils.” The model is extended to the case of strongly aberrated
systems and analyzed by adding different amounts of ZC de-
focus and tilt, so that the conditions for maximizing the am-
plitude-weighted Strehl ratio of the system can be investigated.

The paper is organized as follows: the Strehl ratio of a light
field in a general pupil is discussed in Section 2, with emphasis
on weakly aberrated systems. In Section 3, a generalized poly-
nomial set is derived, and its mathematical properties are de-
scribed. A relationship between the orthonormal set and ZC
polynomials is derived in Section 4 to emphasize the physical
meaning of such a set. In Section 5, we investigate Gaussian
light fields in square apertures with the conclusion outlined
in Section 6. Throughout this paper, bold small and capital
letters are, respectively, used to represent column vectors and
matrices where t represents transposition.

2. Amplitude-Weighted Strehl Ratio
In this Section, a theory for the derivation of the Strehl ratio in
general pupils is outlined. The pupil function for a system with
a general pupil may be presented by a pupil function

E�ρ� �
�
A�ρ� expfiϕ�ρ�g; inside the aperture

0; outside the aperture
; (1)

where i � ffiffiffiffiffi
−1

p
and A�ρ� and ϕ�ρ� are the real amplitude and

phase of the field, respectively, with ρ ∈ R2 a position vector

representing the transverse normalized spatial coordinates of
the field in the pupil. The intensity of the focused field in
the image plane at a distance R behind the pupil can be calcu-
lated through the diffraction equation [4,22]

I�r� �
�

k
2πR

�
2
����
Z Z

A�ρ� expfiϕ�ρ�g exp
�
−
ikρ · r
R

�
d2ρ

����
2

;

(2)

where r ∈ R2 is a position vector representing the transverse
spatial coordinates of the field in the image plane. In the
context of imaging, the pupil can be considered to be part
of a centered optical system through which monochromatic
light exits, as shown in Fig. 1. Behind the exit pupil lies the
Gaussian plane of a system at distance R away, such that
one can imagine a Gaussian reference sphere passing through
the center of the pupil, C , centered at r � 0 at O on the
Gaussian plane. It is also assumed that the image space is of
unit refractive index. In this case, aberrations can be defined
as a deviation from this reference sphere, and they are embod-
ied in the function ϕ�ρ� and illustrated by the dotted line,
which, incidentally, passes through O as well. The mean cur-
vature of ϕ�ρ� is represented by the observation sphere also
passing through C but centered at X , with a radius of curvature
Rx . The observation plane is now defocused from the Gaussian
image plane and tilted from the axis, a result of the aberrations
in the system. The focal spot generated by Eq. (2) is sometimes
referred to as the incoherent point spread function (PSF) of the
imaging system and indicates that the weighting provided by
the amplitude of the field, the aberration composition at the
exit pupil, and the shape all clearly influence the value.

The presence of aberrations in an imaging system changes
the position of the focus from that at the Gaussian image point
Y . There are two main effects for which most basic imaging
systems are designed to control, namely, field curvature and
distortion. Field curvature is a result of the imaging system con-
centrating light on the Gaussian plane along the system axis at
the center of the Gaussian reference sphere. Deviation from the
Gaussian sphere is along the axis where the resultant focal plane
is located in front of or behind Gaussian plane. The position of
the new foci can be calculated using [23]:

Fig. 1. Schematic diagram of an imaging system focusing non-uni-
form light on a Gaussian plane at point O. The presence of aberrations
results in a new focal point, X , on the defocused observation plane.
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Rx � −
k
RR

x2A2�ρ�d2ρRR
x∂xϕ�ρ�A2�ρ�d2ρ ;

Ry � −
k
RR

y2A2�ρ�d2ρRR
y∂yϕ�ρ�A2�ρ�d2ρ : (3)

due to the phase ϕ�ρ�, where ρ � ρ�x; y�. If the aberration con-
sists only of system field curvature, then both Rx and Ry will
reduce to R. Deviation from the Gaussian plane can be cor-
rected by moving the observation plane to the new focal plane,
a process called defocusing. Alternatively, distortion alters the
direction of the propagation of light such that the centroid of
the image spot moves transversely. The centroid coordinates at
the image plane, �hxii ; hyii�, result in the beam pointing [4]

αx �
hxii
R

�
RR

∂xϕ�ρ�A2�ρ�d2ρRR
A2�ρ�d2ρ ;

αy �
hyii
R

�
RR

∂yϕ�ρ�A2�ρ�d2ρRR
A2�ρ�d2ρ : (4)

Distortion can be corrected by tilting the image plane by an
amount equal to the amount of distortion in the system. Note
that for Eqs. (3) and (4), ϕ�ρ� should be a sum of the amount
of field curvature in the system added to the extra phase
function due to unwanted aberrations.

It is possible to defocus and tilt the image plane until the best
image is acquired. The simplest control parameter is to measure
the amount of light delivered to the center of the image plane.
This is because the presence of aberrations in the system results
in deflection of some of the light from the center of the PSF, the
amount of which depends on the strength of the aberrations.
This phenomenon is characterized by the Strehl ratio [3,24],
which can be expressed as a measure of the performance of
an optical system in image formation, and it is defined, in
our case, as a ratio of the PSF at r � 0 with and without
aberrations. After making the necessary adjustments, the ampli-
tude-weighted Strehl ratio, S, in the image plane is cast into

S � Iϕ�r � 0�
Iϕ�0�r � 0� �

����
RR

A�ρ� expfiϕ�ρ�gd2ρRR
A�ρ�d2ρ

����
2

� jhexpfiϕ�ρ�gij2; (5)

also defined as the squared modulus of the amplitude-weighted
average of expfiϕ�ρ�g in a general pupil. If the aberrations are
small enough, the Strehl ratio can be recast into any one of the
forms [4]:

S ≅ S1 � 1 − h�Δϕ�ρ��2i; Nijboerap proximation;

S ≅ S2 �
�
1 −

1

2
h�Δϕ�ρ��2i

�
2

; MarOchal approximation;

S ≅ S3 � expf−h�Δϕ�ρ��2ig; Mahajan approximation;

(6)

with S3 generally considered the most accurate [4]. The term
h�Δϕ�ρ��2i is the amplitude-weighted wavefront error,

h�Δϕ�ρ��2i � h�ϕ�ρ� − hϕ�ρ�i�2i; (7)

where the angled brackets denote the amplitude-weighted spa-
tial average value of the nth power of the phase,

hϕn�ρ�i �
RR

ϕn�ρ�A�ρ�d2ρRR
A�ρ�d2ρ : (8)

When n � 1 and n � 2, Eq. (8) represents the amplitude-
weighted mean and the mean of the square of the aberration
function, respectively. It is obvious that, in each case, the defi-
nition of the Strehl ratio, as defined by Eq. (6), monotonically
increases as h�Δϕ�ρ��2i is decreased, except for S2 for large
values of the variance. TheMaréchal criterion states that a wave-
front of a uniform field is regarded as diffraction-limited if its
Strehl ratio, s2 � �1 − 1

2
h�Δϕc�2i�2 ≥ 0.8, where h�Δϕc�2i is

the variance of a uniform field in a circular pupil. For a given
amount of the wavefront variance, the Strehl ratio of a non-
uniform pupil is generally higher than that of a uniform pupil
[4] by an amount ΔS2 � S2 − s2 > 0. Therefore, the Maréchal
criterion for a non-uniform field to be regarded as diffraction-
limited is that its Strehl ratio fulfils the following condition,
S2 � s2 � ΔS2 ≥ 0.8� ΔS2. As a result, the aberration toler-
ance for a non-uniform pupil is higher than that of a uniform
beam for a given Strehl ratio.

3. Zernike-Based Orthonormal Polynomial Set

The purpose of the Zernike-based orthonormal polynomial for-
mulation is to analyze weakly aberrated systems with general
pupils by maximizing the Strehl ratio, a condition that is
achieved by minimizing the wavefront error. The set needs
to meet three additional conditions: it needs to be normalized,
linearly independent, and related to classical aberrations. For a
unit circle, the ZC set was found to fulfil all three conditions in
a circular pupil and so forms the basis for the derivation of the
OZ set in general pupil. The ordered OZ set is given by a col-
umn vector, z�ρ�, whose elements form the basis in the general
pupil, such that the phase can be represented by an expansion

ϕ�ρ� � ctz�ρ�; (9)

where the column vector c contains an ordered set of expansion
coefficients. ctz�ρ� is the phase expansion as a sum expressed as
an inner product of the two vectors in Euclidean space. It is
expected that the OZ set is a complete, orthonormal set which
obeys the following equation:

hz�ρ�zt�ρ�i � I : (10)

The matrix on the left-hand side of Eq. (10) is referred to as a
Gram matrix [25]. If it is an identity matrix, the implication is
that the OZ set is orthonormal with its linear independence
being proven by the Gram matrix’s non-singularity thereby
fulfilling the first two conditions. Therefore, the combination
of Eqs. (9) and (10) can be used to generate the expansion
coefficient vector

c � hϕ�ρ�z�ρ�i: (11)

The average value of the phase can be calculated from Eq. (8)
for n � 1,

hϕ�ρ�i � cte1; (12)

where e1 is the first element of the standard basis in an
Euclidean plane [25]. In short, the right-hand side in the above
equation represents the piston coefficient. The average value of
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the phase for n � 2 in Eq. (8) is the sum of the square of the
coefficients

hϕ2�ρ�i � ctc: (13)

Maximizing the Strehl ratio is achieved by minimizing the
wavefront variance, which, incidentally, is given by

h�Δϕ�ρ��2i � ct�I − e1et1�c: (14)

4. Derivation of Orthonomal Polynomials 
from the ZC Set
Having established the mathematical properties of the OZ
polynomials, we now proceed to derive a relationship between
these polynomials and the ZC set. This way the new set can be
related to the classical aberrations, thereby fulfilling the third
and last condition to be fulfilled by these polynomials, as men-
tioned in Section 2. The phase can now be presented as a linear
combination of the ZC set:

z�ρ; θ� � fZm
n �ρ; θ�g∞j�1 � fZ j�ρ; θ�g∞j�1

; (15)

which form the basis vectors in the circular pupil and where j
establishes the ZC set as an ordered set as defined by Noll [2],
where Zm

n �ρ; θ� � 0, when n − jmj is either odd or negative.
Thus, the phase function in a circular pupil can be represented
as a linear combination of the elements of the set as shown by

ϕc�ρ; θ� � btz�ρ; θ�: (16)

The orthonormality and linear independence of the ZC set
in a unit circle are verified through the Gram matrix relation,
1
π

R
2π
0

R
1
0 z�ρ; θ�zt�ρ; θ�ρdρdθ � I . The expansion coefficients

can be calculated as elements of a vector equation,
b � 1

π

R
2π
0

R
1
0 ϕc�ρ; θ�z�ρ; θ�ρdρdθ. The first 15 ZC polyno-

mials corresponding to 1 ≤ j ≤ 15 are listed in Table 1.
The QR form of the Gram–Schmidt procedure states

that OZ polynomials can be expressed as a linear combination
of the ZC set. The procedure then takes the form

z�ρ� � Hz�ρ; θ�; (17)

where H is a lower triangular matrix. Since the elements of
vector z�ρ� are linearly independent, H is nonsingular. H is
the transformation matrix associated with change of basis from
the circular pupil to the pupil represented by the old basis vec-
tor set z�ρ; θ� to the general pupil represented by the new basis
vector set z�ρ�. It helps carry over the properties of the ZC to
the OZ set. H can be calculated by eliminating z�ρ� from
Eqs. (10) and (17) and resulting in the following equation:

H tH � hz�ρ; θ�zt�ρ; θ�i−1: (18)

The matrix on the right-hand side is symmetrical and pos-
itive definite, which means that the lower triangular matrix H
can be calculated using the Cholesky decomposition [15]. This
matrix can be used to relate the expansion coefficients when
using either the ZC set or the OZ set to define a general pupil.

The resulting OZ vector is obtained by combining Eqs. (15)
and (17):

z�ρ� � fZm
n �ρ�g∞j�1 � fZ j�ρ�g∞j�1

: (19)

Equation (19) indicates that the polynomial sets have a one-
to-one relationship. Since H is a lower triangular matrix,
Eq. (17) reveals an important property: every term in Eq. (19)
is calculated from the respective term in Eq. (15) plus a few of
the lower-order terms, a process called balancing. In other
words, the ZC set, which is already balanced in the circular
pupil, is balanced in the general pupil by adding a number of
lower-order ZC terms to generate the OZ polynomials. In a
discrete form, Eq. (17) becomes Z j�ρ� �

Pj
j 0�1 hjj 0Z j 0 �ρ; θ�

where hjj 0 ∈ H . Equation (20) can be written in the form

Z j�ρ� � hjj

�
Z j�ρ; θ� �

Xj−1
j 0�1

X jj 0Z j 0 �ρ; θ�
�
; (20)

where X jj 0 � hjj 0∕hjj is the amount of the aberration Z j 0 �ρ; θ�
added per unit of Z j�ρ; θ� to balance Z j 0 �ρ; θ�, with hjj as a
normalizing coefficient.

5. Numerical Results for a Square-Gausian
Pupil
It is generally assumed that high power laser sources and diode
lasers have square profiles. However, a much more suitable
model for such systems is a Gaussian beam going through a
square aperture. This represents a prime application for the
model developed in this paper, because it represents a non-
circular amplitude-weighted pupil. For the choice of the aper-
ture, the unit square inscribed in a unit circle [8] will be
represented by the field function

E�x; y��
�
expf−γ2�x2� y2�gexpfiϕ�x; y�g; − 1ffiffi

2
p ≤ x; y ≤ 1ffiffi

2
p

0; − 1ffiffi
2

p > x;y > 1ffiffi
2

p ;

(21)

where x and y are normalized at the edge of the circular pupil,
which has a radius a. TheGaussian beam truncation ratio is then
given by γ � a∕ω, whereω is the 1∕e2 beam radius. The larger γ
is, the less the truncation and the greater the transmitted energy,
leading to stronger apodization. For a square-Gaussian pupil,

Table 1. List of Normalized Zernike Polynomials Up to
the Fourth Order

Name of aberration j n m Z j � Zm
n �ρ;θ�

Piston 1 0 0 Z 1 � 1

x-Tilt 2 1 1 Z 2 � 2ρCos θ

y-Tilt 3 1 −1 Z 3 � 2ρ Sin θ

Defocus 4 2 0 Z 4 �
ffiffiffi
3

p �2ρ2 − 1�
y-Astigmatism 5 2 −2 Z 5 �

ffiffiffi
6

p
ρ2 Sin 2θ

x-Astigmatism 6 2 2 Z 6 �
ffiffiffi
6

p
ρ2 Cos 2θ

y-Coma 7 3 −1 Z 7 �
ffiffiffi
8

p �3ρ2 − 2�Sin θ
x-Coma 8 3 1 Z 8 �

ffiffiffi
8

p �3ρ2 − 2�Cos θ
y-Trefoil 9 3 −3 Z 9 �

ffiffiffi
8

p
ρ3 Sin 3θ

x-Trefoil 10 3 3 Z 10 �
ffiffiffi
8

p
ρ3 Cos 3θ

Spherical aberration 11 4 0 Z 11 �
ffiffiffi
5

p �6ρ4 − 6ρ2 � 1�
x-Secondary astigmatism 12 4 2 Z 12 �

ffiffiffiffiffi
10

p �4ρ4 − 3ρ2�Cos 2θ
y-Secondary astigmatism 13 4 −2 Z 13 �

ffiffiffiffiffi
10

p �4ρ4 − 3ρ2�Sin 2θ
x-Quadrafoil 14 4 4 Z 14 �

ffiffiffiffiffi
10

p
ρ4 Cos 4θ

y-Quadrafoil 15 4 −4 Z 15 �
ffiffiffiffiffi
10

p
ρ4 Sin 4θ
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the Strehl ratio calculated by substituting Eq. (21) into Eq. (5)
is given by

S�γ� �
�

γ2

πerf 2�γ∕ ffiffiffi
2

p �

�
2

×
����
Z 1ffiffi

2
p

− 1ffiffi
2

p

Z 1ffiffi
2

p

− 1ffiffi
2

p
expf−γ2�x2 � y2� expfiϕ�x; y�gdxdy

����
2

:

(22)

The expansion coefficients of the first 15 square-Gaussian
polynomials are shown in Table 2, each for four cases,
γ � 0, 1, 2, and 3. The results for γ � 0 are for a uniform
square pupil and match those introduced in Ref. [8]. The re-
sults for the other truncation parameters are introduced in this
paper and are presented in the last three columns of Table 2 in
numerical form. (We considered the analytical forms too com-
plex to present here.) There is a general trend where the overall
value of hjj 0 increases with γ. It is obvious that each OZ

polynomial depends on the same ZC polynomials regardless
of the value of γ. For example, OZ spherical aberration depends
on the following ZC aberrations: spherical aberration, x- and
y-astigmatism, defocus, and piston, but it is independent of
x- and y-coma, x- and y-tilt, and x- and y-triangular astigma-
tism for all γ. In short, each OZ term is built up by adding
lower ZC order terms to the ZC term of the same order as
the OZ term, all weighted by the appropriate h coefficients.
If a particular aberration does not contribute to a specific OZ
term, then the respective h becomes 0. An alternative way of
investigating this problem is to add an appropriate number of
lower-order ZC terms until S�γ� is maximized, as we will see in
Section 5.B.

A. Strehl Ratio for Zernike-Gauss Square
Polynomials
For weakly aberrated systems, the Strehl ratio depends only on
aberration variance, regardless of the type of aberration in the
system. This is only possible for minimum values of the Strehl

Table 2. Non-Zero Elements of H for the Square-Gaussian Pupil for the Four Truncation Parameters Up to the Fourth
Order

Z j�ρ� n m Z j�ρ;θ� n 0 m 0

hjj 0

γ � 0 γ � 1 γ � 2 γ � 3

Z 1 0 0 Z 1 0 0 1 1 1 1
Z 2 1 1 Z 2 1 1

ffiffiffiffiffiffiffiffi
3∕2

p
1.31052 1.60774 2.15018

Z 3 1 −1 Z 3 1 −1
ffiffiffiffiffiffiffiffi
3∕2

p
1.31052 1.60774 2.15018

Z 4 2 0 Z 4 2 0
ffiffiffiffiffiffiffiffiffiffi
15∕2

p
∕2 1.44567 1.80608 2.79133

Z 1 0 0
ffiffiffiffiffiffiffiffi
5∕2

p
∕2 1.04603 1.918 3.78898

Z 5 2 −2 Z 5 2 −2
ffiffiffiffiffiffiffiffi
3∕2

p
1.40231 2.11052 3.77488

Z 6 2 2 Z 6 2 2
ffiffiffiffiffi
15

p
∕2 2.04448 2.55418 3.94753

Z 7 3 −1 Z 7 3 −1 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕62

p
∕2 1.59105 2.1764 3.82112

Z 3 1 −1 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕31

p
∕2 1.61047 3.15016 7.45124

Z 8 3 1 Z 8 3 1 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕62

p
∕2 1.59105 2.1764 3.82112

Z 2 1 1 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕31

p
∕2 1.61047 3.15016 7.45124

Z 9 3 −3 Z 9 3 −3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
155∕2

p
∕4 2.39059 3.30576 6.23033

Z 7 3 −1 −13
ffiffiffiffiffiffiffiffiffiffi
5∕62

p
∕4 −0.8891 −0.755196 −0.448578

Z 3 1 −1 −7
ffiffiffiffiffiffiffiffiffiffi
5∕31

p
∕2 −1.42114 −1.37996 −0.956261

Z 10 3 3 Z 10 3 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
155∕2

p
∕4 2.39059 3.30576 6.23033

Z 8 3 1 13
ffiffiffiffiffiffiffiffiffiffi
5∕62

p
∕4 0.8891 0.755196 0.448578

Z 2 1 1 7
ffiffiffiffiffiffiffiffiffiffi
5∕31

p
∕2 1.42114 1.37996 0.956261

Z 11 4 0 Z 11 4 0 21
ffiffiffiffiffiffiffiffiffiffi
5∕67

p
∕4 1.57203 2.25669 4.39964

Z 4 2 0 25
ffiffiffiffiffiffiffiffiffiffi
3∕67

p
∕4 1.80653 3.88886 10.4808

Z 1 0 0 8∕
ffiffiffiffiffi
67

p
1.30358 3.03397 9.45089

Z 12 4 2 Z 12 4 2 21
ffiffiffi
5

p
∕16 3.08155 3.77649 6.01729

Z 6 2 2 45
ffiffiffi
3

p
∕16 5.37606 7.57404 14.7047

Z 13 4 −2 Z 13 4 −2
ffiffiffiffiffiffiffiffi
105

p
∕8 1.44106 2.18189 4.67145

Z 5 2 −2 3
ffiffiffi
7

p
∕8 1.37632 3.29478 10.7122

Z 14 4 4 Z 14 4 4 3
ffiffiffiffiffiffiffiffi
335

p
∕16 3.6643 4.88242 9.53124

Z 11 4 0 129
ffiffiffiffiffiffiffiffiffiffiffiffiffi
5∕134

p
∕16 1.57959 1.60321 1.33506

Z 4 2 0 345
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3∕134

p
∕16 3.35799 3.73743 3.59517

Z 1 0 0 261∕�8 ffiffiffiffiffiffiffiffi
134

p � 2.9462 3.37376 3.46106
Z 15 4 −4 Z 15 4 −4

ffiffiffiffiffiffiffiffi
105

p
∕4 2.88212 4.36378 9.3429
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ratio, below which each aberration begins to deviate as the
wavefront error increases. In this case, the orthonormal coeffi-
cient of each aberration is represented by the standard
deviation,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Δϕm

n �2i
p

. Figure 2 shows how S�γ� varies with
OZ x-tilt, defocus, x-astigmatism, x-coma, x-triangular astig-
matism, and spherical aberration. The graphs of S1, S2, and
S3 are added in each case for comparison. Evidently, S1 < S2 <
S3 when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Δϕm

n �2i
p

< 0.25, and the three approximations
are virtually identical for Strehl ratio less than or approximately
equal to 0.8 regardless of γ and aperture shape and not just of
types of aberrations. However, for strong aberrations, the ap-
proximations differ substantially. S�γ� was calculated using
Eq. (22). The graphs were calculated for the four values of the
truncation factor from Table 2 for selected OZ polynomials. In
all cases, for each value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Δϕm

n �2i
p

, s�γ� increases with in-
creases in γ, with S3 representing the best approximation.

In the case of Z 1
1, Fig. 2(a) shows that S3 slightly overesti-

mates s�γ� for the selected values of γ, with increasingly better
fit achieved as γ approaches 3. In the cases of Zo

2 and Z
2
2, as seen

in Figs. 2(b) and 2(c), respectively, the situation is the opposite
in that S3 underestimates S�γ� with the best fit achieved for a
uniform field that gets worse as γ increases in size except for
γ � 0 and 1, where S3 estimates S�γ� fairly accurately.
However, Figs. 2(d)–2(f ) show that S3 underestimates S�γ�
for all values of γ with underestimation increasing with decreas-
ing truncation. However, Fig. 2(f ) shows that S�γ� for Zo

4 are
fairly close together and, in fact, at the standard deviation of
0.25λ, S�γ� approaches the same value of 0.225 at the four
values of γ.

Figure 2 indicates that both the type of aberration and the
truncation ratio appear to be independent of S�γ�, as expected
for near-diffraction-limited systems. The minimum value of
S�γ� for which the independence can be achieved is different
for different aberrations and values of γ. As explained in
Section 2, S2 can be expressed in terms of the Maréchal cri-
terion as having a minimum value of 0.8� ΔS2. For non-
uniform and, for that matter, non-circular uniform pupils,
the minimum S�γ� is greater than or equal to this value, de-
pending on γ. Here, we present numerical results for ΔS2
to show that optical systems with general pupils have a lower
tolerance compared to those with circular pupils. A method we
propose in this paper involves going back to the Maréchal cri-
terion. As mentioned in Section 2, this criterion was devised for
circular pupils in which a minimum Strehl ratio of 0.8 is set,
which corresponds to a standard deviation of λ∕14. This stan-
dard deviation is selected as a maximum for any pupil from
which the corresponding minimum Strehl ratio is calculated.
The S�γ� corresponding to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�Δϕm

n �2i
p

< λ∕14 can be read
from Fig. 2. It follows that S1 � 0.79858, S2 � 0.808722,
and S3 � 0.817569. The corresponding values for S�γ� for
the square-Gaussian pupils are listed in Table 3. The results
show a clear trend in which S�γ� increases with γ, an indication
that truncation decreases as a result of the optical system having
lower tolerance.

B. Strehl Ratio for ZC Aberrations in a Square-
Gaussian Pupil
The efficacy of using ZC polynomials in general pupils is now
illustrated, using Eq. (22) for specific amounts of selected ZC
aberrations and varying amounts of a lower-order aberration. In
principle, which aberration combinations lead to a maximum
S�γ� needs to be determined, particularly for cases where the
aberrations are strong. This implies that this is not an attempt
to just use the numerical results to derive OZ polynomials but
rather to evaluate the extent to which these polynomials can be
used in strong aberration regimes. The results from the follow-
ing numerical model can assist in determining which aberration
can be added to a system to control the effects of aberrations
already in the system, but it does not provide a method to
execute. In short, it is necessary to know which optical effects
are associated with which aberrations.

To determine the effects, Eqs. (3) and (4) are used where
phase is defined as ϕ � ϕsys � ϕext. The system generates a
phase of value ϕsys to the light beam such that it generates

h ii � h ii �
the
entered

system
into Eq.

field
(3)
cur
and
vature

centroid
Rx � R

values
y � R

of 
if
x 

ϕext 
y
� 0 is

0
if entered into Eq. (4). The extra phase term ϕext represents

Fig. 2. Dependence of the Strehl ratio on the standard deviation for
the aberrations (a) Z 1

1, (b) Z
0
2, (c) Z

2
2, (d) Z

1
3, (e) Z

3
3, and (f ) Z

0
4, all in

a square-Gaussian pupil. In each graph, S1, S2, and S3 are added for
improved perspective.

Table 3. Maréchal Criterion Shows the Tolerances of an
Imaging System with Square-Gaussian Pupils for the
Selected Aberrations Presented, S�γ�, Corresponding to
a Standard Deviation of λ∕14

γ Z 1
1 Z 0

2 Z 2
2 Z 1

3 Z 3
3 Z 0

4

0 0.8141 0.8164 0.8164 0.8216 0.8185 0.8278
1 0.8145 0.8170 0.8170 0.8242 0.8199 0.8339
2 0.8158 0.8198 0.8198 0.8334 0.8269 0.8556
3 0.8171 0.8263 0.8262 0.8530 0.8458 0.8701
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the aberrations from the sample or subject being imaged and
generated along the path of the beam as it is transferred from
the subject to the entrance pupil. By definition, the size of ϕext

is beyond the control of the imaging system, at least not di-
rectly; indirectly, impact on the imaging process can be mini-
mized by adjusting the observation plane accordingly. In that
case, ϕ results in Rx and Ry not necessarily equal to R and non-
zero hxii and/or hyii. This state of affairs is resolved by moving
the observation plane longitudinally away from the Gaussian
plane, which is called defocusing, and tilting the observation
plane, to compensate for the respective changes in field curva-
ture and distortion.

Substituting ϕ as defined by ϕsys � ϕext into Eqs. (3) and
(4) can be used to determine whether field curvature and dis-
tortion is due to ϕext. Let us assume that ϕext is due to each
aberration listed in Table 1. If ϕ is inserted into Eqs. (3)
and (4), then it is now possible to classify each aberration as
field curvature/defocus, distortion/tilt, or neither. The result
of this exercise is given in Table 4 where Z 0

2, Z
2
2, Z

0
4, Z

2
4,

and Z 4
4 focus the field. The astigmatic aberrations Z 2

2 and
Z 2

4 also focus the field positively in the x-axis and negatively
in the y-axis and vice-versa. For this reason, these two cannot
be balanced by defocusing and tilting as discussed so far, but
balancing them will be discussed later. In the second column,
the aberrations Z 1

1, Z
−1
1 , Z −1

3 , Z 1
3, Z

−3
3 and Z 3

3 can all alter the
pointing of a light beam. The third column contains all aber-
rations that do not have either effect on a beam, and those ef-
fects are outside the scope of this paper.

The phase distribution to be investigated is of the form
ϕext�x; y� � C0

4Z
0
4�x; y� � C0

2Z
0
2�x; y�, where each coefficient

Cm
n ∈ c. The challenge is to establish how much C0

2 should
be added to the system for a fixed amount of C0

4 associated
with the unwanted field curvature to maximize S�γ�. The phase
function can then be recast into the form,

ϕext�x; y� � C0
4

�
Z 0

4�x; y� �
C0

2

C0
4

Z 0
2�x; y�

�
: (23)

Figure 3 shows S�γ� for selected values of C0
4 between 0 and

0.5λ in steps of 0.125λ, with each balanced by varying amounts
of C0

2. As expected, increasing the amount of C0
4 when C0

2 � 0
results in a drop in S�γ� for all values of γ, as observed along the
vertical axis. The reason for this is that positive C0

4 pushes the
focal plane away from the pupil plane, thereby delivering less
light to the center of the image in the observation plane, effec-
tively lowering S�γ�. This situation can be resolved by moving
the observation plane to the new focal plane. The larger C0

4 is,
the greater the amount of C0

2 required for compensation. In the
case of negative C0

4, the moment of the focal plane is toward
the pupil requiring negative defocus to compensate for the
movement.

As Fig. 3 shows, the effect of defocusing the system results in
an increase in S�γ�. The increase in C0

4 means that maximum
S�γ� is achieved when using larger C0

2, though the maximum
S�γ� actually decreases. A summary of the results is shown in
Table 5. Included in this table are results from the theoretical
model for weak Z 0

4, where X 11;4 � h11;4∕h11;11 takes the values
0.922, 1.187, 1.723, and 2.382 for the γ values 0, 1, 2, and 3,
respectively. Values of C0

2 added to maximize S�γ� for each of
the investigated values of C0

4 are shown, and the last set is of the
ratio C0

2∕C0
4, which can be compared with X 11;4. The results

for C0
2∕C0

4 that come close to the low aberration model of
Table 3 are those for which S�γ� is above 0.8; in fact, the higher
S�γ� is, the closer to X 11;4 the result is, which indicates that the
system is approaching the weak aberration conditions. Note
that in the case of negative C0

4, the graphs would mirror those
shown in Fig. 3 about the C0

2 � 0 axis.
Next, optical systems with varying amounts of x-coma-

induced distortion were investigated. For these systems, C1
1 can

be used to increase S�γ�, using the following phase function:

ϕext�x; y� � C1
3

�
Z 1

3�x; y� �
C1

1

C1
3

Z 1
1�x; y�

�
: (24)

The effect of having this kind of distortion is that, instead of
shifting the image longitudinally like for C0

4, the image is
shifted transversely. Positive C1

1 has the effect of shifting the
center of the image in the positive x-direction, which implies
that positive C1

1 is required to move the observation plane
by the same amount to compensate. Negative C1

3 and negative
C1

1 should behave similarly but with a shift in the negative
x-direction.

Table 4. Classification of Aberrations According to
Effects on the Image Plane

Field curvature/Defocus Distortion/Tilt Otherwise

Z 0
2, Z

2
2, Z

0
4,

Z 2
4, Z

4
4

Z 1
1, Z

−1
1 , Z −1

3 ,
Z 1

3, Z
−3
3 , Z 3

3

Z −2
2 , Z −2

4 , Z −4
4

Fig. 3. Maximizing S�γ� for systems with C0
4 by adding varying C

0
2

for γ, equal to (a) 0, (b) 1, (c) 2, and (d) 3.

Table 5. Values C0
2∕C

0
4 for Maximum S�γ� for γ � 0, 1, 2,

and 3

γ X 11;4

C 0
2∕C 0

4 for Maximum S�γ�
0.125 0.250 0.375 0.500

0 0.922 1.200 1.600 1.760 1.800
1 1.149 1.440 1.680 1.920 2.040
2 1.723 1.800 2.160 2.240 2.400
3 2.382 2.400 2.520 2.667 2.760
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The numerical results are shown in Fig. 4. As expected, S�γ�
for ϕext�x; y� � C1

3Z
1
3�x; y� drops below 1 as soon as C1

3

becomes finite and continues to drop as C1
3 increases. However,

addition of a sufficient C1
1 raises S�γ�, as was observed for

spherical aberration. Once again, the maximum S�γ� drops
with increase in C1

3. The numerical results for C1
3 confirm this

observation, though the value C1
1∕C1

3 is shown to increase with
increase in C1

3, as was observed with C
0
4 and C

0
2. The results, in

this case, are summarized in Table 6, which also show that the
results closest to X 8;2 are those for which S�γ� approaches 1.

For completeness, we now investigate the case of adding an
aberration to a system that is already aberrated. The additional
aberration will not increase S�γ� but rather causes it to drop
immediately. We illustrate this using C1

1 for increasing S of
a system with spherical aberration, as shown in Fig. 5. For a
uniform field, γ � 0 [in Fig. 5(a)] and the maximum S�γ�
is achieved when C1

1 � 0 for all amounts of C0
4, meaning that

any transverse movement of the observation plane results in an
automatic drop in light transmitted to the center of the
observation plane. An exception emerges, as observed in
Figs. 5(b)–5(d), when C0

4 � 0.25, in which case, S�γ� is very
low, just less than 0.1. These results indicate that it is possible to
tilt the observation plane of the system to increase S�γ� on
systems with unwanted field curvature. However, this is only
possible in rare circumstances, and the increase in S�γ� achieved
is generally very small, in this case the largest achieved is about
0.16 for γ � 3 indicating the relative useleness of using tilt to
correct for systems with spherical aberration.

An interesting problem concerns ZC x-astigmatism,
Z 2

2�x; y�, which, according to Table 2, does not require addition
of any other ZC aberrations to increase S�γ�. However,
inspection of Table 4 tells us that when ϕext�x; y� �
C2

2Z
2
2�x; y� �

ffiffiffi
6

p
C2

2�x2 − y2�, field curvature would increase
in the x-axis and decrease in the y-axis and vice-versa, depending
on whether C2

2 is positive or negative. The independence of the
two focimeans that it is possible to increase S�γ� by using a cylin-
drical lens. The extra phase in this case is given by ϕext�x; y� �
C2

2Z
2
2�x; y� � C0

2;xZ
0
2�x�, where the extra term actually repre-

sents a one-dimensional Zernike defocus in the x-plane,
Z 0

2�x� �
ffiffiffi
3

p �2x2 − 1�. Adding various amounts of C0
2;x in-

creases S�γ�, which is not possible to achieve with ZC defocus.
The numerical results in Fig. 6 illustrate the outcome, which
shows that for all γ, an increasingly negative C0

2;x results in
an increase in S�γ�, leading to amaximum. As was observed with
spherical aberration in Fig. 3 and with x-coma in Fig. 4, the
maximum achieved S�γ� decreases with increasing C2

2.
The effect of Z 2

2�x; y� can be completely removed from
the system if y-defocus, Z 0

2�y� �
ffiffiffi
3

p �2y2 − 1�, is also
added. The aberration function then becomes ϕext�x; y� �
C2

2Z
2
2�x; y� � C0

2;xZ
0
2�x� � C0

2;yZ
0
2�y�, which can be simpli-

fied using the identity
ffiffiffi
2

p
Z 2

2�x; y� ≡ Z 0
2�x� − Z 0

2�y� to become

Fig. 4. Maximizing S�γ� for systems with fixed C1
3 by adding vary-

ing C1
1 for γ, equal to (a) 0, (b) 1, (c) 2, and (d) 3.

Fig. 5. Maximizing S�γ� for systems with fixed C0
4 by adding vary-

ing C1
1 for γ, equal to (a) 0, (b) 1, (c) 2, and (d) 3.

Table 6. Values ofC1
1∕C

1
3 for Maximum S�γ� for γ Equal to

0, 1, 2, and 3

γ X 8;2

C 1
1∕C 1

3 for Maximum S�γ�
0.125 0.250 0.375 0.500

0 0.849 0.800 1.120 1.413 1.800
1 1.012 0.960 1.360 1.573 1.900
2 1.447 1.440 1.600 1.867 2.000
3 1.950 2.000 2.000 2.400 2.200

Fig. 6. Maximizing S�γ� for systems with fixed C2
2 by adding

varying C0
2;x for γ, equal to (a) 0, (b) 1, (c) 2, and (d) 3.
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ϕext�x; y� �
1ffiffiffi
2

p C2
2fZ 0

2�x� −Z 0
2�y�g�C0

2;xZ
0
2�x��C0

2;yZ
0
2�y�:

(25)

If C0
2;y � −C0

2;x � C0
2;x;y is selected, this implies that

ϕext�x; y� � 0 when

C0
2;x;y � −

1ffiffiffi
2

p C2
2: (26)

Folding the observation plane along the x-axis and in the op-
posite sense along the y-axis with the axes perpendicular and
independant of each other creates a toric-shaped plane.
Using such an observation plane to conjugate the two field cur-
vatures completely compensates for the x-astigmatism, leading
to S�γ� � 1 as shown in Fig. 7. Note that the value of C0

2;x;y for
which S�γ� is maximized is the same for all graphs and can be
calculated from Eq. (26). An easier alternative would be to in-
sert a toric lens between the pupil and the planar image plane.
This is a lens with different optical power and focal length in
two orientations perpendicular to each other. This explains why
toric lenses are used by ophthamologists to treat patients with
astigmatism [26].

6. Conclusions
ZC polynomials have been the standard in wavefront analysis
since they were introduced in 1932, and the main limitation
is that they are only orthonormal in circular pupils. This has been
overcome in the last four decades with the development of other
Zernike-based polynomial sets that are orthonormal in non-
circular pupils for use in ground-based astronomical systems,
whichwas achieved using theGram–Schmidt procedure. An im-
portant advance was the introduction of the Cholesky decom-
position, which is computationally cheaper and less error-prone.
The purpose of this paper was to contribute to this progress by
investigating imaging systems that use customized light beams as
long as the appropriate inner product can be found.

This paper emphasizes the importance of linear algebra to
wavefront analysis where an optical pupil is presented as a
vector space and the OZ set constitutes the basis vectors. The

core of the model is the Gram matrix, which is used to define
orthonormality when this matrix is an identity matrix and to
define linear independence if it is nonsingular. This approach
could be used to normalize any polynomial set, and it has been
applied, with great success, in a recently submitted paper in
which orthonormal vector polynomials in general pupils were
derived by normalizing theCartesian gradient of the ZC set [27].

The model was then used to generate a Zernike-based poly-
nomial set orthonormal in square-Gaussian pupils, which
serves as a possible theoretical representation of the pupil of
a diode or high powered laser source. The numerical calculation
of the Strehl ratio confirmed that only specific ZC aberrations
of a lower order can be used to balance a selected ZC aberration
in such a way that addition maximizes the Strehl ratio. Those
which do not contribute result in an immediate drop in this
parameter. A good example is how, in a square-Gaussian pupils,
ZC defocus increases the Strehl ratio in an optical system with
ZC spherical aberration but ZC tilt does not. This process dem-
onstrates that calculating the Strehl ratio can be used to numeri-
cally derive OZ polynomials, in addition to the Gram–Schmidt
procedure.

The aberrations used to balance the selected aberrations can
be associated with specific effects, namely, defocus, and tilt.
This means that it is possible to design an experiment with
an appropriate diffraction optical element or using a spatial
light modulator to generate specific ZC aberration and then
maximize the Strehl ratio by defocusing the imaging plane
by an amount that can be easily measured. This amount of
defocus can be related to the spherical aberration, as predicted
by the numerical results. The same result is expected using
ZC x-tilt to balance ZC x-coma, in which the imaging
plane can be tilted by an angle that can also be measured in
the lab. This implies that the numerical model discussed in this
paper can be used to design an experiment to measure OZ
expansion coefficients, a concept which is a subject of future
research.

Finally, a method to determine the Maréchal criterion for
the analysis of apodized systems is proposed. We assert that
for any pupil the wavefront standard deviation maximum
should be fixed at λ∕14, but the tolerance be the corresponding
Strehl ratio allowed to change with aperture shape and apod-
ization. Our results show that the Strehl ratio for apodized
pupils is greater than 0.8, with the value increasing with in-
creased apodization thereby implying a decrease in tolerance.

The work presented here can be applied to the analysis of
aberrated light beams, in particular, in settings where the beam
quality requires improvement. This would be important for la-
ser-based free space optical communication systems and fiber
communication systems. The model presented is also useful for
developing more efficient Zernike-based methods to control
aberrations in laser-based adaptive optics methods in micros-
copy and optical communication systems. In addition, imaging
systems that use laser radiation, such as super-resolution imag-
ing, are now being augmented by using adaptive systems [28].
For all these cases, adaptive compensation has been the tool of
choice, though ZC polynomials are used. It is the intention of
the authors of this paper to promote the use of OZ polynomials
through the presented numerical results.

Fig. 7. Maximizing S�γ� for systems with fixed C2
2 by adding vary-

ing C0
2;x;y for γ, equal to (a) 0, (b) 1, (c) 2, and (d) 3.
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