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Abstract

This paper considers whether the use of real oil price data can improve
upon the forecasts of the interest rate in South Africa. We employ various
Bayesian vector autoregressive (BVAR) models that make use of various
measures of oil prices and compare the forecasting results of these models
with those that do not make use of this data. The real oil price data is also
disaggregated into positive and negative components to establish whether
this would improve upon the forecasting performance of the model. The
full dataset includes quarterly measure of output, consumer prices, ex-
change rates, interest rates and oil prices, where the initial in-sample
extends from 1979q1 to 1997q4. We then perform rolling estimations
and forecasts over the out-of-sample period 1998q1 to 2014q4, after the
in-sample period is extended to incorporate an additional observation.
The results suggest that models that include information relating to oil
prices outperform the model that does not include this information, when
comparing their out-of-sample forecasts. In addition, the model with the
positive component of oil price tends to perform better than other mod-
els at the short- to medium-run horizons. Then lastly, the model that
includes both the positive and negative components of the oil price, pro-
vides superior forecasts at longer horizons, where the improvement is large
enough to ensure that it is the best forecasting model on average. Hence,
not only do real oil prices matter when forecasting interest rates, but the
use of disaggregate oil price data may facilitate additional improvements.
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1 Introduction

Since the seminal contribution of Hamilton (1983), which investigated the ef-
fects of oil shocks on the business cycles in the United States, a large number
of studies across developed and developing economies have analysed the im-
pact of oil price shocks on macroeconomic and financial variables.1 Within the
set of emerging economies considered, South Africa - an oil importing and in-
flation targeting small open economy - has featured prominently, with a large
corresponding literature devoted to studying the impact of oil shocks on macroe-
conomic, agricultural and financial variables.2 The evidence from this literature
largely suggests that oil price shocks have a significant effect domestic macroeco-
nomic variables. In addition, the in-sample vector autoregression-based evidence
suggests that the South African central bank responds to oil price shocks when
setting interest rates (Aye et al., forthcoming; Chisadza et al., forthcoming).

Against this backdrop, the objective of this paper is to test whether the
evidence from in-sample explanatory investigations may be extended to test for
the predictive power of oil prices in a forecasting exercise. In this case we make
use of the quarterly out-of-sample period 1998q1 to 2014q4, which includes the
start of the inflation targeting era that begun in February 2000. The initial
in-sample period for the estimation of the parameters in the respective models
extends from 1979q1 to 1997q4, which is used to generate the parameters that
will influence a subsequent forecast that extends for eight quarters. Thereafter,
the in-sample period is extended to 1998q1, before the model parameters are
estimated once again to generate the second eight-step ahead forecast. This
process continues until we have the last of the forecasts at the end of the out-
of-sample.

The baseline model that has been used in this exercise employs a vector
autoregressive (VAR) structure that is estimated with Bayesian techniques. This
model includes measures of output, price level, exchange rate and interest rate
to generate the respective rolling forecasts. The out-of-sample ability of this
model is then compared to those that make use of the same structure and
estimation techniques, but where the variables are supplemented by the addition
of a measure of oil prices. The evaluation is conducted with the aid of root-mean
squared-error (RMSE) statistics and measures that consider the significance of
any potential improvement, to determine whether the models with information
relating to oil prices are able to improve upon the accuracy of the predictions
for interest rates.

The use of Bayesian vector autoregressive (BVAR) models allow us to work
with integrated data in level-form, where the prior is appropriately specified.
This procedure ensures that it would not be necessary to apply necessary trans-

1For a detailed literature review in this regard, the reader is referred to Balcilar et al.
(forthcoming).

2See for example, Gupta & Hartley (2013); Gupta & Modise (2013); Aye et al. (2014,
forthcoming); Balcilar et al. (2014a,b,c); Gupta & Kanda (2014); Ajmi et al. (2015, forth-
coming); Chisadza et al. (forthcoming); de Bruyn et al. (forthcoming), and references cited
therein for earlier works.
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formations to the underlying variables to induce stationarity in the data, as
with a VAR model that employs a classical estimation approach. This may
avoid possible misspecification errors that could be due to the identification of
a stochastic trend, the removal of deterministic time or seasonal trends, or the
extraction of information relating to possible long-run relationships. Hence, in
the BVAR an appropriate prior specification would account for features such as
unit roots and cointegration, which we control for in this paper. In addition, we
also employ the recent developments that follow Giannone et al. (2015), which
allow for the prior to adjust to the in-sample properties of the data.3

As a part of the forecasting evaluation, the information content from real oil
price data is disaggregated into positive and negative components, to consider
whether such disaggregation can produce more accurate out-of-sample forecasts,
relative to those that use undecomposed oil price data. In addition, we also seek
to detect, which component of the oil price matters most. To the best of our
knowledge, this is the first attempt that investigates the importance of oil price
data and its component in interest rates forecasts for South Africa.

The rest of the paper is organized as follows. Section 2 describes the method-
ology, while section 3 provides details of the data. The results are discussed in
section 4 and the conclusion is contained in section 5.

2 Methodology

In this section, we briefly outline the features of the model that has been used
in the forecasting exercise.4 The general specification of a multivariate VAR
model may be formally represented as follows:

yt = C +B1yt−1 + · · ·+Bpyt−p + εt,

εt ∼ N(0,Σ), (1)

In this case, yt represents an n× 1 vector of endogenous variables, εt repre-
sents an n× 1 vector of exogenous shocks, and C, B1, . . ., Bp and Σ represent
matrices that contain the unknown parameters.

When applying noninformative priors in a Bayesian framework, the pos-
terior parameter estimates would approximate those that would have been
obtained under the classical approach to estimation. This would imply that
when conditioning on the initial observations, the posterior distribution of β ≡
vec

(
[C,B1, . . . , Bp]

′)
would be centred on the ordinary least square estimates.

However, the use of flat priors may not be appropriate as it could lead to inad-
missible estimators and poor inference, especially when the number of variables
in the VAR structure is relatively large.5 The use of poor in-sample estimates

3Therefore, this model has features that are commonly associated with hierarchical or
multilevel BVAR models.

4This section relies on the discussion in Giannone et al. (2015)
5See, for example, (Stein, 1956); Sims (1980); Litterman (1986); Bańbura et al. (2010);

and Koop & Korobilis (2010).
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would obviously affect the forecasting results and may lead to inaccurate out-
of-sample predictions. To improve upon the forecasting performance of VAR
models, the Bayesian literature has proposed that researchers should combine
the likelihood function with some informative prior distributions. This strategy
would often prove to be successful when the use of informative priors effectively
reduces the estimation error.

Following Giannone et al. (2015), we consider prior distributions for the VAR
coefficients that belong to the following Normal-Inverse-Wishart family:

Σ ∼ IW (Ψ; d) , (2)

β|Σ ∼ N (b,Σ⊗ Ω) , (3)

where the parameters Ψ, d, b and Ω are summarised by γ, which is a vector of
hyperparameters of a lower dimensionality. The model parameters, β and Σ,
could then be collected in the vector, θ. The reason for focusing on these priors
is that this class includes the priors that are most commonly used in the existing
literature on BVARs (Giannone et al., 2015).

As in Kadiyala & Karlsson (1997), the degrees of freedom of the Inverse-
Wishart distribution is set to d = n + 2, which is the minimum value that
guarantees the existence of the prior mean, Σ = Ψ/(d−n−1). In addition, Ψ is
assumed to be a diagonal matrix with an n× 1 vector ψ on the main diagonal.
Note that, following Giannone et al. (2015), we treat ψ as a hyperparameter.

As for the conditional Gaussian prior for β, a combination of the three
most popular prior densities used in the existing literature for the estimation
of BVARs in levels is used. The baseline prior is a version of the so-called
Minnesota prior, introduced by Litterman (1979, 1980). This prior assumes
that each variable follows a random walk process, possibly with drift. Formally,
this prior may be described by the respective first and second moments:

E
[
(Bs)ij | Σ

]
=

{
1 if i = j and s = 1

0 otherwise

cov
[
(Bs)ij , (Br)hm | Σ

]
=

{
λ2 1

s2
Σih

ψj/(d−n−1) if m = j and r = s

0 otherwise
.

The above moments could then be used for prior in the VAR model, which
are considered in equation (3). Note that the variance of this prior is lower for
the coefficients associated with more distant lags, and the coefficients associated
with the same variable and lag in different equations are allowed to be correlated.
The hyperparameter λ is then used to control the scale of all the variances and
covariances.

Following the important contribution of Litterman (1979, 1980), a number of
refinements have been made to the Minnesota prior to emphasize the role of unit
roots and cointegration (Sims & Zha, 1998). Intuitively, the objective of these
refinements is to reduce the importance of the deterministic component, when
the estimation of the VAR parameters is conditioned on the initial observations
(Sims, 1992).
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One such refinement resulted in what is known as the “sum-of-coefficients”
prior, which was originally proposed by Doan et al. (1984). The estimation
under this prior is implemented with the aid of Theil’s (1971) mixed estimation,
where a set of n artificial observations are used to suggest that there is no-change
in the forecasted values at the beginning of the sample. To achieve this objective,
this approach makes use of the following set of dummy observations:

y+
n×n = diag

(
ȳ0

µ

)
x+
n×(1+np) =

[
0
n×1, y

+, . . . , y+
]
,

where ȳ0 is an n× 1 vector containing the average of the first p observations
for each variable, and the expression diag(v) denotes the diagonal matrix that
has a vector v on the main diagonal. These artificial observations are added
to the dataset, such that the matrices would take the form y ≡ [yp+1, . . . , yT ]

′

and x ≡ [xp+1, . . . , xT ]
′
. These matrices may then be used for inference, where

the prior implied by these dummy observations is centred at one for the sum of
coefficients on own lags for each variable, and at zero for the sum of coefficients
on the lags of the other variables. It also allows for correlation among the coef-
ficients on each variable in each equation. The hyperparameter µ is then used
to control the variance that is associated with the prior beliefs. For example, if
µ→∞ the prior becomes uninformative, while if µ→ 0 it implies the presence
of a unit root in each equation, which rules out the existence of cointegration.

Since the sum-of-coefficients prior is not consistent with cointegration at
the limit, Sims (1993) developed an additional prior, which is known as the
“dummy-initial-observation” prior. Formally, this prior may be implemented
with the aid of the following dummy observations:

y++
1×n =

ȳ′0
δ

x++
n×(1+np) =

[
1

δ
, y++, . . . , y++

]
.

This expression states that a no-change forecast for all variables is a good
forecast at the beginning of the sample. In this case, the hyperparameter δ
controls the tightness of the prior, which is implied after including the additional
external observation. As δ → ∞, the prior becomes uninformative, while as
δ → 0, all the variables of the VAR are forced to be at their unconditional
mean. This would be the case where the system is characterized by the presence
of an unspecified number of unit roots without drift, which would imply that
the dummy-initial-observation prior is consistent with cointegration.

In essence, the settings for these priors depends on the hyperparameters
λ, µ, δ and ψ. As this general specification of hyperpriors for λ, µ and δ, embodies
the work of Sims & Zha (1998), we follow their choice and make use of Gamma
densities with modes equal to 0.2, 1 and 1, while the standard deviations are
set equal to 0.4, 1 and 1, respectively. As in Giannone et al. (2015), we then
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set the hyperprior for ψ/(d− n− 1), which characterizes the prior mean of the
main diagonal of Σ, such that it takes an Inverse-Gamma distribution with scale
and shape equal to 0.02, which is proper, but quite disperse, as it has neither a
variance nor a mean.

We are then able to apply Bayes’ law to derive more appropriate values for
the hyperparameters, which are contained in γ. Hence, the posterior of the
hyperparameters may be derived as

p (γ|y) ∝ p (y| γ) · p (γ) ,

where p (γ) is the prior for the hyperparameters and p (y| γ) is the marginal
likelihood. In this particular case, inference from the marginal likelihood may be
attributed to both the hyperparameters and the model pararmeters, θ. Hence,
the marginal likelihood function may be expressed as,

p (y|γ) =

∫
p (y| θ, γ)p (θ|γ) dθ,

This procedure allows for the optimal selection of the model hyperparame-
ters, based on the in-sample fit of model. As a result, the properties of the data
would influence the degree to which the prior informs the posterior, where both
a dogmatic and a flat prior are nested within the possible outcomes.

3 Data

The data used in this study covers the quarterly period of 1979q1 to 2014q4, with
the start and end date being purely driven by data availability. The variables
that were used include real gross domestic product (GDP, seasonally adjusted
with a base year of 2010), consumer price index (CPI, seasonally adjusted with a
base year of 2012), three-month Treasury bill rate, real effective exchange rate,
and real oil price. The real oil price is based on the nominal Western Texas
Intermediate (WTI) crude oil price (Cushing, Oklahama) quoted in U.S. dollars
per barrel deflated by the U.S. CPI (seasonally adjusted with base years of 1982
to 1984).

Note that, following the studies by Chisadza et al. (forthcoming) and Aye
et al. (forthcoming), and the recent trend in the international oil price shock
literature, as discussed in Baumeister et al. (2010) (and references cited therein),
we do not convert the oil price into domestic currency, i.e. rand values (using
the rand-dollar exchange rate). This practice facilitates the identification of the
effects of (exogenous) oil shocks, when investigating the respective forecasts of
the interest rate. The real gross domestic product data was obtained from the
South African Reserve Bank, while the consumer price index, interest rate and
the real effective exchange rate was obtained from the International Financial
Statistics database of the International Monetary Fund.6 Data on the WTI oil
price and the U.S. CPI was obtained from the Global Financial database.

6This choice of the variables is largely consistent with the literature on open-economy
interest-rate rules, as considered in Ball (1999) and several others.
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Sims et al. (1990) show that when adopting a Bayesian approach that is
based entirely on the likelihood function, the associated inference does not need
to specifically account for nonstationarity. This is due to the fact that the
likelihood function will continue to adopt a Gaussian shape, despite the presence
of nonstationarity. Hence, barring the interest rate, all variables have been
specified in their natural logarithmic form, and have been plotted in Figure 1.7

To decompose the real oil price into its positive and negative components,
we make use of the method of Granger & Yoon (2002), which may be applied
to data that follows the behaviour of a unit root process. To confirm that this
particular time series is integrated of the first order, we perform the Augmented
Dickey-Fuller (ADF, 1979) and Phillips and Perron (PP, 1988) tests. The results
of these statistics are reported in Table 2, which is in the appendix of the paper.

Following Granger & Yoon (2002), we then define the real oil price (OP )
process as a random walk with the appropriate moving average representation,

OPt = OPt−1 + u1t

= OP0 +

t∑
i=1

u1i

= OP0 +

t∑
i=1

u+
1i +

t∑
i=1

u−1i, (4)

where t = 1, 2, . . . , T . The initial value of oil price is OP0 and u1i indicates
a white noise error term, which is defined as the sum of positive and negative
shocks, u1i = u+

1i + u−1i. In this case the positive shocks may be represented
by u+

1i = max (u1i, 0), and the negative shocks may be represented by u−1i =
min (u1i, 0). The cumulative form of the positive oil price shocks is then OP+ =∑t
i=1 u

+
1i. Similarly, the cumulative form of the negative oil price shocks is

OP− =
∑t
i=1 u

−
1i. This provides us with two additional measures of real oil

prices that represent positive and negative real oil price shocks.
The advantage of this procedure is that we are not only able to test whether

those forecasts that include real oil prices as an explanatory variable are able
to provide more accurate forecasts of the South African interest rate, but we
are also able to ascertain whether positive and negative oil price shocks provide
unique information when forecasting the interest rate. This would be of partic-
ular relevance to cases where the central bank is faced with nominal downside
rigidities in the pricing mechanism. Under such conditions the central bank
would be more inclined to react to positive oil price shocks over the short-term.
However, over a longer time period the pricing mechanism would have more
time to adjust and the effect of both positive and negative shocks would be of
importance (were the long-term prices could possibly be approximated by the
flexible-price level).8

7These plots of the data are contained in the appendix.
8Ball & Mankiw (1994) and Cabral & Fishman (2012) consider the theoretical foundations

of an asymmetric price adjustment mechanism, while Peltzman (2000) provides empirical
support.
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4 Results

Given that our objective is to analyse the importance of the oil price when
generating forecasts for the interest rate, our benchmark model is the model
that does not include any measure of oil price, which we denote BVAR1. The
forecasts from this model are then generated from parameters that have been
estimated on data for the interest rate, output, consumer prices and the real
effective exchange rate.

We then compare the four models that include various measures of the real
oil price with the benchmark model. The additional models are organised as
follows: (i) BVAR2 denotes the model with real oil price data, in addition to
the four variables that are included in BVAR1; (ii) BVAR3 denotes the model
with the positive component of the real oil price, in addition to the variables in
BVAR1; (iii) BVAR4 denotes the model with the negative component of the real
oil price, in addition to the variables in BVAR1; and (iv) BVAR5 denotes the
model with the positive and negative components of real oil prices, in addition
to the variables in BVAR1. Hence, the BVAR1 model is nested within the
respective BVAR2, BVAR3, BVAR4 and BVAR5 models.

To conduct our out-of-sample forecasting exercise, we divide the total sample
period into an in-sample period (1979q1 to 1997q4) and an out-of-sample period
(1998q1 to 2014q4), with the models being estimated recursively over the latter
period. Since we produce one- to eight-quarter-ahead forecasts, this choice
implies that the evaluation period starts exactly two-years (i.e. eight-quarters)
before the point at which the South African central bank formally adopted
the inflation targeting regime (which was during the first quarter of 2000). In
addition to this particular structural break, the use of the Bai & Perron (2003)
tests of multiple structural breaks also indentifies three other potential breaks
(1985q2, 1998q4 and 1999q3) in the out-of-sample period, which were obtained
from the interest rate equation with the real oil price included.

The initial evaluation of the forecasts is performed after calculating the
root mean square errors (RMSEs) for the one- to eight-quarter-ahead forecasts.
When reporting the results we provide the actual RMSEs for the BVAR1 model
and the relative RMSEs for the models that include oil prices. Therefore, a
value of less one for the relative RMSE of the BVAR2 model would suggest that
it provides a lower RMSE, when compared to the BVAR1 model.

Thereafter, we also analyse whether the differences in the forecasts that are
generated from the respective models (that either include or exclude measures
of the real oil price) are statistically significant. For this purpose, we use the
MSE-F test statistic proposed by McCracken (2007), which investigates whether
or not two models have equal population-level predictive ability. Hence, this
statistic is used to test the null hypothesis that the restricted BVAR1 model and
the unrestricted BVAR2, BVAR3, BVAR4 and BVAR5 models have equal fore-
casting ability. In addition, as the BVAR3 model is nested within the BVAR5
model we also apply the test to these forecasts. The null is then tested against
the one-sided alternative hypothesis, that the MSE for the unrestricted model
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forecasts,
(

ˆMSE1

)
, is less than the MSE for the restricted model forecasts,(

ˆMSE0

)
. Formally, the statistic is given as:

MSE-F = (T −R− h+ 1).d̄/ ˆMSE1 (5)

where T is the total sample, R is the number of observations used in estimation
of the model from which the first forecast is derived (i.e. the in-sample portion
of the total number of observations). In this case, ˆMSEi = (T − R − h +

1)−1
∑T−h
t=R (ui,t+1)

2
, where i = 1, 0, and d̄ = MSE0 −MSE1, with ui being the

forecast error. Note that h = (1, 2, . . . , 8) is the forecasting horizon. A positive
and significant MSE-F statistic indicates that the unrestricted model forecasts
are statistically superior to those of the restricted model.

The RMSEs obtained from the BVAR1 through BVAR5 models for the one-
to eight-quarter-ahead forecasts for the interest rate, as well as the results from
the MSE-F tests, are reported in Table 1. We make the following observations:
(i) The RMSEs for models BVAR2 to BVAR5 relative to the BVAR1 model
(which does not include real oil price), is always below unity, implying that the
inclusion of the real oil price in the respective models would result an improved
forecasting performance; (ii) More importantly, based on the MSE-F test statis-
tic, these improvements are statistically significant, at least at the 5% level of
significance; (iii) Within the group of models that include measures of the real
oil price in its various forms, the BVAR3 (i.e. the model with the positive com-
ponent of the real oil price) is the best performing model for horizons 1 to 5.
However, beyond that, the BVAR5 model (i.e., the model with both positive and
negative components of the real oil price) provides more impressive forecasting
results. The gains at longer horizons, that are derived from the BVAR5 model,
causes it to produce the lowest relative RMSE on average, when comparing the
results from all the models. The BVAR3 finishes a close second following its
superior performance at short- to medium-run horizons; (iv) Finally, since the
BVAR5 nests the BVAR3 model, the one sided MSE-F test reveals that the
former significantly outperforms the latter at the 5 percent level of significance
for horizons 6 till 8.9

This suggests that not only does the real oil price matter when forecasting
the South African three-month Treasury bill rate, but there are added forecast-
ing gains to be derived from disaggregating oil price data into its positive and
negative components. This could be due to a number of reasons, as the central
bank may react more strongly to positive shocks over the short- to medium-term
horizon, as is possibly the case in South Africa.

9The two-sided Diebold & Mariano (2002) test has a non-standard distribution under
nested models. However, though not ideal, when this test is applied to compare the BVAR3
and the BVAR5 models, we find that the BVAR3 outperforms the BVAR5 significantly (at
conventional levels of significance) for horizons 1 to 5, while the BVAR5 outperforms the
BVAR3 significantly (at conventional levels of significance) for the remaining forecasting hori-
zons. Complete details of these results are available upon request from the authors.
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5 Conclusion

Against the backdrop of some in-sample evidence that oil price shocks affect
South African interest rates, this paper investigates whether real oil price move-
ments could assist in the (out-of-sample) forecasting of the three-month Trea-
sury bill rate in South Africa. A number of BVAR models were used to generate
the respective forecasts, where variants of the model would either exclude or in-
clude various measure of oil prices. The use of such Bayesian models has allowed
us to work with the data in level-form, without any need to induce stationarity
with the aid a particular transformation. In addition, the choice of priors is
essentially determined by the in-sample properties of the data as a part of a hi-
erarchical Bayesian approach. Together, these features of the model may avoid
important instances of potential model misspecification.

We further disaggregate the real oil price into its positive and negative com-
ponent, to analyse whether such disaggregation can produce more accurate out-
of-sample forecasts relative to the real oil price that has not been decomposed.
The models are applied to a dataset that comprise of interest rates, real output,
consumer prices and the real effective exchange rate; and in certain cases, mea-
sures of oil price and its components. This dataset is based on an out-of-sample
period of 1998q1 to 2014q4, with an initial in-sample of 1979q1 to 1997q4.

The results suggest that models that include oil prices in various forms are
able to producing forecasts that outperform those model that only make use
of data for the interest rate, output, consumer prices and the real effective
exchange rate. In addition, we note that the BVAR model with the positive
component of oil price tends to perform better relative to all other models at
short- to medium-run horizons, but the model that includes both the positive
and negative components of oil price performs provides superior forecasts over
the six- to eight-quarter-ahead horizons. The gains at the longer horizon from
the latter model is large enough to ensure that the BVAR model with both
positive and negative components of the oil price outperforms the other models
on average.

Hence, not only does the real oil price matter when forecasting the three-
month Treasury bills rate in South Africa, but additional performance gains
gains may be derived from disaggregating the oil price into its positive com-
ponent at shorter horizons, and from both positive and negative components
at longer horizons. Even though we analyse the role of oil price asymmetry in
forecasting the interest rate, as part of future research, it would be interesting
to compare our results from the linear BVAR models with time-varying (and
hence nonlinear) BVAR models. This would allow us to not only account for
nonlinearity in the relationship between the respective variables, but it would
also for the accommodation of possible breaks (which we show exist) within the
in-sample.
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A Appendix

Tests Real Oil Price (Real Oil Price)

C −1.69 −9.56???

ADF C+T −1.93 −9.62???

N −0.37 −9.61???

C −1.72 −9.03???

PP C+T −1.73 −9.06???

N −0.05 −9.09???

Table 2: Unit Root Tests

Notes: C(C+T)[N] stands for tests with a constant (constant and trend) [none]
in the equation specification.??? indicates rejection of the null at 1 percent level
of significance; ADF (Dickey and Fuller, 1979), PP (Phillips and Perron, 1988).
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Figure 1: Data Plots
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