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Summary 

1.  An explicit spatial understanding of population dynamics is often critical for effective management of wild populations. 

Sophisticated approaches are available to simulate these dynamics, but are largely either spatially homogeneous or agent-

based, and thus best suited to small spatial or temporal scales. These approaches also often ignore financial decisions crucial to 

choosing management approaches on the basis of cost-effectiveness. 

2. We created a user-friendly and flexible modelling framework for simulating these population issues at large spatial scales – 

the Spatial Population Abundance Dynamics Engine (SPADE). SPADE is based on the STAR model (McMahon et al. 2010) and 

uses a reaction-diffusion approach to model population trajectories and a cost-benefit analysis technique to calculate optimal 

management strategies over long periods and across broad spatial scales. It expands on STAR by incorporating species 

interactions and multiple concurrent management strategies, and by allowing full user control of functional forms and 

parameters. 

3. We used SPADE to simulate the eradication of feral domestic cats Felis catus on sub-Antarctic Marion Island (Bester et al. 

2002) and compared modelled outputs to observed data. The parameters of the best-fitting model reflected the conditions of 

the management programme, and the model successfully simulated the observed movement of the cat population to the 

southern and eastern portion of the island under hunting pressure. We further demonstrated that none of the management 

strategies would likely have been successful within a reasonable timeframe if performed in isolation. 
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4.  SPADE is applicable to a wide range of population management problems, and allows easy generation, modification and 

analysis of management scenarios. It is a useful tool for the planning, evaluation and optimisation of the management of wild 

populations, and can be used without specialised training. 
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Introduction 

Conservation management deals with a broad, complex and rapidly evolving range of threats to environmental values including 

climate change, habitat loss, wildlife disease and invasive species. Management decisions are often by necessity based on 

limited field research, relying instead on expert opinion or even anecdotal data, and are implemented within social, political 

and cultural contexts that can limit their scale and range. A major challenge for the research community is therefore to provide 

robust predictions on how populations will respond to various management interventions from this limited information. The 

consequences of population mismanagement often spread far beyond the dynamics of the species in question, into the 

surrounding ecosystem and beyond. It is therefore important that management recommendations are transparent, objective, 

based on the best available information, and flexible enough that plans can be changed when new information comes to light. 

Several modelling approaches have been developed to assess population responses to management and to compare 

prospective management strategies (e.g. McMahon et al. 2010). These models have been used for a wide array of conservation 

issues such as the spread and control of wildlife disease (Beeton and McCallum 2011) and livestock diseases where wildlife may 

act as a reservoir host (Bradshaw et al. 2012), control of invasive species (McMahon et al. 2010) and wider ecosystem effects 

due to interactions between species (Courchamp et al. 1999; Pellissier et al. 2013). 

Models available for simulating population management are often either not used or not effectively incorporated into 

management planning. Despite some notable exceptions such as VORTEX (Lacy and Pollak 2014), Maxent (Phillips, Anderson 

and Schapire 2006) and NetLogo (Wilensky 1999), most approaches require substantial expertise to build, run and interpret the 

models. Those that are user-friendly are often used carelessly, leading to results that are either misleading, incorrect, or highly 

uncertain (discussed in Harris et al. 2013; Gould et al., 2014). As a result, most successful publications in the field have made 

general recommendations (Fletcher and Westcott 2013), avoiding specific predictions or management suggestions that may 

not be justifiable. 

Incorporating and accounting for spatial heterogeneity is becoming increasingly valuable in population models, especially in 

wildlife disease and invasive species management. There is a broad literature on spatially explicit dynamic models (e.g. rabies in 

raccoons: Smith et al. 2002; Russell et al. 2005), but these models are largely either individual-based or probabilistic in nature. 

While these methods are flexible and powerful, they generally require data which is often lacking. These approaches are also 

computationally intensive, making detailed scenario building and sensitivity analyses difficult. 
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Reaction-diffusion population models (Fisher 1937) provide a deterministic model framework capable of simulating a variety of 

biological phenomena (Volpert and Petrovskii 2009). In particular, they can be used to model population and disease dynamics 

simultaneously (Murray, Stanley and Brown 1986; Murray 1989). The spatial diffusion in these models is equivalent to a 

random walk, or a Gaussian dispersion kernel. Reaction-diffusion models have been well defined and numerically tested (e.g. 

Bendahmane and Langlais 2010), particularly for disease spread (e.g. Wang and Zhao 2011), and have been shown in some 

simplified cases to agree with field observations (Dwyer 1992). In the two-dimensional case, however, reaction-diffusion 

models are seldom used in applied population biology – this is probably due to some combination of a lack of spatially specific 

data to populate and validate such models, the current dominance of individual-based and probabilistic models and the 

mathematical complexity involved in developing such models. An exception is the Spatio-Temporal Animal Reduction (STAR) 

model (McMahon et al. 2010), developed for planning of management of invasive animals in Kakadu National Park, but 

intended to be adaptable for use in other cases (Wiggins et al. 2014). STAR is essentially a discrete-time analogue of a reaction-

diffusion system, and is to our knowledge the first such model simulating the effects of different management options in a real-

life case study. 

We introduce the Spatial Population Abundance Dynamics Engine (SPADE), a tool for both modellers and managers to explore 

the outcomes of population processes and management interventions. Like STAR, SPADE was designed as a user-friendly tool 

to model invasive species and their management. Our model is written using the R programming language (R Core Team 2014; 

packages referenced in Appendix S2) and features a graphical user interface (GUI). Using it requires only some basic knowledge 

of the species’ biology and basic familiarity with Geographic Information Systems (GIS) (See Appendix S1 for manual). However, 

the modelling framework is sufficiently flexible that it can model infectious disease as well as interspecific interactions such as 

competition and predation or intraspecific interactions between distinct cohorts of the same species. Detailed, unbiased field 

data at the scale needed to validate demographic models are uncommon (e.g. wildlife disease: McCallum, Barlow and Hone 

2001). Inexact but qualitatively reasonable estimates of population dynamics are much more easily obtained. For these 

reasons, SPADE is not designed to calculate accurate population abundance measures based on exact measurements, but 

instead to estimate and compare larger scale patterns based on best-available estimates and assumptions. 

 

Feral domestic cats Felis catus (Linneaus 1758) are among the most devastating invasive pests and are wholly or partly 

responsible for the decline or extinction of numerous species), particularly in Australia (Lowe et al.  2000). Their impacts on 

native fauna are amplified on islands: cats have been identified as the primary driver of extinction for at least 33 island 

endemics worldwide (Nogales et al. 2013).  

The eradication of feral cats on Marion Island (290 km2), a South African sub-Antarctic territory (Figure 1), is the largest island 

eradication of cats to date (Nogales et al. 2004). A multi-phase eradication programme was planned in 1974-1976 and 

implemented over more than 15 years, commencing with biological control using the feline panleucopaenia virus (1976-77) and 

concluding with intensive hunting (1986-89), trapping and poisoning (1989-93) (Bester et al. 2002). 
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Figure 1 Location of Marion Island between South Africa and Antarctica (left) and a map of the island describing its five main 

vegetation types (right). 

We selected this as our case study for a number of reasons. The final stages of the programme were meticulously documented: 

sighting, shooting and trapping events were recorded for each hunting trip with the date and grid coordinates of occurrence (to 

half-arcminute resolution, with each grid cell approximately 600 x 900 metres). The island is sufficiently large that, based on 

studies of home ranges which suggest a range of at most 0.3 km2 (Barratt 1997), individual cats are unlikely to travel regularly 

across the entire island; cat movement around the island is more likely to occur over the course of several generations. This 

makes the process amenable to deterministic techniques, as individual heterogeneity in dispersal patterns can be expected to 

‘wash out’ on a larger temporal or spatial scale. Although only three years of data exist for which there are reasonable numbers 

of cats in the landscape, this is likely to be sufficient time for some measurable effects of dispersal to be seen. 

Materials and methods 

We estimated the density of cats in each cell across the island at the start of the hunting phase in 1986.  We then used SPADE 

to fit a spatially explicit population model to the sighting and culling data during the hunting phase. We tested whether the 

model captured both the local and island-wide population dynamics in this period, looked for evidence of population 

suppression as a result of feline panleucopaenia based on the best-fitting model parameters, and examined some additional 

management scenarios. 

Model description 

Finding the population density (defined here as X) of a species in time (t) and space (x and y in two-dimensional space) based 

on its demographic and dispersal information can be represented as a Cauchy problem. That is, X(x,y,t) requires an initial 

condition I(x,y) to be specified across our spatial domain of interest (C) at a specified time (t0), such that 

X(x,y,t0) = I(x,y) for all (x,y) in C  eqn 1 
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and a partial differential equation that will determine future values of the population at each point in C for t > t0. We also 

assume that the population has a non-zero carrying capacity, or equilibrium, K(x,y) such that the population density remains 

stationary everywhere if set to this equilibrium – or 

∂X(x,y,t)/∂t = 0 where X(x,y) = K(x,y) for all (x,y) in C and t>t0  eqn 2 

Our model uses the method of lines approach to integrate the necessary partial differential equation (PDE) to calculate 

population trajectories. It separates the population into smaller but finitely many connected subpopulations, for which the 

local dynamics are calculated at each time step. The diffusion component is simultaneously calculated using a second-order 

finite difference of the Laplacian, namely 

      ( )  
      ( )        ( )       ( )

(  ) 
 
       ( )        ( )       ( )

(  ) 
 

          eqn 3 

where Zi,j(t) represents some function of the number of animals in the population at cell location (i, j) and time t, and Δx and Δy 

are the width and height of each cell. This diffusion approach for modelling dispersal is similar to that used in STAR. Some 

formulae commonly used in modelling local population dynamics and dispersal have been included in the GUI, and for 

advanced users SPADE is also capable of using any formulae describable in R syntax. In the case study presented here, we used 

a density-dependent logistic model as a parsimonious estimate of demographic dynamics. We then used a discrete-space 

analogue of the reaction-diffusion model described in Korobenko et al. (2013) which, like the demographic part of the 

equation, also has a fixed point at a carrying capacity X = K in order to satisfy equation 2: 

∂X/∂t = (b-μ) X (1-X/K) – r X+ D 2(X/K)  eqn 4 

where we have used X as population density as with equations 1-2. The fecundity b and removal rate r are kept as free 

variables as the effect of the virus and removal rate by culling respectively are not entirely known at the relevant stage of the 

programme, whereas the mortality   is assumed to be 1, representing a mean cat lifespan of 1 year (Warner 1985; see 

Appendix S3 for details). As we are modelling discrete cells spatially (equation 3), the diffusion coefficient D has units of cats 

per year in our particular case, which can be interpreted as a rate of spread in area per year multiplied by the local carrying 

capacity in cats per unit area (Korobenko et al. 2013). Our model is capable of modelling in continuous-time, thus modelling all 

processes simultaneously, via this approach, whereas STAR models demographic and dispersal processes sequentially every 

season. 

Removals are modelled by SPADE in three different ways: proportional, absolute and capped proportional. Our case is 

modelled with proportional management, which removes a fixed proportion of the population from each cell continuously, 

while ensuring the population density in each given cell does not fall below a user-specified target density (details in Appendix 

S2). These management strategies are controlled by a user-defined gridded mask that specifies which cells are to be managed, 

and to what extent, in comparison to other managed cells. During the simulation process, the model keeps track of the total 
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number of animals (    ) culled over the course of a timestep in each cell for later use along with the numbers remaining (    ).  

Similarly, given relevant information to parameterise a cost-per-animal relationship for removal at differing animal densities 

(e.g. Pople et al. 1998), the model is able to measure the cost of management and use this information to assist in various 

optimisation routines based on those used in STAR. 

Case study 

As mentioned, SPADE requires an estimate of initial conditions in order to be able to predict cat abundance over time. We set 

the t0 for this initial condition to be August 1986, immediately before the beginning of the full-scale eradication plan. This is the 

point at which explicit monitoring data were first available, and at which the cat population had stabilised after the 

introduction of the feline panleucopaenia virus (Bester et al. 2002).  

Sighting data are likely to be biased, depending on visibility of animals in different habitat types. While data from trapping also 

have biases – in particular, differences in trappability between individuals – traps are more likely to be equally visible and 

attractive to cats in different habitats, so we assumed that trapping success indicates abundance. To address the potential 

sighting bias, we created models for both the trapping and sighting process incorporating habitat and simple exponential 

decrease in population over time for both sources, as well as potential effects of different lures and baits for the trapping data. 

Here, the island’s five vegetation classes were used to define habitat types (Coastal Vegetation, Mire-Slope Vegetation, 

Fellfield, Cinder Cones and Polar Desert; Smith and Mucina 2006) in combination with two classes of altitude (above and below 

100 metres). Excluding Coastal Vegetation above 100 metres by definition, this resulted in 5 x 2 – 1 = 9 unique habitat classes. 

As trapping did not begin until later in the programme, we were required to compare the parameters of the trap model and 

sight model for the time period over which both methods were used (from January 1989 to April 1990). We then estimated the 

level of sighting bias by habitat as compared to the trapping data and used this bias factor to back-correct the remaining 

sighting data to create an index of abundance for cats in 1986, which could then be used as an estimated initial condition for 

the model. 

Statistical model of cat sighting 

Sighting of cats was assumed to be a Poisson process, with detection frequency   at a particular cell c calculated by 

  ( )     (   )    (  )       ̅̅ ̅ 

          eqn 5 

in the most complex case. Here     is the number of minutes of detection effort expended in the target cell,    the detection 

frequency per minute in habitat type v,    the rate of decrease in detection frequency assuming an exponential decrease in 

population over time, and  ̅c the mean of the number of days since hunting began taken across the sighting attempts in the cell. 

Simpler versions were run excluding the time-dependent term      ̅̅ ̅ and/or habitat dependence in the term   (  ). A Poisson 

generalised linear model (GLM) was fit to the data for each model, and AIC (Akaike Information Criterion) values were taken 

using the likelihood function and the best-fit parameters. 
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Statistical model of cat trapping 

Trapping can also be analysed as a Poisson process; that is, a continuous time process in which some event can occur at any 

time. However, only one cat – or other animal – can set off the trap, after which no further capture events are possible until the 

trap is reset.   

The model for trapping is necessarily more complex than that for sighting for several reasons. As with the sighting model, the 

capture frequency may also depend on the habitat type for cats (    ) and other animals (    ) and the mean date of the 

trapping survey for a given observation  ̅ via the decline rate   . However, no explicit habitat information was given for each 

trap, so the model based the probability of a trap being in a particular habitat type  ( ) on the relative amount of each habitat 

in its cell. In addition, the trapping frequency may also be dependent on the lure l and/or bait b used in the trap via modifiers    

and   . Finally, most traps are set off and reset more than once across the monitoring period. 

A likelihood function was created using a statistical model based on all of the above, and is expressed in the most complex case 

as: 

 ({                      } *   ( )    ̅    +)   ∏ ∑ ( )

{
 
 

 
 

   ( (           )      
    ̅)                     

    
           

 (      ( (           )      
    ̅))       

    
           

(      ( (           )      
    ̅))         

             

 

eqn 6  

and maximum likelihood parameters were then found for the model in equation 6 along with simpler models incorporating 

combinations of time, habitat, lure and bait.  

Sighting bias correction 

The best-fitting sighting and trapping models were then selected using the AIC. For the best-fitting models, standard errors for 

each habitat type were estimated using the Fisher information at the maximum likelihood estimates in order to ascertain 

significance of results. The best fitting Trap-Sight Ratio (TSR), defining the number of trapping events likely to occur per sighting 

event over the same time period, was then calculated for each habitat type. These ratios were multiplied with the sighting rate 

for cats in 1986 to obtain an estimate of the expected trapping rate in each cell, which we treated as a proportional measure of 

abundance. Our initial estimate of the total population of cats on the island was taken from the estimate in Bloomer and Bester 

(1992) of 615 cats in 1982, but we treated this as a free parameter as the available data does not agree well with this estimate. 

Model fitting 

Once a suitable initial condition was generated as described above, we were able to run simulations of the hunting programme 

in SPADE using a small number of free scalar parameters. The model was run with outputs every month, and hunting simulated 

only in months where at least some hunting took place based on field data. We then used two separate datasets and statistical 

models to estimate goodness of fit and find best-fit model parameters.  
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Kill records 

The first dataset is the record of successful kills by the hunting programme. This was compared with a SPADE model assuming a 

constant monthly rate of removal in each cell (as per equation 4), scaled by the recorded number of kills in each cell over the 

duration of the hunting programme. This model assumed that hunting in each cell is performed at a constant rate across time 

but a varying rate spatially due to accessibility. This spatially explicit hunting rate was taken from the total number of culls in 

each cell across the entire hunting programme, and scaled by a free parameter (the ‘relative culling rate’). A likelihood function 

suitable for use as a goodness of fit function was calculated using the probability of observing the real number of culls at each 

cell at each timestep given the simulated number of culls returned by the SPADE model at that timestep, specifically: 

  ( (   ))  ∑  (    (            ( )))

   

 

          eqn 7 

where      represents the number of observed culls at timestep t and cell x;      represents the simulated cull at the same 

timestep and cell; and   represents the remaining free model parameters in SPADE described in equations 1-4 – namely, the 

rate of dispersal D (equation 4) in the cat population, the total initial population size (i.e. the sum of I(x,y) in equation 1) , the 

maximum monthly culling rate (based on r in equation 4) and the population growth rate (b-μ in equation 4). This measure of 

fit is particularly useful in determining absolute patterns of population change, as the culling data provides exact information 

about what is happening in the population over time. 

Observation records 

The second dataset is the record of each individual hunting trip i on date ti over a number of identified cell locations x. This data 

comprises the number of cats observed (not necessarily shot at or killed)      in each cell during the hunting trip, and the 

number of minutes of search effort     . These data were compared with SPADE’s estimate of population size       for the 

month in which the hunting trip was performed, using the same modelling framework as described above. The likelihood 

function here was calculated from the probability of observing the real number of cats for each hunting trip given a constant 

probability of detection defined by the predicted number of cats in the cell and the amount of time spent in the cell. 

  ( ( |{            }))  ∑  (    (                   (    )    ))

   

 

          eqn 8 

Here   again represents the free model parameters in SPADE, but this time excepting the total initial population size. This is 

because we introduced        as a constant scaling parameter designed to maximise the overall likelihood given the other data, 

defined as  

        
∑        

∑      (    )       

 

          eqn 9 
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We introduced this because we cannot separate the effects of population size from overall detectability in the statistical model. 

Instead, we used the scaling parameter to ensure that the results are as realistic as possible, meaning that this measure of fit is 

solely useful to determine relative patterns of population change in contrast to the other dataset (see Appendix S3 for details). 

Both of these likelihood functions are simple representations of a complex process and as such are not perfect depictions of 

reality. Not only does the model contain assumptions and approximations that cannot be entirely the case (as with any other 

mathematical model of reality), it is also a deterministic model simulating a stochastic process, so cannot capture all of the 

complexity inherent in the datasets and landscape. The functions are instead intended as approximations used to find plausible 

model parameters. 

Results 

Statistical models 

The results in Table 1 demonstrate that Habitat + time and Habitat + time + lure + bait are the most suitable sighting and 

trapping models respectively by AIC. Models including habitat were most suitable in all cases, suggesting habitat as the main 

driver of differences in frequency of sighting and trapping. For both best fitting models, multiple pairwise differences between 

habitat types were found with p-values well below 0.05 after Bonferroni correction. 

 
Number of 

parameters 
AIC 

Model 

weighting 

Sighting model (n = 425 cells, cats sighted = 321) 

Habitat + time 10 1537.0 1 

Habitat 9 1576.4 <0.0001 

Time 2 1655.4 <0.0001 

Constant rate 1 1701.5 <0.0001 

Trapping model (n = 2386 trap checks, cats trapped = 269) 

Habitat + time + lure + bait 17 2858.7 1 

Habitat + time 11 2866.9 0.017 

Habitat + lure + bait 16 2871.5 0.0016 

Habitat 10 2882.5 <0.0001 

Time + lure + bait 9 2983.0 <0.0001 

Time 3 2989.4 <0.0001 

Lure + bait 8 2996.6 <0.0001 

Constant rate (cat + others) 2 3012.7 <0.0001 

Table 1 Goodness of fit for four models compared to sighting data and eight different models compared to trapping data, with 

model weights based on Akaike Information Criterion (AIC) scores. 
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Vegetation type Altitude 
Trap-Sight Ratio 

(95% confidence intervals) 

Mire-slope Vegetation High 0.0020 (0.0011 – 0.0039) 

Mire-slope Vegetation Low 0.0024 (0.0013 – 0.0045) 

Fellfield High 0.0057 (0.0033 – 0.0096) 

Fellfield Low 0.0068 (0.0027 – 0.0168) 

Coastal Vegetation Low 0.0176 (0.0075 – 0.0413) 

Table 2 Values for Trap-Sight Ratios with confidence intervals for the five habitat types where data exists, defined by a 

combination of vegetation type and altitude. 

Sighting and/or trapping rates were unavailable due to lack of observations for four of the nine previously described habitat 

types, representing 6% of the island’s area. The estimated TSR for the remaining five types is given in Table 2. A high value for 

the ratio means that trapping was more successful than sighting and vice-versa. As might be expected, for example, cats were 

more easily sighted than trapped in sparsely vegetated Mire-Slope Vegetation areas and the converse occurred in more densely 

vegetated Coastal Vegetation. As such, the sightings in Mire-Slope Vegetation areas in particular are weighted downwards by 

correction. For the four habitat types where there was insufficient data for the TSR to be calculated, cats were assumed to be 

absent and the ratio set to zero. As a result, any sightings that did occur in these areas in the initial year were given zero weight 

in the corrected abundance index. 

SPADE modelling 

Two independent goodness of fit methods were used to find parameters for the SPADE model that best fit the available data. 

The results were similar for both methods (Table 3), predicting a population with zero natural growth rate and diffusion at a 

rate equivalent to each cat moving up to approximately 2 km per year, the maximum rate possible for the current model 

formulation without losing numerical stability (see Appendix S3). Although the best-fit cull rate differed between the methods, 

examination of profile likelihoods (Figure 2c) suggests that a rate between the two maxima could provide a reasonable fit. We 

chose 0.3 as a compromise, it being within three points of the maximum likelihoods for both methods. Only one of the 

methods provided a measure of carrying capacity, which was predicted to be about double that estimated in the literature (615 

± 107; cited in Bloomer and Bester 2002). 

 Diffusion 

(cats/year) 

Carrying 

capacity 

Relative 

cull 

rate 

Annual 

growth 

rate 

Maximum 

log-

likelihood 

Sighting per 

effort 

5.00 N/A 0.234 0.000 -7308.4 

Culling 5.00 1508 0.355 0.000 -3054.7 

Table 3 Best-fit parameters and maximum log-likelihoods for both goodness of fit methods. Note that the sighting per effort 

model relies on a relative measure of abundance so does not include a parameter for total carrying capacity. 
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Figure 2 Profile log-likelihood curves for each of the four free parameters and two goodness of fit methods (grey for sighting 

per effort, black for culling rates), scaled in relation to the global maxima for each curve. 

Maximum likelihood approaches discover the parameters that give the best fit to data given a particular model, but provide no 

evidence that the modelling framework itself is a reasonable representation of reality. In Figures 3-5, we used some summaries 

of the data and model fits to examine the overall goodness of fit visually.  

Using SPADE’s predictions of density in each cell, we then estimated the predicted number of captures in each cell for each 

field trip based on the length of time spent in that cell, and compared this with the actual number of captures recorded in 

Figure 3a. By comparing these results with 100 simulations of data that might be expected based on the SPADE densities, it is 

clear that even the best-fitting model overpredicts the number of captures at high densities. This may be due to incorrect 

assumptions in the model process but may also be caused by inaccuracies in the estimated initial condition (Figure 5a), which is 

noisy due to lack of data in some places on the island. 

We also tested the model fit by plotting a summary of the number of cats killed in each month of hunting. The model assumed 

that culling was undertaken on a set proportion of the population in each cell at any given time. This simplistic assumption 

appears to perform surprisingly well, with the observed data largely within the range of outputs expected from the model 

(Figure 3b) except at the start, where the number of culled cats fluctuates wildly from month to month. This discrepancy is not 
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necessarily caused by the model process itself and may be due to additional unmodelled random effects such as: spatial 

variation in locations of hunters, familiarity with the habitat and island, and other external factors such as weather, time of year 

and accessibility. 

 

Figure 3 Illustrations of goodness of fit for the best fitting models using sighting per effort (Figure 3a) and culling rates (Figure 

3b). Figure 3a contains a 500-sample moving average plot (in red) of the predicted captures per cell using SPADE against the 

observed number, with a black line denoting the ideal 1:1 relationship between predicted and measured results. In Figure 3b, 

the number of predicted culls per month (in red) is contrasted with the number recorded (in black), including months in which 

no culling took place. Results for both figures are contrasted with 100 examples of simulated data from Poisson distributions 

based on the SPADE model (in grey). 

We then found best-fit models in the case where the diffusion parameter was set to zero for the purposes of comparison. In 

both cases the maximum log-likelihoods were at around 40 points lower than for the unrestricted cases (Table 4), suggesting a 

far less parsimonious fit. In addition, the summary plot for culling rates (Figure 4b) demonstrates that without diffusion the 

best-fit model tended to under-predict the reduction in cat numbers over the course of the programme. 

 Diffusion 

(cats/year) 

Carrying 

capacity 

Relative 

cull rate 

Annual 

growth 

rate 

Maximum 

log-

likelihood 

Sighting 

per effort 

0 N/A 0.085 0.000 -7347.9 

Culling 0 2005 0.150 0.000 -3096.2 

Table 4 Best-fit parameters and maximum log-likelihoods for both goodness of fit methods as in Table 3, but where the 

diffusion coefficient is set to zero. 
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Figure 4 Illustrations of goodness of fit for the best fitting models where the dispersal rate has been restricted to zero. Sighting 

per effort (Figure 4a) and culling rates (Figure 4b) are represented in the same format as used in Figure 3 above. 

 

 

Figure 5 Comparison of cellwise predicted abundance using the sighting data and trap/sight correction (Figure 5a-f, top row) 

and using the SPADE model (Figure 5g-l, bottom row) with parameters as for the culling model in Table 3 except with the 

relative cull rate set at 0.3. From left to right, the cells represent average abundance taken over the 1986, 1987, 1988, winter 

1989, summer 1989, and 1990 trips respectively. Darker shades of grey represent higher levels of abundance. 

The spatial progression of the population based on sightings is shown and compared with the modelled results in Figure 5. 

Here, the compromise model was used (with cull rate set to 0.3) and the model run for longer than previously in order to 

compare with later surveys. As expected, the model appears to over-predict the overall population size particularly in the final 

two columns (see Figure 5k-l) as by this stage trapping and poisoning had also been introduced, which was not represented in 

the model. It is difficult to pick out general spatial trends as the sighting data are quite noisy and vary substantially spatially 

from season to season. Despite this, the model successfully predicted an eventual contraction to the south-east of the island 

(see Figure 5f and 5l). 

When hunting data collected after the start of trapping were included (Figure 6, white circles), the model consistently over-

predicted the culling rate after about 50 months. The model, simulating continuous hunting, predicted small but consistent 

numbers of cats culled every month for a year after the last cat was shot in the actual programme. From this, it can be inferred 
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that eradication by hunting alone, even without breaking for winter as was done in 1987 and 1988, would likely have taken 

months to years longer if trapping and poisoning had not been introduced into the programme. 

 

Figure 6 Modelled (red) with simulated culling rates (grey) versus actual culling by hunting rate (black before trapping and 

poisoning, white after trapping and poisoning) for model with parameters set as in Figure 5.  

Discussion 

SPADE is a new tool designed to be widely applicable to problems in spatial ecology. While based on the STAR model 

(McMahon et al., 2010) it is more efficient and flexible while overcoming some problems in the published implementation of 

STAR (see Appendix S5). We made some simple assumptions about the management of the target species along with its biology 

and behaviour to create a model capable of broadly replicating the spatial effects of removal of feral cats from Marion Island, 

particularly changes to total population size and general distribution. We were able to make some general predictions by 

extrapolating the model beyond the available data.  

The model was able to predict that a single management approach would probably not have succeeded in an appropriate 

timeframe in this case. This agrees with evidence from previous eradication programmes: use of several concurrent methods is 

most successful (Veitch 1985; Beeton and McCallum 2011). Although not demonstrated here, SPADE is also able to simulate 

cases using multiple disparate approaches with different costs, mechanisms (described in Materials and Methods) and levels of 

effectiveness. 

Eradication is not always possible or feasible for large islands (Nogales et al. 2004; Oppel et al. 2010, Campbell et al. 2011) or 

mainland invasive populations, particularly when complex socio-economic factors come into play. For such cases, SPADE 

includes features which allow researchers to build realistic and achievable scenarios for either management or eradication. Like 

its predecessor (STAR), SPADE includes calculations of management cost and algorithms for cost-benefit optimisation. These 

incorporate a user-defined spatial priority map based on potential conservation and social benefits or issues involved in 

managing different regions. Although we have applied SPADE in a straightforward fashion here for the purposes of illustration, 

its flexibility means that it is also capable of modelling far more complex problems involving seasonality, spatially-targeted 

management and even interactions between multiple species and/or age classes within species. One of the most powerful 
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additional features in SPADE is the incorporation of multiple interacting species. This is significant given that management of 

one species can have cascading effects on the distribution and abundance of others through processes such as mesopredator 

or prey release (Bergstrom et al., 2009; Courchamp, Langlais and Sugihara 1999). Modelling multiple interacting species can 

also be used for spatial modelling of wildlife disease. Many disease models are expressed as coupled Ordinary Differential 

Equation (ODE) systems (e.g. the Tasmanian devil Sarcophilus harrisii: Beeton and McCallum 2011; Beeton and Forbes 2012; 

Beeton 2012, PhD thesis) which can be incorporated into SPADE’s modelling framework. These models could potentially be 

further extended by considering additional species that may be directly or indirectly affected by a disease, such as reservoir 

hosts, competitors, predators or prey. 

Given the variety in current conservation management problems, SPADE was designed specifically with more powerful analyses 

in mind. The model can be run from R without the user interface, which allows the model runs to be automated using R scripts; 

the analyses reported here were performed in this way, and the code is available as a template along with the source code for 

SPADE (see Appendix S4). The package has been designed to be as flexible as possible for experienced modellers to modify and 

improve as needed for their own specific purposes. 

SPADE has been designed to be as easy to use as practically possible, in particular by users who may not be experienced 

modellers. Basic scenarios can be run quickly and easily given some spatial and biological information on the target species (e.g. 

feral deer in Tasmania; Potts et al. 2015). One of the potential constraints in using SPADE effectively is having the ability to 

include environmental layers into the models, although tools are available and others are being developed to assist with this 

(see in particular MCAS-S; Lesslie et al. 2008, and Maxent). However, most conservation agencies contain GIS analytical 

capability and expertise which will help overcome this limitation. 

Because of its ease of use, SPADE is ideally placed to be part of an adaptive management framework, where data collected 

during monitoring and management can be iteratively fed back into the model to test its assumptions and improve its 

predictive power. As demonstrated in this case study, management plans undertaken with either opportunistic or haphazard 

monitoring can produce data that is difficult to interpret or analyse. Intensive monitoring and controlled experimental design is 

often by necessity a secondary consideration in management planning; despite this, it is often worth investing in due to the 

potential for developing models to help inform later stages of management. 
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