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Summary

Pest insects represent a major threat to public health, to food security as well as

to the economy. Constant effort is being made to develop or improve control strate-

gies in the framework of Integrated Pest Management (IPM). IPM aims to maintain

pests at low levels that do not represent risks for health or economy, while satisfy-

ing environmentally respectful toxicological and ecological requirements. Planning

of efficient control strategies requires in-depth knowledge of the pest’s biology and

ecology. In particular, it is essential to have accurate estimates of parameters of

biological and ecological relevance like population size and distribution, dispersal

capacity, as well as good understanding of the underlying processes governing the

dynamics of the population in time and space.

The aim of this thesis is to provide a mathematical framework for the develop-

ment of efficient IPM control strategies. This mathematical framework is based on a

dynamical system approach and comprises the construction of mathematical models,

their theoretical study, the development of adequate schemes for numerical solutions

and reliable procedures for parameter identification. The first objective of this the-

sis is to develop mathematical methods and practical protocols to estimate a pest

population size and distribution. The second objective is to predict the impact of

a specific control strategy on a pest population and identify how full control of the

population can be achieved.

Typically, the only data available on the field is trapping data. Further, to increase

the capture of insects, those traps are often combined with a chemical attractant.
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The first objective of this thesis is addressed by constructing a generic 2-dimensional

spatio-temporal Trap-Insect-Model (TIM) based on biological and ecological knowl-

edge of the pest. This model is formulated by Advection-Diffusion-Reaction (ADR)

equations which account for the dispersal capacity of the insects, their attractive-

ness towards the traps and their demography and trapping. The unknown insect

population size and distribution is the initial condition of the model. Usually, the

dispersal capacity as well as the parameters related to the traps are also unknown

and may vary in time. A major outcome of this thesis is a protocol to identify a set

of parameters using trap data collected over a short period of time during which the

parameters can be assumed constant.

To address the second objective, we consider a model for the control of crop-

pest insects via mating disruption, using a female pheromone, and trapping. Here,

males are diverted from females compromising their insemination. The model uses

compartmental structure taking into account the specific behaviour of the different

groups in the population. It is formulated as a system of ODEs. The theoretical

analysis of the model yields threshold values for the dosage of the pheromone above

which extinction of the population is ensured.

The practical relevance of the results obtained in this thesis shows that mathe-

matical modelling is an essential supplement to experiments in optimizing control

strategies.

Key words: Dynamical Systems; Insect Trapping Models; Advection-Diffusion-

Reaction Equation; Threshold Analysis; Parameter Identification; Pest management;

Vector control
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Chapter 1

Introduction

1.1 General context

Pest insects represent a major threat to public health, food security as well as economy.

As reported by the World Health Organization (WHO), today, over 17% of all infectious

diseases are vector-borne diseases and are accountable for more than a million deaths each

year. Pest insects, for their part, represent a major threat for food production due to there

destructive impact on agriculture. In unprotected crops, damages levels can reach 100%.

As a consequence, pest insects may have disastrous economical impact. While, the abun-

dant presence of insect-vectors in tourist areas forces to reduce outdoor activities, due to

their nuisance and potential health risks [88], the damages caused by agricultural pests not

only account for direct crop losses, but also limit exportation and require costly quarantine

measures. Billions of US dollars are spent each year on insect pest management in crops

to prevent agricultural losses and ensure food production [46]. Thus, the development of

efficient control strategies against pest insects to reduce their adverse impact is a challenge

of utmost importance.

In order to control pest populations, particular attention is given to Integrated Pest Man-

agement (IPM) programs, also known as Integrated Pest Control (IPC) [9]. The aim of such

programs is to maintain the pest at a level where they do not represent a risk (economical

or epidemiological), while satisfying ecological and toxicological environmentally respectful

requirements. Chemical control can be used in IPM, on condition that it does no exceed

some low-threshold concentration which ensures no risk for human health. Trapping is often

used in IPM programs to monitor pest population indicating their presence and abundance

and/or to reduce the size of the population. Biological control methods, which use another
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Chapter 1. Introduction 11

living organism to control a pest (i.e. pest-specific predator), are also often considered for

IPM. However, the success of IPM requires a full understanding of the biology of the pest and

its ecology [56, 227, 250]. In particular, the knowledge of the pest population size and spatial

distribution, as well as other parameters of biological/ecological importance (e.g. lifespan,

dispersal rate, etc.) is essential to plan efficient control strategies.

In the prospect of optimizing control strategies, it is necessary to study the dynamics

of the population in time and in space. To address this issue, several approaches can be

considered. The increase or decline of population abundance can be assessed by direct ob-

servations in the field. However, to get a better understanding on the underlying processes

that drive the dynamics of a population over a certain period of time, modelling is a useful

tool. Indeed, mathematical models consist in describing a process, such as the dynamics of

a population, based on knowledge about this process and assumptions. These models can

be used to test new hypotheses on the biological mechanisms which govern the dynamics of

an insect population, and thereby sharpen or guide the study on its biology and ecology. In

addition, analysis of the model and/or simulations allow to test numerous scenarios which

is often impractical by field experiments, as they would be too costly and time consuming.

Thus, mathematical modelling is an essential supplement to experiments in designing and

optimizing pest control strategies.
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Chapter 1. Introduction 12

1.2 Some insect species of interest

We focus our attention on three species of pest-insects that represent a major economical

and health concerns in South Africa, namely, the Oriental Fruit Fly Bactrocera dorsalis, the

False Codling Moth Thaumatotibia leucotreta, and the Asian Tiger Mosquito Aedes albopictus.

These three species have a certain number of similarities in terms of structure within the

population as well as ecological behaviour which constitute the biological models considered

in this thesis. In particular, these species are small and abundant with a similar life cycle made

of four stages where eggs develop into larvae, which then evolve in pupae before emerging as

flying-insect adults.

Firstly, particular attention is given to Bactrocera dorsalis (Figure 1.2), commonly called

the Oriental Fruit Fly, due to its invasive potential [145] and wide diversity of fruit range [211].

It was recorded in the Northern part of the Limpopo province in South Africa in 2010 [167],

initially under the identification of Bactrocera invadens Drew, Tsuruta & White (Diptera:

Tephritidae) [164, 78] which turned out to be the same species as B. dorsalis [216, 215]. B.

dorsalis represents a major threat for fruit industries in South Africa. The life cycle of a fruit

fly is represented in Figure 1.1. There are four main stages in the life of a fruit fly: eggs,

larvae, pupae and adults. A female lays its eggs just underneath the skin of the host-fruit.

Figure 1.1: Life cycle of fruit fly. (http://preventfruitfly.com.au/about-fruit-fly/life-cycle/)

The larvae develop inside the fruit, digging galleries in the flesh of the fruit which accelerates

its maturation causing it to fall from the tree. An example of citrus fruit damaged by fruit

fly is shown in Figure 1.4. Once on the ground, the larvae come out from the fruit and

bury themselves up to 20 cm deep in the soil. Larvae develop into pupae, before emerging

as young adults (immature adults). Following emergence, young adults immediately seek

for food (fruit juice, nectar, plant sap, etc. [22]) in order to initiate its reproduction cycle.
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Fruit flies are rarely found in very dry areas due to limitations on the host distribution and

abundance. Rainy season favours fruit growth and thus leads to expansion of the population,

while during dry seasons, when fruits are not available, the population contracts [186, 22].

More information specific to B. dorsalis are provided in Focus 1.

Figure 1.2: Fruit fly Bactrocera dorsalis. (Source: http://www.kenyabiologics.com/)
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Chapter 1. Introduction 14

Name: Bactrocera dorsalis

Origin and distribution: Asia. Today it is distributed all over the world and

labelled as invasive species in most areas.

Main impact: (http://www.cabi.org/)

• Economical: high crop loss, cost of quarantine measures

• Environmental: competition for food with other species leads to displacement

of endemic non-invasive species.

Biological and ecological facts:

• Life stages duration:
eggs: 1.2-3 days [89, 191]

larvae: 5-15 days [89, 191]

pupae: 8-13 days [89, 191]

adults: several months depending on environmental conditions [89, 191]
• Mating: occurs on the host-fruit when females come for oviposition. Females

detect suitable hosts for laying their eggs using both visual and olfactory mech-

anisms. Indeed, fruit flies are attracted to the yellow colour, and hydrolyzed

proteins. Once the host is identified, females fly around the fruit to choose

the spot where to deposit her eggs [22, 191].

• Temperature: between 10◦ and 30◦, however, at lower temperature, pupae can

enter dormancy until temperatures get sufficiently warm for emergence. This

is how fruit flies overwinter. In autumn, larvae enter in the soil, pupate within

a few days and remain dormant until the next warm season [191].

Common control: cultural (fruit bagging, early harvesting, removal and destruc-

tion of fallen fruits), chemical (spray of insecticides mixed with a protein bait),

sterile insect technique, male annihilation technique.

Focus 1 (The Oriental Fruit Fly).

Secondly, special interest is given to Thaumatotibia leucotreta, commonly known as the

False Codling Moth (FCM) (Figure 1.3). The FCM is a highly invasive pest, indigenous

to southern Africa and Ethiopia [30] and is a key pest for citrus industry in South-Africa.

The life cycle of the FCM is similar to the life cycle of B. dorsalis with four stages: eggs,

larvae, pupae and adult. A female deposits eggs on the surface of a host fruit. Then, follows

the larval stage with five instars. Along their development, larvae progress inside the host

feeding on the pulp. Upon maturity the larvae exit the fruit and drop to the ground where

they spin a cocoon and enter the pupal state. Although the cocoons lie at the surface of the

ground, they are difficult to find due to their soil-like colour. Finally adults emerge with a

ratio of females to males of 1:2 [71, 60]. Focus 2, page 15 provides more specific information
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on the duration of each stage.

Figure 1.3: Adult False codling moth Thaumatotibia leucotreta. (Source: http://idtools.org/)

Name: Thaumatotibia leucotreta

Origin: Southern Africa and Ethiopia [30].

Main impact:

• Economical: crop losses, large range of hosts (citrus, apples, mango, litchi,

cotton, coffee, ...)

Biological and ecological facts:

• Life stages duration:
eggs: 6-12 days [217, 69]

larvae: 25-67 days [231, 70]

pupae: 21-80 days depending on the season [68]

adults: 1-3 weeks in the field [126]
• Mating: occurs shortly after emergence of females, within 2-3 days, and lay

eggs at 3-5 days of age. However, these periods can be considerably longer

at low temperature. At 10◦C, the pre-oviposition period can last up to 22

days followed by a oviposition a period which can last up to 23 days [71]. In

the field, the life span of adults lasts from 1 to 3 weeks [126]. Adult moth

typically fly during the night and female usually lay their eggs at sunset [67].

Common control: biological (parasitoids, pathogenes), chemical, mating disrup-

tion using pheromones.

Focus 2 (The False Codling Moth).

A similarity between B. dorsalis and the FCM is that females lay their eggs in fruits in

which they develop into larvae. These larvae feed themselves digging galleries in the flesh

of the fruit which accelerates its maturation causing it to fall from the tree. An example of

citrus fruit damaged by fruit flies is shown in Figure 1.4.

Thirdly, mosquitoes represent a major threat to human health as they are responsi-

ble for the transmission of diseases such as Chikungunya [196], Dengue [114], West Nile
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a) b)

Figure 1.4: Damages on a) the exterior and b) the interior of a citrus caused by B. dorsalis.

virus [45], Zika virus [110], etc [176, 139, 31, 100]. A special focus is made on Aedes albopic-

tus mosquitoes (Figure 1.6). Similarly to the fruit flies, there are four main stages in the

life cycle of a mosquito: eggs, larvae, pupae and adult. The egg, larvae and pupae stages

are aquatic, while the adult stage is aerial (Figure 1.5). A female mosquito lays its eggs

directly on a water surface or on humid substrates, i.e. breeding sites. Eggs hatch into larvae

which undergoes four sloughing. After emergence, adult males and females mate. Then, fe-

males disperse seeking for a host to have a blood meal which is necessary for egg maturation.

Specific data relative to Aedes albopictus mosquitoes are given in Focus 3.

Figure 1.5: Life cycle of moquito. (http://www.tmjv.ca/project-

showcase/environmental/mosquito-control-at-tsawwassen-first-nation/)

,
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Figure 1.6: Adult mosquito Aedes albopictus. (Source: https://en.wikipedia.org)

Name: Aedes albopictus

Origin: originally fund in tropical and subtropical zones, however, according to

cabi (http://www.cabi.org/), today they are present in most parts of the world

over all continents.

Main impact:

• Health: responsible for the transmission of several diseases among which Yel-

low fever, Chikungunya, West Nile fever, Dengue, or Zika virus.

• Economical: affects tourism and outdoor activities.

Biological and ecological facts:

• Life stages duration [51, 76]:

eggs: 3-7 days

larvae: 7-26 days

pupae: 2-9 days

adults: 15-39 days
• Mating: males seek for females near the breeding sites from which they will

emerge. Females can lay between 50 and 500 eggs [51, 57].

Common control: chemical (DDT, BTI), trapping (BG-sentinelTM, collapsible

mosquito trap with attractant like CO2), mechanical (destruction of breeding sites),

physical (mosquito nets and repellents), biological (Metarhizium anisopliae).

Focus 3 (The Asian Tiger Mosquito).
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1.3 Control methods

In order to manage pest insects and prevent the damage they cause, several control meth-

ods are commonly used. Chemical control has been widely used in the past due to its

efficiency in reducing pest abundance. However, chemical control has harmful side effects

which encourages the use of other methods. Alternative methods consist of modifying the

environment to prevent damages of the pests. These damages can also be avoided by setting

physical barriers to put the hosts out of reach of the pest. However, these methods may be

difficult to implement on a large scale. Biological control, behaviour disruption and mass

trapping are interesting alternatives to control insect pest populations meeting the require-

ments of IPM. Each method has its advantages and disadvantages. Efficient control is usually

done via an appropriate combination of methods.

1.3.1 Chemical control

Chemical control consists in massive spraying of insecticides which include ovicides and

larvicides to kill eggs and larvae. For instance, dichlorodiphenyltrichloroethane, also known

as DDT which has been widely used to kill adult mosquitoes [143], while another product,

bacillus thuringiensis israelensis, more commonly known as BTI, is usually poured into their

breeding sites to destroy the larvae [23]. For the control of fruit flies, Dimethoate, Malathion

or Methidathion are often used [183]. Benzyl-urea is another commonly used pesticide used

for the control of the false codling moth Thaumatotibia leucotreta [232].

Despite the efficiency of chemical control in reducing the pest population, this method

also has substantial adverse effects on human health, livestock and/or environment [240, 103,

224]. The use of insecticides is detrimental to the environment and can disturb the entire

ecosystem. Indeed, the chemical may be dangerous for other species among which possible

natural predators of the pest. The use of chemicals also contributes to pollution of the soil

and underground water [177]. In addition, these products are also dangerous for the producer,

who is exposed to it when spraying, as well as for the consumer since residuals of the chemical

can be found in the fruits or vegetables treated. In addition, there is a high risk that insects

develop resistance to the chemical leading to the use of stronger products [132, 202, 165]. All

these drawbacks make chemical control a non-sustainable method as part of IPM.
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1.3.2 Environmental management

Environmental management includes a wide range of interventions to reduce the abun-

dance of pest-insects populations. A way to reduce the damages of a pest is by transforming

the pest’s habitat through environmental modifications to produce unfavourable conditions

for its establishment. In the case of fruit flies or moths, removing and destroying the fallen

fruits and/or mummies allow to interrupt the development and growth of the eggs and lar-

vae and limit the number of new emerging adults susceptible to cause damage [106, 232].

Mosquitoes are highly abundant in urban areas due to the availability of hosts for blood

meals, and the wide range of potential breeding sites. Mosquito breeding sites are typically

small and shallow with stagnant water which offer a wide range of potential breeding sites

sometime difficult to find. Breeding sites can be natural (leafs retaining water, puddles, etc.)

as well as domestic (plant saucers, tires, ornamental bird baths , buckets, clogged gutters, any

objects susceptible of retaining water)(Figure 1.7) [122]. Measures consisting in reducing the

number of breeding site have been recommended at least since the 1910’s in order to prevent

transmission of Malaria [249, 210]. However, such a method cannot be effective without the

awareness and help of the local population to clean there own habitat. Thus, environmental

Figure 1.7: Examples of breeding sites for mosquitoes.

management has the advantage of being environmentally friendly as it only affects the pest

itself, with no risk for the producers and consumers. However, modifying the environment

is often difficult to put into practice as it requires a considerable manpower. In addition,

to obtain significant results, a good understanding on the ecology of the pest is essential, in

particular its distribution and seasonal variations.
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1.3.3 Physical control

Physical control aims at limiting contacts between the pest and its host. For example,

mosquito nets can be set to prevent people from being bitten. To prevent fruit fly damages

in crops, fruits can be bagged (Figure 1.8) to prevent females from accessing the hosts to lay

eggs. Another way to reduce contact between the host and the pest is to adapt agricultural

Figure 1.8: Mango fruit bagging.

practices. For instance, early harvesting of the fruits can also prevent fruit fly damages, as

for the olive fruit fly [208]. Although physical control presents no risks for the environment,

its implementation is difficult on a large scale due to its local action and no direct reduction

in the pest population abundance.

1.3.4 Biological control

Biological control consists in involving other living organisms such as natural predators,

parasites, or parasitoids to maintain the abundance of the pest population below acceptable

(health and economical) level. Parasitoids are organisms that “live” on another one taking

resources from a single host. While parasitoids usually kill there host, it is not necessarily the

case for parasites [107]. For instance, weaver ants (Oecophylla longinoda) have been used in

controlling mango fruit fly in Benin [243]. As for the control of the false codling moth, there

are 25 known natural enemies present in Southern Africa [232]. Particular attention has been

given to the egg parasitoid Trichogrammatoidea cryptophlebia for commercial biological con-

trol [232]. Concerning the biological control of mosquitoes, predation on the aquatic stage

is usually more effective than on the adult stage due to its limited spatial displacements.

The most important predators for aquatic mosquitoes are species of fish, such as the Gam-

busia affinis fish or the Poecilia reticulata fish, respectively native from Central America and
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South America. These have been used for decades for mosquito biological control [154]. To

a smaller extent, some birds species use mosquito larvae as a source of food such as the Anas

platyrhynchos duck. Few birds actually feed on mosquitoes as they are usually day-light

hunters, thus their hunting periods typically do not coincide with mosquitoes activities. On

the other hand, bat are night-hunters and represent a higher predation risk for mosquitoes.

Species of amphibians, like newts and their larvae are also considered as important predators

for immature mosquitoes. Other predators can be mentioned, like the flatworm Turbellaria,

some spices of spiders and mites or crustaceans, some insects (dragonflies, heteroptera, tri-

choptera, diptera etc.) and parasites (nematodes). Although macro organisms, like fish or

nematodes, have been widely used for mosquito control, they are often difficult to rear and

can only survive in specific ecological environments which makes their use in biological control

programs difficult and expensive. Further, a wide variety of pathogens have been discovered

over the past decades which represent important risk for the mosquito population. For more

extensive details on the predators of mosquitoes, the reader shall refer to the book of Becker.

[24, Chapter 16].

As part of biological control, one can mention the replacement of dengue-vector Aedes

mosquito population by a population of mosquitoes unable to transmit the disease using

the intracellular bacterium Wolbachia which interferes with the transmission of the disease

pathogen. Alternatively, Wolbachia can also be used to control a population via Cytoplasmic

Incompatibility (IC). In this case, males infected with Wolbachia become unable to repro-

duce successfully with uninfected females or with females infected with another strain of

Wolbachia [251]. The method consists in releasing large amounts of mosquitoes infected

by Wolbachia which contaminate wild mosquitoes leading to a decline of the abundance of

mosquitoes able to transmit the disease [129, 130]. Further, mathematical modelling ap-

proaches have shown to provide encouraging results for the successful control of a vector

population using Wolbachia (see [97, 151, 29, 213] and references therein).

1.3.5 The sterile insect technique

Another branch of control goes back from the 1950’s with the work of Knipling [146, 148]

as he discovered that the abundance of mosquitoes could be reduced if females mate with

sterile males. In this context, the sterile insect technique (SIT) is a promising control method

for pest-insect populations. SIT consists in releasing a large number of reared sterilized males

to compete with wild males for female insemination. Females inseminated by sterile males

produce non-viable offspring, leading to the reduction of the mosquito population [147, 155].

SIT is of great interest as it targets exclusively the insect to control and has no detrimental

effect on the surrounding environment. SIT has shown to be a successful method in various
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cases [148], for example, in the control of the mosquito Aedes albopictus in Italy [25]. SIT

has also been considered for the control of the false codling moth in South Africa [131], or for

the control of Bactrocera dorsalis fruit fly [92]. SIT is a promising alternative as it enables

producers to meet the strict sanitary international exportation requirements (no pesticides

residues on fruits). However, to be successful, SIT requires an acute understanding on the

insect ecology and biology.

1.3.6 Genetic control

Using a similar approach as for SIT control, genetic pest management is based on the

release genetically modified (GM) insects [109, 2]. In the Release of Insects carrying a Domi-

nant Lethals (RIDL) method [234], the GM insects carry a lethal gene in their genome which

causes death of there offspring at early stages of development. In turns, this reduces the

abundance of the insect population. Promising attempts of RIDL have been made by the

company Oxitec on Aedes aegypti in Malaysia and in Brazil [104].

Alternatively, instead of carrying a lethal gene, GM insects can carry a disease-refractory

gene. Following the same releasing process, the GM insects produce offspring that cannot

transmit the disease, reducing progressively the proportion of insects active in the disease

transmission process. Eventually, this leads to a replacement of the insect population by

a disease-refractory population. An advantage of population replacement is that the insect

species is not eliminated and can still play its role its ecosystem. This method has been

considered, for instance, to control Aedes aegypti mosquito by genetically altering it capacity

to support the yellow fever virus replication [50].

However, a limitation in genetic control is that it relies on the parent-to-offspring trans-

mission of the novel traits. Thus, the success of the method relies on the mating of genetically

modified insects with wild insects of the same species. This means that a specific transgenic

strain is required for each species. This can make genetic control impracticable when several

species of the same group (i.e. several mosquito species) are responsible for the transmis-

sion of the same disease. To overcome this limit, a recent study proposes a para-transgenic

approach [255].

A major advantage of biological, SIT or genetic control, is its species-specific nature. With

such methods, the target-pest is control without affecting other species or the surrounding

environment. Further, the involvement of living organisms allow to reach areas that other

cannot be controlled using other methods due to physical barriers or lack on the ecological

knowledge of the pest (i.e. its interactions with the environment, its shelters, etc.). Moreover,

there are no health concerns for producers and consumer due to chemical residues meeting
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the requirements of IPM. Despite its environmentally friendly aspects biological control can

be difficult to implement. Indeed, the natural predators are usually expensive and sometimes

difficult to rear in large abundance. In addition, evaluating the establishment of the predator

in a new environment is difficult (Can the predator represent a risk of invasion? Can it

survive in the new environment?). Further, a good understanding on the pest biology and

its interactions with the environment is essential for its success. In particular, for efficient

control strategy, one should address the following questions:

• When and where should the modified insects be released?

• Which quantity of modified insects should be introduced to ensure efficient control?

• At what frequency should the releases occur?

Planning efficient biological control is not straightforward. To optimize such strategies,

mathematical models can provide a useful tool to study the system and simulate various

scenarios.

1.3.7 Behaviour disruption

Another control method which is fully part of IPM consists in modifying the behaviour

of insects. This can be done by attracting them away from the host they represent a risk for

and/or possibly towards a trap where they get killed, or by disturbing their life cycle using

lures of the natural attractants that condition the behaviour of the insects, such as food,

pheromones, CO2, or specific colours or shapes [93].

Poison baits methods are today’s most common control techniques used to control fruit

flies. These methods consist of food attractant mixed with an insecticide (such as malathion

or GF-120), usually applied on a part of an orchard or a tree, on which adult flies feed and

get poisoned [167, 168]. This method has shown efficient results in the control of B. dorsalis

and C. cosyra in Benin [244].

In a similar manner, in male annihilation technique (MAT), a sex attractant is used

together with insecticide to attract and poison male fruit flies [135, 256]. In particular, this

method has been used for the control of B. dorsalis (Focus 1, page 14) in South Africa [167]

and in French Polynesia [158]. MAT has also been widely used on various types of crops

against the False Codling Moths (Focus 2, page 15) [21, 48]. Early success of MAT for

eradication of B. dorsalis in the Okinawa Islands has been show in 1984 [152]. More recently,

the method has been successfully used in Italian greenhouses to protect tomato crops from

the damages of Tuta absoluta [58]. Supports, like coconut husks, can be used to soak the
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male attractant with the insecticide (Figure 1.9). Such methods are typically used in traps

in order to monitor the presence and abundance of flies. These traps are containers in which

the attractant and insecticide can be placed, with holes, usually in funnel shape to facilitate

the entrance. In addition the attractiveness of the traps can also depend on visual cues, such

as the size, shape, colour or placement of the traps [59, 207, 206]. The Mcphail trap, shown

in Figure 1.10, is commonly used [229, 3].

Figure 1.9: Blocks of coconut husks, soaked in a mixture of sex-attractant methyl eugenol

and insecticide Malathion, to be nailed on trees used in French Polynesia to attract and kill

male Oriental fruit flies. (photo: L. Leblanc)

Figure 1.10: Mcphail trap.
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1.4 Modelling population dynamics

Population dynamics is the study of the variations in a population size, its structure

and/or its distribution with respect to changes in various factors such as time, space, tem-

perature and other environmental factors. The aim of population dynamics is to identify the

factors responsible for the growth or decline of a population. Further, it provides a better

understanding of the underlying processes that explain how a population interacts with its

surrounding environment, for instance, how individuals react to different stimuli. The study

of population dynamics has a wide range of useful applications. Studying the spread of a

disease, for instance, helps to identify the best periods of intervention to reduce epidemiolog-

ical risks [34, 172]. In pest management, the understanding of the pest population dynamics

allows to develop appropriate control methods to maintain the population at a low risk

level [163]. Population dynamics is also a powerful tool to predict biological invasions [113],

by modelling its spreading for instance, and evaluate ecological risks.

Population dynamics can be studied following empirical or theoretical approaches. On

the one hand, empirical study of population dynamics is based on observation data obtained

via experimentation. A descriptive analysis can be carried out to describe the variations

observed in a population in the setting of the experiment. Observation data are useful to

establish the behaviour of the population, however, it is typically inherent to the experimental

setting and provides very limited information on the general dynamics of a population. On

the other hand, theoretical study of population dynamics allows to test various biological

hypothesis difficult to assess with direct observations, in particular concerning interactions

between the population and its environment, through methods of analysis such as statistical

or mathematical modelling.

A model is a process through which given specific inputs (e.g. time, spatial location or

temperature), and specific parameters (e.g. growth rate or dispersal rate), provides of an

output which is an approximation of a variable of interest such as the population size. To

study the evolution of a biological process, the input variables can be discrete or continuous.

In the discrete framework, the output of the model is computed at values of the variable

occurring at distinct points, while in the continuous setting, the values of the variable are

defined on a real interval.

A model is built on biologically/ecologically relevant hypothesis and assumptions to pro-

vide an approximation of the population variable of interest, such as the population size,

given specific inputs and parameter values. Statistical models are constructed using a spe-

cific set of observation data from which the parameter values of the model are estimated in

such a way that the output of the model fits as well as possible to the data. Thus, statistical
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models often provide a good match to the data, but the results are limited by the fact that

they are constructed and valid only for the specific setting of the experiment for which the

observation data were obtained. Such a model can be used to identify correlations between

different variables. However, it does not give information on why such correlations exist.

Mathematical models on the other hand, are built on biological and ecological knowledge of

the population dynamics, independently from specific observation data. Although the output

of mathematical models is not as good in fitting observation data, they offer the possibility to

change the settings and simulate various scenarios. This process allows to gain understanding

on the underlying mechanisms that govern the dynamics of the population.

Modelling is a useful tool to improve our understanding on the interactions between the

population and its environment. Through simulations, modelling enables to vary the param-

eters and identify the factors of importance in the variation of a population. In the following,

we discuss how heterogeneity in a population can be handled considering structured pop-

ulation models. Then, we give an overview on models incorporating the space and time

variables, which represent the major interest in this thesis.

1.4.1 Structured population models

Individuals of a population can contribute significantly differently to the dynamics of the

population depending on different aspects, such as their age, stage of development, epidemio-

logical state, spatial position, etc. In the following we will refer to such aspects as structuring

variables. In order to obtain a meaningful model, we structure the population to take into

account the heterogeneity of the individual with respect to the mentioned-above aspects.

If the structuring variable is discrete assuming a finite number of distinct states, then

the model is formulated via a system of equations for which each equation accounts for

the dynamics of the population in each state of the structuring variable. Typically the

different distinct states are referred to compartments, and the resulting model is called a

compartmental model. For example, insects have distinct stages of development, eggs, larvae,

pupae and adults, with specific duration, survival rates, exposure to predation, behaviour,

displacement ranges, etc.

A compartmental model can be discrete or continuous with respect to the time variable. In

the discrete case, the state of the population is approximated at specific times t0, t1, . . . , tK ,

using a relation of the form

Nk+1 = f(Nk), k ∈ {0, 1, . . . , K}, (1.1)

where Nk is the vector of each compartments of the population at time tk, and f is a vector of
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functions which describes the dynamics of each compartment (i.e. demography, interactions

between the compartments, etc.). One of the most well-known models of this type, is the

Leslie matrix model [161] where the population (usually, only the females are taken into

account) is divided into a finite number of age classes (or stages of development [160]) to

account for age-specific behaviour. If Ni denotes the number of individuals in age class (or

life stage) i ∈ {0, 1, . . . , n − 1}, si the fraction of individuals that survived from class i to

class i+ 1, and gi the per capita number of offspring supplying the compartment N0 with a

mother in class Ni, the Leslie model is formulated as



N0

N1

N2

...

Nn−1



t+∆t

=




g0 g1 . . . gn−1 gn
s0 0 . . . 0 0

0 s1 . . . 0 0
...

...
. . .

...
...

0 0 . . . sn−2 0







N0

N1

N2

...

Nn−1



t

(1.2)

or

Nt+∆t = LNt, (1.3)

where L is the Leslie transition matrix, and ∆t denotes the time step between two consecutive

computations. Asymptotic behaviour of the solution of the Leslie model can be done by

studying its eigen values. In particular, if λ denotes the dominant real eigen value of the

Leslie matrix L (existence of λ is due to the Perron-Frobenius theorem [49]), then, the age

structure of the population converges to the eigen vector associated to λ, N∗. Further,

if λ > 1, the total population grows exponentially, if λ < 1, the total population decreases

exponentially, and if λ = 1, the total population remains constant. Among other applications,

this approached has been used for instance to study the dynamics of aphids insects [187] or

the beetle Lasioderma searaicoarn [160].

When the time-variable is continuous, then the state of the population at time t is approx-

imated by a continuous and differentiable vector function N(t) ∈ Rn. The resulting model is

a system of ODEs formulated as follows

dN(t)

dt
= φ(N(t)) (1.4)

or equivalently 



dN1

dt
= φ1(t, N1, . . . , Nn)

...

dNn

dt
= φn(t, N1, . . . , Nn)

(1.5)
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where φ is a continuous vector function. Each differential equation of (1.5) describes the

temporal growth of a specific (homogeneous) compartment and can be modelled using stan-

dard temporal population models (exponential, logistic, etc.) and functional and numerical

responses (e.g. Holling type responses [133]).

The model presented in chapter 5 is of the form of (1.5) and aims to study the impact of

mating disruption, using female pheromones, and trapping control on a pest-insect popula-

tion. There, the population according to its stage of development and to specific behavioural

aspects of importance in the mating disruption and trapping process. More precisely, since

the control targets the adult stage, we consider on the one hand an aquatic stage which gath-

ers eggs, larvae and pupae. Further, since the control affects the behaviour of the males, they

have their own compartment. Finally, since the population of males affects the fertilisation

of females, the latter are compartmented in “females available for mating” and “fertilised

females”. This leads to a 4-compartment model formulated as a system of 4 ODEs. The

mathematical background used to study theoretically such models is provided in chapter 2,

section 2.4.

An alternative to the discrete case is the situation when the structuring variable is continu-

ous. Age, or position can be continuous structuring variables. In this case, a single equation

can account for the population dynamics with respect to the time variable as well as the

structuring variable formulated by a partial differential equation (PDE). If the structuring

variable x is defined in an open domain of Rp, then a PDE of order m can be written in the

following generic form.

∂N(t, x)

∂t
= F (t, N(t, x), . . . , Dα

xN(t, x), . . . ) , α ∈ Rp, |α| < m (1.6)

As an example, to study the spread of infectious diseases through a population structured

continuously in age McKendrick and Kermack [181, 144] were the fist to introduce a PDE

model. In this model N(t, x) denotes the density of the population of age x at time t and

µ(x) is an age-dependent mortality function. Further, b(x) represents the fecundity function

which determines the recruitment into the population at age x = 0. The McKendrick - von

Foerster equation [246] is then formulated as

∂N(t, x)

∂t
+
∂N(t, x)

∂x
= −µ(x)N(t, x), (1.7)

with boundary condition

N(t, 0) =

∞∫

0

b(x)N(t, x)dx. (1.8)
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In chapters 3 and 4, the models are structured in space. The aim of the models is to

simulate trapping data in order to estimate parameters by using different trap configurations.

Hence, in these models, the localisation in space is considered an important factor affecting

the dynamics of the population. In the section below, we present some commonly used

models which account for spatial heterogeneity.

1.4.2 Spatio-temporal models

The growth of a population is strongly correlated to its geographic distribution range [162].

A spatio-temporal population model is a structured population model that governs the dy-

namics a population with respect to changes in time and space. Adding the spatial component

allows to model population dynamics with more realism taking into account interactions be-

tween a species and its habitat. Adding spatial information however adds complexity to

the model making it more difficult to study and simulations more computationally intensive.

Therefore a trade-off between the realism of the model and the question it is aimed to answer

must be kept in mind for its conception.

1.4.2.1 Characteristics of spatio-temporal models

Different aspects can be considered to categorize spatio-temporal models [44, 112]. We

follow here the characterisation given by [44]. The first characteristics that can be men-

tioned is on whether the space component is taken into account implicitly in the model, or

explicitly [66, 112]. In implicit spatial models the population is assumed to be spatially

structured, however the model does not incorporate topographic localisations. These models

are relatively simple but do not allow to study the effect of the structure of the environment

on the dynamics of the population. On the other hand, in explicit models the individuals of

the population are allocated a topographic localisation. This allows to combine the dynamics

of the population to geographic data, such as maps of the habitat. Therefore, explicit models

allow to account for the complexity of the environment and obtain a better understanding

on the ecology of a population.

Such models can simulate the trajectories of the individuals in a population. These are

Individual-Based Models (IBM). The trajectory of each individual is governed by specific

rules to take into account the variability of the individuals interactions with other mem-

bers and the environment. An extensive review of applications of IBM models can be found

in [75]. In particular, it has been used to model the dynamics of the Large Blue Butterfly,

Maculinea arion in the framework of species conservation [111]. IBMs can be very useful to
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model complex processes. It has been used and analysed for instance to investigate dynamics

of a prey-predator system of populations structured in age and space [174]. However some

disadvantages of such models are that they are computationally intensive and that it is neces-

sary to have a very acute understanding and knowledge of the insect’s behaviour to program

and simulate the individual dynamics. Indeed, not only they require specific instructions for

each individuals, but a large number of individual trajectories need to be simulated to obtain

information at the population level [26].

Alternatively, models can account for the whole population assuming homogeneity among

individuals using population models, also known as mass-interaction models. Popula-

tion models are analytical and do not account for variability among individuals. It can be

assumed, for example, that all individuals are identical [26]. Thus, population models are

suitable for the study of an averaged behaviour of the population. Such models can be useful

to study interactions between populations or within a population [66, 237]. This approach is

particularly suitable for the modelling of abundant populations, such as insects [83]. Models

discussed below in sections 1.4.2.2 and 1.4.2.4 are examples of population models.

Further, models can be categorised as deterministic or stochastic. Deterministic models

simulate the average behaviour of the population without taking into account variability in

the parameters or in the functions describing the model. Such an approach is particularly

suitable to model the dynamics at a population level. On the opposite, stochastic models

the dynamics are governed by probability function to account for variability which makes

them more appropriate to model dynamics of small populations [85]. Although stochastic

models are more realistic, they are also more difficult to study theoretically.

Another distinction that can be made among these models is on the discrete or continuous

nature of the space variable. In discrete-space models, the space is divided in separate

areas with an index referring to its position [84], while continuous-space models use the

spatial coordinates of each location [66].

Considering the possible combinations of the characteristics presented above gives rise to a

wide variety of models. The choice of the model depends on the population as well as on the

aim of the model. We now give some examples of commonly used models with applications.

1.4.2.2 Metapopulation models

When the space variable is taken into account implicitly, temporal models at specific lo-

cations can be constructed with location-specific parameters and interactions between them,

while in the explicit case, the model incorporates a space variable. This is the case of
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metapopulation models, first formulated by R. Levin in 1969, where the space is dis-

cretized in distinct patches with their own specificities on which temporal dynamics are

described [117, 118]. The spatio-temporal model is then a coupling of the temporal mod-

els on each of the patches with interactions between them. Metapopulation models can be

formulated mathematically by ODE or Difference Equations. Metapopulation models have

been used, for example, to study host-parasit interactions in patchy environments [120]. In

particular it has been used to describe the spatio temporal dynamics of the pathogen Wol-

bachia (used for the control of Aedes mosquitoes) in a age-structured host population [116].

Metapopulation models have also been used to study the spread of Malaria in a vector-

host population structured according to its infectious state [11, 10]. Another example of

application of metapopuation model is to model the adaptation of fruit flies in a patchy

environment [221].

1.4.2.3 Cellular-automata models

In cellular automata models the space explicit and discretized in a regular grid of cells.

Each cell is attributed a state chosen among a fine set of states which is defined as a function

of the states of a finite number of neighbouring cells. Cellular automata models can be seen as

an extension of the metapopulation model proposed by Levin where the cells are patches with

topographic locations [237]. A cellular automata is suitable for IBM representation where

a cell may contain at most a single organism and the model can simulate local dispersal to

the neighbouring cells emitted from a specific release cell. The rules which define the state

of each cell may be stochastic or not. FlySim is a cellular automata program developed to

simulate life cycles of the olive fruit fly [199]. In [223], a cellular automata model is used for

the control of Chagas disease by modelling the dynamics of its insects vector.

1.4.2.4 Advection-Diffusion-Reaction

In the prospect of modelling pest-insect population dynamics, a particular attention is

given to Advection-Diffusion-Reaction (ADR) models governed by PDEs. These are

deterministic mass-interaction models continuous in time and space, thus they account for

an average behaviour of the population. In ADR models, the diffusion process accounts for

the random dispersal of the individuals of the population, without considering any sort of

stimulus to direct their movements [74, 190]. The advection process accounts for directional

displacements due to a flow, like wind transport, or attractiveness to a point (food, breading

site, attractive traps...). Finally the reaction process governs the demography. In addition,

in order to account for some heterogeneity within the population, the individuals can be
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grouped according to their age class or development stage. In this case the models becomes

a system of coupled ADR equations where the reaction process also accounts for interactions

between the different compartments.

ADR models are continuous in space (x) and time (t) and are formulated in terms of

partial differential equations [112]. The general form of a ADR equation is given as follows:

∂u(t, x)

∂t
= a

∂u(t, x)

∂x
) +D

∂2u(t, x)

∂x2
+ f(t, x), (1.9)

where u(t, x) represents the population density at time t and position x, the parameters D

and a are respectively the diffusion rate and the advection force, and the function f is the

reaction term.

The population ADR models can be derived from random walk processes at the individual

level using Taylor’s expansions. This derivation is detailed in several publications [27, 188,

238]. Alternatively, it is worth mentioning that the diffusion processes can also be derived

using flux considerations instead of random walk processes [87, 238]. In the latter case, the

derivation is based on the physics conservation law and the Fick’s law of diffusion which

connects fluxes of particles to their gradient [61]. The derivation of models from individual

level to the population level is a challenge of its own as the dynamics of the individuals are

typically more complicated than a simple non-isotropic random walk. For example, in [200],

a chemotaxis population model is derived from individual behaviours, for two interacting

populations where one is a stimulus of the other.

These models are particularly useful to study insect dispersal [16, 121, 238] and biological

invasion processes [220]. For example, in [209] a reaction-diffusion is constructed to predict

the expansion of the invasive chalcid Megastigmus schimitscheki in plantations of cedars.

Further, the knowledge of the spatio-temporal distribution of an organism is a crucial infor-

mation for species conservation or, on the opposite, for control plans. ADR models have been

used for instance to evaluate the effect of SIT control. In [241] a diffusion-reaction model is

used to describe the spread of the sterile male codling moths, Cydia pomonella. In [80] an

ADR model is formulated to investigate the impact of environmental factors (spatial hetero-

geneity and temperature) on an Aedes mosquito population and to test various SIT-control

strategies. In addition, dispersal abilities of insects is an essential information to plan effi-

cient control of pest insects and/or prevent biological invasions [220, 238]. A diffusion-based

model has been used to study, for example, the dispersal of the sterile Mediterranean fruit

fly Ceratis capitata from a release point [197].

ADR models can be studied analytically to obtain biologically relevant results. For in-

stance, in some cases, we can obtain equilibrium solutions that describe the spatial distri-

bution of the organism as time approaches infinity. Such results are very useful to under-
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stand the interaction between spatial heterogeneity and movement, and/or to determine areas

where the organisms are most likely to establish. Some theoretical background useful for the

mathematical study of ADR models is provided in chapter 2 section 2.3.
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1.5 Estimating insect population size

The population size is an essential information to plan appropriate management. The

most accurate method to determine the size of a population is via direct observation.

This method consists in counting all the individuals of the population in the area considered.

Despite the reliability of the method, it is not practical for insect populations. Indeed,

insects are numerous and sometimes difficult to find as they can easily hide under leafs, or

be visible only at specific times of the day, thus counting all the insects in an area would be

labour intensive and time consuming. Therefore, estimation methods are usually used to

measure insect population size. Several approaches can be considered to estimate the size

of a population [218] such as sampling, Mark-Release-Recapture (MRR) or model

fitting.

1.5.1 Sampling

When the population is abundant, as for insects, it is not possible to count all the indi-

viduals in a large area. In such cases the abundance of a population can be estimated by

counting individuals on samples. The sampling strategy must account for the population

biology, ecology, behaviour and distribution in order to define an appropriate sampling unit.

The counts obtained on the sample units allow the computation of the total count over the

study area.

For insect populations, a common sampling unit is the quadrat. Sampling on quadrats

consists in selecting randomly small areas on the domain, for example squares of a 1m2, on

which all the individuals are counted. This information is than used to infer the size of the

population over the whole domain. Quadrats are however not natural sampling units and

require to choose relevant size and shape. Further, quadrats require that the population

remain immobile during the counting period.

Alternatively, population abundance can be estimated from line transects [38]. This

method consists in defining a transect line in the study area where each individual seen within

a particular width is recorded with its perpendicular distance to the line and position on the

line. The abundance of the population is determined by means of an estimation method

among which the Hayne estimator, Fourier series or Shape-restricted estimator [153].

Another strategy is distance sampling [38]. This method consists in choosing a point

randomly on the study area and measure the distance from the point to the nearest individual.

Distance sampling has been used for example to estimate abundance of the invasive ant

Solenopsis invicta [142] and butterflies [137].
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An advantage of line transect and distance sampling is that it allows to determine if the

spatial distribution of the population if random, aggregated or uniform [115, 142]. However,

counting individuals on samples, in particular for abundant population of small organisms

are usually labour intensive and require a good knowledge on the ecology of the population.

1.5.2 Mark-Release-Recapture

The principle of MRR was first used by Graunt in 1662 to estimate the human population

of London. The method was extended to ecological problems with the works of Peterson on

Danish fisheries in 1896, and it is in 1933 that MRR was first used in entomology by Jackson

to estimate insect population abundance.

MRR consists in capturing a sample of the population, marking the individuals, typically

with a coloured marker that does not affect their biology and behaviour. They are then

released in such a way that they intermingle with the rest of the population before recapturing

is carried out. The ratio between the marked and released insects and the total recaptured

is analysed.

MRR is a powerful method which can provide information on the demography, movements

or abundance of a population [153]. In a work of 1962, MRR provided a more accurate

estimate than sampling for the shield bug Eurygaster integriceps [13]. However, a certain

number of assumptions must be taken into account to carry the appropriate experiment and

analysis to obtain reliable estimations.

1.5.2.1 Assumptions

In order to exploit the results of MRR experiments, assumptions are made [226]. First, the

marking of individuals does not affect their behaviour and life expectancy. In addition, the

marks are not lost during the study period. Then it is assumed that the released individuals

mix completely in the population and that marked individuals have the same chance to be

caught than any other member of the population. Moreover, the collect of the recaptures

must be done at discrete times, and the collect process must be done over a short time

compared to the overall time of the experiment.

Further, the method must be adapted depending on if the population is assumed to be

open or closed. A population is closed if its size remains unchanged over the period of

the experiment. This assumes that there is no growth or decline of the population due to

demography or migration. Such an assumption can hold for short-time studies, and in this
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case the Lincoln-Petersen method or the Schnabel method are commonly used. The Petersen-

Lincoln and the Schnabel methods are quite restrictive by their assumptions. In particular,

the closed population assumption is not realistic. Alternatively, for open populations the

Jolly-Seber method is more appropriate as it takes into account changing population [198].

1.5.2.2 Some common methods

The Lincoln-Petersen method [86, 173] is the simplest method to obtain an estimate

of a population size using MRR. In this method the population is assumed to be closed, thus

during the period between the release and the recapture of individuals, there is no death, no

birth, no immigration and no emigration. Further, it does not account for possible errors in

the experiment such as loss of marks, mistakes in the recording process, etc. The estimator

of the population size is derived under the additional assumption that all individuals have

the same probability of being captured, thus the ratio of marked recaptured, m, over the

total number of marked, M , should be equal to the ratio of the total number of captured

(marked and not marked), n, over the total population, N :

m

M
=

n

N
. (1.10)

Thus, an estimator, N̂ of the population size is

N̂ = M
n

m
,

with the associate standard error

SE =

√
M2n(n−m)

m2(m+ 1)
.

However, (1.5.2.2) tends to overestimate the total population size, particularly when the

sample of marked individuals is small. Thus, it is recommended to use one of the two the

modified estimators [86]

N̂ =
(M + 1)(n+ 1)

(m+ 1)
− 1,

with the associated standard error

SE =

√
M2(n+ 1)(n−m)

(m+ 1)2(m+ 2)
.

The estimator and its standard error can be used to compute a 95% confidence interval for

the population size as follows

CI = [N̂ − 1.96× SE; N̂ + 1.96× SE]
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In other words, there is a 95% probability that the population size N belongs to the interval

CI.

The Schnabel method is an extension Lincoln-Petersen method, for closed population

based on the same assumptions. The Schnabel method consists of a time-series of capture-

recapture experiments using a single type of mark. Thus at time t, the marked insects, Mt,

are the insects captured in one or several prior captures. The multiple MRR experiments are

than processed as series of Lincoln-Petersen samples, that is, this estimation of the population

size is

N̂ =

∑
t ntMt∑
tmt

(1.11)

where nt is the total number of captured individuals(marked and not marked) at time t and

mt is the number of marked insects captured at time t.

The main advantage of the Schnabel method is that it can identify violation to the assump-

tion under which all individual have equal chances to be caught. Indeed, if the assumption

is verified, the proportion of the marked individuals on the number of previously marked

individuals should fit a straight line. Otherwise, the assumption is violated.

The Jolly-Seber method has been developed for open populations which is a biologically

more realistic assumption as it takes into account changing population in time through births,

deaths, migration, etc. [198]. In the Jolly-Seber methods, MRR samples are collected at

several times, but unlike for the Scnabel method, the marks specific to each capture time.

This allows to determine when a marked individual was last captured. In this method, the

sampling of the individuals must be done randomly and over a short period of time compared

to the duration of the study. Since this method is designed for open populations, it is possible

to carry MRR experiments over long time periods (several weeks/months/years).

Detailed study of MRR experiments using these methods can be found in [153]. In partic-

ular, methods to find the confidence intervals for each of these estimators are given, providing

essential information on the reliability of the estimates. Further, numerous computer soft-

ware are available to estimate population size using MRR data [226], such as MARK [253],

NORMARK [252], CAPTURE [204], or E-SURGE [52].

1.5.3 Trapping model approach

Mathematical modelling allows to test different trapping strategies and help to optimize

field experiments to collect the useful information. Petrovski et al. [195] estimate insect

population density based on two modelling approaches for the dynamics of the population.

First, they use a two-dimensional IBM model to simulate trajectories of insects which are
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captured as they cross the boundary of a trap represented by a circle. Then they consider

a population model based on a diffusion process, assuming a uniform distribution of the

population, where the trapping is modelled by setting the population density to 0 inside the

area of trap. The number of captured insects is estimated by computing the total diffusive

flux of the population through the boundary of the trap over a specific period of time. In the

work of Petrovskaya et al. [194], the approach is different as the abundance of the population

is estimated by interpolation on a domain discretized in such a way that the nodes of the

grid correspond to trap locations. In particular, the authors estimate the abundance of the

population over the whole domain based on a sparse trap network. In the works of Banks et

al. [14, 15], however, a transport equation models the flux of a population with a PDE, and

the estimation of parameters of the model, among which the initial population abundance is

based on cubic spline approximation.

In the models presented in chapters 3 and 4, the population size and distribution cor-

respond to the initial condition of the population dynamics model. The estimation of the

population abundance and other parameters (diffusion rate, attractiveness of the traps, etc.)

is obtained using a least square approach. While in chapter 3, the distribution of the ini-

tial population is assumed homogeneous, in chapter 4 we estimate population parameters

considering various spatial distributions of the population.
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1.6 Modelling trapping

In order to analyse population dynamics, to monitor the evolution of the population,

estimate the population size or reduce populations, a typical approach is to use trapping

data. Taking into account trapping in mathematical models is a challenge of its own and

several approaches can be considered. Trapping can be modelled in a spatially explicit way

where each trap has a localisation and the dynamics of the population depend on the distance

to the trap. This is the approach of the models we are considering in chapters 3 and 4 in a

two-dimensional domain. Alternatively, trapping can be modelled implicitly, via a removal

process which does not account for any spatial structure of the population. This is the process

modelled in chapter 5. In the following we give an overview of the modelling of the trapping

process in spatial and non-spatial settings.

1.6.1 Spatially explicit trapping

From the modelling perspective, a trap can be seen as a bounded area of the spatial do-

main, typically small. Individual entering this area have a certain probability to be captured.

The capture process can be modelled by removing the individuals from the system, using

an excess death rate for instance, or they can stay in the trap area with no possibility to

come out. This modelling choice can be important depending on whether the effect of the

capture impacts or not the dynamics of the free individuals. For example, an accumula-

tion of individuals at a particular location may favour or not the trapping of neighbouring

individuals.

Two trapping approaches can be considered: passive trapping and active trapping.

The major difference between the two approaches depends on the effect of the traps on the

dynamics of the free-individuals, outside the area of the trap. Indeed, in the case of active

trapping, typically the trap releases an attractant which influences the directional movements

of individuals in the vicinity of the trap and this influence is all the more important as

individuals get closer to the trap. On the other hand, in the case of passive trapping,

the trap itself does not impact the dynamics of the free population, at most the captured

individuals, such as accumulation phenomenon, may possibly affect the chances of capture

in the vicinity of the trap. It is worth mentioning that although we only considered the case

of chemical attractants in this thesis, visual cues can also influence the movements of insects.

In [195], the authors modelled a passive trap as a circular area which terminate the path of

any insect crossing its boundary while the movements of the individuals is random modelled

at the scale of individuals via a random walk process. They also modelled the movements

at the population level via a diffusion process and two shapes of traps: circular and square,
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where the capture process is modelled by setting a zero-density condition at the boundary

of the trap. Another approach to model passive traps was considered in [194], where the

space is discretized by a grid whose nodes correspond to trap positions. We now describe the

modelling of active trapping.

Often, in order to maximize the chances to capture insects, attractive traps are used.

Those traps release a chemical attractant (food, pheromone, CO2, etc.) that diffuses in the

environment which guides the individuals towards the trap. The diffusion of a chemical in air

is a complex process which can exhibit random meandering patterns generated by turbulences

in the environment [188]. Thus the concentration of the chemical fluctuates randomly with

a tendency to be higher closer to its source forming a filamentary plume.

The plume formation is a very complex phenomenon and it can be approximated by sim-

pler shapes such as an ellipse [80, 82]. Indeed, it can be assumed that in a still environment,

such chemical spreads according to Fick’s law via a diffusion process for which the contour

concentration levels are circles. In the presence of wind, we can assume that these circles

are deformed into ellipses taking into account the wind direction and speed by varying its

orientation and its stretching. The area within the plume where the concentration of the

chemical is above a threshold that can be detected by insect and influence their behaviour is

referred to the active space of the trap [41]. In a plume, the concentration of the chemical is

higher closer to the release point and lower further from the release point affecting the force

of attraction and therefore the probability of capture. This assumption has been supported

by MRR experiments assessing that the probability of capture increases with a decreasing

distance to attractive traps [189, 259]

A common way to model insect trapping is by considering the effective attractive

radius (EAR) of the attractive trap. The EAR is an imaginary spherical area around the

trap needed to catch as many insects as a passive trap [43]. The EAR is not a representation

of the chemical plume as it does not correspond to the actual area of the trap. In [33]

the authors studies the response of insects to the dosage of pheromone traps by means of

probability of capture using the attraction range [247].

The capture of individuals can occur anywhere on the domain where a probability of

capture is defined spatially, with increasing value when getting closer to the location of the

trap. In [166], a computer model is developed to study the sensitivity of an active-trapping

network on capture probability. In this work, three modelling approaches are considered to

assess the efficiency of the trap setting. One relates capture probability to the ratio of the

capture areas of a trap setting to the total area. However, a drawback of this approach is

that the probability of capture of an individual, given its distance to a trap is either 0 or 1.

The next approach considers a capture probability model where the probability of capture
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is a function of the distance to the trap and can vary between 0 and 1. Then, instantaneous

capture probability is considered and represents the average probability of being captured in

a given area at a specific time. Finally a probability of capture over time is described through

a diffusion process which gives to the distribution of a population at a particular time, given

an initial distribution of the population.

In the setting of ADR models, the response of individuals to the trap is determined by the

force of attraction in the advection process guiding the individuals towards the trap. It is a

function of the distance to the trap, with high values close to the trap, and decreasing as the

with increasing distance. In this approach, the capture of individuals occurs inside the area

of the trap. In the model presented in chapter 3 , the dynamics of insects is governed by an

ADR process where the advection term accounts for the attractiveness of traps. In this work,

the traps are represented as small circles in which insects have a maximum probability of

capture. The force of attraction of the traps is constant in time and occurs in a ring around

the trap, being at its maximum attractiveness at the boundary of the trap and decreases to

0 in the ring.

For more realism, the diffusion process of the chemical attractant can also be modelled via

an ADR process of its own. This can be particularly useful when counting of captured insects

starts simultaneously with the setting of the traps, that is when the traps start diffusing the

chemical. This leads to a chemotaxis model [141, 127] where the attraction of the insects to

the traps is a function of the chemical concentration at any position and any time. In [64]

a spatio-temporal model is developed to simulate the host-seeking behaviour of mosquitoes.

In this model, the hosts release CO2 which is traced back by mosquitoes. The dynamics

of the mosquitoes represented in this work are similar to those of insects responding to an

attractant released from a trap. In this approach, the release of the CO2 has been modelled

using a ADR model, while the trajectories of the responding mosquitoes were governed by

an IBM based on a random walk process.

The model represented in chapter 4 is a chemotaxis model consisting in the coupling of

an ADR model governing the spread of the chemical attractant released from the traps with

the ADR model governing the dynamics of the insects where the advection coefficient in the

insect’s equation is a function of the chemical concentration. In this model, the traps in

which the capture occurs are represented as small circles, while the active space around the

trap is defined by a threshold concentration of the chemical attractant which can be detected

by the insects.
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1.6.2 Spatially implicit trapping

When the model does not account for the spatial variations of the population dynamics,

the trapping can be taking into account implicitly by adding a removal rate of individuals.

Omitting the space variable in trapping models assumes that the individuals all have the

same chance of being captured regardless of their position. In order to account for additional

characteristics of the trap, such as its effectiveness only on a specific class of the population,

the model can be structured accordingly.

The model developed in chapter 5 aims to investigate the effect of MAT and trapping

on an insect population. In order to analyse the model theoretically, we omitted the space

structure and rather focused on the structure within the population. This model is based on

the approach proposed Barclay and Van den Driessche [18] where they developed temporal

models to simulate pheromone trapping of insects. In these models, we assume that only

males are attracted to a chemical female-sex-pheromone released from a trap. Not only

the males get distracted by the chemical disrupting the mating, but the proportion males

who got distracted have a high risk of being captured. To take into account these two

aspects, the population is divided in four compartments based on the biological knowledge

and behavioural knowledge: immature, adult males, adult females available for mating and

adult females ready to lay their eggs supplying the immature compartment. The transition

from females available for mating, to females ready to lay eggs depends on the number of

males available, and therefore we model this transition as a function of the proportion of

males that have not be disrupted by the pheromone released from the traps. Then, the

capture only occurs on the proportion of males that have been disrupted via an additional

mortality term in the equation modelling the dynamics of the adult males.
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1.7 Aim and objectives of this thesis

This thesis aims to provide a mathematical framework for the development and/or im-

provement of pest-insect control strategies satisfying the requirements of IPM programs.

This mathematical framework comprises mathematical models accompanied by appropriate

theoretical analysis and thresholding, by adequate schemes for numerical solutions as well

as efficient and reliable procedures for parameter identification. It is developed in order to

address challenges related to what, when and how questions regarding control interventions.

The first objective of the thesis is to develop mathematical methods and practically applica-

ble protocols to estimate the insect population size and distribution, using trap data, which

is an essential information for planning effective control measures. The second objective is

to predict the impact of a specific control strategy on a pest population, and identify how to

drive a pest population to extinction.

To address the first objective, we develop a generic two-dimensional spatio-temporal Trap-

Insect Model (TIM) model based on biological and ecological knowledge of the species. At-

tractive traps are placed on the domain at an initial time for which the population has a

specific size and distribution. The spatio-temporal dynamics of the insects responding to

attractive traps is driven by (i) a diffusion process that accounts for the dispersal capacity

of the insects; (ii) an advection process that accounts for the attractiveness of the traps, and

(iii) a reaction process that accounts for demographics and trapping. Thus, the model is

formulated by an ADR equation. Usually, the dispersal capacity of the insects, as well as the

value of the parameters related to the traps are unknown and need to be estimated together

with the initial population size and distribution. This task is further challenging as these pa-

rameters depend on environmental changes (temperature, humidity, wind, etc.) which vary

in time. A major outcome of this thesis is a protocol to identify a set of parameters using

trap data collected over a short period of time during which the parameters can be assumed

constant. This objective is addressed in chapters 3 and 4 of this thesis.

The second objective of this thesis is addressed by constructing a model for the control of

crop-pests via mating disruption, using a female pheromone, and trapping. In this setting,

males are diverted from females compromising their insemination. To account for specific

behaviours within the population induced by the choice of the control method, the population

is divided in appropriate compartments. The dynamics of the insect population is described

by a temporal compartmental model governed by a system of ODEs. The effect of the dosage

of the pheromones has been studied theoretically and allowed identify values of practical

interest, such as a threshold value above which extinction of the population is ensured. This

work is presented in chapter 5.
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This thesis is organised as follows.

In chapter 2, we recall some basic mathematical principles used for the analysis of the

models presented thereafter.

Chapter 3, deals with the two-dimensional spatio temporal modelling of insect trapping in

the prospect of parameter estimation. In this chapter the active area of the trap is modelled

by a circle around each trap where the attractiveness of the trap is static and is defined by

a function which is null outside this area and increases to a maximum value with decreasing

distance to the trap. The distribution in time and space of the population is computed

numerically on a spatial domain discretized by a regular grid via a finite difference method.

The model presented in this chapter allowed to test different settings of interfering traps to

estimate parameter values of the model using a uniform initial distribution of the population.

The model presented in chapter 4 governs the dynamics of insects coupled with a model

governing the spread of the chemical attractant released from traps. This model is formulated

via system of ADR equations. Here, the active space around each trap is determined by a

threshold value of the concentration of the chemical above which the behaviour of insects is

affected. The advection process in the equation modelling the insects dynamics is a function

of the concentration of the chemical. This model is studied theoretically and the solution is

computed numerically on an unstructured mesh using the method of finite elements. The

model is then used to propose a protocol for parameter estimation, using data simulated with

various settings of traps and initial distributions.

In chapter 5, we present a model to simulate the control of insects via mating disruption

and trapping using pheromone-baited traps. Considering the specifics of the control method,

the population is divided into several compartments and modelled as a system of ODEs.

The effect of the dosage of the pheromone on the persistence of the population is studied

mathematically using the theory of monotone dynamical systems.

Finally, chapter 6 concludes on the work of the thesis and provides perspectives and open

questions for future studies.
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Chapter 2

Mathematical models and methods

2.1 Introduction

The models presented in chapters 3 and 4 describe the trapping of insects using attractive

traps on a spatio-temporal scale. These models are defined via PDEs describing advection-

diffusion-reaction processes. Numerical simulations of trapping data are used to estimate

insect population abundance and distribution as well as other unknown parameters of the

models related to the traps. These models allow to test various trapping scenarios and help

optimizing field protocols for data collection. The methods used for parameter identification

are presented in the respective chapters.

The model described in chapter 5 models the response of a pest-insect population to

mating disruption and trapping control on a temporal scale. This model is described via a

system of ODEs and aims to simulate the impact of the control. Its theoretical study allows

to identify thresholds of biological importance for the management of the pest population.

More precisely, the study of this model allows to identify a threshold for the mating disruption

effort required to ensure extinction of the pest population.

In chapters 3, 4 and 5 the models define dynamical systems. These systems cannot be

solved explicitly. Chapter 2 provides an introduction to the numerical methods used in

computing approximate solutions. The related theory regarding the well-posedness of the

problems and the quality of approximations is also provided. It includes, on the one hand,

analysis and convergence properties, but on the other hand, also analysis on replicating

essential biologically relevant properties of the solutions, i.e. positivity, boundedness.

This chapter is organised as follows. In section 2.2 we present the general setting of dy-

45
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namical systems to which the models of this thesis belong to. Section 2.3 is devoted to the

theoretical study of dynamical systems defined via advection-diffusion-reaction equations, us-

ing the theory of Lions, based on the variational formulation of the problem. Complementary

studies of models described in chapters 3 and 4 are given in this section as application of this

theory. Section 2.4 deals with the theoretical study of dynamical systems defined via ODEs.

In particular, special attention is given to monotone dynamical systems used in the study

of the model of chapter 5. Finally, in section 2.5 we briefly present the numerical methods

used to compute the solutions of the advection-diffusion-reaction equations arising from the

models of chapters 3 and 4. More specifically, we present the method of lines which consists

in discretizing the PDE problem first with respect to the space variable to obtain a system

of ODEs. Here we only focus on the space discretization using the finite difference approach,

as in chapter 3, and the finite elements approach, as in chapter 4.
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2.2 General setting for the models

The models presented in chapter 3, 4 and 5 are dynamical systems. A dynamical system

describes the evolution in time of the different states of a system. The set of states is often

referred to as the phase space and it can be of different nature depending on the formulation

of the problem. For instance, the phase space of a dynamical system defined via an ODE

representing the evolution of a population size can be a subset of R. When the population is

divided into compartments, then its dynamics are governed by a system of ODEs, and then,

the states of its dynamical system are vectors of Rn giving the size of each compartment.

The states of a dynamical system can also be functions or vector of functions. When we deal

with spatio-temporal trapping models governed by PDEs (resp. systems of PDEs), then the

phase space of the corresponding dynamical system becomes the space of R-valued functions

(resp. Rn-valued functions).

Dynamical systems can be categorized according to the nature of its parameter (time), its

phase space and its evolution rule. The time as well as the phase space can be continuous or

discrete. Further, the evolution rule can be deterministic or stochastic. When the evolution

rule is deterministic, it takes each state of the system to a unique subsequent state, which

is not the case when the evolution rule is stochastic. The models presented in chapters 3, 4

and 5 describe continuous deterministic dynamical systems, thus we only focus on this case.

The set of states is a topological space denoted by D. In more precise terms the definition

of dynamical system is given as follows [128]:

Definition 2.2.1. Let D be a topological space. A dynamical system is a C1 map ϕ : R+×D →
D such that ϕt ≡ ϕ(t, ·) : D → D satisfies the following properties:

(i) ϕ0 = Id, and

(ii) ϕt+s = ϕt ◦ ϕs, ∀t, s ≥ 0.

The operator ϕ is called a semigroup operator, since it follows from (i) and (ii) that

{ϕt, t ≥ 0} is a semigroup with respect to composition. The operator ϕ is also called a

semiflow.

The models presented in chapters 3 and 4 are formulated via PDEs and the model of

chapter 5 is a system of ODEs. In all cases, the model can be formulated in the following

operator form
du(t)

dt
= Au(t) + f ; u(0) = u0 (2.1)
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where u(t) ∈ Rn when the model is given as a system of ODEs and where u is a mapping

u : [0,∞] −→ V

t 7−→ u(t) ≡ u(t, ·) (2.2)

V being a functional space, when the model is formulated by PDEs. Then, we have that

u(t) = ϕt(u0)

is a solution of the IVP (2.1).

In many cases, it is not possible to find an explicit formulation for a solution to such prob-

lems. In order to study PDE or ODE problems, we typically investigate the well-posedness of

the problem. A problem is said to be well-posed (in the sense of Hadamard) when it satisfies

the following conditions:

there exists a solution to the problem; (2.3)

this solution is unique; (2.4)

the solution depends continuously on the data of the problem. (2.5)

In sections 2.3 and 2.4, we give some mathematical background in the appropriate settings

to show that the problems describe well-posed dynamical systems. For the advection-diffusion

models presented in chapters 3 and 4 formulated by PDEs, we consider the problem in its weak

form. For the model of chapter 5, however, we consider the setting of monotone dynamical

systems.
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2.3 Advection-Diffusion-Reaction models

In the models of chapters 3 and 4, we consider the spatio-temporal variations of a concen-

tration or abundance of insects governed by ADR equations. This concentration is denoted

u(t, x) and defined on a time-space domain ΩT = [0, T ]×Ω, where T ∈ R+ and Ω is a domain

in R2 with a piecewise smooth boundary Γ = ∂Ω. The ADR equation can be written in the

general form:
∂u

∂t
+ Lu = f, in ΩT , u(0, x) = u0, (2.6)

with

Lu = −
2∑

i,j=1

∂

∂xj

(
di,j(t, x)

∂u

∂xi

)
+

2∑

i=1

ai(t, x)
∂u

∂xi
+ c(t, x)u. (2.7)

Further, to complete the formulation of the problem, we provide information on the dy-

namics at the boundary, Γ, of the domain. We can distinguish two main types of boundary

conditions:

• Dirichlet: u(t, x) = α(t, x), x ∈ Γ. Here the value is defined on the boundary.

Example of application: if we consider a domain out of which individuals cannot survive,

than we take α(t, x) = 0.

• Neumann: ∂
∂n
u(t, x) = g(t, x), x ∈ Γ, where n denotes the outward normal vector to

Γ. Here the flux in and out of the domain is determined. For example, if we consider

an isolated domain with no movement of individuals in and out of the domain, than

we take g(t, x) = 0.

However, other boundary conditions can be formulated. For instance the Robin boundary

condition is a combination of Dirichlet and Neumann, where the flux at the boundary depends

on the density of u at the boundary. It is also possible to consider different types of boundary

conditions on different parts of Γ.

In this thesis, we consider only homogeneous Dirichlet conditions

u(t, x) = 0, x ∈ Γ, ∀t ∈ (0, T ], (2.8)

or homogeneous Neumann conditions

∂u(t, x)

∂n
= 0, x ∈ Γ, ∀t ∈ (0, T ]. (2.9)

Given problem (2.6), a solution is expected to lie in the space of real-valued functions of

class C1 with respect to t and C2 with respect to x and it is referred to as a classical solution.
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However, except in some particular cases, finding a classical solution of (2.6) with boundary

conditions (2.8) or (2.9) which satisfies properties (2.3)-(2.5) is usually not possible. Thus,

typically, the well-posedness of a problem is rather studied on a wider class of solutions which

require weaker smoothness conditions, referred to as weak solutions.

2.3.1 Preliminaries

In order to study the weak solutions, and given the boundary conditions (2.8) or (2.9), we

introduce the following functional spaces:

L2(Ω) =
{
f : Ω→ R; f is measurable and |f |2 is measurable and integrable

}
,

H1(Ω) =

{
w ∈ L2(Ω) :

∂w

∂xi
∈ L2(Ω), 1 ≤ i ≤ 2

}
,

H1
0 (Ω) =

{
w ∈ H1(Ω) : w|Γ = 0

}
.

For w ∈ H1(Ω), we define the weak partial derivatives gi = ∂w
∂xi

, for 1 ≤ i ≤ 2, as

∫

Ω

w
∂ϕ

∂xi
= −

∫

Ω

giϕ, ∀ϕ ∈ C∞c (Ω),

where C∞c is the set of infinitely differentiable functions with compact support. Note that

the space L2(Ω) is a Hilbert space with a scalar product

(v, w)L2 =

∫

Ω

vw, (2.10)

and its associated norm is

‖v‖2
L2(Ω) =



∫

Ω

|v|2



1
2

. (2.11)

Further, the space H1(Ω) is a Hilbert space with a scalar product

(v, w)H1 =

∫

Ω

vw +

∫

Ω

∇v∇w, (2.12)

and its associated norm is

‖v‖2
H1(Ω) = ‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω). (2.13)
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In the following, we use the notation

V = H1(Ω) for the boundary condition (2.9), and

V = H1
0 (Ω) for the boundary condition (2.8) .

We denote V ′ the dual space of V , that is

V ′ = H−1(Ω).

Moreover, since V is dense in L2(Ω) such that V ⊂ L2(Ω) with continuous embedding, and

since there is a natural isometry between the space L2(Ω) and its dual space, then it follows

from the Riesz Representation Theorem [36, Theorem 4.11] that L2(Ω) can be identified with

its dual space.

Let us recall some commonly used notations. The duality pairing between two elements

of the spaces V ′ and V can be seen as an extension of the scalar product in L2(Ω) defined in

(2.10),

< v,w >V ′,V =

∫

Ω

vw, v ∈ V ′, w ∈ V. (2.14)

For j > 0,

Cj([0, T ], V ) =
{

V-valued functions that are of class Cj with respect to t
}
.

Let dtu denote the derivative of u with respect to t, and dltu the derivative of order l. Then

Cj([0, T ], V ) is a Banach space with a norm

‖u‖Cj([0,T ],V ) = sup
t∈[0,T ]

j∑

l=0

‖dltu‖V .

For 0 < p <∞,

Lp(0, T, V ) = { V-valued functions whose norm in V is in Lp(]0, T [)} .

Then Lp(0, T, V ) is a Banach space with respect to the norm

‖u‖Lp(]0,T [,V ) =





(∫ T
0
‖u(t)‖pV

) 1
p
, if 1 ≤ p < +∞

ess sup
t∈[0,T ]

‖u‖V , if p = +∞.

Let B0 ⊂ B1 be two reflexive Banach spaces with continuous embeddings. Then the space

W(B0, B1) = {v ∈ L2(0, T ;B0) : dtv ∈ L2(0, T ;B1)}

equipped with norm ‖u‖W(B0,B1) = ‖u‖L2(0,T ;B0) + ‖u‖L2(0,T ;B1), is a Banach space.
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Lemma 2.3.1 (Integration by parts). For all u, v ∈ W(V, V ′), we have:

∫ T

0

<
∂u

∂t
, v >V ′ ,V dt = (u(T ), v(T ))L − (u(0), v(0))L −

∫ T

0

<
∂v

∂t
, u >V ′ ,V dt (2.15)

Lemma 2.3.2 (Green’s formula). Let σ ∈ [L∞(Ω)]n×n.
∫

Ω

∇ · (σ · ∇u)v =

∫

Γ

∂u

∂~n
v −

∫

Ω

σ∇u · ·∇v, ∀u ∈ C2(Ω̄), ∀v ∈ C1(Ω̄), (2.16)

where ~n is the outward normal vector to Γ [94, Corollary B.59].

Lemma 2.3.3 (Holder’s inequality). Let f ∈ Lp(Ω) and g ∈ Lq(Ω) with 1 ≤ p ≤ +∞ and
1
p

+ 1
q

= 1, then fg ∈ L1(Ω) and

∫

Ω

|fg| ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

Lemma 2.3.4 (Gronwall’s [94]). Let β ∈ R, ϕ ∈ C1(0, T ;R) such that

dϕ

dt
≤ βϕ+ f.

Then,

∀t ∈ [0, T ], ϕ(t) ≤ eβtϕ(0) +

T∫

0

eβ(t−τ)f(t)dτ.

2.3.2 Variational formulation

Here, we assume that

di,j, ai, c ∈ L∞([0, T ]× Ω), (2.17)

f ∈ L2(Ω), (2.18)

u0 ∈ L2(Ω). (2.19)

In chapter 4 the state of the dynamical system defined via (2.6) at time t is the distribution

of insects over the spatial domain Ω given an initial distribution, u(0, x) = u0. Equation (2.6)

is extended to C([0, T ], V ) in the form of problem (2.1) where the operator A is defined on

V as follows. We say that

w = Au if

∫

Ω

wv = −
∫

Ω

(
2∑

i,j=1

di,j(t, ·) ∂u
∂xi

∂v

∂xj
+

2∑

i=1

ai(t, ·) ∂u
∂xi

v + c(t, ·)uv
)
, ∀v ∈ V.

(2.20)
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In fact by multiplying equation (2.6) by v ∈ V and integrating by parts, we derive the weak

formulation of problem (2.6) which is equivalent to the problem in the form (2.1) with A as

defined in (2.20):




Find u ∈ W(V, V
′
) such that:

< du(t)
dt
, v >V ′ ,V +B(t; u(t), v) =< f, v >V ′ ,V , a.e. t ∈]0, T [,∀v ∈ V,

u(0) = u0,

(2.21)

where the mapping B : [0, T ] × V × V −→ R is such that B(t; ·, ·) is the bilinear form on

[0, T ] defined for u, v ∈ V as

B(t;u, v) =

∫

Ω

(
2∑

i,j=1

di,j(t, ·) ∂u
∂xi

∂v

∂xj
+

2∑

i=1

ai(t, ·) ∂u
∂xi

v + c(t, ·)uv
)
dx. (2.22)

2.3.3 Existence and uniqueness

We assume that B satisfies the following properties:

(P1) The function t 7−→ B(t;u, v) is measurable ∀u, v ∈ V .

(P2) There is a constant M such that |B(t;u, v)| ≤ M‖u‖V ‖v‖V for a.e. t ∈ [0, T ] and

∀u, v ∈ V .

(P3) There is α > 0 and γ > 0 such that B(t;u, u) ≥ α‖u‖2
V − γ‖u‖2

L2 for a.e. t ∈ [0, T ] and

∀u ∈ V . (L2-coercivity condition)

Definition 2.3.1. Equation (2.21) defines a parabolic problem whenever the properties (P1)-

(P3) are satisfied.

The existence and uniqueness of solutions to problem (2.21) comes from the theorem of

J.L. Lions [94]:

Theorem 2.3.1 (Lions’ theorem as given in Brezis Thm. 10.9 [36]).

Given f ∈ L2(0, T ;V ′) and u0 ∈ L, there exist a unique function u satisfying

u ∈ L2(0, T ;V ) ∩ C([0, T ];L),
du

dt
∈ L2(0, T ;V ′)

<
du(t)

dt
, v >V ′,V +B(t;u(t), v) =< f, v >V ′,V , for a.e. t ∈ (0, T ), ∀v ∈ V,

and

u(0) = u0.
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Corollary 2.3.1. Under hypothesis (P1)-(P3), the problem (2.21) has a unique solution.

2.3.4 Regularity of the weak solution

Given [36, Theorem 9.25, Theorem 9.26 and Remark 24] we can show that the weak

solution of (2.21) lies in fact in the space H2(Ω) provided some regularity on the coefficients:

Theorem 2.3.2 (Regularity of the second order elliptic problem [96]).

Let Ω be an open set of class C2 with Γ bounded. Let f ∈ L2(Ω), di,j ∈ C1(Ω̄), ai ∈ C1(Ω)

and let u ∈ H1
0 (Ω) (resp. H1(Ω)) satisfy

∫

Ω

(
2∑

i,j=1

di,j
∂u

∂xi

∂v

∂xj
+

2∑

i=1

ai
∂u

∂xi
v + cuv

)
=

∫

Ω

fv,∀v ∈ H1
0 (Ω) (resp. H1(Ω)) (2.23)

Then u ∈ H2(Ω) and ‖u‖H2(Ω) ≤ C‖f‖L2, where C is a constant depending only on Ω.

Theorem 2.3.3. Let u0 ∈ H1
0 (Ω), f ∈ L2(0, T ;L2(Ω)). Suppose that u ∈ L2(0, T ;H1

0 (Ω)),

with u′ ∈ L2(0, T ;H−1(Ω)) is the weak solution of

ut + Lu = f in [0, T ]× Ω (2.24)

u = 0 on Γ× [0, T ] (2.25)

u = u0 on Ω× {t = 0} (2.26)

Then, in fact

u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), u′ ∈ L2(0, T ;L2(Ω)), (2.27)

and we have

ess sup
0≤t≤T

‖u(t)‖H1
0 (Ω) + ‖u‖L2(0,T ;H1

0 (Ω)) + ‖u′‖L2(0,T ;L2(Ω)) ≤ C
(
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖H1

0 (Ω)

)
,

(2.28)

where C is a constant which depends on Ω, T and the coefficients of L.

If in addition, u0 ∈ H2(Ω) and f ′ ∈ L2(0, T ;L(Ω)), then

u ∈ L∞(0, T ;H2(Ω)), (2.29)

u′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), (2.30)

u′′ ∈ L2(0, T ;H−1(Ω)), (2.31)
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with

ess sup
0≤t≤T

(
‖u(t)‖H2(Ω) + ‖u′‖L2(Ω)

)
+ ‖u′‖L2(0,T ;H1

0 (Ω)) + ‖u′′‖L2(0,T ;H−1(Ω))

≤ C
(
‖f‖H1(0,T ;L2(Ω)) + ‖u0‖H2(Ω)

)
, (2.32)

Theorem 2.3.4 (Regularity: Friedman Corollary of Theorem 10.2 [102]). Let L be uniformly

parabolic in Ω̄T and assume that the coefficients di,j, ai and c belong to Ck(Ω̄T ) and f ∈
Hk−i+2m(i+1)(Ω̄T ), where i = 1 + [p+ n/2 + 1)/2m], k = 2m+ p+ i+ [(n+ 1)/2] and p is a

non-negative integer. Assume that Γ is of class C2m(i+1).

Then u ∈ C2m+p(Ω̄× [ε, T ]),∀ε > 0.

2.3.5 The maximum principle

The maximum principle is a useful tool to study properties of elliptic and parabolic equa-

tions [201, 96]. This principle states that the maximum of a solution is achieved on the

boundary of the domain where it is defined. Assume that the operator L has the non-

divergent form:

Lu = −
2∑

i,j=1

di,j
∂2u

∂xixj
+

2∑

i=1

ai
∂u

∂xi
+ cu. (2.33)

where the coefficients di,j, ai and c are continuous. We also assume that di,j = dj,i. Denote

ΩT = [0, T ]× Ω and Ω̄T its closure and ΓT = Ω̄T − ΩT the parabolic boundary of ΩT .

Denote

u+ =

{
u if u > 0

0 if u ≤ 0
and u− =

{
−u if u < 0

0 if u ≥ 0.
(2.34)

Then, we have u = u+ − u−.

Theorem 2.3.5 (Weak maximum principle for c ≥ 0). Assume that u ∈ C2(ΩT )∩C(Ω̄T ) and

c ≥ 0 in Ω̄T .

(i) If

ut + Lu ≤ 0 in Ω̄T , (2.35)

then u satisfies

max
Ω̄T

u = max
ΓT

u+. (2.36)

(ii) If

ut + Lu ≥ 0 in Ω̄T , (2.37)
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then u satisfies

min
Ω̄T

u = −max
ΓT

u−. (2.38)

[96, Theorem 9, section 7.1]

2.3.6 Properties of the weak solution

To obtain positivity or, in general, bounds to the solution, we usually use the Maximum

Principle. As seen in Section 2.3.5, the Maximum Principle requires higher regularity of

the weak solution then the one given by Theorem 2.3.1. More precisely, the weak solution

has to be a classical solution. As one can see from Theorem 2.3.4, such regularity requires

substantially higher regularity of the data functions. An alternative approach is to use

positivity results for the weak solutions.

Positivity results appear in a number of publications [73, Chap. XVIII, §4, Theorem

2], [94, Chap 6, Prop 6.11], [108]. However, we did not find one that can be directly applied

to problem (2.21). Hence we state more general results with detailed proofs. These can be

considered as extensions of [94, Chap 6, Proposition 6.11].

Before proceeding with the theorems we consider some auxiliary properties of H1(Ω) and

H1
0 (Ω). For w ∈ V , where V = H1(Ω) or = H1

0 (Ω) we define the functions

w+(x) =

{
w(x) if w(x) > 0

0 if w(x) ≤ 0
(2.39)

w−(x) =

{
0 if w(x) ≥ 0

−w(x) if w(x) < 0.
(2.40)

Hence w = w+ − w−. It was shown in [72, Chap IV, §7, Proposition 6] that if w ∈ H1(Ω)

then w+, w− ∈ H1(Ω). As an easy consequence one can see that if w ∈ H1
0 (Ω) then w+, w− ∈

H1
0 (Ω) so that in terms of the notation here we have w+, w− ∈ V whenever w ∈ V . It follows

further from the proof of [72, Chap IV, §7, Proposition 6] that for any j = 1, 2

∂

∂xj
w+(x) =

{
∂
∂xj
w(x) if w(x) > 0

0 if w(x) ≤ 0

and
∂

∂xj
w−(x) =

{
0 if w(x) ≥ 0

− ∂
∂xj
w(x) if w(x) < 0.
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Then it follows from the general form (2.22) of B(t; ·, ·) that

B(t;w+, w−) = 0. (2.41)

Theorem 2.3.6. Let the bilinear form B(t, u, v) be L2-coercive on H1
0 (Ω) (see P3). If u ∈

W(H1(Ω), H−1(Ω)) is such that

<
du(t)

dt
, v >H−1,H1

0
+B(t; , u(t), v) ≥ 0, ∀t ∈ (0, T ],∀v ∈ H1

0 (Ω), and v ≥ 0,(2.42)

u(t)|Γ ≥ 0, (2.43)

u(0) ≥ 0, (2.44)

then u(t, x) ≥ 0 a.e. in Ω.

Proof. Let u ∈ W(H1(Ω), H−1(Ω)) satisfy (2.42)-(2.44). For every t ∈ [0, T ], u(t) = u+(t)−
u−(t) where u+(t), u−(t) ∈ H1(Ω) and are defined as in (2.39) and (2.40). The condition

u|Γ ≥ 0 implies that u−|Γ = 0, so that u−(t) ∈ H1
0 (Ω). Clearly, we also have u− ≥ 0. Then

setting v = u−(t) in (2.42) we obtain

<
d

dt
(u+ − u−), u− >H−1(Ω),H1

0 (Ω) +B(t;u+ − u−, u−) ≥ 0.

Using that <
d

dt
u+, u− >H−1(Ω),H1

0 (Ω)= 0, and (2.41), the inequality simplifies to

1

2

d

dt
‖u−‖2

L2 +B(t;u−, u−) ≤ 0.

Then it follows from the L2-coercivity of B(t; ·, ·) that

1

2

d

dt
‖u−‖2

L2 ≤ −α‖u−‖2
H1

0 (Ω) + γ‖u−‖2
L2 ≤ γ‖u−‖2

L2 .

From the Gronwall’s inequality

‖u−‖2
L2 ≤ ‖u−0 ‖2e2γt.

Since u−0 = 0 a.e. in Ω, we have ‖u−0 ‖ = 0 and therefore ∀t ∈ [0, T ], u(t, x) = u+(t, x) ≥ 0

a.e. in Ω.

Theorem 2.3.7. Let the bilinear form B(t, u, v) be L2-coercive on H1(Ω). If u ∈ W(H1(Ω), H−1(Ω))

is such that

<
du(t)

dt
, v >H−1,H1 +B(t; , u(t), v) ≥ 0, ∀t ∈ (0, T ],∀v ∈ H1(Ω), and v ≥ 0,(2.45)

u(0) ≥ 0, (2.46)

then u(t, x) ≥ 0 a.e. in Ω.
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Proof. Let u ∈ W(H1(Ω), H−1(Ω)) satisfies (2.45)-(2.46). For every t ∈ [0, T ], u(t) = u+(t)−
u−(t) where u+(t), u−(t) ∈ H1(Ω) and are defined as in (2.39) and (2.40). Clearly, we also

have u− ≥ 0. Then setting v = u−(t) in (2.45) we obtain

<
d

dt
(u+ − u−), u− >H−1(Ω),H1(Ω) +B(t;u+ − u−, u−) ≥ 0.

Using that <
d

dt
u+, u− >H−1(Ω),H1(Ω)= 0, and (2.41), the inequality simplifies to

1

2

d

dt
‖u−‖2

L2 +B(t;u−, u−) ≤ 0.

Then it follows from the L2-coercivity of B(t; ·, ·) that

1

2

d

dt
‖u−‖2

L2 ≤ −α‖u−‖2
H1(Ω) + γ‖u−‖2

L2 ≤ γ‖u−‖2
L2 .

From the Gronwall’s inequality

‖u−‖2
L2 ≤ ‖u−0 ‖2e2γt.

Since u−0 = 0 a.e. in Ω, we have ‖u−0 ‖ = 0 and therefore ∀t ∈ [0, T ], u(t, x) = u+(t, x) ≥ 0

a.e. in Ω.

2.3.7 Asymptotic behaviour

In section 2.3.3, the existence and uniqueness of the weak solution to problem (2.6) with

boundary conditions (2.8) or (2.9) has been established. Here, we investigate the behaviour of

the solution as t approaches +∞. In particular we seek for time-independent solutions, that

is, steady states of the system, also called equilibrium solutions. Steady state solutions may

be constant in space, in which case they are called spatially homogeneous, or they may depend

explicitly on the spatial variable in which case they are called spatially heterogeneous [170].

Definition 2.3.2. A steady state solution of problem (2.6) is a solution u ∈ Ω which satisfies

the elliptic problem

Lu = f, ∀x ∈ Ω (2.47)

with boundary conditions (2.8) or (2.9).

Below, we first recall existence and uniqueness results for steady state solutions. Then we

give a brief overview of the main types of steady states as well as their stability properties.
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2.3.7.1 Existence and uniqueness

Following the same approach as in section 2.3.2, we consider the stationary problem in its

variational form, and we seek u ∈ V such that

B(u, v) = f(v) (2.48)

where B : V × V −→ R is the bilinear form defined for u, v ∈ V as

B(u, v) =

∫

Ω

(
2∑

i,j=1

di,j
∂u

∂xi

∂v

∂xj
+

2∑

i=1

ai
∂u

∂xi
v + cuv

)
dx. (2.49)

Lemma 2.3.5 (Lax-Milgram [94]). Let V be a Hilbert space, let B ∈ L(V × V ;R), and let

f ∈ V ′. Assume that the bilinear form is coercive. i.e.

∃α > 0,∀u ∈ V, B(u, u) ≥ α‖u‖2
V . (2.50)

Then the problem of finding u ∈ V such that

B(u, v) =< f, v >V
′
,V , ∀, v ∈ V (2.51)

is well-posed with a priori estimate

∀f ∈ V ′, ‖u‖V ≤
1

α
‖f‖V . (2.52)

2.3.7.2 Steady state solutions

Consider the classical problem (2.6) with boundary condition (2.9) and the corresponding

ODE problem defined by
du(t)

dt
= f. (2.53)

Assume that u∗ is a stationary solution of (2.53).

Definition 2.3.3. A solution problem (2.6), u(·, x) = u∗, ∀x ∈ Ω is called a spatially

homogeneous steady state [170].

Denote ũ∗ the steady state of problem (2.6), corresponding to the stationary solution u∗.

Practical study of the local stability of homogeneous steady state solutions can be found

in [245, 170]. In particular, it can be shown that if u∗ is unstable, then ũ∗ is also unstable,

however the asymptotic stability of u∗ does not guaranty the asymptotic stability of ũ∗. When

u∗ is stable but ũ∗ is unstable, then we obtain a so-called a Turing instability [239]. Indeed,

in some cases, adding a diffusion operator may have a destabilizing effect. In other cases, it
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may give rise to the formation of patterns which constitute a stable spatially heterogeneous

solution. The study of Turing instabilities can be found in [245, 170].

In chapter 3, we model the diffusion of the concentration of a chemical attractant released

from traps which determines the attraction of the insects towards them. We show that as

time approaches +∞, the concentration converges to a spatially heterogeneous steady state

solution. Assume that the rate at which the chemical attractant diffuses is significantly higher

than the rate at which insects spread, we solve numerically the insect population dynamics

problem by considering the steady state concentration of the chemical attractant.

2.3.8 Application to single PDE model of Chapter 3

In chapter 3 we model the spatio-temporal dynamics of insects via an advection-diffusion

process on a domain Ω. The abundance of insects at time t ∈ [0, T ], T > 0, and position

x ∈ Ω is denoted by u(t, x). We consider homogeneous Neumann conditions on the boundary,

Γ = ∂Ω, and we assume that we are given u0 ≥ 0 such that u(0, ·) = u0 on Ω. The model is

formulated as follows: 



∂u
∂t
−∇(s(x)∇u) +∇(a(x)u) = 0,

∂u
∂n
|Γ = 0,

u|t=0 = u0.

(2.54)

The reader is invited to refer to chapter 3 for explicit formulations of the functions s(x) and

a(x) as well as for the description of the process. In particular, s and a are continuous and

differentiable functions of the space variable x such that 0 < ε ≤ s(x) ≤ σ, ∀x ∈ Ω and

0 ≤ a(x) ≤ amax,∀x ∈ Ω. In the following, we carry out a theoretical analysis of model

(2.54) using the variational approach.

2.3.8.1 Variational formulation

Consider u as a mapping of t into H1(Ω) satisfying a homogeneous Neumann boundary

condition.

u : [0, T ] −→ H1(Ω), (2.55)

and we seek for a solution

u ∈ W(H1(Ω), H−1(Ω)). (2.56)

We multiply each term of (2.54) by a test function v ∈ H1(Ω) and integrate over Ω, then,

for t > 0 and v ∈ H1(Ω), we have
∫

Ω

(
∂u(t)

∂t
v −∇ · (s(x)∇u(t))v +∇(a(x)u(t))v

)
= 0. (2.57)
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Using Green’s theorem, we have

∫

Ω

∂u(t)

∂t
v(x) +

∫

Ω

(s(x)∇u(t) · ∇v − a(x)∇u(t) · ∇v) = 0. (2.58)

Denoting

B(u, v) =

∫

Ω

(s(x)∇u · ∇v − a(x)∇u · ∇v) , (2.59)

we obtain that the weak formulation of problem (2.54) as





Find u ∈ W(H1(Ω), H−1(Ω)), such that:

< ∂u(t)
∂t
, v >H−1(Ω),H1(Ω) +B(u(t), v) = 0,

u(0) = u0.

(2.60)

Note that this problem is of the form (2.21) where the right hand side is zero. Further

the bilinear form (2.22) is given by (2.59) and it is actually independent of t.

2.3.8.2 Existence and uniqueness

Proposition 2.3.1. Problem (2.54) admits a unique weak solution.

Proof. We verify that the bilinear form verifies the hypothesis of Lions theorem (P1-P3).

Note that 0 < ε ≤ s(x) ≤ σ, and a(x) < amax. ∀u, v ∈ H1(Ω),

|B(u, v)| = |
∫

Ω

s(x)∇u∇v −
∫

Ω

a(x)u∇v|

≤ σ

∫

Ω

|∇u∇v|

≤ σ‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ σ
(
‖∇u‖L2(Ω)‖∇v‖L2(Ω) + ‖u‖L2(Ω)‖v‖L2(Ω)

)

≤ σ‖u‖H1(Ω)‖v‖H1(Ω)
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Thus (P2) is satisfied with M = σ. Moreover, the bilinear form B is coercive: ∀u ∈ H1(Ω),

B(u, u) =

∫

Ω

s(x)(∇u)2 −
∫

Ω

a(x)u∇u

≥ ε‖∇u‖2
L2(Ω) − amax

∫

Ω

|u||∇u|

≥ ε‖∇u‖2
L2(Ω) − amax‖u‖L2(Ω)‖∇u‖L2(Ω)

≥ ε‖∇u‖2
L2(Ω) −

ε

2
‖∇u‖2

L2(Ω) −
a2
max

2ε
‖u‖2

L2(Ω)

= ε‖∇u‖2
L2(Ω) +

ε

2
‖u‖2

L2(Ω) −
ε

2
‖u‖2

L2(Ω) −
ε

2
‖∇u‖2

L2(Ω) −
a2
max

2ε
‖u‖2

L2(Ω)

=
ε

2
‖u‖2

H1(Ω) − (
ε

2
+
a2
max

2ε
)‖u‖2

L2(Ω)

(2.61)

Thus (P3) is satisfied, with α = ε
2

and γ = ε
2

+ a2max
2ε

.

Proposition 2.3.2 (A priori estimates). Considering problem (2.60), for any fixed t > 0,

we have

‖u‖2
L2 ≤ e

a2max
ε

t‖u0‖2
L2 (2.62)

Furthermore, if

‖u‖2
L2([0,T ],L2(Ω)) ≥ −

a2
max

ε
‖u0‖2

L2([0,T ],L2(Ω)) (2.63)

Proof. Let v = u in problem (2.60), for t > 0:

(
∂u

∂t
, u) +B(u, u; t) = 0

∴ 1

2

d

dt
‖u‖2

L2 +B(u, u; t) = 0

Using the L2-coercivity of B, using the notation α = εu

2
and γ = εu

2
+ a2max

2εu
, we have

1

2

d

dt
‖u‖2

L2 + α‖u‖2
H1 − γ‖u‖2

L2 ≤ 0

(2.64)

Since ‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 ≥ ‖u‖2

L2 ,

1
2
d
dt
‖u‖2

L2 + α‖u‖2
L2 − γ‖u‖2

L2 ≤ 0

∴ 1
2
d
dt
‖u‖2

L2 ≤ (γ − α)‖u‖2
L2

∴ d
dt
‖u‖2

L2 ≤ 2(γ − α)‖u‖2
L2 (2.65)
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Applying Gronwall inequality with β = (γ − α) and f = 0, yields:

‖u‖2
L2 ≤ e2(γ−α)t‖u0‖2

L2 .

(2.66)

Further, from (2.65), integration by parts over the interval [0, T ] leads to the second

estimate in the L2([0, T ], L2(Ω))-norm:

‖u(T )‖2
L2 − ‖u0‖2

L2 + 2(α− γ)

∫ T

0

‖u‖2
L2dt ≤ 0.

Finally, by adding both sides of the inequality by ‖u0‖2
L2 , dividing by 2(α− γ) = −a2max

ε
and

omitting the term ‖u(T )‖2
L2 yields to the estimate:

‖u‖2
L2([0,T ],L2(Ω)) ≥ −a

2
max

ε
‖u0‖2

L2([0,T ],L2(Ω)).

2.3.8.3 Positivity of the solution

Proposition 2.3.3. The weak solution of problem (2.54) is essentially non-negative, i.e.

∀t ∈ [0, T ], u(t, x) ≥ 0 a.e. in Ω.

Proof. Consider u ∈ W(H1(Ω), H−1(Ω)) the solution of problem (2.60). As shown in the

proof of Proposition 2.3.1, the bilinear form B(t; ·, ·) is L2-coercive on H1(Ω). Therefore the

positivity of u is a straightforward consequence of Theorem 2.3.7.

2.3.9 Application to the system of PDEs of Chapter 4

In chapter 4 we consider a chemotaxis model governed by three equations. It is assumed

that a chemical attractant is released in traps to which the insects respond. Here c(t, x)

represents the concentration of the chemical attractant at time t ∈ [0, T ], and position

x ∈ Ω ⊂ R2. The abundance of insects at time t ∈ [0, T ] and position x ∈ Ω are divided in
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two compartments: the free insects uf (t, x), and the captured insects uc(t, x). The model is

formulated via the system of PDEs as follows.

∂c(t, x)

∂t
− εc∆c(t, x) + λ(x)(c(t, x)− csat) = −µcc(t, x) (2.67)

∂uf (t, x)

∂t
− εu∆uf (t, x) +∇ · (χ(c)∇c(t, x)uf (t, x)) = −f(x)uf (t, x) (2.68)

∂uc(t, x)

∂t
= f(x)uf (t, x), x ∈ Γ, t > 0 (2.69)

c(t, x) = 0, x ∈ Γ, t > 0 (2.70)

∇uf · ~n = 0, on Γ (2.71)

∇uc · ~n = 0, on Γ (2.72)

c(0, x) = 0, x ∈ Ω (2.73)

uf (0, x) = u0(x), x ∈ Ω (2.74)

uc(0, x) = 0, x ∈ Ω (2.75)

where ~n denotes the outward normal vector on Γ, the boundary of the domain Ω.

Here, εc, εu, csat and µc are positive constants and λ(x), χ(c) and f(x) are positive and

bounded smooth function with

0 ≤ λ(x) ≤ λmax,

0 ≤ χ(c) ≤ α,

0 ≤ f(x) ≤ csatλmax.

Further, we have

u0(x) ≥ 0, ∀x ∈ Ω.

The reader is invited to refer the to chapter 4 for a detailed description of the model.

One can note that the problem for c, (2.67), (2.70), (2.73), can be solved independently.

Hence, in the following, we first carry out the theoretical analysis of problem (2.67), (2.70),

(2.73), and afterwards we study the problem (2.68), (2.71), (2.74) assuming that c is a data

function. Similarly, problem (2.68), (2.71), (2.74) can be solved independently from (2.69),

(2.72), (2.75). In the following, we first formulate problem (2.67)-(2.75) in variational form.

Then, we provide complementary results to those presented in chapter 4 or similar results

using an alternative approach to those of chapter 4.
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2.3.9.1 Variational formulation

To apply the theory of weak solutions, we consider c, uf and uc not as functions of t and

x, but as mappings of t into functional spaces on Ω. Thus, the weak problem is




Find c ∈ W(H1
0 (Ω), H−1(Ω)), uf ∈ W(H1(Ω), H−1(Ω)),

and uc ∈ W(H1(Ω), H−1(Ω)), such that:

< dc(t)
dt
, w >H−1,H1

0
+a(c(t), w) =< csatλ,w >H−1,H1

0
, ∀w ∈ H1

0 (Ω)

<
duf (t)

dt
, v >H−1,H1 +b(uf (t), v) = 0, ∀v ∈ H1(Ω),

< duc(t)
dt

, v >H−1,H1=
∫
Ω

f(x)uf (t)v, ∀v ∈ H1(Ω)

c(0) = 0, uf (0) = u0, and uc(0) = 0.

(2.76)

where a and b are the bilinear forms: ∀c, w ∈ H1
0 (Ω),∀t ∈ [0, T ],

a(c, w) =

∫

Ω

(εc∇c · ∇w + (λ(x) + µ)cw) , (2.77)

and ∀uf , v ∈ H1(Ω)∀t ∈ [0, T ],

b(t;uf , v) =

∫

Ω

(εu∇uf · ∇v − (χ(c)∇c(t, x)uf ) · ∇v + f(x)ufv) . (2.78)

A detailed derivation of the variational formulation (2.76) can be found in Chapter 4.

2.3.9.2 Study of c: the stationary problem

The equation governing the dynamics of c is independent from the rest of the model,

and it can therefore be studied independently. We consider the diffusion-reaction problem

formulated by (2.67), (2.70) and (2.73).

Prior to the theoretical analysis of the model (2.67), (2.70) and (2.73) governing the spread

of the attractant released from the traps which is done in (2.3.9.2), a particular attention is

given to the associated stationary problem, that is, when ∂c(t,x)
∂t

= 0. In this case, the weak

formulation of the stationary problem consists of finding c ∈ H1
0 (Ω) such that the bilinear

form a is independent of t and defined as

a(c, w) =< csatλ,w >H−1,H1
0
, ∀w ∈ H1

0 (Ω). (2.79)
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Proposition 2.3.4 (Existence and uniqueness). Problem (2.79) admits a unique solution.

Proof. We prove the existence and uniqueness of the solution of problem (2.79) using the

Lax-Milgram lemma ([94], lemma 2.2). Note that 0 < µ ≤ λ(x) + µ ≤ λmax + µ, and εc > 0.

∀c, w ∈ H1
0 ,

|a(c, w)| = |
∫

Ω

εc∇c∇wdx+

∫

Ω

(λ(x) + µ)cwdx|

≤ εc
∫

Ω

|∇c∇w|dx+ (λ(x) + µ)

∫

Ω

|cw|dx

≤ εc‖∇c‖L2‖∇w‖L2 + (λmax + µ)‖c‖L2‖w‖L2 (by Hölder’s inequality)

≤ M(‖∇c‖L2‖∇w‖L2 + ‖c‖L2‖w‖L2) (M = max{εc, λmax + µ})
≤ M‖c‖H1

0
‖w‖H1

0
.

Moreover, the bilinear form a is coercive: ∀c ∈ H1
0 ,

a(c, c) =

∫

Ω

εc(∇c)2dx+

∫

Ω

(λ(x) + µ)c2dx

≥ εc‖∇c‖2
L2 + µ‖c‖2

L2

≥ k
(
‖∇c‖2

L2 + ‖c‖2
L2

)
(k = min{εc, µ})

= k‖c‖2
H1

0
.

Further, since the functional f is bounded, (0 ≤ f(x) ≤ csatλmax,∀x ∈ Ω), the hypothesis of

the Lax-Milgram lemma are satisfied, thus problem (2.79) admits a unique solution.

Now, we make sure that the problem is well posed by showing that the norm of the solution

is bounded.

Proposition 2.3.5 (A priori estimate). Considering problem (2.79), if k = min{εc, µ}, we

have the following a priori estimates:

‖c‖2
L2 ≤ 1

k2
‖f‖2

L2 . (2.80)

Proof. Choose w = c as a test function in (2.79)

a(c, c) =

∫

Ω

fcdx

≤ ‖f‖L2‖c‖L2 (by Hölder’s inequality)

≤ 1

2k
‖f‖2

L2 +
k

2
‖c‖2

L2 (by Peter-Paul inequality)

(2.81)
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By the coercivity of a,

a(c, c) > k‖c‖2
H1

0
= k

(
‖c‖2

L2 + ‖∇c‖2
L2

)
≥ k‖c‖2

L2 ,

therefore,

k‖c‖2
L2 ≤ 1

2k
‖f‖2

L2 +
k

2
‖c‖2

L2 ,

∴ k

2
‖c‖2

L2 ≤ 1

2k
‖f‖2

L2 ,

∴ ‖c‖2
L2 ≤ 1

k2
‖f‖2

L2 .

2.3.9.3 Study of c: the evolution problem

Consider the parabolic problem




Find c ∈ W(H1
0 , H

−1), such that:

< dc(t)
dt
, w >H−1(Ω),H1

0 (Ω) +a(c(t), w) =< csatλ,w >H−1,H1
0
, ∀w ∈ H1

0 (Ω),

c(0) = 0.

(2.82)

Proposition 2.3.6 (Existence and uniqueness). Problem (2.82) admits a unique solution.

Proof. Note that the bilinear form of the stationary problem (2.79) has the same properties

of the bilinear form of the evolution problem (2.82) for a fixed t ∈ [0, T ]. Hence the proof is

the same as for Theorem 2.3.4, i.e. show that the properties of the bilinear form satisfies the

properties (P1)-(P3) to apply Lions theorem.

We now investigate a priori estimates on the solution to problem (2.82) to ensures its

continuous dependence on the known data.

Proposition 2.3.7 (A priori estimate). Considering problem (2.82), for any fixed t > 0, if

k = min{εc, µ}, we have the following a priori estimates:

‖c‖2
L2 ≤ e−kt‖c0‖2

L2 +
1

k2
‖λmaxcsat‖2

L2 . (2.83)

Furthermore,

‖c‖2
L2([0,T ],L2(Ω)) ≤

1

k2
‖λmaxcsat‖2

L2([0,T ],L2(Ω)) +
1

k
‖c0‖2

L2 . (2.84)
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Proof. Choose w = c as a test function in (2.82). For the sake of simplifying the notation,

in this proof we denote f(x) = λ(x)csat. Let t ∈]0, T [

∫

Ω

∂c

∂t
cdx+ a(c, c) =

∫

Ω

fcdx.

We have
∫

Ω

fcdx ≤ ‖f‖L2‖c‖L2 (by Hölder’s inequality)

≤ 1

2k
‖f‖2

L2 +
k

2
‖c‖2

L2 (by Peter-Paul inequality).

By the coercivity of a,

a(c, c) > k‖c‖2
H1

0
= k

(
‖c‖2

L2 + |c|21
)
≥ k‖c‖2

L2 ,

also, provided that c(x, t) is differentiable with respect to t ∈]0, T [,

∫

Ω

∂c

∂t
cdx =

1

2

∫

Ω

∂

∂t
(c2)dx =

1

2

d

dt
‖c‖2

L2 .

Altogether, we obtain

1

2

d

dt
‖c‖2

L2 + k‖c‖2
L2 ≤ 1

2k
‖f‖2

L2 +
k

2
‖c‖2

L2 .

Gathering the terms in ‖c‖2
L2 and diving by 1

2
yields:

d

dt
‖c‖2

L2 + k‖c‖2
L2 ≤ 1

k
‖f‖2

L2 . (2.85)

Owing to Gronwall’s lemma ([94], lemma 6.9),

‖c‖2
L2 ≤ e−kt‖c0‖+

1

k

∫ t

0

e−k(t−τ)‖f‖2
L2dτ = e−kt‖c0‖+

1

k2
‖f‖2

L2

(
1− e−kt

)
.

Since t > 0 and k > 0,
(
1− e−kt

)
≤ 1, therefore,

‖c‖2
L2 ≤ e−kt‖c0‖+

1

k2
‖f‖2

L2 .

Further, from (2.85), integration by parts over the interval [0, T ] leads to the second

estimate in the L2([0, T ], L2(Ω))-norm:

‖c(T )‖2
L2 − ‖c0‖2

L2 + k

∫ T

0

‖c‖2
L2dt ≤ 1

k

∫ T

0

‖f‖2
L2dt.
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Finally, by adding both sides of the inequality by ‖c0‖2
L2 , dividing by k and omitting the

term ‖c(T )‖2
L2 yields to the estimate:

‖c‖2
L2([0,T ],L2(Ω)) ≤

1

k2
‖f‖2

L2([0,T ],L2(Ω)) +
1

k
‖c0‖2

L2([0,T ],L2(Ω)).

We now show that the solution of the evolution problem (2.82) tends to a stationary

solution as t→∞ which is the solution of the stationary problem (2.79).

Proposition 2.3.8 (Convergence to the stationary solution). The solution c(t, x),∀(t, x) ∈
R+ × Ω of (2.82), converges to the solution cstat of the stationary problem (2.79) as t ap-

proaches infinity.

lim
t→∞

c(t, x) = cstat. (2.86)

Proof. The proof can be found in Chapter 4.

In chapter 4, the positivity and boundedness of the solution is shown using the Maximum

Principle. Thus the existence of the solution of the classical solution was assumed, i.e.

solution of (2.67),(2.70),(2.73). Here, we use Theorem 2.3.6 and Theorem 2.3.7 to show the

positivity and boundedness of the weak solution of (2.67),(2.70),(2.73).

Proposition 2.3.9 (Boundedness of c). The weak solution c of (2.67),(2.70),(2.73) satisfies

0 ≤ c(t, x) ≤ cstat, a.e in Ω,∀t ∈ (0, T ]. (2.87)

Proof. Consider c ∈ W(H1
0 (Ω), H−1(Ω)) the weak solution of problem (2.67),(2.70),(2.73), c

is the solution of the variational problem (2.82). As shown in the proof of Proposition 2.3.6,

the bilinear form a(t; ·, ·) is L2-coercive on H1
0 (Ω). Then using that λ(x)csat ≥ 0, x ∈ Ω, the

positivity of c is a straightforward consequence of Theorem 2.3.6.

Consider c̃ = csat − c. Then c̃(t) ∈ H1(Ω) satisfies

<
dc̃(t)

dt
, w >H−1,H1

0
+a(c̃(t), w) =< µccsatλ,w >H−1(Ω),H1

0 (Ω), ∀w ∈ H1
0 (Ω),

c̃(t)|Γ = csat > 0,

c̃(0) = csat > 0.

Since µccsatλ(x) ≥ 0, x ∈ Ω, Theorem 2.3.7 yields c̃ ≥ 0, that is, c ≤ csat.
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2.3.9.4 Study of uf

Consider the problem





Find uf ∈ W(H1(Ω), H−1(Ω)), such that:

<
duf (t)

dt
, v >H−1(Ω),H1

0 (Ω) +b(uf (t), v) = 0, ∀v ∈ H1(Ω),

uf (0) = u0.

(2.88)

Proposition 2.3.10. Problem (2.68),(2.71),(2.74) admits a unique weak solution.

Proof. We show that problem (2.88) satisfies the hypothesis of Lions’ theorem. Let t ∈ [0, T ].

For any u, v in H1 we have:

|b(t;uf , v)| = |
∫

Ω

εu∇uf · ∇vdx−
∫

Ω

χ(c)uf∇c∇vdx+

∫

Ω

f(x)ufvdx|

We have that
∫

Ω
χ(c)uf∇c∇vdx ≥ 0, and since f(x) bounded, ∃Mf > 0 such that f(x) ≥Mf ,

therefore

|b(t;uf , v)| ≤ εu
∫

Ω

|∇uf · ∇v|dx+Mf

∫

Ω

|ufv|dx

(2.89)

By Holder’s inequality, we have

|b(t;uf , v)| ≤ εu‖∇uf‖L2‖∇v‖L2 +Mf‖uf‖L2‖v‖L2

Let M = max(εu,Mf ),

|b(t;uf , v)| ≤ Mf (‖∇uf‖L2‖∇v‖L2 + ‖uf‖L2‖v‖L2)

≤ Mf‖uf‖H1‖v‖H1

Therefore (P2) is satisfied.

Let v = uf .

b(t;uf , uf ) =

∫

Ω

εu∇uf · ∇ufdx−
∫

Ω

χ(c)uf∇c∇ufdx+

∫

Ω

f(x)ufufdx

Since c is a smooth function, c ∈ C1(Ω), thus since χ(c) is bounded and ∇c is continuous

and bounded, ∃A > 0 such that
∫

Ω
|χ(c)uf∇c∇uf |dx ≤ A

∫
Ω
|uf |.|∇uf |dx. Therefore, using
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Holder’s inequality followed by Peter-Paul inequality, we obtain

∫

Ω

χ(c)uf∇c∇ufdx ≤ A

∫

Ω

|uf |.|∇uf |dx

≤ A‖uf‖L2‖∇uf‖L2

≤ εu

2
‖∇uf‖2

L2 +
A2

2εu
‖uf‖2

L2

Moreover, 0 ≤ f(x) ≤Mf , therefore

b(t;uf , uf ) ≥ εu‖∇uf‖2
L2 −

(
εu

2
‖∇uf‖2

L2 +
A2

2εu
‖uf‖2

L2

)

=
εu

2
‖∇uf‖2

L2 − A2

2εu
‖uf‖2

L2

=
εu

2
‖∇uf‖2

L2 +
εu

2
‖uf‖2

L2 − εu

2
‖uf‖2

L2 − A2

2εu
‖uf‖2

L2

=
εu

2
‖uf‖2

H1 − εu

2
‖uf‖2

L2 − A2

2εu
‖uf‖2

L2

=
εu

2
‖uf‖2

H1 − (
εu

2
+
N2

2εu
)‖uf‖2

L2

Therefore, b is L2-coercive in the sense of property (P3) where α = εu

2
and γ = εu

2
+ A2

2εu
.

Since the properties (P1), (P2) and (P3) are satisfied, the theorem of Lions (Corollary 2.3.1)

ensures the existence and uniqueness of the solution.

Proposition 2.3.11 (A priori estimates). Considering problem (2.88), for any fixed t > 0,

we have

‖u‖2
L2 ≤ e

A2

2εu
t‖u0‖2

L2 (2.90)

Proof. Let v = u in problem (2.88), for t > 0:

(
∂u

∂t
, u) + a(t, u, u) = 0

∴ 1

2

d

dt
‖u‖2

L2 + a(t, u, u) = 0

Using the L2-coercivity of a, using the notation α = εu

2
and γ = εu

2
+ A2

2εu
, we have

1

2

d

dt
‖u‖2

L2 + α‖u‖2
H1 − γ‖u‖2

L2 ≤ 0

(2.91)
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Since ‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 ≥ ‖u‖2

L2 ,

1
2
d
dt
‖u‖2

L2 + α‖u‖2
L2 − γ‖u‖2

L2 ≤ 0

∴ 1
2
d
dt
‖u‖2

L2 ≤ (γ − α)‖u‖2
L2

Applying Gronwall inequality with β = (γ − α) and f = 0, yields:

‖u‖2
L2 ≤ e(γ−α)t‖u0‖2

L2

(2.92)

Proposition 2.3.12. The weak solution of problem (2.68),(2.71),(2.74) is essentially non-

negative, i.e.

∀t ∈ [0, T ], uf (t, x) ≥ 0 a.e. in Ω.

Proof. Consider uf ∈ W(H1(Ω), H−1(Ω)) the weak solution of problem (2.68),(2.71),(2.74).

uf is the solution of the variational problem (2.88). As shown in the proof of Proposi-

tion 2.3.10, the bilinear form b(t; ·, ·) is L2-coercive on H1(Ω). Therefore the positivity of uf
is a straightforward consequence of Theorem 2.3.7.
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2.4 Dynamical systems defined by a system of ODEs

In chapter 5, the models are temporal and governed by systems of ODEs representing the

evolution in time of a compartmented insect population. Thus, the state of the system at time

t is a real vector x(t) representing the population densities in the respective compartments

at time t. Hence, we consider a dynamical system defined via a system of ODEs on a subset

of Rn as discussed below.

Let D ⊂ Rn. We consider the autonomous system of ODEs

dx

dt
= f(x) (2.93)

where f : D −→ Rn, with an initial condition

x(0) = x0 ∈ D. (2.94)

We recall here some of the fundamental theory following mostly [128].

Theorem 2.4.1 (Local existence and uniqueness). Let D be an open subset of Rn, f : D −→
Rn a C1 map, and x0 ∈ Rn. Then there is some a > 0 and a unique solution

x : [−a, a] −→ D

of the differential equation (2.93) satisfying the initial condition (2.94). [128, Theorem 1,

Section 2, Chap. 8]

Theorem 2.4.2. Let D be an open subset of Rn, and f : D −→ Rn a C1 map. Let x(t) be a

solution on a maximal open interval J = (α, β), with β < ∞. Then given any compact set

K ⊂ D, there is some t ∈ (α, β) such that x(t) /∈ K. [128, Theorem, Section 5, Chapter 8]

In other words, Theorem 2.4.2 says that if x(t) cannot be extended to a larger interval than

(α, β), then it leaves any compact set. As a consequence, as t tends to β, x(t) either tends

to the boundary of D or |x(t)| tends to ∞.

If for every x0 ∈ D the system (2.93)-(2.94) has a unique solution x(t) on [0,+∞), then

(2.93) defines a dynamical system on D in terms of Definition 2.2.1. In this case the operator

ϕt is given by

ϕt(x0) = x(t), t ≥ 0.

Then, f defines a vector field satisfying

f(x) =
d

dt
ϕt(x)|t=0.

The continuity of ϕt on x0 is shown in [128, Theorem 2, Section 7, Chapter 8]. The global

existence required above is obtained typically by using the concept of invariant set.
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Definition 2.4.1 (Invariant set). A subset W of D is called (positively) invariant set of

(2.93) if for every x0 ∈ W any solution of (2.93)-(2.94) of the form

x : [0, β] −→ D

is such that x(t) ∈ W, t ∈ [0, β].

Proposition 2.4.1 (Global existence). Let A be a compact invariant subset of the system

and let f be C1 on D. Then for every y0 ∈ A, there exists a unique solution

y : [0,∞) −→ D, y(0) = y0,

and

y(t) ∈ A, ∀t ≥ 0.

[128, Proposition, Section 5, Chapter 8]

2.4.1 Asymptotic properties

The asymptotic properties describe the behaviour of a dynamical system as time goes to

infinity. We denote by O+
x , x ∈ D, the forward orbits or trajectories of the dynamical system

on D described by the semiflow ϕ, i.e. the set of states that followed from an initial given

state x,

O+
x ≡ {ϕt(x) : t ≥ 0}. (2.95)

A point x ∈ D such that O+
x = {x} is called an equilibrium. We denote by E the set of

all equilibria of the system. If there is a T > 0 such that ϕt+T (x) = ϕt(x), ∀t ≥ 0, then

O+
x = {ϕt(x) : 0 ≤ t ≤ T} and ϕt(x) is called a T-periodic solution.

We define the ω-limit set of x ∈ D by

ω(x) = ∩t≥0∪s≥tϕs(x). (2.96)

For a dynamical system defined via (2.93), a point x∗ is an equilibrium if and only if

f(x∗) = 0.

Definition 2.4.2. An equilibrium x∗ of a semiflow ϕ is stable, if for every neighbourhood N

of x∗, there is a neighbourhood M ⊂ N such that if x ∈M , then ϕt(x) ∈ N,∀t ≥ 0.

Definition 2.4.3. An equilibrium x∗ of a semiflow ϕ is asymptotically stable if it is stable

and there is neighbourhood N of x∗, such that every point in N approaches x∗ as t→∞.

In other words, an equilibrium is stable the orbits that start “near” an equilibrium stay

“nearby”. More strongly, an equilibrium is asymptotically stable if in addition the orbits

that start “near” an equilibrium converge to the equilibrium.
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To obtain stability properties of an equilibrium, we use the Jacobian matrix Df(x∗) of

the vector field f at x∗. Indeed, by the well-known theorem of Hartman and Grobman

theorem [254, Theorem 19.12.6], the solutions of (2.93) in a neighbourhood of an equilibrium

x∗ behave topologically equivalently to the solutions of the linear system

dy

dt
= Df(x∗)y (2.97)

around 0. Techniques for solving linear systems can be applied to solve (2.97). In particular,

properties of the equilibrium x∗ are obtain by investigating the sign of the real parts of the

eigenvalues of the matrix Df(x∗).

Definition 2.4.4. A equilibrium x∗ of a C1 vector field f is hyperbolic if none of the eigen

values of Df(x∗) have zero real parts.

Assume that x∗ is a hyperbolic equilibrium, we have the following properties:

Proposition 2.4.2.

• If all the eigenvalues of Df(x∗) have negative real parts, then, x∗ is stable.

• If some of the eigenvalues of Df(x∗) have positive real parts, then, x∗ is unstable.

Definition 2.4.5. Let x∗ be an asymptotically stable equilibrium. The basin of attraction of

x∗ is the union of all the solution curves of (2.93) that tend towards x∗ as t −→ +∞.

A common method to study the global stability of dynamical systems is to show the

existence of a Lyapunov function:

Definition 2.4.6. Let x∗ be an equilibrium of the dynamical system defined via (2.93)on D.

If there is a neighbourhood U of x∗ and a function L ∈ C1(U,R)

(i) L(x∗) = 0

(ii) L(x) > 0, for x 6= x∗

(iii) ∇L(x) · f(x) ≤ 0, x ∈ U

then L is called a Lyapunov function. Further, if ∇L(x) · f(x) < 0, x ∈ U\{x∗}, then L is

called a strict Lyapunov function for x∗.

The expression in (iii) is often called the Lyapunov derivative since for every solution x(t)

of (2.93) we have

dL(x(t))

dt
= ∇L(x(t)) · dx(t)

dt
= ∇L(x(t)) · f(x(t))

Theorem 2.4.3. Let x∗ be an equilibrium of a dynamical system defined via (2.93).
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(i) If there exists a Lyapunov function in a neighbourhood U of x∗, then x∗ is stable.

(ii) If there exists a strict Lyapunov function in a neighbourhood U of x∗, then x∗ is asymp-

totically stable with basin of attraction containing U .

2.4.2 Monotone dynamical systems

“A monotone dynamical system is just a dynamical system on an ordered metric

space which has the property that ordered initial states lead to ordered subsequent

states.” [225].

A particularity of monotone dynamical systems is that they behave in a very “orderly”

way. We explain below in more precise terms the meaning of this statement. A semiflow ϕ

is said to be monotone if it satisfies

ϕt(x) ≤ ϕt(y), whenever x ≤ y and t ≥ 0. (2.98)

Further, ϕ is said to be strongly order preserving (SOP) if it is monotone and whenever x < y

there exist open subsets U, V of D, with x ∈ U , y ∈ V and t0 > 0 such that

ϕt0(x̃) ≤ ϕt0(ỹ), ∀x̃ ∈ U,∀ỹ ∈ V.

In particular, the monotonicity of ϕ then implies that

ϕtU ≤ ϕtV, ∀t ≥ t0.

We introduce the notion of quasiconvergence which gives an essential property of monotone

dynamical systems. A point x ∈ D is quasiconvergent if ω(x) ⊂ E. We denote by Q the set

of all quasiconvergent points. A point x ∈ D is convergent if ω(x) consists of a single point

of E. We denote by C the set of all convergent points. In other words,

x ∈ Q ⇐⇒ ω(x) ⊂ E,

x ∈ C ⇐⇒ ω(x) = x∗ ∈ E.
If E consists of disjoint equilibria, then Q = C.

Theorem 2.4.4 (Convergence criterion). Let ϕT (x) ≥ x for some T ≥ 0. Then ω(x) is a

T-periodic orbit.

If ϕt(x) ≥ x for t belonging to a non-empty open subset of R+\{0} then ϕt(x) → p ∈ E as

t −→∞. In particular, if ϕ is SOP and ϕT (x) > x for some T > 0 then ϕt(x) −→ p ∈ E as

t −→∞.
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Proof. [225, Theorem 2.1, Section 2, Chapter 1].

As a consequence of Theorem 2.4.4, a monotone dynamical system cannot have an attracting

periodic orbit. (A periodic orbit, O, is attractive if there is an open set U containing O such

that ω(x) = O,∀x ∈ U .)

If x ∈ D, we say that x can be approximated from below (resp. above) in D if there is a

sequence {xn} in D such that xn < xn+1 < x (resp. xn > xn+1 > x) for n ≥ 1 and xn −→ x

as n −→∞.

Theorem 2.4.5. Suppose that each point of D can be approximated either from above or

from below in D. If ϕ is SOP then

D = IntQ ∪ IntC.

In particular IntQ is dense in D. [225, Theorem 4.3, Section 4, Chapter 1]

Theorem (2.4.5) shows that the property of quasi-convergence is generic for SOP dynam-

ical systems in the sense that the set Q of all quasi-convergent points contains an open and

dense subset of D. The power of this property is further demonstrated in the particular case

of E being a singleton as stated in the next theorem.

Theorem 2.4.6 (Global Asymptotic Stability). Suppose that D contains exactly one equi-

librium, x∗, and that every point of D\{x∗} can be approximated from above and from below

in D. Then,

ω(x) = x∗, ∀x ∈ D.
[225, Theorem 3.1, Section 2, Chapter 2]

Let (2.93) define a dynamical system on D ⊂ Rn. We consider the usual partial order on

Rn, that is, for x, y ∈ Rn, we have x ≤ y if y − x ∈ Rn
+, or equivalently

x ≤ y ⇐⇒ xi ≤ yi, ∀i = 1, . . . , n.

It is common that the systems describing population dynamics are coupled via feedbacks

between the compartments. For instance, for a system of the type (2.93), for i, j = 1, . . . , n,

• if fi is increasing with respect to xj for i 6= j, then xj is said to have has a positive

feedback on xi, while

• if fi is decreasing with respect to xj for i 6= j, then xj is said to have has a negative

feedback on xi.

Definition 2.4.7. System (2.93) is said to be cooperative if for every i = 1, ..., n, xj has a

positive feedback on xi, j = 1, ..., n, j 6= i.
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Theorem 2.4.7. If f is differentiable on D then the system (2.93) is cooperative if and only

if
∂fi
∂xj

(x) ≥ 0, i 6= j, x ∈ D. (2.99)

Then the dynamical system (2.93) is monotone if and only if it is cooperative. More

precisely, we have the following theorems.

Theorem 2.4.8. Let (2.93) be a cooperative system and let x(x0, t) be a solution of (2.93)-

(2.94) on [0, T ). If y(t) is a differentiable function on [0, T ) satisfying

dy

dt
≤ f(y), y(0) ≤ x0,

then

y(t) ≤ x(x0, t), t ∈ [0, T ).

[248, Theorem II, 12, II]

Theorem 2.4.9. Let (2.93) be a cooperative system, and a, b ∈ D. If a ≤ b and if for t > 0,

x(a, t) and x(b, t) are defined, then x(a, t) ≤ x(b, t), t > 0.

[225, Proposition 1.1, Section 1, Chapter 3]

In chapter 5 we use the monotonicity of a dynamical system to show the global asymptotic

stability of the equilibria using Theorems 5.5.3 ([225, Prop. 1.1 p32]), 5.5.4 ([225, Thm. 3.1

p18], [6, Thm. 6]) and 5.5.5, which are consequences from Theorems 2.4.5, 2.4.8 and 2.4.9.
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2.5 Numerical methods for differential equations

2.5.1 Introduction

In this section we first discuss the numerical methods used to approximate the solutions of

the models formulated in chapters 3, 4 and 5 on a discrete domain. In chapters 3 and 4, the

models are defined via PDEs, and the solutions are approximated via the Method of Lines.

That is, the problem is first discretized with respect to the space variable which reduces

the problem to a system of ODEs. This system can then be solved at discrete time steps

using standard methods for ODEs. In particular, the model of chapter 3 consists of a singe

equation. The space is discretized using the finite difference approach. We approximated

the classical solution of the problem and this requires approximations of the first and second

derivatives of the solution with respect to the space variable. Those approximations are

derived using Taylor’s expansion. In chapter 4, the model consists of a system of PDEs.

The space is discretized via the finite element approach. Thus we consider the variational

formulation of the problem and approximate the weak solution of the problem. Each equation

of the system is approximated and solved independently one after the other at each time step.

Once discretized with respect to the space variable, the models of chapters 3 and 4 are reduced

to systems of ODEs.

Systems of ODEs can then be solved using a standard method, such as a θ-scheme (chap-

ter 3 and 4) or trapezoidal rule and second order backward differences (chapter 5) [136], a

non-standard scheme (chapter 4) [179], or considering an operator splitting approach (chap-

ter 4) [136] to use the most appropriate method to solve specific parts of the system.

The numerical computations carried in chapters 3 and 4 are used to identify parameter

values from simulated trapping data. This process consists in defining an objective function

to minimize. The objective functions of chapters 3 and 4 are minimized using respectively the

Gauss-Newton line search algorithm, performed with the Matlab built-in function fminunc,

and the Levenberg-Marquardt algorithm performed using the Matlab built-in function lsqr-

solve. Details on the parameter identification processes are not details in this section. The

reader is invited to refer to the chapters in question for details on the parameter estimation

processes.

In the following we first introduce the method of lines with some basic requirements on

numerical schemes. Then, we present the finite difference method as well as the finite element

method used for the space discretization of the models of chapters 3 and 4, respectively.
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2.5.2 The Method of Lines and basic concepts

It is usually not possible to find an explicit formulation for the solution of continuous

problems formulated by PDEs. In such cases, we approximate the continuous problem by

a discrete problem for which the solution can be computed numerically. In other words, if

u(t, x), t ∈ [0, T ], x ∈ Ω ⊂ Rn is the solution of a PDE problem, we compute approximations

of u(t, x) at specific values of t ∈ {t0, t1, . . . , tK} ⊂ [0, T ] and x ∈ {x0, x2, . . . , xN+1} ⊂ Ω.

Here we consider the method of lines (MOL) approach which consists in discretizing the

problem first with respect to the space variable in order to reduce the problem to a system

of ODEs continuous in time.

Consider a general parabolic problem of the form

P(u) :=
∂u

∂t
(t, x)− Lu(t, x)− f(x) = 0, t ∈ [0, T ], x ∈ Rn, (2.100)

where L is a differential operator in x defined as

Lu = d(x)∇2u(t, x) + a(x)∇(t, x) + c(x)u(t, x). (2.101)

After discretising the spatial derivative in (2.100) we obtain a system of ODEs of the form

P (u) :=
du

dt
− Lu− f = 0 (2.102)

where u(t) ∈ RN+2 and L is a (N + 2) × (N + 2) matrix. Then an approximation in time

of the solution to system (2.102) can be constructed using the method of approximation of

ODEs of our choice.

Let us recall some important properties required for numerical methods to approximate

the solutions of differential equations. The first requirement is that the method must be

consistent (Focus 4). The consistency is related to the quality of the numerical method

regardless on the choice of the discretisation on the values of the independent variables.
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Let Φ be the exact solution to (2.100), i.e. P(Φ) = 0, and let φ be the exact

solution to (2.102), i.e. P (φ) = 0. Let ψ be any continuous function of (t, x)

with a sufficient number of contious derivatives such that L(ψ) can be evaluated

at the points (tk, xi)k=0,...,K,i=0,...,N+1. The truncation error at the grid point ψk,i =

ψ(tk, xi) is defined by

Tk,i(ψ) = P (ψi,k)− P(ψi,k). (2.103)

If we set ψ = Φ, then

τk,i := Tk,i(Φ) = P (Φi,k) (2.104)

is called the local truncation error at the point (tk, xi). If

Tk,i(ψ) −→ 0 as ∆t→ 0 and h→ 0

then the numerical method is said to be consistent with the differential equation

P(Φ) = 0 [95].

Focus 4 (Consistency).

Further, the method must be convergent (Focus 5). That is, as the step size of the

discretized values of the independent variables approach 0, then the solution of the numerical

scheme must converge to the solution of the differential equation.

Let Φ be the exact solution of (2.100) with independent variables t and x, and let φ

be the exact solution of (2.102). Denote φk the the component of φk,i at a particular

time step tk. Define the discretisation error as

ek = φk −Φk (2.105)

The numerical method P is said to be convergent when

lim
h→0

(
max

k=0,...,K
‖ek‖h

)
= 0, (2.106)

where the norm ‖ · ‖h is defined as ‖u‖h =

(
h

K∑

k=0

|uk|2
)1/2

[95].

Focus 5 (Convergence).

Finally, the method must be stable (Focus 6). Stability is typically defined in terms of

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. Mathematical models and methods 82

boundedness of the numerical solution as T →∞ and prevents propagation of errors or blow

up of the solution, due to rounding errors on the data [95].

Let φk as defined in Focus 5. A method is stable if for any T > 0, there exist a

constant which depends on T , CT > 0, such that

‖φk‖h ≤ CT , k = 0, . . . , K, and h→ 0, ∆t→ 0.

φk+1 = Aφk + d.

Lax defines the difference scheme as stable if there exist a positive constant M such

that

‖Ak‖ ≤M, k = 0, . . . , K. (2.107)

Condition (2.107) is satisfied as long as ‖A‖ ≤ 1. Then if we denote the spectral

radius of A by ρ(A), it follows that ρ(A) ≤ 1.

Focus 6 (Stability).

If the numerical method is consistent, then the convergence can be obtained via the Lax

equivalence theorem also referred to as the Lax-Richtmeyer theorem [95, 205, 235].

Theorem 2.5.1 (Lax equivalence theorem ). If a linear finite difference equation is consistent

with a properly posed linear initial-values problem then stability is necessary and sufficient

for convergence of φ to Φ as the mesh size lengths tend to zero [95, 235].

For the discretization in space, two approaches are considered here: the finite difference

method and the finite element method, discussed below.

2.5.3 Finite difference method

The principle of the finite difference method is to approximate the the differential operator

L in (2.100) by replacing its derivatives using differential quotients. Here we assume that

the space is discretized in a regular grid with constant step size ∆x. The PDEs model

presented in Chapters 3 involves the differential operators ∇u and ∇2u where u = u(t, x, y)

with t ∈ [0, T ], and (x, y) ∈ R2. Recall that

∇u(t, x, y) =
∂u

∂x
+
∂u

∂y
, and ∇2u(t, x, y) =

∂2u

∂x2
+
∂2u

∂y2
.

The finite difference method aims to find an approximated solution to the classical PDE

problem. By construction, the PDE problem is reduced to a linear system of the form (2.102)
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easier to solve. In order to obtain approximations, we use Taylor series expansions. The FD

method is relatively simple to implement which is one of its main advantages, however, it is

limited to simple geometries.

2.5.3.1 Approximation of the 1st and 2nd space derivatives

Let u(t, x) be a function of time and space. Let ∆x be the space step size. We have

∂u

∂x
= lim

∆x→0

u(t, x+ ∆x)− u(t, x)

∆x
.

For small ∆x, a Taylor’s expansion in the neighbourhood of x is defined as

u(t, x+ ∆x) =
∞∑

k=0

∆xk

k!

∂ku

∂xk

By truncating the series at order n yields

u(t, x+ ∆x) = u(t, x) + ∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
+ ...+

∆xn

n!

∂nu

∂xn
+O(∆xn+1) (2.108)

where O(∆xn+1) is the truncation error and n+ 1 is the order of the method.

Given the Taylor series at order n, a forward difference approximation of the 1st derivative
∂u
∂x

can be obtain using (2.108) for n = 1:

u(t, x+ ∆x) = u(t, x) + ∆x
∂u

∂x
+O(∆x2) (2.109)

where O(∆x2) indicates that the error of the approximation is proportional to ∆x2 with

∂u

∂x
≈ u(t, x+ ∆x)− u(t, x)

∆x
. (2.110)

Further, there exist a constant C > 0, such that for ∆x > 0 sufficiently small we have

∣∣∣∣
u(t, x+ ∆x)− u(t, x)

∆x
− ∂u

∂x

∣∣∣∣ ≤ C∆x; C = sup
y∈[x,x+∆x]

∣∣∣∂2u∂x2

∣∣∣
2

. (2.111)

replacing ∂u
∂x

by u(t,x+∆x)−u(t,x)
∆x

yields an error of order ∆x and it is said that the approximation

is consistent at the 1st order.

Similarly, a backward difference approximation can be obtained by considering

u(t, x−∆x) = u(t, x)−∆x
∂u

∂x
+O(∆x2). (2.112)
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To improve the approximation, other schemes can be considered. For instance, we can

obtain a second order consistent approximation with the central difference scheme which

considers both (2.109) and (2.109). By substracting these two expression we obtain

∂u

∂x
≈ u(t, x+ ∆x)− u(t, x−∆x)

2∆x
(2.113)

To obtain an approximation of the 2nd order derivative, we consider the forward and

backward difference approximations using Taylor’s expansion up to the fourth order. We

obtain

u(t, x+ ∆x) = u(t, x) + ∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
+

∆x3

6

∂3u

∂x3
+O(∆x4) (2.114)

u(t, x−∆x) = u(t, x)−∆x
∂u

∂x
+

∆x2

2

∂2u

∂x2
− ∆x3

6

∂3u

∂x3
+O(∆x4). (2.115)

Adding the two approximations yields

∂2u

∂x2
≈ u(t, x+ ∆x)− 2u(t, x) + u(t, x−∆x)

∆x2
. (2.116)

Lemma 2.5.1. Suppose u is a C4 continuous function on an interval [x−h0, x+h0], h0 > 0.

Then there is a constant C > 0 such that ∀h ∈]0, h0[ we have:

∣∣∣∣
u(t, x+ h)− 2u(t, x) + u(t, x− h)

h2
− ∂2u

∂x2

∣∣∣∣ < Ch2, C = sup
y∈[x−h0,x+h0]

∣∣∣∂4u(y)
∂x4

∣∣∣
12

(2.117)

The differential quotient

u(t, x+ h)− 2u(t, x) + u(t, x− h)

h2

is a consistent second-order approximation of the second derivative of u at the point x.

2.5.3.2 The finite difference scheme

For sake of simplicity we consider a square domain Ω = [α, β] × [α, β] with boundary Γ.

We also assume that ∆x = ∆y = h = 1/(n+ 1) and we set

x0 = α, x1 = x0 + h, . . . xi = xi−1 + h, . . . xn+1 = xn + h = β

y0 = α, y1 = y0 + h, . . . yj = yj−1 + h, . . . yn+1 = yn + h = β

for i, j = 0, 1, . . . , n, n + 1. This yields a total of (n + 2) × (n + 2) grid points at which we

want to approximate the solution of (2.100).
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Let ui,j = u(·, xi, yj) for i, j = 0, 1, . . . , n, n+ 1.We have

∇u(·, xi, yj) ≈
ui+1,j − ui−1,j

2h
+
ui,j+1 − ui,j−1

2h
(2.118)

∇2u(·, xi, yj) ≈
ui−1,j − 2ui,j + ui+1,j

h2
+
ui,j−1 − 2ui,j + ui,j+1

h2
(2.119)

The differential operator L at a generic point (xi, yj), i, j = 1, . . . , n, in the interior of the

domain Ω is written as

Lu(xi, yi) ≈ d(xi, yj)

(
ui−1,j − 2ui,j + ui+1,j

h2
+
ui,j−1 − 2ui,j + ui,j+1

h2

)

+a(xi, yj)

(
ui+1,j − ui−1,j

2h
+
ui,j+1 − ui,j−1

2h

)
(2.120)

+c(xi, yj)ui,j

(2.121)

Rearranging the terms, we have

Lu(xi, yi) ≈ ui−1,j

(
di,j
h2
− ai,j

2h

)
+ ui,j−1

(
di,j
h2
− ai,j

2h

)
+ ui,j

(
ci,j − 4

di,j
h2

)

+ui+1,j

(
di,j
h2

+
ai,j
2h

)
+ ui,j+1

(
di,j
h2

+
ai,j
2h

)
.

On the boundary, the homogeneous Neumann condition yields:

for i = 0, j = 0, . . . , n+ 1, ~∇u(x0, yj) · ~n =

(
u1,j − u−1,j

2h
;
u0,j+1 − u0,j−1

2h

)
· (−1; 0)t

= −u1,j − u−1,j

2h
= 0

therefore, the term u−1,j can be substituted by 2h+ u1,j.

Similarly,

for i = n+ 1, j = 0, . . . , n+ 1, the term un−2,j can be substituted by 2h+ un,j

for i = 0, . . . , n+ 1, j = 0, the term ui,−1 can be substituted by 2h+ ui,1

for i = 0, . . . , n+ 1, j =, n+ 1, the term ui,n−2 can be substituted by 2h+ ui,n

Therefore,

Lu+ f ≈ Lu + f (2.122)
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where L is a (n+ 2)2× (n+ 2)2 block tridiagonal real matrix, and u and f are (n+ 2)2× 1

real vectors:

u =




u0,0

u2,0

...

un+1,0

u0,1

u1,1

...

un+1,1

...

un+1,n+1




, and f =




f(x0, y0)

f(x2, y0)
...

f(xn+1, y0)

f(x0, y1)

f(x1, y1)
...

f(xn+1, y1)
...

f(xn+1, yn+1)




Thus, we approximate problem (2.100) by problem (2.102).

Note that in the case of Dirichlet boundary conditions, the values of u on the boundary is

known, therefore it needs not be approximated. In this case, problem (2.102) can be consid-

ered only on the interior points of the domain, that is, on n×n grid points. Then, whenever

a value of the boundary is involved in the discretisation schemes, it can be substituted by

the value imposed by the Dirichlet condition.

Once the space-discretization done via the finite difference method, the problem is reduced

to the following initial value ODEs system:

du

dt
= Lu + f (2.123)

2.5.4 Finite element method

The FEM finds its first applications in the field of mechanics in the 1950’s as it allows

to work with complex geometries of the domain. The method consists in approximating a

problem in its variational form defined on an infinite space by a problem defined on a finite

sub-space. The solution of the continuous problem is approximated by a function determined

by a finite number of parameters such as the value of the solution at specific points on the

mesh. More precisely, the domain is discretized in elements that can be more or less refined

depending on the complexity of the domain and the expected stiffness of the solution. The

solution is approximated element-wise and then assembled to produce an approximation

over the whole domain. Further, the FEM facilitates the implementation of the boundary

conditions as they are taken into account in the spaces of approximation of the solution.
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However, computing element-wise solutions require to compute integrals over each element

which makes the implementation of the FEM complex and computationally intensive. We

recall here some of the essential theory needed for the application of the FEM discussed in

chapter 4. We follow mainly [96, 35, 94].

2.5.4.1 The Galerkin method

The Galerkin method consists in converting a continuous operator problem into a discrete

problem. To do so, we consider the problem in its weak form. The aim is to build a weak

solution by constructing solutions on a finite-dimentional space and then passing to limits.

The functional space V denotes either the space H1(Ω) if Neumann boundary conditions are

considered or H1
0 (Ω) if homogeneous boundary conditions are considered.

The problem in its variational form consists of seeking u ∈ W(V, V ′), such that
(
du

dt
, v

)
+B(u, v, t) = (f, v) ; u(0) = u0, (2.124)

for all v ∈ V , where (·, ·) denotes the scalar product in L2(Ω).

A discrete problem is constructed by replacing the space V by a finite dimensional space

Vm = {V1, V2, . . . Vm} Then we seek solutions um : [0, T ]→ V of the form

um(t) =
m∑

k=1

αkm(t)vk (2.125)

where the coefficient αkm(t) are such that

αkm(0) = (u0, vk) , k = 1, . . . ,m (2.126)

and (
dum
dt

, vk

)
+B(um, vk, t) = (f, vk) (2.127)

Problem (2.127) is in fact the projection of problem (2.124) onto the finite-dimensional Vm.

The existence of um, solution of (2.126)-(2.127) is ensured by the following theorem.

Theorem 2.5.2 (Existence and uniqueness of an approximate solution). For each m =

1, 2, . . . , there exist a unique function um of the form

um(t) =
m∑

k=1

αkm(t)vk, (2.128)

which satisfies (2.126) and (2.127) [96].
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The following energy estimate holds for the approximation of the solution um.

Theorem 2.5.3. There is a constant C depending on the domain Ω, T and the coefficients

of the linear operator L such that

max
0≤t≤T

‖um(t)‖L2(Ω) + ‖um‖L2(0,T ;V ) + ‖dum
dt
‖L2(0,T ;V −1) ≤ C

(
‖f‖L2(0,T ;L2(Ω)) + ‖u0‖L2(Ω)

)
.

(2.129)

Using the estimate in Theorem 2.5.3 one can show that the sequence (um) has a convergent

subsequence with limit satisfying (2.127). This is an alternative to the method of Lions

presented in Section 2.3.3 to show existence and uniqueness of the weak solution of problem

(2.127) [96, Theorems 3 and 4, Section 7.1].

2.5.4.2 The Finite Elements

We now define a finite element following the definition of Ciarlet [55, 35].

Definition 2.5.1. Let

(i) K ⊆ Rn be a bounded closed set with nonempty interior and piecewise smooth boundary

(the element domain),

(ii) P be a finite-dimensional space of functions on K (the space of shape functions) and

(iii) N = {N1, N2, . . . , Nk} be a basis for P ′ (the set of nodal variables).

Then, (K,P ,N ) is called a finite element.

Definition 2.5.2. Let (K,P ,N ) be a finite element. The basis {φ1, φ2, . . . , φk} of P dual to

N (i.e. ni(φj) = δi,j) is called the nodal basis of mathcalP .

Consider the approximate problem





Seek uh ∈ C1([0, T ];Vh) such that

( d
dt
uh, v)L2(Ω) +B(t, uh, vh) = (f, vh)L2(Ω), ∀t ∈ [0, T ],∀vh ∈ Vh,

uh(0) = u0h,

(2.130)

where u0h ∈ Vh is an approximation of u0. Problem (2.130) defines a system of coupled ODEs

for which existence and uniqueness of the solution is guaranteed by the Cauchy-Lipschitz

Theorem.
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We introduce the operator Pht ∈ L(V, Vh) defined for t ∈ [0, T ] and such that, for all

w ∈ V , Pht(w) is a solution to

∀vh ∈ Vh, B(t, Pht(w), vh) = B(t, w, vh). (2.131)

The operator Pht is a projection. Moreover, when the bilinear form B is the Laplace operator,

then Pht is called the elliptic projector. We make the following hypothesis:

(EP )





There is c > 0 such that, for all w ∈ C1([0, T ];W ), and ∀j ∈ {0, 1},

‖w − Pht(w)‖Cj([0,T ],L2(Ω)) + h‖w − Pht(w)‖Cj([0,T ],V ) ≤ chk+1‖w‖C1([0,T ],W )

Theorem 2.5.4. Assume that (EP) holds and that u ∈ C1([0, T ],W ). Then for all h,

1√
T
‖u−uh‖L2([0,T ];V ) ≤

1√
αT
‖u0−u0h‖L2(Ω)+c

(
1 +

1√
T

+
1

α
√
cP

)
hk‖u‖C1([0,T ];W ) (2.132)

2.5.4.3 Application to the problem of Chapter 4

In chapter 4, we consider triangular elements. More precisely, the domain Ω is subdivided

in triangles such that no vertex of any triangle lies in the interior of an edge of another

triangle, and such that the collection of triangles {Ki} ∈ R2 satisfy

intKi ∩ intKj = ∅, if i 6= j, and Ω̄ =
⋃

Ki∈T
Ki.

Such subdivision is called a triangulation. We denote by T (Ω) such a triangulation on Ω.

We do not extend on construction of the triangulation here, however it is worth mentioning

software such as GMSH [105] or Freefem [124] can be used to generate such mesh satisfying

specific geometrical specifications (number of vertices, size of the elements, etc.).

Further, here we consider linear Lagrange elements. More precisely, we have the space of

shape functions P1, the set of all polynomial of degree ≤ 1,

P = P1 = {v ∈ C0(Ω) : v|K ∈ P1, K ∈ T (Ω)}, (2.133)

and the set of nodal variables N1 = {N1, N2, N3}. Here, the nodal variables are evaluated

at the vertices of the K. We denote bu Nv the total number of nodes of T (Ω). Further,

we consider ψi, i = 1, . . . , Nv, piecewise linear functions of order, equal to 1 at the node i

and 0 at all other nodes. A representation of the function ψi is given in Figure 2.1. For

i = 1, . . . , Nv, the functions ψi are linearly independent and form a basis for the space of

continuous piecewise linear functions Ω: where P1 denotes the set of linear polynomials. In
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Figure 2.1: Representation of the piecewise linear function ψi.

particular, in the case of homogeneous Dirichlet conditions on the boundary of the domain

Γ, we define the space of shape functions

P1,0 = {v ∈ P1 : v|Γ = 0}. (2.134)

We seek for an approximation ũ ∈ P1 (or ũ ∈ P1,0 depending on the boundary conditions)

of the solution of problem (2.124), u, in the form

ũ =
Nv∑

i=1

uiψi(x) (2.135)

where ui is the value of u at the position of the node i. In terms of the notations of The-

orem 2.132, we have k = 1. We take u0h to be the interpolant of u0. Then it follows from

Theorem 2.132 that the L2-error of the approximated solution is O(h). The functions ψi,

i + 1, . . . , Nv are called global shape functions. In terms of implementation of the finite ele-

ment method a system to compute an approximation of the solution of problem (2.124) on

each element is build. The element-wise systems are then assembled to built the system over

the whole domain. We denote by ũK the restriction of ũ to the element K ∈ T (Ω).

ũK = ũ|K =
3∑

i=1

ui|KφKi (x) (2.136)

where, for i = 1, 2, 3, the functions φKi (x) are linearly independent linear polynomials equal

to 1 at the node i, and 0 at the two other nodes. Substituting in (2.124), yields a linear

elementary system,

MKU̇K +AKUK = FK . (2.137)
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where UK = (u1|K , u2|K , u3|K )T , U̇K = (u̇1|K , u̇2|K , u̇3|K )T , with u̇Kj =
∂u

∂t
|K .

To carry the computations, we consider a reference element, K̂, on which local shape

functions are defined. This implies that a linear transformation to pass from any element

K to the reference element K̂ needs to be defined. For more details on this step, the reader

may refer to Focus 7. Also note that to compute the coefficients of the matrices MK , AK

and vector FK , numerical integration methods are required. For the application of Chapter

4, numerical integration is done using Hammer weighted quadrature rule of the third degree

of precision [101, Apendix C].
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Denote by xK1 = (xK1 , y
K
1 ), xK2 = (xK2 , y

K
2 ) and xK3 = (xK3 , y

K
3 ) the coordinates of the

nodes of element K. Assume that the reference element K̂ is defined in the system

of coordinates ξ = (ξ, η). Then for each node xKi of K, there is a corresponding

node ξki of K̂. We denote by TK the transformation from K̂ to K which satisfies

TK(ξKi ) = xKi , i = 1, 2, 3, (2.138)

or inversely

(TK)−1(xKi ) = ξKi , i = 1, 2, 3, (2.139)

Linear transformation on a triangular element.

We define the linear local shape functions on K̂ as follows:

φ̂1(ξ) = 1− ξ − η, φ̂2(ξ) = ξ, φ̂3(ξ) = η. (2.140)

Thus, for i, j = 1, 2, 3, φ̂i(ξj) satisfies

φ̂i(ξj) = δji =

{
1 if i = j,

0 otherwise.
(2.141)

The transformation TK : K̂ −→ K can be written is the form:

[
x, y

]
= T k(ξ) =

3∑

i=1

φ̂i(ξ)

[
xki
yki

]
=

[
(1− ξ − η)xK1 + ξxK2 + ηxK3
(1− ξ − η)yK1 + ξyK2 + ηyK3

]
(2.142)

Focus 7.

Once the elementary systems are defined, they are assembled to form a linear system on

the entire discretized domain T (Ω). This leads to a sparse system of equations of the form

M U̇ +AU = F, (2.143)
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where U , U̇ and F are real column vectors of size Nv and where M and A are real (Nv×Nv)

matrices. System (2.143) can be solved using ODE solvers.

2.6 The time discretization

Several approaches can be considered to approximate the solution of the problem in time.

Here we briefly introduce the methods used in chapters 3, 4 and 5 of this thesis. Once the

space-discretization is done via the finite difference method, the problem is reduced to the

following initial value ODEs system:

du

dt
= F (t,u); u(0) = u0. (2.144)

We compute approximations of the solution u(t), t ∈ [0, T ], at discrete time steps {t0, t1, . . . , tK} ∈
[0, T ] with the time step ∆t > 0 such that for all k + 0, . . . , K, tk = k∆t. Denote uk the

approximation of the solution u(tk). A standard way to approximate du
dt

is using finite dif-

ferences at each time step:
du

dt
≈ uk+1 − uk

∆t
. (2.145)

However, other approximations can be considered as for the non-standard methods as shown

below. The Foci 8 to 11 provide a brief description of the methods used in the different

chapters of this thesis.

The θ-method is written as:

uk+1 = uk + ∆t
(
θF (tk,uk) + (1− θ)F (tk+1,uk+1)

)
, (2.146)

where θ is a parameter with values in the interval [0, 1]. The θ-method is a one-step

method which is implicit whenever θ ∈ [0, 1), and explicit when θ = 1.

• When θ = 1, (2.146) is the Euler’s method and it is 1st order in time.

• When θ = 0, (2.146) is the Backward Euler’s method and it is 1st order in

time.

• When θ = 1/2, (2.146) is the Crank-Nicolson method or Trapezoidal Rule

(TR), and it is 2nd order in time.

Focus 8 (The θ-method).
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The Trapezoidal Rule and second-order Backward Finite Difference (TR-BDF2)

method [12, 134] is a composite method using the trapezoidal rule (Focus 8) followed

by the second-order backward difference method.

Fist, the trapezoidal rule is applied on some interval to obtain an approximation of

the solution at some intermediate time step tk+τ = tk + τ∆t ∈ [tk, tk+1]. Thus we

compute uk+τ as follows:

uk+τ = uk + τ
∆t

2

(
F (tk,uk) + F (tk+τ ,uk+τ )

)
.

Then the second-order backward finite difference scheme is used to compute uk+1:

uk+1 =
1

τ(2− τ)
uk+τ − (1− τ)2

τ(2− τ)
uk +

1− τ
2− τ∆tF (tk+1,uk+1).

The TR-BDF2 method is a one-step method of the 2nd order in time.

Focus 9 (The TR-BDF2 method).

The Non-Standard (NS) method [179, 180] aims to construct an exact numerical

scheme to approximate the solution of an initial value problem formulated with

differential equations. More precisely, the numerical approximation of the solution

at the time step tk is exactly the solution of the problem at the same time step:

uk = u(tk).

In the NS method the denominator ∆t of the discrete time derivative is replace by

a non-negative function Φ(∆t) such that Φ(∆t) = ∆t+O(∆t2) as ∆t converges to

0. The choice of the function Φ is not unique and depends on the original problem.

In particular, for the decay problem

du

dt
= −λu; u(0) = u0, (2.147)

a NS scheme can written as

uk+1 − uk
Φ(∆t)

= −λuk, with Φ(∆t) =
1− e−λ∆t

λ
. (2.148)

Focus 10 (The Non-Standard method).
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A semi-decretized ADR problem can be formulated as follows:

du

dt
= A(u) +D(u) +R(u),

where A, D and R represent respectively the advection terms, the diffusion terms

and the reaction terms. A basic splitting approach consists in solving successively

each terms using the numerical method of our choice [136, 80]. For a time step

∆t > 0, the splitting approach leads to the following algorithm:

1. solve duA
dt

= A(uA) with uA(0) = uk on [0,∆t],

2. solve duD
dt

= D(uD) with uD(0) = uA(∆t) on [0,∆t],

3. solve duR
dt

= R(uR) with uR(0) = uD(∆t),

4. set uk+1 = uR(∆t).

Detailed description of the method and its analysis can be found in [156, 136].

Focus 11 (Splitting approach for an ADR problem).

While the ODE system of chapter 3 is solved via a standard method, using a Crank-

Nicolson scheme (Focus 8 with θ = 1/2), in chapter 4 we consider a splitting approach

(Focus 11) where the advection and diffusion parts are solved simultaneously using a Crank-

Nicolson scheme and the reaction is solved using a Non-Standard scheme (Focus 10). As for

the model of chapter 5, it is defined via a system of ODEs solved using the built-in routine

ode23tb of Matlab which solves systems of stiff ODEs using a TR-BDF2 scheme (Focus 9).
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Chapter 3

Parameter identification in population

models for insects using trap data

This work has appeared in

Claire Dufourd, Christopher Weldon, Roumen Anguelov, Yves Dumont, Parameter Iden-

tification in Population Models for Insects Using Trap Data, Biomath 2 (2013), 1312061,

http://dx.doi.org/10.11145/j.biomath.2013.12.061

3.1 Abstract

Traps are used commonly to establish the presence and population density of pest insects.

Deriving estimates of population density from trap data typically requires knowledge of the

properties of the trap (e.g. active area, strength of attraction) as well as some properties of the

population (e.g. diffusion rate). These parameters are seldom exactly known, and also tend to

vary in time, (e.g. as a result of changing weather conditions, insect physiological condition).

We propose using a set of traps in such a configuration that they trap insects at different rates.

The properties of the traps and the characteristics of the population, including its density,

are simultaneously estimated from the insects captured in these traps. The basic model

is an advection-diffusion equation where the traps are represented via a suitable advection

term defined by the active area of the traps. The values of the unknown parameters of the

model are derived by solving an optimization problem. Numerical simulations demonstrate

the accuracy and the robustness of this method of parameter identification.
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3.2 Introduction

This work is motivated by the need to develop a reliable and efficient method for detecting

the presence and estimating population density of the invasive fruit fly, Bactrocera invadens

Drew, Tsuruta & White (Diptera: Tephritidae) in South Africa. Bactrocera invadens is a

fruit fly species introduced from Asia to Africa where it was first described and recorded

in Kenya in 2003 [78, 164]. In 2010, B. invadens was detected in the northern part of the

Limpopo province in South Africa [167]. Its capacity for rapid population growth, high

invasive potential [145], and wide range of fruit hosts [211] represents a major threat for all

fruit industries in South Africa.

Fruit flies are a perennial problem in South Africa because in addition to B. invadens

there are three endemic species that already represent economic pests. Fruit flies have his-

torically been controlled in South Africa by the application of insecticide cover sprays. Cur-

rent practice, however, involves the use of alternative control strategies due to regulation-

and consumer-driven requirements for fruit to be free of insecticide residues. The primary

techniques used in fruit fly control are the application of bait sprays [167], M3 bait stations

[168], or the ‘male annihilation technique’ [167]. All three techniques work on the same prin-

cipal: a food or sex attractant, which is fed on by adult flies, is mixed with an insecticide

such as malathion or GF120. With regard to B. invadens, male annihilation technique has

been applied to control incursions in South Africa [167]. Another control strategy for this

pest may include mass-trapping, which uses male attractants to capture and kill males of

a population, leading to reduced female mating and possibly causing local extinction of the

population [90]. Alternatively, the Sterile Insect Technique (SIT) may represent a useful

approach to control incursions of B. invadens. SIT involves the release of large numbers

of sterilized males that compete with wild males for female fertilization, which leads to no

production of viable offspring [155] and its success can be measured using the ratio of sterile:

wild insects captured in and array of surveillance traps [146].

Regardless of the alternative control strategy used, their successful application requires

a good knowledge of the distribution of the pest, and their dispersal capacity and density.

The density of an insect population, however, is a parameter that cannot easily be obtained

by direct field observations because traps usually sample only a small proportion of all indi-

viduals. To overcome this problem, it is often the case that captures of insects in traps are

compared to simulated data [119]. An advection-diffusion equation is considered for mod-

elling the dynamics of fruit flies, where density is the initial value of the model. Such a model

requires knowledge of the properties of the trap such as the active area [41] and the strength

of attraction, as well as some properties of the population, like its diffusion rate [195]. These

parameters are seldom exactly known, and also tend to vary with changing weather [184] and
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landscape heterogeneity [80],[79].

Determining the values of these parameters is actually an inverse problem, that is, given

the solution of the model, or at least part of it, one or more of the model parameters can

be identified. The parameter identification problem consists of finding a unique and robust

estimation for the parameter values. This problem leads to solving a global optimization

problem in order to find the set of parameters that minimizes an objective function. Mathe-

matically, the existence and uniqueness of this global minimum relies on the well-posedness of

the inverse problem, while its robustness relies on its well-conditionedness. However, inverse

problems are typically ill-posed or conditioned, [157, 63, 193]. In this paper, we show that

by using different settings of interfering traps we obtain a parameter identification problem

which can be solved numerically in a reliable way. It is essential in this approach that inter-

fering traps generate different incoming streams of insects. Thus, more information about

the characteristics of the insect population is provided. Indeed, as the relationship between

the setting and the traps is highly non linear and not well understood, several settings of

traps are considered and the robustness of the estimates are compared. We demonstrate

empirically that using this approach, the problem of simultaneously identifying a set of un-

known parameters is well-posed and well-conditioned. The numerical procedure falls under

the well-known trial-and-error method of regularization theory [236].

3.3 The Insect Trapping Model: The Direct Problem

The model is formulated on a domain Ω ⊂ R2 which is assumed to be isolated, i.e. there

is no immigration and no emigration of insects. It is also assumed that when there is no

stimulus, the insects individually follow a random walk. Because insects are often in large

abundance, we can apply a diffusion equation to model the dispersal of insects at population

level [238]. The traps set on Ω are attractive. Thus, the active area of the trap [41] is the area

where the concentration of the attractant is above the threshold of concentration at which

the fruit flies can detect it. Therefore, in this area the insects will be influenced to move in a

prefered direction towards the trap. This can be modelled using an advection equation [16].

Finally, we assume that our experiments take place over a short period of time, thus we may

omit reaction terms.

Using the above assumptions, the insect dynamics can be modelled via an advection-

diffusion.
∂u
∂t
−∇(s(x)∇u) +∇(a(x)u) = 0,

∂u
∂n
|∂Ω = 0,

u|t=0 = u0.

(3.1)
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u(t, x) denotes the population density at time t and at the point x = (x1, x2) ∈ Ω.

The advection function a(x) is space-dependent and determines the attractiveness of the

trap with respect to the distance to the center of the trap. The traps are circular of radius

Rtrap. Assume that the active area of a trap is defined by a disk of radius Rmax from the

center of the trap. Then the insects that are beyond this disk are not subjected to advection

and we assume that their dynamics are only governed by the diffusion term. As the insect

gets closer to the trap, the force of attraction increases and reaches its maximum at a distance

Rmin from the center of the trap. If N is the number of traps distributed on the domain,

then:

a(x) =
N∑
T=1

aT (x),

aT (x) = amaxα(||xT − x||) xT−x
||xT−x|| ,

(3.2)

where xT is the coordinate of trap T , and the function α(d) is defined for d ∈ [0,+∞), as

follows.
α(d) =



sin
(

πd
2Rtrap

)
, if d < Rtrap

1, if Rtrap ≤ d < Rmin

1
2

(
cos
(
π d−Rmin
Rmax−Rmin

)
+1
)
, if Rmin ≤ d < Rmax

0 if Rmax ≤ d

(3.3)

The function α(d) is represented in Fig. 3.1. Note that the value of the advection inside

the trap does not really matter, and we make α(d) decrease to 0 from the distance Rtrap to

ensure the continuity of a(x).

Figure 3.1: Graph of the function α(d)

The diffusion coefficient s(x) is also space-dependent. It is assumed to be constant, s(x) =

σ, outside the active areas of the traps. Since the insects do not escape from the traps

there should be no diffusion across the trap boundary. In order to ensure the existence and

uniqueness of the (weak) solution of (3.1) we assume that inside a trap the function s(x) has

a positive value ε which is so small that the implied diffusion effect in the time interval of
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observation can be neglected. In order to further ensure continuity of s we take

s(x) = σ −
N∑
T=1

sT (||xT − x||),
sT (d) =



σ − ε, if d ≤ Rtrap

(σ−ε)
(
1− d−Rtrap

Rmin−Rtrap

)
+ε, if Rtrap<d ≤ Rmin

0, if Rmin < d.

(3.4)

3.4 The Parameter Identification Problem

The trap parameters, Rmin, Rmax and amax, as well as the diffusion parameter σ are seldom

know. Therefore, although our main goal is to estimate the initial population density u0,

these other parameters are also needed. For simplicity, we assume that the initial population

density is a constant, that is, u0(x) = u0 ∈ R,∀x ∈ Ω. Denote p = (u0, σ, Rmin, Rmax, amax)

the vector of the parameters to identify. Let P be a compact subset of R5 to which p belongs.

When solving the direct problem (3.1), we are given p and we find a function u satisfying the

differential equation in (3.1) and the respective boundary and initial conditions. This way,

we define a mapping φ from the domain P of parameters to the space of solutions:

u = φ(p) (3.5)

It is well-know that the solution operator φ is continuous and injective. Therefore, using the

compactness of P we obtain that the operator φ−1 : φ(P) −→ P is continuous ([236], p.29).

Thus, the inverse problem to (3.1) is well-posed. Then if a solution u of (3.1) is given, the

value of p = φ−1(u) can be determined by well-known methods, e.g. minimizing a norm of

u− φ(p). However, in practice u is commonly not known, at least not on the whole domain

Ω × [0,+∞) [193]. What is usually available is a function B(u) referred to as observation

operator [39].

Therefore the parameter identification problem is stated as follows: Given an observation

ψ, find p such that

(B ◦ φ) (p) = ψ. (3.6)

In the setting of problem (3.1) the observation operator consists of the insect count in traps

at given times t1, t2, ..., tK . More precisely, we have

B(u) =




B1(u, t1) . . . B1(u, tK)
...

...

BN(u, t1) . . . BN(u, tK)


 ,
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where BT (u, tk) is the total number of insects captured in trap T until time tk, T = 1, ..., N ,

k = 1, ..., K. Hence the observation ψ in (3.6) is an N ×K real matrix

ψ =




ψ1,t1 . . . ψ1,tK
...

...

ψN,t1 . . . ψN,tK


 .

Note that B is an array of numbers representing averaged values of u on particular areas of

the domain at finite number of points in time. Hence, the injectivity of B ◦φ is problematic.

Furthermore, the observation ψ contains both model and measurement error which further

complicates the well-posedness of equation (3.6). In particular, ψ is not necessarily an element

of (B ◦ φ)(P). As usual for such situations, p is obtained as a solution of (3.6) in a least

square sense, that is, p is a solution of the optimization problem,

Φ(p) = ‖(B ◦ φ) (p)− ψ‖2
F −→ min, (3.7)

where ‖A‖F =

(
m∑
i=1

n∑
j=1

|ai,j|2
)1/2

.

Let p∗ be the minimizer of Φ, that is

p∗ = arg min
p∈P

Φ(p) (3.8)

In the setting of the current model, both the observation operator and the model (3.1)

depend on the distribution of the traps. Our aim is to find trap configurations for which the

minimizer of Φ is unique and can be reliably determined by a numerical procedure. In order

to investigate the properties of (3.7), equivalently (3.8), we solve the optimization problem

iteratively using a random multistart approach [260] over a set of initial values of p ∈ P . For

each randomly selected starting value of p, a local minimum of Φ is found using the Gauss-

Newton line search algorithm. The solution of (3.7) is identified as the estimated parameter

values of the minimum of the local minima. Thus, increasing the number of starting values

increases the chances of finding the global minimum of the objective function. Furthermore,

for each trap setting, we consider how well the global minimum can be discriminated from

the other local minima. This gives an important indication on how well the parameter values

can be identified in the presence of noise and we refer to it as robustness. Here we investigate

the influence of the choice of the settings of traps on the accuracy and robustness of the

method.

In general, one can expect that increasing N and K leads to a more regular problem.

However, as shown in [15], an incoming stream can be quite accurately identified by using

relatively small number of observations. Furthermore, if the traps are far enough from each
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other, the rows of B(u) are the same. Therefore, in the considered setting, just increasing the

size of the matrix B(u) would not improve substantially the regularity of the problem. Our

approach is to have some of the traps close enough so that due to interferences, they produce

different streams of trapped insects. This will increase the rank of the matrix B which can be

reasonably expected to improve the regularity of the problem. Empirical evidence supporting

this conjecture is provided in the next section, where the effect of different configuration is

examined.

3.5 Description of the experiments

We consider four trap settings:

• (A) single trap,

• (B) nine traps in a square formation,

• (C) five traps in a Z-formation,

• (D) five traps in a kite formation.

These four setting are shown on Fig. 3.2. Note that in all cases the traps are sufficiently

far from the boundary of the domain Ω so that in the considered period of observation the

boundary condition in (3.1) remains reasonable. Fig. 3.3 represents the population distribu-

tion after 15 time units using setting (D). The interference between the traps can be observed

in Fig. 3.4, which is a zoom in of Fig. 3.3. Note that in these experiments, because of the sym-

metry of the trap distribution, identical trap counts are observed in several traps. In Fig. 3.2,

the traps identified with the same symbols have identical incoming streams. Therefore, by

using the nine traps of setting (B) for instance, we multiply the amount of information by

three compared to the one-trap setting (A). In settings (C) and (D), five traps are used. Due

to their configuration, setting (C) produces three distinct incoming streams, whereas setting

(D) produces four distinct incoming streams. The distinct incoming streams obtained in each

setting are represented in Fig. 3.5.

Considering the different settings of traps we run numerical simulations in order to es-

timate, one, two, three, and finally four parameters simultaneously using the cummulative

trap counts over 15 time units (K = 15). Since the parameter of main interest to identify

here is the initial population density u0, it is always among the parameters to estimate. The

diffusivity of the insects σ, is the second parameter of main interest when dealing with in-

sect dispersal. The choice of the remaining parameters to estimate is based on a sensitivity

analysis. We selected in priority parameters on which the model has the highest sensitivity.
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Figure 3.2: Distribution of the traps on Ω for each setting. The symbols identify the traps

that produce identical incoming streams within each setting.

Figure 3.3: Insect distribution after 15 time units using setting (D).

Indeed, when solving the inverse problem, the more sensitive the original problem on a pa-

rameter is, the more accurate the parameter identification is. The sensitivity of a parameter

is a measure of the change in the output of the model caused by a change in this parameter

value. However, since the parameters under consideration have different order of magnitude,

it is more appropriate to measure their elasticity index, i.e. the proportional change in the
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Figure 3.4: Interference between the traps using setting (D). Zoom in of Fig. 3.3.

Figure 3.5: Cumulative number of captured insects in each trap, using the trap settings (A),

(B), (C) and (D) of Fig. 3.2.
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output of the model caused by a change in the value of the parameter. The elasticity indices

of each parameter with respect to each setting of traps is given in Table 3.2. Note that

the output of the model is the most sensitive to a change in the parameter for which the

elasticity index is the greatest. Therefore, in order the output of the model is more sensitive

to changes of values of amax than of Rmax for which the model is more sensitive to changes

of Rmin. Therefore, we proceeded to the parameter identification of p1 = (u0), p2 = (u0, σ),

p3 = (u0, σ, amax) and p4 = (u0, σ, amax, Rmax). Our aim is to find p∗κ that satisfies (3.8),

where κ denotes the number of parameters to be estimated (κ = {1; 2; 3; 4}). We limited our

numerical simulations to the simultaneous estimation of 4 parameters due to limitations in

computational capacity. Indeed, when solving the inverse problem, each evaluation of the

objective function requires solving problem (3.1).

Table 3.1: Values of the parameters used to simulate the field data

parameter unit value

u0 insects/unit area 27.5

σ m2/time unit 5.23

amax m/time unit 5.75

Rmax m 8

Rmin m 2

Table 3.2: Elasticity of the parameters with respect to the incoming streams of insects. Let

ν denote a parameter, and z(ν) the incoming stream of insects with respect to ν, then, the

elasticity index of parameter ν is Eν = ν‖z(ν)− z(ν + ∆ν)‖2/ (‖z(ν)‖2∆ν)

Setting Trap u0 σ amax Rmax Rmin

(A) 1.00 0.92 1.42 1.26 0.60

(B)

Center 1.00 1.02 1.26 0.83 0.54

Corner 1.00 0.96 1.35 1.06 0.57

Median 1.00 0.98 1.31 0.95 0.55

(C)

Center 1.00 0.98 1.33 1.01 0.56

Side 1.00 0.95 1.38 1.15 0.59

Top/Bottom 1.00 0.95 1.36 1.08 0.58

(D)

Center 1.00 0.98 1.29 0.90 0.55

Side 1.00 0.95 1.36 1.10 0.58

Top 1.00 0.97 1.33 1.01 0.56

Bottom 1.00 0.94 1.39 1.17 0.59

Since we do not have real field data, we simulated the data over a period of 15 time units

with the values of parameters given in Table 3.1. Assuming that the period between two
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consecutive collects of data is equal to one time unit, we extract from the simulated data

only those that correspond the collect time. A noise of 5% is added to the simulated data,

and this gives ψ = (ψi,t1 . . . ψi,tK )i=1..N , where N is the number of traps. The use of simulated

data also allows us to compare the estimation with the real values of the parameters.

The numerical solution of the initial value boundary problem (3.1) is obtained by using

the Crank-Nicolson scheme [62, 233]. The optimisation problem (3.8) is solved by using

the matlab function fminunc which performs the Gauss-Newton line search algorithm [99].

Since this function finds only a local minimum, we run it with many randomly selected initial

points in order to have a reasonable certainty that the global minimum is among the local

minima found. Here we choose u
(0)
0 ∈ [5; 45], σ(0) ∈ [4; 6], a

(0)
max ∈ [2; 8], R

(0)
max ∈ [3; 10] as

ranges of the initial parameter values.

3.6 Results and Discussion

The results of the experiments described above are presented in Table 3.3. The values

of the local minima of Φ, and the respective estimated values of the parameter vectors p̃κ,

with κ = {1; 2; 3; 4}, are given according to the trap setting. According to our method, when

several local minima of Φ are found, the identified set of parameter values corresponds to

the global minimizer of Φ, that is, the minimizer of the smallest local minimum. The ∗ on

the right of the table indicates the values of the parameters identified as global minimizers

of Φ. In these experiments, we investigate the accuracy and the robustness of the identified

parameter values. The accuracy of p∗κ is measured by calculating the relative error to the exact

solution p̄κ (Table 3.1) i.e. Erel=‖p̄κ− p∗κ‖/‖p̄κ‖. In this setting the concept of robustness of

the method represents how well the global minimum value of Φ is discriminated against the

values of Φ of other minima.

As a preliminary experiment, Table 3.4 presents the identified values and relative errors of

p when a single parameter value is unknown. p = (u0), p = (σ), p = (amax) and p = (Rmax)

are successively identified using each setting of traps. These results are in agreement with

the sensitivity analysis provided in Table 3.2, i.e. the more sensitive the output of the model

to a certain parameter, the more accurate its estimation.
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Table 3.3: Local mimima of the objective function Φ, with the four settings of traps with

respect to the number of parameters estimated simultaneously. TS stands for the trap setting

used (Fig. 3.2). The * indicates the set of parameters identified as the global minimizer of

Φ.
p TS Φ ũ0 σ̃ ãmax R̃max Erel

p 1
=

(u
0
) (A) 240004 27.63 – – – 0.5% *

(B) 259813 27.43 – – – 0.3% *

(C) 572150 27.45 – – – 0.2% *

(D) 620115 27.31 – – – 0.7% *

p 2
=

(u
0
,σ

)

(A) 219149 21.49 3.31 – – 22.5% *

222543 25.43 4.73 – –

(B) 256632 27.01 5.15 – – 1.8% *

(C) 572066 27.52 5.24 – – 0.1% *

826874 19.69 2.45 – –

(D) 619615 27.46 5.26 – – 0.2% *

p 3
=

(u
0
,σ
,a

m
a
x
)

(A) 204279 17.79 4.30 7.89 – 34.9% *

214067 21.14 6.44 7.90 –

(B) 256473 26.70 5.16 5.81 – 2.8% *

297564 18.37 4.48 7.65 –

(C) 572055 27.61 5.23 5.73 – 0.4% *

636640 17.35 4.18 8.07 –

(D) 598689 25.17 5.48 6.31 – 8.4% *

647548 17.43 4.45 8.14 –

p 4
=

(u
0
,σ
,a

m
a
x
,R

m
a
x
)

(A) 210462 33.31 3.25 5.07 5.83 22.1% *

210466 34.38 3.08 4.90 5.71

210471 32.75 3.35 5.17 5.89

210503 32.02 3.47 5.30 5.98

210533 31.53 3.56 5.39 6.03

210679 30.22 3.81 5.65 6.20

(B) 255885 26.93 5.09 5.64 8.15 2.1% *

277462 18.24 4.00 6.80 8.56

(C) 571732 27.51 5.28 5.85 7.88 0.6% *

609828 17.47 3.84 7.05 8.61

(D) 597514 25.40 5.37 6.07 8.18 7.2% *

615604 17.66 4.06 7.08 8.61
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Table 3.4: Identified values of the single value parameter p and its relative error with respect

to the trap setting, TS. The values of the estimates are rounded to two digits after the decimal

point.

TS p ũ0 σ̃ ãmax R̃max R̃min Erel

(A)

p = (u0) 27.63 – – – – 0.48%

p = (σ) – 5.20 – – – 0.60%

p = (amax) – – 5.77 – – 0.37%

p = (Rmax) – – – 8.03 – 0.41%

p = (Rmin) – – – – 2.02 0.81%

(B)

p = (u0) 27.43 – – – – 0.24%

p = (σ) – 5.24 – – – 0.21%

p = (amax) – – 5.74 – – 0.17%

p = (Rmax) – – – 7.98 – 0.24%

p = (Rmin) – – – – 1.99 0.64%

(C)

p = (u0) 27.45 – – – – 0.19%

p = (σ) – 5.24 – – – 0.19%

p = (amax) – – 5.74 – – 0.13%

p = (Rmax) – – – 7.99 – 0.17%

p = (Rmax) – – – – 1.99 0.05%

(D)

p = (u0) 27.31 – – – – 0.69%

p = (σ) – 5.27 – – – 0.71%

p = (amax) – – 5.72 – – 0.49%

p = (Rmax) – – – 7.95 – 0.60%

p = (Rmin) – – – – 1.96 1.76%

3.6.1 Do interfering trap-settings provide better results than non-

interfering trap settings?

From Table 3.3 we can see that, using setting (A) i.e. without trap interference, the

number local minima found increases, as the number of parameters to identify simultaneously

increases. Conversely, using the setting with trap interferences, a maximum of two minima

were found.

Moreover, the minima found using one trap are in a maximum range of 5% of the optimal

value of φ and within this range, the norms of the different minima can differ by 15%. More

precisely, for p = p2 (resp. p = p3), the minima are found withing a range of 2% (resp. 15%)

of the optimal value of φ. In particular, when p = p4, 6 minima are found within a range of

0.1% of the optimal value of φ where the norm of the minima can differ by 10.6%. This shows
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that, without interferences, as the number of parameters to identify increases, the reliability

of the estimates decreases.

Furthermore, we can see from Table 3.3, that the one-trap setting provides a poor accuracy

of the estimates when several parameter values are identified simultaneously, compared to the

other setting. In fact, using one trap, the relative error of the estimates is above 22% when

two or more parameter values are estimated, whereas, using the other settings, the relative

error is always below 8.4%. Therefore, when two or more parameters are to be identified,

we may conclude that interfering trap settings provide estimates with better accuracy than

non-interfering trap settings. However, from Table 3.3, note that if a single parameter needs

to be identified, setting (A), using only one trap, would provide a sufficiently accurate and

reliable estimate. In this case, adding more traps is not really helpful. This suggests that one

must choose an appropiate setting depending on the parameters that need to be identified.

By investigating further on the results, when p = p3 using one trap, we simulated the

incoming streams using the global minimizer of Φ (p3 = p∗3), (Table 3.3). The curve obtained

with the latter simulation as well as the curve representing the incoming stream simulated

using the real value of p , given in Table 3.1 (p3 = p̄3), are represented in Fig. 3.6. As we can

see, the two curves are hardly distinguishable, meaning that two different sets of parameters

can lead to very similar incoming streams. This illustrates the ill-conditionedness of the

problem where two very similar streams of trapped insects are produced using two very

different sets of parameters (Erel = 34.9%, Table 3.3).

Figure 3.6: Simulated cumulative number of captures when estimating three parameters with

setting (A), using the real values, p̄3, and the identified values, p∗3.
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3.6.2 Interfering trap-setting strategies

We have shown above that using a setting of traps that are interfering provide better results

for parameter identification in terms of robustness and accuracy when several parameters are

identified simultaneously. However, little is known on the actual role of the interferences

between the traps and their effect on the regularity of the problem. In order to understand

the effect of these interactions, several interfering trap settings are compared.

We study the results obtained using the nine-trap setting (B) and the setting (D) of five

traps. One could expect better accuracy and robustness of the estimates using setting (D)

since in this setting four distinct incoming streams are produced whereas only three are

produced using setting (B). However, apart from the case p = p1, the relative error of the

estimate using setting (D) is always lower than using setting (B). Considering the fact that

the noisy data are averaged over the traps producing the same streams, in setting (B), the

corner and median noisy data are averaged over three traps, whereas only the noisy data of

the two side traps are averaged using setting (D). Therefore, the data used to identify the

parameters using setting (B) are smoother than those used with setting (D). This reduces the

effect of the noise and may explain why more accurate and robust estimations are obtained

using nine traps.

In setting (C), five traps are used producing three distinct incoming streams as for the nine-

trap setting (B). The estimates obtained using setting (C) are the most accurate compared

to all the other experiments that were carried out (Erel = 6% for p = p4). The robustness,

however, is not as good as for the nine trap setting. For instance, when p = p3, two local

minima of φ are found within 10% (resp. 14%) of its optimal value for setting (C) (resp.

setting (B)). Despite this, the global minimum of φ is clearly identified. This counter intuitive

result shows that the interference phenomenon is not trivial. In particular, we can see in

Fig. 3.5 that the 3 incoming streams produced by the nine trap setting are more distinct

than those obtained using the five-trap setting. A possible explanation may relate to the

sensitivity of the parameters. Indeed, the parameters amax and Rmax are more sensitive

using setting (C) than when using setting (B) (Table 3.2). Such a result suggest that there

must be an optimal setting which would allow to obtain robust and accurate parameter

estimation using as few traps as possible.

These results show that trap interference can be used to make the problem more regular,

however, the relationship between the regularity of the problem and the interference between

the traps is highly nonlinear and therefore difficult to analyse.
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3.7 Conclusion

Parameter Identification is challenging, in particular when the direct problem is defined

by PDEs, since it often leads to solving inverse problems that are ill-posed or ill-conditioned.

We demonstrate numerically that the interferences between traps can be used to make the

problem well-posed and well-conditioned using a trial-and-error approach. This method

enables the identification of parameter values that describe population characteristics, i.e the

population density, its diffusion rate, attractiveness of the traps and their maximum radius

of attraction. By choosing biologically realistic ranges of parameter values to estimate, the

parameters are identified as the global minimizer of function Φ using starting values over these

ranges. We show numerically that trap interferences can be used not only to increase the

accuracy of the estimates, but also to find a global minimum which can be well discriminated

from the other local minima. The trial-and-error method over the choice of the trap setting,

followed with the multistart approach to solve the optimization method increases the chances

of succeeding in solving the parameter identification problem. For each trap setting trial,

we found numerically the global minimum of the objective function and we measured how

well it is discriminated from the other minima. The setting where the global minimum

can be the best discriminated from the other minima provides an inverse problem that is

well-conditioned and thus provides the most robust solution to the parameter identification

problem. Note that, once a “good” setting of trap is identified, other methods, such as

random search methods, could be interesting alternatives to finding the global minimum of

the objective function [260, 53, 1].

Furthermore this work investigates how experiments using traps should be conducted in

the field so that sufficient information is recorded, using as few traps as possible. Indeed, the

optimal setting of traps depends on the parameters that need to be identified. For instance,

we showed that a setting using only one trap would be sufficient to identify a single parameter.

However when several parameters are unknown, interfering traps provide more accurate and

more reliable estimates. In particular, setting (C) stands out from the other settings. Due

to a highly nonlinear relationship between the trap interferences and the regularity of the

problem, it is challenging to find an optimal setting of traps providing highly accurate and

robust estimates. A global sensitivity of the model to the parameters will be considered in

a future work to give more insight into this relationship. This is a promising method, not

only from the numerical and theoretical perspective for parameter identification, but may

also prove to be of practical importance for the determination of insect population density

in the field with the use of traps.
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4.1 Abstract

Estimating pest population size is of utmost importance in biological control. However

field experiments can be difficult and expensive to conduct, with no guarantee that usable

results will be produced. In this context, the development of mathematical models and nu-

merical tools is crucial to improve the field experiments by suggesting relevant data which

can be used to estimate parameters related to the pest’s biology and to the traps (e.g. dura-

tion of the experiments, distance of the releases, etc.). Here we develop a trap-insect model

(TIM), based on coupled partial differential equations. The model is studied theoretically

and a finite element algorithm is developed and implemented. A protocol for parameter

estimation is also proposed and tested, with various data. Among other results, we show

that entomological knowledge is absolutely necessary for efficient estimation of parameters,

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Simulations and parameter estimating of a trap-insect model using a finite element approach114

in particular population size.
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4.2 Introduction

In the context of pest control and management, the success of any strategy requires a

good understanding of the insect’s biology as well as knowledge on its spatial distribution,

dispersal capacity, density, etc. Typically the only data available is obtained using traps.

Estimating population densities is complicated when little is known on the behaviour of the

insects interacting with the traps as well as with the environment. Mark-release-recapture

(MRR) experiments are often used to estimate some biological and ecological population

parameters, e.g. size, dispersal, survival, etc. Models and estimation methods exist to

quantify the size of the population (see [54] for an overview). Programs, like E-SURGE [52],

and MARK [253] are also available. They are based on statistical analysis and fitting, and

provide estimations of some population parameters using recapture data from particular field

experiments (individual tracking). However, with these tools, testing different strategies is

costly and time consuming as it requires many field experiments to get results.

Beyond estimation of population size, optimizing trapping strategies is fundamental in

pest control programs (see for instance [9, 108]), and trap network is a component of cru-

cial practical importance in terms of capture probabilities [166]. Many studies address this

problem by relating the distance to a trap and capture probabilities using statistical dis-

tributions such as exponential [65, 197] or Cauchy [175] distributions, or empirical logistic

equation [33]. More recently, Manoukis et al. [166] used the hyperbolic secant function to

model the probability of capture of attracting traps depending on the distance to the trap.

In a previous work [81], we addressed the question of trapping networks as we developed a

mathematical model for estimating insect population parameters using trap data in various

configurations. The dynamics of the insects responding to attractive traps were modelled

via an advection-diffusion-reaction equation, where the direction and force of attraction were

defined by an analytical function of the space variable. This approach enables the estima-

tion of model parameters and population characteristics using various settings of traps, and

comparison of their efficacy via numerical simulations.

In this paper we develop a trap-insect model (TIM), which consists of a chemotaxis model

that simulates the spread of a chemical attractant released by traps, coupled with an insect

spreading model, in which the insects’ response to the attractant is modelled. In [64], the

authors developed a mosquito-host model where the spread of the CO2 released by the hosts

is described via an advection-diffusion-reaction, while the response of the mosquitoes is mod-

elled via an individual based random walk process. Here we propose to model simultaneously

the spread of the chemical attractant and the dynamics of flying insects, like fruit flies or

mosquitoes, using a system of advection-diffusion-reaction equations.
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In [81], the solution of the insect model was approximated using a finite difference ap-

proach. Here, the solution of the model is approximated using the finite element method [94].

In the finite element method, the domain is subdivided into elementary sub-domains (like

triangles in 2D or tetrahedra in 3D) where the approximated solution is piecewise polynomial

on the whole domain. Further, this method offers the possibility to refine the mesh around

the traps and take into account local dynamics. Numerical approximations of the trap counts

are obtained by simulation and used to estimate some parameters of the insects’ dynamics.

The paper is structured as follows. We first describe the coupled chemotaxis model. Then,

in sections 3 and 4, we write the problem in variational form and we give some qualitative

properties of the solutions. Next, the numerical scheme implementing the finite element

method is described in section 5, followed by some numerical simulations in section 6. Fi-

nally, in section 4.8, we consider applications to parameter identification, and specifically the

estimation of the size of the insect population. We implement and test a feasible experimental

protocol chain, and we discuss the results.

4.3 The model

It is commonly assumed that insects such as mosquitoes or fruit flies, move according to

an isotropic random walk when they are not influenced by any stimulus in a homogeneous

wind-free environment. Under such conditions, the movement of the insect population is

governed by a simple diffusion equation [222]. Thus, when passive traps are used, insects are

neither attracted to nor repulsed from the traps, and move according to a random walk until

they “accidentally” get trapped [37]. Yet, the survival of the insect population depends on

its ability to locate food and breeding sites, and therefore insects adapt their displacements

accordingly [138]. This suggests that insects rather follow a correlated random walk allowing

a bias in the insects’ movement direction [140, 230]. In the deterministic model, the average

biased behaviour of the population is modelled via an advection term [188].

To increase the chance of capturing insects, attractive traps are often used. The latter

release a chemical attractant (CO2, pheromone, odour) which spreads. In a 2-dimensional

domain, Ω ⊂ R2, the active space of such traps is defined as the area where the concentration

of the attractant is above a minimum threshold concentration level which can be detected by

the targeted insects [214, 185]. In other words, the active space of a trap is the area where

its attraction takes place.

Modelling the spread of a chemical attractant in air is a challenge on its own. When it is

assumed that the chemical is released at a constant rate, in a homogeneous environment with
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still air, the active space is a disc centred at the trap [79] and its radius defines the attraction

range (i.e. the maximum distance from the trap to which attraction takes place) [214].

However, in the presence of wind, or if the environment is not homogeneous, the spread of

the chemical is subjected to turbulences, and in such cases, the active space of the attractant is

often described as a ‘plume’ [91]. To circumvent this difficulty, homogeneous spread [188, 32]

is often assumed when introducing wind in models. In [80], for instance, areas of attraction

were defined as circular areas deformed into ellipses to take into account the wind’s direction

and speed.

To model the capture of insects, it is necessary to define how the attraction towards the

source takes place. In many studies, empirical functions relate the distance to the trap

to a certain probability of capture [175, 197, 166]. In previous work [79], we adopted this

approach, as the attraction was taking place within a radius Rmax from the centre of the trap,

and the force of attraction was defined as function which increases as the distance to the trap

decreases. Here, we model the force of attraction using the gradient of the concentration of

the chemical.

The model developed here aims to describe simultaneously the spread of the chemical

attractant and the dynamics of the insects responding to it. While the spread of the chemical

can be modelled independently, the movement of the insects is biased by the concentration of

the chemical and its gradient. More precisely, we assume that the insects detect the chemical

above certain concentration and respond by moving in the direction of the gradient. It is

assumed that this movement is more persistent when the gradient is steeper. Further a

chemotactic sensitivity function, χ(c) is introduced to model the sensitivity of the insects to

the chemical attractant. Mathematically this is modelled via an advection term in the model

of the dynamics of the insects, where the advection’s direction and strength is governed by

the gradient of the concentration of its chemical attractant and the function χ. Further, in

order to avoid accumulation of insects inside the traps we adopt a compartmental approach

and distinguish the free insects, uf , from the captured insects, uc. The dynamics of the free

insects is governed by an advection-diffusion equation to account for their response to the

attractive traps while the change in the captured insects results from the removal due to the

reaction term in the equation modelling the free insects.

In terms of mathematical modelling, a trap T is a circular area of the domain Ω with a

centre xT and a radius RT . Outside this area, no transition occurs from the free compartment

to the captured compartment. Inside the trap, transition occurs and its capture rate increases

as the insects get closer to the centre of the trap. This capture rate is represented in Figure

4.1. Once captured, the free insects pass into the captured compartment from which they

cannot escape.
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4.3.1 Modelling the spread of the chemical attractant

The spread of the chemical is governed by the Fick’s law of fluid dynamics, where the

particles of a fluid move from area of high concentration to area of low concentration. This is

modelled via a diffusion term, εc∆c(t, x), where c(t, x) is the concentration of the chemical at

time t and position x, and εc is the diffusivity of the chemical. The emission of the chemical

takes place within a circular area of radius Re < RT around the centre of the trap. For

each trap, this release is modelled using a circularly symmetric smooth function, which is 0

outside the area defined by Re and reaches its maximum at the centre. Further, we assume

that the release of c is regulated by a saturation level csat, which represents the maximum

concentration of c in the air. Then, the rate of release of the attractant c over Ω is the sum

of the disjoint rates of release in all traps. Under the above assumptions this rate of release

of c at a time t > 0 and point x ∈ Ω is given by λ(x)(csat − c(t, x)), where

λ(x) =

Ntrap∑

T=1

Λ(||x− xT ||) (4.1)

with Λ a decreasing smooth function on [0,+∞) such that Λ′(0) = 0 and Λ(z) = 0 for z ≥ Re.

An explicit formulation of Λ used to perform numerical experiments is given in section 4.7.

Finally it is reasonable to assume that the chemical vanishes in time. This is modelled by

a reaction term on the right-hand side of the equation, −µcc(t, x), where µc > 0 represents

the vanishing rate. This yields a diffusion-reaction equation with a forcing term, given in

(4.2).

4.3.2 Modelling the insects’ dynamics

Insects’ dynamics are modelled via an advection-diffusion-reaction equation. Unlike the

equation for the chemical, the diffusion is derived from the assumption that the motion of the

individual members of the population is governed by an isotropic random walk [228, 222, 37]

if they are not submitted to any stimulus.

The diffusion of the insects is modelled by the term εu∆u(t, x), where u(t, x) is the density

of insects at time t and position x, and εu is the diffusion coefficient of the insects. Here

we assume that εu is constant over the domain. However, εu may depend on x in order to

account for a heterogeneous environment. Further it may be also function of t as it depends

on weather related factors, e.g. temperature or rainfall.

In [81], we consider a space-dependent diffusion coefficient to account for the fact that once

the insects are trapped they remain in the trap and cannot escape. Thus, in order to avoid
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insects “escaping” the trap by diffusivity due to accumulation inside the traps, the diffusion

coefficient was set to a negligible value inside the traps. Here, the trapped insects are removed

from the free-insect compartment, and transferred to the captured compartment. Therefore,

the diffusion coefficient for the insects is taken constant over the entire domain. A similar

compartmental approach for mosquito population was used in [80, 79] to model different

dynamics depending on the stage of development of mosquitoes or on their behavioural

characteristics.

The transfer from the free compartment to the captured compartment (i.e. the capture

rate) is modelled using the smooth transition function, f(x), x ∈ Ω, which depends on the

the distance to the centre of the trap. More precisely, it is assumed that outside the traps,

no transfer occurs. As from the boundary of trap, the rate of capture of the trap increases

up to its maximum capture rate r, which then remains constant inside the traps. Thus, as

shown in Figure 4.1, the capture rate is equal to its maximum value, r, inside the traps, or

more precisely in a radius of RT −ε around the centre of the trap, and zero outside the traps,

i.e. when z ≥ RT .

Figure 4.1: Representation of a trap of radius RT . f(x) is the value of the capture rate

defined in (4.42)-(4.43)

However, in the presence of a stimulus, insects can be attracted to, or repelled from,

the source of that stimulus. In this particular study, we consider the case where insects

are attracted to a source located inside a trap. As mentioned earlier, the direction and

speed of the motion of the insects are affected by the concentration and the gradient of

the chemical when the concentration is above the threshold cmin. This is referred to as

chemotaxis [141] and gives rise to an advection term, ∇ · (χ(c)∇c(t, x)uf (t, x)), where the

advection coefficient is the product of the gradient of the concentration of the chemical by a

sensitivity coefficient [188], χ(c). The latter enables us to define the relationship between the
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steepness of the gradient of the concentration of the chemical and the strength of attraction of

the insects towards the source, that is, towards the trap. Note that this advection occurs only

in areas where the concentration of the chemical is above the threshold cmin, i.e. in the active

space of the traps [42]. Thus, χ(c) is an increasing smooth function of the concentration of the

chemical attractant c which is null whenever c < cmin, and bounded above by a certain value

which can be interpreted as the maximum possible response of the insects to the gradient of

c. In section 4.7, we define an explicit formulation of χ(c) used for the numerical experiments.

Finally, we could add a reaction term for the insects to account for the natural growth of

the population, (birth and death), and for possible excess mortality. Here, we will omit this

term as the experiments take place over a short period of time, such that the demography

and other parameters related to the environment can be assumed to remain constant.

4.3.3 The coupled model

We consider the concentration of the chemical attractant c, the free-insect density uf , and

the captured-insect density uc, as functions on the spatio-temporal domain [0, T ]×Ω, where

T ∈ R+, and Ω is a domain in R2 with piecewise smooth boundary. At t = 0, we assume that

the traps are placed in the domain where all insects are free with a distribution u0. Under

these assumptions, we have that c(0, x) is equal to zero everywhere on Ω, uf (0, x) is equal to

the distribution u0(x), x ∈ Ω and uc(0, x) = 0, x ∈ Ω.

Let Γ = ∂Ω denote the boundary of Ω. We assume that the domain Ω is large enough

and that the traps are sufficiently far from the boundary Γ so that the concentration c is

negligible on Γ. Then we consider homogeneous Dirichlet boundary conditions on Γ, i.e.

c|Γ = 0. Further, we assume that there is no immigration and emigration in and out of the

domain (or that immigration and emigration compensate), so that homogeneous Neumann

boundary conditions can be applied for uf and uc. Under these assumptions, the model is
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formulated as follows:

∂c(t, x)

∂t
− εc∆c(t, x) + λ(x)(c(t, x)− csat) = −µcc(t, x) (4.2)

∂uf (t, x)

∂t
− εu∆uf (t, x) +∇ · (χ(c)∇c(t, x)uf (t, x)) = −f(x)uf (t, x) (4.3)

∂uc(t, x)

∂t
= f(x)uf (t, x), x ∈ Γ, t > 0 (4.4)

c(t, x) = 0, x ∈ Γ, t > 0 (4.5)

∇uf · ~n = 0, on Γ (4.6)

∇uc · ~n = 0, on Γ (4.7)

c(0, x) = 0, x ∈ Ω (4.8)

uf (0, x) = u0(x), x ∈ Ω (4.9)

uc(0, x) = 0, x ∈ Ω (4.10)

where ~n denotes the outward normal vector on Γ.

4.4 The variational formulation of the problem

The general existence and uniqueness theory of initial-boundary value problems for parabolic

systems of the form (4.2)-(4.10) is typically given in terms of weak solutions, that is, the so-

lutions of an associated variational problem. Since, in addition, the numerical simulations

are computed by the finite element method, we give explicitly the variational formulation of

the problem. As usual we use the notation

H1(Ω) = {w ∈ L2(Ω):
∂w

∂xi
∈ L2(Ω), 1 ≤ i ≤ 2},

H1
0 (Ω) = {w = H1(Ω): w|Γ = 0}.

To apply the theory of weak solutions, we consider c, uf and uc not as functions of t and

x, but as mappings of t into spaces on Ω. In particular, taking into account the boundary

conditions (4.5), (4.6) and (4.7), we consider

c : [0, T ] −→ H1
0 (Ω),

uf : [0, T ] −→ H1(Ω),

uc : [0, T ] −→ H1(Ω).
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Therefore, we seek

c ∈ L2 (0, T ;H1
0 (Ω)) , with

dc

dt
∈ L2

(
0, T ;H−1(Ω)

)
,

uf ∈ L2 (0, T ;H1(Ω)) , with
duf
dt
∈ L2

(
0, T ;H−1(Ω)

)
,

uc ∈ L2 (0, T ;H1(Ω)) , with
duc
dt
∈ L2

(
0, T ;H−1(Ω)

)
,

where H−1(Ω) is the dual space of H1(Ω).

If we multiply each term of the equation (4.2) by a test function w ∈ H1
0 and integrate

over Ω, then, for t > 0 and w ∈ H1
0 (Ω), we obtain

∫

Ω

(
∂c(t, x)

∂t
w(x)− εc∆c(t, x)w(x) + (λ(x) + µ)c(t, x)w(x)

)
dx =

∫

Ω

csatλ(x)w(x)dx.

(4.11)

Using that w|Γ = 0, the divergence theorem yields

−
∫
Ω

εc∆c(t, x)w(x)dx =
∫
Ω

εc∇c(t, x) · ∇w(x)dx+
∫
Γ

∂c
∂n
w(x)dx. (4.12)

Hence, equation (4.11) is reduced to

∀w ∈ H1
0 (Ω),∫

Ω

(
∂c(t, x)

∂t
w(x) + εc∇c(t, x) · ∇w(x) + (λ(x) + µ)c(t, x)w(x)

)
dx

=

∫

Ω

csatλ(x)w(x)dx. (4.13)

In a similar way, the divergence theorem is applied to obtain a variational formulation of

(4.3) with boundary condition (4.6). Here, in order to simplify the integral of the advection

term, we use in addition the fact that c|Γ = 0 and therefore χ(c)|Γ = 0. More precisely, we

have ∫

Γ

(χ(c)∇c(t, x)uf (t, x)v(x)) · ~n = 0. (4.14)

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Simulations and parameter estimating of a trap-insect model using a finite element approach123

Altogether, the variational formulation for the system (4.2)-(4.7) is as follows:

∀w ∈ H1
0 (Ω), ∀v ∈ H1(Ω),∫

Ω

∂c(t, x)

∂t
w(x)dx+

∫

Ω

(εc∇c(t, x) · ∇w(x) + (λ(x) + µ)c(t, x)w(x)) dx

=

∫

Ω

csatλ(x)w(x)dx, (4.15)

∫

Ω

∂uf (t, x)

∂t
v(x)dx+

∫

Ω

(εu∇uf (t, x) · ∇v(x)− (χ(c)∇c(t, x)uf (t, x)) · ∇v(x)) dx

= −
∫

Ω

f(x)uf (t, x)v(x)dx, (4.16)

∫

Ω

∂uc(t, x)

∂t
v(x) =

∫

Ω

f(x)uf (t, x)v(x)dx. (4.17)

Denote by a the bilinear form associated with the variational problem (4.15), defined as

a(c, w) =

∫

Ω

(εc∇c(t, x) · ∇w(x) + (λ(x) + µ)c(t, x)w(x)) dx, ∀c, w ∈ H1
0 (Ω), (4.18)

and by b, the bilinear form associated with (4.16),

b(uf , v) =

∫

Ω

[εu∇uf (t, x) · ∇v(x)− (χ(c)∇c(t, x)uf (t, x)) · ∇v(x)

+f(x)uf (t, x)v(x)]dx, ∀uf , v ∈ H1(Ω). (4.19)

If we choose w = c in H1
0 (Ω), we can show that a is coercive, i.e. there is a constant ka such

that

a(c, c) ≥ ka‖c‖2
H1

0
. (4.20)

Similarly, if we choose v = uf in H1(Ω), we can show that b is L2-coercive, i.e. there are two

constants kb and γb such that

b(uf , uf ) ≥ kb‖uf‖2
H1 − γb‖uf‖2

L2 . (4.21)

Consequently, the existence and uniqueness of the solutions of the problems (4.15)-(4.17)

with initial conditions (4.8)-(4.10) follows from Lions theorem [94, Thm. 6.6] or [36, Thm.

10.9]. Alternatively, existence and uniqueness can be derived from the general semi-group

theory [192, Cor. 2.8].
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4.5 Some qualitative properties

In this section we give some qualitative properties of the model (4.2)-(4.10) which are

of biological significance, e.g. positivity and boundedness of all solutions. These properties

are derived by using the maximum principle. Hence, we need to remark first that the weak

solutions of the problem (4.2)-(4.10) are actually C2. This result follows from the standard

regularity theory for the solutions of parabolic problems, e.g. see [36, Sec. 9.6].

Proposition 4.5.1. For any solution c(t, x) of (4.2), with 0 ≤ c(0, x) ≤ csat, we have

0 ≤ c(t, x) ≤ csat, (t, x) ∈ [0, T ]× Ω.

Proof. Using the notation Lc = −∂c
∂t

(t, x) + εc∆c(t, x) and hc = −(λ(x) + µc)c(t, x), the

governing equation for c can be written as

(L+ h)c = −λ(x)csat. (4.22)

Denote by λmax the maximum of λ(x), for x ∈ Ω. Then, we have

−λmaxcsat ≤ −λ(x)csat ≤ 0 and,

−(λmax + µc) ≤ −(λ(x) + µc) ≤ 0.
(4.23)

Let

m = min
(t,x)∈[0,T ]×Ω

c(t, x).

Assume that m < 0. Since (L + h)c ≤ 0, or equivalently (L + h)[−c] ≥ 0, and h ≤ 0, the

maximum principle [201, Chapt. 3, Thm. 4] yields that there exists P on [0, T ]×Γ∪ [0]×Ω

such that −c(P ) = m < 0. The contradiction with c|Γ = 0 shows that m ≥ 0 and therefore

c(t, x) ≥ 0, t ≥ 0, x ∈ Ω.

If we apply the maximum principle in a similar way to the function csat − c we obtain

csat − c(t, x) ≥ 0 or equivalently, c(t, x) ≤ csat, t ≥ 0, x ∈ Ω

Consider the stationary problem for c:




∀w ∈ H1
0 (Ω),

a(c, w) =
∫
Ω

csatλ(x)w(x)dx,

c(0, x) = 0, x ∈ Ω.

(4.24)

Given the coercivity of the bilinear form associated with problem (4.24), existence and unique-

ness of the weak solution follows from the Lax-Milgram theorem [36, Cor. 5.8]. We denote

by cstat ∈ H1
0 (Ω) the solution to problem (4.24). In the following proposition we show the

convergence of the solution of the evolutionary problem to cstat as time tends to infinity.
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Proposition 4.5.2 (Convergence to the stationary solution). The solution c of problem

(4.15), converges in L2(Ω) to the solution cstat of problem (4.24) as t goes to +∞, i.e.

lim
t→∞
‖c(t, ·)− cstat‖2

L2 = 0. (4.25)

Proof. Let c̃(t, ·) = c(t, ·)− cstat(x) ∈ H1
0 (Ω). If we subtract (4.24) from (4.15), we obtain

(
d

dt
c̃, w

)
+ a(c̃, w) = 0, w ∈ H1

0 . (4.26)

Choosing w = c̃, we obtain

1

2

d

dt
‖c̃‖2

L2 + a(c̃, c̃) = 0. (4.27)

Using the coercivity (4.20) of the bilinear form a, we deduce

1

2

d

dt
‖c̃‖2

L2 + ka‖c̃‖2
L2 ≤ 0. (4.28)

Thus, the Gronwal Lemma, yields the inequality

‖c̃‖L2 ≤ ‖c̃(0)‖L2e−kat, for all t > 0,

which implies that

lim
t→∞
‖c̃‖2

L2 = 0.

Proposition 4.5.3. For any solution uf (t, x) of (4.3), with uf (0, x) ≥ 0, we have

0 ≤ uf (t, x) (t, x) ∈ [0, T ]× Ω.

Proof. Similar to (4.2), the governing equation (4.3) of uf can be written in the form (L +

h)uf = 0 where L is a uniformly parabolic operator and function h is bounded on [0, T ] ×
Ω, T > 0. Then the inequality uf (t, x) ≥ 0, (t, x) ∈ [0, T ] × Ω, follows from the maximum

principle with Neumann boundary conditions [201, Chapt.3, Thm.6 and Remark 2].
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4.6 The numerical scheme

We use a finite element method to find continuous piecewise polynomial approximations

of the solutions c(t, x), uf (t, x) and uc(t, x). Denote by T (Ω) a triangulation of Ω. A generic

element of T (Ω) is denoted by K so we have that

Ω =
⋃

K∈T (Ω)

K.

Denote by Nv the number of vertices in T (Ω). Let kc (resp. ku), be the order of the

polynomial approximation of c (resp. uf and uc). Then, the approximation, ch, of c belongs

to the space

P h
kc = {v ∈ C0(Ω) : v|K ∈ Pkc , K ∈ T (Ω)},

where Pk denote the set the polynomials of degree k. More precisely, taking into account the

homogeneous Dirichlet boundary condtions (4.5), we have that ch belongs to the space

P h
kc,0 = {v ∈ P h

kc : v|Γ = 0}.

A basis for P h
kc

is given in terms of kc × Nv linearly independent global shape functions

ψci , i = 1, ..., kcNv, which equal one at node i and zero at all other nodes,

P h
kc = span{ψci : i = 1, . . . , kcNv}.

Similarly, introducing ku × Nv linearly independent shape functions ψui , i = 1, ..., kuNv, we

define, uhf and uhc as approximations for uf and uc in the space

P h
ku = {v ∈ C0(Ω) : v|K ∈ Pku , K ∈ T (Ω)} = span{ψui : i = 1, . . . , kuNv}.

Then, we seek for approximations ch, uhf , u
h
c of c, uf , uc in the form

ch(t, x) =
kcNv∑
i=1

ci(t)ψci(x),

uhf (t, x) =
kuNv∑
i=1

ufi(t)ψui(x),

uhc (t, x) =
kuNv∑
i=1

uci(t)ψui(x).

(4.29)

In the following we formulate a semi-discrete approximation using the method of lines

(MOL) to discretize first in space and then in time. The problem is then reduced to a

system of ordinary differential equations in time [203]. Afterwards, different approaches are

considered to discretize the problem in time for c, uf and uc.
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4.6.1 The semi-discrete approximation

Consider the variational formulation (4.15)-(4.17) of the model on each element K ∈ T .

We use the simplified element-wise notations

ch(t, x)|K = cK(t, x) =
nKc∑
j=1

cKj (t)φKcj (x),

uhf (t, x)|K = uKf (t, x) =
nKu∑
j=1

uKfj(t)φ
K
uj

(x),

uhc (t, x)|K = uKc (t, x) =
nKu∑
j=1

uKcj (t)φ
K
uj

(x),

(4.30)

where φKcj and φKuj are the base functions on element K, and nKc , nKu , the number of such

functions on K.

Substituting in (4.15)-(4.17) leads to




∀w ∈ P h
kc,0

,∀v ∈ P h
ku
,

nKc∑
j=1

ċKj (t)
∫
K

φKcj (x)w(x)dx

+
nKc∑
j=1

cKj (t)
∫
K

(
εc∇φKcj (x) · ∇w(x) + (λ(x) + µc)φKcj (x)w(x)

)
dx

=
∫
K

csatw(x)dx,

nKu∑
j=1

u̇f
K
j (t)

∫
K

φKuj(x)v(x)dx

+
nKu∑
j=1

uKfj(t)
∫
K

(
εu∇φKuj(x) · ∇v(x)−

(
χ(c)∇c(t, x)φKuj(x)

)
· ∇v(x)

)
dx

= −
nKu∑
j=1

uKfj(t)
∫
K

f(x)φKujv(x)dx,

nKu∑
j=1

u̇Kcj (t)
∫
K

φKuj(x)v(x)dx =
nKu∑
j=1

uKfj(t)
∫
K

f(x)φKujv(x)dx,

(4.31)

where ċKj = ∂ch(t,x)
∂t
|K ,u̇Kcj =

∂uhf (t,x)

∂t
|K , and u̇Kcj = ∂uhc (t,x)

∂t
|K .

In particular, (4.31) holds by taking w(x) = φKci (x), i = 1, . . . , nKc and v(x) = φKui(x), i =

1, . . . , nKu , which leads to a linear system for the coefficients in (4.30). Denote by CK , UK
f
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and UK
c the vectors of these coefficients on element K, and ĊK , U̇K

f and U̇K
c the respective

time derivatives. Then the linear system can be written in the form

MK
c Ċ

K + AK
c C

K = FK
c (4.32)

MK
u U̇

K
f + AK

uf
UK
f = −RKUK

f (4.33)

MK
u U̇

K
c = RKUK

f (4.34)

where:

mK
ci,j

=
∫
K

φKcj (x)φKci (x)dx

aKci,j =
∫
K

εc∇φKcj (x) · ∇φKci (x) + (λ(x) + µc)φKcj (x)φKci (x)dx

fKci =
∫
K

csatφ
K
ci

(x)dx

mK
ui,j

=
∫
K

φKuj(x)φKui(x)dx

aKuf i,j
=

∫
K

εu∇φKuj(x) · ∇φKui(x)−
(
χ(c)∇c(t, x)φKuj(x)

)
· ∇φKui(x)dx

rKi,j =
∫
K

f(x)φKuj(x)φKui(x)dx

(4.35)

4.6.2 The full discretization

In order to discretize the problem in time, a θ-scheme is considered to solve the equation

for c. Concerning uf , a splitting approach is considered where the diffusion and advection

part is also solved using a θ-scheme, while the compartment transfer is solved using a non-

standard approach. Since the trapping i.e. the transfer from uf to uc happens very fast, using

the non-standard approach [179, 7], which replicates qualitatively correctly the dynamics of

the equation, has an advantage as it allows to take large values for the trapping rate r.

To simplify the notations, we will omit the index K in the following, but it is assumed

that we are dealing with the problem restricted to an element K. Assuming that Cn, Ufn
and Ucn are known, we present below the algorithm to compute Cn+1, Ufn+1 and Ucn+1 :

• Cn+1 is computed using the θ-scheme, by solving

McĊn ≈Mc
Cn+1−Cn

∆t
= Fc −Ac (θCn+1 + (1− θ)Cn) (4.36)

If θ = 0, the scheme is fully explicit, while if θ = 1, the scheme is fully implicit. The

case θ = 1/2 corresponds to the Crank-Nicolson scheme.
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• Ufn+1 is computed using a splitting approach as in [80]:

– First we use the θ-scheme to solve the diffusion and the advection parts:

MuU̇fn ≈Mu
Ufn+1

−Ufn
∆t

= θAuc,n+1Ufn+1 − (1− θ)Auc,nUfn (4.37)

Denote Uf,1 the obtained solution.

– We solve MuU̇f = −RUf,1 inside the traps with a non-standard scheme:

MuU̇fn ≈Mu
Ufn+1

−Ufn
φ(∆t)

= −RUfn,1

⇔ MuUfn+1 = MuUfn − φ(∆t)RUfn,1
(4.38)

with φ(∆t) = 1−exp(−Q∆t)
Q

, where Q ≥ max{|λ|, λ ∈ sp(M−1
u R)}.

• Ucn+1 is computed using the non-standard scheme:

MuU̇cn ≈Mu
Ucn+1−Ucn

φ(∆t)
= RUfn,1

⇔ MuUcn+1 = MuUcn + φ(∆t)RUfn,1.
(4.39)

We can remark that the renormalization φ(∆t) of the denominator of the first differences

in (4.38) and in (4.39) is such that in the case of one equation, the scheme is exact.

4.7 Numerical simulations

Software such as Freefem [123] are available for solving PDEs using the finite element

methods, and offer a wide range of possibilities in terms of numerical integration methods,

methods for solving linear systems, mesh generation, or choice for the space of approximation.

However, such software may become difficult to use when dealing with parameter identifi-

cation. Our code is implemented in Scilab [219] and parameter identification is performed

by solving a minimization problem using the built-in function, lsqrsolve as described in the

following section. The graphical representation, for its part, its done in Matlab [171], using

the function tricontour, developed by D.C. Hanselman, which allows to represent the con-

tours of a solution computed on a triangular mesh. The computations were done on a 64-bit

operating system with a Intel core i7 processor and 48 gigabyte ram. In this section, we

present numerical simulations obtained by solving problem (4.2)-(4.10) using the numerical

method described in the previous section. We use a first order polynomial finite element

approximation for c, uf and uc, and θ = 1/2 in the θ-scheme.
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4.7.1 Description of the experiments and mesh generation

Our experiments are done over a domain rescaled to [−1, 1]×[−1, 1]. Software, like GMSH

[105] or Freefem [123] are useful to perform triangulations of the domain and thus generate the

(unstructured) mesh. In our experiments, the mesh is generated using Freefem as it allowed

us to validate our Scilab code by comparing our solutions with the solutions generated by

Freefem. In these simulations, we focus on the dynamics around the traps. For this reason,

we use a non-uniform mesh which is refined around the traps. To do so using Freefem, the

number of nodes on a closed curve around each trap is specified. For our experiments, we

prescribed to have 40 vertices on a circle with a radius of 0.05 from the centre of the trap,

while the radius of the trap is set to RT = 0.01. The refinement of the mesh on the rest of

the domain is done by defining the number of vertices wanted on the outer borders of the

domain. Figure 4.2 shows the mesh generated by Freefem used in our numerical experiments

considering one trap at the centre and Nborders = 30 vertices on the borders of the domain.

The choice of the parameter values as well as the description of the parameters used in the

following experiments are presented in Tables 4.1 (on page 131) and 4.2 (on page 133).

Figure 4.2: Mesh used in the simulation generated by Freefem using 30 nodes on the borders

of the domain, and 40 nodes close to the trap. This mesh contains 3451 vertices with a

maximum element size of 0.1029 (i.e. maximum distance between two vertices of a triangle).

4.7.2 Numerical simulation for the attractant

In this section, we present numerical simulations of the diffusion of the chemical attractant

released at a constant rate from a source located inside the traps. The release rate is defined

via (4.1), where Λ is given by (4.40),

Λ(z) =

{
(1 + cos(π z

RT
))λmax

2
if z < RT ,

0 otherwise.
(4.40)
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with λmax being the maximum of λ assumed at the centre of the traps. The values of the

parameters used for the simulations are presented in Table 4.1.

Parameter Value Description

εc 0.003 diffusion coefficient of the chemical

µc 0.3 vanishing rate of the chemical

csat 1 saturation constant for the chemical

λmax 1 maximum production of the chemical

Table 4.1: Description of the parameters and (personal) choice of values used in the simula-

tions for the attractant.

Recall that in (4.2)-(4.10), the dynamics of the chemical are independent from the dy-

namics of the insects. Therefore, c(t, x) can be solved independently, and the solution can

be used at each time step to solve uf (t, x) and uc(t, x). We give a particular attention to the

evolution of the area where the concentration of the chemical is above the threshold cmin, as

this defines the area where the insects will be attracted to the centre of the trap, i.e. towards

the source of the attractant. The evolution of the area of attraction in time is represented

in Figure 4.3 for the first five days following the setting of the traps. Two configurations of

traps are represented, a case with a single trap at the centre of the domain, and a case using

five traps, in the configuration of setting C of [81]. The red line with the “Stat” label defines

the area of attraction when c(t, x) is at its stationary state cstat defined in (4.24). We denote

by cstat the stationary solution, that is, when ∂c
∂t

= 0.

Figure 4.3: Evolution of the area of attraction in time, using one trap on the left, and five

traps on the right.

Figure 4.4 represents the spatial distribution of the concentration of the chemical at-

tractant at its stationary state. In particular, the level line corresponding to the threshold

concentration cmin is highlighted in red to identify the area where the attraction takes place

for the two trap settings.
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Figure 4.4: Level lines of the distribution of cstat, using one trap on the left, and five traps

on the right.

4.7.3 Numerical simulation for the insects

In order to carry out numerical simulations of the dynamics of the free insects uf (t, x), we

first give explicit formulations of the chemotaxis function, χ, as well as the capture function,

f , used in these simulations. We consider the function χ in the following form, which is

consistent with its properties discussed in section 4.3.2:

χ(c) =





0 if c < cmin

α
β2

( c−cminβ )
2

1+( c−cminβ )
2 if cmin ≤ c.

(4.41)

where α and β belong to R+. Here the parameter α gives the upper bound of χ(c), that is,

the maximal possible response to the gradient of c, while β determines the speed of transition

from no response (χ(c) = 0) to near maximum response (e.g. χ(c) ≥ 90% of α). Similarly,

taking into account its properties discussed in section 4.3.2, we consider the transfer rate f

from the free compartment, uf , to the captured compartment, uc, as follows:

f(x) = r

Ntraps∑

T=1

F (‖x− xT‖2), (4.42)

with

F (z) =





1 0 ≤ z ≤ RT − ε
e

1+ ε2

(z−RT+ε)2−ε2 RT − ε < z < RT

0 z ≥ RT ,

(4.43)

Indeed, one can see from (4.42)-(4.43) that the transfer occurs only inside the traps, and the

capture rate reaches its maximum value, r, in a radius of RT − ε around the centre of the

traps. Between RT − ε and RT , we observe that as z approaches RT − ε, F (z) approaches 1,

and as z approaches RT , F (z) approaches 0.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Simulations and parameter estimating of a trap-insect model using a finite element approach133

We show numerical simulations assuming that the initial population is distributed ho-

mogeneously as well as heterogeneously (in patches). We consider both trap settings of the

previous subsection. The values of the parameters related to the dynamics of the insects used

in the simulations are presented in Table 4.2.

Parameter Value Description

εu 0.04 diffusion coefficient of the insect

cmin 10−3 minimum concentration of the chemical

that can be sent by the insects

α 20 chemotaxis coefficient

β 0.001 chemotaxis coefficient

r 1000 trapping rate

Table 4.2: Description of the parameters and (personal) choice of values used in the simula-

tions for the insects.

4.7.3.1 Using u0 homogeneous

Here, the initial population distribution uf (0, x) is assumed to be homogeneous over the

domain. The evolution of the distribution of the free insects responding to the attractive

traps, after one, three and 5 days are represented in Figure 4.5, together with the evolution

of the area of attraction. Similarly, Figure 4.6, shows the dynamics of the insects when c(t, x)

is assumed to be at its stationary state. In these figures, the attraction of the insects towards

the centre of the traps is clearly visible, as we can observe a “sink” effect where the traps are

located.

4.7.3.2 Using a heterogeneous distribution for u0

Assuming the initial insect population to be initially homogeneously distributed over the

domain is not very realistic. In this section, we assume that at t = 0, the insects are

distributed in patches. We consider two initial distributions, represented in Figure 4.7. The

first initial distribution consists of two patches with different densities: we assume that the

density in the top-left circle patch is three times higher than in the bottom-right square

patch. The second one consists of five patches, with different densities. The relative densities

between the patches are indicated in brackets.

The numerical simulations using the two trap settings are represented in Figures 4.8 to

4.11 together with the area where the attraction occurs. The CPU time, i.e. the amount of
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Figure 4.5: Evolution of the distribution of uf using c(t, x) non-stationary on a homogeneous

initial distribution, using a single trap in the first row and five traps in the second row. The

red dotted line delimits the attraction area where c > cmin.

Figure 4.6: Evolution of the distribution of uf using c(t, x) = cstat stationary on a homoge-

neous initial distribution, using a single trap in the first row and five traps in the second row.

The red dotted line delimits the attraction area where cstat > cmin.

time needed for the central processing unit to execute the instructions, allows to quantify

the computational resources needed to solve the problem. Table 4.3 provides the CPU times

required to perform the simulations of uf over a period of 5 days, using an homogeneous

initial distribution as well as the heterogeneous distributions represented in Figure 4.7, using

1 and 5 traps. In the upper part of the table, uf was computed using the stationary solution,
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Figure 4.7: Heterogeneous initial distribution uf (0, x) distributed in two patches (left) and

five patches (right). The numbers in brackets give the relative density of insects in each

patch.

cstat, of c, whereas in the bottom part, uf was solved using the time-dependant solution

for c. In fact, note that in practice, since c is independent from the insects, it is solved

independently prior to the computation of uf . The numerical results of c at each time step

is saved and used accordingly in the computation of uf . Thus, the results in the bottom

section of Table 4.3, do not reflect the computational time required to solve c, but rather

the time needed to update the advection part of the finite element matrix used to solve uf
at each time step. In Figures 4.8 and 4.9, the chemical attractant varies in time, whereas, in

Figures 4.10 and 4.11, the simulations are done assuming that the chemical attractant is at

its stationary state.

u0 1 Trap 5 Traps

CPU uf (t, x) using cstat homogeneous 45 96

heterogeneous (2 patch) 44 97

heterogeneous (5 patch) 45 109

CPU uf (t, x) using c(t, x) homogeneous 2291 4369

heterogeneous (2 patch) 2350 4505

heterogeneous (5 patch) 2314 4536

Table 4.3: CPU times for the numerical simulations over 5 days with dt = 0.1, and the mesh

with Nborder = 30

.

Table 4.3 reveals that the initial distribution uf (0, x) has no significant effect on the

computation time, however, the CPU time increases as the number of trap increases. Also,

the CPU time is considerably increased (by a factor of 50), when uf is solved coupled with

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Simulations and parameter estimating of a trap-insect model using a finite element approach136

Figure 4.8: Evolution of the distribution of uf using c(t, x) non-stationary from a initial

distribution in two patches, using a single trap in the first row and five traps in the second

row. The red dotted line delimits the attraction area where c > cmin. (Nborder = 30)

Figure 4.9: Evolution of the distribution of uf using c(t, x) non-stationary from a initial

distribution in five patches, using a single trap in the first row and five traps in the second

row. The red dotted line delimits the attraction area where c > cmin. (Nborder = 30)

c(t, x), instead of cstat which is constant in time. This difference in CPU times is due to the

fact that when uf is solved with cstat, the finite element matrix is constant in time, therefore

it is constructed only once, whereas with c(t, x), the advection part of the finite element

matrix used to solve uf has to be constructed at each time step. These results dealing

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. Simulations and parameter estimating of a trap-insect model using a finite element approach137

Figure 4.10: Evolution of the distribution of uf using c(t, x) = cstat stationary from a initial

distribution in two patches, using a single trap in the first row and five traps in the second

row. The red dotted line delimits the attraction area where c > cmin. (Nborder = 30)

Figure 4.11: Evolution of the distribution of uf using c(t, x) = cstat stationary from a initial

distribution in five patches, using a single trap in the first row and five traps in the second

row. The red dotted line delimits the attraction area where c > cmin. (Nborder = 30)

with computational cost motivate our experiment protocol in the application of the following

section when dealing with the estimation of the initial insect population density. Animated

graphics are also available at http://linus.up.ac.za/academic/maths/PI/index.html.
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4.8 Application to parameter identification

4.8.1 The parameter identification protocol

The objective of this mathematical model with respect to field experiments is to establish

the presence of insect population and its density. In the setting of the model (4.2)-(4.10)

this is u0-the space distribution of insects at time t = 0 when the traps are put in place.

In previous work, the initial population density of insects was estimated assuming that the

population was homogeneously distributed [81]. Here, our goal is to estimate the size of the

population UΩ =
∫
Ω

uf (0, x)dx as we consider a non-homogeneous distribution as well.

As usual for complex models as the model (4.2)-(4.10), in addition to the parameter of

interest, that is u0, there are other parameters with unknown values. Here we attempt to

design a feasible protocol to estimate all unknown parameters including u0. In doing so

we need to note first that the solution of (4.2)-(4.10) is not observable in the field. The

observable output is the set of the trap counts in all traps at any given time. More precisely,

if the observation is at times t1, t2, . . . , tK , K ∈ N, the observed quantities are

tk∫

t=0

∫

Tj

uc(t, x)dxdt, j = 1, . . . , Ntraps, k = 1, . . . , K. (4.44)

Let us assume that these numbers are arranged in a vector Ψ =
(
Ψ1, . . . ,ΨNtraps×K

)
.

Naturally, with the traps T1, . . . , TNtraps and the observation times t1, t2, . . . , tK being fixed,

the value of Ψ depends on the value of the model parameters. Using p = (p1, . . . , pn) as

a vector of unknown parameters (it can vary from one experiment to another) we have

Ψ = Ψ(p). Denote by Ψ̂ the values of Ψ observed in a particular field experiment. Then the

value of p is identified by solving the problem

min
p∈(P )

J(p) (4.45)

where

J(p) = ‖Ψ(p)− Ψ̂‖2
2 (4.46)

and P is a compact subset of Rn to which p belongs.

While some of the parameters can be obtained with lab experiments, like the minimum

threshold cmin which could be obtained with flight tunnels experiments, others are not avail-

able and need to be estimated together with UΩ. Thus, here, besides UΩ, we shall also

estimate the diffusion capacity of the insects, εu, and the parameters of function χ, i.e. α
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and β, related to the strength of the attraction of the traps. It is worth mentioning that,

on the one hand, α and β are parameters describing the correlation between the attractive

potential of the traps and the behaviour of the insects, thus we will refer to these parameters

as the “trap-parameters”. εu on the other hand is a specific characteristic of the insects

and is not related to the traps. Therefore εu can be estimated independently from the trap

parameters. We propose a chain of experiments which allows the successive estimation of the

unknown parameters of the model in three steps (Figure 4.12).

Figure 4.12: Steps of the experimental chain to estimate UΩ

The first step consists in estimating εu, using MRR experiment [54] and non-attractive

traps such that u0 is known for all x in Ω and α and β are not needed. It is worth mentioning

that if we assume that the traps are not attractive, the problem is reduced to a diffusion-

reaction problem, and other approaches may be considered to identify the parameters of such

problems. For instance, in [182] the authors reduce such a system of PDEs to a linear system

of ODEs with respect to the parameters to identify, allowing parameter identification by

means of linear least square procedure. The second step deals with the estimation of α and

β. Again, we propose a MRR experiment with attractive traps, such that u0 is known for all

x in Ω. In this setting, we choose to release the marked insects after the installation of the

traps, such that c(t, x) is at its stationary state. Finally, UΩ is estimated using the values of

εu, α and β estimated in the previous steps. Since the dynamics of the insects change when

the attractive traps are set, it is necessary to consider the insects’ dynamics along with the

spread and concentration of the chemical attractant in time.

4.8.2 Description of the numerical experiments and simulations

The global minimisation problem (4.45)-(4.46) is solved iteratively using a random multi-

start approach [260] over a set of initial values of p ∈ P . Function J in the global minimization

problem is not available in explicit form. For any given value p of the parameters, J(p) is

computed as follows:
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1. problem (4.2)-(4.10) is solved via the finite element method as presented in section 4.6

and section 4.7,

2. the integrals (4.44) which gives Ψ(p) are evaluated,

3. the norm in (4.46) is computed.

In connection with part 2 above, we note that the area Tj of the jth trap is not exactly

represented in terms of the triangulation T (Ω). We approximate the integral with the

sum of integrals over all triangles intersecting Tj. This approach also preserves the prop-

erty
∫
Ω

(uf (t, x) + uc(t, x)) dx =
∫
Ω

u0(x)dx, that is we have
∫
Ω

(
uhf (tn, x) + uhc (tn, x)

)
dx =

∫
Ω

uh0(x)dx.

For each randomly selected starting value p0 ∈ P , a local minimum is found using the non-

linear least square Scilab solver lsqrsolve which performs the iterative Levenberg-Marquardt

algorithm [169]. The solution of (4.45)-(4.46) is identified as the parameter value correspond-

ing to the smallest local minimum. When several local minima are found, the difference

between the values of the objective function of the global minimum and of the next smaller

minimum, gives an indication on the robustness of the method and the reliability of the

estimate.

We test the proposed protocol and its numerical implementation on simulated data, using a

given parameter value p̄ ∈ P over a period of three or five days depending on the experiment.

In the steps of identification of εu, α and β, random noise is added to the daily capture data,

in order to take into account inaccuracy in the data. The noise is a random value selected

from a uniform distribution over an interval [−a, a], a ∈ R. Here we choose a = 5. As for

the estimation of UΩ, the field data is simulated using particular distributions of u0 (Figure

4.20), with UΩ = 20, 000, but the estimations are computed using different distributions of

u0 (Figure 4.21), also with UΩ = 20, 000. Thus, the data reflects the uncertainty in the initial

distribution of the insects.

4.8.3 Results and discussion

4.8.3.1 STEP 1: Identification of εu

In order to estimate the diffusion coefficient of the insects, εu, we propose a MRR ex-

periment using a non-attractive trap, e.g. a sticky trap. Therefore, the initial density and

distribution, u0, of insects released is known. Further, in the case of non attractive traps,

χ = 0 so that εu is the only unknown parameters. Here we consider releases of insects at
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three distances from the trap, 10 meters, 30 meters and 50 meters, as presented in Figure

4.13.

Figure 4.13: Position of the releases relatively to the position of the trap which is represented

with a red dot.

Different size of releases, from 500 insects to 8000 insects and observation periods of three

and five days were considered. The data is simulated by using random noise as described

in section 4.8.2 replicated three or nine times. While solving the minimization problem, a

single local minimum was found irrespectively of the starting value used for the algorithm,

which suggests that the identifiability of the parameter is satisfied. In other words, there is

uniqueness of the estimator of εu. The simulated cumulative and daily trap counts using a

release of 1000 insects are represented in Figure 4.14 considering the different distances from

the traps. Note that for other sizes of release similar curve profiles were obtained, differing

only by the number of insects captured, thus they are not represented here. From this figure,

we notice that the distance plays an important role in the capture dynamics of the insects.

Indeed at 10 meters, a large number are captured after one day, while the amount of daily

captures decreases afterwards. At 50 meters on the other hand, less insects are captured,

and the maximum daily capture is observed after some time, two days here.

Figure 4.14: Cumulative (left) and daily (right) trap counts obtained for a release of 1000

insects at distances of 10, 30 and 50 meters from the centre of the trap, using non attractive

traps.
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Release Period repli- Distance to the trap

size cates 10 m 30 m 50 m

500 3 days 3 0.05043 (26.08%) 0.02553 (36.16%) 0.04801 (20.01%)

9 0.03737 (6.57%) 0.03319 (17.02%) 0.03299 (17.52%)

5 days 3 0.04382 (9.56%) 0.02290 (42.74%) 0.05174 (29.36%)

9 0.03656 (8.59%) 0.03340 (16.49%) 0.03097 (22.57%)

1000 3 days 3 0.04061 (1.51%) 0.04060 (1.50%) 0.03443 (13.92%)

9 0.04045 (1.11%) 0.03855 (3.62%) 0.04463 (11.57%)

5 days 3 0.03950 (1.26%) 0.03995 (5.80%) 0.03499 (12.53%)

9 0.04055 (1.37%) 0.03826 (4.35%) 0.04556 (13.90%)

2000 3 days 3 0.03956 (1.13%) 0.04552 (13.79%) 0.03884 (2.90%)

9 0.04052 (1.29%) 0.04126 (3.16%) 0.04266 (6.62%)

5 days 3 0.03957 (1.08%) 0.04212 (5.29%) 0.04015 (0.38%)

9 0.04020 (0.50%) 0.04010 (0.22%) 0.04351 (8.78%)

4000 3 days 3 0.03984 (0.4%) 0.04023 (0.57%) 0.04020 (0.50%)

9 0.04003 (0.08%) 0.03936 (1.60%) 0.04082 (2.05%)

5 days 3 0.03982 (0.46%) 0.04007 (0.18%) 0.03947 (1.32%)

9 0.04010 (0.25%) 0.03977 (0.57%) 0.04109 (2.73%)

8000 3 days 3 0.03981 (0.48%) 0.03901 (2.46%) 0.04019 (0.48%)

9 0.04009 (0.22%) 0.04001 (0.03%) 0.04041 (1.02%)

5 days 3 0.03977 (0.58%) 0.03902 (2.44%) 0.04002 (0.04%)

9 0.04010 (0.25%) 0.04008 (0.20%) 0.04054 (1.35%)

Table 4.4: Estimate of εu along with its relative error for using one release of different size

over 3-days and 5-days periods, using noisy data averaged over n replicates using a mesh

with Nborder = 30. (with cumulative counts).

The estimated values of εu, with their relative errors for the different combinations of size

and position of the release, with period of observation and number of replicates, are presented

in Table 4.4 and Figure 4.15. The results show that the size of the release has a significant

effect on the accuracy of the estimation of εu. Indeed, Figure 4.15 shows that the relative

error of the estimate decreases as the size of the release increases. For releases of 4000 and

8000 the relative error is below five percent. Moreover, the accuracy of the estimation is

affected by the distance of the release to the trap, more precisely, farther releases generate

higher relative error in the estimate of εu, particularly for small releases. For larger size

of release, the distance is not a determining factor for accuracy of the estimate. Further,

these results show that increasing the length of the observation period does not contribute

to better accuracy, on the opposite, adding days of observation, from three days to five days,
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Figure 4.15: Relative error of the estimation of εu, Table 4.4 using n = 9 replicates

produce higher errors in general. Finally, Table 4.4 highlights the importance of replicates

when doing the experiments. In particular, small insect populations are more sensitive to

noise leading to a large uncertainty in the estimations, e.g. relative errors up to 36.16% are

found when considering only three replicates with a population of only 500 insects.

4.8.3.2 STEP 2: Identification of α and β

In this step we proceed to the estimation of the trap parameters α and β which describe

the attraction of the trap. As for step 1, MRR experiments are considered using attractive

traps. Thus, u0 is known and after step 1, so is an estimation of the value of εu. Following

a similar protocol as in step 1, α and β are estimated using sizes of release varying from

500 to 8000 insects at distances of 10, 30 and 50 meters from the trap, over observation

periods of three and five days. The positions of the releases are represented in Figure 4.16

together with the level lines of the distribution of the chemical attractant. In particular, the

threshold level line cmin is represented by the red line. The data is simulated by using random

noise as described in section 4.8.2 replicated nine times. Here we consider the estimation of

parameters α and β estimated independently, as well as simultaneously.

The simulated cumulative and daily trap counts using a release of 1000 insects at distances

of 10, 30 and 50 meters are represented in Figure 4.17. Note that similar curves were obtained

for other sizes of release differing by the number of insects captured, and therefore are not

represented here. We may note that the number of captured insects is substantially larger

(here, roughly by a factor of 3), when using attractive traps (Figure 4.17), compared to non-

attractive traps (Figure 4.14). Table 4.5 and Table 4.6 gather the results of the individual

estimations of α and β, respectively, that is, assuming that the other parameter is known.
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Figure 4.16: Representation of position of the releases relatively to the position of the trap

which is represented with a red dot together with the level lines of the distribution of the

chemical attractant. The level line cmin is represented by the red line.

Figure 4.17: Cumulative (left) and daily (right) trap counts obtained for a release of 1000

insects at distances of 10, 30 and 50 meters from the centre of the trap, using c = cstat.

The presented results are computed for varying size of the release, its distance to the trap as

well as the period of collection of trap data. Graphical representation of the results in Table

4.5 and Table 4.6 is given in Figure 4.18.

The accuracy of the parameter estimation improves with the increase of size of the release

and period of capture of data. One can further observe that the accuracy of the estimation

is improved with proximity of the release to the trap which reflects the positive impact of

the number of captured insects (see also Figure 4.14).

As expected, the errors of approximation are larger compared to the case of estimating

single parameter at a time. The decreasing trend of the errors with respect to the size of

the release is similarly well pronounced. One cannot observe a definite trend with respect

to distance from the trap and period of observation indicating that the family of functions

χ possibly should be parametrized in a different way. However, it is clear from Figure 4.19

that when α and β are simultaneously estimated (compared to their individual estimation),

a larger release size is required for similar level of accuracy.
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Release Period Distance to the trap

size 10 m 30 m 50 m

500 3 days 20.0464 (0.23%) 20.1068 (0.53%) 20.2516 (1.25%)

5 days 20.0030 (0.01%) 19.9976 (0.01%) 19.9688 (0.16%)

1000 3 days 20.0232 (0.12%) 20.0533 (0.27%) 20.1252 (0.63%)

5 days 20.0015 (< 10−2%) 19.9988 (< 10−2%) 19.9844 (0.08%)

2000 3 days 20.0116 (0.06%) 20.0266 (0.13%) 20.0624 (0.31%)

5 days 20.0007 (< 10−2%) 19.9994 (< 10−2%) 19.9922 (0.04%)

4000 3 days 20.0058 (0.03%) 20.0133 (0.07%) 20.0312 (0.16%)

5 days 20.0004 (< 10−2%) 19.9997 (< 10−2%) 19.9961 (0.02%)

8000 3 days 20.0029 (0.01%) 20.0067 (0.03%) 20.0156 (0.08%)

5 days 20.0002 (< 10−2%) 19.9999 (< 10−2%) 19.9981 (< 10−2%)

Table 4.5: Identification of α. Average CPU time for the estimation of 1 local minimum,

using 3 days: 370, using 5 days: 604.

Release Period Distance to the trap

size 10 m 30 m 50 m

500 3 days 0.0009943 (0.57%) 0.0009872 (1.28%) 0.0009697 (3.03%)

5 days 0.0009997 (0.03%) 0.0010005 (0.05%) 0.0010042 (0.42%)

1000 3 days 0.0009971 (0.29%) 0.0009360 (0.64%) 0.0009848 (1.52%)

5 days 0.0009998 (0.02%) 0.0010002 (0.02%) 0.0010021 (0.21%)

2000 3 days 0.0009986 (0.14%) 0.0009968 (0.32%) 0.0009924 (0.76%)

5 days 0.0009999 (< 10−2%) 0.0010001 (0.01%) 0.0010011 (0.11%)

4000 3 days 0.0009993 (0.07%) 0.0009984 (0.16%) 0.0009962 (0.38%)

5 days 0.0010000 (< 10−2%) 0.0010001 (< 10−2%) 0.0010005 (0.05%)

8000 3 days 0.0009996 (0.04%) 0.0009992 (0.08%) 0.0009981 (0.19%)

5 days 0.0010000 (< 10−2%) 0.0010000 (< 10−2%) 0.0010003 (0.03%)

Table 4.6: Identification of β. Average CPU time for the estimation of 1 local minimum,

using 3 days: 407, using 5 days: 619.

4.8.3.3 STEP 3: Identification of UΩ

At this stage, UΩ, the initial population size, is the only remaining parameter to be

estimated since the estimations of εu, α and β are can be obtained from the previous steps.

However, for the sake of testing the estimation of UΩ and avoid bias from the errors of the

previous estimates, we use the real values of εu, α and β (Table 4.2, page 133). The response

of the insects to the spread of the chemical attractant is governed by the coupled model
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Figure 4.18: Relative error of the estimation of α (left) and β (right), when the two parameters

are estimated independently.

Release size Distance α̃ β̃

500 10 m 18.3877 (8.06%) 0.0007848 (21.52%)

30 m 19.0532 (4.73%) 0.0008714 (12.86%)

50 m 19.8727 (0.64%) 0.0009543 (4.57%)

1000 10 m 19.1151 (4.42%) 0.0008848 (11.52%)

30 m 19.5047 (2.48%) 0.0009336 (6.64%)

50 m 19.9358 (0.32%) 0.0009770 (2.30%)

2000 10 m 19.5348 (2.33%) 0.0009403 (5.97%)

30 m 19.7465 (1.27%) 0.0009662 (3.38%)

50 m 19.9677 (0.16%) 0.0009885 (1.15%)

4000 10 m 19.7613 (1.19%) 0.0009696 (3.04%)

30 m 19.8717 (0.64%) 0.0009830 (1.70%)

50 m 19.9838 (0.08%) 0.0009942 (0.58%)

8000 10 m 19.8791 (0.60%) 0.0009846 (1.54%)

30 m 19.9355 (0.32%) 0.0009915 (0.85%)

50 m 19.9919 (0.04%) 0.0009971 (0.29%)

Table 4.7: Estimations of α and β, when estimated simultaneously, for a period of 3 days.

Average CPU time for the estimation of 1 local minimum: 8383.

(4.2)-(4.10). Naturally here, c(t, x) is assumed non-stationary. In a previous work [81], the

population was assumed to be homogeneously distributed over the domain while performing

the parameter identification of the initial population density. Here, as mentioned in section

4.8.2, the field data is simulated using three particular distributions of u0 (Figure 4.20): (1)

a homogeneous distribution, (2) a “aligned orchard” distribution and (3) a “isolated trees”

distribution.
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Release size Distance α̃ β̃

500 10 m 22.7231 (13.62%) 0.0013101 (31.01%)

30 m 22.4039 (12.02%) 0.0012679 (26.79%)

50 m 26.0284 (30.14%) 0.0016303 (63.03%)

1000 10 m 21.1884 (5.94%) 0.0011410 (14.10%)

30 m 21.0901 (5.45%) 0.0011254 (12.54%)

50 m 22.4223 (12.11%) 0.0012744 (27.44%)

2000 10 m 20.5588 (2.79%) 0.0010675 (6.75%)

30 m 20.5211 (2.61%) 0.0010608 (6.08%)

50 m 21.1059 (5.53%) 0.0011294 (12.94%)

4000 10 m 20.2714 (1.36%) 0.0010331 (3.31%)

30 m 20.2549 (1.27%) 0.0013000 (3.00%)

50 m 20.5302 (2.65%) 0.0010630 (6.30%)

8000 10 m 20.1338 (6.69%) 0.00101064 (1.64%)

30 m 20.1261 (6.31%) 0.0010149 (1.49%)

50 m 20.2587 (1.30%) 0.0010311 (3.11%)

Table 4.8: Identification of α and β simultaneously for a period of 5 days. Average CPU

time for the estimation of 1 local minimum: 10808.

Figure 4.19: Relative error of the estimation of α and β, when the two parameters are

estimated simultaneously.

However, the estimation of UΩ is computed using different distributions of u0, based on

some ecological and entomological knowledge on the insects. These distributions are repre-

sented in Figure 4.21 and consist of a homogeneous distribution (A), a four-patch distribution

(B), a sixteen-patch distribution (C) similar to (B) where each patch is subdivided into four

patchs. Distributions (D1) and (D2) where insects are initially distributed in the four cor-

ners of the domain, and its complementary distribution where the insects are distributed in

a cross-shape manner.
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Figure 4.20: Population distribution used to generate trap data

Figure 4.21: Initial population distributions used to identify UΩ

The profile curves of the cumulative and daily trap counts are are represented in Figure

4.22, over a period of five days, and assuming that the initial population size is UΩ = 20, 000

insects on the domain. The plain lines represent the field data generated using the distribution

(1)-(3), while the trap counts using the initial distribution used for the estimations, (A)-(D2),

are represented with the dotted lines. These graphs highlight the importance of heterogeneity

of the distribution of the insects over the domain as different initial distributions exhibit

different trap count profiles. Indeed, if the trap is located near an area where the abundance

of the insects is high, such as for the case (D2), the traps have higher capture rates during

the first days, whereas if the insects are initially far from the trap, like for (3),(A),(B),(C)

and (D1), the capture rate is low at first, and increases progressively over the five days of

capture.

The estimation of UΩ is computed assuming that the real size of the population is UΩ =

20, 000, and using three days of capture data, as well as five days. The results are recorded in

Table 4.9 (resp. Table 4.10), for field data computed using the distributions (1) to (3) (Figure
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Figure 4.22: Cumulative and daily trap counts obtained with the initial distribution used to

generate the data, (1)-(3) (represented by the plain lines), and with the initial distributions

used to estimate the initial population size, (A)-(D1) (represented by the dotted lines), using

UΩ = 20, 000.

Data distributions
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(A) 20, 000 (0%) 21, 178 (5.89%) 16, 109 (19.46%)

(B) 26, 914 (34.57%) 28, 506 (42.53%) 22, 058 (10.29%)

(C) 25, 962 (29.81%) 27, 498 (37.49%) 21, 244 (6.22%)

(D1) 41, 990 (109.9%) 44, 466 (122.3%) 34, 644 (73.22%)

(D2) 11, 639 (41.80%) 12, 324 (38.38%) 9, 296 (53.52%)

Table 4.9: Estimation of UΩ using 3 days, with ŪΩ = 20, 000. The columns indicate the initial

distribution of the insects used to generate the data, (1)-(3), while the lines correspond

to the guessed initial distribution of the population used when performing the parameter

identification of UΩ. Average CPU time for the estimation of one local minimum: 27896.
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(A) 20, 000 (0.00%) 21, 575 (7.87%) 15, 681 (21.60%)

(B) 28, 261 (41.31%) 30, 487 (52.44%) 22, 705 (13.52%)

(C) 26, 957 (34.78%) 29, 080 (45.40%) 21, 603 (8.02%)

(D1) 49, 655 (148.27%) 53, 560 (167.80%) 40, 141 (100.71%)

(D2) 11, 044 (44.78%) 11, 913 (40.43%) 8, 585 (57.07%)

Table 4.10: Estimation of UΩ using 5 days, with ŪΩ = 20, 000. The columns indicate the

initial distribution of the insects used to generate the data, (1)-(3), while the lines correspond

to the guessed initial distribution of the population used when performing the parameter

identification of UΩ. Average CPU time for the estimation of one local minimum: 46767.
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4.20), and estimating UΩ the initial distributions (A) to (D2) (Figure 4.21) using a the three

days (resp. five days). As expected, the estimation using experiment (1)-(A) produces the

correct value of UΩ. Then, we have that if the field data is generated using (2) the size of

the population is better estimated using the homogeneous distribution (A) rather than any

of the other distributions. As for field data generated using (3), the estimations are better as

the initial distribution is closer to the real distribution. More precisely, the best distribution

to estimate UΩ when the field data is generated using (3) is distribution (C) which provides

an estimate 6.22% relative error for five days of data. These estimations show clearly the

influence of the initial distribution of the population in the global minimization searching

algorithm. Indeed a bad choice for the distribution of u0 leads to very inaccurate estimation

of the population size. These results suggest that a reliable estimate the population size

depends on the knowledge and understanding of the ecology of the insects. In other words,

ecological knowledge, such as interactions between the insect and the vegetation, as well

as entomological knowledge on the insect is crucial to obtain an accurate estimate of the

population size.

Further, the results of Table 4.9 and Table 4.10 suggest that considering a period of five

days produces more accurate estimations. However, if the initial distribution used for the

estimation is close enough to the real distribution, a period of three days would allow accurate

estimations while using less computational resources. We can remark that the average CPU

time required to compute one estimation of UΩ, using three days is 27896, while it increases

to 46767 using five days of observation. As expected from the results on the computational

costs in subsection 4.7.3.2, we note that the CPU times are considerably increased when c

is used compared to cstat. Indeed we mentioned that when the solution is computed with c,

the finite element matrix used to solve uf has to be computed at each time step. Since the

parameter identification process consists of computing the solutions iteratively with many

starting values, the estimation of parameters using c is considerably more computational

intensive than when cstat is used. The average CPU time for the computation of a single

local minimum for the estimation of UΩ using five days of data was 46767, while it was 604

(resp. 619) for the independent estimation of α (resp. β), that is more than 75 times more

computational costly.

4.9 Conclusion

When dealing with pest or vector control, estimating the insect population density and

distribution is one of the main concerns to plan efficient field intervention. Traps are usually

used to collect information in order to estimate the population. The present work aims
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to estimate insect population size using attractive traps. In that matter, we use a model of

coupled partial differential equations which relate the spread of a chemical attractant released

from the traps to the dynamics of the insects responding to it via a chemotaxis process.

This model consists of a system of advection-diffusion-reaction equations whose solution is

computed numerically using finite element approach. Hence, the problem is considered in its

variational form. In this context, we ensure the well-posedness of the variational problem,

and provide theoretical qualitative results on the solutions.

Numerical simulations are done on a domain discretized by triangular elements, refined

around the traps, generated by the software Freefem [123]. Simulations of the spread of the

chemical attractant allow us to follow the evolution of the active area of the trap, until c(t, x)

reached its stable stationary state cstat. Then, the dynamics of insects are simulated using

the non-stationary state of c(t, x), as well as its stationary state, cstat, on homogeneous and

patchy initial distributions of the population u0.

This model is applied to the problem of identifying parameter values of the model, among

which the population size, UΩ over the domain, but also the diffusion rate of the insects,

εu, and trap-related parameters involved in the chemotaxis process. For this purpose, we

proposed a protocol chain in three steps which enable the identification of each of these

parameters using a single trap. First, εu is estimated using MRR experiments with non-

attractive traps. Then, using the value of εu, attractive traps are used with MRR experiments

to estimate the chemotaxis parameters. Note that in this paper, we considered a family of

chemotaxis functions of two dependent variables, namely, α and β. Finally, UΩ is identified

using the estimated value of the other unknown parameters, considering different possible

initial distribution of the insect population u0. As a result we show the positive effect of

longer period of data collection and of the size of the release on the quality of the estimation

of εu, α and β as well as the positive effect of proximity of the release to the trap when the

chemotaxis parameters are estimated one at a time. However, when α and β are estimated

simultaneously, no definite trend could be establish relating the quality of the estimation

to the period of data collection and distance of the release from the trap. Nevertheless,

similar level of accuracy as for the estimation of one parameter at a time can be obtained by

increasing the size of the release.

This work suggests an optimized field protocol to estimate insect population size, although

several aspects are worth further investigation for more realistic results. For instance, the

boundary conditions used here are quite restrictive as we assume no emigration and no im-

migration of the insects. More complex boundary conditions, involving flux at the boundary,

such as Robin boundary conditions would be more realistic. Also, the compartmental ap-

proach for the free insects and the captured insects requires to define a transition process

for insects to be captured. A more realistic way to model the trapping process could be to
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consider a trap as hole in the domain. Then, appropriate boundary conditions at the border

of the trap would allow to capture its properties.

Further, in this model, the parameters are taken constant in time and space. Under

the condition that the experiments take place over a small period of time, during which the

parameters do not experience much variations (related for instance to temperature, humidity,

etc.), it is relevant to assume that the parameters are constant with respect to the time

variable. However, some of the parameters such as the diffusion and the advection coefficients

may vary in space if the landscape is heterogeneous. Thus, a step forward to be considered

in this model, would be to enable links with GIS data. This would require to consider other

programming language than Scilab, for faster computations, such as C++, Fortran, etc.

Ultimately, validation of the model using real field data would assess the efficacy for the

method.
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Chapter 5

Mathematical model for pest-insect

control using mating disruption and

trapping

This work has been submitted to

R. Anguelov, C. Dufourd and Y. Dumont, Mathematical model for pest-insect control using

mating disruption and trapping, Applied Mathematical Modelling

5.1 Abstract

Controlling pest insects is a challenge of main importance to preserve crop production. In

the context of Integrated Pest Management (IPM) programs, we develop a generic model to

study the impact of mating disruption control using an artificial female pheromone to confuse

males and adversely affect their mating opportunities. Consequently the reproduction rate

is diminished leading to a decline in the population size. For more efficient control, trapping

is used to capture the males attracted to the artificial pheromone. The model, derived from

biological and ecological assumptions, is governed by a system of ODEs. A theoretical analysis

of the model without control is first carried out to establish the properties of the endemic

equilibrium. Then, control is added and the theoretical analysis of the model enables to

identify threshold values of pheromone which are practically interesting for field applications.

In particular, we show that there is a threshold above which the global asymptotic stability of
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the trivial equilibrium is ensured, i.e. the population goes to extinction. Finally we illustrate

the theoretical results via numerical experiments.
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5.2 Introduction

Pest insects are responsible for considerable damages on crops all over the world. Their

presence can account for high production losses having repercussions on trading and exports

as well on the sustainability of small farmers whose incomes entirely rely on their production.

Exotic pests, can be particularly harmful as they can exhibit high invading potential due

to the lack of natural enemies and their capacity to adapt to wide range of hosts and/or

climate conditions. Therefore, pest management is essential to prevent devastating impact

on economy, food security, social life, health and biodiversity.

Chemical pesticides have long been used to control pest populations. However, their ex-

tensive use can have undesired side effects on the surrounding environment, such as reduction

of the pest’s natural enemies and pollution. Further, the development of insect resistance

to the chemical lead to the need of using stronger and more toxic pesticides to maintain

their efficacy. Thus, extensive use of pesticides is not a sustainable solution for pest control.

Constant efforts are being made to reduce the toxicity of the pesticides for applicators and

consumers, and alternative methods are being developed or improved to satisfy the charter of

Integrated Pest Management (IPM) programs [9]. IPM aims to maintain pest population at

low economic and epidemiological risk while respecting specific ecological and toxicological

environmentally friendly requirements.

The Sterile Insect Technique (SIT), Mass Annihilation Technique (MAT) or mating dis-

ruption are examples of methods part of IPM strategies. SIT consists in releasing large

numbers of sterilised males to compete with wild males for female insemination, reducing the

number of viable offspring, while MAT consists in reducing the number of one or both sexes

by trapping using a species-specific attractant. Pheromones or para-pheromones are often

used to manipulate the behaviour of a specific species [256, 135]. In this work, particular

interest is given to mating disruption control which aims to obstruct the communication

among sexual partners using lures to reduce the mating rate of the pest and thus lead to

long-term reduction of the population [47].

Mating disruption using pheromones has been widely studied to control moth pests [21, 48]

on various types of crops. An early demonstration of the applicability of MAT has been shown

for the eradication of Bactrocera doraslis in the Okinawa Islands in 1984 [152]. More recently,

the method has shown to be successful for the control of Tuta absoluta on tomato crops in

Italian greenhouses [58]. Other successful cases are reported in [48], such as for the control

of the pink bollworm Pectinophora gossypiella which attacks cotton, or the apple codling

moth Cydia pomonella. However, mating disruption has sometimes been a failure as for the

control of the coffee leaf miner Leucoptera coffeela [4] or for the control of the tomato pest
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Tuta absoluta mentioned above in open field conditions [178] where mating disruption did not

manage to reduce the pest population. According to [4, 178], the failure of the method may

be attributed to composition and dosage of the pheromone and/or to a high abundance of

insects. For mating disruption success, understanding the attraction mechanisms of the pest

to the pheromone is important, like the minimum level response, the distance of attraction

or the formulation of the pheromone used. Environmental constrains are also crucial factors

to take into account. These include the climate, the wind, the crop’s foliage, etc. Further,

the population size must be accounted for in order to design appropriate control strategies.

Thus, planning efficient and cost effective control is a real challenge which can explain the

failure of the experiments mentioned above. Mathematical modelling can be very helpful

to get a better understanding on the dynamics of the pest population, and various control

strategies can be studied to optimise the control. Here we combine mating disruption using

female-sex pheromones lures to attract males away from females in order to reduce the mating

opportunities adversely affecting the rate reproduction. For more efficient control, lures can

be placed in traps to reduce the male population. In 1955, Knipling proposed a numerical

model to assess the effect of the release of sterile males on an insect population where the

rate of fertilisation depends on the density of fertile males available for mating [146]. It is

worth mentioning that in terms of modelling significant similarities can be found between

MAT control and SIT control as the purpose of both methods is to affect the capacity

of reproduction of the species. In the seminal works of Knipling et al. [150, 149], several

approaches for the suppression of insect populations among which MAT and SIT. Further, an

overview on the mathematical models for SIT control which of relevance to mating disruption

control can be found in [86, Chapter 2.5].

In this paper we built a generic model for the control of a pest population using mating

disruption and trapping to study the effort required to reduce the population size below

harmful level. The model is derived using general knowledge or assumptions on insects’

biology and ecology. We consider a compartmental approach based on the life cycle and

mating behaviour to model the temporal dynamics of the population which is governed by

a system of Ordinary Differential Equations (ODE). A theoretical analysis of the model

is carried out to discuss the efficiency of the control using pheromone traps depending on

the strength of the lure and the trapping efficacy. In particular we study the properties of

the equilibria using the pheromone as a bifurcation parameter. We identify two threshold

values of practical importance. One corresponds to the minimum amount of lure required to

affect the female population equilibrium, while the second one is the threshold above which

extinction of the population is achieved. We also show that on small enough populations,

at invasion stage for instance, extinction may be achieved with a small amount of lure. We

also show that combining mating disruption with trapping significantly reduces the amount

of pheromone needed to obtain a full control of the population. The modelling approach
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for mating disruption control considered in [18, 20, 98] where MAT control is modelled via

discrete density-dependent models. In the later, the authors identified a threshold value

for the amount of pheromones above which the control of an insect population is possible.

Similar qualitative results may be found in [17] in the case of SIT control, however not

presented as in such depth as in the present study.

In the first section, we give a description of the model without control and analyse it

theoretically. In the following section we describe the model with control. To model the

impact of the mating disruption, we use a similar approach as the one proposed by Barclay

and Van den Driessche [18], where the amount of the artificial pheromone is given in terms of

equivalent number of females. The model is studied theoretically, identifying threshold values

which determine changes in the dynamics of the population. Finally, we perform numerical

simulations to illustrate the theoretical results and we discuss their biological relevance.

5.3 The compartmental model for the dynamics of the

insect

We consider a generic model to describe the dynamics of a pest insect population based

on biological and behavioural assumptions. For many pest species, such as fruit flies or

moths, two main development stages can be considered: the immature stage, denoted I,

which gathers eggs, larvae and pupae, and the adult stage. Typically, the adult female is

the one responsible for causing direct damage to the host when laying her eggs. We split

the adult females in two compartments, the females available for mating denoted Y , and the

fertilised females denoted F . We assume that a mating female needs to mate with a male

in order to pass into the compartment of the fertilised females and be able to deposit her

eggs. Therefore, we also add a male compartment, denoted M , to study how the abundance

of males impacts the transfer rate from Y to F . We make the model sufficiently generic such

that multiple mating can occur, which implies that fertilised females can become mating

female again.

We denote r the proportion of females emerging from the immature stage and entering

the mating females compartment. Thus a proportion of (1 − r) on the immature enter the

male compartment after emergence. We assume that the time needed for an egg laid to

emergence is 1/νI , thus the transfer rate from I to Y or M is νI . Then, when males are

in sufficient abundance to ensure the fertilisation of all the females available for mating, the

transfer rate from Y to F is νY . However, if males are scarce, and if γ is the number of

females that can be fertilised by a single male, then only a proportion γM
Y

of Y -females can
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pass into the F -females compartment. Therefore, the transfer rate from Y to F is modelled

by the non-linear term νY min{γM
Y
, 1}. Moreover, fertilised females go back to the mating

females compartment with a rate of δ. Further, the fertilised females supply the immature

compartment with a rate b
(
1− I

K

)
, where b is the intrinsic egg laying rate, while K is the

carrying capacity of the hosts. Finally, parameters µI , µY , µF are respectively the death rates

of compartments I, Y , F and M . The flow diagram of the insects’ dynamics is represented

in Figure 5.1. The model is governed by the following system of ODEs:

Figure 5.1: Life cycle of the insect.





dI
dt

= b
(
1− I

K

)
F − (νI + µI) I,

dY
dt

= rνII − νY min{γM
Y
, 1}Y + δF − µY Y,

dF
dt

= νY min{γM
Y
, 1}Y − δF − µFF,

dM
dt

= (1− r)νII − (µM)M.

(5.1)

The list of the parameters used in the model are summarized in Table 5.1. They are taken

from [89] in order to perform numerical experiments.
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Parameter Description Unit Value

b Intrinsic egg laying rate female−1day−1 9.272

r Female to male ratio - 0.57

K Carrying capacity - 1000

γ Females fertilised by a single male female 4

µI Mortality rate in the I compartment day−1 1/15

µY Mortality rate in the Y compartment day−1 1/75.1

µF Mortality rate in the F compartment day−1 1/75.1

µM Mortality rate in the M compartment day−1 1/86.4

νI Transfer rate from I to Y day−1 1/24.6

νY Transfer rate from Y to F day−1 0.5

δ Transfer rate from F to Y day−1 0.1

Table 5.1: List of parameters and there values used in the numerical simulations.

5.3.1 Theoretical analysis of the model

The theoretical analysis of the model is carried out for the case of male abundance and

the case of male scarcity. These two cases are separated by the hyperplane Y = γM . The

analysis of the two systems can be carried out independently on the orthant R4
+.

5.3.1.1 Case 1: Male abundance

In the case of male abundance, we recover the same model developed and studied in [82].

However, we follow another approach for the theoretical study. The system can be written

in the vector form
dx

dt
= f(x), (5.2)

with x = (I, Y, F,M)T , and

f(x) =




b
(
1− I

K

)
F − (νI + µI)I

rνII + δF − (νY + µY )Y

νY Y − (δ + µF )F

(1− r)νII − µMM


 . (5.3)

Note that the right hand side of system (5.2), f(x), is continuous and locally Lipschitz,

so uniqueness and local existence of the solution are guaranteed. In proving the global

properties we will use the fact that the system is cooperative on R4
+, that is the growth in any

compartment impacts positively on the growth of all other compartments. For completeness
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of the exposition some basics of the theory of cooperative systems is given in Appendix C.

Using Theorem 5.5.1, the system (5.2) is cooperative on ΩK = {x ∈ R4
+ : I ≤ K} because

the non-diagonal entries of the Jacobian matrix of f

Jf =




−
(
νI + µI + b F

K

)
0 b(1− I

K
) 0

rνI −(νY + µY ) δ 0

0 νY −(µF + δ) 0

(1− r)νI 0 0 −µM


 , (5.4)

are non-negative on ΩK .

The persistence of a population is typically linked to its Basic Offspring Number. For

simple population models the basic offspring number is defined as the number of offspring

produced by a single individual in their life time provided abundant resource is available.

In general, the definition could be more complicated and its value is computed by using the

next generation method. For the model in (5.2) the Basic Offspring Number is

N0 =
brνIνY

(µI + νI)((νY + µY )(δ + µF )− δνY )
. (5.5)

In this paper we will use N0 only as a threshold parameter. The persistence when N0 > 1

and the extinction when N0 < 1 are given direct proofs. Hence, we will not discuss the details

on specific properties of the number. For completeness of the exposition the computation of

(5.5) is given in Appendix A.

Theorem 5.3.1. a) The system of ODE (5.2) defines a positive dynamical system on R4
+.

b) If N0 ≤ 1 then TE = (0, 0, 0, 0)T is a globally asymptotically stable (GAS) equilibrium.

c) If N0 > 1 then TE is an unstable equilibrium and the system admits a positive equilib-

rium EE∗ = (I∗, Y ∗, F ∗,M∗)T , where

I∗ =

(
1− 1

N0

)
K,

Y ∗ =
rνI(δ + µF )

(νY + µY )(δ + µF )− δνY

(
1− 1

N0

)
K,

F ∗ =
rνIνY

(νY + µY )(δ + µF )− δνY

(
1− 1

N0

)
K,

M∗ =
(1− r)νI
µM

(
1− 1

N0

)
K,

which is a globally asymptotically stable (GAS) on R4
+ \ {x ∈ R4

+ : I = Y = F = 0}.
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Proof. a) Let q ∈ R, q ≥ K. Denote

yq =




K
rνI(δ+µF )

(νY +µY )(δ+µF )−δνY q
rνIνY

(νY +µY )(δ+µF )−δνY q
(1−r)νI
µM

q


 (5.6)

We have f(0) = 0 and f(yq) ≤ 0. Then, from Theorem 5.5.4 it follows that (5.2) defines a

positive dynamical system on [0, yq]. That is ∀x ∈ [0, yq], the problem (5.2), given an initial

condition x(0) = x0 ∈ [0, yq], admits a unique solution for all t ∈ [0,∞] in [0, yq] [8]. Hence

(5.2) defines a positive dynamical system on ΩK = ∪q≥K [0, yq]. Let now x0 ∈ R4
+\ΩK . Using

that the vector field defined by f points inwards on the boundary of R4
+ we deduce that the

solution initiated at x0 remains in R4
+. Then one can see from the first equation of (5.2) that

I(t) decreases until the solution is absorbed in ΩK . Then (5.2) defines a dynamical system

on R4
+ with ΩK being an absorbing set.

b)Solving f(x) = 0 yields two solutions TE and EE∗. When N0 ≤ 1 TE is the only

equilibrium in R4
+. Then for any q ≥ K TE is the only equilibrium in [0, yq]. It follows from

Theorem 5.5.4 that it is GAS on [0, yq]. Therefore, TE is GAS on ΩK and further on R4
+ by

using that ΩK is an absorption set.

c) For ε ∈ (0, I∗) we consider the vector

zε =




ε
rνI(δ+µF )

(νY +µY )(δ+µF )−δνY ε
rνIνY

(νY +µY )(δ+µF )−δνY ε
(1−r)νI
µM

ε


 . (5.7)

Straightforward computations show that dY
dt

(zε) = dF
dt

(zε) = dM
dt

(zε) = 0, and that we have

dI
dt

(zε) = b
(
1− ε

K

)
rνIνY

(νY +µY )(δ+µF )−δνY ε− (νI + µI) ε,

= brνIνY
(νY +µY )(δ+µF )−δνY ε−

brνIνY
(νY +µY )(δ+µF )−δνY

ε2

K
− (νI + µI) ε

= (νI + µI)N0ε− (νI + µI)N0
ε2

K
− (νI + µI) ε

= (νI + µI)
(
N0(1− ε

K
)− 1

)
ε

= (νI + µI)
N0

K
(I∗ − ε)ε > 0.

Thus, f(xε) ≥ 0. For any ε ∈ (0, I∗) and q ∈ (ε,K] EE∗ is a unique equilibrium in the

interval [zε, yq] and hence, by Theorem 5.5.4, it is GAS on this interval. Therefore, EE∗ is

GAS also on interior(ΩK). Using further that (i) if either I(0) or Y (0) or F (0) is positive

then x(t) > 0 for all t > 0 and that (ii) ΩK is an absorbing set, we obtain that EE∗ attracts

all solution in R4
+ except the ones initiated on the M -axis.
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5.3.1.2 Case 2: Male scarcity

Next we consider the case when males are scarce, that is when γM < Y . The system assumes

the form 



dI
dt

= b
(
1− I

K

)
F − (νI + µI) I,

dY
dt

= rνII − νY γM + δF − µY Y,

dF
dt

= νY γM − (δ + µF )F,

dM
dt

= (1− r)νII − µMM.

(5.8)

It is easy to see that the second equation can be decoupled. The system of the remaining 3

equations is of the form
du

dt
= g(u), (5.9)

where u =




I

F

M


 and g(u) =




b
(
1− I

K

)
F − (νI + µI) I

νY γM − (δ + µF )F

(1− r)νII − µMM


. The non-diagonal entries of

the Jacobian of g,

Jg =



−(νI + µI + b F

K
) b

(
1− I

K

)
0

0 −(δ + µF ) νY γ

(1− r)νI 0 −µM


 ,

are non-negative. Hence the system (5.9) is cooperative. The Basic Offspring Number for

system (5.9) is

N̂0 =
bγ(1− r)νIνY

(νI + µI)(δ + µF )µM
. (5.10)

The following theorem describes the properties of system (5.9).

Theorem 5.3.2. a) The system of ODE (5.9) defines a positive dynamical system on R3
+.

b) If N̂0 ≤ 1 then TE = (0, 0, 0)T is a globally asymptotically stable (GAS) equilibrium.

c) If N̂0 > 1 then TE is an unstable equilibrium and the system admits a positive equilib-

rium ÊE = (Î , F̂ , M̂), where

Î =

(
1− 1

N̂0

)
K,

F̂ =
γ(1− r)νIνY
(δ + µF )µM

(
1− 1

N̂0

)
K,

M̂ =
(1− r)νI
µM

(
1− 1

N̂0

)
K,
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which is a globally asymptotically stable (GAS) on R3
+ \ {x ∈ R3

+ : I = F = 0}.

Proof. a) Let q ∈ R, q ≥ K. Denote

ŷq =




K
γ(1−r)νIνY
(δ+µF )µM

q
(1−r)νI
µM

q


 (5.11)

We have g(0) = 0 and g(ŷq) ≤ 0. Then, from Theorem 5.5.4 it follows that (5.9) defines

a positive dynamical system on [0, ŷq]. Hence it defines a positive dynamical system on

Ω̂K = ∪q≥K [0, ŷq]. Let now x0 ∈ R3
+ \ Ω̂K . Using that the vector field defined by g points

inwards on the boundary of R3
+ we deduce that the solution initiated at x0 remains in R3

+.

Then one can see from the first equation of (5.9) that I(t) decreases until the solution is

absorbed in Ω̂K . Then (5.9) defines a dynamical system on R3
+ with Ω̂K being an absorbing

set.

b)Solving g(x) = 0 yields two solutions TE and ÊE. When N̂0 ≤ 1, TE is the only

equilibrium in R3
+. Then for any q ≥ K TE is the only equilibrium in [0, ŷq]. It follows from

Theorem 5.5.4 that it is GAS on [0, ŷq]. Therefore, TE is GAS on Ω̂K and further on R3
+ by

using that Ω̂K is an absorbing set.

c) For ε ∈ (0, Î) we consider the vector

ẑε =




ε
γ(1−r)νIνY
(δ+µF )µM

ε
(1−r)νI
µM

ε


 . (5.12)

Straightforward computations show that dF
dt

(ẑε) = dM
dt

(ẑε) = 0, and that we have

dI
dt

(ẑε) = b
(
1− ε

K

) γ(1−r)νIνY
(δ+µF )µM

ε− (νI + µI) ε

= bγ(1−r)νIνY
(δ+µF )µM

ε− bγ(1−r)νIνY
(δ+µF )µM

ε2

K
− (νI + µI) ε

= (νI + µI)N̂0ε− (νI + µI)N̂0
ε2

K
− (νI + µI) ε

= (νI + µI)
(
N̂0(1− ε

K
)− 1

)
ε

= (νI + µI)
N̂0

K
(Î − ε)ε > 0.

Thus, g(xε) ≥ 0. For any ε ∈ (0, Î) and q ∈ (ε,K] ÊE is a unique equilibrium in the interval

[zε, yq] and hence, by Theorem 5.5.4, it is GAS on this interval. Therefore, ÊE is GAS also

on interior(Ω̂K). Using further that (i) if either I(0) or F (0) is positive then x(t) > 0 for

all t > 0 and that (ii) Ω̂K is an absorbing set, we obtain that ÊE attracts all solution in R3
+

except the ones initiated on the M -axis.
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It can be deduced from Theorem 5.3.2 that the non-trivial equilibrium value of Y is

Ŷ =
rνI(δ + µF )µM − νY γ(1− r)νIµF

µY (δ + µF )µM

(
1− 1

N̂0

)
K. (5.13)

We note that the value of Ŷ and in general the value of the variable Y can be negative.

Hence, the system of ODE (5.8) defines a dynamical system on R+ × R× R2
+.

5.3.1.3 Conclusions for model (5.1)

In what follows we assume that the population has an endemic equilibrium. Otherwise, no

control would be necessary. Further, it is natural to assume that, at equilibrium, there is

abundance of males. In terms of the parameters of the model these assumptions can be

written as:

1. N0 > 1, (5.14)

2. Y ∗ < γM∗. (5.15)

Under the assumptions (5.14) and (5.15) we have that ÊE > 0 and Ŷ < γM̂ . Indeed, when

N0 > 1, the inequality
N̂0

N0

> 1

is equivalent to

γ >
r(δ + µF )µM

(1− r)((νY + µY )(δ + µF )− δνY )
,

which is ensured by (5.15). Therefore under assumptions (5.14) and (5.15) we have that

N̂0 > 1, and by Theorem 5.3.2, we have that the system (5.8) has a non-trivial equilibrium,

which is globally asymptotically stable on R+ × R× R2
+ \ {(I, Y, F,M)T : I = F = 0}.

Further, under (5.15), we have

Ŷ − γM̂ = Î

(
rνI(δ + µF )µM − νY γ(1− r)νIµF

µY (δ + µF )µM
− γ (1− r)νI

µM

)

=
νI Î

µM

(
rµM
µY
− γ(1− r)νY µF + µY (δ + µF )

µY (µF + δ)

)

<
νI Î

µM

(
rµM
µY
− r(δ + µF )µM

((νY + µY )(δ + µF )− δνY )

νY µF + µY (δ + µF )

µY (δ + µF )

)

<
νI Î

µM

(
rµM
µY
− rµM

µY

)
= 0.

(5.16)
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To summarize, under assumptions (5.14) and (5.15), the globally asymptotically stable

equilibria of both (5.2) and (5.8) are in the male abundance region defined via Y < γM .

Hence the only non-trivial equilibrium of (5.1) is EE∗ = (I∗, Y ∗, F ∗,M∗)T . In this way we

obtain the following result:

Theorem 5.3.3. Given (5.14) and (5.15), the model (5.1) has two equilibria:

a) TE which is unstable, and

b) EE∗ which is asymptotically stable.

The equilibrium EE∗ attracts solutions which are entirely in the male abundance re-

gion, excluding the M -axis. Solutions in the male scarcity region are attracted to ÊE =

(Î , Ŷ , F̂ , M̂)T . Hence they leave the male scarcity region and enter the male abundance re-

gion. In the male abundance region they are governed by (5.2) and, therefore, attracted to

EE∗. In general this reasoning does not exclude the possibility that a solution may leave

the male abundance region, enter the male scarcity region and then leave it. However, our

numerical simulations show that this happens only finite number of times, indicating that

EE* is globally asymptotically stable on R4
+ \ {x ∈ R4

+ : I = F = 0}. Hence, eventually such

solution stays in the male abundance region and therefore converges to EE∗.

5.4 Modelling mating disruption and trapping

5.4.1 Mating disruption and trapping

In order to maintain the pest population to a low level, we consider a control using female-

pheromone-traps to disrupt male mating behaviour. More precisely, we take into account

two aspects for the control. The first aspect consists of disturbing the mating between males

and females to reduce the fertilisation opportunities, which in turn, reduces the number of

offspring. This is done using traps that are releasing a female pheromone lure to which males

are attracted. This leads to a reduction in the number of males available for mating near the

females, and decreases the opportunity for fertilisation. The efficiency of mating disruption

depends on the strength of the lure or on the number of traps in an area. The second aspect

of the control is the trapping potential of the trap. We assume that the lure traps also contain

an insecticide which can kill the captured insects.
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5.4.2 The model

In order to take in account the effect of the lures, we consider the approach proposed

by Barclay and Van den Driessche [18, 19]. That is, the strength of the lure is represented

as the quantity of pheromones released by an equivalent number of wild females. Thus, in

the model the effect of the lure corresponds to the attraction of YP additional females. In

such a setting, the total number of “females” attracting males is Y + YP [18]. In particular,

this means that males have a probability of
Y

Y + YP
to be attracted to wild females, and

a probability of
YP

Y + YP
to be attracted to the pheromone traps. Denote γ the number of

females that can be inseminated by a single male. Then, the transfer rate from Y to F does

not exceed νY
γM

Y + YP
. When

γM

Y + YP
> 1 the population is in a male abundance state and

the transfer rate is νY . However, when
γM

Y + YP
< 1, then the population is in a male scarcity

state and the transfer rate is νY
γM

Y + YP
. Altogether, the transfer rate is νY min{ γM

Y+YP
, 1}.

The parameter α represents the death or capture rate for the fraction
YP

Y + YP
of the males

which are attracted by the lures. The flow diagram is represented in Figure 5.2 which yields

the following system of ODEs:





dI
dt

= b
(
1− I

K

)
F − (νI + µI) I,

dY
dt

= rνII − νY min{ γM
Y+YP

, 1}Y + δF − µY Y,

dF
dt

= νY min{ γM
Y+YP

, 1}Y − δF − µFF,

dM
dt

= (1− r)νII − (µM + α YP
Y+YP

)M.

(5.17)

5.4.3 Theoretical analysis of the control model

The aim of this section is to investigate the existence of equilibria of model (5.17) and

their asymptotic properties. First we consider the model in the male abundance state and

in the male scarcity state independently. Then we draw conclusions for the general model.
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Figure 5.2: Control model using mating disruption and trapping.

5.4.3.1 Properties of the equilibria in the male abundance region (γM > Y +YP )

The dynamics of the population in the male abundance region Y +YP < γM are governed

by the following system of ODEs:




dI
dt

= b
(
1− I

K

)
F − (νI + µI) I,

dY
dt

= rνII − νY Y + δF − µY Y,

dF
dt

= νY Y − (δ + µF )F,

dM
dt

= (1− r)νII − (µM + α YP
Y+YP

)M.

(5.18)

We note that the first three equations in (5.18) as in (5.2) are the same, while the fourth

equation in both systems can be decoupled. Then, using exactly the same method as in

Theorem 5.3.1 we obtain the following theorem.

Theorem 5.4.1. a) The system of ODEs (5.18) defines a positive dynamical system on

R4
+.

b) Under assumptions (5.14) and (5.15), the system has a positive equilibrium EE# =

(I∗, Y ∗, F ∗,M#(YP ))T , where

M#(YP ) =
(1− r)νI(Y ∗ + YP )

µM(Y ∗ + YP ) + αYP
I∗ =

M∗

1 + αYP
µM (Y ∗+YP )

,
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which is globally asymptotically stable on R4
+ \ {x ∈ R4

+ : I = Y = F = 0}.

The equilibrium EE# is an equilibrium of (5.17) if and only if

Y ∗ + YP < γM#(YP )

or, equivalently,

YP < Y ∗P :=
γM∗ − Y ∗

1 + α
µM

=
1

µM + α

(
γ(1− r)νI −

rνI(δ + µF )µM
(νY + µY )(δ + µF )− δνY

)(
1− 1

N0

)
K.

(5.19)

The threshold value Y ∗P determines the minimal level of control below which the control has

essentially no effect on an established pest population. More precisely, the effect is limited

to reducing the number of males, while all other compartments remain in their natural

equilibrium.

5.4.3.2 Properties of the equilibria in the male scarcity region (γM < Y + YP )

In the region of male scarcity γM ≤ Y + YP the dynamics of the population is governed

by the system:





dI
dt

= b
(
1− I

K

)
F − (νI + µI) I,

dY
dt

= rνII − νY γMY
Y+YP

+ δF − µY Y,

dF
dt

= νY
γMY
Y+YP

− (δ + µF )F,

dM
dt

= (1− r)νII − (µM + α YP
Y+YP

)M.

(5.20)

The following theorem exhibits different behaviours of the model depending on the value of

YP which can be interpreted as the effort of the mating disruption control.

Theorem 5.4.2. a) The system of ODEs (5.20) defines a positive dynamical system on

R4
+.

b) TE is an asymptotically stable equilibrium of this system.

c) There exists a threshold value Y ∗∗P of YP such that

i) if YP > Y ∗∗P the only equilibrium of the system on R4
+ is TE;

ii) if 0 < YP < Y ∗∗P the system has three biologically relevant equilibria on R4
+, TE

and two positive equilibria.
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Proof. a) The local existence of the solutions of (5.20) follows from the fact that the right

hand side is Lipschitz continuous in R4
+. To obtain global existence it is enough to show that

every solution is bounded. This can be proved directly, but it also follows from the upper

approximation of the solutions discussed in the proof of Theorem 5.4.5. Hence, it is omitted

here.

b) It is clear that TE = (0, 0, 0, 0)T is an equilibrium. The Jacobian of the right hand

side of system (5.20) is

Jh(x) =




−
(
νI + µI + b F

K

)
0 b

(
1− I

K

)
0

rνI −(νY γM
YP

(Y+YP )2
+ µY ) δ −νY γ Y

(Y+YP )

0 νY γM
YP

(Y+YP )2
−(µF + δ) νY γ

Y
(Y+YP )

(1− r)νI αYP
(Y+YP )2

M 0 −(µM + α YP
Y+YP

)


 ,

(5.21)

thus,

Jh(TE) =




− (νI + µI) 0 b 0

rνI −µY δ 0

0 0 −(δ + µF ) 0

(1− r)νI 0 0 −(µM + α)


 . (5.22)

Its eigenvalues are equal to its diagonal entries and are all negative real values. Hence TE is

asymptotically stable.

c) Setting dI
dt

= 0 in (5.20) yields

F =
νI + µI

b
(
1− I

K

)I.

Then, from dM
dt

= 0, we have

M =
(1− r)νI

µM + α YP
Y+YP

I.

Further, considering that dY
dt

+ dF
dt

= 0, we deduce

Y =
rνII − µFF

µY
=

(
rνI
µY
− µF (νI + µI)

µY b
(
1− I

K

)
)
I =

φ(I)

µY b
(
1− I

K

)I.

with φ(I) = rνIb(1− I
K

)− µF (νI + µI). Now, we use dF
dt

= 0,

dF

dt
=

νY γM

Y + YP
Y − (δ+µF )F =

νY γ(1− r)νII
µM(Y + YP ) + αYP

φ(I)

µY b
(
1− I

K

)I− (δ+µF )
νI + µI

b
(
1− I

K

)I = 0.

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 5. Mathematical model for pest-insect control using mating disruption and trapping 170

Thus by substituting the expressions of Y , F and M , we have

νY γ(1−r)νII
µMY+(µM+α)YP

φ(I)

µY b(1− I
K )
I − (δ + µF ) νI+µI

b(1− I
K )
I = 0

⇔
(
νY γ(1− r)νI φ(I)

µY b(1− I
K )
I

)
= (δ+µF )(νI+µI)

b(1− I
K )

(µMY + (µM + α)YP )

⇔
(
νY γ(1− r)νI φ(I)

µY b(1− I
K )
I − (δ+µF )(νI+µI)(µM )

b(1− I
K )

φ(I)

µY b(1− I
K )

)
= (δ+µF )(νI+µI)(µM+α)YP

b(1− I
K )

.

Multiplying both side by µY b
2(1− I

K
)2, we obtain an equation for I in the form

ψ(I) := Iξ(I)φ(I) = η(YP , I), (5.23)

where

ξ(I) = νY γ(1− r)νIb
(

1− I

K

)
− (δ + µF )(νI + µI)µM , (5.24)

φ(I) = rνIb

(
1− I

K

)
− µF (νI + µI), (5.25)

and

η(YP , I) = µY (δ + µF )(νI + µI)(µM + α)b

(
1− I

K

)
YP . (5.26)

Therefore, the non-trivial equilibria of (5.20) are of the form

YMD =

(
rνI
µY
− µF (νI + µI)

µY b
(
1− IMD

K

)
)
IMD, (5.27)

FMD =
νI + µI

b
(
1− IMD

K

)IMD, (5.28)

MMD =
(1− r)νI

µM + α YP
YMD+YP

IMD. (5.29)

with IMD a positive root of (5.23). Further, we note that to ensure YMD > 0, it follows from

(5.27) that IMD must satisfy the condition

IMD < K

(
1− µF (νI + µI)

rνIb

)
. (5.30)

Thus, to obtain biologically viable equilibria, IMD must belong to the interval
[
0, K

(
1− µF (νI+µI)

rνIb

)]
.

The roots of (5.23) correspond to the values of I where the graph of the cubic polynomial

ψ and the straight line η(YP , ·) intersect. It is clear that, the straight line η(YP , ·) intersects
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the I-axis at I = K. From the factorization of ψ(I) in (5.23), it is clear that the roots of ψ

are

I0 = 0, I1 = K

(
1− (δ + µF )(νI + µI)µM

νY γ(1− r)νIb

)
, and I2 = K

(
1− µF (νI + µI)

rνIb

)
. (5.31)

Note that the the roots I1 and respectively, I2, are positive and smaller than K, i.e.

0 < I1, I2 < K,

provided
(δ + µF )(νI + µI)µM

νY γ(1− r)νIb
< 1, (5.32)

and respectively,
µF (νI + µI)

rνIb
< 1. (5.33)

Inequality (5.32) is satisfied under assumptions (5.15) and (5.14), and inequality (5.33) is

equivalent to N0 > 1, that is, to (5.14). Therefore, under assumptions (5.14) and (5.15), we

have that

I1, I2 ∈ [0, K].

Therefore, the graph of the cubic polynomial ψ is as given on Figure 5.3. Considering the

 

0
I

min {I1, I2} Kmax {I1, I2}

←YP = Y ∗∗

P

←YP > Y ∗∗

P

←YP < Y ∗∗

P

ψ(I)→

Figure 5.3: Intersections between the graphs of η(YP , ·) (in red) and ψ (in blue) for different

values of YP . The black dots represent the intersection points on the interval [0,min{I1, I2}].

inequality (5.30), only points of intersection of the straight line η(YP , ·) with the section of

the graph of ψ for 0 ≤ I ≤ min{I1, I2}, indicated by a thicker line on Figure 5.3, are of

relevance to the equilibria of the model. Let us note that ψ is independent of YP while the
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gradient of the line η is a multiple of YP . We denote by Y ∗∗P the value of YP such that the line

η(YP , ·) is tangent to the indicated section of the graph of ψ, see Figure 5.3. Then it is clear

that for YP > Y ∗∗P there is no intersection between η(YP , ·) and ψ on [0,min{I1, I2}] while if

0 < YP < Y ∗∗P there are two such points of intersection. This proves items (i) and (ii) in c).

The next step in this analysis is to merge the results in Theorem 5.4.1 for system (5.18)

and the results in Theorem 5.4.2 for the system (5.20) in order to obtain results for the model

(5.17) which is actually our interest.

Let I
(1)
MD and I

(2)
MD,I

(1)
MD < I

(2)
MD, be the roots of (5.23) when 0 < YP < Y ∗∗P and denote

the respective equilibria by EE
(1)
MD and EE

(2)
MD. First we show that EE# = EE

(2)
MD when

YP = Y ∗P . Indeed, Y ∗P is selected in such way that
γM∗

Y ∗ + Y ∗P
= 1. Then, the right hand sides

of (5.18) and (5.20) are the same at EE#. This implies that EE# is an equilibrium of (5.20).

 

0
I

KI∗

ψ(I)→

η(Y ∗

P , ·)→

Figure 5.4: Intersections between the graphs of η(Y ∗P , ·) (in red) and ψ (in blue). The black

dot represent the intersection for I = I∗.

One can see from Figure 5.4 that for 0 < YP < Y ∗P , we have

I
(1)
MD < I∗ < I

(2)
MD, (5.34)

and for Y ∗P < YP < Y ∗∗P , we have

I
(1)
MD < I

(2)
MD < I∗. (5.35)

We investigate when the equilibria of (5.17) are biologically relevant, that is when they belong
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to the male scarcity region. We have

YMD + YP − γMMD (5.36)

= YMD + YP − γ
(1− r)νI

µM + α YP
YMD+YP

IMD

=
µMYMD + µY YP + αYP − γ(1− r)νI

µM + α YP
YMD+YP

IMD.

=

(
µM

µM + α YP
YMD+YP

(
rνI
µY
− µF (νI + µI)

µY
(
1− IMD

K

)
)
− γ(1− r)νI

)
IMD + (µM + α)YP .

Let Y ∗P < YP < Y ∗∗P . Then using also (5.35) we have

YMD + YP − γMMD

≥ µM

µM + α YP
YMD+YP

(
rνI
µY
− µF (νI + µI)

µY
(
1− I∗

K

) − γ(1− r)νI
)
IMD + (µM + α)YP (5.37)

=

((
µM

rνI(δ + µF )

νY µF + µY µF + δµY

)
− γ(1− r)νI

)
IMD + (µM + α)YP (using (5.19))

= −(µM + α)
Y ∗P
I∗
IMD + (µM + α)YP

=
µM + α

I∗
(YP I

∗ − Y ∗P IMD) > 0.

Therefore, in this case EE
(1)
MD and EE

(2)
MD are both in the male scarcity region. Hence, they

are also equilibria of (5.17).

If YP < Y ∗P and IMD > I∗, considering (5.34), then using the same method as in (5.37) we

obtain

YP + YMD − γMMD < 0. (5.38)

Therefore, EE
(2)
MD is not in the male scarcity region. Hence, it is not an equilibrium of (5.17).

Taking into consideration the above results regarding EE
(1)
MD and EE

(2)
MD we obtain the

following theorem for the model (5.17).

Theorem 5.4.3. Let YP > 0. The following holds for model (5.17):

a) TE is an asymptotically stable equilibrium.

b) If 0 < YP < Y ∗P there are two positive equilibria EE
(1)
MD and EE#, where EE# is

asymptotically stable.
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c) If Y ∗P < YP < Y ∗∗P there are two positive equilibria EE
(1)
MD and EE

(2)
MD.

d) If YP > Y ∗∗P there is no positive equilibrium.

Obtaining theoretically the stability properties of the equilibria EE
(1)
MD and EE

(2)
MD is not

easy considering the complexity of the system. The numerical simulations indicate that

EE
(1)
MD is unstable while EE

(2)
MD is asymptotically stable, and that the equilibria are the only

invariant set of the system on R+
4 . Further, when YP > Y ∗∗P , TE is globally asymptotically

stable. The equilibria and their properties are presented on the bifurcation diagram in

Figure 5.5. The equilibrium values of Y +F are given as function of the bifurcation parameter

YP . The solid line represents stable equilibria, while the dotted line represents unstable

equilibria.

GAS

AS

AS

Y
∗∗

P
Y

∗

P0 YP

Y
+

F

Figure 5.5: Bifurcation diagram of the values of Y + F at equilibrium with respect to the

values of YP for system (5.17).

5.4.3.3 Global asymptotic stability of the trivial equilibrium for sufficiently large

YP

Theorem 5.4.3 shows that for YP < Y ∗∗P the insect population persists at substantial

endemic level. Hence, the numerically observed global asymptotic stability of TE for YP >

Y ∗∗P is of significant practical importance. This section deals with the mathematical proof

of this result. More precisely, we will establish global asymptotic stability of TE under
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slightly stronger condition YP > Ỹ ∗∗P where Ỹ ∗∗P > Y ∗∗P . We also show that Ỹ ∗∗P is a close

approximation for Y ∗∗P .

The asymptotic analysis for system (5.17) cannot be conducted in the same way as for

the other systems considered so far, since it is not a monotone system. More precisely due

to the term −νY
γM

Y + YP
Y in the equation for the Y compartment, the right hand side of

(5.17) is not quasi-monotone. In order to obtain the practically important result mentioned

above, we consider an auxiliary system which is monotone and provides upper bounds for the

solutions of (5.17). The system is obtained by removing the mentioned term in the second

equation and replacing min{ γM

Y + YP
, 1} by

γM

Y + YP
in the third equation. In vector form it

is given as
dx

dt
= h̃(x), (5.39)

where x = (I, Y, F,M)T and

h̃(x) =




b
(
1− I

K

)
F − (νI + µI) I

rνII − µY Y + δF

νY
γM
Y+YP

Y − δF − µFF
(1− r)νII − (µM + α YP

Y+YP
)M


 . (5.40)

Theorem 5.4.4. a) The system of ODEs (5.39) defines a positive dynamical system on

R4
+.

b) TE is asymptotically stable equilibrium.

c) There exists a threshold value Ỹ ∗∗P such that

i) if YP > Ỹ ∗∗P , TE is globally asymptotically stable on R4
+;

ii) if 0 < YP < Ỹ ∗∗P , the system has three equilibria, TE and two positive equilibria

Ẽ(1) and Ẽ(2) such that Ẽ(1) < Ẽ(2). The basin of attraction of TE contains the

set {x ∈ R4
+ : 0 ≤ x < Ẽ(1)}. The basin of attraction of Ẽ(2) contains the set

{x ∈ R4
+ : x ≥ Ẽ(2), I ≤ K}.

Proof. a) and b) are proved similarly to a) and b) in Theorem 5.4.2.

c) Setting the first, second and fourth component of h̃ to zero, we have

Y =
rνII + δF

µY
, F =

νI + µI

b
(
1− I

K

)I, M =
(1− r)νI

µMY + (µM + α)YP
I.
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Setting the third component of h̃ to zero and substituting the expressions for Y , F and M

above, we obtain an equation for I in the form

ψ̃(I) := Iξ(I)φ̃(I) = η(YP , I). (5.41)

where ξ(I) and η(YP , I) are the linear expression given in (5.24) and (5.26) and

φ̃(I) = rνIb

(
1− I

K

)
+ δ(νI + µI). (5.42)

Therefore the non-trivial equilibria of (5.39) are of the form

Ỹ =
1

µY


rνI +

δ(νI + µI)

b
(

1− Ĩ
K

)


 Ĩ ,

F̃ =
νI + µI

b
(

1− Ĩ
K

) Ĩ , (5.43)

M̃ =
(1− r)νI

µM + α YP
Ỹ+YP

Ĩ ,

with Ĩ a positive root of (5.42). The roots of (5.42) correspond to the values of I where the

graph of the cubic polynomial ψ̃ and the straight line η(YP , ·) intersect. It is clear that the

straight line η(YP , ·) intersects the I axis at I = K. Note that the state where I greater is

than K is not sustainable, and therefore not biologically relevant. From the factorization of

ψ̃ in (5.42), it is clear that I0 and I1 given in (5.31) and

Ĩ2 =

(
1 +

δ(νI + µI)

rνIb

)
K (5.44)

are roots of ψ̃. Clearly, we have

0 < I1 < K < Ĩ2.

Therefore, the graph of the cubic polynomial ψ̃ is as given in Figure 5.6.

Considering the inequalities (5.30) and (5.45), only the points of intersection of the straight

line η(YP , ·) with the section of the graph of ψ̃ for 0 < I < I1 are of relevance to the equilibria

of the model. Note that ψ̃ is independent of YP while the gradient of η(YP , ·) is a multiple

of YP . We denote by Ỹ ∗∗P the value of YP such that the line η is tangent to the indicated

section of the graph of ψ̃, see Figure 5.6. Then, it is clear that for YP > Ỹ ∗∗P there is no

intersection between η(YP , ·) and ψ̃ on [0, I1] while if 0 < YP < Ỹ ∗∗P there are two such points

of intersection.
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0
I

I1 K Ĩ2

←YP = Ỹ ∗∗

P

←YP > Ỹ
∗∗

P

←YP < Ỹ ∗∗

P ψ̃(I)→

Figure 5.6: Intersections between the graphs of η(YP , ·) (in red) and ψ (in blue) for different

values of YP . The black dots represent the intersection points on the interval [0, I1].

i) Let YP > Ỹ ∗∗P . Consider the point

ỹq =




K
1
µY

(
rνI + δνY γ(1−r)νI

(δ+µF )µM

)
q

νY γ(1−r)νI
(δ+µF )µM

q
(1−r)νI
µM

q



, (5.45)

where q ∈ R, q ≥ K. It is easy to see that h̃(ỹq) ≤ 0. Then by Theorem 5.5.4, TE is GAS

on [0, ỹq]. Therefore, TE is GAS on ΩK = ∪q≥K [0, ỹq] as well. Similarly to Theorem 5.3.1,

ΩK is an absorbing set. Hence TE is GAS on R4
+.

ii) Let 0 < YP < Ỹ ∗∗P . Denote the two equilibria by Ẽ(j) = (Ĩ(j), Ỹ (j), F̃ (j), M̃ (j))T , j = 1, 2,

where Ĩ(1) < Ĩ(2). Since Ỹ , F̃ , M̃ as given in (5.43) are increasing functions of Ĩ, we have

0 < Ẽ(1) < Ẽ(2) (Figure 5.7). Considering ỹq in (5.45) we have

h̃(Ẽ(2)) = 0 ≤ h̃(ỹq).

Then by Theorem 5.5.4 Ẽ(2) is GAS on [Ẽ(2), ỹq]. Therefore, Ẽ(2) is GAS on ∪q≥K [Ẽ(2), ỹq] =

{x ∈ R4
+ : x ≥ Ẽ(2), I ≤ K}. We obtain the statements about the basin of attraction of TE

by using Theorem 5.5.5. Indeed, TE being asymptotically stable, attracts some solutions

initiated in [TE, Ẽ(1)]. Then it follows from Theorem 5.5.5 that all solutions initiated in

{x ∈ R4
+ : x < Ẽ(1)} converge to TE.

The implication of Theorem 5.4.4 for the system (5.17) are stated in the following theorem

which extends the results of Theorem 5.4.3.
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→

→

Ẽ
(1)

Ẽ
(2)

TE

Ỹ
+

F̃

M̃

Figure 5.7: Positive invariant sets, when 0 < YP < Ỹ ∗∗P .

Theorem 5.4.5. Let YP > 0. Then the following hold for the model (5.17).

a) If 0 < YP ≤ Ỹ ∗∗P , then the basin of attraction of TE contains {x ∈ R4
+ : x < Ẽ(1)}.

b) If YP > Ỹ ∗∗P , then TE is GAS on R4
+.

Proof. Using Theorem 5.5.2 with x being the solution of (5.39) and y being the solution of

(5.17) we obtain that any solution of (5.39) is an upper bound of the solution of (5.17) with

the same initial point. This implies that the basin of attraction of TE as an equilibrium of

(5.17) contains the sets indicated in Theorem 5.4.4 c) (i) and ii)), thus proving a) and b)

respectively.

Theorem 5.4.5 characterises the benefit from the control effort represented by YP as follows:

• Increasing the effort YP in the range 0 < YP < Y ∗∗P does not lead to elimination

of an established population. In fact, as shown on Figure 5.5, the reduction is not

proportional to the effort. However, Ẽ(1) increases at least linearly with Ĩ(1). Hence,

increasing YP enlarges the basin of attraction of TE, providing better opportunity for

controlling an invading population.

• Effort YP stronger than Ỹ ∗∗P eliminates any established or invading population.
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5.5 Numerical Simulation and Discussion

We use numerical simulations to illustrate the results of Theorems 5.4.3 and 5.4.5 and

discuss the biological meaning of the results. The numerical simulations are done using the

ode23tb solver of Matlab [171] which solves system of stiff ODEs using a trapezoidal rule

and second order backward differentiation scheme (TR-BDF2) [12, 134]. The values of the

parameters used for the numerical simulations are those of Table 5.1.

Using (5.5), we compute the basic offspring number, N0 = 122. N0 > 1, therefore, the

population establishes to the positive endemic equilibrium EE∗ which we have shown to

be GAS on R4
+ \ {TE} (Theorem 5.3.1 c)). Figure 5.8 represents the trajectories of a set

of solutions of system (5.1), or equivalently system (5.17) with YP = 0 and α = 0, in the

M × (Y + F ) plane. The dots represent the points at which the solutions are initiated. The

solutions initiated on R4
+ \ {TE} all converge to the point EE∗ = (992, 319, 1407, 1498)T ,

represented by the green square. Here, TE is also an equilibrium, but it is unstable (Theo-

rem 5.3.1 c)), and therefore it is not represented in Figure 5.8. In the following, we confirm
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Figure 5.8: Trajectories of a set solutions of system (5.1) in the M × (Y +F )-plane initiated

at the dots. The green square represents the stable equilibrium EE∗.

numerically the theoretical results of Theorems 5.4.3 and 5.4.5 with respect to the values

of the mating disruption thresholds mentioned in those theorems, Y ∗P and Y ∗∗P . We also in-

vestigate the impact of the trapping effort, α, on the population. Using (5.19) and solving

numerically the system 



ψ(I) = η(YP , I)

dψ
dI

(I) = dη
dI

(YP , I)
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with ψ and η(YP , ·) as defined in (5.23), we obtain respectively the thresholds values Y ∗P and

Y ∗∗P as functions of α as represented in Figure 5.9. One can observe that a small trapping
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Figure 5.9: Mating disruption thresholds as function of the trapping parameter α.

effort reduces the mating disruption thresholds in a non-linear manner. Adding trapping to

mating disruption allows to reduce the amount of the lure for equivalent control efficiency.

In particular, for α = 0, we have Y ∗P = 5673 and Y ∗∗P = 987735, while for α = 0.1, we have

Y ∗P = 588 and Y ∗∗P = 102462. Thus, increasing the trapping effort by 10% reduces both Y ∗P
and Y ∗∗P by 90%.

Figure 5.10 illustrates the trajectories of the solutions of system (5.17) when the mating

disruption level is below the threshold Y ∗P for α = 0 and α = 0.1. The dots represent the

initial points and the green squares represent the asymptotically stable equilibria. In this

case, the system has one positive equilibrium, EE# (Theorem 5.4.3 b)), with value given in

the figure. One can observe that when there is no trapping, EE# = EE∗ (Figure 5.10 (a)).

This means that the positive endemic equilibrium of the population is not affected by the

control. When trapping occurs, we observe in Figure 5.10 (b) that the positive equilibrium

is shifted to the left. In fact, the control allows to reduce the number of males but not

sufficiently to disrupt the fertilisation of the females. Therefore, the control is not efficient

on an established population as the number of females at equilibrium is not reduced. However,

when YP > 0, TE is asymptotically stable, which means that a population can be controlled

if it is small enough. Figure 5.11 (a), represents the basin of attraction of TE (the red dots)

for a small population in the same setting as for the experiments in Figure 5.10 (a). We

observe that there is a set of solutions, for which the initial population is small enough, that

converge to TE, hence, a small population can be eradicated for YP > 0. Further, as shown
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Figure 5.10: Trajectories of a set solutions of system (5.17) in the M×(Y +F )-plane initiated

at the dots. The green squares represent the asymptotically stable equilibria TE and EE#.

in Figure 5.11 (b), adding trapping (α = 0.1) with the same mating disruption effort as for

Figure 5.11 (a), enlarges the basin of attraction of TE. In other words, for identical mating

disruption effort, larger populations can be drawn to extinction when trapping occurs.
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Figure 5.11: Effect of α on the basin of attraction of TE. The solutions initiated at the

points represented by the red dots converge to TE while the blue crosses represent initial

points for which the solution converges to EE#.

In order to observe a reduction in the number of females, the mating disruption effort
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has to be increased above the threshold Y ∗P . This is the case in Figure 5.12 ((a) and (b)),

where YP = 0.9999 × Y ∗∗P < Y ∗P , for α = 0 and α = 0.1, respectively. We can see that

there is a positive asymptotically stable equilibrium, EE
(2)
MD represented with a green square

(Theorems 5.4.3 c)). The blue lines represent the trajectories of the solutions of (5.17)

initiated at the blue points which converge to EE
(2)
MD, while the red lines represent the

trajectories of the solutions initiated at the red points which converge to TE. With YP > Y ∗P ,

the number of females at equilibrium is reduced, however, the impact of the control is not

proportional to the effort. Indeed comparing the experiments in Figure 5.10 and Figure 5.12,

we observe that in order to reduce the number of females at equilibrium by 49%, the amount

of the lure has to be increased by 17857% when α = 0 and by 20390% when α = 0.1. Further,
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Figure 5.12: Trajectories of a set solutions of system (5.17) in the M×(Y +F )-plane initiated

at the dots. The green squares represent the asymptotically stable equilibria.

comparing the red dots in Figure 5.11 and the red trajectories in Figure 5.12, we can see that

the basin of attraction of the trivial equilibrium becomes larger as the value of YP increases.

Finally, YP > Y ∗∗P allows a full control of the population leading it to extinction no matter

how big it is. In Figure 5.13, YP is above Y ∗∗P by 0.01%, and we can see that all the trajectories

converge to TE. This shows the GAS nature of TE when YP > Y ∗∗P .

Note that in Theorem 5.4.5, the GAS of TE is established for YP > Ỹ ∗∗P , however, we

show numerically that the GAS property of TE holds for YP > Y ∗∗P . From Figure 5.14 we

can see that the error between Ỹ ∗∗P and Y ∗∗P is of order 104 which is small compared to the

values of Ỹ ∗∗P and Y ∗∗P which are of order 106.
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Figure 5.13: Trajectories of a set solutions of system (5.17) in the M×(Y +F )-plane initiated

at the dots. The green squares represent the asymptotically stable equilibria.
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Figure 5.14: Error between the thresholds Ỹ ∗∗P and Y ∗∗P as function of α.

Conclusion and Perspectives

Controlling insect pest population in environmentally respectful manner is a main chal-

lenge in IPM programs. Mating disruption using female sex-pheromone based lures falls

within IPM requirements as it is species specific and leaves no toxic residues in the produce

grown. In this work, we build a generic model, governed by a system of ODEs to simulate the

dynamics of a pest population and its response to mating disruption control with trapping.

From the theoretical analysis of the model, we identify two threshold values of biological

interest for the strength of the lure. The first threshold, Y ∗P , corresponds to a minimum

amount of pheromone necessary for mating disruption to have an effect on the population.
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However, we show that the control can only be fully efficient, that is, drive an established

population to extinction, for an amount of pheromone above a second threshold, Y ∗∗P . We

also show asymptotic stability of the trivial equilibrium, TE, whenever YP > 0. In other

words, a small amount of pheromone can be efficient on a very small population, like at inva-

sion stage. Despite the different modelling approach and control method considered, similar

results were found by Barclay and Mackauer [17], where a threshold for the size of the release

of sterile males was identified, below which two positive equilibria were found, the larger

one being stable and the smaller one being unstable, and above which SIT control is fully

effective. These theoretical results are consistent with field observation, where the failure

of mating disruption is often attributed to a wrong dosage of the pheromone and/or to an

excessive population density [4, 178]. Further, we show that increasing the capture efficiency

of the traps can reduce considerably these threshold values. From practical point of view this

suggests that there is an optimal combination of the strength of the pheromone attractant

and the capture efficiency of the traps to optimise the control of the pests in terms of popu-

lation control and cost. These results support the conclusions of Yamanaka [257] stipulating

that in the case where the lure used for mating disruption is strong enough, then additional

trapping is not necessary, while otherwise, the author advise to rather focus the effort on

the trapping efficiency. In a more realistic setting, this optimised control corresponds to an

optimal setting of traps releasing the pheromone. Alternative approaches, such as individual

based models (IBM), have been considered to study the impact of mating disruption, incor-

porating a spatial component where the attraction of males is governed by the pheromone

plume [258], or by the effective attraction radius (EAR) which corresponds to the probabil-

ity of finding the source [40]. A next step for this work is to add a spatial component to

investigate how traps should be set, how many should be used, and how far from each other

they should be positioned. Investigation on trap settings and their interactions have been

studied in a parallel work dealing with parameter estimation [81] and extended in [5], where

spatio-temporal trapping models are governed by advection-diffusion-reaction processes.

Another perspective is the validation of the model using field data obtained by Mark-

Release-Recapture (MRR) experiments. MRR consists of releasing marked insects in the

wild population and recapture them in traps. In such experiments, the number of insects

released, as well as the position of the release and the position of the traps are known.

Therefore, comparing the trapping data obtained with the model with those obtained using

MRR experiments would enable us to validate the model. Then, following the protocol

proposed in [5], unknown parameters of the model could be estimated.
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Appendix A: Computation of the basic offspring number

The basic offspring number, sometimes called “net reproduction rate or ratio” [28], is

defined as the expected number of females originated by a single female in a lifetime [212].

The computation can be done using a similar method as for the computation of the “basic

reproduction number” in epidemiological model which determines the number if secondary

infections produced by a single infectious individual [242, 77]. Let

• Ri(x) be the rate of recruitment of new individuals in compartment i,

• T +
i (x) be the transfer of individuals into compartment i, and

• T −i (x) be the transfer of individuals out of compartment i.

Our system can be written in the form:

ẋi = Ri(x)− Ti(x),

with

Ti = T −i (x)− T +
i (x),

i = 1, .., 4. When γM > Y + YP , system (5.17) is reduced to system (5.18) and it can be

written as

ẋ = R(x)− T (x),

with

R(x) =




b(1− I
K

)F

0

0

0


 ,
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end

T (x) =




(νI + µI)I

(νY + µY )Y − rνII − δF
(δ + µF )F − νY Y
µMM − (1− r)νII


 .

To obtain the next generation operator, we compute the Jacobian matrices of R and T ,

respectively, JR and JT . Then, from [125, 242], the next generation operator is defined as

RT−1 where R = JR(TE) and T = JT (TE). Here, we have

R =




0 0 b 0

0 0 0 0

0 0 0 0

0 0 0 0


 , and T =




νI + µI 0 0 0

rνI νY + µY −δ 0

0 −νY δ + µF 0

(1− r)νI 0 0 µM


 .

The basic offspring number is obtained by computing the spectral radius of the next gener-

ation operator [242, 77]:

N0 = ρ(RT−1) =
brνIνY

(µI + νI) ((νY + µY )(δ + µF )− δνY )
.

Appendix B: Computation of the endemic equilibrium

We seek for (I∗, Y ∗, F ∗,M∗) such that




dI∗
dt

= 0,
dY ∗
dt

= 0,
dF ∗
dt

= 0,
dM∗
dt

= 0,

that is 



b
(
1− I∗

K

)
F ∗ − (νI + µI)I

∗ = 0,

rνII
∗ − (νY + µY )Y ∗ + δF ∗ = 0,

vY Y
∗ − (δ + µF )F ∗ = 0,

(1− r)νII∗ − µMM∗ = 0.

(5.46)

Thus, starting from the bottom:

M∗ =
(1− r)νI
µM

I∗,

F ∗ =
νY Y

∗

(δ + µF )
,
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rνII
∗ − (νY + µY )Y ∗ +

δνY Y
∗

(δ + µF )
= 0,

⇔ Y ∗ =
rνI(δ + µF )

(vY + µY )(δ + µF )− δνY
I∗,

and therefore,

F ∗ =
rνIνY

(vY + µY )(δ + µF )− δνY
I ∗ .

Using the first equation of (5.46),

b

(
1− I∗

K

)
F ∗ − (νI + µI)I

∗ = 0

⇔ b

(
1− I∗

K

)
νY Y

∗

(δ + µF )
− (νI + µI)I

∗ = 0

⇔ b

(
1− I∗

K

)
νY

(δ + µF )

rνI(δ + µF )

(vY + µY )(δ + µF )− δνY
I∗ − (νI + µI)I

∗ = 0

⇔ b

(
1− I∗

K

)
rνIνY

(vY + µY )(δ + µF )− δνY
− (νI + µI) = 0

⇔ b

(
1− I∗

K

)
rνIνY

(vY + µY )(δ + µF )− δνY
− (νI + µI)((vY + µY )(δ + µF )− δνY )

(vY + µY )(δ + µF )− δνY
= 0

⇔ b

(
1− I∗

K

)
rνIνY − (νI + µI)((vY + µY )(δ + µF )− δνY ) = 0

⇔ brνIνY I
∗ = (−(νI + µI)((vY + µY )(δ + µF )− δνY ) + brνIνY )K

⇔ I∗ =
−(νI + µI)((vY + µY )(δ + µF )− δνY ) + brνIνY

bνIνY
K

⇔ I∗ =
−(νI + µI)((vY + µY )(δ + µF )− δνY )

bνIνY
K +K

⇔ I∗ =

(
1− 1

Nδ

)
K.

Appendix C: Preliminaries on monotone dynamical sys-

tems

Consider the autonomous system of ODEs

dx

dt
= f(x) (5.47)

where f : D −→ Rn, D ⊂ Rn. We assume that f is locally Lipshitz so that local existence

and uniqueness of the solution is assured. We will use the following notations. Denote

x(x0, t)
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the solution of (5.47) initiated in x0. Further, for x, y ∈ Rn
+, we have:

x ≤ y ⇐⇒ xi ≤ yi,∀i ∈ {1, 2, . . . , n},
Definition 5.5.1. System (5.47) is said to be cooperative if for every i = 1, ..., n the function

fi(x) is monotone increasing with respect to all xj, j = 1, ..., n, j 6= i.

Theorem 5.5.1. If f is differentiable on D then the system (5.47) is cooperative if and only

if
∂fi
∂xj

(x) ≥ 0, i 6= j, x ∈ D.

Theorem 5.5.2. Let (5.47) be a cooperative system and let x(x0, t) be a solution of (5.47)

on [0, T ). If y(t) is a differentiable function on [0, T ) satisfying

dy

dt
≤ f(y), y(0) ≤ x0,

then

y(t) ≤ x(x0, t), t ∈ [0, T ).

[248, Theorem II, 12, II]

Theorem 5.5.3. Let (5.47) be a cooperative system, and a, b ∈ D. If a ≤ b and if for t > 0,

x(a, t) and x(b, t) are defined, then x(a, t) ≤ x(b, t).

([225, Prop. 1.1 p32])

Theorem 5.5.4. Let a, b ∈ D, such that a ≤ b, [a, b] ⊆ D and f(a) ≤ 0 ≤ f(b). Then (5.47)

defines a positive dynamical system on [a, b]. Moreover, if [a, b] contains a unique equilibrium

p then, p is globally asymptotically stable (GAS) on [a, b].

([225, Thm. 3.1 p18], [6, Thm. 6])

Theorem 5.5.5. Let a, b ∈ D, such that a ≤ b, [a, b] ⊆ D and f(a) = f(b) = 0 for (5.47).

Then

a) (5.47) defines a positive dynamical system on [a, b].

b) If a and b are the only equilibria of the dynamical system on [a, b], then all non-

equilibrium solutions initiated in [a, b] converge to one of them, that is, either all con-

verge to a or all converge to b.

Proof. a) The proof follows from Theorem 5.5.4.

b) Assume that there exist in the interior of the order interval [a, b] two points x1 and x2

such that lim
t→∞

x(x1, t) = a and lim
t→∞

x(x2, t) = b. Then with some technical considerations

we deduce that a and b are asymptotically stable. Then by [225, Thm. 2.3.2, Prop. 2.2.1]

there is a unique equilibrium in interior([a, b]). This contradiction shows that all trajectories

converge either all to a or all to b.
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Chapter 6

Conclusion and perspectives

6.1 Overview

The control of pest insects is a matter of main economical, environmental and health

concern. IPM programs aim to develop control strategies in order to maintain the pest at

a low-impact level while satisfying environmentally respectful requirements. In this context,

more and more attention is given to pest-specific methods such as biological control, involving

natural enemies of the pest, SIT control, and/or behavioural methods, as mating disruption.

The success of such methods relies on accurate knowledge of the pest’s biology and ecology

as well as a good understanding of its interactions with its environment and its response

to the control methods. Much of this knowledge can be obtained via field observations,

typically collected via trapping, that are usually costly and time consuming and provide

information in the specific setting of the experiment. In order to gain understanding on

the biological processes observed in the field in a more generic manner and test various

hypothesis, mathematical modelling is a very useful tool.

This study was conducted to set a mathematical framework for the development of control

strategies against pest insects. In this prospect this research is focused on the following.

(1) Mathematical models for the pest’s dynamics based on biological assumptions and

processes, and its response to trapping.

(2) Use of the models to simulate trapping data and compare with field data in order

to propose a protocol for accurate and reliable estimation of parameters, such as the

insect population size and distribution, and its dispersal rate as well as other parameters

related to the traps.
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(3) Study of the impact of a specific control method, mating disruption and trapping, and

identify thresholds related to the effort of the control method for extinction of the

population.

In this chapter, we first recall the major findings of this thesis, their practical implications

and the methodology (section 6.2). Then, we discuss the limits and perspectives of this study

(section 6.3).

6.2 Major findings of the thesis

6.2.1 Construction of trap-insect models

The first objective of this thesis was to model the dynamics of an insect population re-

sponding to attractive traps in order to simulate trapping data to be compared with field

data. The modelling choices were driven by biological and ecological knowledge and/or as-

sumptions related to the species, as well as by the research question addressed. For more

accuracy given the purpose of the model, we accounted for some heterogeneity and we con-

sidered structured population models.

On the one hand, the models built in chapters 3 and 4 are spatio-temporal models. They

were used to investigate trapping strategies in terms of positioning of the traps in order to

estimate population parameters. Further, in the model of chapter 4, the spatial component

allows to account for spatial distribution of the insect species. In these models, we only

accounted for an adult population of flying insects which can respond to the traps. There, the

trapping of insects is governed by an advection-diffusion-reaction model formulated by PDEs.

The diffusion term accounts for random movements of insects when they are not responding

to any stimulus, while the advection term governs the attraction of the insects towards the

traps. The reaction term models the demography (births, deaths) and the trapping. In the

model of chapter 4 we consider that the insects are compartmented in “free” or “captured”

insects where the transfer from free to captured occurs in the reaction term of the equation

modelling the dynamics of the free insects. In chapter 3 we assume that the concentration of

the chemical attractant is static, determined over a disk centred at the trap which increases

as the distance to the trap gets smaller. This approach suggests that the trapping occurs

when the distribution of the chemical has reached some equilibrium state, and thus does not

change with time. In contrast, in chapter 4, we couple the dynamics of the insects with the

spread of the chemical attractant which is itself modelled by a diffusion-reaction process.

Then, the force and direction of attraction of the insects towards the traps depends on the

chemical concentration and its gradient. In chapters 3 and 4 the dynamics of the insects and
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their responses to attractive traps is model via advection-diffusion-reaction processes defined

via PDEs. The theoretical study of these models was done considering the problems in

their variational form and applying the theory of Lions. The general theoretical background

is provided in chapter 2, section 2.3. The numerical approximations of the solutions were

obtained via the method of lines, where the problem is first discretized with respect to the

space variable which reduces the problem to a system of ODEs. The space discretization of

the solution in chapter 3 was obtained via approximations of the derivatives using a finite

difference scheme. In order to carry out computations on a unstructured mesh, which allows

a finer refinement around the traps, the space discretization of the solution in chapter 4 is

performed on the variational form of the solution via the finite element method considering

first order polynomials.

On the other hand, the purpose of the model presented in chapter 5 is to study the

impact of a specific control strategy which consists in disrupting the mating between males

and females using female-pheromone traps. Since the pheromone traps only attract males,

and that the control affects the fertilisation of females we assumed that the population is

structured in four compartments that each have a specific contribution to the dynamics of

the whole population. More precisely, we considered a compartment for the aquatic stage

(I) gathering eggs, larvae and pupae, one for adult males (M), another one for females

available for mating (Y ), and finally one for fertilised females (F ). The transfer rate from

the Y compartment to the F compartment depends on the abundance of males available for

mating. When the males are in sufficient abundance, this rate is maximal and constant, while

when the males are scarce, the rate accounts for the proportion of females that were able

to mate with a male. Following the approach in [18], we related the amount of pheromones

released by the traps to an equivalent number of females (YP ). The males attracted to the

pheromone traps become unavailable for mating. Given all these consideration, the model

governing the insect population dynamics is formulated by a system of four coupled ODEs. A

deep theoretical study of this model was carried out using the theory of monotone dynamical

recalled in chapter 2, section 2.4. It allowed to identify pheromone threshold values that

ensure an effective control of the population.

6.2.2 Protocol for the estimation of population parameters

The models built in chapters 3 and 4 were used to estimate population parameters, more

precisely, the initial population size, its dispersal rate and other parameter values related to

the attractiveness of the traps.

In chapter 3, the model allowed to investigate the influence of the number of parameters
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estimated simultaneously as well as the positioning of the traps on the quality of the esti-

mations. As a result, we found that, the more parameters are estimate simultaneously, less

accurate and reliable are the estimates. Further, we found that the trap setting plays an

important role in the quality of the estimations. More precisely, using data from interacting

traps provided better results than non-interacting traps (or equivalently, using a single trap).

In our experiments, the trap setting C stood out providing significantly better estimation of

the parameter values than the other settings regardless the number of parameters estimated

simultaneously. This suggests the existence of an optimal setting of interacting traps that

would allow an accurate and reliable simultaneous estimation of several parameters.

The population size and distribution, its dispersal rate and the parameters related to

the traps may depend on environmental changes (temperature, humidity, wind, etc.) and

thus vary in time. In chapter 4 we develop a protocol for the estimation of the population

parameters using data over a short period of time during which the parameter values may

be assumed to be constant. This protocol is structured in three steps, three (short) exper-

iments, in which we minimize the number of parameters to estimate simultaneously for a

more accurate and reliable estimations.

The first step of this protocol consists in estimating the dispersal rate using data obtained

from a MMR experiment with non-attractive traps. In this experiment, the initial population

size and distribution of marked insects is known since they are released in a specific location.

In chapter 4, we studied numerically the influence of the size of the release, as well as

its distance to the trap for 3 and 5 days of data. We found that 5 days of data do not

provide significantly better estimates of the dispersal rate. Further, we showed that farther

releases from the trap (50 meters) provided less accurate estimates but can be compensated

by increasing the size of the release. For closer releases (10 meters and 30 meters), increasing

the size of the release did not improve significantly the quality of the estimation.

The second step consists in estimating the parameters related to the traps. Here, we have

two parameters α and β which account for the strength of attraction of the trap. To estimate

α and β we use a MRR experiment with attractive traps, and the value of the dispersal rate

estimated in the first step of the protocol. Similarly as for the estimation of the dispersal

rate, we show that it is preferable to do the release close to the trap and that larger releases

increase the quality of the estimations. However, here, the estimations obtained with 5 days

of data were less accurate than those obtained with 3 days of data, thus the estimation of

the trap parameters can be done using a short period of time.

The final step is the estimation of the population size, U0, which is the integral of the

initial condition of the problem, u0, over the spatial domain Ω. While in the work of chap-

ter 3, the initial distribution of insects was assumed homogeneous over the domain, here we
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account for heterogeneous distributions of insets. Trapping data were simulated considering

three different distributions. Then, the population size was estimated using “guessed” initial

distributions with unknown population size with 3 days, and 5 days of data. The results

suggested that 5 days of data produces more accurate estimations, however, if the initial

guessed distribution is close enough to the real distribution, 3 days of data can be sufficient

to obtain accurate distribution. In other words, with a good understanding and knowledge

about the insect’s ecology, its distribution and interactions with the environment, we can ex-

pect accurate estimation of its population size, even with data collected over a short period

of time.

The numerical approximations of the solutions allowed to simulate trapping data used

to estimate parameter values. The estimation of the parameters consists in solving an opti-

mization problem in the least-square sense, where we minimize an objective function which is

defined by the sum of the squares of the difference between the observed data and the simu-

lated data. This minimization problem is solved numerically using the Levenberg-Marquardt

algorithm. However, since the latter algorithm is a local minimization problem, the mini-

mization problem was solved several times with initial values picked (uniformly) randomly in

a specified interval. When several local minima are found, we choose the set of parameters

that yields the smallest value of the minimized objective function.

6.2.3 Identification of thresholds for mating disruption and trap-

ping control

A preliminary study of the model of chapter 5 with no control allowed to compute the basic

offspring number N0 which determines whether the population is viable or not. To study this

model, we first studied the case when males were in sufficient abundance following the same

approach as in [82], then we studied the model in the case when males were scares. Combining

the results of both cases we concluded that when N0 ≤ 1 the only equilibrium of the model

with no control is the trivial equilibrium (TE) which is GAS on R4
+, thus the population is

not viable. When N0 > 1, we found that the model has 2 equilibria, TE which is unstable,

and a positive endemic equilibrium EE∗ which is GAS on R4
+\{x ∈ R4

+ : I = F = 0}, thus

the population can establish.

The study of the model with control was carried out assuming that the population could

establish N0 > 1. As for the study of the model with no control, properties of the equilibria

in the male abundance region and in the male scarcity region were studied independently

in order to determine the properties of the whole system. Two threshold values of YP were

identified, Y ∗P and Y ∗∗P which determine the behaviour of the system and have important
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consequences on the efficacy of the control.

First, we found that whenever YP > 0, TE is asymptotically stable, thus a population

could be driven to extinction if it is small enough, such as at invasion stage. Then, we

identified a threshold Y ∗∗P such that whenever 0 < YP < Y ∗∗P , the system has two positive

equilibria. Numerically, we found that one is unstable while the other one is asymptotically

stable. In addition, we found another threshold value Y ∗P < Y ∗∗P under which the control

has no effect on an established population. More precisely, when 0 < YP < Y ∗P , the males

remain in sufficient abundance and the control does not affect the endemic equilibrium of the

females. On the other hand, for Y ∗P < YP < Y ∗∗P , the control has an effect on an established

population, the abundance of females at equilibrium is reduced but can remain high. However

when YP > Y ∗∗P , we observe a “jump” in the behaviour of the system where the population

is driven to extinction. Theoretically, we show that there is a threshold value of YP above

which TE is GAS.

It is typically difficult to understand why mating disruption is a success in some cases [48,

58] while it fails in others [4, 178]. The failure in mating disruption experiments often

attributed to a wrong dosage of the pheromone and/or to over-abundant population [4, 178].

These results show that a full control of the population can only be achieved if the dosage is

above a certain threshold. Below this threshold, the control may be efficient on a small (i.e.

invading) population but may have only a small or no impact on an established population.

6.3 Limits and perspectives

This study provides outputs of importance in the prospect of pest-insect control resulting

from the theoretical analysis and simulations of trap-insect mathematical models. The next

major step of this work is the validation and application of the obtained results using field

data. In this perspective, a certain number of limitations need to be considered.

In chapters 3 and 4, for instance, homogeneous Neumann boundary conditions were con-

sidered. This condition implies that the domain is assumed isolated, such that there is no

flux of insects on its boundary. In other words, when using homogeneous Neumann boundary

conditions, we assume that, at the boundary, immigration compensate emigration, or that

the domain is sufficiently large so that the dynamics at the boundary have a negligible impact

on the dynamics within the domain. However, such assumption is seldom verified in the field.

Indeed, immigration can play a crucial role to prevent species extinction, particularly in small

habitats [188]. A possible way to account for migration is to consider non-homogeneous con-

ditions at the boundary of the domain. Other types of boundary conditions, such as Robin
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conditions involving the flux and the density at the boundary, could be considered, or even

mixed boundary conditions where different types of conditions are modelled on different parts

of the boundary. However, these approaches require to quantify the flux at the boundary,

which is often difficult. Another commonly used boundary condition is the homogeneous

Dirichlet condition which has been used to model the spread of the chemical attractant in

the model of chapter 4. The use of Dirichlet boundary condition implies that the surrounding

environment is totally hostile, such that the density modelled is equal to zero. In the case

of the spread of the chemical attractant, it was convenient as we assumed that the concen-

tration of the chemical had vanished by the time it reached the boundary. However, we

highlight here that the use of homogeneous Neumann or Dirichlet boundary conditions can

be suitable provided that the domain is assumed large enough. Alternatively migration can

be accounted for in the reaction term of the model similarly as for the demography (births

and death) of the population. This approach can be relevant to model migration due to

long-distance dispersal, or inter-layer migrations in the case of a 2D model restricted to a

specific layer. But here again, the knowledge on the migration rates would be required.

In addition, the model of chapter 4 does not account for spatial heterogeneity in the

diffusion and advection coefficients. However such parameter values are expected to vary

when the landscape is heterogeneous. Adding spatial heterogeneity in the coefficients would

allow more realistic simulations and possibly link the model with GIS data. In particular,

although heterogeneous spatial distribution of insects was assumed in chapter 4, we did not

take into account the factor leading to such a distribution in the model, such as attractiveness

to hosts (trees, shaded areas, etc.). The spatial distribution of insects can be decisive in the

effectiveness of control methods. These models could be extended to account for the dynamics

governing the heterogeneity in the initial distributions, like interactions between pests and

hosts.

Besides, in the protocol for parameter estimation proposed in chapter 4, the first step

consists in estimating the diffusion parameter using non-attractive traps, and thus assuming

that the movement of insects is only driven by diffusion. Although it is possible to obtain

simulated trapping data in such a case, practically it is not realistic to capture insects as-

suming only the isotropic random walk process with passive traps. Typically, insects are

also receptive to visual cues, like colour, size or shape, which give direction to their displace-

ments. The work of chapter 4 aimed to focus on the chemical cues via a chemotaxis process.

However, in order to be more consistent with field experiments, an additional advection term

could be considered to account for other drift parameters such as visual attraction, attraction

to host fruits or wind transport. In a previous work [80], host attraction and breeding sites

were accounted for in a mosquito model to simulate their spatio-temporal distribution.

Furthermore, modelling the trapping via a diffusion-advection-reaction process has its
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challenges of its own as the attraction towards the traps can lead to an accumulation of insects

in a very localised area of the domain which can produce singularities and compromise the

well-posedness of the problem. To overcome this difficulty, in chapter 3, we assumed that the

value of the diffusion coefficient was very small inside the traps to avoid “escapes” of insects

via the diffusion process due to the accumulation of insects inside the traps. Alternatively,

in chapter4, we considered a “trapped-insect” compartment and we had to define a transfer

rate from free to trapped insects. Another possible approach of mathematical interest would

be to consider a domain with singularities, where traps would be modelled by holes in the

domain as represented in Figure 6.1. Then, flux at the boundaries of the traps letting insect

go exclusively in the traps (outside the domain) would account for the trapping of insects.

Figure 6.1: Domain Ω, where traps are modelled via holes with boundaries Γ1, Γ2, Γ3, Γ4

and Γ5.

Moreover, the mating disruption model of chapter 5 has allowed a deep theoretical study

due to its ODE formulation. Such model is relevant in a spatially homogeneous environment,

or in a local area, for instance at the scale of a tree. In order to model the dynamics of

the pest population at the scale of a crop, individual trees could be seen as homogeneous

interacting patches on which we could consider a meta-population model. This approach

would allow to study the impact of the control in a spatially structured crop in order to

adapt and/or optimize control strategies. Another significant aspect to investigate is the

positioning of the traps given the concentration of the lure used in the prospect of finding an

optimal setting of the traps. This aspect could be addressed following a similar approach as

in the study of chapter 3 with interacting traps, where the ODE model would be extended

to a PDE model to account explicitly for the spatial variable.

Another relevant perspective is the combination of mating disruption and trapping with

other methods in order to optimise control strategies in terms of efficiency and cost. Fur-

ther, combination of several methods would be more flexible to adapt with environmental
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changes and avoid dependence to a single method that might work only in specific condi-

tions. Such other control methods may involve natural enemies such as weaver ants, used in

Benin [243], or using parasitoids as in French Polynesia [159], involving Fopius arisanus and

Diachasmimorpha longicauda for the control of fruit flies.

The present work gives a mathematical framework to model the dynamics of insects re-

sponding to attractive traps. Although the models presented here can be made more realistic

by adding complexity, their relative simplicity allowed to carry out theoretical mathematical

studies and simulations providing biologically relevant and applicable results useful for the

development of pest-insect control tool satisfying the requirements of IPM programs.
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