
Heuristics for large-scale Capacitated
Arc Routing Problems on mixed

networks

by

Elias Jakobus Willemse

u04405013

A thesis submitted in fulfilment of the requirements for the degree

Philosophiae Doctor (Industrial Engineering)

in the

Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Pretoria, South Africa

July 2016

© University of Pretoria

© University of Pretoria

Abstract

Heuristics for large-scale Capacitated Arc Routing
Problems on mixed networks

by

Elias Jakobus Willemse

Supervisor : Prof. Johan W. Joubert
Department : Industrial and Systems Engineering
University : University of Pretoria
Degree : Philosophiae Doctor (Industrial Engineering)

Thesis examined by : Prof. Richard Eglese (Lancaster University)
Prof. Luc Muyldermans (Nottingham University)
Dr. Jacomine Grobler (University of Pretoria)

Residential waste collection is an expensive activity performed daily on large metropolitan
areas throughout the year. Even a small improvement in waste collection and transfer
operations can therefore lead to significant cost savings. A promising improvement area
is to design better waste collection routes.

In this thesis we show that the problem of designing optimal collection routes for waste
collection vehicles can be modelled as the Mixed Capacitated Arc Routing Problem under
Time Restrictions with Intermediate Facilities (MCARPTIF). The problem is a general-
isation of the Capacitated Arc Routing Problem (CARP) and takes into consideration a
mixed road network consisting of one- and two-way streets; a vehicle capacity that limits
the amount of waste a vehicle can carry at any given time; Intermediate Facilities (IFs)
where vehicles are allowed to unload their waste and resume their collection rounds; and a
time restriction which prohibits the duration of a route from exceeding a time-limit. The
objective of the MCARPTIF is to develop routes of minimum total cost while adhering
to all the operational constraints and requirements of the problem.

The MCARPTIF belongs to the class of NP-hard problems, making it impractical to
solve large instances, such as those representing actual residential waste collection opera-

i

© University of Pretoria

http://www.up.ac.za/industrial-and-systems-engineering
http://www.up.ac.za

ii

tions, through exact methods within reasonable computing times. Instead the most relied
upon methods to address such problems are through heuristic and metaheuristic solution
strategies. In this thesis we develop constructive and Local Search based improvement
heuristics, as well as a Tabu Search metaheuristic for the MCARPTIF. A key component
of the methods is the trade-off between the quality of the generated solutions and the speed
(or time required) to generate and improve the solutions. In this thesis, short, medium
and long execution time-limits are imposed, representing practical situations where solu-
tions are sought within three-, thirty and sixty minutes. The performance of the methods
is then critically evaluated under these time-limits through benchmark tests on new large
MCARPTIF instances.

For the short time-limits four constructive heuristics are developed and tested, and all
proved capable of generating feasible solutions for large problem instances within three
minutes. A vehicle reduction procedure is also implemented that allows the heuristics
to better deal with cases where the fleet size has to be minimised. The performance of
the heuristics was inconsistent between different benchmark sets, particularly between
waste collection instances and the smaller sets available in literature, thus confirming
that the effectiveness of heuristics on small instances does not guarantee that they will
perform equally well in more realistic settings. Despite their inconsistent performance,
the developed constructive heuristics play an important role in solving the MCARPTIF
as they provide initial solutions for more advanced improvement heuristics, which can be
applied when more execution time is available.

For medium time-limits we develop advanced Local Search improvement heuristics
that rely on two acceleration mechanisms to improve their efficiency. On the largest test
instances the basic Local Search setups—that is, without the acceleration mechanisms—
took between fifteen minutes and three hours to improve a single solution to local optima.
After embedding the accelerated mechanisms within the setups, Local Search took at most
four minutes to reach local optima, thus allowing it to be used even when short execution
time-limits are imposed.

For long time-limits we extend the accelerated Local Search setup into a deterministic
Tabu Search metaheuristic. The metaheuristic takes as input only two parameters, namely
a tabu tenure and an execution time-limit. It then improves an initial solution beyond the
local optima found using only Local Search. The metaheuristic is tested on large waste
collection problem instances and outperforms both the constructive heuristics and acceler-
ated Local Search setups under short, medium and long execution time-limits. The Tabu
Search is then further tested as-is on Mixed Capacitated Arc Routing Problem (MCARP)
instances and its performance is compared against an existing Memetic Algorithm for the
problem. On large instances the Tabu Search is able to outperform the existing method in
under three minutes, but on small and medium instances the existing method proved more
effective. On these sized instances Tabu Search requires in excess of fifteen minutes and on
some instances completely fails to outperform the Memetic Algorithm. Existing heuristic
and metaheuristics are thus well capable of dealing with small to medium size instances.
However, as our tests on the MCARP instances show, the performance of existing methods
on large instances leaves much room for improvement. It is therefore recommended that
more tests be performed on large instances such as those introduced in this thesis, which
are similar in size to those encountered in practice.

To test the limits of our solution methods a final set of tests are performed on a
huge waste collection instance with 6289 required arcs and edges; prior to this thesis the
largest instance available from literature only had 803. Two constructive heuristics are
capable of generating initial solutions for the instance within three minutes. Thereafter the

© University of Pretoria

iii

accelerated Local Search heuristic is able to improve the initial solutions to local optima
within thirty minutes. The Tabu Search is then able to marginally improve the solutions
within one-hour. More significant improvements are obtained through the Tabu Search
when it is allowed up-to 24 hours of execution time, which is expected given the size of the
test instance. This final test shows that the heuristics and metaheuristics developed in this
thesis are capable of tackling, within reasonable computing times, very large MCARPTIF
instances that are similar in size to those encountered in practice.

Keywords: Waste collection; Capacitated Arc Routing Problem, Mixed networks; Inter-
mediate Facilities; Route duration restriction; Splitting procedures; Constructive heuris-
tics; Local search; Metaheuristics.

© University of Pretoria

iv

© University of Pretoria

Acronyms

Problem acronyms

ARP Arc Routing Problem

A routing problem where arcs or edges, typically representing street segments, have to

be serviced. Examples of Arc Routing Problems include postal delivery, snow removal,

waste collection, and meter-reading.

CARP Capacitated Arc Routing Problem

An Arc Routing Problem where a fleet of vehicles with fixed capacity must service a

set of required edges with demand, such that each vehicle route starts and ends at the

vehicle depot, and the total demand of edges serviced on a route may not exceed

vehicle capacity.

MCARP Mixed Capacitated Arc Routing Problem

The mixed version of the Capacitated Arc Routing Problem where the network to be

serviced is mixed. The network can consist of edges that can be serviced or traversed

in any direction, as well as arcs that can only be serviced or traversed in one direction.

IF Intermediate Facility

An intermediate facility where a waste collection vehicle is allowed to unload its waste

prior to exceeding its capacity and resume servicing required arcs and edges.

CARPIF Capacitated Arc Routing Problem with Intermediate Facilities

An extension of the Capacitated Arc Routing Problem where vehicles are allowed to

visit Intermediate Facilities within their routes, as long as the demand serviced in a

route between Intermediate Facility visits does not exceed vehicle capacity.

MCARPIF Mixed Capacitated Arc Routing Problem with Intermediate Facilities

The mixed version of the Capacitated Arc Routing Problem with Intermediate

Facilities where the network to be serviced is mixed.

CARPTIF Capacitated Arc Routing Problem under Time Restrictions with
Intermediate Facilities

An extension of the Capacitated Arc Routing Problem with Intermediate Facilities in

which a route-duration limit is imposed on each vehicle route, typically representing

the available working hours in a day.

MCARPTIF Mixed Capacitated Arc Routing Problem under Time Restrictions with
Intermediate Facilities

v

© University of Pretoria

vi

The mixed version of the Capacitated Arc Routing Problem under Time Restrictions

with Intermediate Facilities.

VRP Vehicle Routing Problem

The node routing equivalent of the Capacitated Arc Routing Problem where a fleet of

vehicles with fixed capacity must service a set of service points, instead of edges, such

that each vehicle route starts and ends at the vehicle depot, and the total demand of

the points serviced on a route may not exceed vehicle capacity.

Algorithm acronyms

M Merge

A constructive heuristic that creates an initial solution by generating a route for each

required arc and edge, and then merging the routes until no more mergers are possible

without violating constraints. In this thesis we implement a deterministic version of

the method, termed Improved-Merge (IM), as well as a randomised multi-start version,

termed Randomised-Merge (RM).

PS Path-Scanning

A constructive heuristic that gradually builds an initial solution by adding the nearest

required arc or edge to the current position of a route until the route reaches its

capacity or route duration-limit. In this thesis we implement a deterministic version of

the method, termed Path-Scanning (PS), as well as a randomised multi-start version,

termed Path-Scanning-Random-Link (PSRL).

RC Route-Cluster

A giant-route based constructive heuristic in which problem constraints are ignored

and Path-Scanning is used to generate a giant route. The route is then clustered into

feasible vehicle routes using optimal splitting procedures. In this thesis we implement

a deterministic version of the method, termed Route-Cluster (RC), as well as a

randomised multi-start version, termed Route-Cluster-Random-Link (RCRL).

ERC Efficient-Route-Cluster

An efficient version of Route-Cluster which uses a heuristic instead of optimal splitting

procedure. In this thesis we implement a deterministic version of the method, termed

Efficient-Route-Cluster (ERC), as well as a randomised multi-start version, termed

Efficient-Route-Cluster-Random-Link (ERCRL).

RV Reduce-Vehicles

A vehicle reduction procedure that attempts to reduce the number of routes required

for a solution. The procedure removes a route from the solution and attempts to

re-insert the arcs of the route into the remaining routes, where feasible, even if it

results in an increase in solution cost.

LS Local Search

A greedy heuristic improvement method that improves an initial solution by making

small modifications to the solution until a local optimum is reached. In this thesis we

implement basic as well as accelerated Local Search versions, referred to as

© University of Pretoria

vii

Local-Search Basic (LS-B), and Local-Search Accelerated (LS-A). LS-B is further

tested with a Full (LS-BF) and Reduced Neighbourhood (LS-BR) move

neighbourhood, and both versions are tested with a Best-Move (LS-BFB and

LS-BRB) and a First-Move (LS-BFF and LS-BRF) move strategy. LS-A is tested with

a Reduced (LS-AR) and an Extended (LS-AE) move neighbourhood, and with a

Best-Move (LS-ARB and LS-AEB) and Greedy-Independent-Compound-Moves

(LS-ARG and LS-AEG) move strategy. All the LS-A setups are further tested with

Nearest-Neighbourhood-Lists.

TS Tabu Search

A metaheuristic solution method that uses memory structures to guide Local Search

out of local optima. In this thesis we implement an Accelerated Neutral Tabu Search

(NATS) that incorporates takes as input two parameters, namely, a tabu tenure and

execution time-limit.

© University of Pretoria

viii

© University of Pretoria

Contents

Abstract i

Acronyms iv

Problem acronyms . v

Algorithm acronyms . vi

Contents ix

List of Figures xiii

List of Tables xvii

List of Algorithms xx

1 Introduction 1

1.1 Municipal solid waste collection and transportation 1

1.2 Capacitated Arc Routing Problems . 2

1.3 Problem statement . 4

1.4 Research design . 5

1.5 Research methodology . 6

1.6 Document structure . 7

2 Capacitated Arc Routing Problems in literature 9

2.1 Arc routing problems in literature . 9

2.1.1 Terms and notations . 9

2.1.2 Chinese and rural postmen . 9

2.1.3 The Capacitated Arc Routing Problem 10

2.2 Extensions of the Capacitated Arc Routing Problem 12

2.2.1 Mixed networks . 12

2.2.2 Intermediate facilities . 14

2.2.3 Treatment of vehicle fleet size . 14

2.2.4 The MCARPTIF formally defined 16

2.3 Solution approaches for Capacitated Arc Routing Problems 18

2.3.1 Problem difficulty . 19

2.3.2 Constructive heuristics . 20

2.3.3 Improvement heuristics . 20

2.4 Evaluating heuristics . 22

2.4.1 Evaluation criteria . 22

2.4.2 Problem test instances . 23

2.5 Conclusion . 28

ix

© University of Pretoria

x CONTENTS

Chapter appendix . 29

2.A Modelling and calculating shortest paths with turn penalties 29

2.B Generic algorithm running time analysis . 31

2.C Cen-IF problem instance description . 31

3 Splitting procedures 33

3.1 Introduction . 33

3.2 Splitting procedures for the CARP and CARPTIF 33

3.3 New splitting procedures . 35

3.3.1 Splitting procedures for the MCARPIF 35

3.3.2 Splitting procedures for the MCARPTIF 38

3.3.3 Heuristic splitting procedures for the MCARPTIF 42

3.4 Computational results . 42

3.5 Conclusion . 47

4 Constructive heuristics 49

4.1 Introduction . 49

4.2 Constructive heuristics for CARPs . 50

4.3 Constructive heuristics for the MCARPTIF 51

4.3.1 Path-Scanning . 52

4.3.2 Merge . 55

4.3.3 Route-First-Cluster-Second heuristics 59

4.3.4 Vehicle Reduction heuristic . 60

4.4 Computational results . 61

4.4.1 Evaluation criteria . 61

4.4.2 Computational time and break even analysis 64

4.4.3 Performance evaluation . 66

4.5 Main findings . 73

4.6 Conclusion . 73

Chapter appendix . 75

4.A Detailed algorithm descriptions . 75

4.A.1 Multiple run solution constructor . 75

4.A.2 Path-Scanning algorithm . 76

4.A.3 Randomised-Merge algorithm . 77

4.A.4 Reduce-Vehicles algorithm . 79

5 Basic local search heuristics 81

5.1 Introduction . 81

5.2 Local search for the CARP and MCARP . 82

5.2.1 MCARP move operators . 82

5.2.2 Basic acceleration strategies . 84

5.3 Basic local search for the MCARPTIF . 85

5.3.1 Flip . 87

5.3.2 Relocate . 89

5.3.3 Exchange . 94

5.3.4 Cross . 98

5.3.5 Two-opt-1 . 102

5.4 Computational results . 104

5.4.1 Best-move local search . 105

5.4.2 First-move local search . 108

© University of Pretoria

CONTENTS xi

5.5 Conclusion . 110

Chapter appendix . 111

5.A First-move versus best-move strategies . 111

5.B Additional cross moves for the MCARPTIF 111

6 Accelerated local search heuristics 117

6.1 Introduction . 117

6.2 Acceleration mechanisms for the CARP and VRP 117

6.2.1 Nearest neighbour lists . 118

6.2.2 Static move descriptors . 118

6.2.3 Compounding independent moves 119

6.2.4 Other improvement mechanisms . 120

6.3 Accelerated and extended LS for the MCARPTIF 120

6.3.1 Nearest neighbour lists . 122

6.3.2 Greedily compounding independent moves 124

6.3.3 Static move descriptors . 128

6.3.4 Extending the move neighbourhood 131

6.4 Computational results . 134

6.4.1 Analysis of acceleration mechanisms and extended move neighbour-
hoods . 135

6.4.2 Domination analysis . 141

6.4.3 Multi-start performance evaluation 145

6.5 Conclusion . 154

Chapter appendix . 155

6.A Accelerated best-move versus accelerated compounded moves 155

6.B Multi-start analysis . 155

6.C Results for multi-start LS setups with nearest-neighbour-lists 157

7 An accelerated tabu search metaheuristic 161

7.1 Introduction . 161

7.2 Tabu search for the MCARPTIF . 162

7.2.1 Basic instruments . 163

7.2.2 Application of efficient local search components within Tabu Search 164

7.2.3 Greedily compounding independent non-tabu moves 165

7.2.4 Accelerated Tabu Search . 166

7.3 Computational results . 168

7.3.1 Results on the MCARPTIF instances 170

7.3.2 Evaluation against existing solution approaches 174

7.3.3 Computational tests on the Cen-IF-Full instance 178

7.4 Conclusion . 181

Chapter appendix . 183

7.A Tabu tenure parameterisation . 183

7.B Results for NATS on the MCARP . 183

8 Research contributions and future work 187

8.1 Research aims . 187

8.2 Research contributions . 189

8.3 Future research opportunities . 191

Bibliography 193

© University of Pretoria

xii CONTENTS

Appendices 203

A Detailed results tables 203
A.1 Full results for constructive heuristics . 203

A.1.1 Results on Act-IF, Cen-IF and lpr-IF 203
A.1.2 Results on small benchmark sets . 206

A.2 Full results for the tabu search metaheuristic 220
A.2.1 Results on Act-IF, Cen-IF, Lpr-IF and mval-IF-3L 220
A.2.2 Results on lpr, mval and bccm-IF . 231

© University of Pretoria

List of Figures

1.1 Network representation of residential waste collection 3

2.1 Example of the Capacitated Arc Routing Problem 11

2.2 Example of the Mixed Capacitated Arc Routing Problem 13

2.3 Example of the Mixed Capacitated Arc Routing Problem with Intermediate
Facilities. 15

2.4 Randomly generated lpr-c-05 like network 24

2.5 Act-IF road network . 25

2.6 Cen-IF road network . 25

3.1 Example of a splitting procedure for the MCARPIF 36

3.2 Optimal IF partitions on the example route 39

3.3 Example of a splitting procedure for the MCARPTIF 40

3.4 Results for four MCARPTIF splitting procedures on thirty different giant
tours per instance . 44

3.5 Results for the cost gap between Simple-Split and Heuristic-Split, and
Efficient-Split. 45

4.1 Waste collection area for the recycling case study. 50

4.2 Histogram of cost gaps for Improved-Merge and Randomised-Merge on the
Cen-IF-b problem instance. 62

4.3 Problem instance size versus CPU time of deterministic heuristics to pro-
duce one solution and for Reduce-Vehicles to improve the solution. 64

4.4 Problem instance size versus execution time of Randomised-Merge, Path-
Scanning-Random-Link, Efficient-Route-Cluster-Random-Link and Route-
Cluster-Random-Link implementations. 67

4.5 Results on waste collection benchmark instances of the deterministic and
randomised versions of Merge, Path-Scanning and Efficient-Route-Cluster
when min Z or min K is the primary objective. 68

5.1 Examples of relocate, exchange, two-opt and two-opt-1 move operators for
the MCARP. 83

5.2 Example of the flip move where an arc task in a route is inverted if it has
an opposing arc. 87

5.3 Cost of flip moves. 88

5.4 Example of the relocate move operator. 89

5.5 Cost of the remove component of relocate moves. 91

5.6 Cost of the insert component of relocate moves. 92

5.7 Conditions for a relocating move. 93

5.8 Example of the exchange move operator. 95

xiii

© University of Pretoria

xiv LIST OF FIGURES

5.9 Cost of replacing an arc with another arc. 95

5.10 Conditions for exchanging arcs Ti,j,k and Tl,m,n. 96

5.11 Example of the cross move operator. 99

5.12 The cost and feasibility checks when two routes are crossed at positions
preceded by arc tasks. 100

5.13 Example of the two-opt-1 move where the route segment between two arcs
is inverted . 103

5.14 Results for basic best-move LS setups . 105

5.15 Cost saving contributions of move operators within the LS-Best and LS-
Best-Reduced implementations. 107

5.16 Average time per iteration by each move operator within the LS-Best and
LS-Best-Reduced implementations. 107

5.17 Comparison of LS-Basic-Full-Best, LS-Basic-Reduced-Best, LS-Basic-Full-
First and LS-Basic-Reduced-First setups on waste collection benchmark sets 109

5.18 Illustration of the difference between best-move and first-move setups using
only the relocate move operator on two Path-Scanning initial solutions. . . 112

5.19 The cost and feasibility checks when two routes are crossed at a position
preceded by an arc task, and on the last IF visit in a subtrip. 113

5.20 The cost and feasibility checks when two routes are crossed at a position
preceded by an arc task, and on the first IF visit in a subtrip. 113

5.21 The cost and feasibility checks when two routes are crossed at a position
preceded by an arc task, and on the first arc following an IF visit. 114

5.22 Further examples of cross moves. 115

6.1 Example of a waste collection area to be serviced with nearest neighbour
arc segments. 123

6.2 Four possible improving moves on the example route TTT 1 126

6.3 Comparison of LS-Accelerated-Reduced-Best, LS-Basic-Reduced-Best and
Local Search (LS)-Basic-Full-Best on waste collection benchmark sets . . . 136

6.4 Comparison of LS-Accelerated-Reduced-Greedy, LS-Accelerated-Reduced-
Best and LS-Basic-Full-Best on waste collection benchmark sets 137

6.5 Comparison of LS-Accelerated-Reduced-Greedy and LS-Accelerated-Reduced-
Best at four Nearest-Neighbour-Lists f -levels on waste collection benchmark
sets . 138

6.6 Move landscape analysis at the first iteration of LS with a reduced neigh-
bourhood on waste collection benchmark sets. 141

6.7 Comparison of LS-Accelerated-Reduced-Greedy, LS-Accelerated-Extended-
Greedy, LS-Accelerated-Reduced-Best and LS-Accelerated-Extended-Best
on waste collection benchmark sets. 142

6.8 Dominated and non-dominated local search setups in terms of cost sav-
ings, fleet reduction and execution time of the setups on waste collection
benchmark sets. 143

6.9 Dominated and non-dominated local search setups in terms of cost sav-
ings, fleet reduction and execution time of the setups on the mval-IF-3L
benchmark set. 145

6.10 Cost and fleet size gaps of the multi-start LS-Accelerated-Extended-Best-1
and LS-Accelerated-Extended-Greedy-f setups linked with Efficient-Route-
Cluster-Random-Link, Path-Scanning-Random-Link and Randomised-Merge
constructive heuristics on Cen-IF instances 147

© University of Pretoria

LIST OF FIGURES xv

6.11 Cost and fleet size gaps on Cen-IF instances of the multi-start and de-
terministic setups of LS-Accelerated-Reduced-Greedy and LS-Accelerated-
Extended-Greedy linked with Efficient-Route-Cluster, Path-Scanning and
Merge constructive heuristics, as well as the multi-start randomised con-
structive heuristic setups on their own. 149

6.12 Cost and fleet size gaps on Act-IF and Cen-IF instances of the multi-
start and deterministic setups of LS-Accelerated-Reduced-Greedy and LS-
Accelerated-Extended-Greedy linked with Efficient-Route-Cluster, Path-Scanning
and Merge constructive heuristics, as well as the multi-start randomised
constructive heuristic setups on their own 151

6.13 Illustration of the difference between LS only using Static-Move-Descriptors
and using it in combination with Greedy-Compound-Independent-Moves . . 156

6.14 Illustration of the multi-start analysis on LS-AEG-0.25 and LS-AEG setups
with Path-Scanning-Random-Link. 157

6.15 Cost and fleet size gaps of the multi-start LS-Accelerated-Extended-Best-1
and LS-Accelerated-Reduced-Greedy-f setups under execution time-limits
on Cen-IF instances. 158

6.16 Cost gaps of the multi-start LS-Accelerated-Extended-Best-1 and LS-Accelerated-
Extended-Greedy-f setups linked with Efficient-Route-Cluster-Random-Link,
Path-Scanning-Random-Link and Randomised-Merge constructive heuris-
tics on Act-IF and Lpr-IF instances. 159

7.1 Comparison between the best performing Local Search setup per problem
instance and Path-Scanning, Improved-Merge and Efficient-Route-Cluster
constructive heuristics linked with Neutral-Accelerated-Tabu-Search on waste
collection benchmark sets . 171

7.2 Lower-bound gaps of NATS setups, in comparison to a Memetic Algorithm
[6], on nine Lpr instances. 177

7.3 Performance of NATS under a 24-hour execution time-limit on the Cen-IF-
Full instance. 180

7.4 Improvement of Neutral Accelerated Tabu Search at different tabu tenure
levels to three initial solutions per problem instance. 184

7.5 Cost gap between the NATS setups and the previous best known solutions,
in comparison to the Memetic Algorithm of [6], on nine Lpr MCARP prob-
lem instances. 185

© University of Pretoria

xvi LIST OF FIGURES

© University of Pretoria

List of Tables

2.1 Glossary of mathematical symbols. 18

2.2 MCARPTIF solution representation symbols. 18

2.3 Benchmark set and problem instance features. 27

3.1 Mean total cost results over 30 experiments for different splitting procedures
used in a multi-start Route-First-Cluster-Second constructive heuristic . . . 46

4.1 Average heuristic CPU times (in seconds) to generate one solution per
benchmark set. 64

4.2 Average number of runs, αe, required by randomised heuristics to break-
even with their deterministic versions. 65

4.3 Number of problem instances on which randomised heuristics failed to
break-even over 10000 runs. 66

4.4 Number of problem instances on which Reduce-Vehicles was able to reduce
the fleet size. 67

4.5 Average Zgap values (in %) on benchmark sets when min Z is the primary
or secondary objective. 70

4.6 Average Kgap values on benchmark sets when min K is the primary or
secondary objective. 71

5.1 Fleet size reduction capabilities of four local search setups on fourteen
excessive-fleet initial solutions. 109

6.1 Cost-links of moves between arcs u and v. 127

6.2 Conditions for a move between arcs u and v to break the cost-link (θk, θk+1).127

6.3 The main local search versions and their respective setups tested for the
MCARPTIF. 135

6.4 Fleet size reduction, ∆KLS, of LS-ARG-f and LS-ARB-f setups on fourteen
excessive-fleet initial solutions. 140

6.5 Averages for the expected percentage cost gaps, Zgap %, of heuristic setups
under short-term and medium-term and planning execution time-limits of
three and thirty minutes, respectively. 152

6.6 Number of instances on which the of heuristic setups failed to produce
solutions with the known minimum fleet size. 153

7.1 Average cost gaps, Zgap in %, of different optimisation algorithms under
short, medium and long execution time-limits on MCARPTIF benchmark
sets. 173

xvii

© University of Pretoria

xviii LIST OF TABLES

7.2 Number of problem instances per MCARPTIF benchmark set on which the
different optimisation algorithms under short, medium and long execution
time-limits produced excess-fleet solutions. 175

7.3 Average lower-bound and best-known cost gaps for NATS setups on MCARP
and CARPTIF benchmark sets. 177

7.4 Performance of the optimisation algorithms on the Cen-IF-Full instance. . . 179

A.1 Heuristic results for Act-IF, Cen-IF and Lpr-IF sets 204
A.2 Computational times, in seconds, of heuristics to complete 100 runs (α =

100) for Cen-IF and Lpr-IF, Act-IF sets. 206
A.3 Heuristic results for mval-IF-3L set . 207
A.4 Heuristic results for bccm-IF-3L set . 209
A.5 Heuristic results for gdb-IF-3L set . 211
A.6 Heuristic results for bccm-IF set . 212
A.7 Heuristic results for gdb-IF set . 215
A.8 Computational times, in seconds, of heuristics for mval-IF-3L. 217
A.9 Computational times, in seconds, of heuristics for bccm-IF-3L. 217
A.10 Computational times, in seconds, of heuristics for gdb-IF-3L. 218
A.11 Computational times, in seconds, of heuristics for bccm-IF. 218
A.12 Computational times, in seconds, of heuristics for gdb-IF. 219
A.13 Expected cost, Z, for the constructive heuristic, accelerated Local Search,

and Neutral Accelerated Tabu Search setups under different time-limits on
the Cen-IF, Lpr-IF, Act-IF, and mval-IF-3L sets. 221

A.14 Expected fleet size, K, for the constructive heuristic, accelerated Local
Search, and Neutral Accelerated Tabu Search setups under different time-
limits on the Cen-IF, Lpr-IF, Act-IF, and mval-IF-3L sets. 225

A.15 Cost results for the Memetic Algorithm (MA) of [6] and for the multi-start
and deterministic Neutral Accelerated Tabu Search (NATS) setups linked
with different constructive heuristics on the lpr set when allowed 60 minutes
of execution time. 231

A.16 Cost results for the Memetic Algorithm (MA) of [6] and for the multi-
start and deterministic Neutral Accelerated Tabu Search setups linked with
different constructive heuristics on the mval set when allowed 60 minutes
of execution time. 232

A.17 Cost results for the Variable Neighbourhood Search (VNS) algorithm of [68]
and for the multi-start and deterministic Neutral Accelerated Tabu Search
setups linked with different constructive heuristics on the bccm-IF set when
allowed 60 minutes of execution time. 233

© University of Pretoria

List of Algorithms

2.1 Arc-to-Arc-Floyd-Warshall algorithm with turn penalties 30

2.2 Shortest-Path-Arc-Sequence . 30

3.1 Efficient-IF-Split for the MCARPIF . 37

3.2 Efficient-Split for the MCARPTIF . 41

3.3 Heuristic-Split for the MCARPTIF . 43

4.1 nConstruct . 75

4.2 Path-Scanning . 76

4.3 Initialise-Merge . 77

4.4 Execute-Merge . 78

4.5 Insert-Arc . 79

4.6 Reduce-Vehicles . 80

5.1 Generic-Local-Search . 82

5.2 Basic-Local-Search . 86

5.3 Find-Flip-Subtrip-Move . 88

5.4 Find-Flip-Move . 89

5.5 Find-Relocate-Subtrip-Move . 92

5.6 Find-Relocate-Move . 94

5.7 Find-Exchange-Subtrip-Move . 97

5.8 Find-Exchange-Move . 98

5.9 Find-Cross-Subtrip-Move . 101

5.10 Find-Cross-Move . 101

5.11 Find-Two-Opt-1-Move . 104

6.1 Move-Cost . 121

6.2 Check-Feasibility . 122

6.3 Find-Relocate-Moves . 123

6.4 Find-Exchange-Moves . 124

6.5 Find-Cross-Moves . 125

6.6 Greedy-Compound-Independent-Moves . 128

6.7 Update-Move-Dependence-Arc-Sets . 130

6.8 Check-Move-Independence . 130

6.9 Greedy-Compound-Moves . 131

6.10 Update-Savings-List . 132

6.11 Accelerated-Local-Search . 132

7.1 Tabu-Search . 163

7.2 Tabu-Greedy-Compound-Moves . 165

xix

© University of Pretoria

xx LIST OF ALGORITHMS

7.3 Update-Tabu-List . 166
7.4 Accelerated-Tabu-Search . 167
7.5 Neutral-Tabu-Greedy-Compound-Moves . 168
7.6 Neutral-Accelerated-Tabu-Search . 169

© University of Pretoria

Chapter 1

Introduction

Waste management is an important basic service provided by local municipalities, and
consists of the effective management of waste from its creation to its final disposal. A
key activity of waste management is the collection and transportation of waste to landfill
sites. This seemingly simple task is one of the most costly of the waste management
functions, and the scale at which it is performed makes it a promising area to target for
improvement. This thesis deals with the optimisation of waste collection vehicle routes
to improve the collection and transportation function of local municipalities. By treating
waste collection routing as an arc routing problem, heuristics are developed that can be
used to generate and improve collection routes for large collection areas, consistent in size
with those serviced by local municipalities.

1.1 Municipal solid waste collection and transportation

Solid waste collection and transportation consists of the collection, transportation and
disposal of waste at landfill sites, usually through waste collection vehicles. It is well
recognised as being the most costly component of the waste management function and can
account for between 50-80% of a municipality’s solid waste management budget [49, 84]. In
2010, South African municipalities spent R7.3 billion1 on solid waste management, and it
is estimated that waste collection transportation costs amounted to 45% of this total [65].
Waste collection and transportation is assigned to and managed by 278 local government
entities. At this sub-level the scale of waste collection operations can still be massive. As
a case in point, the City of Cape Town, which is the second largest metro in South Africa,
manages a collection fleet of 887 vehicles, of which more than 200 are used to service the
approximately 1 000 000 households of the City on a weekly basis [16].

The state of practice method of residential waste collection is through curb side col-
lection. Municipalities have to collect the waste of each household at least once a week.
Households place their generated waste, which is stored in either bins or bags, on the
designated days in front of their properties where waste collection vehicles can then col-
lect the waste. This process is highly repetitive and performed throughout the year. In
2010, truck costs were responsible for R1.9 billion and fuel costs for R1.4 billion of the total
waste collection expenditures in South Africa, therefore even a small improvement in waste
collection and transfer operations can lead to significant savings in costs. A promising im-
provement area is to design better waste collection routes, with the aim to minimise the
number of vehicles to service a specific area, and to minimise the total distance travelled

1This is equal to US$ 947 million, calculated using the average US$ 1 = R 7.5 exchange rate of 2010.

1

© University of Pretoria

2 CHAPTER 1. INTRODUCTION

by the vehicles. This led us to the following broad research question:

How should municipalities design and optimise residential waste collection routes
for their waste collection vehicles?

To better answer the research question the next section illustrates how residential waste
collection can be simplified using network modelling. Through the simplification we show
that designing collection routes can be modelled as a network optimisation problem known
as the Capacitated Arc Routing Problem (CARP).

1.2 Capacitated Arc Routing Problems

Illustrated in Figure 1.1a is an example of an urban area where the dots represent resi-
dential waste bins. Since all of the area’s waste has to be collected, each of the 65 bins
of Figure 1.1a has to be visited by collection vehicles. The problem can be simplified as
follows. Instead of stating that each bin has to visited by a collection vehicle, we rather
state that each road segment has to be serviced. Given this aggregation the road network
in Figure 1.1a can be simplified to the network in Figure 1.1b where each of the seventeen
vertices, a through r, represent a street intersection or dead-end of Figure 1.1a. Each road
segment connecting two vertices is classified as an edge, and since all roads are two way
streets the edges can be serviced in either direction. Finally, the waste to be collected on
each edge is referred to as the demand of the edge.

Network problems that require road segments (arcs and edges) to be serviced are
known in literature as Arc Routing Problems (ARPs). When a capacity constraint is
enforced, which in our case is the amount of waste a vehicle can collect before it is full,
the problem generalises to the Capacitated Arc Routing Problem (CARP), first proposed
by Golden and Wong [39]. The CARP has a wide range of applications such as security
guard routing [85] and railway maintenance [43], and its well known applications of snow
plowing [13] and waste collection [35], among others. The objective of the problem is to
determine routes of minimal total cost for a fleet of homogeneous vehicles so that each
route starts and ends at the vehicle depot, each road segment with demand is serviced
exactly once by a vehicle, and the sum of demand serviced by a route does not exceed
vehicle capacity. The fleet size can be either limited, unlimited, minimised or left as a
decision variable. Total cost can also be measured in total distance travelled or the sum
of the time taken to complete all routes.

In terms of waste collection, various successful CARP applications can be found in
literature. Bautista et al. [4] use a CARP transformation to design collection routes for
Sant Boi de Llobregat within the metropolitan area of Barcelona (Spain). The new routes
result in a 22 000 km yearly route length reduction. Consequently fuel consumption is
reduced and additional time of truck drivers is made available to perform other tasks such
as vehicle maintenance and street sweeping. Ghiani et al. [30] conduct a solid waste col-
lection study for the Municipality of Castrovillari, a town located in Southern Italy. The
authors model waste collection as a variant of the CARP and their routing solutions result
in overall annual savings of more than 13 000 Euros per year. The authors estimate that
applying their analysis in other Italian municipalities could save hundreds of millions of
Euro annually. Sahoo et al. [74] report on the development of WasteRoute, a comprehen-
sive route-management system for waste collection. The system was developed for Waste
Management, Inc. who provide residential waste collection services. The system employs
CARP modelling and within one year of its inception the company had 984 fewer routes,
resulting in annual savings of eighteen million US dollars. Based on the successful CARP

© University of Pretoria

1.2. CAPACITATED ARC ROUTING PROBLEMS 3

(a) A detailed view of a residential area to be serviced by waste collection vehicles. The dots represent
waste bins, each filled with one kilogram of waste.

(b) A simplified road network representation of the residential area. Each street intersection and dead-end
is modelled as a vertex, and each street segment between two vertices is modelled as an edge. The demand,
in kilogram, of an edge is the cumulative amount of waste on the original street segment.

Figure 1.1: Network representation of an urban area that has to be serviced by waste
collection vehicles. The top figure shows a birds-eye view of a service area. The bottom
figure shows the simplified network representation of the same area.

© University of Pretoria

4 CHAPTER 1. INTRODUCTION

implementations, enough motivation exists to model and solve the problem of designing
residential collection routes for municipalities as a CARP.

1.3 Problem statement

The research question that this thesis answers is how should residential waste collection be
modelled and solved to enable municipalities to design and optimise collection routes for
their waste collection vehicles? Collection routes are part of the operational component of
Solid Waste Management. Designing the routes is defined by Ghiani et al. [35] as the solid
waste collection problem and it consists of the following key operational components:

• every route starts and ends at a depot, and at the end of its route the vehicle must
arrive empty at the depot in the event that it does not coincide with a landfill site;

• on every route the total amount of waste collected between the depot and the first
visit to a landfill site, or between two successive visits to landfill sites must not
exceed vehicle capacity; and

• the duration of any route cannot exceed a maximum shift length, in accordance with
local rules and regulations.

An implicit component that we formally add is that:

• collection vehicles must adhere to road restrictions.

This is enforced to ensure that the resulting routes take into account one-way streets that
can only be traversed in a specific direction, and that the routes do not require illegal
turns.

Two CARP extensions deal with the four key components of the solid waste collec-
tion problem. The Mixed Capacitated Arc Routing Problem (MCARP), first proposed
by Lacomme et al. [51], models road networks with two-way streets that require zigzag
collection, two-way streets with sides requiring separate collecting, and one-way streets
that can only be traversed and serviced in one direction. The Capacitated Arc Routing
Problem under Time Restrictions with Intermediate Facilities (CARPTIF), introduced by
Ghiani et al. [31]2, models the case where vehicles may unload their collected waste at one
of multiple Intermediate Facilities (IFs) such as dumpsites, return to a service area and
continue collecting waste. The sum of demand collected on a subtrip between Intermediate
Facility (IF) visits may then not exceed vehicle capacity and the route must include a final
IF visit before returning to the depot. Furthermore, the duration of a vehicle route may
not exceed a time restriction, typically equal to the available working hours per shift.

In this thesis we extend the CARPTIF to the Mixed Capacitated Arc Routing Problem
under Time Restrictions with Intermediate Facilities (MCARPTIF), thus accounting for
the mixed road networks of the MCARP. As is often the case for municipalities, we focus
on large MCARPTIFs that require routes to be developed to service thousands of street
segments. To solve large MCARPTIFs, and in so doing answer the research question, is
the main objective of this thesis.

The novelty of our research lies in two areas. According to our knowledge, this thesis
represents the first formal study on solution methods for the MCARPTIF, which accu-
rately models residential waste collection. We thereby close the research gap between

2Ghiani et al. [31] call the problem the Arc Routing Problem under Capacity and Lengths Restrictions
with Intermediate Facilities, which they abbreviate CLARPIF. For waste collection applications, the length
restriction is replaced by a time-based route duration restriction, thus why we termed it the CARPTIF.

© University of Pretoria

1.4. RESEARCH DESIGN 5

the waste collection problems faced by municipalities and the ARPs studied in literature.
Our focus on large instances necessitated us to focus on and develop efficient solution
approaches. In doing so we addressed the CARP research priority recently proposed by
Prins [69], which is to develop advanced solution approaches that are able to efficiently
tackle huge instances met in real applications.

1.4 Research design

This dissertation primarily employs concepts and tools from the discipline of Opera-
tions Research to solve the MCARPTIF. Operations Research deals with decision prob-
lems by formulating and analysing mathematical models [71], and central to the discipline
is optimisation, both as a solution tool and a modelling device [66]. The MCARPTIF
is an optimisation problem with the objective to find the best solution from all feasible
solutions.

Since the CARP and all its extensions are NP-hard the most effective way of dealing
with the problems are through heuristics. Constructive heuristics are first used to find
feasible solutions for the problem. The solutions are then improved during subsequent
phases using advanced improvement heuristics. The type and structure of the heuristics
are highly dependent on the CARP variant and its formulation. Thus, the first aim of this
thesis is to:

(1) Find the appropriate Arc Routing Problem formulation for the MCARPTIF.

Inherent to heuristics is the trade-off between the quality of the generated solutions and
the speed or time required to generate and improve the solutions. The longer a heuristic is
allowed to execute, the more likely that the heuristic will find a good solution. Conversely,
if a heuristic is only afforded a limited amount of execution time, chances are the final
solution will be of inferior quality. Finding the correct trade off between speed and quality
is by no means simple and depends on the problem environment. To illustrate the concept
consider the following three examples.

Example 1: A residential waste collection manager wishes to determine the collection
routes for the next six months. Each collection route will then be assigned to a
collection crew.

In this example high quality solutions are desirable and the algorithms may be executed
for an extended period of time to generate high quality collection routes. Designing col-
lection routes for the next six months is a long term decision. Hopefully the manager has
allowed sufficient planning time before the routes have to implemented. The algorithms
will probably be executed more than once during the planning phase since the final col-
lection routes have to be critically evaluated by the manager before being implemented.
For this reason an execution time-limit may still be imposed.

Example 2: Upon arrival at work, a municipal manager is informed that two of the
five waste collection vehicles are inoperable and cannot be used for the day’s waste
collection. The three remaining vehicles need to be assigned new collection routes
that service the whole area. The manager needs new collection routes, and needs
them as soon as possible. The longer the three crews wait for new routes, the longer
the crews will have to work over-time.

In this example the algorithms need to generate new routes as quickly as possible. The
routes will only be used for a day, making inaction more expensive than implementing an
inferior solution.

© University of Pretoria

6 CHAPTER 1. INTRODUCTION

Example 3: The municipal manager is informed that the two collection vehicles will
only be operable within three days. The three remaining vehicles need to be assigned
new routes for the next three days.

For this example more time is available to generate new collection routes. The algorithms
cannot execute for hours on-end, hence the routes will be inferior to the long term decision
routes of Example 1, but they will still be better than the short term routes of Example 2.

Each example involves the exact same problem: the MCARPTIF. Yet, with each the
emphasis is either more towards solution quality or more towards solution speed. For
heuristics to be useful in practise they should be able to act as either tortoise or hare,
depending on what the situation requires. There is, however, a risk that the heuristics
are afforded unlimited execution time and still produce mediocre solutions. Thus, the
developed heuristics have to be critically evaluated in terms of solution speed and solution
quality. Accordingly the second, third and fourth aim of the thesis are to:

(2) Identify potential solution methods for the MCARPTIF under different execution-
time-limits.

(3) Develop heuristics capable of generating and improving feasible solutions for the
MCARPTIF under different execution time-limits.

(4) Critically evaluate the heuristics in terms of their solution quality and execution
times.

For the thesis we define three execution time-limit categories, namely short, medium
and long execution-times, and limited each to three, thirty and sixty minutes, respectively.
Time-limits are not always strictly enforced since the goal of the thesis is to investigate
the speed-quality trade-off, and to use the analysis to identify the best heuristics for short,
medium and long execution times.

In summary, the main deliverables of this thesis are a formal ARP based formulation for
the MCARPTIF, as well as heuristics capable of generating routes within short, medium
and long execution times. The successful CARP applications in [4, 30, 74] all employ
models and algorithms designed using Operations Research tools and concepts. As such,
the research methodology of this thesis is based on the Design Research paradigm, as
defined for Operations Research by Manson [56].

1.5 Research methodology

Manson [56] defines Design Research as:

“. . . a process of using knowledge to design and create useful artefacts, and
then using various rigorous methods to analyse why, or why not, a particular
artefact is effective. The understanding gained during the analysis phase feeds
back into and builds the body of knowledge of the discipline.”

In this thesis the created artefacts are the heuristics, in the form of computer algorithms
that are capable of computing feasible solutions for the MCARPTIF. Designing the algo-
rithms, of itself, cannot be considered research. However, the process of using knowledge to
design the algorithms, and then systematically and rigorously analysing the effectiveness
of the algorithms is considered research.

Manson [56] further gives a six phase Design Research methodology. The process
starts with problem awareness whereby a researcher identifies a potential problem worth

© University of Pretoria

1.6. DOCUMENT STRUCTURE 7

investigating. The MCARPTIF, with its application in waste collection and the potential
benefits of improving this function for municipalities, qualifies as such a problem. In
the second phase, called suggestion, one or more tentative designs are developed. We
first formulate the MCARPTIF, and use the formulation to identify possibles solution
approaches for the problem. Thereafter we identify heuristics, from literature, that have
been successfully applied to the CARP and its extensions, and that can be adapted for
the MCARPTIF.

The third and fourth phases of the methodology are the main focus of this thesis. Dur-
ing the development phase, the identified heuristics are adapted to the MCARPTIF and
implemented as computer algorithms. For short execution times, algorithms are developed
that quickly construct initial feasible solutions. For medium execution times, algorithms
are developed that take the initial solutions as input and improve them using efficient
improvement heuristics. For long execution times, the improvement heuristics are used
as building blocks to develop a metaheuristic algorithm that further improves the initial
solutions. For the evaluation phase we use benchmark problem instances to rigorously
evaluate the algorithms. The choice of test instances is critical as their structure can in-
fluence algorithm performance. In this thesis we develop benchmarks for the MCARPTIF,
which include large waste collection instances based on actual road networks. The algo-
rithms are critically evaluated on these benchmarks in terms of solution speed and solution
quality.

In the last conclusion phase we establish application boundaries for our algorithms. A
very large MCARPTIF instance, whose size is consistent with the huge instances met in
real applications, is solved and the algorithms are critically evaluated.

Manson [56] gives three minimum requirements for a research project to be consid-
ered design research. First, the project must produce one or more artefacts. Second, to
determine if the research contributions are at all significant, the following two questions,
originally posed by Hevner et al. [46], have to be answered:

“What utility does the new artefact(s) provide?” and “What demonstrates this
utility?”

In the last part of this thesis we critically evaluate our research contributions and answer
the above two questions.

1.6 Document structure

In the next chapter we review variants of the CARP that are applicable to waste collection
routing, and review potential solution methods for the problems. More in-depth and
technical reviews, focussing on specific solution methods, are included in the subsequent
chapters. In Chapters 3 and 4 we develop constructive heuristics that can quickly generate
feasible solutions. The focus of Chapters 5 and 6 is on local search heuristics capable
of improving the constructive heuristic solutions when more execution time is available.
Lastly in Chapter 7, we develop a local search based metaheuristic that is capable of
further improving solutions. Each chapter starts with a technical review of applicable
solution methods, followed by a description of our developed heuristics. Thereafter, in
each chapter, we report on the computational tests performed with the heuristics. The
thesis is concluded in Chapter 8 with a summary of our main research contributions and
suggestions for future work.

© University of Pretoria

8 CHAPTER 1. INTRODUCTION

© University of Pretoria

Chapter 2

Capacitated Arc Routing
Problems in literature

The aim of this literature review is threefold: firstly, to identify the most appropriate Arc
Routing Problem (ARP) formulation for the Mixed Capacitated Arc Routing Problem
under Time Restrictions with Intermediate Facilities (MCARPTIF); secondly, to use the
ARP formulation and identify appropriate heuristics, applicable to the MCARPTIF; and
lastly, to identify validation methods for the heuristics. This chapter only focus on litera-
ture relevant to residential waste collection routing. For a comprehensive review of ARPs
the reader is referred to [18, 19, 25].

2.1 Arc routing problems in literature

Residential waste collection requires waste to be collected on a street-by-street basis. As
such, the problem of designing collection routes can be modelled as an ARP. This section
reviews three basic ARPs. The first problem, the Chinese Postman Problem, is expanded
to the Rural Postman Problem, which, in turn, is expanded to the Capacitated Arc Rout-
ing Problem (CARP). The CARP forms the basis of our MCARPTIF formulation. Before
discussing the various problems, we first introduce standard ARP terminology and nota-
tions used in this chapter.

2.1.1 Terms and notations

From [26], we let GGG = (VVV ,AAA) be a connected graph without loops where VVV = {v1, . . . , vn}
is the vertex set (or node set), and AAA = {(vi, vj) : vi, vj ∈ VVV and i 6= j} is the arc set.
With every arc (vi, vj) is associated a non-negative cost, distance or length dij ; assuming
that dij = ∞ if (vi, vj) is not defined. The matrix DDD = (dij) is symmetric if and only if
dij = dji for all i and j. When DDD is symmetric, it is common to associate an edge with
every vertex pair. Depending if DDD is symmetric or asymmetric the associated ARP is
termed either undirected or directed. For undirected ARPs, the graph GGG = (VVV ,AAA) can be
replaced with GGG = (VVV ,EEE) where EEE = {(vi, vj) : vi, vj ∈ VVV and i < j}.

2.1.2 Chinese and rural postmen

Two basic and important ARPs can be derived from general routing problems. These
are the Chinese Postman Problem and the Rural Postman Problem. An overview of the
two problems is given in [19, 34, 52]. For the Chinese Postman Problem the complete

9

© University of Pretoria

10 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

edge set EEE has to be traversed by a single postman, and the objective is to find a closed
tour of minimum length that traverses all the edges EEE of the graph GGG = (VVV ,EEE). For the
Rural Postman Problem there are a number of villages whose required set RRR of streets
(with RRR ⊆ EEE) has to be serviced by a postman, and a set EEE\RRR of links between villages
that do not have to be serviced, but may be used for travelling between villages [26]. Note
that the Rural Postman Problem transforms into the Chinese Postman Problem if RRR = EEE.
The objective of the Rural Postman Problem is to find a closed tour of minimum length
that traverses all the edges RRR, referred to as required edges, of the graph GGG = (VVV ,EEE,RRR).

Of the two problems, the Rural Postman Problem is most similar to residential waste
collection, primarily because it does not require the whole set EEE of edges to be serviced.
However, both the Rural Postman Problem and Chinese Postman Problem only consider a
single postman, as such there are is limit on the length of the single Rural Postman Problem
and Chinese Postman Problem tours. This is seldom the case in reality. By introducing
capacity constraints and multiple postmen, or vehicles, more realistic ARPs known as
CARPs can be formulated.

2.1.3 The Capacitated Arc Routing Problem

As most practical routing applications contain capacity restrictions, the CARP, introduced
by Golden and Wong [39], is probably the most important problem in the area of arc
routing [27]. Examples of the CARP include the routing of street sweepers, snow removal
vehicles, and of course waste collection vehicles. For comprehensive reviews dedicated to
the problem we refer the reader to [69, 91].

For the CARP each edge (vi, vj) has a nonnegative demand or weight qij . It is assumed
that a fleet of K homogeneous vehicles, each with capacity Q, are based at a depot located
at vertex v1. The fleet size K can be either limited, unlimited, minimised or left as a
decision variable. The set RRR of edges (vi, vj) with qij > 0, referred to as required edges,
must be serviced, but the remaining non-required edges may also be traversed, which is
commonly called dead-heading. The CARP consists of designing vehicle routes of total
minimal length so that each route starts and ends at the depot, each edge with a demand
is serviced exactly once by a single vehicle, and the sum of demand on any route does not
exceed Q.

Figure 2.1a shows an example of the CARP on a simple road network with two-way
streets and a single vehicle depot. Dots represent bins containing one kilogram of waste.
The problem can be modelled as a graphGGG = (VVV ,EEE,RRR) as shown in Figure 2.1b. The figure
also gives the demand, qij , and distance or cost, dij , for all the edges. For the example
there are two homogeneous vehicles with a capacity of 25 kilograms each, situated at the
depot vertex v1. Figure 2.1c shows a feasible solution for the CARP. With the solid-line
route a vehicle will collect 23 kg of waste and travel 185 meters. A vehicle assigned to the
dashed-line route will collect 20 kg of waste and travel 330 meters. The total cost of the
solution, i.e., its objective value, is 515 meters.

Real residential waste collection problems cannot be approached exactly as a CARP
due to specific operational conditions and constraints [76]. The CARP considers only
undirected networks, whereas road networks may consist of one-way streets that can be
traversed or serviced in only one direction, busy two-way streets that require each side to be
serviced separately, and two-way streets that can be serviced in either direction and both
sides simultaneously. The CARP also does not consider vehicle offloads at dumpsites.
In practice, vehicles may unload their collected waste at one of multiple Intermediate

© University of Pretoria

2.1. ARC ROUTING PROBLEMS IN LITERATURE 11

depot

(a) A detailed view of an area to be serviced where each dot represents a waste bin containing one kilogram
of waste. For the example there are two homogeneous vehicles, each with a capacity of 25 kg, situated at
the depot.

(b) The network representation of the area to be serviced showing the vertex set VVV , the edge set EEE, the
depot vertex v1 and the demand qij and distance dij of each edge in EEE.

(c) Two vehicle routes servicing the area. A solid arrow-head indicates that a vehicle services that edge,
whereas an empty arrow-head indicates that a vehicle only traverses that edge, also known as dead-heading.
With the solid-line route a vehicle will collect 23 kg of waste and travel a distance of 185 meters, and with
the dashed-line route a vehicle will collect 20 kg of waste and travel 330 meters.

Figure 2.1: An example of the Capacitated Arc Routing Problem with the objective to
design vehicle routes of total minimal length.

© University of Pretoria

12 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

Facilities (IFs)1, return to the service area and continue collecting waste. The sum of
demand collected on a subtrip between Intermediate Facility (IF) visits may then not
exceed vehicle capacity and the route must include a final IF visit before returning to the
depot. Furthermore, the total duration of a vehicle route may not exceed a time restriction,
typically equal to the available working hours per shift. Two realistic extensions of the
CARP that take mixed networks and IFs into account are discussed next.

2.2 Extensions of the Capacitated Arc Routing Problem

This section reviews the most relevant extensions of the CARP that address the short-
comings mentioned previously. Two extensions are considered, namely the CARP on a
mixed network, which models one-way and two-way streets and the CARP with IFs that
accounts for multiple dumpsites. The two extensions form the basis of the MCARPTIF.

2.2.1 Mixed networks

The Mixed Capacitated Arc Routing Problem (MCARP), studied in [6, 21, 40, 51], among
others, allows the modelling of more realistic street networks. The MCARP models one
way streets as directed arcs and two way streets as undirected edges. The graph GGG is thus
extended to GGG = (VVV ,EEE ∪AAA) where the set of arcs AAA = {(vi, vj) : vi, vj ∈ VVV and i 6= j}
models one way streets. Real waste collection routing problems usually involve mixed
road networks [4, 23, 30, 35, 75] making the MCARP an important practical variant of
the CARP.

The extension allows for the modelling of two kinds of non-required streets and four
kinds of required streets. Any non-required street is modelled either as one arc, if the
street is one-way, or two opposing arcs if the street is two-way. A required street can be a
two-way street with both sides serviced simultaneously, modelled as one edge; a two-way
street with sides requiring separate collecting, modelled as two opposing arcs; or a one-way
street, modelled as one arc. The graph can be further expanded to cater for even more
complicated cases. For instance, two parallel arcs can model a one-way street too wide for
simultaneous collection and requiring two traversals, one for each side.

Figure 2.2 illustrates the impact of a mixed network by extending the road network of
the example in the previous section. Figure 2.2a sees the introduction of two required arcs,
(v4, v7) and (v11, v6), and a non-required arc, (v5, v2). The example also has a required
edge, (v9, v10), that is too wide for simultaneous collection and requires each side to be
collected separately. Accordingly, this edge is modelled as the two opposing arcs, (v9, v10)
and (v10, v9), and the demand of the edge is divided between the two arcs. Lastly, all the
non-required edges are modelled as two opposing arcs. A feasible solution for the MCARP
example is shown in Figure 2.2b. With the solution the service of edge (v9, v10) is shared
between the two routes and the waste collected on the solid and dashed routes are 23 kg
and 20 kg, respectively. The mixed network also requires a change in the vertex visitation
sequence of the dashed route (Figure 2.2c).

1In general, intermediate facilities refer to waste transfer stations where collection vehicles unload their
waste. Dedicated bulk carriers then transport the waste to dumpsites. For route design purposes we
collectively refer to any site where a vehicle can unload its waste as an intermediate facility. Hence,
intermediate facilities may include dumpsites and the vehicle depot.

© University of Pretoria

2.2. EXTENSIONS OF THE CAPACITATED ARC ROUTING PROBLEM 13

(a) The network representation of the area in Figure 2.1a with the introduction of three one-way arcs
((v5, v2), (v11, v6) and (v4, v7)) and each non-required edge has been replaced by two opposing arcs. The
edge (v9, v10) requires each of its sides to be serviced separately, hence it has been replaced by two opposing
arcs with equal demand.

(b) With the introduction of the mixed network the service of arc (v9, v10) is shared between the dashed
and the solid route. Subsequently, the amount of waste collected on the solid and dashed route are 20 kg
and 23 kg, respectively. A solid arrow-head indicates that a vehicle services that edge or arc, and an empty
arrow-head indicates that a vehicle only traverses it.

(c) Because of the (v11, v6) and (v4, v7) one-way streets the dashed route’s vertex visitation sequence is
changed from [1, 9, 10, 11, 12, 11, 7, 4, 3, 6, 11, 10, 9, 1], as shown in the left figure, to [1, 9, 10, 11, 12,
11, 6, 3, 4, 7, 11, 10, 9, 1], as shown in the right figure. The length of both routes are the same.

Figure 2.2: An example of the Mixed Capacitated Arc Routing Problem with three one-
way streets and a two-way street requiring each of its sides to be serviced separately.

© University of Pretoria

14 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

2.2.2 Intermediate facilities

The second extension of the classical CARP sees the introduction of multiple dumpsites.
The extension is referred to as the Capacitated Arc Routing Problem with Intermediate
Facilities (CARPIF) and was first studied by Ghiani et al. [32]. With the CARPIF a waste
collection vehicle can unload its cargo at a nearest Intermediate Facility (IF). The vehicle
can then resume its collection route. A route can thus exceed a vehicle’s capacity, as long
as the route contains visits to IFs, and the demand of the subroute between the IF visits
does not exceed vehicle capacity.

The impact of an IF on waste collection routing is illustrated in Figure 2.3. The
example is the same as the MCARP example of Section 2.2.1, i.e., a mixed network.
Additionally the example sees the introduction of an IF shown in Figure 2.3a. The cor-
responding graph representation is shown in Figure 2.3b. Vehicle capacity is still fixed at
25 kg, but the vehicles are allowed to unload their waste at the dumpsite. The example
assumes that the depot vertex can also be used as a dumpsite, hence it is unnecessary for
a vehicle to unload before returning to the depot. With the new intermediate facility at
v14 the entire area can be serviced by a single vehicle route (Figure 2.3c).

The CARPIF provides a closer representation of actual waste collection, but it still
contains an unrealistic simplification. With the introduction of IFs a single vehicle can
service any given area, even if the area contains thousands of arcs, as is the case with
real street networks. Based on the work of Ghiani et al. [32], Ghiani et al. [31] study
a more realistic extension of the CARPIF called the Capacitated Arc Routing Problem
under Time Restrictions with Intermediate Facilities (CARPTIF), which is also studied in
[33, 68]. With the extension a time restriction, independent from capacity, is placed on the
duration of each vehicle’s route—the restriction would typically be the number of working
hours in a day. With the CARPTIF multiple vehicles are again required to service a given
area, as is the case in reality.

The CARPTIF can be generalised to consider a mixed network. This version, termed
the MCARPTIF, incorporates all the extensions considered in this section and is consistent
with the solid waste collection problem as defined by Ghiani et al. [35]. The only remaining
factor to consider for the formulation is the treatment of the vehicle fleet size.

2.2.3 Treatment of vehicle fleet size

In CARP literature, the fleet size is either fixed, assigned an upper bound value, left as
a decision variable, or treated as unlimited. In most waste collection applications, see
for example [4, 23, 30, 60, 61, 75, 76], and consistent with the original formulation of the
CARP [39], K is an input value, usually corresponding to the current fleet size and it is
treated as an upper bound; a solution with more than K routes is considered infeasible.
Conversely, studies on CARP heuristics typically treat K as either unlimited [3, 12] or
as a decision variable [6, 30, 33, 54]. In fact, Lacomme et al. [51] consider a limited fleet
size to be an extension of the CARP. In studies where K is a decision variable, it is not
minimised. The only objective is to minimise total route cost, and the resulting number
of routes determines the fleet size requirements. Exceptions include the work of Chu et al.
[15] who deal with a Periodic CARP in which K can be fixed or minimised, and the work
of Grandinetti et al. [41] on a multi-objective CARP where one of the three objectives is
to minimise K.

It can be argued that the objectives of minimising cost and the fleet size are not in
conflict; thus solution approaches need only focus on the former. Additional routes result
in additional dead-heading time to and from depots and IFs, as well as offload time. Since

© University of Pretoria

2.2. EXTENSIONS OF THE CAPACITATED ARC ROUTING PROBLEM 15

depot

dump
site

(a) Detailed view of the area to be serviced. The road network consists of one and two-way
streets, traffic rules that prohibit U-turns, and a dump site. The waste collection vehicles are
allowed to dump their waste at the dump site and the depot.

(b) The network representation of the area with the introduction of a intermediate facility at
v14.

(c) With the introduction of the intermediate facility a single vehicle can now service the com-
plete area. The complete route is [1, 9, 10, 11, 12, 11, 6, 3, 4, 7, 13, 14, 13, 4, 3, 2, 8, 9, 5, 6, 10,
9, 1]. Visits to intermediate facilities at v14 and v1 are shown in bold. The total waste collected
with the dashed subroute (v1 to v14) and the solid subroute (v14 to v1) are 23 kg and 20 kg,
respectively, and the total distance of the route is 520 meters. A solid arrow-head indicates
that a vehicle services that edge or arc, and an empty arrow-head indicates that a vehicle only
traverses it.

Figure 2.3: An example of the Mixed Capacitated Arc Routing Problem with Intermediate
Facilities.

© University of Pretoria

16 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

studies on the MCARP and CARPTIF do not report on the required K for the best cost
solutions, it is unknown if existing solution methods for the problems can sufficiently deal
with cases where K has an upper bound. This issue was identified by Belenguer and
Benavent [7] for the CARP, who found that the number of vehicles required by heuristic
solutions are not always equal to the possible minimum. Part of the aim of this thesis is
to determine whether the same is true for the MCARPTIF.

2.2.4 The MCARPTIF formally defined

Based on the MCARP and CARPTIF reviewed in this section, and the potential treat-
ments of vehicle fleet size, the MCARPTIF is formally defined as follows. The MCARPTIF
considers a mixed graph, GGG = (VVV ,EEE ∪AAA), where VVV represents the set of vertices, EEE repre-
sents the set of undirected edges where an edge links two vertices and may be traversed in
both directions, and AAA represents the set of arcs where an arc also links two vertices but
can only be traversed in one direction. Edges requiring each side to be serviced separately
are modelled as two opposing arcs. A subset of required edges and arcs, EEEr ⊆ EEE and
AAAr ⊆ AAA, must be serviced by a fleet of K homogeneous vehicles with limited capacity, Q,
that are based at the depot vertex, v1. Each vehicle route must start and end at the depot
and the sum of demand on a route may not exceed Q. The number of routes, K, can be
minimised or must be less than the number of available vehicles, KUB, and KUB ← ∞
when an unlimited number of vehicles is available. For the MCARPTIF, vehicles are al-
lowed to unload their waste at any IF and resume their collection routes. The duration of
the offload is given as λ. IFs are modelled in GGG as ΓΓΓ, where ΓΓΓ ⊂ VVV . The sum of demand
on each subtrip between IF visits may not exceed Q, and unless v1 ∈ ΓΓΓ, each vehicle has
to visit an IF before returning to the depot. Lastly, a time restriction, L, is imposed
on the duration of each vehicle route. There are two versions of the problem, depending
on the treatment of K. For the first version the objective is to find a set of K feasible
vehicle routes, servicing all required edges and arcs, that pre-emptively minimises total
cost then the vehicle fleet size. The objective of the second version, which is the main
focus of this thesis, is to find a set of K feasible vehicle routes that service all required
edges and arcs, and pre-emptively minimises the vehicle fleet size, then total cost. When
AAA is an empty set, denoted AAA = ∅, the problem reduces to the CARPTIF; when ΓΓΓ = {v1}
and L←∞, the problem reduces to the MCARP; and when both sets of conditions hold,
the problem reduces to the CARP. MCARPTIF solution approaches can thus be used
to solve all four problems. s Consistent with the work of Belenguer et al. [6], Lacomme
et al. [51], and Mourão et al. [62], the mixed graph GGG can be transformed into a fully
directed graph, GGG∗ = (VVV ,AAA∗), by replacing each edge, (vi, vj) ∈ EEE, with two opposing
arcs, {(vi, vj), (vj , vi)} ∈ AAA∗. Arcs in AAA∗ are identified by indices from 1 to |AAA∗|. Lastly,
each arc u has a dead-heading time, d(u), denoting the time of traversing the arc without
servicing it, and the total duration of any route cannot exceed the maximum allowed route
time restriction, L.

The required arcs, AAAr, and edges, EEEr, in GGG correspond to a subset RRR ⊆ AAA∗ of required
arcs such that |RRR| = 2|EEEr| + |AAAr|. Each arc, u ∈ RRR, has a demand, q(u), a collection
time, w(u), and a pointer, inv(u). Each required arc in the original graph, GGG, is coded
in RRR by one arc, u, with inv(u) = 0, while each required edge is encoded as two opposite
arcs, u and v, such that inv(u) = v and inv(v) = u. An arc task, u, represents an edge
if inv(u) 6= 0. Furthermore, q(u) = q(v), d(u) = d(v) and w(u) = w(v) for an edge’s
two opposing arcs, u and v. The depot is modelled by including in AAA∗ a dummy arc,
σ = (v1, v1). IFs are also modelled in AAA∗ as a set of dummy arcs III = {Φ1, . . . ,Φ|ΓΓΓ|},
where Φi = (vi, vi) ∀ vi ∈ ΓΓΓ, and III ⊂ AAA∗. All dummy arcs, including σ, have the following

© University of Pretoria

2.2. EXTENSIONS OF THE CAPACITATED ARC ROUTING PROBLEM 17

properties:

inv(u) = u

d(u) = 0

w(u) = 0

q(u) = 0

 ∀ u ∈ III ∪ {σ}. (2.1)

An MCARPTIF solution, TTT , is a list, [TTT 1, . . . ,TTTK], of K vehicle routes. Each route,
TTT i, is a list of subtrips [TTT i,1, . . . ,TTT i,|TTT i|], and each subtrip, TTT i,j , consists of a list of arc
tasks [Ti,j,1, . . . , Ti,j,|Ti,j |]. The travel time for the shortest path from arc u to arc v, which
excludes the time of dead-heading u and v, is given by D(u, v), which is pre-calculated
for all arcs in AAA∗. Shortest paths can be efficiently calculated using a modified version of
the Floyd-Warshall algorithm that can incorporate forbidden turns and turn-penalties. A
description of the algorithm is given in Section 2.A at the end of the chapter. Dijkstra’s
algorithm can also be modified for the shortest path calculations and can also incorporate
forbidden turns and turn-penalties; we refer the reader to [51, 76] for implementation
details.

The first subtrip in a route, TTT i,1, starts at the depot, and the last subtrip, TTT i,|TTT i|, ends
with an IF and depot visit. All other subtrips start and end with IF visits while taking
care that the starting IF of a subtrip coincides with the end IF of the previous subtrip.
It is assumed that the shortest path is always followed between consecutive tasks. For
the MCARPTIF, the best IF to visit, Φ∗(u, v), after servicing arc u and before servicing
arc v can be pre-calculated using Equation (2.2), and the duration of the visit, µ∗(u, v),
excluding offloading time, is given by Equation (2.3):

Φ∗(u, v) = arg min{D(u, x) +D(x, v) : x ∈ III}, (2.2)

µ∗(u, v) = D
(
u,Φ∗(u, v)

)
+D

(
Φ∗(u, v), v

)
. (2.3)

The best IF-visit calculation differs from the calculation of Belenguer et al. [6] as it excludes
offloading time, which instead we include when calculating subtrip and route costs. It is
assumed that the best IF is always visited between two arcs and between an arc and the
depot.

For the MCARPTIF the load of a subtrip, load(TTT i,j), which may not exceed Q, is
calculated as follows:

load(TTT i,j) =

|TTT i,j |∑
n=1

q(Ti,j,n). (2.4)

The cost of subtrip TTT ij is calculated using Equation (2.5), and the cost of the route TTT i
using Equation (2.6):

Zs(TTT i,j) =

|TTT i,j |−1∑
n=1

(
D(Ti,j,n, Ti,j,n+1)

)
+

|TTT i,j |∑
n=1

w(Ti,j,n) + λ (2.5)

Z(TTT i) =

|TTT i|∑
j=1

Zs(TTT i,j). (2.6)

Even though routes contain dummy arcs, Equations (2.4) and (2.5) remain accurate as a
result of Equation (2.1). The preceding notations and encoding scheme are used through-
out this thesis and are summarised in Tables 2.1 and 2.2.

© University of Pretoria

18 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

Table 2.1: Glossary of mathematical symbols.

Problem symbols Arcs (u and v) related symbols

RRR Set of required arcs d(u) Dead-heading time of u
KUB Fleet size limit q(u) Demand of u
Q Vehicle capacity w(u) Service time of u
L Route time-limit inv(u) Pointer to the opposing arc of u
σ Depot dummy arc D(u, v) Shortest dead-heading path time from u to v
ΓΓΓ Set of IF vertices Φ∗(u, v) Best IF to visit between u and v (eq. (2.2))
III Set of IF dummy arcs µ∗(u, v) Duration of best IF visit between u and v (eq. (2.3))
λ Unload cost

Table 2.2: MCARPTIF solution representation symbols.

TTT MCARPTIF solution
K = |TTT | Number of vehicles required for TTT
TTT i Route i
TTT i,j Subtrip j of route TTT i
Ti,j,n nth arc task in subtrip TTT i,j
load(TTT i,j) Demand of subtrip TTT i,j (eq. (2.4))
Zs(TTT i,j) Cost of subtrip TTT i,j (eq. (2.5))
Z(TTT i) Cost of route TTT i (eq. (2.6))

The first aim of this literature review was to identify the appropriate ARP formula-
tion for the MCARPTIF. The second aim and focus of the next section is to identify
appropriate solution approaches for the problem.

2.3 Solution approaches for Capacitated Arc Routing Prob-
lems

Despite what we consider to be a common practical application, the MCARPTIF has
not been formally studied in literature. A close variant of the problem is studied by
Santos et al. [76] which deals with a single IF, a heterogeneous fleet and with demand
at intersections as well as road segments. Ghiani et al. [30] deal with an MCARPTIF
with additional requirements such as a heterogeneous fleet where only certain vehicles
can service certain street types. Rodrigues and Soeiro Ferreira [73] also deal with an
MCARPTIF with a heterogeneous fleet and with landfills that only allow a limited number
of visits. An extended MCARP is studied in [60, 61] that considers one IF but without
a route duration limit. Instead, each available vehicle in the fleet must be used and each
route must consist of at least two subtrips. Ghiani et al. [35] consider a real-world Mixed
Arc Routing Problem under Time Restrictions where waste collection vehicles are only
constrained by a route duration restriction, and not by vehicle capacity. Other CARP
variants, not considered in this thesis, with application in waste collection include the
CARP and MCARP with multiple instead of one depot [2, 50]; the Sectoring Arc Routing
Problem [24, 62]; and the MCARP with non-overlapping routes [17]. We refer the reader
to [35, 64] for a comprehensive review of relevant CARP variants.

Most ARP research focus on the CARP, with a few studies done on the MCARP and
CARPTIF. The focus of this section is on reviewing solution approaches for the three
problems, which can be extended to the MCARPTIF. Solution approaches are briefly

© University of Pretoria

2.3. SOLUTION APPROACHES FOR CAPACITATED ARC ROUTING PROBLEMS19

evaluated2 for the three execution time-limits defined in the previous chapter. Under short
execution times a feasible solution has to be found in limited time. The second case deals
with medium execution-times where more time is available to improve a solution. And
the third case deals with longer execution times where more time is available to improve
the solution even further. Before discussing the solution approaches we first review how
difficult the MCARPTIF is to actually solve.

2.3.1 Problem difficulty

Problems that can be solved in polynomial time are typically solved to optimality using
efficient algorithms and exact methods [90]. Problems that are usually considered hard
to solve are those for which there are no known polynomial algorithms. Such problems
are called nondeterministic NP-class problems. Belonging to this class are NP-hard
problems where NP-hard implies that the solution space of the problem will increase at
an exponential or factorial (non-polynomial) rate as the number of vertices/arcs of the
problem increases. Golden and Wong [39] show that the CARP, the simplest form of the
MCARPTIF, belongs to this class of problems. This means that all of the extensions
of the CARP, including our MCARPTIF, are also NP-hard and difficult to solve to
optimality using exact methods. As a result, the most effective methods for dealing with
the problems are based on heuristic and metaheuristic solution techniques [19].

In literature, the standard approach when dealing with a new CARP variant is to si-
multaneously develop lower and upper bounds. Classical benchmark sets are then modified
to account for new problem characteristics, and upper bounds, found using heuristics, are
compared against good lower bounds and against optimal solution values for smaller test
instances. Lower-bounding and exact approaches, reviewed in [1, 8], have been success-
fully applied to the CARP and MCARP, but as a result of their computational complexity,
these approaches are not yet capable of dealing with realistically sized instances [57]. The
largest CARP instance solved using an exact approach with a six hour execution time-
limit consists of 159 required edges [3], and the largest MCARP solved within a one hour
execution time-limit consists of 23 and 77 required arcs and edges, respectively [6, 40].
Real world waste collection problems, such as the case study instance of Bautista et al.
[4], can contain thousands of edges. Also, lower bounding and exact methods have not
been applied to the CARP with more than one IF. Just developing appropriate Integer
Linear Programming formulations for these extensions is, on its own, a challenging re-
search topic [14, 31]. As the first formal investigation on the MCARPTIF the focus of this
thesis is only on heuristic methods for the problem. We leave the development of exact
solution approaches, including lower bounds, for future work.

Heuristics attempt to find good feasible solutions to optimisation problems, within
reasonable computing time, but without any guarantee that the solutions are optimal.
For this thesis we distinguish between two types of heuristics: constructive heuristics that
quickly generate initial solutions for the CARP and its extensions, as is required when
execution time is limited; and improvement heuristics that, as their name implies, pro-
gressively improve the initial solutions. The improvement heuristics are computationally
more involved than constructive heuristics, but they do return better solutions, making
them ideal when more execution time is available.

2More detailed descriptions of existing methods are presented at the start of each chapter in which the
MCARPTIF heuristics are developed.

© University of Pretoria

20 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

2.3.2 Constructive heuristics

Constructive heuristics for CARPs remain an important area of research. As motivated
by Santos et al. [77], these heuristics generally provide good solutions in acceptable CPU
time which is an important criterion in many real waste collection applications. Execu-
tion times for advanced improvement heuristics can become large for even modestly sized
problems, making them impractical for certain applications. Owing to their simplicity,
constructive heuristics are flexible and can be more easily modified to extensions of the
CARP, which makes them easier to implement, and they do not require the determina-
tion and fine tuning of parameters. They also form the starting point for improvement
heuristics, see for instance [6, 12, 31, 63, 68]. Polacek et al. [68] show that for their CARP
improvement heuristics, linking it with better quality initial solutions leads to better con-
vergence and higher quality final solutions. Lastly, constructive heuristics are used to solve
sub-problems of certain CARPs such as those studied in [41, 62].

Numerous constructive heuristics, which follow simple greedy rules to progressively
build approximate feasible solutions, have been proposed for the CARP. Since the second
aim of this review is to identify existing solution approaches that can be extended to the
MCARPTIF we mainly focus on constructive heuristics that have been applied to the
MCARP and CARPTIF. For more information on constructive heuristics for the classical
CARP we refer the reader to [19, 69]. The heuristics that we considered include Path-
Scanning, Improved-Merge and Route-First-Cluster-Second applied to the MCARP by
Belenguer et al. [6]; and Route-FirstCluster-Second- applied to the CARPTIF by Ghiani
et al. [31]. Route-First-Second-Cluster heuristics rely on splitting procedures that are also
extensively used in certain advanced improvement heuristics.

The splitting procedures and constructive heuristics are reviewed in more detail in
Chapters 3 and 4, in which we develop heuristics for the MCARPTIF and critically eval-
uate the heuristics on their ability to find feasible solutions within short execution times.

2.3.3 Improvement heuristics

The most popular improvement techniques for CARPs are based on Local Search (LS)
methods [69]. Gendreau [29] summarises LS as an iterative procedure that, starting from
an initial feasible solution, progressively improves it by applying a series of local modifica-
tions or moves. At each iteration the search moves to an improving feasible solution that
differs only slightly from the current one, and the search terminates when it encounters a
local optimum with respect to the transformation that it considers.

For CARPs, LS moves consist of simple modifications to the current solution that
change the service position of required arcs or edges in a solution’s routes. For instance,
one type of move may consist of taking an arc serviced in a route out of its current
position and placing it in a different route for service. The move set will then consist of
the removal of each arc or edge from its current position and its placement in all other
possible positions, where it does not result in a constraint violation. The best or first
improving move may then be implemented whereby LS moves to the improved solution.
The search then repeats from the improved solution and terminates when no improving
moves can be found. Local optima at which LS terminates are often still fairly low quality
solutions, which is not ideal when high-quality solutions are required.

To our knowledge, there are no CARP studies that exclusively use LS to improve initial
solutions. Instead LS is used within more intelligent improvement strategies, referred to
as metaheuristics, which are currently the most successful algorithms for the CARP [69].
Metaheuristics are general master strategies that try to avoid local optima either by in-

© University of Pretoria

2.3. SOLUTION APPROACHES FOR CAPACITATED ARC ROUTING PROBLEMS21

telligently manipulating the LS framework, or by considering several solutions at a time.
With proper allowance for execution times, these advanced methods are capable of gen-
erating high quality solutions. For an overview of metaheuristics we refer the reader to
[37, 80] and for an overview of their application to CARPs we refer the reader to [64, 69].

Metaheuristics for CARPs all rely on direct extensions of LS. Some of these applica-
tions include Variable Neighbourhood Descent [23, 45]; Variable Neighbourhood Search [68];
Tabu Search[2, 12, 31, 44]; Tabu Scatter Search [42]; and Guided Local Search [10, 63].
Other metaheuristics in which LS is embedded and directly called include Greedy Ran-
domized Adaptive Search Procedure (GRASP) [83]; Ant Colony Optimization [33, 78];
and Memetic Algorithms (MA) [51, 54, 81]. The MA of [6] is the only metaheuristic that
has been applied to the MCARP. The listed applications include all the recent meta-
heuristics for CARPs reviewed by Muyldermans and Pang [64] and Prins [69], and as
mentioned all rely on some form of LS. Together with constructive heuristics to generate
initial solutions, LS is thus an important building block in developing metaheuristics for
the MCARPTIF.

Another importing building block is splitting procedures [70]. Many of the meta-
heuristics work on giant tours, which are partitioned into feasible vehicle routes via split-
ting procedures. Giant tours are used in MAs to encode chromosomes and in the Ant
Colony Optimization of Santos et al. [78] to generate new solutions. They are also used in
Route-First-Cluster-Second constructive heuristics for CARPs during the Cluster-Second
phase [6, 31, 51, 62, 68].

With the emphasis of this thesis on solving large MCARPTIFs under different execu-
tion time-limits, efficient implementations of LS and of splitting procedures are critical.
Inefficient implementations may prohibit metaheuristics to effectively deal with realisti-
cally sized instances. This issue is raised by Prins [69] who recommends two research
directions for the CARP that should be investigated in priority, which we believe also
applies to the MCARP and MCARPTIF. The first is to develop metaheuristics that are
able to tackle in reasonable running times huge instances met in real applications, such
as residential waste collection, which according to Prins [69] requires the service of 10000
arcs and edges, or more. Currently only constructive heuristics are capable of dealing with
these sized instances. The second priority, which we do not address in this thesis, is to
exploit parallel or multi-core computers in solving CARPs.

Efficient splitting procedures are developed by Lacomme et al. [51] for the CARP,
which are applied as-is on the MCARP in [6, 62]. Ghiani et al. [31] develop a splitting
procedure for the CARPTIF that can also be used as-is on the MCARPTIF, but its
efficiency has not been formally tested. In response, Chapter 3 is dedicated to splitting
procedures for the MCARPTIF in which we develop efficient procedures that outperform
the version of Ghiani et al. [31]. Next, in Chapter 4 we develop constructive heuristics
for the MCARPTIF, some of which employ the splitting procedures. The efficiency of LS
is seldom critically evaluated in CARP literature, and is thus the subject of Chapters 5
and 6 in which we develop efficient LS procedures for the MCARPTIF. In Chapter 7, the
LS procedures are extended to develop a Tabu Search metaheuristics for the MCARPTIF,
which we further test as-is on the MCARP and compare against the Memetic Algorithm
of Belenguer et al. [6]. All the heuristics are critically evaluated on their ability to find
high-quality solutions under short, medium and long execution times.

© University of Pretoria

22 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

2.4 Evaluating heuristics

The main limitation of approximate solution techniques is that there is no guarantee
that they will produce optimal solutions. In fact, it is difficult to prove that the generated
solutions are even close to optimal. This makes solution evaluation and validation difficult,
yet critical. This section reviews two components central to evaluating heuristics. First is
the evaluation criteria used to measure the performance of heuristics, second is the test
instances on which heuristics are tested and on which the performance measurements are
captured.

2.4.1 Evaluation criteria

In CARP studies, heuristic performance is evaluated on two criteria: solution quality,
usually in the form of total route costs, and algorithm efficiency, which is measured as the
CPU time required by the algorithm to find or improve on a feasible solution. Algorithm
efficiency can also be evaluated by determining the order of growth of the algorithm’s
running time, as given by the commonly used big-O notation. More information on the
notation can be found in Section 2.B at the end of the chapter.

When possible, solution quality is measured by comparing heuristic results to optimal
values found on small instances and on lower bounds for larger instances. Tight bounds
have been developed for the CARP [3, 11], and recently for the MCARP [6, 40]. Ghiani
et al. [30] calculate weak lower bounds for the CARPTIF with one IF by using the al-
gorithm of De Rosa et al. [22]. None exist for the CARPTIF with more IFs, nor for the
MCARPTIF, and their development falls beyond the scope of this thesis.

When lower bounds are not available, an option is to substitute them with the best
solutions found during all the computational tests [72, 80], which serves our test purpose
as it gives a general quality measure between heuristics. For this thesis, we also measured
solution quality in terms of the required number of vehicles, K. A tight lower bound on
the optimal number of vehicles, KLB, for a CARP and MCARP solution can be calculated
using Equation (2.7):

KLB =

⌈
ζ

Q

⌉
, (2.7)

where ζ is the total demand of the required arcs and edges of the problem instance, and
Q is vehicle capacity. For the MCARPTIF, Equation (2.7) only gives a lower bound on
the number of subtrips with IF visits, since route duration is constrained by a time-limit,
not capacity. The KLB can instead be calculated using Equation (2.8)

KLB =

O + λ

⌈
ζ
Q

⌉
L

 , (2.8)

where O is the total service time of the required arcs and edges of the problem, λ is the
IF offloading time and L is the route duration restriction. The dividend of Equation (2.8)
is a weak lower bound on solution cost as it ignores dead-heading3 times. As a result, the
fleet size lower bound is also weak. Finding tight lower bounds for the MCARPTIF is not
trivial and one option would be to divide good lower bound cost values by L. Otherwise,
similar to total cost, solutions can be compared against best solutions found during all
computational tests, which is the approach used in this thesis.

3Dead-heading is the travel between required arcs, edges, depots and IFs when no waste collection takes
place.

© University of Pretoria

2.4. EVALUATING HEURISTICS 23

2.4.2 Problem test instances

When evaluating and comparing heuristics, the choice of test instances is critical as their
structure can influence heuristics performance. Real-life instances, such as those solved
in [4, 23, 30, 75, 76], constitute good benchmarks to carry out performance evaluations,
but are not openly available. As a result, studies on CARPs have relied on randomly con-
structed instances. Over time these instances have become standard classical benchmark
sets used to evaluate CARP solution methods.

As cautioned by Rardin and Uzsoy [72], classical benchmark sets introduce subtle
biases that need to be recognised. First, the posted instances may not model real world
environments. In fact, some of the instances may not be intended to be representative
of applications at all. They are merely used to validate that algorithms are functional.
Second, results are published for methods that perform well on the classic sets, which may
introduce a hidden bias against alternative algorithms that perform poorly on the classic
sets, but may perform well on realistic instances. Lastly, the wide use of the benchmark
sets may result in researchers spending too much effort on making algorithms perform well
on specific instances, at the risk of the algorithms becoming fragile and performing poorly
on other instances not included in the classical sets.

In an effort to identify these biases the next section critically evaluates existing bench-
mark sets for CARPs. Furthermore, in an effort to overcome the biases we have developed
new MCARPTIF benchmark sets, representative of actual waste collection. These sets
are introduced and compared against the existing sets at the end of the section.

Existing benchmark sets

Some of the first CARP benchmark sets are the gdb and bccm4 sets introduced by Golden
et al. [38] and Benavent et al. [9], respectively. The sets were mostly generated by hand [7]
and do not closely model any real environment. Their purpose was to demonstrate that
heuristics were capable of producing feasible solutions for the (then) new problems. Since
all gdb instances have been solved to optimality, Lacomme et al. [51] and Corberán and
Prins [19] state that they should no longer be used to compare CARP metaheuristics, and
between Bartolini et al. [3] and Bode and Irnich [11], the val instances are also solved to
optimality. Because of their small size, heuristics and metaheuristics scalability issues may
also go unnoticed on these instances [59]. Despite their short-comings, both sets are still
used to test and rank heuristics and metaheuristics; see for instance [54, 58, 68, 77, 83].

Two benchmark sets, which are adapted from the gdb and bccm have been proposed
for the CARPTIF by Ghiani et al. [31]. These instances, which we refer to as gdb-IF and
bccm-IF, are solved in Ghiani et al. [31, 33] and in Polacek et al. [68]. Unfortunately, the
original instances used by Ghiani et al. [31], and solved in Ghiani et al. [33] are no longer
available, and applying the transformation process documented by the authors results in
inconsistencies. The only CARPTIF results available in literature that can be used for
validation and comparison of new approaches are those reported by Polacek et al. [68] on
the bccm-IF instances, but the set has the same shortcomings of the original bccm set.
Furtermore, the original bccm instances had separate deadheading and service times per
edge. Since the service times are fixed for any feasible CARP solution, Belenguer and
Benavent [7] removed it from the instances and worked with only the deadheading times.
The reduced versions have been predominantly used in literature since. For the CARPTIF,
service time plays a role due to the route time-limit. Results reported in [31] indicate that
the CARPTIF transformation was performed on the original bccm instances, with service

4The bccm set is also referred to as the val set.

© University of Pretoria

24 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

times. Polacek et al. [68] performed tests on the transformed bccm instances without
service times, and the authors incorrectly compare their metaheuristic results directly
against those of Ghiani et al. [31]. We also found inconsistencies when transforming and
solving gdb instances, which we reported in [87].

Recent CARP studies have relied more on the eglese [3], egl-large [57] and bmcv [10]
set, which are all based on actual winter-gritting applications in which salt is to be spread
on icy roads. Eighty-six out of the hundred bmcv instances have been solved to optimality
by Bartolini et al. [3] and Bode and Irnich [11], limiting their usefulness, but only eleven of
the twenty-four egl instances and none of the ten egl-large instances have been optimally
solved, thus rendering them good candidates for evaluating heuristics. Both, however, are
undirected and based on snow removal.

Belenguer et al. [6] generated fifteen random lpr instances on mixed graphs that mimic
waste collection. Figure 2.4 shows the resulting road network when using the approach,
as documented by Belenguer et al. [6], to create a problem instance similar to lpr-c-05,
which is the largest instance in the set. Belenguer et al. [6] also create 34 mval instances

(a) Grid is constructed that ran-
domly consisting of arcs (thin-
lines) and edges (thick-lines)

(b) Arcs and edges are randomly
removed from the grid and new
ones are randomly inserted.

(c) Network is distorted by ran-
domly moving vertices and mak-
ing arcs and edges curved.

Figure 2.4: Randomly generated lpr-c-05 like network

with mixed graphs derived from the bccm set. The lpr and mval sets are currently the
only available MCARP benchmarks. The CARP sets are publicly available from http:

//logistik.bwl.uni-mainz.de/benchmarks.php and the MCARP sets from http://

www.uv.es/belengue/mcarp/.

New benchmark sets

Since no benchmarks exist for the MCARPTIF, we developed seven benchmark sets for the
problem. Five are based on existing CARP and MCARP benchmarks, and the remaining
two are new and based on real road networks on which waste collection occurs. A full
description of the benchmark sets is available from Willemse and Joubert [86].

For the first new set the area shown in Figure 2.5 was used to develop three Act-IF
instances. To generate the instances, the known total amount of weekly waste generated in
the study area was evenly distributed among its households. Edge demands for the network
were then calculated using the number of households on each road segment multiplied by
the waste generated per household. Dead-heading travel speed was taken as 28 km/h, and
service time per edge was calculated using a collection time of 1 second per kilogram of
waste plus a travel speed between bins of 14 km/h. We assumed it takes 5 minutes for

© University of Pretoria

http://logistik.bwl.uni-mainz.de/benchmarks.php
http://logistik.bwl.uni-mainz.de/benchmarks.php
http://www.uv.es/belengue/mcarp/
http://www.uv.es/belengue/mcarp/

2.4. EVALUATING HEURISTICS 25

Figure 2.5: Act-IF road network

a vehicle to offload its waste at an IF, and vehicle capacity was set to 10000 kg. Waste
collection crews operated from 08:00 AM to 17:00 PM, including breaks totalling 1 hour,
typically taken when the vehicle visits the dumpsite. The route time-limit was accordingly
set to 8 hours. All instances have one IF, coinciding with the dumpsite, situated outside
the study area and away from the vehicle depot. The instances are relatively small, ranging
in size from 151 to 400 required edges.

The second set consists of three Cen-IF instances that are based on actual road net-
works of Centurion, which forms part of the City of Thswane Metropolitan Municipality,
South Africa. The benchmark set was created by dividing the Centurion area as shown in
Figure 2.6 into three sub-areas, and the instances range in size from 1012 to 2755 required
arcs and edges, making them some of the largest benchmarks currently available. The

A

B

C

Figure 2.6: Cen-IF road network

procedure used to develop the benchmark can be found in Section 2.C at the end of the
chapter. Two of the instances, Cen-IF-a and Cen-IF-c, have one IF that coincides with the
vehicle depot, and are thus not strictly MCARPTIFs but Mixed Capacitated Arc Routing
Problems under Time restrictions (MCARPTs). Cen-IF-b has two IFs, one coinciding

© University of Pretoria

26 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

with the vehicle depot. A fourth benchmark instance was also created, Cen-IF-Full, that
consists of the entire area. The problem has 6289 required arcs and edges, making it the
largest ARP test instance currently available. The instance was exclusively used for our
final computational tests in Chapter 7.

The third MCARPTIF set that we developed was based on the existing lpr instances.
We included IFs at vertices b|VVV |/2c and 2b|VVV |/2c, and included a route duration time
restriction of 28800 seconds. The set, referred to as Lpr-IF, is especially useful during
early heuristic development, or when studying new CARP versions, since it contains a
wide range of instances.

Since the original and transformed instances of Ghiani et al. [31] are no longer available,
we treated the gdb-IF set generated using their approach as a new CARPTIF set. We also
transformed and solved available bccm instances, thus rendering our results comparable
to Polacek et al. [68]. The gdb-IF and bccm-IF instances have a low number of arcs per
subtrip ratio. As a result, the capacity limit is rarely reached on these instances, meaning
that most routes will not have intra-route IF visits. Two new sets, gdb-IF-3L and bccm-
IF-3L, were developed specifically to overcome this issue. To develop the sets the gdb-IF
and bccm-IF were used as-is except for the route duration limit that was increased by a
factor of three for each problem instance. A new mval-IF-3L set was also developed based
on the mval set. The same transformation used to develop the gdb-IF was applied and
the route duration limits of bccm-IF-3L were imposed.

All the CARPTIF and MCARPTIF benchmark sets used in this thesis are publicly
available from Willemse and Joubert [88].

Benchmark set comparison

Key features of specific waste collection benchmark instances and all benchmarks sets are
shown in Table 2.3. For comparison, the table shows features of the six Act-IF and Cen-IF
instances, the three largest Lpr-IF instances, and the two case study problem instances
of Bautista et al. [4] and Ghiani et al. [30]. Starting with the Act-IF set, its key features
are consistent with the case study instance of Ghiani et al. [30]. Act-IF instances are
smaller than the instance of Bautista et al. [4], but it should be noted that Act-IF set only
represents a small suburb of the total municipal area that requires service. The Cen-IF
instances are much larger than the two case study problem instances in [4, 30], which may
detract from the realism of the set. In practice, routes may only have to be developed for
smaller sub-areas, or sectors, linked with collection days. This makes the set ideal for tests
on MCARP sectoring type problems studied in [24, 62]. Comparing Act-IF and Cen-IF
to the case study instances, their arcs per route ratios are slightly higher than the instance
of Ghiani et al. [30] but lower than the instance of Bautista et al. [4]. As for the Lpr-IF
set, features of the larger instances are consistent with the case study problem of Bautista
et al. [4], and features on smaller instances are consistent with Act-IF. Overall, the new
Act-IF, Cen-IF and Lpr-IF sets have features that arc consistent with either the Bautista
et al. [4] or Ghiani et al. [30] instances, which confirms that they are representative of
actual waste collection.

As shown in Table 2.3, the gdb-IF and bccm-IF instances have a low number of arcs
per subtrip ratio. The number of arcs per route are the same or even lower than the arcs
per subtrip. Furthermore, the fleet size lower bound calculation used is weak, meaning the
actual number of arcs per route is even lower than indicated. As a result, and confirmed
during our computational tests, the capacity limit is rarely reached on these instances,
meaning that most routes for the instances do not have intra-route IF visits. Compared
to waste collection sets, the gdb-IF and bccm-IF sets are small and all the edges require

© University of Pretoria

2.4. EVALUATING HEURISTICS 27

Table 2.3: Benchmark set and problem instance features.

Benchmark sets
and instances

Subtrips Routes

|AAA′ ∪EEE′| (1) |AAAr ∪EEEr| (2) min # (3) #Arcs/subtrip (4) KLB
(5) #Arcs/route (6)

Waste collection problem instances
Case study of [4] 540 679 5 136 NA NA
Case study of [30] 223 153 3 51 NA NA

Act-IF-a 259 401 2 76 1 151
Act-IF-b 509 151 6 67 2 201
Act-IF-c 410 250 4 63 2 125

Cen-IF-a 441 1012 17 60 7 145
Cen-IF-c 486 2519 37 68 15 168
Cen-IF-b 360 2755 39 71 16 172

Cen-IF-full 1282 6289 92 68 41 153

Lpr-IF-a-05 250 806 18 45 4 76
Lpr-IF-b-05 75 801 18 45 6 84
Lpr-IF-c-05 38 803 23 35 9 89

Mean values over randomly generated benchmark sets
Lpr-IF 71 352 7 28 3 57
mval-IF 0 88 5 21 3 32

gdb-IF 0 29 6 5 6 5
gdb-IF-3L 0 29 6 5 2 14

bccm-IF 0 63 5 15 6 10
bccm-IF-3L 0 63 5 15 2 31

Mean values over realistic snow-removal benchmark sets
bmcv [10] 22 66 6 12 - -
eglese [53] 34 110 15 7 - -
egl-large [12] 14 361 31 12 - -

(1): number of arcs and edges not requiring service; (2): number of arcs and edges requiring service; (3):
lower bound on minimum number of subtrips; (4): (2) ÷ (3); (5): weak lower bound on fleet size; (6):
(2)÷ (5); NA: Not enough information available to calculate (5) and (6).

© University of Pretoria

28 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

service. The random gdb-IF set has very few required edges and has low arcs per route
values, but not that much less than eglese winter-gritting instances. The bccm-IF and
mval-IF set is also consistent with winter-gritting, being very similar to bmcv. The orig-
inal mval, bccm and gdb sets are thus more representative of winter-gritting than waste
collection.

There are two main differences between waste collection instances, including our new
instances and the case study instances [4, 30], and the winter-gritting sets of Beullens
et al. [10], [12] and Li and Eglese [53]. First, the ratio of non-required to required arcs and
edges is higher for waste collection sets. Only arcs and edges with residential properties
accumulate waste and require service. The winter-gritting networks only contain major
roads, most of which require service. Second, the number of arcs per route is much higher
for waste collection. This is due to waste collection typically taking place in urban and
city areas with relatively short road-segments.

We chose not to modify the bmcv, eglese and egl-large sets into CARPTIF instances
for two reasons. First, instance data of the sets are not time-based, making it difficult
to assign realistic route duration limits to the sets. Second, as shown in Table 2.3 waste
collection sets have different characteristics to winter-gritting sets. A key question is
whether the problem instance characteristics influence heuristic performance. If so, the
results on waste collection sets have to be prioritised for results to be of value to waste
collection planners. This effect has not been formally investigated in literature, and such
a detailed comparative study is not included in the scope of this thesis. To ensure that
our results are of practical value computational experiments are predominantly performed
on the Cen-IF, Act-IF and Lpr-IF waste collection sets. We do test the effect that the
gdb and bccm based sets have on constructive heuristic performance, but only to a limited
extent.

2.5 Conclusion

Waste collection routing is a difficult and complex optimisation problem, too complex to
be formulated as a pure CARP. In this chapter we have formally defined the MCARPTIF
which accurately models residential waste collection. We briefly reviewed constructive
heuristics that are capable of quickly generating solutions for CARPs when execution
time is limited. Improvement heuristics and more advanced metaheuristics were also briefly
reviewed. These methods can be used to improve solutions of constructive heuristics when
more execution time is available. The remainder of this thesis will focus on developing
and extending the identified heuristics to deal with the MCARPTIF, and on critically
evaluating the heuristics on realistic waste collection benchmark problems.

Some of the constructive heuristics rely on giant tour based approaches that are also
used in metaheuristics. These procedures are reviewed in more detail in the next chapter
in which we develop and test new giant tour procedures for the MCARPTIF. In Chapter 4,
existing constructive heuristics are reviewed and new heuristics are developed. Existing LS
procedures for the MCARP are reviewed in Chapter 5 and adapted to the MCARPTIF. In
Chapter 6, advanced LS acceleration mechanisms are developed and tested for the problem.
The accelerated LS procedures can be used when execution time is limited to improve
constructive heuristic solutions. LS is an important component of the metaheuristic that
we developed in Chapter 7. The metaheurstic, which can be used when more execution
time is available, is critically evaluated on the large MCARPTIF instances.

© University of Pretoria

Chapter appendix

2.A Modelling and calculating shortest paths with turn penal-
ties

To model turn penalties on the directed graph AAA∗, let b(u) be the beginning vertex of arc
u and let e(u) be the end vertex of the arc. Arcs u and v are said to be directly connected
if e(u) = b(v) or e(v) = b(u). We then let suc(u) be the set of allowed successor-arcs of u,
i.e., v ∈ suc(u) if e(u) = b(v) and the turn from u to v is allowed. Let, pen(u, v) be the
cost of turning from arc u into arc v ∈ suc(u). Given arcs u and v we define a feasible
deadheading path from u to v as a sequence of arcs PPP = [u = u1, u2, . . . , uk = v], such
that

ui+1 ∈ suc(ui) ∀ i = {1, . . . , k − 1}. (2.9)

The deadheading cost for the path, C(PPP), is defined by

C(PPP) = pen(u1, u2) +
k−1∑
i=2

(
d(ui) + pen(ui, ui+1)

)
. (2.10)

Because we only include required arcs in our solution encoding scheme, the costs of dead-
heading arcs u and v are excluded with Equation (2.10).

Similar to the adaptation of Dijkstra’s algorithm in [51], we have adapted the Floyd-
Warshall algorithm for a directed graph as shown in Algorithm 2.1 to pre-compute a
shortest path between all pairs of arcs while accounting for turn penalties. The cost of
the shortest path from arc u to arc v is given by D(u, v), and the predecessor of v on this
path is given by Π(u, v). Paths to and from the depot and IFs are handled since they are
modelled in AAA∗ as dummy arcs.

The algorithm starts by setting the distance from an arc to each of its successor arcs
equal to the turn penalty between the two; the distance from an arc to itself is set equal
to zero; and the distances between each arc and its non-successor arcs are initially set to
infinity. Next the algorithm determines if a path from arc u to arc v via an intermediate
shortest path to arc k is shorter than the current shortest path between u and v. If so, the
new shortest path between u and v is changed to include a visit to k, and the predecessor
arc function Π is updated accordingly. This phase is repeated for all u, v, k ∈ AAA∗. The
arcs in AAA∗ are assigned to u, v and k in the same order, hence the final shortest paths
between u−k and k−v are determined before comparing u−k−v to u−v. Finally, using
Π as input, the shortest arc path between arcs u and v is determined with Algorithm 2.2.
Both D and Π are pre-computed and provided as input data for our algorithms.

29

© University of Pretoria

30 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

Algorithm 2.1: Arc-to-Arc-Floyd-Warshall algorithm with turn penalties

Input : AAA∗, d(u), suc(u) and pen(u, v) where u, v ∈ AAA∗.
Output: D and Π.

1 for u ∈ A∗ do
2 for v ∈ A∗ do
3 if u = v then
4 D(u, v) = 0 and Π(u, v) = 0;
5 else if v ∈ suc(u) then
6 D(u, v) = pen(u, v) and Π(u, v) = u;
7 else D(u, v)←∞;

8 for k ∈ A∗ do
9 for i ∈ A∗ do

10 for j ∈ A∗ do
11 if D(i, k) +D(k, j) + d(k) < D(i, j) then
12 D(i, j) = D(i, k) +D(k, j) + d(k);
13 Π(i, j) = Π(k, j)

14 return (D, Π)

Algorithm 2.2: Shortest-Path-Arc-Sequence

Input : Π, origin arc u and destination arc v.
Output: PPP = [u, ai, aj , . . . , v].

1 PPP ← [v];
2 a← v;
3 while a 6= u do
4 a = Π(u, a);
5 insert a in the beginning of PPP

6 return
(
PPP
)

© University of Pretoria

2.B. GENERIC ALGORITHM RUNNING TIME ANALYSIS 31

2.B Generic algorithm running time analysis

A simple and generic way to evaluate an optimisation algorithm is to determine the order
of growth of its running time, defined as a growth function. As stated by Cormen et al.
[20], the growth function gives a simple characterisation of an algorithm’s efficiency and
may also be used to compare the relative performance of alternative algorithms on the
same problem.

In spirit of Cormen et al. [20] we employ an asymptotic notation to describe the running
time of our optimisation algorithms, specifically focusing on the worst-case running-time
of a function T (n). The function is defined on integer input sizes, which for our implemen-
tations correspond to the number of required arcs of the problem network, or the number
of arcs in a subset of the required arcs of a network. Specifically we employ O-notation,
which is an asymptotic upper bound of the running time function T (n). For a given
function g(n) we denote by O(g(n)) the set of functions

O(g(n)) = {g(n) : there exist positive constants c and n0 such that

O ≤ g(n) ≤ c g(n) for all n ≥ n0}.

The notation gives an upper bound on a function, to within a constant factor. If T (n) =
O(g(n)) the value of T (n) is on or below g(n).

To illustrate the use of theO-notation consider the modified Arc-to-Arc-Floye-Warshall
algorithm shown in Algorithm 2.1. In the first part of the algorithm (lines 1–7), the
predecessor and distance matrix is updated for each pair of arcs u and v where both
are elements of A∗. The update is performed τ2 times, where τ = |AAA∗|. In the second
part of the algorithm (lines 8–13), D(i, j) + D(k, j) + c(k) is compared to D(i, j) for
each i, j, k ∈ AAA∗. The comparison is performed τ3 times. The second part of the code
dominates the first by an order of magnitude, so the algorithm has a worst-case running
time of O(τ3). We use the O-notation as a measure of the complexity of an algorithm,
thus the Arc-to-Arc-Floyd-Warshall algorithm has a global complexity of O(τ3),5. If a
different algorithm were to perform the same function in O(τ2) we could infer that the
algorithm is more efficient than our Arc-to-Arc-Floyd-Warshall implementation.

2.C Cen-IF problem instance description

A Geospatial Information System (GIS) data set of the Centurion area, courtesy of Busi-
ness Connexion, was used to create the benchmark instances. The data set accurately
describes the network and includes a number of useful attributes. Accurate deadheading
costs, service costs and waste quantities are not available for the network, so we inferred
the arc-routing data using a similar approach to that of Belenguer et al. [6]. Though the
metadata for the Centurion files are fabricated, the actual road network data are not.
The municipality of Centurion has to service the entire road network, so the large files are
representative of actual waste collection problems.

All road segment centerlines are represented by polylines, which, in turn, is made up
out of no less than two nodes (or points). We infer the origin node, denoted by FromNode,
as the first node in the polyline description, and the destination node, denoted by ToNode,
as the last node. We refer to the FromNode–ToNode combination as a link.

5 More accurately the Arc-to-Arc-Floyd-Warshall algorithm’s complexity can be bounded by an asymp-
totically tight bound Θ(n3). We do not give the Θ-notation’s formal description as it is not applicable to
other algorithms presented in this thesis. For a comprehensive discussion of algorithm growth functions,
including Θ-notation, we refer the reader to [20].

© University of Pretoria

32 CHAPTER 2. CAPACITATED ARC ROUTING PROBLEMS IN LITERATURE

Associated with each link is a ONEWAY field that has one of three values: ‘B’ indicates
that it is a bi-directional road segment; ‘FT’ indicates a one-way in the direction from the
FromNode to the ToNode; and ‘TF’ indicates a one-way in the direction from the ToNode

to the FromNode. We infer the link to be an arc if it has a field value of either ‘TF’ or ‘FT’,
and an edge if the field value is ‘B’.

A road category field identifies the road type within the network hierarchy. If the link
has a field value of type ‘STREET’ or ‘OTHER’, we assign a value 1 to the link, or a value
2 if the type is ‘DUAL CARRIAGEWAY’, ‘NATIONAL HIGHWAY’, ‘NATIONAL ROAD’, ‘MAIN ROAD’
or ‘RESTRICTED ACCESS ROAD’. Both sides of a type 1 link are assumed to be serviceable
in a single traversal. If a link is either an arc or edge with a type 1 value, it will remain
a single link. We assume that the two sides of a type 2 link, on the other hand, must be
serviced separately since it would be either dangerous, or physically impossible to have
refuse collected on both sides of the road. An example would be a busy suburban road
with two lanes in either direction. Links of type 2 that are arcs are then replaced with two
arcs, both in the direction of the original arc, each arc representing one side of the road.
Type 2 links that are edges are replaced with two directed arcs, one in either direction.

Links, both arcs and edges of either type 1 or 2, with a speed limit exceeding 60 km/h
are assumed to have no demand. Links with a speed limit of at most 60 km/h are assumed
to have demand. Demand of 10kg per household, and one household each 20 m is assumed.
In the case of type 1 links the demand is doubled since both sides of the road is assumed
to have demand. Demand is then calculated using Equation (2.11)

demand =
d

20
× 10×m (2.11)

where d denotes the length of the link, and m the multiplication factor of 2 if it is of type
1, and 1 if it is of type 2.

Road segments with a category other than those listed are assumed to be of type 1,
but with no demand.

The traversal cost of a link is determined as the time it takes to traverse the link at
a speed of 20 km/h. To derive the service cost, we add a loading time of 10 seconds per
bin—10 kg or part thereof—to the traversal cost.

We impose a maximum vehicle capacity of 10 tons (10 000 kg) and a maximum trip
length of 8 hours (28 800 seconds). For each street segment in the network we model
separate deadheading and collection times. We also assume that a intermediate facility
visit incurs a cost of 300 seconds.

© University of Pretoria

Chapter 3

Splitting procedures

Since the Capacitated Arc Routing Problem (CARP) and all its extensions are NP-
hard the most effective methods for solving the problems are based on heuristics and
metaheuristics, many of which employ giant tour approaches that rely on tour splitting
procedures [70]. In this chapter we present optimal and heuristic splitting procedures for
the Mixed Capacitated Arc Routing Problem under Time Restrictions with Intermediate
Facilities (MCARPTIF). The structure of our optimal splitting procedure provides a
substantial improvement in efficiency over the existing Capacitated Arc Routing Problem
under Time Restrictions with Intermediate Facilities (CARPTIF) version that we adapted
for mixed networks. Fast, near-optimal splitting procedures are also presented. The
procedures developed in this chapter have been published in Willemse and Joubert [89],
and are used in the giant tour based constructive heuristics of the next chapter.

3.1 Introduction

Splitting procedures take as input a giant tour and partition the tour into feasible ve-
hicle routes. In this chapter we develop an efficient optimal and two heuristic splitting
procedures for the MCARPTIF. The optimal and near-optimal procedures were tested in
a multi-start Route-First-Cluster-Second heuristic on large MCARPTIF instances. Tight
time-limits were imposed to reduce the number of starts of the slower, optimal procedures
compared to the faster near-optimal procedures. Even with less starts, the Route-First-
Cluster-Second heuristic linked with our efficient optimal splitting procedure performed
marginally better than the near-optimal splitting versions. However, the optimal proce-
dure is more difficult to implement, making the near-optimal procedure a worthy substi-
tute, especially for practical applications where problem instances are much larger.

In the next section we review current splitting procedures for the CARP and a few of
its extensions. In Section 3.3 we present detailed descriptions of our splitting procedures.
In Section 3.4 we report on computational experiments, focusing on the execution times
of the procedures and the difference in partition costs between optimal and near-optimal
splitting. We then compare the performance of the different procedures within a multi-
start Route-First-Cluster-Second heuristic.

3.2 Splitting procedures for the CARP and CARPTIF

The first optimal splitting procedure for the CARP was developed by Ulusoy [82] as part of
a Route-First-Cluster-Second constructive heuristic. The heuristic is similar to the one of
Beasley [5] for the Vehicle Routing Problem. First, edge demands are ignored and a giant

33

© University of Pretoria

34 CHAPTER 3. SPLITTING PROCEDURES

tour is constructed servicing all the required edges in GGG. In the second phase, an auxiliary
Directed Acyclic Graph (DAG) is constructed whose arcs represent feasible sub-tours of
the giant tour, with respect to demand of the sub-tour and vehicle capacity. The DAG
is constructed in such a way that the shortest path through the graph gives the optimal
partition of the giant tour into feasible vehicle routes. The shortest path can be calculated
using any shortest path algorithm. The splitting procedure consists of constructing the
DAG, calculating the shortest path through the graph, and decoding the shortest path
to retrieve the optimal giant tour partitions. Lacomme et al. [51] and Belenguer et al.
[6] develop multi-start Route-First-Cluster-Second heuristics for the CARP and Mixed
Capacitated Arc Routing Problem (MCARP), respectively, whereby different giant tours
are constructed and partitioned, and the best returned as the final solution.

Ghiani et al. [32] develop a splitting procedure, similar to CARP versions, for the
Capacitated Arc Routing Problem with Intermediate Facilities (CARPIF). Their proce-
dure calculates the optimal placement of Intermediate Facility (IF) visits within a route.
The problem allows intra-route offloads so that collected demand between IF visits never
exceeds vehicle capacity, but it does not impose route duration limits. As such, a solution
always consists of only one route. When a route duration limit is imposed the problem
generalises to the CARPTIF. To solve the problem Ghiani et al. [31] develop a splitting
procedure that constructs two DAGs. The first consists of multiple source and destination
vertices, each representing a start- and end-edge of a sub-tour in the giant tour. Shortest
paths through the DAG between the sources and destinations represent the optimal place-
ment of IFs in all possible sub-tours. The shortest path costs, calculated using a shortest
path algorithm, are then used to construct a second DAG whose shortest path represents
the optimal partition of the giant tour into vehicle routes. The optimal placement of IFs
in each route is traced back to the shortest paths in the first DAG. To our knowledge,
the CARPTIF on a mixed network has not been formally studied in literature. The split-
ting procedure of Ghiani et al. [31] can however be applied as-is to giant tours on mixed
networks. A solution for the Mixed Capacitated Arc Routing Problem under Time Re-
strictions with Intermediate Facilities (MCARPTIF) can thus be obtained by combining
the Route-First phase of Belenguer et al. [6] for the MCARP to construct a giant tour on
a mixed network, and then applying the CLARPIF splitting procedure of Ghiani et al.
[31] for the Cluster-Second phase.

To improve the efficiency of splitting procedures Lacomme et al. [51] develop a compact
procedure for the CARP that does not explicitly construct the DAG. Instead, the shortest
path through the DAG is directly calculated when scanning sub-tours for their feasibil-
ity with respect to vehicle capacity limits. Their version also accounts for a secondary
objective of minimising fleet size. The compact version is exclusively used in Memetic Al-
gorithms for the CARP [51, 54, 81] and MCARP [6], which are currently some of the most
effective solution methods for the problems. Memetic Algorithms are metaheuristics based
on genetic algorithms enhanced with local search procedures. Chromosomes are encoded
as giant tours and an optimal splitting procedure is used to determine chromosome fitness
each time a new chromosome is evaluated. An efficient splitting procedure is critical for
the applications since chromosome evaluation occurs tens of thousands of times during the
Memetic Algorithm’s execution.

In this chapter we extended the compact splitting version of Lacomme et al. [51] to the
CARPIF on a mixed network (MCARPIF). We then further extended this version to deal
with the MCARPTIF and show that it provides a substantial improvement in efficiency
over the version of Ghiani et al. [31]. We also developed two quick heuristic splitting
procedures, one that greedily inserts IF visits into sub-tours and then calculates the route

© University of Pretoria

3.3. NEW SPLITTING PROCEDURES 35

partitions and a second that employs a Next-Fit bin-packing procedure.

3.3 New splitting procedures

Consistent with our MCARPTIF notations, introduced in Section 2.2.4 and summarised in
Tables 2.1 and 2.2, the splitting procedures take as input a giant tour SSS to be partitioned,
which consists of a list of tasks, [S1, . . . , S|SSS|]. It is assumed that the shortest path is
always followed between consecutive tasks, the duration of which is given by D, and only
required arcs, given by the setRRR, are included in SSS, thus it contains no depot or IF dummy
arcs as these are implicitly accounted for by the splitting procedures. Sub-tours in SSS are
denoted as SSSi→j = [Si, . . . , Sj] where 1 ≤ i < j ≤ n and n = |SSS|. A single MCARPIF or
MCARPTIF route is a list of tasks that always starts with the dummy depot task, σ, ends
with a dummy IF and depot task, and may include intra-route IF visits. The splitting
procedures always consider the best IF to visit between consecutive tasks u and v, which
is pre-calculated and given by Φ∗(u, v). For convenience, instead of using Equation (2.3)
the duration of the best IF visit is given as µ∗IF(u, v), which includes offloading time, λ,
and is calculated as Equation (3.1):

µ∗IF(u, v) = D
(
u,Φ∗(u, v)

)
+D

(
Φ∗(u, v), v

)
+ λ. (3.1)

The list of tasks between dummy depot and IF arcs represent subtrips and the load
collected on a subtrip may not exceed Q. For the MCARPTIF the total duration of a
route, including all task service times, deadheading travel time between tasks and the
durations of IF visits, may not exceed a time restriction, L.

3.3.1 Splitting procedures for the MCARPIF

The first splitting procedure that we present is a Mixed Capacitated Arc Routing Problem
with Intermediate Facilities (MCARPIF) adaptation of the CARP procedure developed by
Lacomme et al. [51]. Recall that splitting procedures use SSS to construct an auxiliary DAG,
HHH, in such a way that its shortest path represents the optimal giant tour partition. For the
CARPIF, Ghiani et al. [32] construct HHH by including a vertex for each feasible sub-tour
SSSi→j with respect to vehicle capacity. Vertices representing consecutive sub-tours SSSi→j
and SSSj+1→k are then linked with arcs. A source vertex, linked to vertices representing
SSS1→j , and a sink vertex, linked to vertices representing SSSk→|SSS|, are also included in HHH and
the shortest path from the source to the sink represents the optimal partition. Using this
approach the DAG consists of at most n(n+1)

2 vertices and n(n+1)(n−1)
6 +2n arcs. Bellman’s

algorithm [20] can then compute the shortest path through HHH in O(n3).

To develop a more efficient O(n2) splitting procedure for the MCARPIF, the procedure
of Lacomme et al. [51] can be adapted to construct a smaller sized DAG. Figure 3.1 shows
the partitioning of SSS = [a, b, c, d, e] into a feasible MCARPIF route with sub-tours. The
giant tour of Figure 3.1a is partitioned by building HHH = (VVV ′,AAA′), with n+ 1 vertices, with
{v0, . . . , vn} ∈ VVV ′, indexed from 0 onward (Figure 3.1b). Each sub-tour, SSSi→j , with load
less than Q represents a feasible sub-tour and is modelled as (vi−1, vj) ∈ AAA′. Only feasible
sub-tours are modelled in AAA′. The cost of arc (vi−1, vj) is equal to the sub-tour cost, which
includes the service cost of its tasks, the deadheading cost between tasks, and the cost
of visiting an IF facility after Sj and travelling to Sj+1 if j < n, or travelling from Sj to
an IF and then the depot if j = n. For example, the feasible sub-tour SSS2→4 = [b, c, d] is
modelled by the arc (v1, v4) in HHH, and its weight is 79, which is the cost of servicing tasks
b, c and d, equalling 5 + 5 + 5 = 15, plus the deadheading costs between tasks, equalling

© University of Pretoria

36 CHAPTER 3. SPLITTING PROCEDURES

(a) Initial giant tour SSS = [a, b, c, d, e] to be partitioned with IF visits. While not directly included in SSS, it
is assumed that the giant tour always starts at the depot, and ends with an IF and depot visit, as shown
in the figure.

(b) Auxiliary Directed Acyclic Graph, HHH, with the shortest path shown in bold representing the optimal
IF partitions. Cost labels are shown in each vertex.

(c) Optimally partitioned route with IF visits, obtained through HHH. The total cost of the partitioned route
is 146, which is equal to the shortest path from v0 to v5 in HHH.

Figure 3.1: Example of a splitting procedure for the MCARPIF, with vehicle capacity
Q = 9 and unloading cost λ = 0.

© University of Pretoria

3.3. NEW SPLITTING PROCEDURES 37

20 + 20 = 40, plus the cost of going to Φ2 and to task e, equalling 14 + 10 = 24. The
shortest path from vertex 0 to n in HHH represents the optimal partition of SSS with IF visits
(Figure 3.1c). OnceHHH has been constructed, Bellman’s algorithm for DAGs can efficiently
compute the shortest path from vertex v0 to vn in HHH.

The approach can be further improved by using a compact splitting procedure that
does not explicitly construct HHH, similar to the version of Lacomme et al. [51] for the
CARP. Algorithm 3.1 shows such procedure, called Efficient-IF-Split, that we adapted
for the MCARPIF. It directly calculates the optimal partition and further minimises
the number of subtrips as a second objective. Modifications to the CARP procedure of

Algorithm 3.1: Efficient-IF-Split for the MCARPIF

Input : SSS
Output: NNN,PPP

1 n = |SSS|; ΠΠΠ0 = 0; PPP 0 = 0; NNN0 = D(σ, S1);
2 //* NNN0 = 0;
3 for i← 1 to n do NNN i =∞; ΠΠΠi =∞;

4 for i← 1 to n do
5 l′ = 0; c′ = 0; j = i;
6 repeat
7 l′ = l′ + q(Sj);
8 if l′ ≤ Q then
9 if j = n then

10 a = µ∗IF(Sj , σ)

11 else
12 a = µ∗IF(Sj , Sj+1)

13 //* a = D(Sj , σ);

14 if i = j then
15 c′ = w(Sj) + a;
16 //* c′ = D(σ, Sj) + w(Sj) + a;

17 else
18 ∆c′ = D(Sj−1, Sj)− µ∗IF(Sj−1, Sj);
19 //* ∆c′ = D(Sj−1, Sj)−D(Sj−1, σ);
20 c′ = c′ + ∆c′ + w(Sj) + a;

21 if (NNN i−1 + c′ <NNN j) or
(
(NNN i−1 + c′ = NNN j) and

(
ΠΠΠi−1 + 1 < ΠΠΠj)

)
then

22 NNN j = NNN i−1 + c′;
23 ΠΠΠj = ΠΠΠi−1 + 1;
24 PPP j = i− 1;

25 j = j + 1;

26 until (j > n) or (l′ > Q);

27 return (NNN,PPP)

*Original calculations of Lacomme et al. [51] for the CARP.

Lacomme et al. [51] are contained in Lines 1, and 9–19, with the CARP calculations shown
as comments (//) in Lines 2, 13, 16 and 19. Three labels are used by the procedure. The
first, NNN i, represents the cost of the shortest path from vertex zero to i in HHH, the second,
ΠΠΠi, represents the number of sub-tours in the same shortest path, and the third, PPP i,
represents the predecessor vertex of i on this path and thus stores the resulting optimal
placement of IFs in SSS. Note that both NNN and PPP are indexed from zero. The depot and
final IF and depot visit on a feasible route are implicitly accounted for by the algorithm.
By increasing i and j the procedure successively scans sub-tours for capacity violations.
When the feasible sub-tour SSSi→j is found the optimal partition for the partial giant tour

© University of Pretoria

38 CHAPTER 3. SPLITTING PROCEDURES

ending at j is updated. In the worst case a total of n(n+1)
2 sub-tours can be evaluated,

giving the algorithm a running time of O(n2). The actual running time of the algorithm
is reduced as only feasible sub-tours that meet the capacity constraint are evaluated.

3.3.2 Splitting procedures for the MCARPTIF

For the MCARPTIF the splitting procedure has to simultaneously determine the optimal
IF partitions, resulting from the vehicle capacity limit Q, and the optimal route partitions,
resulting from the route duration restriction, L. Ghiani et al. [31] extend the method of
Ghiani et al. [32] and explicitly construct two DAGs for this purpose. Efficient-IF-Split
can be used in the same way. First, it calculates the optimal IF partitions for all the sub-
tours in SSS. The cost of the partitioned sub-tours are then used to construct the second
DAG, and the shortest path through it represents the optimal route partitions. We refer
to this splitting version for the MCARPTIF as Two-Phase-Split.

Two-Phase-Split

To illustrate the Two-Phase-Split procedure, the same giant tour in Figure 3.1a is used
and a route duration restriction of L = 70 is imposed. It is further assumed that the
shortest paths from the depot to tasks in SSS, excluding task a, are through the respective
IFs. For the first DAG, HHH, each of the n(n−1)

2 sub-tours of SSS is included in HHH, and each
one is treated as a single route, starting at the depot, and ending with an IF and depot
visit. Each sub-tour can be optimally partitioned with IF visits using Efficient-IF-Split.
The result of the first phase on the example route is shown in Figure 3.2, in which the
optimal partition of each sub-tour is calculated and given separately.

Next, as shown in Figure 3.3, the algorithm uses the feasible sub-tours with dura-
tions exceeding L to construct the second DAG, HHH ′ = (VVV ′′,AAA′′), with n + 1 vertices,
{v0, . . . , vn} ∈ VVV ′′, indexed from zero onward (Figure 3.3a). Each sub-tour SSSi→j is mod-
elled by one arc (v′i−1, v

′
j) in AAA′′, weighted by the route’s partitioned cost, given by the

cost of the shortest path in HHH from vi−1 to vj . In Figure 3.3a, arc (v′0, v
′
2) in HHH ′ models

the route starting with task S1 = a and ending with task S2 = b. Referring back to HHH
(Figure 3.2), the optimal IF partition cost of this route is 67, which becomes the weight
of arc (v′0, v

′
2) in HHH ′. Since the IF partitioned cost of the route is less than L, it is in-

cluded in HHH ′. The shortest path from vertex v′0 to v′n in HHH ′ represents the optimal route
partition of SSS, and the optimal IF visits for each route can be traced back to HHH. The
optimal route and IF partitions for the giant tour in Figure 3.1a are shown in Figure 3.3b.
When constructing HHH, the optimal placement of IFs does not have to be calculated for all
sub-tours. If the optimally partitioned sub-tour SSSi→j exceeds L, then all the partitioned
sub-tours SSSi→j+k, where 0 < k ≤ n− j, will also exceed L and can thus be skipped in the
construction of HHH.

Efficient-Split

Similar to Efficient-IF-Split for the MCARPIF, HHH and HHH ′ need not be explicitly con-
structed. Algorithm 3.2 shows a compact splitting version for the MCARPTIF that di-
rectly calculates the optimal partitions for subtrips and routes. We refer to this version as
Efficient-Split. Algorithm 3.2 minimises the total number of routes as the primary objec-
tive, and partition cost as secondary. For the IF partitions, two labels are used for each
vertex i in HHH. The first, NNN i,j , where i ≤ j, represents the cost of the shortest path from
vertex i to j in HHH, and the second, PPP i,j , where i ≤ j, represents the predecessor vertex of j

© University of Pretoria

3.3. NEW SPLITTING PROCEDURES 39

F
ig

u
re

3
.2

:
O

p
ti

m
a
l

IF
p

ar
ti

ti
on

s,
sh

ow
n

in
b

ol
d

,
fo

r
al

l
p

os
si

b
le

su
b

-t
ou

rs
in
SS S

of
th

e
ex

am
p

le
ro

u
te

.

© University of Pretoria

40 CHAPTER 3. SPLITTING PROCEDURES

(a) Second auxiliary Directed Acyclic Graph, HHH ′, constructed using HHH with the shortest path shown in
bold representing the optimal route partitions. Cost labels are shown in each vertex.

(b) Optimally partitioned giant tour with each route further partitioned with IF visits, as given by the
shortest paths in HHH and HHH ′

.

Figure 3.3: Example of a splitting procedure for the MCARPTIF, with vehicle capacity
Q = 9, unloading time of λ = 0 and route duration restriction of L = 70.

© University of Pretoria

3.3. NEW SPLITTING PROCEDURES 41

Algorithm 3.2: Efficient-Split for the MCARPTIF

Input : SSS
Output: NNN,PPP , NNN ′,PPP ’

1 n = |SSS|;
2 for i← 0 to n− 1 do NNN i,i = DDD(σ,SSSi); PPP i,i = i ;
3 for i← 1 to n− 1 do
4 for j ← i+ 1 to n do
5 NNN i,j =∞;

6 ΠΠΠ′0 = 0; PPP ′0 = 0; NNN ′0 = 0;
7 for i← 1 to n do NNN ′i =∞; ΠΠΠi =∞ ;
8 ks = 0;
9 for i← 1 to n do

10 l′ = 0; c′ = 0; c′′ = 0; j = i; k0 = ks;
11 repeat
12 l′ = l′ + q(Sj);
13 if l′ ≤ Q then
14 if j = n then a = µ∗IF(Sj , σ) ;
15 else a = µ∗IF(Sj , Sj+1) ;

16 if i = j then
17 c′ = w(Sj) + a;

18 else
19 ∆c′ = DDD(Sj−1, Sj)− µ∗IF(Sj−1, Sj);
20 c′ = c′ + ∆c′ + w(Si) + a;

21 c′′ = c′ + µ∗IF(Sj , σ)− a;

22 if c′′ ≤ L then
23 for k ← k0 to i− 1 do
24 Ntemp = NNNk,i−1 + c′;
25 if Ntemp <NNNk,j then
26 NNNk,j = Ntemp;
27 PPP k,j = k;

28 N ′temp = NNNk,i−1 + c′′;
29 if N ′temp ≤ L then
30 if (ΠΠΠi + 1 < ΠΠΠj) or

(
(ΠΠΠi + 1 = ΠΠΠj) and (NNN ′k +N ′temp <NNN ′j)

)
then

31 ΠΠΠj = ΠΠΠi + 1;
32 NNN ′j = NNN ′k +N ′temp;
33 PPP ′j = k;

34 if (i = j) and (j < n) then
35 N ′best = NNNk,j − µ∗IF(Sj , Sj+1) +D(Sj , Sj+1) + w(Sj+1) + µ∗IF(Sj+1, σ);
36 if N ′best > L then ks = ks + 1 ;

37 j = j + 1;

38 until (j > n) or (l′ > Q) or (c′′ > L);

39 return (NNN,PPP , NNN ′,PPP ’)

© University of Pretoria

42 CHAPTER 3. SPLITTING PROCEDURES

on this path back to i and thus stores the resulting optimal placement of IFs in sub-tours
of SSS. Two more labels are used for the optimal route partitions. The first, NNN ′i, represents
the cost of the shortest path from vertex zero to i inHHH ′, and the second, PPP ′i, represents the
predecessor vertex of i on this path and thus stores the resulting optimal route partitions
of SSS. Since the MCARPTIF has multiple routes, the partitioning algorithm is further
extended by including ΠΠΠi, which represents the number of routes required from vertex
zero to i in HHH ′. By increasing i and j the procedure successively scans sub-tours for ca-
pacity violations. When the feasible sub-tour SSSi→j is found the optimal partitions for all
sub-tours starting at k ∈ {1, . . . , i} and ending at j are updated. In the worst case, a total

of n(n+1)(n+2)
6 sub-tours are evaluated for the optimal IF partitions, giving the algorithm

a running time of O(n3). The actual running time of Algorithm 3.2 is reduced as only
feasible sub-tours, adhering to the route duration restriction, are optimally partitioned
with IF visits. When i = j, the optimal partitions of all sub-tours from k ∈ {1, . . . , j} to
j have been calculated. If SSSk→j then exceeds L, longer sub-tours starting at k will also
exceed L and they need not be updated with IF partitions in subsequent iterations. This
significantly reduces the number of sub-tours that have to be updated each time i and j
are incremented.

3.3.3 Heuristic splitting procedures for the MCARPTIF

The last two splitting procedures that we developed for the MCARPTIF are heuristic in
nature and thus do not guarantee an optimal partition. The first is a straight forward
Next-Fit bin-packing type procedure that starts with a route consisting of the starting
depot task. Starting with the first task in SSS, tasks are progressively added in sequence to
the route. If a task cannot be added without exceeding Q, an IF visit is included before
the task. If a task cannot be added to the route without exceeding L, including the time
of going from the task to the nearest IF and depot, the route is closed and the task is
added to a new route. The procedure, which we call Simple-Split, runs in O(n).

The second heuristic procedure that we developed, called Heuristic-Split, is shown in
Algorithm 3.3. It is an extension of Efficient-IF-Split whereby IF visits are included in
routes greedily instead of optimally. When evaluating progressively longer sub-tours, IF
visits are inserted the moment that the load of a sub-tour since the last IF insertion exceeds
the vehicle capacity. The optimal placement of IFs is not calculated for each sub-tour,
reducing the computational complexity of the algorithm to O(n2) while still ensuring that
it produces feasible routes with respect to Q and L. After partitioning SSS, the IF partitions
for each of the resulting routes can be improved using Efficient-IF-Split while maintaining
the overall complexity of O(n2).

3.4 Computational results

For the computational tests we analysed and compared the efficiency of Two-Phase-Split,
Efficient-Split, Simple-Split and Heuristic-Split for the MCARPTIF. Efficiency was mea-
sured as the time taken by each procedure to partition a giant tour. We then compared the
number of routes and cost of the giant tour partitions from each procedure. Heuristic-Split
was always linked with Efficient-IF-Split as a post-partition procedure to improve the IF
placements in each route. The aim was to determine if Simple-Split or Heuristic-Split
could be potentially used as a substitute for Two-Phase-Split and Efficient-Split in giant
tour solution methods when solving large problem instances.

Two sets of MCARPTIF benchmark problems, introduced in Section 2.4.2, were used

© University of Pretoria

3.4. COMPUTATIONAL RESULTS 43

Algorithm 3.3: Heuristic-Split for the MCARPTIF

Input : SSS
Output: NNN,PPP

1 n = |SSS|; PPP 0 = 0; NNN0 = 0;
2 ΠΠΠ′0 = 0; for i← 1 to n do NNN ′i =∞; ΠΠΠi =∞ ;

3 for i← 1 to n do
4 l′ = 0; c′ = 0; j = i;
5 repeat
6 l′ = l′ + q(Sj);
7 if i = j then
8 c′ = D(σ, Sj) + w(Sj) + µ∗IF(Sj , σ);

9 else
10 if l′ ≤ Q then
11 ∆c′ = D(Sj−1, Sj)− µ∗IF(Sj−1, σ)

12 else
13 ∆c′ = µ∗(Sj−1, Sj)− µ∗IF(Sj−1, σ);
14 l′ = q(Sj);

15 c′ = c′ + ∆c′ + w(Sj) + µ∗IF(Sj , σ);

16 if c′ ≤ L then
17 if (ΠΠΠi + 1 < ΠΠΠj) or

(
(ΠΠΠi + 1 = ΠΠΠj) and (NNN i−1 + c′ <NNN j)

)
then

18 ΠΠΠj = ΠΠΠi + 1;
19 NNN j = NNN i−1 + c′;
20 PPP j = i− 1;

21 j = j + 1;

22 until (j > n) or (c′ > L);

23 return (NNN,PPP)

© University of Pretoria

44 CHAPTER 3. SPLITTING PROCEDURES

for our tests. The first set, Lpr-IF, is based on the lpr MCARP set of Belenguer et al.
[6]. The set contains random networks that were generated in such a way to mimic waste
collection routing. The second data set used was the Cen-IF set that contains three very
large benchmark instances, based on actual road networks of Centurion. All heuristics
were programmed in Python version 2.7, with critical procedures optimised using Cython
version 0.17.1. Computational experiments were run on a Macbook Pro with a 2.5 Ghz
Intel Core i5 processor and with 8 GB memory.

To compare the efficiency of the procedures thirty giant tours were constructed using
the Path-Scanning-Random-Link constructive heuristic, developed by Belenguer et al.
[6] for the MCARP, and relaxing the capacity limit and route length restriction. The
constructive heuristic is described in more detail in the next chapter in Section 4.3.1.
The giant tours were then partitioned using one of the four splitting procedures with the
primary objective to minimise the number of required routes, and secondly to minimise the
partition cost. Figure 3.4 shows the CPU time taken by each procedure to partition the
giant tours as a function of the size of the tours, n. Giant tours for Cen-IF problems are of

Heuristic−Split●

Efficient−Split

Two−Phase−Split

Simple−Split

0.001

0.009

0.022

0.057

0.514

12.905

58.618

0 100 300 500 800 1012 1500 2000 2519 2755

Giant−tour size, n

C
P

U
 T

im
e

(s
ec

o
n

d
s)

 o
n

 a
 l

o
g

a
ri

th
m

ic
 s

ca
le

Figure 3.4: Scatter plots and trend lines for giant tour size, n, versus partitioning time
(in seconds, on a logarithmic scale) of four MCARPTIF splitting procedures on thirty
different giant tours per instance.

sizes 1012, 2519 and 2755. All other points in the figure are for the Lpr-IF instances. All
four splitting procedures show polynomial growth in their execution times as a factor of n.
Simple-Split was extremely efficient, since it runs in O(n), splitting the Cen-IF tours with
over 2500 tasks in less than 0.05 seconds. Heuristic-Split was also efficient, taking less than
0.5 seconds to partition the Cen-IF tours. Owing to their O(n3) complexity, Two-Phase-
Split and Efficient-Split took longer to partition tours. On all instances, Efficient-Split
was substantially quicker than Two-Phase-Split, though on small instances with n ≤ 104
the difference in performance may not be practically significant, with both procedures

© University of Pretoria

3.4. COMPUTATIONAL RESULTS 45

taking less than 0.5 seconds per partition. Two-Phase-Split took close to 60 seconds on
the largest Cen-IF problem, whereas Efficient-Split took only 12 seconds.

Next we compared the solution quality of the partitioning procedures over the thirty
Path-Scanning-Random-Link giant tours per problem instance. Since Two-Phase-Split
and Efficient-Split produce the same optimal partitions their partition costs and resulting
number of routes were used as a target. For the primary objective, to minimise the number
of routes resulting from the partition, both Simple-Split and Heuristic-Split matched Two-
Phase-Split on more than 79 of the 90 Cen-IF and on 431 of the 450 Lpr-IF giant tours.
On the remaining tours, the near-optimal procedures required at most one additional
route. To see how close the suboptimal partitions were to the optimal partitions, cost
wise, the cost gap between the partitions was measured as Zgap = Z−Z∗

Z∗ where Z is the
cost of the final partition of the giant tour, partitioned using Simple-Split or Heuristic-
Split, and Z∗ is the cost of the optimal partition, as calculated through Efficient-Split.
Results per problem are shown in Figure 3.5 where each problem is labelled according to
its giant tour size, n. Except for two problems, the partitions produced by Heuristic-Split

●

●

●

●

●

●

● ●

●

●

●●

●
●

0.00

0.01

0.02

0.03

0.04

0.05

50 52 100 101 104 302 304 305 501 503 504 801 803 806 1012 2519 2755

Giant−tour size (n)

C
o

st
 g

a
p

 b
et

w
ee

n
 s

u
b

o
p

ti
m

a
l

a
n

d
 o

p
ti

m
a

l
p

a
rt

it
io

n
s

Heuristic−Split Simple−Split

Figure 3.5: Box-and-Whisker plot for the cost gap, Zgap, between the partitions of Simple-
Split and Heuristic-Split, and the optimal partitions of Efficient-Split.

were very close to optimal with an average cost gap of less than 1%. The cost gap range
(maximum gap minus minimum gap) of the procedure is also small, being less than or close
to 2%, which shows that it consistently produced near-optimal partitions. Negative cost
gaps were observed for the procedure on some of the giant tours for Cen-IF-c. These were
tours where Heuristic-Split partitions required an extra route over the optimal partitions,
and the extra route resulted in a lower solution cost. Since minimising the number of
routes was our primary objective, these partitions are suboptimal. Simple-Split matched

© University of Pretoria

46 CHAPTER 3. SPLITTING PROCEDURES

Heuristic-Split on the two smallest giant tour problems. On all other problems its cost
gap was larger, which was expected given its simple structure. The cost gap range of
Simple-Split was also larger than Heuristic-Split, showing that its performance was not as
consistent.

Our results show that as a factor of giant tour size, the execution time of Heuristic-
Split is an order of magnitude lower (faster) to that of Efficient-Split, whose computation
time is an order of magnitude lower than Two-Phase-Split (Figure 3.4). Furthermore,
Heuristic-Split consistently produced near-optimal partitions, whereas Simple-Split re-
sulted in higher cost partitions and its performance varied per problem (Figure 3.5). In
time-limited applications, methods linked with Simple-Split and Heuristic-Split may pro-
duce better results than Two-Phase-Split and Efficient-Split since their higher efficiency
will allow the methods to evaluate and split more giant tours.

To test the hypothesis the following experiment was conducted using a multi-start
Route-First-Cluster-Second constructive heuristic. Path-Scanning-Random-Link (PSRL)
was again used for the Route-First phase and different splitting procedures were used
for the Cluster-Second phase. Giant tours, representing different starts, were generated
with PSRL and partitioned by the splitting procedure until an execution time-limit of 60
seconds was reached. The best partitioned solution from all the starts was then returned
as the final solution. This was repeated for 30 experiments per problem and the mean
number of routes, K, and cost, Z, over the returned solutions were calculated. Summary
results on the Lpr-IF and Cen-IF problem sets are shown in Table 3.1. Within the

Table 3.1: Mean total cost results over 30 experiments for different splitting procedures
used in a multi-start Route-First-Cluster-Second constructive heuristic. For each experi-
ment the heuristic was executed until a 60 second time-limit was reached.

Efficient-Split Two-Phase-Split Heuristic-Split Simple-Split

Instance Z
∗

Z Z/Z
∗

Z Z/Z
∗

Z Z/Z
∗

Cen-IF-a 240696 241511 1.003 241100 1.002 244564 1.016
Cen-IF-b 602695 612302 1.016 603543 1.001 606484 1.006

Cen-IF-c 533331 544645 1.021 532083 – (1) 538188 1.009
Mean 1.014 1.002 1.010

Lpr-IF-a-01 13594 13594 1.000 13684 1.007 13684 1.007
Lpr-IF-a-02 28392 28480 1.003 28569 1.006 28569 1.006
Lpr-IF-a-03 78835 78988 1.002 78842 1.000 79409 1.007
Lpr-IF-a-04 133130 133312 1.001 133630 1.004 134652 1.011
Lpr-IF-a-05 211765 212093 1.002 212337 1.003 214510 1.013
Lpr-IF-b-01 14835 14835 1.000 14871 1.002 14871 1.002
Lpr-IF-b-02 28897 28928 1.001 28926 1.001 29412 1.018
Lpr-IF-b-03 80222 80290 1.001 80419 1.002 80678 1.006
Lpr-IF-b-04 132254 132485 1.002 132366 1.001 134318 1.016
Lpr-IF-b-05 220638 221079 1.002 221175 1.002 223750 1.014
Lpr-IF-c-01 18734 18734 1.000 18765 1.002 18765 1.002
Lpr-IF-c-02 36596 36618 1.001 36596 1.000 36596 1.000
Lpr-IF-c-03 114012 114097 1.001 114093 1.001 115535 1.013
Lpr-IF-c-04 173817 174087 1.002 174214 1.002 176197 1.014
Lpr-IF-c-05 273427 273675 1.001 274325 1.003 276953 1.013
Mean 1.001 1.002 1.013

Z
∗
: Mean solution cost for Efficient-Split ; Z: Mean solution cost for Two-Phase-Split, Heuristic-Split and

Simple-Split. (1): Heuristic-split failed to produce the minimum fleet size on the Cen-IF-c instances.

© University of Pretoria

3.5. CONCLUSION 47

multi-start heuristic all the procedures performed the same in minimising the number of
solution routes. The only difference in performance was in minimising solution cost. As
expected, Efficient-Split performed better than Two-Phase-Split since it was able to make
more starts in 60 seconds while still producing optimal partitions. On small instances
the difference between Efficient-Split and Two-Phase-Split was less prominent. Heuristic-
Split outperformed Two-Phase-Split on all the Cen-IF instances, and five of the fifteen
Lpr-IF problems. Simple-Split had up to 30 and 800 times more starts than Efficient-Split
and Heuristic-Split, respectively, on large Cen-IF and Lpr-IF problems, but could only
match Efficient-Split on one and Heuristic-Split on three of the smallest Lpr-IF problems.
Solution costs of Heuristic-Split are within one percent of Efficient-Split and it performed
better on the Cen-IF-c problem. On all other problems Efficient-Split performed the
best, making it the best constructive heuristic implementation on both small and large
problems, with and without execution time-limits imposed. The cost difference between
the Efficient-Split and Heuristic-Split were small. Furthermore, as shown in Algorithm 3.2,
implementing Efficient-Split is not trivial. The multi-start constructive heuristic linked
with Heuristic-Split produced solutions close to Efficient-Split, and its structure is less
complex (Algorithm 3.3) making it a worthy substitute to Efficient-Split, especially for
practical applications.

3.5 Conclusion

As a first step to solve the MCARPTIF, efficient optimal and near-optimal splitting pro-
cedures were developed and tested on waste collection benchmark instances. Tests showed
that Efficient-Split was significantly faster than Two-Phase-Split. On small instances the
difference in performance between the two procedures was less prominent, highlighting the
need for tests to be performed on more realistically sized problems. Two near-optimal split-
ting procedures were developed and tested, and results showed that Heuristic-Split was
quicker than Efficient-Split while producing partitions that are close to optimal in terms of
the number of required routes and total partition cost. Splitting procedures are typically
called multiple times, either in constructing an initial solution for the MCARPTIF, or
when embedded in Memetic Algorithms. Preliminary results for the former case showed
that Efficient-Split performed the best in a multi-start constructive heuristic application.
However, implementing Efficient-Split is not trivial, and given the simpler structure and
performance of Heuristic-Split, we recommend that it be used as a substitute.

In the next chapter Heuristic-Split and Efficient-Split are further evaluated within a
multi-start constructive heuristic application. We also adapt and compare other construc-
tive heuristics for the MCARPTIF. Solutions from the constructive heuristics are then
used as input for the improvement heuristics and metaheuristic developed in Chapters 5
to 7.

© University of Pretoria

48 CHAPTER 3. SPLITTING PROCEDURES

© University of Pretoria

Chapter 4

Constructive heuristics

In this chapter we develop and test constructive heuristics for the Mixed Capacitated Arc
Routing Problem under Time Restrictions with Intermediate Facilities (MCARPTIF).
Our aim was to identify the best performing heuristics, which can then be used in waste
collection routing applications when short execution times are required. The developed
constructive heuristics have been published in [87], and are used in Chapters 5 to 7 to
compute initial solutions for Local Search improvement heuristics and a Tabu Search
metaheuristic.

4.1 Introduction

Constructive heuristics represent an important component of solution methods for Capacitated
Arc Routing Problems (CARPs). In cases where execution time is limited, the heuristics
generally provide good solutions in acceptable CPU time. The heuristics also provide
initial solutions to be improved using metaheuristics. In this chapter we develop and test
four constructive heuristics for the MCARPTIF with a primary objective to either min-
imise the total cost, or to minimise the fleet size. The four heuristics tested were adapted
from Mixed Capacitated Arc Routing Problem (MCARP) versions and include two Route-
First-Cluster-Second heuristics that employ the splitting procedures of Chapter 3. Since
the MCARPTIF heuristics can be used as-is on the undirected version of the problem,
computational tests are also performed on the Capacitated Arc Routing Problem under
Time Restrictions with Intermediate Facilities (CARPTIF). We further analysed how the
treatment of the vehicle fleet size influenced the performance of the heuristics, and we
developed a vehicle reduction procedure that allowed heuristics to better deal with cases
where the fleet size have to be minimised. Benchmark tests were performed on realistic
waste collection instances, thus improving the practical significance of our results.

In the next section we briefly discuss practical route planning requirements and review
constructive heuristics that have been successfully applied for CARPs. In Section 4.3 we
present algorithm descriptions of the constructive and vehicle reduction heuristics for the
MCARPTIF. In Section 4.4, we describe our heuristic evaluation methods and report
computational experiments on the heuristics, focusing on fleet size and solution cost min-
imisation as well as computation times. The main findings of the tests are discussed in
Section 4.5.

49

© University of Pretoria

50 CHAPTER 4. CONSTRUCTIVE HEURISTICS

4.2 Constructive heuristics for CARPs

The motivation for our research in constructive heuristics stems from a project conducted
for a metropolitan municipality in South Africa. The municipality’s Waste Collection
Department investigated the merits of a proposed recycling programme aimed at job cre-
ation. The goal was to increase recycling in the area, shown in Figure 4.11, and outsource
the collection and transportation process to members of the community. The Department

INFORMAL SETLEMENTS

Figure 4.1: Waste collection area for the recycling case study.

would provide transportation equipment and the community would collect and sell col-
lected material. As further motivation it was argued that recycling would reduce general
municipal waste in the areas. We were subsequently tasked with investigating the po-
tential impact of the programme on the Department’s municipal waste collection routes.
Operational constraints and considerations of the Department were consistent with the

1The Act-IF benchmark set was developed using the case study area and operational data from the
municipality.

© University of Pretoria

4.3. CONSTRUCTIVE HEURISTICS FOR THE MCARPTIF 51

MCARPTIF, and since possible changes in routes were only one component of the pro-
gramme, the problem had to be solved in a collaborative real-time planning environment
involving stakeholders with different objectives. Scenarios were provided by stakehold-
ers who would use our MCARPTIF solutions as input for evaluating the scenarios, and
proposing new ones. Stakeholders would often propose “small” changes to scenarios and
expect immediate results. Such changes included using smaller vehicles with less capacity,
extending working hours, and including night shifts. The MCARPTIF thus needed to
be solved quickly, and repeatedly. These requirements are not unique in waste collection
planning, see for example [76], and can be met using constructive heuristics. For the
project we identified and adapted the best MCARP heuristics to the MCARPTIF, and
it was during our initial review on existing heuristics that we identified the research gaps
addressed in this chapter.

Numerous constructive heuristics, which follow simple greedy rules to progressively
build approximate feasible solutions, have been proposed for the CARP. Coutinho-
Rodrigues et al. [21] compare the performance of classical implementations on the CARP
and conclude that Path-Scanning, proposed in [39] and one of the most commonly used
and studied heuristics, performs the best when CPU time is critical. Beginning with
Pearn [67], Path-Scanning has been modified by including randomised construct mecha-
nisms. This allows the heuristic to generate and evaluate a number of different solutions
for a problem instance, from which the best is returned. Tests by Belenguer et al. [6]
show that, on average, such versions need to evaluate between 4 and 21 solutions to
match their deterministic versions. A Path-Scanning version for the CARP that makes
use of an Ellipse-Rule is proposed by Santos et al. [77]; their tests have demonstrated
that it performs better than the implementations of Golden and Wong [39] and Pearn
[67], but the said Path-Scanning version requires fine-tuning of a heuristic parameter.
Belenguer et al. [6] compare their Path-Scanning versions against their improved ver-
sion of Augment-Merge, first proposed by Golden et al. [38], and Ulusoy-Partitioning, a
Route-First-Cluster-Second heuristic, introduced by Ulusoy [82]. For CARP and MCARP
benchmark instances, their Augment-Merge version, termed Improved-Merge, performed
the best, followed by Ulusoy-Partitioning and then Path-Scanning. To demonstrate the
robustness of their metaheuristic on the CARPTIF, Polacek et al. [68] use a random giant
route generator and a Next-Fit bin-packing heuristic to purposely construct poor starting
solutions, which are then improved using the metaheuristic. Lastly, Ghiani et al. [31]
developed a Route-First-Cluster-Second heuristic to solve the CARPTIF.

In this chapter we extended the Improved-Merge and the Path-Scanning versions of Be-
lenguer et al. [6] to the MCARPTIF. The heuristics are tested against Route-First-Cluster-
Second heuristics that employ Efficient-Split (Algorithm 3.2) and Heuristic-Split (Algo-
rithm 3.3), both introduced in Chapter 3. The aim of the analysis was to identify the
best performing constructive heuristics based on their computing time, and ability to find
minimum cost and minimum fleet size solutions.

4.3 Constructive heuristics for the MCARPTIF

The following notations, introduced in Section 2.2.4 and summarised in Tables 2.1 and 2.2,
are used in the rest of this chapter. An MCARPTIF solution, TTT , is a list, [TTT 1, . . . ,TTTK], of
K vehicle routes. Each route, TTT i, is a list of subtrips [TTT i,1, . . . ,TTT i,|TTT i|], and each subtrip,
TTT i,j , consists of a list of arc tasks [Ti,j,1, . . . , Ti,j,|Ti,j |]. The service time and demand of
arc u are given by w(u) and q(u), respectively. A pointer function, inv(u) = v, is used to
return the opposing arc of u where u and v are the opposing directions of an edge in the

© University of Pretoria

52 CHAPTER 4. CONSTRUCTIVE HEURISTICS

original graph, GGG. If u represents an arc in GGG the pointer returns inv(u) = 0.
The travel time for the shortest path from arc u to arc v, which excludes the time

of deadheading u and v, is given by D(u, v). It is assumed that the shortest path is
always followed between consecutive tasks. The best Intermediate Facility (IF) to visit
after servicing arc u and before servicing arc v is pre-calculated and given by Φ∗(u, v).
The duration of the visit, excluding offloading time, λ, is given by µ∗(u, v). It is assumed
that the best IF is always visited between two arcs and between an arc and the depot, σ.

For the MCARPTIF the load of a subtrip is given by load(TTT i,j) and it may not exceed
Q. The cost of subtrip TTT i,j is calculated using Equation (4.1), and the cost of the route
TTT i using Equation (4.2):

ZS(TTT i,j) =

|TTT i,j |−1∑
n=1

(
D(Ti,j,n, Ti,j,n+1)

)
+

|TTT i,j |∑
n=1

w(Ti,j,n) + λ (4.1)

Z(TTT i) =

|TTT i|∑
j=1

ZS(TTT i,j). (4.2)

In certain cases it is convenient to only include required arcs in TTT i, which we refer to as a
partial route, TTTP

i . When this is the case, Equation (4.2) will still be used, and the route’s
full cost will be calculated using Equation (4.3):

ZP(TTTP
i) = Z(TTTP

i) +D(σ, TP
i,1,1) +

|TTTP
i |−1∑
j=2

µ∗(TP
i,j,|TTTP

i,j |
, TP

i,j+1,1) + µ∗(TP
i,|TTTP

i |,|TTTP
i,j |
, σ),

(4.3)

in which deadheading times to and from the depot and IFs are automatically added. When
referring to an MCARP solution, also denoted by TTT , it consists of a list, [TTT 1, . . . ,TTTK], of K
vehicle routes, and each route, TTT i, consists of a list of tasks [Ti,1, . . . , Ti,|TTT i|]. Equation (4.1)
is also used to calculate the cost of an MCARP route.

4.3.1 Path-Scanning

The first MCARP heuristic that we adapted for the MCARPTIF was Path-Scanning. For
the MCARP the algorithm starts with a single route containing the depot. The algorithm
then iteratively adds the closest required unserviced arc, time-wise, to the end of the
current route, while ensuring that there is sufficient remaining capacity on the route to
service the arc. If there is insufficient capacity to add any unserviced arc the route is
closed by adding a final visit back to the depot. A new route is then opened and the
process repeats. When all required arcs have been added to a route, the last open route
is closed and the process terminates.

The heuristic deals with mixed networks by evaluating all unserviced arcs and both
arc orientations of edges when searching for the closest arc to add to a route. When an
arc is added to a solution, its inverse (if it exists) is also marked as serviced. This allows
the algorithm to deal with both undirected and mixed networks. Let u be the last arc
added to TTT i and let RRRs be the set of required arcs still requiring service. Further, let

PPP (i) = {x ∈ RRRs : load(TTT i) + q(x) ≤ Q}, (4.4)

be the set of arcs that can be added without exceeding vehicle capacity. The next arc, v,
to be added to TTT i is given by

v = arg min{D(u, x) : x ∈ PPP (i)}. (4.5)

© University of Pretoria

4.3. CONSTRUCTIVE HEURISTICS FOR THE MCARPTIF 53

For the CARP it is common for the heuristic to find multiple unserviced arcs that are at
the minimum distance from arc u. These arcs are referred to as the set SSS of “tied” arcs,
given by Equations (4.6) and (4.7):

d∗ = min{D(u, x) : x ∈ PPP (i)}, (4.6)

SSS = {x ∈ PPP (i) : D(u, x) = d∗}. (4.7)

Different conditions have been proposed to select the arc to add from SSS, the most popular
being the five rules proposed by Golden and Wong [39], which are:

Rule 1: v = arg max
{
D(x, σ) : x ∈ SSS

}
(4.8)

Rule 2: v = arg min
{
D(x, σ) : x ∈ SSS

}
(4.9)

Rule 3: v = arg max
{w(x)

q(x)
: x ∈ SSS

}
(4.10)

Rule 4: v = arg min
{w(x)

q(x)
: x ∈ SSS

}
(4.11)

Rule 5: v =

{
use Equation (4.8) if load(TTT i) ≤ 0.5Q,

otherwise use Equation (4.9).
(4.12)

Rules 1 and 2 respectively maximise and minimise the time to the depot, and Rules 3
and 4 respectively maximise and minimise the arc yield (service time divided by demand).
Rule 5 forces the addition of arcs that are further away from the depot when the vehicle
is less than half-empty, and closer to the depot otherwise. The algorithm is executed five
times using a different rule for each run to choose v from SSS, and the best solution from
the five runs is chosen. Pearn [67] considers a random tie-break scheme, whereby a rule is
uniformly chosen at random whenever |SSS| > 1. The advantage of this approach is that an
arbitrary number of solutions can be generated, and the best returned. Belenguer et al.
[6] propose a rule-free version, termed Path-Scanning-Random-Link, whereby the arc to
add is uniformly chosen at random from SSS. This approach also allows for an arbitrary
number of solutions to be generated, and the best chosen.

Path-Scanning for the MCARPTIF

The MCARPTIF sees the introduction of subtrips, TTT i,j , and the demand collected on a
subtrip cannot exceed Q. The duration of a route cannot exceed L. Let u be the last
arc added to subtrip TTT i,j and let x ∈ RRRs be a candidate arc still requiring service. The
algorithm has to check for both the capacity limit on a subtrip and the duration of a route.
As a result three sets are defined. The first set,

PPP (i) = {k ∈ RRRs : Z(TTT i) +D(u, x) + w(x) + µ∗(x, σ) ≤ L}, (4.13)

consists of arcs that can be added to the route without exceeding L. If PPP (i) = ∅, meaning
it is an empty set, the route is full as the time of servicing any arc x and returning to the
final IF and depot visit exceeds L. The second set,

PPP (i,j) = {x ∈ PPP (i) : load(TTT i,j) + q(x) ≤ Q}, (4.14)

is a subset of PPP (i) and consists of arcs that can be added to the current subtrip without
exceeding Q. The third set,

PPP
(i)
IF = {x ∈ PPP (i) : Z(TTT i) + µ∗(u, x) + w(x) + µ∗(x, σ) + λ ≤ L}, (4.15)

© University of Pretoria

54 CHAPTER 4. CONSTRUCTIVE HEURISTICS

consists of arcs that can be added to a route after an IF visit, hence in a new subtrip,

without exceeding L. If both PPP (i,j) = ∅ and PPP
(i)
IF = ∅, the route is full. The arc from SSS

to be added to subtrip TTT i,j is given by:

d∗ =

{
min{D(u, x) : x ∈ PPP (i,j)} if PPP (i,j) 6= ∅,
∞ otherwise,

(4.16)

SSS = {x ∈ PPP (i,j) : D(u, x) = d∗}, (4.17)

and the next arc from SSSIF to be added to a new subtrip Ti,j+1 is given by:

d∗IF =

{
min{µ∗(u, x) : x ∈ PPP (i)

IF} if PPP
(i)
IF 6= ∅,

∞ otherwise,
(4.18)

SSSIF = {x ∈ PPP (i)
IF : µ∗(u, x) = d∗IF}. (4.19)

If PPP
(i)
IF 6= ∅ and d∗IF < d∗, it is cheaper to visit an IF and add an unserviced arc than to

directly add an unserviced arc to the current subtrip. This requires the heuristic to find
and compare d∗ and d∗IF, which adds to its computational complexity. A more efficient

version can be used that only calculates PPP
(i)
IF if PPP (i,j) = ∅. During our preliminary tests

we found both the efficient and full versions to perform similarly and limit our results to
the efficient version.

To allow the heuristic to deal with multiple closest arcs, the tie-break rules can be
updated since vehicles have to visit IFs. Santos et al. [76] update the five rules by using
the travel time from the candidate arc to the IF instead of the travel time to the depot.
This modification is only possible when the problem has one IF. For the case with multiple
IFs we propose that the travel time from the candidate arc to the nearest IF should
be used. Furthermore, the original rules involving depot travel times are still valid for
the MCARPTIF and need not be replaced. Instead, rules involving IF travel times are
considered as additional rules and formally defined as follows:

Rule 6: v = arg max
{
D(x, y) : x ∈ SSS, y ∈ III

}
(4.20)

Rule 7: v = arg min
{
D(x, y) : x ∈ SSS, y ∈ III

}
(4.21)

An eighth rule that we propose takes into account L, whereby arcs that are closer to the
last IF and depot visit are chosen when the route is at least 75% of its route duration
restriction. Otherwise if the subtrip is more than half full, arcs closer to the nearest IF
are chosen:

Rule 8: v =

arg min

{
µ∗(x, σ) : x ∈ SSS

}
if Z(TTT i) ≥ 0.75L,

otherwise use Equation (4.20) if load(TTT i,j) ≤ 0.5Q,

otherwise use Equation (4.21).

(4.22)

For the deterministic version, one of the eight rules can be applied per run, and the
best solution over the eight runs returned. Preliminary tests found none of the rules to
be redundant in that each rule resulted in the best solution for at least a few problem
instances. For the randomised version, one of the eight rules or of a subset of the eight
rules can be chosen at random. The simplest option is to avoid using any rules and choose
a closest arc at random, in the same manner as for Path-Scanning-Random-Link for the
MCARP.

© University of Pretoria

4.3. CONSTRUCTIVE HEURISTICS FOR THE MCARPTIF 55

Since Path-Scanning produces different solutions per run it is embedded in a high-level
procedure, nConstruct (Algorithm 4.1, shown at the end of the chapter), which generates α
solutions and returns the best fleet size solution, the best route cost solution, and the best
route cost solution while adhering to the fleet limit if it is applied. A detailed description
of Path-Scanning generating an MCARPTIF solution is shown at the end of the chapter
in Algorithm 4.2. In terms of computational complexity, all versions of Path-Scanning can
generate a solution within O(τ2), where τ = |RRR|, making it efficient even when dealing
with large problem instances.

This chapter presents results for two versions of Path-Scanning. The first is the deter-
ministic version completing eight runs, each linked with one of the eight tie-break rules
and returning the least cost and least fleet size solutions. The second is the randomised
rule-free version that chooses a closest arc at random and completes a user-specified num-
ber of runs, and returns the best solutions found for the two primary objectives. Tests
were also conducted on random-rule based versions, which included a version that chooses
from Rules 1 to 5, and a version that chooses from Rules 1, 2 and 6 to 8. Both randomised
versions performed similarly to the Path-Scanning-Random-Link version. We report only
on results for Path-Scanning-Random-Link since it is the easiest to implement.

4.3.2 Merge

The second heuristic that we modified for the MCARPTIF was Improved-Merge, developed
by Belenguer et al. [6] for the MCARP. Their algorithm is a simplified, yet an improved
version of Augment-Merge [38]. For the MCARPTIF it consists of two steps:

Step 1 : For each required arc, construct a feasible route servicing the arc, starting at
the depot, and ending with the best IF visit followed by the depot. Where two arcs
are opposing and represent the same edge task, only include the route servicing the
edge in its best orientation.

Step 2 : Subject to subtrip capacity and route duration restrictions, evaluate the merge
of any two routes. Merge the two routes which yield the best saving, and repeat
Step 2. If no feasible merge can be found, stop.

Using partial routes, that is without dummy arcs representing the depot or IFs, two
routes, TTTP

i and TTTP
j , can be directly merged by combining the last subtrip of TTTP

i with the

first subtrip in TTTP
j . We refer to such a merge of the routes TTTP

i and TTTP
j as i → j. If

TTTP
i = [[a], [b, u]] and TTTP

j = [[v, x]], their merge would result in TTTP
i→j =

[
[a], [b, u, v, x]

]
,

subject to the demand of the combined subtrips not exceeding Q, and the duration of the
merged routes not exceeding L. The merge saving, m, is:

m = µ∗(u, σ) +D(σ, v) + λ−D(u, v), (4.23)

which is the positive travel time saving of going directly from arc u to v, instead of going
from u to an IF, incurring offload time, going to the depot, and the next route going
from the depot to arc v. Routes can also be merged through best IF visits, resulting in
TTTP
i⇒j =

[
[a], [b, u], [v, x]

]
, which is only subject to the duration of the merged routes not

exceeding L. We refer to such a merge between routes TTTP
i and TTTP

j as i⇒ j. For this case,
the positive merge saving is:

mIF = µ∗(u, σ) +D(σ, v)− µ∗(u, v). (4.24)

© University of Pretoria

56 CHAPTER 4. CONSTRUCTIVE HEURISTICS

Since the CARP considers an undirected network, CARP routes are symmetrical,
meaning route TTTP

i = [u, v, x] has the same cost as TTTP
i′ = [inv(x), inv(v), inv(u)], and

j′ → i′ gives the same saving as i → j. This results in there being an additional two
unique mergers: i → j′ and i′ → j, where i′ is the inverse of route i. These four mergers
capture all possible savings between two CARP routes. The same does not apply to the
MCARP, since not all arc tasks have inverse tasks, and even if they do, the route is only
symmetrical if the deadheading times between these tasks are the same in both directions.
To keep Merge efficient, Belenguer et al. [6] propose that mergers involving i′ and j′ only
be considered if both routes TTTP

i and TTTP
j are symmetrical and the new deadheading path

linking the routes is also symmetrical. If this condition is not enforced, all eight merge
orientations will have to be calculated. We propose the same for the MCARPTIF and
the CARPTIF, even though the latter is undirected. For the CARPTIF, the first subtrip
in a route starts with [σ, u, . . .] and its last subtrip ends with [. . . , v,Φi, σ], so unless
D(σ, inv(v)) = µ∗(inv(u), σ) the route is asymmetrical. When merging two routes, this
condition must also hold between the first arc in route TTTP

i and the last arc in route TTTP
j ,

otherwise mergers involving their inverse will have different savings.

Similar to Path-Scanning, it may happen that different route mergers have equal sav-
ings. For the MCARP, Belenguer et al. [6] propose that a route demand discrepancy rule
be used to break ties whereby TTTP

i and TTTP
j are chosen to maximise |load(TTTP

i)− load(TTTP
j)|.

This version of merge is referred to as Improved-Merge. For the MCARPTIF the rule can
be used when breaking ties between direct mergers such that |load(TTTP

i,|TTTP
i |

) − load(TTTP
j,1)|

is maximised. A cost discrepancy rule, maximising |ZP(TTTP
i) − ZP(TTTP

j)|, can be used to
break ties between mergers through IFs. An alternative is to only use the cost discrep-
ancy rule; and we found this version to dominate the hybrid load and cost discrepancy
rule. Similar to Path-Scanning, another option for the MCARP and MCARPTIF is to
break-ties by randomly choosing a merger. We refer to this version as Randomised-Merge.
It has the ability to produce different solutions over multiple runs, from which the best
can be returned. Multiple runs do require more computational time, and more efficient
implementations become critical, especially when dealing with realistically sized instances.
Belenguer et al. [6], who implemented an O(τ3) version where τ = |RRR|, following the struc-
ture just described, note that Improved-Merge can be implemented in a non-trivial way in
O(τ2 log τ). In this chapter we present such an implementation.

Efficient Merge implementation

Referring to Equations (4.23) and (4.24), the merge savings of i → j and i ⇒ j only
depend on the last arc in subtrip TTTP

i,|TTTP
i |

and the first arc in subtrip TTTP
j,1. Merge savings

between all arcs are calculated in the first merge phase, and the savings remain the same
in subsequent phases. Merge savings thus only have to be calculated once between all
arcs and stored in a merge savings list, MMM = [M1, ..,M|MMM |]. The savings list is then
sorted in nonincreasing order, and starting with the first entry, m = M1, the merge can
be implemented if it is feasible, otherwise the next merge in the list is evaluated. This
repeats until the entire list has been scanned. For the efficient implementation, we again
use partial routes without dummy arcs, and define mergers between arcs instead of routes,
meaning u→ v is the direct merge of arcs u and v, and u⇒ v is the merge of arcs u and
v via an IF visit.

© University of Pretoria

4.3. CONSTRUCTIVE HEURISTICS FOR THE MCARPTIF 57

Step 1: Initialisation For the first step, a route with one subtrip is constructed for
each required arc:

TTTP =
[[

[u]
]
∀ u ∈ RRR

]
. (4.25)

We define T−1(u) as a dynamic pointer function, mapping arc u to its route’s index i,
which is updated after each merge:

T−1(u) =

i ∈ {1, .., |TTT
P|} if u ∈ {TTTP

i,1,1} ∪ {TTTP
i,|TTTP

i |,|TTTP

i,|TTTP
i
|
|},

0 otherwise,
(4.26)

A merge can only involve the last arc in TTTP
i and the first arc in TTTP

j . The rest of the arcs

in the route are “locked-in”. When inv(u) 6= 0, both u and inv(u) are included in TTTP by
Equation (4.25), instead of including only the best orientation. The reason is that mergers
involving bad orientations may still be good enough to overcome extra costs incurred by
the orientation. To check if such mergers are indeed better, a penalty function is defined:

z(u) = ZP

(
TTTP
T−1(u)

)
, (4.27)

pen(u) =

{
z(u)− z

(
inv(u)) : inv(u) 6= 0, z(u) > z

(
inv(u)

)
0 otherwise,

(4.28)

p(u, v) = pen(u) + pen(v), (4.29)

For convenience, Equation (4.27) defines a cost function, z(u), that gives the cost of an
arc’s route. The penalty p(u, v), given by Equations (4.28) and (4.29), is to be subtracted
from the merge saving between arcs u and v. The merge savings list is calculated using
Equations (4.30) to (4.32), which consist of mergers resulting from u→ v and from u⇒ v:

MMM→ =
[
µ∗(u, σ) +D(σ, v) + λ−D(u, v)− p(u, v)

∀ (u, v) : u, v ∈ RRR, v 6∈ {u, inv(u)}
]
, (4.30)

MMM⇒ =
[
µ∗(u, σ) +D(σ, v)− µ∗(u, v)− p(u, v)

∀ (u, v) : u, v ∈ RRR, v 6∈ {u, inv(u)}
]
, (4.31)

MMM =MMM→ ∪MMM⇒, (4.32)

Two pointer functions, MMM−1
→ (m) and MMM−1

⇒ (m), are used to map the merge saving, m, to
the set of arc pairs, (u, v), that results in the saving:

MMM−1
→ (m) =

{
{(u, v) : µ∗(u, σ) +D(σ, v) + λ−D(u, v)− p(u, v) = m}
∅ otherwise,

(4.33)

MMM−1
⇒ (m) =

{
{(u, v) : µ∗(u, σ) +D(σ, v)− µ∗(u, v)− p(u, v) = m}
∅ otherwise.

(4.34)

After populating MMM with all the merge savings, the duplicate savings are removed, the list
is sorted in nonincreasing order, and n = 1 so that m = M1 is the first merge evaluated in
Step 2 of the heuristic. The mappings return all the arc pairs in the case of tied-mergers
with equal savings; hence why duplicates can be removed from MMM .

© University of Pretoria

58 CHAPTER 4. CONSTRUCTIVE HEURISTICS

Step 2: Feasible Merge-Identification For the second step, let m = Mn. A merge
between any two arcs u and v involving routes i = T−1(u) and j = T−1(v) is only feasible
if the arc is still in the solution (eq. (4.35)), arc u is the last arc in its route and arc v the
first (eq. (4.36)), the merge does not involve the same routes (eqs. (4.37) and (4.38)), and
the cost of the merged routes does not exceed the route duration restriction (eq. (4.39)):

i 6= 0 and j 6= 0, (4.35)

u = TTTP
i,|TTTP

i |,|TTTP
i,|TTTP|

| and v = TTTP
j,1,1, (4.36)

i 6= j, (4.37)

i 6= T−1
(
inv(v)

)
: inv(v) 6= 0 and T−1

(
inv(v)

)
6= 0, (4.38)

z(u) + z(v)−m− p(u, v) ≤ L. (4.39)

Mergers may be disqualified by Equation (4.35) if their opposing arcs are in asymmetrical
routes which are the product of previous mergers. Equation (4.36) checks that arcs u and
v are not already “locked-in”. If mergers are allowed with inverted symmetrical routes,
Equation (4.38) ensures that a symmetrical route is not merged with its inverted self.
In Equation (4.39) the orientation penalties are subtracted since they are not actually
incurred in a route. If a merge is to be implemented as u → v, it is only feasible if the
demand of the merged subtrips does not exceed vehicle capacity:

load
(
TTTP
i,|TTTP

i |
)

+ load
(
TTTP
j,1

)
≤ Q. (4.40)

The sets of feasible mergers, MMM−1
→ (m) and MMM−1

⇒ (m), are reduced to FFF→ and FFF⇒ that
contain only feasible mergers:

FFF→ = {(u, v) ∈MMM−1
→ (m) : eqs. (4.37) to (4.40)}, (4.41)

FFF⇒ = {(u, v) ∈MMM−1
⇒ (m) : eqs. (4.37) to (4.39)}. (4.42)

Step 3: Merge-Implementation If FFF→ = ∅ and FFF⇒ = ∅, there are no feasible
mergers to implement with savings Mn, in which case n = n+ 1 and the heuristic returns
to Step 2, unless n > |MMM |, which means that all mergers have been evaluated and the
heuristic terminates.

If there are feasible mergers to implement, different tie-break rules can then be used
to choose pair (u, v) from FFF→ or FFF⇒, such as the route cost discrepancy rule:

(u, v) = arg max
{
|z(u)− z(v)| : (u, v) ∈ FFF→ ∪FFF⇒

}
, (4.43)

or a pair can be chosen at random. If (u, v) is chosen from MMM−1
→ (m), let i = T−1(u) and

j = T−1(v). The merge is then implemented using Equations (4.44) to (4.46):

TTTP
i,|TTTP

i |
= TTTP

i,|TTTP
i |
∪ TTTP

j,1, (4.44)

TTTP
i = TTTP

i ∪ TTTP
j \ TTTP

j,1, (4.45)

TTTP
j = ∅. (4.46)

In Equation (4.44), the last subtrip in TTTP
i is combined with the first subtrip of TTTP

j , and

in Equation (4.45), TTTP
i is combined with TTTP

j , excluding its first subtrip whose arcs have

already been incorporated in TTTP
i . Since all arcs in TTTP

j are now serviced in TTTP
i , Equa-

tion (4.46) removes TTTP
j from solution TTTP. If (u, v) is chosen from MMM−1

⇒ (m), the merge is
implemented as:

TTTP
i = TTTP

i ∪ TTTP
j . (4.47)

© University of Pretoria

4.3. CONSTRUCTIVE HEURISTICS FOR THE MCARPTIF 59

In Equation (4.47), the route TTTP
i is combined with TTTP

j , without merging any subtrips,
and Equation (4.46) is applied thereafter. After implementing a merge, arcs u and v are
“locked-in”, and T−1(u) = 0 and T−1(v) = 0. Additional steps are required depending
on whether inverting symmetrical routes are allowed, as discussed next. After a merge is
implemented the heuristic returns to Step 3.

Inverting symmetrical routes Improved-Merge and Randomised-Merge allow for in-
verted symmetrical routes to also be considered for a merge. As part of Step 1, SSS′ is
defined as the set that initially contains all arcs that are part of symmetrical routes, such
that:

SSS′ = {u ∈ RRR : inv(u) 6= 0, pen(u) = 0}. (4.48)

In Step 3, the route resulting from u→ v or from u⇒ v is symmetrical if Equations (4.49)
and (4.50), or Equations (4.49) and (4.51) hold, respectively:

u, v ∈ SSS′, (4.49)

(inv(v), inv(u)) ∈MMM−1
→ (m), (4.50)

(inv(v), inv(u)) ∈MMM−1
⇒ (m). (4.51)

After implementing a merge, should these conditions hold, inv(v) → inv(u) will also be
implemented using Equations (4.44) to (4.46), or inv(v) ⇒ inv(u) using Equation (4.47)
and (4.46). If these conditions do not hold, and subject to inv(u) 6= 0 then:

TTTP
T−1(inv(u)) = ∅ : inv(u) 6= 0, T−1

(
inv(u)

)
6= 0, (4.52)

TTTP
T−1(inv(v)) = ∅ : inv(v) 6= 0, T−1

(
inv(v)

)
6= 0, (4.53)

SSS′ = SSS′ \ {u, v}, (4.54)

and T−1
(
inv(u)

)
= 0 and T−1

(
inv(v)

)
= 0, should arcs u and v have opposites. After

all mergers have been evaluated and a final route is symmetrical, both its orientations
will be in TTTP and any one can be removed. Also, if u ∈ SSS′ could not be merged with
any route, there will be two single arc routes in TTT for u and inv(u), and the worst of
the two routes should be removed. If mergers involving inverted symmetrical routes are
not allowed, Equations (4.52) to (4.54) will be automatically applied, regardless of the
outcomes of Equations (4.49) to (4.51). A detailed algorithm description of the efficient
version of Randomised-Merge, with inverted symmetrical route mergers not allowed, is
presented in Algorithms 4.3 and 4.4, at the end of the chapter.

In Step 1, calculating all possible mergers takesO(2τ2), and sortingMMM takesO(τ log(τ)).
In Steps 2 and 3, evaluating all possible mergers takes O(τ2). The worst case performance
of Improved-Merge and Randomised-Merge for the MCARPTIF is thus O(τ2), same as
Path-Scanning. An advantage of the efficient Merge versions is thatMMM need only be calcu-
lated once. Thereafter Steps 2 to 4 will produce a new solution each time they are applied.
Steps 2 and 3 are therefore linked with nConstruct (Algorithm 4.1), and the sorted MMM list
is supplied as input data. For our computational tests we used the efficient Merge imple-
mentation that allowed for symmetrical routes to be inverted. We tested Improved-Merge
using the cost discrepancy rule as well as Randomised-Merge.

4.3.3 Route-First-Cluster-Second heuristics

A Route-First-Cluster-Second heuristic was first proposed for the CARP by Ulusoy [82],
and was extended to the CARP with IFs by Ghiani et al. [32], to the CARPTIF by Ghiani

© University of Pretoria

60 CHAPTER 4. CONSTRUCTIVE HEURISTICS

et al. [31], to the MCARP by Lacomme et al. [51], and to the MCARPTIF in Chapter 3.
For the CARP, the heuristic generates a giant tour that services all the required arcs
and edges, and partitions the tour via a splitting procedure into feasible smaller routes
so as to adhere to the capacity limit. For the CARPTIF and MCARPTIF, the giant
tour is optimally partitioned into feasible routes so as to adhere to a route duration
restriction, and also into subtrips with IF visits to adhere to the capacity limit. Finding
and partitioning the least cost giant tour, which is NP-Hard since it involves the Rural
Postman Problem, does not guarantee an optimal final solution. As a result, heuristics
are used for the construction of the giant tour. Lacomme et al. [51] and Belenguer et al.
[6] relax vehicle capacity of the different Path-Scanning versions to generate giant tours.
Improved-Merge and Randomised-Merge can also be used in this fashion. As proposed by
Belenguer et al. [6], randomised giant tours constructors can be used to enable the heuristic
to partitioning a different solution with each run, from which the best is returned.

For our computational tests we used Path-Scanning with six rules and Path-Scanning-
Random-Link to generate initial giant tours. The Path-Scanning rules involving subtrip
load and route duration restrictions are redundant since the limits are relaxed by setting
Q ← ∞ and L ← ∞. After generating a giant tour it was partitioned using either the
optimal splitting procedure (Algorithm 3.2) or the quicker near-optimal splitting procedure
(Algorithm 3.3), both introduced in Chapter 3. The implementations are referred to
as Route-Cluster and Efficient-Route-Cluster, respectively2. The heuristics were further
adapted to either minimise the total cost or number of required vehicles, depending on the
main and secondary problem objectives. We also tested the splitting procedures linked
with a Randomised-Merge giant route generator, but found that it was always dominated
by other heuristics and do not report on its performance.

In Chapter 3, preliminary results showed that Route-Cluster performed only marginally
better than Efficient-Route-Cluster when both were allowed the same execution time.
However, Route-Cluster is more difficult to implement. For this reason we favoured the
Efficient-Route-Cluster implementation when performing computational tests. Computa-
tional results are thus mainly focussed on this implementation.

4.3.4 Vehicle Reduction heuristic

To enable constructive heuristics to better cope with the minimise fleet size objective an
efficient vehicle reduction heuristic was developed, termed Reduce-Vehicles. The heuristic
takes a solution as input, removes a route and using remove-insert operators, attempts to
reinsert its arcs in the remaining routes in an effort to reduce the number of vehicles, K.

The heuristic starts by sorting the solution’s routes according to their cost. The lowest
cost route is removed and its arcs sorted according to individual demand. Starting with
the highest demand arc, the algorithm finds the least cost insert position of the arc into one
of the remaining route’s subtrips, subject to time and capacity limits. If a feasible insert
position is found, the arc is added to the route and the next arc evaluated. If an insert
position cannot be found, the algorithm reverts back to the starting solution. The process
is again applied to the original solution, but starting with the second lowest cost route. If
a route is successfully removed, the whole process is repeated on the new reduced solution.
The process terminates when none of the routes could be successfully removed. Removal
and insertion procedures used by Reduce-Vehicles are similar to a relocate neighbourhood

2Admittedly, the terms may be confusing since Route-Cluster uses Efficient-Split, and Efficient-Route-
Cluster uses Heuristic-Split. We chose to name the Heuristic-Split version Efficient-Route-Cluster since
it is quicker than Route-Cluster. Route-Cluster is also based on the standard Route-First-Cluster-Second
versions that rely on optimal splitting, which in this case is provided by Efficient-Split.

© University of Pretoria

4.4. COMPUTATIONAL RESULTS 61

search, presented in detail in the next chapter, which has a computational complexity
of O(τ2), but since it stops reinserting a route’s arcs when a feasible position cannot be
found, and arcs are sorted in increasing order, its observed complexity is usually less. A
detailed description of Reduce-Vehicles can be found in Algorithms 4.5 and 4.6, at the end
of the chapter.

4.4 Computational results

The aim of this chapter was to develop and evaluate heuristics for the MCARPTIF in an
effort to identify the best heuristic for implementation purposes, to measure the impact
of minimising fleet size on heuristic performance, and to determine how performance is
further influenced by the choice of benchmark sets. Computational tests were performed
on the modified MCARPTIF versions of Path-Scanning (PS), Path-Scanning-Random-
Link (PS-RL), Improved-Merge (IM), Randomised-Merge (RM), as well as Efficient-Route-
Cluster (ERC) linked with PS and PS-RL giant route generators, and the optimal par-
titioning version of Route-Cluster (RC) linked with the same giant route generators. In
this section, ERC and RC refer to the deterministic versions linked with PS, and the ver-
sions linked with PS-RL are labelled RC-RL and ERC-RL. Each heuristic was evaluated
in terms of minimising solution cost and minimising fleet size. For the latter we evalu-
ated heuristics when linked with Reduce-Vehicles. In an effort to improve the practical
value of our results, heuristics were tested on the realistic Cen-IF and Act-IF waste col-
lection benchmark instances. Tests were also performed on the Lpr-IF and mval-IF-3L
MCARPTIF instances, and on the gdb-IF, gdb-IF-3L, bccm-IF and bccm-IF-3L CARPTIF
instances. The benchmark instances are discussed in detail in Chapter 2, Section 2.4.2.

Constructive heuristics were programmed in Python version 2.7, with critical proce-
dures optimised using Cython version 0.17.1. Computational experiments were run on a
Dell PowerEdge R910 4U Rack Server with 128GB RAM with four Intel Xeon E7540 pro-
cessors each having 6 cores, and 12 threads and with a 2GHz base frequency. Experiments
were run without using programmatic multi-threading or multiple processors.

4.4.1 Evaluation criteria

Five criteria were used to evaluate heuristic performance. The first three were solution
cost, the required fleet size of a solution, and computational time required by a heuristic to
generate a solution. All randomised heuristics are allowed α runs, from which the best is
returned. We refer to such a heuristic execution as RM(α), using Randomised-Merge as an
example. Two additional criteria were used for randomised heuristic versions, namely the
number of runs required for randomised heuristics to break-even with their deterministic
versions, and lastly, statistical cost and fleet size intervals for heuristics when allowed a
certain number of runs.

With no lower bounds currently available for the MCARPTIF, the least cost and least
vehicle fleet size solutions found during all computational tests on constructive heuristics
were used as a baseline. Solution quality was measured as the cost gap, Zgap, for a solution
TTT , calculated as

Zgap =

|TTT |∑
i=1

Z(TTT i)− ZBF

ZBF
, (4.55)

where Z(TTT i) is the cost of route i in solution TTT , and ZBF is the cost of the best solution
found for a problem instance during all computational tests on constructive heuristics,

© University of Pretoria

62 CHAPTER 4. CONSTRUCTIVE HEURISTICS

except for bccm-IF instances, where ZBF was taken from the best metaheuristic solutions
reported in [68].

For vehicle fleet size evaluation the fleet size excess, Kgap, for a heuristic solution was
calculated as:

Kgap = |TTT | −KBF, (4.56)

where KBF is the minimum fleet size found for a problem instance during all computational
tests on constructive heuristics. The required number of vehicles of solutions are not
reported by Polacek et al. [68] since the authors solve an unlimited fleet size version of
the CARPTIF. We refer to the ZBF and KBF values of random heuristics as the random
variables Z̃gap and K̃gap. During our computational tests, heuristics were evaluated over
two objectives. One was their ability to find minimum cost solutions and the other to find
minimum fleet size solutions. We refer to these objectives as min Z and min K. For each
heuristic tested, the best solution for each objective is returned by Algorithm 4.1 .

To compare the deterministic and randomised versions of a heuristic we first calcu-
lated the expected number of runs required by a randomised version to produce a better
solution than its deterministic version. A randomised heuristic performs a sequence of
runs and since each run is independent, the runs can be modelled as a series of Bernoulli
trials. A success is then a run that produces a solution that is equal to or better than
the deterministic version’s best solution. Let ZDT

gap and KDT
gap be the gaps of the best de-

terministic solutions for min Z and min K. If p is the probability of a success, which can
be empirically calculated, the expected number of runs, αe, to find the first success is 1

p .
To calculate αe, each randomised heuristic was executed with 10 000 runs, and Zgap and
Kgap were calculated for each run before and after applying Reduce-Vehicles. The number
of runs out of 10 000 that produced solutions with Zgap ≤ ZDT

gap was then used to calculate

p; the same approach was used to calculate break-even points on KDT
gap.

As an illustration on the Cen-IF-b problem instance, Figure 4.2 shows a histogram
of Zgap values for 10 000 runs of RM and the one run of IM. On the Cen-IF-b problem

Figure 4.2: Histogram of cost gaps for Improved-Merge (IM) and Randomised-Merge (RM)
on the Cen-IF-b problem instance.

instance IM had gap values of Zgap = 0.5% and Kgap = 9. Out of the 10 000 RM runs

© University of Pretoria

4.4. COMPUTATIONAL RESULTS 63

251 had a solution with Zgap ≤ 0.5%. By setting p = 0.0251, the expected number of
runs required by RM to break-even with IM is thus αe = 40 when minimising Z is the
only objective. Out of the 10 000 RM runs, 2521 (as shown in the figure) had a solution
with Kgap ≤ 9 giving RM a break-even point of αe = 4 when minimising K is the only
objective. Lastly, 214 runs (also shown in the figure) gave a solution with Zgap ≤ 0.5%
and Kgap ≤ 9, giving RM a break-even point of αe = 47 over both objectives. Break-even
points depend on the primary objectives. Referring to our example, if minimising Z is
the primary objective, p is calculated using the number of runs where Zgap < ZDTgap or

Zgap = ZDT
gap and Kgap < KDT

gap. Similarly if minimising K is the primary objective, p is

calculated using the number of runs where Kgap < KDT
gap or Kgap = KDT

gap and Zgap < ZDT
gap.

A concise way of comparing RM and IM is through a statistical Z̃gap interval, which
starts at the min Zgap solution found over the 10 000 runs, and ends at the calculated 99th

percentile value. Also included in the interval is the calculated mean of Z̃gap; the interval
for K̃gap is similarly defined. As an illustration, Figure 4.2 further shows a histogram
of observed Zgap values for RM(α = 10) over 1000 experiments3. The observed Z̃gap

interval for RM(α = 10) on Cen-IF-b is [0%, 0.6%, 1.1%]. The mean of RM(α = 10) is
higher than IM’s Zgap since 40 runs is required for RM to break even with IM. The Z̃gap

interval can be also be directly calculated using the 10 000 runs, eliminating the need to
empirically calculate the interval for different α levels. The interval can be calculated
using the probability mass function of a binomial distribution, given in Equations (4.57)
and (4.58):

P (s) =

(
α

s

)
ps(1− p)α−s, (4.57)

P (s ≥ 1) = 1− P (s = 0). (4.58)

Here s is the number of required successes, α is the number runs, and p the probability
of a success. The probability of a success is the probability that the heuristic will return
a solution in a single run with Zgap or Kgap below a certain threshold. Referring to
Figure 4.2, the probability that RM will return a solution with Zgap ≤ 0.5% and Kgap ≤ 9
is 214

10000 . Using Equations (4.57) and (4.58) we calculate that RM(α = 10) will find a better
solution than IM on one or more of its 10 runs with a probability of 19%. By using this
method in conjunction with RM run observations, the interval of RM can be calculated at
specific α values. For all our computational tests in this chapter the interval lower limit
is taken as the min Zgap solution value over all the runs, and the 99th percentile upper
limit is calculated via Equations (4.57) and (4.58) as the point where P (k ≥ 1) ≈ 99%.
The interval mean, Zgap, is calculated as the point where P (k ≥ 1) ≈ 1

α . When min K
is the primary objective, the same interval can be calculated for Kgap, before and after

applying Reduce-Vehicles. We refer to the Z̃gap interval as [Zmin
gap , Zgap, Z

99th

gap] and to the

K̃gap interval as [Kmin
gap ,Kgap,K

99th

gap]. For Cen-IF-b, using observations from the 10000 RM

runs the interval of Z̃gap for RM(α = 10) was calculated as [0%, 0.7%, 1.1%], which gives a
slightly higher Zgap than the empirically observed interval shown in Figure 4.2. In limited
comparisons between the observed and calculated mean we found the calculated mean to
always be slightly higher, but by no more than 0.5%. For all randomised heuristics we
captured the Zgap and Kgap values over 10 000 runs and used the results to calculate break-
even points and intervals for the min K and min Z objectives. Intervals were calculated
for both the primary and secondary objectives.

3The problem instance was solved 1000 times using RM(α = 10). For each experiment the Zgap value
of the best solution returned over the 10 runs was captured.

© University of Pretoria

64 CHAPTER 4. CONSTRUCTIVE HEURISTICS

4.4.2 Computational time and break even analysis

The CPU time required by heuristics to produce a single solution, which is the same for the
deterministic and randomised versions, plus the CPU time taken by Reduce-Vehicles on a
solution are shown in Figure 4.3a, and averages of benchmark sets are shown in Table 4.1.

The CPU time of Reduce-Vehicles per solution is constant for all the heuristics and is

(a) CPU time of constructive heuristics. (b) CPU time of Reduce-Vehicles.

Figure 4.3: Problem instance size (|RRR|) versus CPU time (in seconds), on log-xy axis, of
deterministic heuristics to produce one solution and for Reduce-Vehicles to improve the
solution.

Table 4.1: Average heuristic CPU times (in seconds) to generate one solution per bench-
mark set.

Set IM PS ERC RC Reduce-Vehicles

Cen-IF 306.71 0.55 0.99 8.16 0.37
Act-IF 4.14 0.01 0.03 0.73 0.01
Lpr-IF 4.39 0.02 0.04 0.48 0.01
mval-IF-3L 0.19 0.01 0.01 0.02 < 0.01
bccm-IF-3L 0.21 < 0.01 0.01 0.01 < 0.01
gdb-IF-3L 0.04 < 0.01 < 0.01 < 0.01 < 0.01
bccm-IF 0.24 0.01 0.01 0.01 0.01
gdb-IF 0.05 0.01 < 0.01 0.01 < 0.01

Global mean 39.50 0.10 0.187 1.35 0.10

IM: Improved-Merge; PS: Path-Scanning ; ERC: Efficient-Route-Cluster ; RC: Route-Cluster.

shown in Figure 4.3b. The CPU time of IM includes its initialisation phase, which took
between three and four times longer than its execution phase. CPU times of ERC and
RC to produce a single solution also include the CPU time to construct an initial giant
tour. On the two largest Cen-IF instances, IM took eight minutes to produce a single
feasible solution, whereas PS took less than a second. ERC was also efficient, capable of
solving large Cen-IF instances in 1.5 seconds. Results further show that Reduce-Vehicles
is efficient, taking at most one second on large Cen-IF instances. The CPU times of

© University of Pretoria

4.4. COMPUTATIONAL RESULTS 65

RC were on average under one second on all sets except Cen-IF where RC was under
ten seconds. On small instances with |RRR| ≤ 256, all randomised heuristics can complete
100 runs in less than ten seconds, including RM whose most expensive component is its
initialisation phase. The high computational times of IM is only a factor on realistically
sized instances with |RRR| > 256. The tested versions of IM and RM are too slow for
near real-time decision support, but additional effort can be invested to improve their
implementation code efficiency, depending on how well they perform in minimising Z and
K compared to the already efficient heuristics.

To compare the deterministic heuristics with their randomised versions, the number
of runs, αe, required by the randomised versions to break even was calculated for the
min Zgap and min Kgap objectives. In case of the latter, Reduce-Vehicles was applied
to both the deterministic and random versions. The number of runs per deterministic
heuristic are one run for IM, eight runs for PS, and six runs for ERC and RC. Average
break-even values for PS-RL against PS, RM against IM, ERC-RL against ERC and RC-
RL against RC per benchmark set are shown in Table 4.2. Averages were calculated by

Table 4.2: Average number of runs, αe, required by randomised heuristics to break-even
with their deterministic versions.

min Z primary objective min K primary objective

Set RM PS-RL ERC-RL RC-RL RM PS-RL ERC-RL RC-RL

Cen-IF 14 48 - - 5 48 502 -
Act-IF 13 24 115 24 69 24 115 24
Lpr-IF 1024 111 24 16 946 117 31 48
mval-IF-3L 8 58 10 11 7 53 11 13
bccm-IF-3L 7 114 12 8 4 111 15 47
gdb-IF-3L 41 35 7 6 23 178 6 6
bccm-IF 11 68 32 16 21 73 45 21
gdb-IF 368 78 51 27 908 52 60 49

Global mean 186 67 36 15 248 82 98 30

IM and RM: Improved and Randomised-Merge; PS: Path-Scanning ; ERC: Efficient-Route-Cluster ; RC:
Route-Cluster ; RL: Random-Link multi-start versions.

excluding problem instances for which randomised heuristics failed to find a better solution
in 10000 runs. The number of instances per set for which this was the case is shown in
Table 4.3. On most instances the randomised heuristics are capable of outperforming
their deterministic versions if allowed sufficient number of runs. Comparing αe against
the number of runs required by the deterministic versions, αe was always equal or higher.
When min Z was the primary objective, ERC-RL and RC-RL required the least number
of runs to break-even and RM required the most. PS-RL broke even on all but 1 of the
159 instances, and its break-even point was on average under 100 runs. When min K
was the primary objective, all the heuristics required more runs to break-even, indicating
that the deterministic rules result in solutions requiring fewer vehicles. On small problem
instances, computation time is not a factor and randomised heuristics can be allowed high-
run levels to outperform deterministic versions. The break-even points were also lower on
these instances. This was not the case on more realistic instances. Randomised heuristics
required more runs to break-even which, in turn, also require more computation time.
Contrary to tests on small instances, the choice between randomised and deterministic
versions is not clear for realistic instances and will depend on available computational
time and the solution quality of heuristics. These factors are analysed next.

© University of Pretoria

66 CHAPTER 4. CONSTRUCTIVE HEURISTICS

Table 4.3: Number of problem instances on which randomised heuristics failed to break-
even over 10000 runs.

instances min Zgap primary objective min Kgap primary objective

Set in set RM PS-RL ERC-RL RC-RL RM PS-RL ERC-RL RC-RL

Cen-If 3 0 0 3 3 0 0 2 3
Act-If 3 2 0 0 0 2 0 0 0
Lpr-IF 15 5 1 0 0 2 1 1 0
mval-IF-3L 34 0 0 0 0 0 0 0 0
bccm-IF-3L 34 0 0 0 0 0 0 0 0
gdb-IF-3L 23 0 0 0 0 0 0 0 0
bccm-IF 34 0 0 0 0 0 0 0 1
gdb-IF 23 4 0 0 0 0 0 3 1

Total 169 11 1 3 3 4 1 6 5

IM and RM: Improved and Randomised-Merge; PS: Path-Scanning ; ERC: Efficient-Route-Cluster ; RC:
Route-Cluster ; RL: Random-Link multi-start versions.

4.4.3 Performance evaluation

The aim of our computational tests was to identify the best performing heuristic, subject
to computation time-limits encountered in practical applications. The second aim was to
determine if heuristic performance was different between the primary objectives of min-
imising Z or K, and if it differed between different benchmark sets, particularly between
more realistic sets and those proposed in literature. Based on the computational times and
break-even points of heuristics (Tables 4.1 and 4.2), the randomised heuristics were evalu-
ated as follows. On small gdb and bccm related benchmark sets as well as mval-IF-3L, the
Zgap and Kgap primary and secondary objective intervals were calculated at α = 1000, and
on Lpr-IF, Act-IF and Cen-IF at α = 100. Computational times per problem instance for
these setups are shown in Figure 4.4. With α = 1000, the execution times of PS-RL and
ERC-RL fell below one minute on small instances, and with α = 100, both heuristics have
total computation times of less than two minutes on the largest Cen-IF instances, except
for one problem instance where ERC-RL required three minutes, which we assume to be
acceptable for near real-time decision support. The same criteria would disqualify IM and
RM from implementation, and limit RC-RL to less than ten runs; but as mentioned, their
implementation code efficiency can be improved. ERC-RL and RC-RL were compared
in Chapter 3 in which we showed that RC-RL performs marginally better than ERC-RL
under the same execution time-limits. As mentioned, we subsequently favoured ERC-RL
since it is easier to implement. Accordingly, we only report on aggregated results of our
tests on ERC-RL.

To measure the impact of Reduce-Vehicles, the fleet size before and after its application
was measured on deterministic heuristic solutions. The K̃gap interval calculations were also
completed without and with its application and the resulting intervals compared. Table 4.4
shows the number of problem instances per set on which Reduce-Vehicles decreased the
number of required vehicles for deterministic solutions, and on which it decreased any of
the three interval values on randomised heuristics. Despite its simplicity, the application of
Reduce-Vehicles improved the performance of heuristics, and because of its computational
efficiency (Figure 4.3b) it did so without significantly increasing the computation times.
It can thus be applied to any heuristics when real-time decision support is needed and min
K is an objective, or if the fleet sizes of solutions exceed the fleet limit. In the remainder

© University of Pretoria

4.4. COMPUTATIONAL RESULTS 67

Figure 4.4: Problem instance size (|RRR|) versus execution time of Randomised-Merge
(RM), Path-Scanning-Random-Link (PSRL), Efficient-Route-Cluster-Random-Link (ER-
CRL) and Route-Cluster-Random-Link implementations.

Table 4.4: Number of problem instances on which Reduce-Vehicles was able to reduce the
fleet size.

Set # instances IM RM PS PS-RL ERC ERC-RL RC RC-RL

Cen-IF 3 2 2 2 2 3 2 3 1
Act-IF 3 2 1 0 0 0 0 0 0
Lpr-IF 15 10 9 2 2 11 2 6 1
mval-IF-3L 34 29 21 13 11 22 17 19 15
bccm-IF-3L 34 30 17 3 3 16 7 11 4
gdb-IF-3L 23 20 1 3 2 15 5 8 1
bccm-IF 34 34 26 32 31 34 34 34 34
gdb-IF 23 19 9 14 9 22 21 22 20

Total 169 146 86 69 60 123 88 103 76
Fraction 0.86 0.51 0.41 0.36 0.73 0.52 0.61 0.45

IM and RM: Improved and Randomised-Merge; PS: Path-Scanning ; ERC: Efficient-Route-Cluster ; RC:
Route-Cluster ; RL: Random-Link multi-start versions.

© University of Pretoria

68 CHAPTER 4. CONSTRUCTIVE HEURISTICS

of this section, results reported on heuristic costs and fleet sizes are with the application
of Reduce-Vehicles when min K is the primary objective, and without it when min Z is
the primary objective.

Results for deterministic and randomised heuristics on the waste collection benchmark
sets, Lpr-IF, Act-IF and Cen-IF, are shown in Figure 4.5 and includes Zgap values when
min Z was the primary objective, and Kgap values when min K was the primary objective.
On these sets, the best performing heuristic differed per set and per primary objective.

Figure 4.5: Results on waste collection benchmark instances of the deterministic and ran-
domised versions of Merge (M), Path-Scanning (PS) and Efficient-Route-Cluster (ERC)
when min Z or min K is the primary objective.

RM and IM performed the best on Cen-IF in minimising Z but they performed poorly
in minimising K with IM exceeding the minimum fleet size solution by eight vehicles on
Cen-IF-b. RM had a K̃ interval of [1.0, 1.0, 5.0] for the same problem instance. IM and
RM also performed the worst for Lpr-IF in minimising K. ERC-RL performed the best for
Act-IF and Lpr-IF whereas ERC (the deterministic version) performed better for all three
Cen-IF instances. Both versions performed the best for all three instances in minimising
K, followed closely by PS and PS-RL. Despite the application of Reduce-Vehicles, all
heuristics failed to find min fleet size solutions for a few instances. ERC-RL was the most
consistent of the randomised heuristics, with small Z̃ intervals spanning less than 1%. RM
had the largest intervals in excess of 5% for some of the problem instances. The intervals
on K̃ were small for all heuristics, except RM and IM for Cen-IF-b. ERC and ERC-RL
were always within 5% of the minimum Z solution found, and PS and PS-RL within 10%
on Cen-IF and within 5% on Lpr-IF. IM and RM were also within 10% on most instances,
except one Lpr-IF problem instance and the Act-IF set where it performed very poorly

© University of Pretoria

4.4. COMPUTATIONAL RESULTS 69

compared to other heuristics.

Summary Zgap results for the heuristics on all the benchmark sets are shown in Ta-
ble 4.5. Full results for Cen-IF, Act-IF and Lpr-IF can be found in [87], as well as
Appendix A.1.1, including computational times for the different setups. Full results for
the smaller benchmark sets can be also be found in [87], as well as Appendix A.1.2.

Results are shown when min Z is either the primary or secondary objective, and for
the five smaller benchmark sets the randomised heuristics were analysed at α = 10 000.
Results for the smaller sets further highlight the impact of benchmark sets on heuristic
performance. The increase in α resulted in the random heuristics dominating their de-
terministic counterparts, whereas the performance of the deterministic counterparts were
much closer for the waste collection sets, and even better in a few cases. In addition
to Cen-IF, RM performed the best for bccm-IF and gdb-IF, but it performed the worst
for all other sets. Routes for bccm-IF and gbd-IF typically consist of a single subtrip,
indicating that RM and IM performs better when this is the case, and possibly when the
depot coincides with an IF, as is the case for Cen-IF. ERC-RL and RC-RL struggled with
bccm-IF and gbd-IF, producing solutions with Zgap values that were on average 48% and
20% from ZBF, respectively. This implies that the expected costs, Z, of the heuristics were
on average 1.5 and 1.2 times more than ZBF. These were the largest gaps observed during
all the computational tests. On all the other sets except Cen-IF, ERC-RL performed the
best. As expected, RC and RC-RL performed better than ERC and ERC-RL, more so
on smaller sets. For time critical applications, the more efficient and easier to implement
ERC and ERC-RL heuristics can be used instead of RC and RC-RL as their solutions will
still be better than those of other heuristics. For all the benchmarks, PS and PS-RL were
the most consistent with the best global Zgap mean, despite not being the best perform-
ing heuristic on any specific set. The Z̃gap intervals of PS-RL were however the largest,
whereas ERC-RL and RC-RL had the smallest intervals, even for benchmarks where they
performed poorly. When min Z was the secondary objective, Zgap values were higher in
a few cases as expected; but for a number of heuristics, particularly on smaller sets, the
values were lower. This can be attributed to Reduce-Vehicles which was able to reduce
total costs through its route removal and arc insertion procedures. The cost reduction
was most prominent for deterministic solutions and for Zmin

gap values. Treating min Z as a
secondary objective did not have a significant impact on the solution costs of heuristics.

Summary Kgap results for heuristics on all benchmark sets together with min K as
primary and secondary objectives are shown in Table 4.6. The intervals were calculated
at α = 1000 for randomised heuristics for small benchmark sets, and at α = 100 for
Cen-IF, Act-IF and Lpr-IF. Similar to Zgap analysis, results were different between waste
collection and small benchmark sets, and between heuristics. All heuristics were able to
find min fleet solutions for Act-IF. On the other waste collection sets, RC-RL performed
the best followed by RC, ERC-RL, PS-RL, ERC and PS. IM and RM performed the worst.
On small bccm-IF and gdb-IF benchmarks ERC and RC again struggled, exceeding the
minimum fleet size on average by 3.5 and 7 vehicles. Both performed better than RM and
IM on mval-IF-3L and bccm-IF-3L, and all the randomised heuristics performed similarly
for gdb-IF-3L. PS and PS-RL performed the best on small benchmark sets and were
again the most consistent over all sets with the best global Zgap means. In all the cases
the randomised heuristics performed better than their deterministic versions, and their
intervals were also small. When min K was treated as a secondary instead of primary
objective, the increase in Kgap values was in excess of one vehicle on ERC and ERC-RL,
and close to one vehicle for IM and RM. PS and PS-RL results were similar when min K
was the primary and secondary objective.

© University of Pretoria

70 CHAPTER 4. CONSTRUCTIVE HEURISTICS

T
ab

le
4
.5

:
A

v
erage

Z
g
a
p

valu
es

(in
%

)
on

b
en

ch
m

ark
sets

w
h

en
m

in
Z

is
th

e
p

rim
ary

or
secon

d
ary

ob
jective.

M
in
Z

S
et

IM
R

M
P

S
P

S
-R

L
E

R
C

E
R

C
-R

L
R

C
R

C
-R

L

1
st

O
b

j
C

en
-IF

1
.0

[
0
.0

,
0
.5

,
0
.7

]
6
.3

[4
.7

,
6
.0

,
6
.4

]
1
.9

[
2
.3

,
2
.6

,
2
.9

]
1
.7

[
2
.1

,
2
.5

,
2
.7

]
A

ct-IF
1
5
.0

[1
4
.8

,1
6
.6

,1
7
.4

]
0
.9

[0
.0

,
0
.6

,
0
.9

]
1
.0

[
0
.3

,
0
.7

,
1
.0

]
0
.8

[
0
.1

,
0
.5

,
0
.7

]
L

p
r-IF

2
.4

[
2
.8

,
3
.6

,
3
.9

]
1
.7

[0
.8

,
1
.4

,
1
.8

]
1
.0

[
0
.4

,
0
.7

,
0
.9

]
0
.7

[
0
.1

,
0
.4

,
0
.6

]

M
ea

n
6
.1

[
5
.9

,
6
.9

,
7
.3

]
3
.0

[1
.8

,
2
.7

,
3
.0

]
1
.3

[
1
.0

,
1
.3

,
1
.6

]
1
.1

[
0
.8

,
1
.1

,
1
.3

]

m
va

l-IF
-3

L
1
8
.0

[
8
.2

,1
2
.4

,1
4
.6

]
1
3
.6

[3
.6

,
6
.2

,
9
.3

]
1
4
.7

[
8
.0

,
8
.3

,1
0
.7

]
1
3
.0

[
6
.3

,
6
.4

,
8
.4

]
bccm

-IF
-3

L
3
1
.5

[1
7
.1

,1
7
.3

,2
0
.1

]
1
0
.1

[1
.6

,
4
.0

,
6
.4

]
1
4
.0

[
5
.9

,
6
.1

,
8
.9

]
1
0
.8

[
3
.9

,
4
.0

,
5
.5

]
gd

b-IF
-3

L
1
1
.7

[
1
.5

,
3
.0

,
4
.2

]
7
.8

[1
.2

,
2
.6

,
4
.7

]
1
1
.3

[
4
.1

,
4
.5

,
5
.9

]
8
.8

[
2
.2

,
2
.5

,
3
.7

]
bccm

-IF
1
8
.1

[
7
.5

,
9
.9

,1
3
.0

]
2
5
.4

[8
.5

,1
2
.3

,1
6
.7

]
6
8
.6

[4
7
.6

,4
8
.0

,5
2
.6

]
6
8
.5

[4
7
.4

,4
7
.7

,5
2
.2

]
gd

b-IF
1
1
.0

[
1
.4

,
2
.2

,
3
.1

]
1
1
.2

[1
.7

,
3
.4

,
5
.2

]
3
4
.9

[2
0
.0

,2
0
.2

,2
4
.2

]
3
4
.5

[1
9
.8

,2
0
.0

,2
4
.0

]

M
ea

n
1
8
.1

[
7
.1

,
9
.0

,1
1
.0

]
1
3
.6

[3
.3

,
5
.7

,
8
.5

]
2
8
.7

[1
7
.1

,1
7
.4

,2
0
.5

]
2
7
.1

[1
5
.9

,1
6
.1

,1
8
.8

]

2
n
d

O
b

j
C

en
-IF

2
.4

[
1
.1

,
1
.3

,
2
.3

]
6
.3

[4
.7

,
5
.9

,
6
.4

]
3
.0

[
3
.0

,
4
.0

,
4
.5

]
2
.5

[
2
.5

,
3
.1

,
3
.6

]
A

ct-IF
1
0
.3

[1
0
.7

,1
5
.7

,1
6
.0

]
0
.9

[0
.0

,
0
.6

,
0
.9

]
1
.0

[
0
.3

,
0
.7

,
1
.0

]
0
.8

[
0
.1

,
0
.5

,
0
.7

]
L

p
r-IF

2
.9

[
2
.6

,
3
.5

,
3
.9

]
1
.5

[0
.8

,
1
.4

,
1
.8

]
1
.4

[
0
.7

,
1
.1

,
1
.3

]
0
.9

[
0
.2

,
0
.5

,
0
.8

]

M
ea

n
5
.2

[
4
.8

,
6
.8

,
7
.4

]
2
.9

[1
.8

,
2
.6

,
3
.0

]
1
.8

[
1
.3

,
1
.9

,
2
.3

]
1
.4

[
0
.9

,
1
.4

,
1
.7

]

m
va

l-IF
-3

L
1
6
.3

[
2
.6

,
9
.1

,1
0
.0

]
1
2
.6

[3
.0

,
5
.7

,
7
.6

]
1
5
.2

[
4
.5

,
8
.3

,
9
.0

]
1
3
.5

[
2
.6

,
6
.4

,
7
.1

]
bccm

-IF
-3

L
2
8
.4

[
8
.4

,1
7
.3

,1
8
.0

]
9
.9

[1
.6

,
4
.0

,
6
.4

]
1
4
.8

[
4
.1

,
6
.2

,
7
.7

]
1
1
.2

[
1
.3

,
4
.0

,
4
.6

]
gd

b-IF
-3

L
1
3
.3

[
0
.4

,
2
.3

,
3
.4

]
7
.8

[1
.2

,
2
.5

,
4
.7

]
1
2
.6

[
1
.7

,
4
.4

,
5
.1

]
9
.6

[
1
.4

,
2
.3

,
3
.2

]
bccm

-IF
1
5
.5

[
5
.6

,
8
.6

,
9
.9

]
2
1
.4

[7
.8

,1
1
.4

,1
5
.1

]
6
9
.0

[4
1
.4

,4
8
.0

,4
8
.6

]
6
8
.9

[4
1
.0

,4
7
.7

,4
8
.4

]
gd

b-IF
1
0
.4

[
0
.9

,
1
.9

,
2
.8

]
9
.3

[1
.3

,
2
.9

,
4
.7

]
3
5
.5

[1
5
.6

,2
0
.2

,2
0
.7

]
3
4
.6

[1
5
.5

,2
0
.0

,2
0
.5

]

M
ea

n
1
6
.8

[
3
.6

,
7
.8

,
8
.8

]
1
2
.2

[3
.0

,
5
.3

,
7
.7

]
2
9
.4

[1
3
.5

,1
7
.4

,1
8
.2

]
2
7
.6

[1
2
.4

,1
6
.1

,1
6
.8

]

1
st

O
b

j
G

lo
ba

l
1
3
.6

[
6
.7

,
8
.0

,
9
.4

]
9
.6

[2
.8

,
4
.4

,
6
.2

]
1
8
.4

[1
1
.1

,1
1
.3

,1
3
.2

]
1
7
.4

[1
0
.2

,1
0
.4

,1
2
.1

]

2
n
d

O
b

j
G

lo
ba

l
1
2
.4

[
4
.0

,
7
.4

,
8
.0

]
8
.7

[2
.6

,
4
.1

,
5
.7

]
1
9
.1

[
8
.9

,1
1
.4

,1
2
.1

]
1
7
.8

[
8
.1

,1
0
.4

,1
1
.0

]

[Z
m

in
g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

]:
R

esu
lts

in
terva

l
fo

r
ra

n
d
o
m

h
eu

ristics;
M

ea
n

:
A

v
era

g
e

ov
er

set
av

era
g
es.

G
lo

ba
l:

A
v
era

g
e

ov
er

a
ll

set
av

era
g
es.

1
st

O
b

j:
M

in
Z

w
a
s

th
e

p
rim

a
ry

o
b

jectiv
e

a
n
d

m
in
K

seco
n
d
a
ry

;
2

n
d

O
b

j:
M

in
K

w
a
s

th
e

p
rim

a
ry

o
b

jectiv
e

a
n
d

m
in
Z

seco
n
d
a
ry

;
IM

a
n
d

R
M

:
Im

p
ro

ved
a
n
d

R
a

n
d

o
m

ised
-M

erge
;

P
S
:

P
a

th
-S

ca
n

n
in

g
;

E
R

C
:

E
ffi

cien
t-R

o
u

te-C
lu

ster
;

R
C

:
R

o
u

te-C
lu

ster
;

R
L

:
R

a
n

d
o

m
-L

in
k

m
u
lti-sta

rt
v
ersio

n
s.

© University of Pretoria

4.4. COMPUTATIONAL RESULTS 71

T
ab

le
4
.6

:
A

v
er

ag
e
K

g
a
p

va
lu

es
on

b
en

ch
m

ar
k

se
ts

w
h

en
m

in
K

is
th

e
p

ri
m

ar
y

or
se

co
n

d
ar

y
ob

je
ct

iv
e.

M
in
K

S
et

IM
R

M
P

S
P

S
-R

L
E

R
C

E
R

C
-R

L
R

C
R

C
-R

L

1
st

O
b

j
C

en
-I

F
2
.7

[0
.3

,1
.3

,1
.7

]
0
.7

[0
.3

,0
.7

,0
.7

]
0
.7

[0
.0

,0
.3

,0
.3

]
0
.3

[0
.0

,0
.0

,0
.0

]
A

ct
-I

F
0
.0

[0
.0

,0
.0

,0
.0

]
0
.0

[0
.0

,0
.0

,0
.0

]
0
.0

[0
.0

,0
.0

,0
.0

]
0
.0

[0
.0

,0
.0

,0
.0

]
L

p
r-

IF
0
.3

[0
.2

,0
.4

,0
.5

]
0
.1

[0
.1

,0
.1

,0
.1

]
0
.2

[0
.1

,0
.1

,0
.1

]
0
.1

[0
.1

,0
.1

,0
.1

]

M
ea

n
1
.0

[0
.2

,0
.6

,0
.7

]
0
.3

[0
.1

,0
.3

,0
.3

]
0
.3

[0
.0

,0
.1

,0
.1

]
0
.1

[0
.0

,0
.0

,0
.0

]

m
va

l-
IF

-3
L

0
.7

[0
.2

,0
.2

,0
.3

]
0
.3

[0
.1

,0
.1

,0
.2

]
0
.6

[0
.2

,0
.2

,0
.3

]
0
.6

[0
.1

,0
.1

,0
.2

]
bc

cm
-I

F
-3

L
1
.2

[0
.2

,0
.2

,0
.3

]
0
.1

[0
.0

,0
.0

,0
.1

]
0
.4

[0
.0

,0
.0

,0
.1

]
0
.3

[0
.0

,0
.0

,0
.0

]
gd

b-
IF

-3
L

0
.7

[0
.0

,0
.0

,0
.0

]
0
.1

[0
.0

,0
.0

,0
.0

]
0
.5

[0
.0

,0
.0

,0
.0

]
0
.3

[0
.0

,0
.0

,0
.0

]
bc

cm
-I

F
1
.1

[0
.1

,0
.5

,0
.6

]
1
.2

[0
.1

,0
.4

,0
.7

]
6
.7

[3
.9

,3
.9

,4
.2

]
6
.7

[3
.9

,3
.9

,4
.2

]
gd

b-
IF

0
.9

[0
.1

,0
.2

,0
.3

]
0
.6

[0
.0

,0
.1

,0
.3

]
3
.4

[1
.3

,1
.3

,1
.7

]
3
.4

[1
.3

,1
.3

,1
.7

]

M
ea

n
0
.9

[0
.1

,0
.2

,0
.3

]
0
.5

[0
.0

,0
.1

,0
.3

]
2
.3

[1
.1

,1
.1

,1
.3

]
2
.3

[1
.1

,1
.1

,1
.2

]

2
n
d

O
b

j
C

en
-I

F
3
.3

[3
.7

,5
.0

,4
.0

]
0
.7

[0
.3

,0
.7

,0
.7

]
7
.0

[8
.3

,9
.3

,9
.3

]
3
.7

[4
.0

,4
.7

,5
.3

]
A

ct
-I

F
0
.7

[0
.3

,0
.3

,0
.3

]
0
.0

[0
.0

,0
.0

,0
.0

]
0
.0

[0
.0

,0
.0

,0
.0

]
0
.0

[0
.0

,0
.0

,0
.0

]
L

p
r-

IF
0
.9

[0
.9

,1
.1

,1
.1

]
0
.1

[0
.1

,0
.1

,0
.1

]
1
.1

[0
.9

,1
.2

,1
.3

]
0
.9

[0
.7

,0
.8

,0
.9

]

M
ea

n
1
.6

[1
.6

,2
.1

,1
.8

]
0
.3

[0
.1

,0
.3

,0
.3

]
2
.7

[3
.1

,3
.5

,3
.5

]
1
.5

[1
.6

,1
.8

,2
.1

]

m
va

l-
IF

-3
L

1
.3

[0
.7

,0
.9

,1
.1

]
0
.4

[0
.1

,0
.2

,0
.3

]
1
.1

[0
.6

,0
.6

,0
.9

]
0
.7

[0
.4

,0
.4

,0
.6

]
bc

cm
-I

F
-3

L
2
.2

[0
.6

,0
.6

,0
.9

]
0
.1

[0
.0

,0
.0

,0
.1

]
0
.6

[0
.2

,0
.2

,0
.5

]
0
.4

[0
.1

,0
.1

,0
.2

]
gd

b-
IF

-3
L

1
.9

[0
.0

,0
.3

,0
.4

]
0
.1

[0
.0

,0
.0

,0
.1

]
0
.8

[0
.4

,0
.3

,0
.7

]
0
.5

[0
.2

,0
.1

,0
.3

]
bc

cm
-I

F
1
.9

[0
.4

,0
.7

,1
.2

]
1
.6

[0
.2

,0
.5

,0
.9

]
6
.9

[4
.6

,4
.6

,5
.2

]
6
.9

[4
.6

,4
.6

,5
.1

]
gd

b-
IF

1
.2

[0
.3

,0
.3

,0
.5

]
0
.8

[0
.1

,0
.2

,0
.4

]
3
.6

[1
.9

,1
.9

,2
.5

]
3
.5

[1
.9

,1
.9

,2
.5

]

M
ea

n
1
.7

[0
.4

,0
.6

,0
.8

]
0
.6

[0
.1

,0
.2

,0
.4

]
2
.6

[1
.5

,1
.5

,2
.0

]
2
.4

[1
.4

,1
.4

,1
.7

]

1
st

O
b

j
G

lo
ba

l
1
.0

[0
.1

,0
.3

,0
.4

]
0
.4

[0
.1

,0
.1

,0
.2

]
1
.6

[0
.7

,0
.7

,0
.8

]
1
.5

[0
.7

,0
.7

,0
.8

]

2
n
d

O
b

j
G

lo
ba

l
1
.7

[0
.9

,0
.9

,1
.2

]
0
.5

[0
.1

,0
.2

,0
.3

]
2
.6

[2
.1

,2
.1

,2
.6

]
2
.1

[1
.5

,1
.6

,1
.8

]

[K
m

in
g
a
p
,K

g
a
p
,K

9
9
t
h

g
a
p

]:
R

es
u
lt

s
in

te
rv

a
l

fo
r

ra
n
d
o
m

h
eu

ri
st

ic
s;

M
ea

n
:

A
v
er

a
g
e

ov
er

se
t

av
er

a
g
es

.
G

lo
ba

l:
A

v
er

a
g
e

ov
er

a
ll

se
t

av
er

a
g
es

.
1

st
O

b
j:

M
in
K

w
a
s

th
e

p
ri

m
a
ry

o
b

je
ct

iv
e

a
n
d

m
in
Z

se
co

n
d
a
ry

;
2

n
d

O
b

j:
M

in
Z

w
a
s

th
e

p
ri

m
a
ry

o
b

je
ct

iv
e

a
n
d

m
in
K

se
co

n
d
a
ry

;
IM

a
n
d

R
M

:
Im

p
ro

ve
d

a
n
d

R
a

n
d

o
m

is
ed

-M
er

ge
;

P
S
:

P
a

th
-S

ca
n

n
in

g
;

E
R

C
:

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
;

R
C

:
R

o
u

te
-C

lu
st

er
;

R
L

:
R

a
n

d
o

m
-L

in
k

m
u
lt

i-
st

a
rt

v
er

si
o
n
s.

© University of Pretoria

72 CHAPTER 4. CONSTRUCTIVE HEURISTICS

Compared to other heuristics, PS and PS-RL were expected to do well in meeting fleet
limits. During their construction process arcs are added to a route until it reaches its
limit. As subtrips become full, low demand arcs can still be included in subtrips; these
are added by PS regardless of how far they are from the current route position. The
construct mechanisms of IM and RM result in them struggling with fleet limits. Routes
progressively became longer as more mergers took place; however, the mergers were made
only according to cost savings. Directly merging two routes results in better savings than
merging them through an IF visit. IM and RM thus have a tendency to produce long
routes that cannot be merged through an IF visit without exceeding the route duration
limit, when one route can be easily split and incorporated into the other routes. Reduce-
Vehicles is effective in reducing the fleet size in these situations. ERC, RC, ERC-RL and
RC-RL take giant routes as their input, which are constructed without taking arc demand
or service time into consideration. If a giant route consists of successive high demand
arcs, the heuristics will be forced to partition the route between these arcs, and the first
portion will not be close to its demand limit. The same also occurs in high service time
arc-sequences. Reduce-Vehicles then attempts to reinsert small demand and service time
arcs in these routes, which is why the heuristics benefit from its application.

Results show that the choice of benchmark sets influence heuristic performance, as
does the treatment of K. If tests were limited to the gdb-IF and bccm-IF benchmark sets
proposed in literature, and the only objective is to minimise Z, RM would have performed
the best, followed by PS-RL. ERC-RL and RC-RL would have been discarded based on
their very poor performance on the sets. However, as shown in our benchmark set analysis
in Section 2.4.2 these problem instances have features that are significantly different from
waste collection instances. The assumption of an unlimited fleet size also rarely holds in
practice. RC-RL and ERC-RL were the best performing heuristics in terms of minimising
K and Z. For computational tests to be of greater practical value, results on realistic
instances should be prioritised. The limited tests performed in this thesis indicate that
ERC-RL linked with Reduce-Vehicles is best suited for application purposes where near
real-time decision support is required and the primary objective is to either minimise Z
or K. The deterministic version, ERC, can be used when available computational time
is very limited. If small instances are to be solved, PS-RL is best suited for application
purposes. Similarly, if instances are to be solved with unique characteristics, inconsistent
with those of all benchmark sets solved in this paper, PS-RL would also be best suited as
it is seems to be more robust for different types of instances.

A limitation of the analysis, and by extension the evaluations, is that tests were per-
formed on only six realistic waste collection instances, three of each from the Act-IF and
Cen-IF sets. Results on Lpr-IF may also be misleading since gap measurements from
lower bounds or best solutions found are generally small for the benchmark set. Another
limitation is that Zgap and Kgap values were taken from the best solutions found during
all our computational tests on heuristics. The gaps will thus be higher when taken from
lower bounds and optimal solution values. The Zgaps were high for bccm-IF instances,
which were calculated from the metaheuristic solutions reported in [68]. The heuristics
were able to match metaheuristic solutions for three out of 19 instances solved in [68], but
on average the best performing heuristic, RM, had cost gaps of 7.5% when allowed 10 000
runs. Optimal solution gaps on other sets may also be in excess of 7.5% if one were to use
bccm-IF as a baseline. The set did prove more difficult for the heuristics, with the best
performing heuristic differing per problem instance. The same did not occur on realistic
waste collection sets. Whether the poor performance of constructive heuristics on bccm-
IF can be generalised to realistic waste collection instances remains an open question.

© University of Pretoria

4.5. MAIN FINDINGS 73

In terms of Kgap analysis, which is seldom presented in studies on CARPs, all heuristics
had Kgap > 0 for some of the problem instances. Since Kgap values were taken from best
solutions found by the heuristics, the gaps from the minimum fleet size will be equal or
higher. If K was treated as being limited, instead of an objective, and the fleet limit was
close to minimum, the heuristics would have failed to find feasible solutions on a number
of instances, even with the application of Reduce-Vehicles.

4.5 Main findings

In this section, we evaluated constructive heuristics for the MCARPTIF. Constructive
heuristics that can quickly generate feasible solutions for the MCARPTIF is an important
area of research. In many practical applications such as the one that inspired our article
on constructive heuristics [87], the problem has to be solved in near real-time. When faced
with a new problem such as the MCARPTIF, which accurately models waste collection,
constructive heuristics are used as a first step to solve the problem.

In contrast to its original formulation, studies on CARP heuristics treat the vehicle fleet
as unlimited. In practical applications, the fleet is generally limited and our first research
contribution of this chapter was the evaluation of MCARPTIF constructive heuristics
on their ability to minimise the fleet size. To improve heuristic performance an efficient
fleet size reduction procedure was developed and linked with the tested heuristics. This
allowed heuristics to better deal with the objective, but despite its application, none
of the heuristics could find minimum fleet solutions on all CARPTIF and MCARPTIF
benchmark instances. More advanced procedures for minimising the number of required
routes should yield better results, thus warranting further research on the topic, which we
leave for future work.

Secondly, results showed that problem instance characteristics influence heuristic per-
formance, but the lack of realistic waste collection benchmark sets makes this difficult to
investigate. We have addressed this gap, admittedly to a limited extent, by the intro-
duction of new realistic waste collection instances in Section 2.4.2. Results indicate that
problem instance characteristics such as IF locations that are incident to vehicle depots
and low route duration time-limits in relation to vehicle capacity, play a critical role in
heuristic performance. Execution times were also high for the realistic problem instances,
pointing to heuristic inefficiencies that would have gone unnoticed for smaller instances.

Lastly, the method that we employed to evaluate randomised heuristics is also of value
to studies on CARPs. The heuristics were statistically analysed by modelling runs as
a series of Bernoulli trials, and calculating total cost and vehicle fleet size intervals for
specific run levels. An advantage of the analysis is that a single set of experiments can
be used to calculate intervals for different run levels. The analyses were used to more
accurately compare heuristic performance, and can be applied to any multi-start heuristic
or metaheuristic where runs are independent.

4.6 Conclusion

An often cited advantage of CARP constructive heuristics is that they can be easily
modified to extensions of the problem. The existing CARP and MCARP heuristics were
indeed easy to modify for the MCARPTIF, but their performance on benchmark instances
were inconsistent. In particular, the best performing MCARP heuristic, Improved-Merge,
adapted to the MCARPTIF performed the best on two CARPTIF benchmarks proposed
in literature, yet struggled with waste collection benchmark sets. The weakest MCARP

© University of Pretoria

74 CHAPTER 4. CONSTRUCTIVE HEURISTICS

heuristic, Path-Scanning-Random-Link, was the most robust over all benchmarks sets. On
waste collection applications, Efficient-Route-Cluster-Random-Link linked with Reduce-
Vehicles performed the best, yet it produced solutions with total costs 1.2 to 1.5 times more
than that of other heuristics on the benchmarks currently proposed in literature. Given the
lack of realistic MCARPTIF benchmark sets, identifying the best performing heuristic for
waste collection applications proved difficult. Results indicate that of the tested heuristics,
Efficient-Route-Cluster and Efficient-Route-Cluster-Random-Link are best suited when
waste collection routing problems have to be solved within short executions times.

Results showed that although the constructive heuristics can quickly generate solutions,
the quality of the solutions are, as expected, generally poor and inconsistent among the
different heuristics. When more execution time is available, the solutions can thus be
improved through Local Search (LS) and metaheuristics. In the next two chapters efficient
LS improvement heuristics are developed. The developed LS methods are then used in
Chapter 7 within a Tabu Search metaheuristic.

© University of Pretoria

Chapter appendix

4.A Detailed algorithm descriptions

4.A.1 Multiple run solution constructor

Algorithm 4.1: nConstruct

Input : number of solutions to be generated, α, the Solution-Constructor, and fleet size limit,
KUB, if applicable.

Output: Min cost solution TTT ∗minZ , min fleet size solution TTT ∗minK , and min cost and limited fleet
size solution TTT ∗KUB

.

1 Z∗minZ = Z∗minK = Z∗KUB
=∞ // values for min cost solution //;

2 K∗minZ = K∗minK // values for min fleet solution //;
3 t = 1;
4 while t ≤ α do
5 TTT = Solution-Constructor // solution constructed using a constructive heuristic //;
6 K = |TTT | // number of vehicles used //;

7 Z =
∑K
j=1 Z(TTT j) // solution cost //;

8 if
(
Z < Z∗minZ

)
or
(
Z = Z∗minZ and K < K∗minZ

)
then // new least cost incumbent //

9 Z∗minZ = Z;
10 K∗minZ = K;
11 TTT ∗minZ = TTT ;

12 if
(
K < K∗minK

)
or
(
K = K∗minK and Z < Z∗minK

)
then // new least number of vehicles

incumbent //
13 Z∗minK = Z;
14 K∗minK = K;
15 TTT ∗minK = TTT

16 if
(
Z < Z∗KUB

)
and

(
K ≤ KUB

)
then // new least cost incumbent meeting fleet size limit, if

applicable //
17 Z∗KUB

= Z;
18 TTT ∗KUB

= TTT ;

19 t = t+ 1;

20 return (TTT ∗minZ ,TTT
∗
minK ,TTT

∗
KUB

)

75

© University of Pretoria

76 CHAPTER 4. CONSTRUCTIVE HEURISTICS

4.A.2 Path-Scanning algorithm

Algorithm 4.2: Path-Scanning

Output: MCARPTIF solution TTT

1 RRRs = RRR // all required arcs are initially unserviced //;

2 TTT =
[[

[σ]
]]

// solution initially consists of a single route with single subtrip //;

3 u = σ, i = 1, j = 1;
4 while RRRs 6= ∅ do // while there remains unserviced required arcs //

5 PPP (i) = {x ∈ RRRs : Z(TTT i) +D(u, x) + w(x) + µ∗(x, σ) ≤ L} // feasible arc additions are first
isolated //;

6 PPP (i,j) = {x ∈ PPP (i) : load(TTT i,j) + q(x) ≤ Q};

7 d∗ =

{
min{D(u, x) : x ∈ PPP (i,j)} if PPP (i,j) 6= ∅,
∞ otherwise

;

8 PPP
(i)
IF = {x ∈ RRRs : Z(TTT i) + µ∗(u, x) + w(x) + µ∗(x, σ) + λ ≤ L};

9 d∗IF =

{
min{µ∗(u, x) : x ∈ PPP (i)

IF } if PPP
(i)
IF 6= ∅,

∞ otherwise
;

10 if PPP (i,j) 6= ∅ and d∗ ≤ d∗IF then // nearest arc is added to current subtrip //

11 SSS = {x ∈ PPP (i,j) : D(u, x) = d∗};
12 Select v randomly from SSS // can be replaced with other tie-break rules //;
13 TTT i,j = TTT i,j ∪ [v] // arc added to end of subtrip //;
14 RRRs = RRRs \ {v, inv(v)} // arc is removed from set of arcs requiring service //;
15 u = v

16 else if PPP
(i)
IF 6= ∅ then// new subtrip is added with nearest arc after IF visit //

17 SSSIF = {x ∈ PPP (i)
IF : µ∗(u, x) = d∗IF};

18 Select v randomly from SSSIF // can be replaced with other tie-break rules //;
19 TTT i,j = TTT i,j ∪ [Φ∗u,v] // IF visit added to end of subtrip //;
20 TTT i = TTT i ∪

[
[Φ∗u,v, v]

]
// subtrip added to end of route //;

21 RRRs = RRRs \ {v, inv(v)} // arc is removed from set of arcs requiring service //;
22 j = j + 1, u = v;

23 else // vehicle returns to the depot and a new route is opened //
24 TTT i,j = TTT i,j ∪ [Φ∗u,σ, σ] // IF and depot added to end of subtrip //;

25 TTT = TTT ∪
[[

[σ]
]]

// new route with one subtrip added to solution //;

26 i = i+ 1, j = 1, u = σ;

27 if RRRs = ∅ then // all arcs are serviced //
28 TTT i,j = TTT i,j ∪ [Φ∗u,σ, σ] // IF and depot added to end of subtrip //;

29 return (TTT)

© University of Pretoria

4.A. DETAILED ALGORITHM DESCRIPTIONS 77

4.A.3 Randomised-Merge algorithm

Algorithm 4.3: Initialise-Merge

Output: Initial partial solution TTTP (without dummy-arcs), arc to solution mapping T−1, ordered
merge savings list MMM , and merge saving to arc pair mappings, MMM→ and MMM⇒.

1 i = 0;
2 for u ∈ RRR do
3 i = i+ 1;

4 TTTP
i =

[
[u]
]

// route is created for each required arc //;
5 T−1(u) = i // pointer function is updated that maps an arc to its route’s index //;

6 MMM→ = ∅,MMM⇒ = ∅,MMM−1
→ = ∅,MMM−1

⇒ = ∅;
7 for u ∈ RRR do
8 for v ∈ RRR \ {u, inv(u)} do
9 m′ = µ∗(u, σ) +D(σ, v) + λ−D(u, v)− p(u, v) // direct merge savings, including

orientation penalty //;
10 if m′ 6∈MMM→ then
11 MMM→ = MMM→ ∪ {m′} // saving added to direct savings list //;
12 MMM−1

→ (m′) = {(u, v)} // pointer function is updated that maps savings to arcs to be
directly merged //;

13 else // cost saving is equal to that of other mergers //
14 MMM−1

→ (m→) = MMM−1
→ (m→) ∪ {(u, v)};

15 m′′ = µ∗(u, σ) +D(σ, v)− µ∗(u, v)− p(u, v) // IF merge savings, including orientation
penalty //;

16 if m′′ 6∈MMM⇒ then
17 MMM⇒ = MMM⇒ ∪ {m′′} // saving added to indirect savings list //;
18 MMM−1

⇒ (m′′) = {(u, v)} // pointer function is updated that maps savings to arcs to be
merged through IFs //;

19 else // cost saving is equal to that of other mergers //
20 MMM−1

⇒ (m′′) = MMM−1
⇒ (m′′) ∪ {(u, v)};

21 MMM = MMM→ ∪MMM⇒;
22 Sort MMM in nonincreasing order MMM = [M1, . . . ,M|MMM|], such that Mi > Mi+1 ∀ i ∈ {1, . . . , |MMM |};
23 return (TTTP, T−1,MMM,MMM−1

→ ,MMM−1
⇒)

© University of Pretoria

78 CHAPTER 4. CONSTRUCTIVE HEURISTICS

Algorithm 4.4: Execute-Merge (without symmetrical route inversion)

Input : Initial partial solution TTTP (without dummy-arcs), arc to solution mapping T−1, ordered
merge savings list MMM , and merge saving to arc pair mappings, MMM→ and MMM⇒.

Output: Partial solution TTTP (without dummy-arcs).

1 for m ∈M do // merge starts with the greatest merge saving //
2 whileMMM−1

→ (m) ∪MMM−1
⇒ (m) 6= ∅ do // there are potentially feasible mergers to implement with

savings m //
3 MMM ′→ = MMM−1

→ (m),MMM ′⇒ = MMM−1
⇒ (m) // sets of all potential direct and IF mergers with equal

savings m //;
4 for (u, v) ∈MMM−1

→ (m) ∪MMM−1
⇒ (m) do // for each potential merger, eliminate infeasible ones

//
5 i = T−1(u), j = T−1(v) // find route indices of arc routes //;
6 if i = 0 or j = 0 then
7 merge = False // arc is no longer part of solutions, as its inverse is included //;

8 else if u 6= TTTP
i,|TTT i| or v 6= TTTP

j,1 then

9 merge = False // arc u and v are not the last and first arcs in a route //;
10 else if i = j then
11 merge = False // arcs belong to the same route //
12 else if z(u) + z(v)−m− p(u, v) > L then
13 merge = False // cost of merged route exceeds route cost limit //;

14 else if (u, v) ∈MMM−1
⇒ (m) and load

(
TTTP
i,|TTTP

i |

)
+ load

(
TTT j,1

)
> Q then

15 merge = False // demand of merged subtrip exceeds vehicle capacity //;
16 else
17 merge = True // merge is feasible //;

18 if merge = False and (u, v) ∈MMM−1
→ (m) then

19 MMM−1
→ (m) = MMM−1

→ (m) \ {(u, v)} // remove merge from set of potential direct
mergers //;

20 else if merge = False and (u, v) ∈MMM−1
⇒ (m) then

21 MMM−1
⇒ (m) = MMM−1

⇒ (m) \ {(u, v)} // remove merge from set of potential IF mergers
//;

22 if MMM−1
→ (m) ∪MMM−1

⇒ (m) 6= ∅ then // there are mergers to implement //
23 Randomly choose (u, v) from MMM ′→(m) ∪MMM ′(m)⇒ // can be replaced with other

tie-break rules //;
24 i = T−1(u), j = T−1(v) // find route indices of arc routes //;
25 if (u, v) ∈MMM−1

→ (m) then // merge belongs to direct merge set //
26 TTTP

i,|TTT i| = TTTP
i,|TTT i| ∪ TTT

P
j,1 // combine last and first subtrips //;

27 TTTP
i = TTTP

i ∪ TTTP
j \ TTTP

j,1 // combine rest of routes //;

28 else if (u, v) ∈MMM−1
⇒ (m) then // merge belongs to IF merge set //

29 TTTP
i = TTTP

i ∪ TTTP
j // combine two routes //;

30 TTTP
j = ∅ // route j is removed from the solution since all its arcs are in route i //;

31 T−1(TP
i,|TTTP

i |,|TTT
P

i,|TTTP
i
|
|) = i // route pointer function is updated so that the last arc in

the new route also points to i //;
32 if inv(u) 6= 0 and T−1(inv(u)) 6= 0 then
33 i′ = T−1(inv(u));

34 TTTP
i′ = ∅ // apposing single-arc route is removed from solution //;

35 T−1(inv(u)) = 0 // apposing arc cannot be merged into other routes //;

36 if inv(v) 6= 0 and T−1(inv(v)) 6= 0 then
37 j′ = T−1(inv(v));

38 TTTP
j′ = ∅ // apposing single-arc route is removed from solution //;

39 T−1(inv(v)) = 0 // apposing arc cannot be merged into other routes //;

40 return (TTTP)

© University of Pretoria

4.A. DETAILED ALGORITHM DESCRIPTIONS 79

4.A.4 Reduce-Vehicles algorithm

Algorithm 4.5: Insert-Arc

Input : Incomplete solution TTT , and arc to insert u.
Output: Solution TTT with u possibly inserted.

1 i∗ = j∗ = n∗ = 0;
2 m∗ =∞;
3 for i = 1 to |TTT | do
4 for j = 1 to |TTT i| do
5 if j = |TTT i| then
6 J = |TTT i,j | − 1 // IF and depot visits are fixed at the end of routes //;
7 else
8 J = |TTT i,j | // IF visit is fixed at end of route //;

9 for k = 2 to J do
10 m = D(Ti,j,n, u) + w(u) +D(u, Ti,j,n+1)−D(Ti,j,n, Ti,j,n+1) // cost of arc insert //;
11 if Z(TTT i,j) + q(u) ≤ Q and ZZZ(Ti) +m ≤ L then // check that arc insert is feasible //
12 if m ≤ m∗ then // new best insert position found //
13 m∗ = m;
14 i∗ = i;
15 j∗ = j;
16 n∗ = n;

17 if i∗ 6= 0 then // insert arc into best feasible position //
18 TTT i∗,j∗ = [Ti∗,j∗,1, . . . , Ti∗,j∗,n∗] ∪ [u] ∪ [Ti∗,j∗,n∗+1, . . . , Ti∗,j∗,|TTT i∗,j∗ |];

19 else // no feasible insert position could be found //
20 TTT = ∅;

21 return (TTT)

© University of Pretoria

80 CHAPTER 4. CONSTRUCTIVE HEURISTICS

Algorithm 4.6: Reduce-Vehicles

Input : Solution TTT with K routes
Output: Solution TTT ∗ with K possibly reduced

1 Let TTT ∗ = TTT , and sort TTT ∗ such that Z(TTT ∗i) ≤ Z(TTT ∗i+1)∀ i ∈ {1, . . . ,K};
2 K = |TTT ∗|;
3 i = 1 // start with least cost route. //;
4 while i ≤ K do
5 SSS = {u ∈ TTT ∗i,1 ∪ TTT ∗i,2, . . . ,TTT ∗i,|TTT∗i |};
6 TTT = TTT ∗ \ TTT ∗i // remove route from solution //;
7 Sort SSS in decreasing order according the tasks demands;
8 n = 1 // start with highest demand arc. //;
9 while n ≤ |SSS| do

10 u = SSSn;
11 TTT =Insert-Arc(TTT , u) // insert arc in the best position using Algorithm 4.5 //;
12 if TTT = ∅ then
13 n = |SSS|+ 1 // no feasible insertion could be found //;
14 else
15 n = n+ 1 // arc was successfully inserted and next lowest demand arc will be

evaluated //;

16 if TTT 6= ∅ then // number of vehicles was successfully reduced //
17 TTT ∗ = TTT ;
18 K = |TTT ∗|;
19 i = 1 // process is repeated //;

20 else
21 i = i+ 1 // try next least cost route //;

22 return (TTT ∗)

© University of Pretoria

Chapter 5

Basic local search heuristics

Constructive heuristics are capable of quickly generating feasible solutions for NP-hard
combinatorial optimisation problems. They are well suited when near real-time decision
support is required, but their solutions leave room for improvement. When more execution
time is available, the constructive heuristic solutions can be further improved using Local
Search (LS) strategies. In this chapter we develop five LS move operators for the Mixed
Capacitated Arc Routing Problem under Time Restrictions with Intermediate Facilities
(MCARPTIF) and test four basic LS implementations on the problem. Two widely used
methods were applied to to speed-up LS, but despite their application LS proved too
slow for medium-term planning on large waste collection instances. This necessitated
us to develop more advanced LS acceleration mechanisms, which we present in the next
chapter.

5.1 Introduction

LS, introduced in the 1960s, is a widely applied improvement method that starts with
an initial solution and progressively moves to an improving neighbour solution until a
local optimum is reached [92]. It is also used as the basic optimisation component of
more intelligent metaheuristic strategies, such as Guided Local Search, Variable Neigh-
bourhood Search, and Memetic Algorithms [80]. Metaheuristics for the Capacitated Arc
Routing Problem (CARP), Mixed Capacitated Arc Routing Problem (MCARP) and
the Capacitated Arc Routing Problem under Time Restrictions with Intermediate Fa-
cilities (CARPTIF) also rely heavily on LS. In fact, all recent metaheuristics for the three
problems, reviewed by Prins [69] and Muyldermans and Pang [64], rely on some form of
LS, making it an important research area for waste collection applications.

The main components of LS are its move operators that allow it to move to improving
solutions. In the next section we review move operators that have been developed for the
MCARP, as well as some of the most widely used, yet basic LS acceleration mechanisms.
In Section 5.3 we present the move operators and basic LS components that we devel-
oped for the MCARPTIF. Computational results on waste collection instances for four
LS implementations are presented in Section 5.4. The aim of the tests was to evaluate
the general improvement capabilities of LS, and to determine if the basic implementa-
tions could be used as-is for either short or medium-term planning. The chapter is then
concluded in Section 5.5.

81

© University of Pretoria

82 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

5.2 Local search for the CARP and MCARP

The basic LS template, adapted from Irnich et al. [48], is shown in Algorithm 5.1. LS
starts with an initial solution and iteratively moves to an improving solution belonging to
the neighbourhood of the current one. Let TTT ∈ XXX be a feasible solution for the MCARP
where XXX is the set of all feasible solutions, and let Z(TTT) be the cost of the solution. The
neighbourhood, N , is a mapping N : XXX → 2XXX , and each element TTT ′ ∈ N (TTT) is called a
neighbour of TTT . Neighbours with cost Z(TTT ′) < Z(TTT) are improving neighbours. LS starts
with a given initial solution TTT (0) ∈XXX. In each iteration t, LS replaces the current solution
TTT (t) by an improving neighbour TTT (t+1) ∈ N (TTT (t)). The search terminates when a local
optimum is reached, meaning there are no improving neighbours in N (TTT (t)).

Algorithm 5.1: Generic-Local-Search

Input : An initial solution TTT (0) ∈XXX.
Output: Local optimum TTT (t).

1 t = 0;
2 repeat

3 Generate N (TTT (t));

4 Search for an improving neighbour TTT ′ ∈ N (TTT (t));
5 if an improving neighbour was found then

6 TTT (t+1) = TTT ′;
7 t = t+ 1;

8 until an improving neighbour could not be found;

9 return (TTT (t))

Typically, the neighbourhood is defined implicitly by a set of moves, M , where each
move, π ∈ M , transforms the current solution into a neighbouring one. For the CARP
and MCARP, moves typically change the service position of required arcs or edges be-
tween and within routes. Belenguer et al. [6] and Lacomme et al. [51] use seven move
operators for their MCARP LS implementations, embedded within Memetic Algorithms.
The seven operators are discussed next, followed by a review of a few basic LS acceleration
mechanisms.

5.2.1 MCARP move operators

Consistent with the notation from previous chapters, an MCARP solution, TTT , is a list,
[TTT 1, . . . ,TTT |TTT |], of |TTT | vehicle routes. Each route, TTT i, consists of a list of arc tasks [Ti,1, . . . , Ti,|TTT i|].
A pointer function, inv(u) = v, is used to return the opposing arc of u where u and v
represent the two directions of an edge in the original graph, GGG. If u represents an arc
in GGG the pointer returns inv(u) = 0. Let RRR be the set of all required arc tasks and let
RRRT ⊆ RRR be the set of arcs that is currently in solution TTT , excluding dummy arcs. It thus
consists of all the arc tasks with inv(u) = 0, and one of either u or v where inv(u) = v
and inv(u) 6= 0. Lastly, let Ti,j = u and Tl,m = v be two different tasks, which can be in
the same or different routes.

Five of the seven MCARP move operators of Lacomme et al. [51] and Belenguer et al.
[6] are shown in Figure 5.1. The first operator, relocate moves task u before task v, which
can be in the same or a different route. It also considers the special case to insert u after v,
if v is the last task of its route. The second operator, double-relocate, is similar to relocate,
therefore not illustrated in the figure, with adjacent arcs, u and Ti,j+1, moved together
to a new position. It is thus not valid when u is the last task in a route. The exchange

© University of Pretoria

5.2. LOCAL SEARCH FOR THE CARP AND MCARP 83

Figure 5.1: Examples of relocate, exchange, two-opt and two-opt-1 move operators for the
MCARP.

© University of Pretoria

84 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

operator, shown in the figure, exchanges the positions of two arcs, u and v, so that Ti,j = v
and Tl,m = u. The third operator, flip, inverts u so that Ti,j = inv(u) if inv(u) 6= 0. A
more advanced version of the operator is used by Beullens et al. [10] in which the optimal
orientation of all arcs in a route is efficiently determined.

The rest of the MCARP operators employ two-opt moves that first delete links between
tasks Ti,j−1 and u, and Tl,m+1 and v. Next, the resulting route segments are relinked to
create new routes. In certain cases the route segments are first reversed before being
relinked. Three relinking options are considered, each constituting a different move. The
first move, two-opt-1, is applied when u and v are in the same route, and two-opt-2 and
two-opt-3 are applied when they are in different routes. All three two-opt moves are
illustrated in Figure 5.1. Two-opt-2 is more intuitively referred to as cross by Beullens
et al. [10] since the move results in end portions of the routes being crossed. It is also easier
to implement compared to the other two-opt moves. Two-opt-1 and two-opt-3 involve the
reversal of certain route segments to be relinked. For the symmetrical CARP this can be
automatically done without any additional calculations. The same does not always hold
for the asymmetrical MCARP. For an MCARP route segment to be symmetrical, all its
arc tasks must have inverse tasks, and the deadheading time between two tasks must be
the same in both directions for all consecutive tasks. Unless these conditions hold, the
move operators cannot be implemented with the same efficiency since the cost of reversing
segments have to be calculated. To overcome this, Lacomme et al. [51] and Belenguer
et al. [6] discard two-opt moves if the segments contain any arc-task u with inv(u) = 0.
The example two-opt-1 move in Figure 5.1 will thus be allowed, but the two-opt-3 move
will be discarded.

Except for flip, move operators are applied to all combinations of {u, v} ∈ RRRT : u 6= v.
For exchange and two-opt moves the condition u < v may be enforced, since the move
between u and v is to the same as the one between v and u. When a move involves two
distinct routes the resulting changes in route-loads are calculated. Moves that result in
the vehicle capacity limit being exceeded are then ignored. There are also several options
for choosing which improving move to implement, should there be more than one. When
the neighbourhood is searched by evaluating moves one by one, LS may implement the
best move found among all those evaluated, or it may implement the first improving
move found. The two move strategies are referred to as best-move and first-move. Both
Lacomme et al. [51] and Belenguer et al. [6] use a first-move strategy.

Belenguer et al. [6] attempt to improve the efficiency of their LS implementation by
forcing two-opt to discard moves involving asymmetrical route segments, and by using the
more efficient first-move strategy. Despite these initiatives they found that the execution
time of their Memetic Algorithm is excessive on the biggest of their test instances, instances
that are consistent in size with real-world applications. For future work they recommend
using advanced acceleration mechanisms to speed-up the LS component of their Memetic
Algorithm. In this chapter we only focus on and adapt a few basic accelerate mechanisms,
with the more advanced mechanisms being the subject of the next chapter.

5.2.2 Basic acceleration strategies

Most of the computational time spent within LS is on scanning the neighbourhood for
improving moves in each iteration. For the CARP and MCARP the most used acceleration
method is first-move instead of best-move. The main differences between the strategies
are illustrated in Section 5.A, at the end of the chapter. Since first-move terminates the
iteration at the first improving move found it only has to partially scan the neighbourhood,
unless a local optimum has already been reached. In this case the complete neighbourhood

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 85

will be scanned in a futile effort to find an improving move. First-move is used in the
majority of LS implementations including those in [6, 51] for the MCARP, and in [10, 12]
for the CARP.

The solution quality and efficiency trade-off between best-move and first-move is in-
vestigated by Santos et al. [78] for the CARP. During preliminary testing on bccm, val,
eglese and bmcv instances1, they found that best-move employing twelve move operators
is much slower than first-move, but that it terminates at better (lower cost) local optima.
The authors further test a Variable Neighbourhood Search (VNS) implementation. For
VNS, distinct neighbourhoods are defined, each resulting from a different move operator.
The neighbourhoods are scanned in a predefined order in each iteration. Starting from
the first neighbourhood, the best improving move is found and made. If none is found
the next neighbourhood is scanned. Once the best move from a neighbourhood is made,
the process repeats starting from the first neighbourhood. Neighbourhoods are scanned in
order of their move operator’s performance ranking, from best to worst, which the authors
establish from computational tests with the best-move strategy. Santos et al. [78] state
that the VNS version does not match best-move on solution quality but it is much faster,
with execution times close to that of first-move. They further found that VNS terminates
at better local optima than first-move.

Due to a lack of formal testing between best-move, first-move and VNS on realisti-
cally sized instances it is difficult to predict which strategy will perform the best on the
MCARPTIF. To limit the scope of this thesis, we implemented and tested best-move
and first-move strategies for the MCARPTIF, and leave their evaluation against VNS for
future work.

In most LS implementations, including those of Belenguer et al. [6] and Lacomme et al.
[51], a combination of five main move operators are used. Using more move operators,
such as the twelve of Santos et al. [78], increases the size of the LS neighbourhood. As a
result, LS takes more time to partially or fully scan the neighbourhood. The efficiency of
LS could be improved by identifying and eliminating operators that have little impact on
solution quality. Such an analysis has yet to be completed for the MCARP. Santos et al.
[78] did informal analysis on the CARP by ranking their twelve move operators and testing
two versions of their metaheuristic: the first using LS with only the top six ranked moves,
and the second with all twelve moves. As expected, the twelve move operator version was
slower but performed better. In this thesis, to identify non-critical move operators for
elimination, we performed a similar test by critically evaluating the contributions of move
operators within the best-move framework. The analysis was then used to speed-up our
LS implementations by eliminating non-essential operators.

5.3 Basic local search for the MCARPTIF

The following MCARPTIF terminology is used throughout this chapter. An MCARPTIF
solution, TTT , is a list, [TTT 1, . . . ,TTT |TTT |], of |TTT | vehicle routes. Each route, TTT i, is a list of subtrips
[TTT i,1, . . . ,TTT i,|TTT i|], and each subtrip, TTT i,j , consists of a list of arc tasks [Ti,j,1, . . . , Ti,j,|TTT i,j |].
The service time and demand of arc u are given by w(u) and q(u), respectively. The
pointer function, inv(u) = v, is used to return the opposing arc of u. The travel time for
the shortest path from arc u to arc v is given by D(u, v) and it is assumed that the shortest
path is always followed between consecutive tasks. The best Intermediate Facility (IF) to

1Santos et al. [78] do not specify which instances were used for their preliminary tests. Detailed results
are presented on the specified CARP instances, so we assumed they were used for the preliminary tests as
well.

© University of Pretoria

86 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

visit after servicing arc u and before servicing arc v is pre-calculated and given by Φ∗(u, v).
For our LS implementation, the duration of the visit, including offloading time, λ, is given
by µ∗(u, v). It is assumed that the best IF is always visited between two arcs and between
an arc and the depot, given as σ. The load of a subtrip is given by load(TTT i,j) and it may
not exceed the vehicle capacity limit, Q. The cost of route TTT i is given as Z(TTT i) and the
cost of the solution is given as Z(TTT). Again, let RRR be the set of all required arc tasks
and let RRRT ⊆ RRR be the set of arcs that is currently in solution TTT , excluding dummy arcs.
Lastly, let Ti,j,k = u and Tl,m,n = v be two different tasks, which can be in the same or
different routes or subtrips.

An important modification that we made to the MCARPTIF solution representation
from the previous chapters is that the last IF and depot visit tasks are included in a
separate subtrip at the end of the route, such that the TTT i ends with subtrip TTT i,j =
[Φ∗(Ti,j−1,|TTT i,j−1|−1, σ), σ], where j = |TTT i|. This simplifies the LS implementations by
allowing the second last subtrip,

TTT i,j−1 = [. . . , Ti,j−1,|TTT i,j−1|−2, Ti,j−1,|TTT i,j−1|−1,Φ
∗(Ti,j−1,|TTT i,j−1|−1, σ)],

now without the depot visit, to be treated the same as its preceding subtrips. If this
modification is not applied, special checks and procedures would have to be developed for
moves involving the last subtrips in routes. Lastly, to make our illustrations more concise
we use Φ′ to denote the best IF visit between the last and first arc tasks of consecutive
subtrips TTT i,j and TTT i,j+1, such that Φ′ = Φ∗(Ti,j,|Ti,j |−1, Ti,j+1,2). Routes are then illustrated
in the form

TTT i = [. . . [. . . , Ti,j,|TTT i,j |−2, Ti,j,|TTT i,j |−1,Φ
′], [Φ′, Ti,j+1,2, Ti,j+1,3, . . .] . . .].

The main framework of the basic LS heuristics that we developed for the MCARPTIF
is shown in Algorithm 5.2. At the start of each LS iteration Reduce-Vehicles, developed in

Algorithm 5.2: Basic-Local-Search

Input : An initial solution TTT (0) ∈XXX.
Output: Local optimum TTT (t)

1 t = 0;
2 repeat

3 Use Reduce-Vehicles on TTT (t) to reduce the fleet, and let TTT ′ be the result;

4 if |TTT ′| < |TTT (t)| then // the fleet size has been reduced //

5 Set TTT (t) = TTT ′;
6 // if minZ is the primary objective, the condition in line 5 can be replaced by

Z(TTT ′) < Z(TTT (t)) //;

7 Use Efficient-IF-Split (Algorithm 3.1 in Chapter 3) on TTT (t) to improve the IF visit placements
of the routes, and let TTT ′ be the result;

8 On TTT ′, use the flip, relocate, exhange, cross and two-opt-1 move operators (Algorithms 5.3
to 5.11) to find and return the overall best feasible improving move;

9 // for first-move, the move operators are used to return the first improving move found //;
10 if a feasible improving move was found then
11 Implement the move on TTT ′ and let TTT ′′ be the result;

12 Set TTT (t+1) = TTT ′′;
13 t = t+ 1;

14 until a feasible improving move could not be found;

15 return (TTT (t))

the previous chapter, was applied in an attempt to reduce the vehicle fleet size. It may be

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 87

applied even when minimising cost is the primary objective, in which case reduced fleet
solutions should only be accepted if they have a lower total cost. Next the optimal IF
splitting procedure for the Mixed Capacitated Arc Routing Problem with Intermediate
Facilities (MCARPIF), Efficient-IF-Split developed in Chapter 3, was applied to improve
the placement of IF visits within each route. Only thereafter did LS search for an improving
move.

The heuristic relies on five move operators, referred to in line 8, namely flip, relocate,
exchange and two versions of two-opt, namely cross, which evaluates moves between differ-
ent routes, and two-opt-1 which evaluates moves in a single route. Implementation details
for all the move operators are presented in the rest of this section.

5.3.1 Flip

The first move operator that we modify for the MCARPTIF is flip. As shown in Figure 5.2,
flip changes the service orientation of an arc task u, should it have an opposing arc, i.e.
inv(u) 6= 0. After a move involving arcs next to IFs are implemented, the IF tasks are

Figure 5.2: Example of the flip move where an arc task in a route is inverted if it has an
opposing arc.

automatically updated to the best IF visit, as given by Φ′. The cost of the move depends
on the position of the arc relative to IF visits, with all possible cost formulas and the
conditions for their application shown in Figure 5.3. Where the position of an arc is
changed relative to an IF, the duration of the best IF visit, µ∗(u, v), is used for the cost
calculations. Where the position is changed relative to an arc or depot task, the shortest
dead-heading path time, D(u, v), is used.

The location and cost of the best improving flip move for any subtrip TTT i,j is returned
by Algorithm 5.3. Flip does not change the demand serviced on subtrips, and since it
only considers improving moves, flip will never result in the route duration limit being
exceeded. As such, no feasibility checks are necessary as improving moves will always be
feasible.

The algorithm structure can be easily modified for a first-move strategy. As shown in
the comments of Algorithm 5.3, the algorithm simply stops the moment that a feasible
improving move is found and returns the move’s parameters. This modification applies to
all the algorithms of this section. Algorithm 5.4 is used to find the best flip move (or first
move as shown in the comment on line 10) among all routes and subtrips. During an LS
iteration, the arc in each route and subtrip is scanned to find the best flip move, giving it
a computational complexity of O(|RRRT |) per iteration.

© University of Pretoria

88 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Figure 5.3: Four different possible costs of flipping an arc in subtrip TTT i,j . The cost depends
on the arc’s position, Ti,j,k, relative to intermediate facility visits.

Algorithm 5.3: Find-Flip-Subtrip-Move

Input : Subtrip TTT i,j on which the move will be applied.
Output: Cost-saving, ∆Z∗; and arc position, k∗, of the best subtrip move.

1 ∆Z∗ = 0;
2 k∗ = 0;

3 for k = 2 to |TTT i,j | − 1 do // the first arc in a subtrip is always a dummy-arc//
4 u = Ti,j,k;
5 if inv(u) 6= 0 then
6 Using TTT i,j , calculate ∆Zflip depending on the relative position of Ti,j,k as shown in

Figure 5.3;
7 if ∆Zflip < ∆Z∗ then
8 ∆Z∗ = ∆Zflip;
9 k∗ = k;

10 // for first-move, the algorithm would stop here and immediately return the
improving move’s parameters // ;

11 return (∆Z∗, k∗)

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 89

Algorithm 5.4: Find-Flip-Move

Input : Current solution TTT
Output: Cost-saving, ∆Z∗; and the route, subtrip and suptrip positions, i∗, j∗, k∗, of the best

move.

1 ∆Z∗ = 0;
2 i∗ = 0; j∗ = 0; k∗ = 0;

3 for i = 1 to |TTT | do // the move is tested for each route //
4 for j = 1 to |TTT i| − 1 do // the last subtrip is skipped since it contains only dummy arcs //
5 (∆Z∗trip, k

′) = Find-Flip-Subtrip-Move(TTT i,j) // Algorithm 5.3 //;
6 if ∆Z∗trip < ∆Z∗ then
7 ∆Z∗ = ∆Z∗trip;
8 i∗ = i; j∗ = j; k∗ = k′;
9 // for first-move, the algorithm would stop here and immediately return the

improving move’s parameters //;

10 // if k∗ = 0 no improving move could be found //;
11 return (∆Z∗, i∗, j∗, k∗)

5.3.2 Relocate

The second move operator that we addapt for the MCARPTIF is relocate, demonstrated
in Figure 5.4. The operator relocates an arc to a different position in the same subtrip, a

Figure 5.4: Example of the relocate move where an arc task is removed from a subtrip,
and inserted into another position. The arc can be inserted in the same subtrip, a different
subtrip in the same route, or in a subtrip of a different route.

different subtrip of the same route, or to another route. In our implementation we chose to
make the relocate position the new position of arc u. With a relocate position of Tl,m,n = v,
arc u is inserted before v such that Tl,m,n = u, Tl,m,n+1 = v and Tl,m,n+i = Tl,m,n+i−1 for
all i ∈ {1, . . . , |TTTm,n| − 1− n}. It should be noted that this version produces an identical
neighbourhood to the more commonly used version of relocating arc u after v,2.

The cost of the move consists of the cost of removing the arc from a subtrip, and
the cost of inserting it into a new position. The removal cost depends on the position of

2The reason for our version inserting an arc before the arc in the target location is due to our algorithm
implementation language, Python, and its insert function which works in this way.

© University of Pretoria

90 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

the arc relative to IF visits, with all possible cost formulas and the conditions for their
applications shown in Figure 5.5. Included in Figure 5.5b is a condition for when an arc is
removed from a route servicing only that arc, in which case the vehicle fleet size is reduced.

The cost of inserting an arc into a new position also depends on the insert position
relative to IFs. The different insert-cost formulas are shown in Figure 5.6. The insert
position may also be on an IF arc in the last position of a subtrip, in which case the arc
is appended to the end of the subtrip, in-front of the IF arc.

Relocate may increase the demand and total cost of the route and subtrip to which
arc u is relocated. As a result, feasibility checks have to be performed to determine if the
move is feasible. The checks are illustrated in Figure 5.7. As a first condition, dummy arcs
may not be removed from a subtrip, and an arc cannot be inserted in the first position
of a substrip as it is reserved for depot or IF arcs. For an improving move, if the arc is
relocated to the same subtrip, which we refer to as an intra-subtrip move, demand will
remain unchanged and the cost of the route will be reduced. As a result, no feasibility
checks on Q and L are required. The only condition is that the removed arc may not be
reinserted into its current position or after itself. The same conditions are also checked
when an arc is relocated to an adjacent subtrip. This condition prevents the last arc in
a subtrip to be relocated to the first task in the adjacent subtrip, and vice-versa. This
is equivalent to shifting the IF visit. Although such a move is valid, the optimal IF
visits within a route can instead be determined using the IF splitting procedure for the
MCARPIF. If an arc is relocated to a different subtrip in the same route, then a load
capacity check is performed on the subtrip to which the arc is relocated. If it is relocated
to a different route, then a load and route duration limit check is performed on the subtrip
and route to which the arc is relocatd.

Algorithm 5.5 finds and returns the best relocate move between subtrips TTT i,j and TTT l,m,
where arcs are relocated from TTT i,j to TTT l,m. The procedure also checks if inverting the arc
before inserting it into TTT l,m results in a better move. Algorithm 5.6 finds and returns the
best relocate move among all subtrip pairs, including inter subtrip relocations. Each arc
and its inverse is considered for relocation to the position before each other arc, as well as
relocation to the end of subtrips. As such, the computational complexity of finding the
best relocate move in an LS iterations is O(|RRR| × |RRRT |).

To improve the efficiency of finding the best relocate moves, and any improving move
for that matter, the route costs and subtrip loads are stored prior to searching for the
best improving move. The costs and loads are then updated, instead of recalculated,
after a move is made. The sequence in which feasibility checks and cost calculations are
performed can also be changed, depending on the characteristics of the problem instance
under consideration. If the majority of moves are feasible, the move cost calculations can
be performed first, and the feasibility checks will only have to be performed on improving
moves. If all subtrips are close to capacity, and all routes are close to the route duration
limit, then there may only be a few feasible moves available. In this case the load feasibility
check can be performed first, followed by the move cost calculations, and lastly the route
duration limit checks, since these depend on the move costs. We further applied two
pre-move conditions to accelerate the search. Let Ti,j,k = u be the arc to be relocated
to a different subtrip TTT l,m, with i 6= l or i 6= m. If the demand of u will result in TTT l,m
exceeding capacity, such that load(TTT l,m) + q(u) > Q, then all its insert positions will be
infeasible in TTT l,m and need not be evaluated. Similarly, let u be relocated to a different
route (i 6= l). If the service cost of u will result in TTT l exceeding its time duration limit,
such that Z(TTT l) + w(u) > L, then all its insertion positions in TTT l will be infeasible and
need not be evaluated.

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 91

(a) Cost of removing arcs from routes with the first subtrip serving more than one arc.

(b) Cost of removing arcs from routes with the first subtrip serving only one arc.

Figure 5.5: Cost of removing arc u in position Ti,j,k from a route. The cost depends on
the removal position relative to the depot and intermediate facility visits.

© University of Pretoria

92 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Figure 5.6: Cost of inserting arc u in position Tl,m,n. The costs depends on the insert
position relative to intermediate facility visits.

Algorithm 5.5: Find-Relocate-Subtrip-Move

Input : Subtrips TTT i,j from which arcs are to be removed, and TTT l,m into which the removed arcs
are to be relocated.

Output: Cost-saving, ∆Z∗; arc positions, k∗ and n∗; and arc orientation, u∗, of the best subtrip
move.

1 ∆Z∗ = 0;
2 k∗ = 0; n∗ = 0; u∗ = 0;

3 for k = 2 to |TTT i,j | − 1 do // only arc tasks can be relocated //
4 u = Ti,j,k;
5 Using TTT i,j , calculate ∆Zrem depending on the relative position of Ti,j,k as shown in Figure 5.5;
6 for n = 2 to |TTT l,m| do // an arc can be inserted on the last arc in a subtrip //
7 Using u and TTT l,m, calculate ∆Zin depending on the relative position of Tl,m,n as shown in

Figure 5.6;
8 ∆Z = ∆Zrem + ∆Zin;
9 if all relocate conditions shown in Figure 5.7 are met then

10 if ∆Z < ∆Z∗ then
11 ∆Z∗ = ∆Z;
12 k∗ = k; n∗ = n; u∗ = u;
13 // for first-move, the algorithm would stop here and immediately return the

improving move’s parameters //;

14 if inv(u) 6= 0 then // inverting and then inserting the removed arc is also evaluated //
15 Set u = inv(u);
16 Repeat lines 6–12;
17 Reset u = Ti,j,k;

18 return (∆Z∗, k∗, n∗, u∗)

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 93

Figure 5.7: Conditions for relocating arc Ti,j,k to position Tl,m,n.

© University of Pretoria

94 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Algorithm 5.6: Find-Relocate-Move

Input : Current solution TTT .
Output: Cost-saving, ∆Z∗; route, subtrip, and arc positions, i∗, j∗, k∗, l∗, m∗, n∗; and arc

orientation, u∗, of the best move.

1 ∆Z∗ = 0;
2 i∗ = 0; j∗ = 0; k∗ = 0;
3 l∗ = 0; m∗ = 0; n∗ = 0;
4 u∗ = 0;

5 for i = 1 to |TTT | do
6 for j = 1 to |TTT i| − 1 do
7 for l = 1 to |TTT | do
8 for m = 1 to |TTT l| − 1 do
9 (∆Z∗trips, k

′, n′, u′) = Find-Relocate-Subtrip-Move(TTT i,j ,TTT l,m) // Algorithm 5.5 //;
10 if ∆Z∗trips < ∆Z∗ then
11 ∆Z∗ = ∆Z∗trips;
12 i∗ = i; j∗ = j; k∗ = k′;
13 l∗ = l; m∗ = m; n∗ = n′;
14 u∗ = u′;
15 // for first-move, the algorithm would stop here and immediately return the

improving move’s parameters //;

16 // if k∗ = 0 no improving move could be found //;
17 return (∆Z∗, i∗, j∗, k∗, l∗, m∗, n∗, u∗)

5.3.3 Exchange

The third move operator that we adapt for the MCARPTIF is exchange, illustrated in
Figure 5.8. An exchange move involving Ti,j,k = u and Tl,m,n = v consists of replacing
arc u with v, and v with u. The cost of the move is then the sum of the two replacement
costs. The cost of replacing an arc, u, with another arc, v, can be calculated as shown in
Figure 5.9, which depends on the position of u relative to IF visits.

The conditions for an exchange move to be feasible are shown in Figure 5.10. The
depot and IF arcs cannot be exchanged. When arcs are in the same subtrip, an arc cannot
be exchanged with itself, and not with its preceding or following arc. For the latter, the
move is identical to relocating an arc in-front of its predecessor. The cost of such a move
is not covered by the replacement costs shown in Figure 5.9 and is thus not evaluated with
exchange. When arcs u and v are in different subtrips, the load changes of both substrips
have to be checked for capacity violations. Similarly, if the arcs are in different routes, the
route cost changes also have to be checked against route duration limits.

Algorithm 5.7 finds and returns the best exchange move between subtrips TTT i,j and
TTT l,m. Exchanging arc u with arc v is the same is exchanging arc v with arc u, hence why
line 5 is specified for n = k to |TTT l,m| − 1. This avoids the same move being evaluated
twice. The algorithm also checks if using either one or both of the inverted arcs as a
replacement results in a better move. If both u and v can be inverted, there are four
exchange combinations that are checked between u and v.

Algorithm 5.8 finds and returns the best exchange move among all subtrip pairs, includ-
ing exchanging arcs within the same subtrip. Each two arc combination set, {u, v} ∈ RRRT ,
is considered for exchange. Since inverting the arcs is also considered the computational
complexity of finding the best exchange move in an LS iteration is O(RRR2). The load and
route cost changes are unique per move, so we do not apply pre-move feasibility checks to
accelerate the search.

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 95

Figure 5.8: Example of the exchange move where the position of two arc tasks are swapped.
The tasks can be in the same subtrip, different subtrips in the same route, or in subtrips
of different routes.

Figure 5.9: Cost of replacing arc Ti,j,k = u with arc v. The cost depends on the replacement
arc’s position relative to intermediate facility visits.

© University of Pretoria

96 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Figure 5.10: Conditions for exchanging arcs Ti,j,k and Tl,m,n.

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 97

Algorithm 5.7: Find-Exchange-Subtrip-Move

Input : Subtrips TTT i,j and TTT l,m between which the move is applied.
Output: Cost-saving, ∆Z∗; arc positions, k∗ and n∗; and arc orientations, u∗ and v∗, of the best

suptrip move.

1 ∆Z∗ = 0;
2 k∗ = 0; n∗ = 0; u∗ = 0;

3 for k = 2 to |TTT i,j | − 2 do
4 u = Ti,j,k;
5 for n = k to |TTT l,m| − 1 do // exchanging {u, v} is the same as {v, u} //
6 v = Tl,m,n;
7 Using v and TTT i,j , calculate ∆Zrepu

depending on the relative position of Ti,j,k as shown in
Figure 5.9;

8 Using u and TTT l,m, calculate ∆Zrepv
depending on the relative position of Tl,m,n as shown

in Figure 5.9;
9 if all exchange conditions shown in Figure 5.10 are met then

10 ∆Z = ∆Zrepu
+ ∆Zrepv

;
11 if ∆Z < ∆Z∗ then
12 ∆Z∗ = ∆Z;
13 k∗ = k; n∗ = n; u∗ = u; v∗ = v;
14 // for first-move, the algorithm would stop here and immediately return the

improving move’s parameters //;

15 if inv(u) 6= 0 then
16 Set u = inv(u);
17 Repeat lines 7–13;
18 Reset u = Ti,j,k;

19 if inv(v) 6= 0 then
20 Set v = inv(v);
21 Repeat lines 7–13;
22 Reset v = Tl,m,n;

23 if inv(u) 6= 0 and inv(v) 6= 0 then
24 Set u = inv(u); v = inv(v);
25 Repeat lines 7–13;
26 Reset u = Ti,j,k; v = Tl,m,n;

27 return (∆Z∗, k∗, n∗, u∗, v∗)

© University of Pretoria

98 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Algorithm 5.8: Find-Exchange-Move

Input : Current solution TTT .
Output: Cost-saving, ∆Z∗; route, subtrip, and arc positions, i∗, j∗, k∗, l∗, m∗, n∗; and arc

orientations, u∗ and v∗, of the best move.

1 ∆Z∗ = 0;
2 i∗ = 0; j∗ = 0; k∗ = 0;
3 l∗ = 0; m∗ = 0; n∗ = 0;
4 u∗ = 0;
5 v∗ = 0;

6 for i = 1 to |TTT | − 1 do
7 for j = 1 to |TTT i| − 1 do
8 for l = i to |TTT | do
9 if i = l then j′ = j;

10 else j = 1;
11 for m = j′ to |TTT l| − 1 do
12 (∆Z∗trips, k

′, n′, u′, v′) = Find-Exchange-Subtrip-Move(TTT i,j ,TTT l,m) //
Algorithm 5.7 //;

13 if ∆Z∗trips < ∆Z∗ then
14 ∆Z∗ = ∆Z∗trips;
15 i∗ = i; j∗ = j; k∗ = k′;
16 l∗ = l; m∗ = m; n∗ = n′;
17 u∗ = u′; v∗ = v′;
18 // for first-move, the algorithm would stop here and immediately return the

improving move’s parameters //;

19 // if k∗ = 0 no improving move could be found //;
20 return (∆Z∗, i∗, j∗, k∗, l∗, m∗, n∗, u∗, v∗)

5.3.4 Cross

The second last operator that we develop for the MCARPTIF is cross, which is a version
of two-opt performed between two different routes. The cross move is illustrated in Fig-
ure 5.11. First, the two different routes are split at specific positions to form four partial
routes. The two partial routes representing the end portions of the original routes are then
swapped and linked with the two partial routes representing the beginning portions of the
original routes. Routes are crossed at arcs Ti,j,k = u and Tl,m,n = v with splits performed
between Ti,j,k−1 and u, and between Tl,m,n−1 and v. The cost of the move consists of the
cost of splitting the route, and then linking the resulting partial routes.

The most regular cross move involves positions that are preceded by arc tasks, with
the conditions for the move, as well as its cost and feasibility checks shown in Figure 5.12.
To check the feasibility of the move it is necessary to determine subtrip loads as well as
route costs of all four partial routes, resulting from the two splits. The combined load of
subtrips from partial routes are then checked against vehicle capacity limits, and the cost
of the combined routes are checked against the route duration limit.

The move costs and feasibility checks for cases where Ti,j,k = u is preceded by an
arc task, and Tl,m,n = v is either the last or first IF, or the first arc after an IF, are
shown in Section 5.B at the end of the chapter. In certain cases, partial routes are linked
through IF visits and the load feasibility check need not be performed. In other cases,
the move reduces the total number of IF visits over both routes. There are also unique
moves between arcs that are not preceded by arc tasks, including a move that results in an
entire route being appended to another, thus reducing the fleet size. A number of moves
results in the same neighbouring solution, and all need not be evaluated. A few moves

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 99

Figure 5.11: Example of the cross move where the end portions of two different routes are
swapped at the positions of arcs Ti,j,k and Tl,m,n.

© University of Pretoria

100 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Figure 5.12: The cost and feasibility checks when two routes are crossed at positions
preceded by arc tasks.

also result in moves identical to relocate and exchange moves, particularly when a cross
move involves the last arc tasks of both routes. Such moves can be skipped if relocate and
exchange are used in conjunction with cross.

The best cross move between subtrips TTT i,j and TTT l,m, where i 6= l can be found using
Algorithm 5.9, and the best cross move among all subtrip pairs belonging to different
routes can be found using Algorithm 5.10. Each unique two arc combination between
different routes is considered for a cross. The computational complexity of finding the
best cross move is thus O(|RRRT |2).

Similar to other move operators, route costs and subtrip loads can be stored prior to
searching for the best improving move and updated after each move. For the feasibility
checks, the load of subtrips in partial routes, as well as the cost of partial routes have to
calculated, which can be done using the following representation. For load calculations,
the accumulated load on each position in a subtrip is stored in a list L . Let Li,j,k be the
accumulated load of subtrip TTT i,j at position k, which is equal to Li,j,k−1 + q(Ti,j,k) where
k > 1 and Li,j,1 = 0. Using the same notation as Figure 5.12, if a cross move is to be
performed on Ti,j,k = u, then the loads of the last and first subtrips, TTT ′ia,j and TTT ′ib,j , of
the partial routes are given by

load(TTT ′ia,j) = Li,j,k−1, (5.1)

load(TTT ′ib,j) = load(TTT i,j)−Li,j,k−1, or (5.2)

load(TTT ′ib,j) = Li,j,|TTT i,j | −Li,j,k. (5.3)

Using Equations (5.1) to (5.3) the load feasibility of a move can be efficiently determined.
The costs of the partial routes can be calculated in a similar way. Let Zi,j,k be the cost

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 101

Algorithm 5.9: Find-Cross-Subtrip-Move

Input : Subtrips TTT i,j and TTT l,m between which the move is applied.
Output: Cost-saving, ∆Z∗; and arc positions, k∗ and n∗, of the best suptrip move.

1 ∆Z∗ = 0;
2 k∗ = 0; n∗ = 0;

3 for k = 1 to |TTT i,j | − 1 do
4 for n = k to |TTT l,m| do
5 Using Ti,j,k and Tl,m,n, calculate ∆Z depending on the relative positions of Ti,j,k and

Tl,m,n as shown in Figures 5.12 and 5.19 to 5.22;
6 if all cross conditions shown in Figures 5.12 and 5.19 to 5.22 are met then
7 if ∆Z < ∆Z∗ then
8 ∆Z∗ = ∆Z;
9 k∗ = k; n∗ = n;

10 // for first-move, the algorithm would stop here and immediately return the
improving move’s parameters //;

11 return (∆Z∗, k∗, n∗)

Algorithm 5.10: Find-Cross-Move

Input : Current solution TTT .
Output: Cost-saving, ∆Z∗; and route, subtrip, and arc positions, i∗, j∗, k∗, l∗, m∗, n∗, of the best

move.

1 ∆Z∗ = 0;
2 i∗ = 0; j∗ = 0; k∗ = 0;
3 l∗ = 0; m∗ = 0; n∗ = 0;

4 for i = 1 to |TTT | − 1 do
5 for j = 1 to |TTT i| do
6 for l = i+ 1 to |TTT | do
7 for m = 1 to |TTT l| do
8 (∆Z∗trips, k

′, n′) = Find-Cross-Subtrip-Move(TTT i,j ,TTT l,m) // Algorithm 5.9 //;
9 if ∆Z∗trips < ∆Z∗ then

10 ∆Z∗ = ∆Z∗trips;
11 i∗ = i; j∗ = j; k∗ = k′;
12 l∗ = l; m∗ = m; n∗ = n′;
13 // for first-move, the algorithm would stop here and immediately return the

improving move’s parameters //;

14 // should k∗ = 0, then no improving move could be found //;
15 return (∆Z∗, i∗, j∗, k∗, l∗, m∗, n∗, u∗, v∗)

© University of Pretoria

102 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

of route TTT i up-to and including arc Ti,j,k, such that:

Zi,j,k =

Zi,j,k−1 +D(Ti,j,k−1, Ti,j,k) + w(Ti,j,k) if 1 < k < |TTT i,j |,
Zi,j,k−1 +D(Ti,j,k−1, Ti,j,k) + λ if k = |TTT i,j |,
Zi,j−1,|TTT i,j−1| +D(|TTT i,j−1|, Ti,j,k) if k = 1 and j > 1,

0 if k = 1 and j = 1.

(5.4)

If a cross move is to be performed on Ti,j,k = u and 1 < k < |TTT i,j |, then the cost of the
partial routes TTT ′ia and TTT ′ib,j are given by

Z(TTT ′ia) = Zi,j,k−1, (5.5)

Z(TTT ′ib) = Z(TTT i)−Zi,j,k−1 −D(Ti,j,k−1,i,j,k). (5.6)

In cases where k = 1 or k = |TTT i,j |, Equations (5.5) and (5.6) can be used to calculate the
cost of the partial route up-to the first arc task preceding u, and from the first arc task
following u. Using Equations (5.5) and (5.6) as well as ∆Zlinki and ∆Zlinkj , as specified
in Figure 5.12, the route duration feasibility of a move can be efficiently determined.

As a last acceleration mechanism, we scanned the subtrip TTT l,m backwards for cross
moves. Say that a move is to be performed at Ti,j,k. If Li,j,k−1+load(TTT l,m)−Ll,m,n−1 > Q,
then Li,j,k−1 + load(TTT l,m)−Ll,m,n−2 > Q since Ll,m,n−2 < Ll,m,n−1. All moves between
Ti,j,k and Tl,m up-to Tl,m,n will also be infeasible and need not be considered. As such, when
scanning TTT l,m backwards, the search for moves between Ti,j,k and TTT l,m can terminate when
the capacity on the resulting TTT ′i,j subtrip is exceeded. Using the same logic, the route TTT l,m
and its subtrips were also scanned backwards and the route duration constraint monitored.

5.3.5 Two-opt-1

The last move operator that we adapt for the MCARPTIF is two-opt-1 that focusses on
a single route. As illustrated in Figure 5.1, the move inverts a route segment from Ti,j,k
to Ti,l,m within a single route. As further shown in the figure, any two-opt-1 move can
be decomposed into two cross moves, allowing for the reuse of the cross implementations.
This does, however, require that the entire route TTT i be inverted prior to the move being
evaluated. The cost of the move is then the sum of the two cross moves, plus the cost
difference between the normal and inverted route segment. The cost difference can be

calculated using Zi,j,k and Z
(inv)
i,j′,k′ , with the latter defined for the inverted route T

(inv)
i .

For a move between Ti,j,k = u and Ti,l,m = v, the cost of inverting the route segment from
k to m can be calculated as follows:

Zk→m = Zi,l,m −Zi,j,k−1 −D(Ti,j,k−1, Ti,j,k), (5.7)

Z
(inv)
k′→m′ = Z

(inv)
i,l′,m′ −Zi,j′,k′−1 −D(Ti,j,k−1, Ti,j,k), (5.8)

∆Zinv = Z
(inv)
k′→m′ − Zk→m, (5.9)

where j′, k′, l′ and m′ are defined as shown in Figure 5.13. The load capacity checks of a
cross have to be performed if the two-opt-1 move involves arcs in different subtrips.

Algorithm 5.11 returns the best two-opt-1 move on a single route. Moves are evaluated
between arc-pairs in the same route, and for all routes in the solution. If the solution
consists of a single route, the move will be evaluated between all arcs in RRRT . This gives
the operator a worst case computational complexity of O(|RRRT |2) per iteration.

In this section we gave technical descriptions of five move operators for the MCARPTIF.
Additional move operators can be adapted for the problem, such as double-relocate [6, 51]

© University of Pretoria

5.3. BASIC LOCAL SEARCH FOR THE MCARPTIF 103

Figure 5.13: Example of the two-opt-1 move where the route segment between two arcs
is inverted. The tasks can be in the same subtrip or different subtrips of the same route.
Also shown is its decomposition into two cross moves.

© University of Pretoria

104 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Algorithm 5.11: Find-Two-Opt-1-Move

Input : Route TTT i on which the move is applied, and its inverse TTT
(inv)
i .

Output: Cost-saving, ∆Z∗, of the best move; subtrip, and arc positions, j∗, k∗, m∗, and n∗, of the
best move.

1 ∆Z∗ = 0;
2 j∗ = 0; k∗ = 0; m∗ = 0; n∗ = 0;

3 for j = 1 to |TTT i| − 1 do
4 for k = 1 to |TTT i,j | do
5 for m = j to |TTT i| − 1 do
6 if m = j then k′ = k;
7 else k′ = 1;
8 for n = k′ to |TTT i,m| do
9 Using Ti,j,k, Ti,m,n, TTT i and TTT (inv), evaluate the two appropriate cross moves as

shown in Figure 5.13. Let ∆Z1 be the cost of the first cross move, and ∆Z2 of
the second;

10 Calculate ∆Zinv as shown in Equations (5.7) to (5.9);
11 ∆Z = ∆Z1 + ∆Z2 + ∆Zinv;
12 if all cross conditions shown in Figures 5.12 and 5.19 to 5.22 are met then
13 if ∆Z < ∆Z∗ then
14 ∆Z∗ = ∆Z;
15 j∗ = j; k∗ = k; m∗ = m; n∗ = n;
16 // for first-move, the algorithm would stop here and immediately return

the improving move’s parameters //;

17 return (∆Z∗, j∗, k∗, m∗, n∗)

as well as more advanced two-opt-1 and cross moves [10, 78]. However, care must be
taken when extending the neighbourhood as it increases the computational time of LS.
In this thesis we chose to only focus on the five move operators, presented in this section,
and critically evaluated their improvement contributions on MCARPTIF instances. We
further tested the impact of using a reduced neighbourhood consisting only of three move
operators, namely relocate, exchange and cross. Results for the tests are discussed in the
next section.

5.4 Computational results

In this section we present computational results for the first-move and best-move LS setups.
Tests were peformed on the Cen-IF, Act-IF and Lpr-IF waste collection benchmark sets
which cover a range of realistic instances. The instances are discussed in detail in Chap-
ter 2, Section 2.4.2. The LS setups were used to improve three different starting solutions
per instance, generated using the deterministic versions of Path-Scanning, Improved-Merge
and Efficient-Route-Cluster under the primary objective to minimise the fleet size, K, and
secondly to minimise the solution cost, Z. Details for the heuristics can be found in the
previous chapter, in Section 4.3. As part of the constructive heuristic implementations,
Reduce-Vehicles was applied directly on the constructed solution, before being passed to
LS.

The efficiencies of the LS setups were critically evaluated on small and large waste
collection instances by measuring the CPU time required by the heuristics to reach local
optima. The time was then compared against short, medium and long execution-time-
limits of 3, 30 and 60 minutes, respectively. We also evaluated the improvement capabilities

© University of Pretoria

5.4. COMPUTATIONAL RESULTS 105

of LS by calculating the fractional cost improvement made by LS to the initial solution.
The measurement is given by ∆ZfLS, calculated as

∆ZfLS =
Z
(
TTT (0)

)
− Z

(
TTT (t)

)
Z
(
TTT (0)

) , (5.10)

where Z(TTT (0)) is the cost of the initial solution and Z(TTT (t)) is the cost of the local optimum
solution returned by LS. Out of the sixty-three initial solutions used for our tests, all
of which already had Reduce-Vehicles applied to them, fourteen are known to have an
excessive fleet-size. To further evaluate the improvement capabilities of LS we counted
the number of instances, out of the fourteen, on which the LS setups were able to reduce
the fleet size to its best known value.

All LS algorithms and procedures were programmed in Python version 2.7, with crit-
ical procedures optimised using Cython version 0.17.1. Experiments were run on a Dell
PowerEdge R910 4U Rack Server with 128GB RAM with four Intel Xeon E7540 processors
each having 6 cores, and 12 threads and with a 2GHz base frequency. Experiments were
run without using programmatic multi-threading or multiple processors.

5.4.1 Best-move local search

Our first tests focussed on two LS setups using the best-move strategy. The first setup, re-
ferred to as LS-Basic-Full-Best (LS-BFB), used the full move neighbourhood, consisting of
flip, relocate, exchange, cross and two-opt-1, as well as using Reduce-Vehicles and Efficient-
IF-Split, where the latter improves IF visits within each route. The second setup, referred
to as LS-Basic-Reduced-Best (LS-BRB), used a reduced neighbourhood, consisting only
of relocate, exchange, cross and Reduce-Vehicles.

Results for LS-BFB and LS-BFR over the three initial solution per problem instance
are shown in Figure 5.14. The fractional cost improvement, ∆Zf , of the LS setups over

●

●

●

●

●

0.000

0.025

0.050

0.075

0.100

Cen−IF Lpr−IF Act−IF

Benchmark set

C
o

st
 i

m
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

L
S

f
)

LS−BRB LS−BFB

(a) Fraction by which the two basic LS setups im-
proved the costs of initial solutions.

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

3 h

50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

E
x

ec
u

ti
o

n
 t

im
e

o
n

 a
 l

o
g

10
 s

ca
le

● ●LS−BRB LS−BFB

(b) CPU times sand trend-lines of the two basic LS
setups versus problem instance size τ = |RRR|.

Figure 5.14: Results for LS-Basic-Full-Best (LS-BFB) and LS-Basic-Reduced-Best (LS-
BFR) setups on waste collection benchmark sets.

the initial solutions are shown in Figure 5.14a. Both LS setups were able to improve

© University of Pretoria

106 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

on the initial solutions, with the greatest average improvement observed over the Cen-
IF instances. The improvements over the Lpr-IF and Act-IF initial solutions was less,
although improvements in excess of 5% were observed on a few initial solutions. LS with a
full neighbourhood performed marginally better than the reduced neighbourhood version,
with the difference in performance being more prominent on the Cen-IF instances. In
terms of minimising the fleet size, both LS setups were able to reduce the fleet size for
eight out of the fourteen excessive-fleet initial solutions. The fleet-size reduction is mainly
the result of Reduced-Vehicles being applied in each LS iteration, thus allowing it more
opportunities to successfully reduce the number of required vehicles.

The computational times of LS-BFB and LS-BFR are shown in Figure 5.14b. Both
versions exhibiting quadratic growth as a function of problem size. As expected, LS-BFR
was quicker than LS-BFB due to its reduced move neighbourhood. On small and medium
instances with up-to 500 required arcs and edges, both versions were relatively quick,
capable of reaching local optima in less than 60 seconds. For instances with up-to 2000
arcs and edges, the setups took less than 5 minutes, which are just outside the short time-
limits but still well within the medium time-limits. On the large Cen-IF-b and Cen-IF-c
instances the setups struggled, taking in excess of 30 minutes to reach local optima, and
in certain cases in excess of three hours. To be useful for metaheuristic applications, LS
has to be run either numerous times, or it is required to continue beyond local optima.
More efficient LS implementations are thus required.

The most widely used LS acceleration mechanism is to use a first-move instead of a best-
move strategy. With this strategy the move neighbourhood is scanned in a predetermined
order and the first improving move found is immediately implemented. To establish a
move order we applied the following ranking analysis. For each move type we measured the
savings that resulted from its moves over the course of an LS-BFB run. We then calculated
the contribution of the moves to ∆Zf . For example, if LS-BFB improved a solution from
Z(TTT (0)) = 10 000 to Z(TTT (t)) = 9000 and only relocate and exchange moves were made, its
fractional cost improvement would be ∆Zf = 0.1. If during the search, twelve relocate
moves were made which resulted in a combined savings of 200, the contribution of relocate
to ∆Zf is calculated as 200

10 000 = 0.02. The contribution of exchange is then calculated as
0.08. To compliment the analysis we also measured the average time required to scan each
move-operator’s neighbourhood in an LS-BFB iteration.

The contributions of the move-operators per LS-BFB run are shown in Figure 5.15.
On all instances relocate made the biggest contribution. The contribution of the other
operators depended on the instance set, as well as the specific LS setup. Cross made the
second biggest contribution on Cen-IF, but made little impact on Act-IF where exchange
and two-opt-1 made much larger contributions. This may be due to the number of re-
quired vehicles for the different instances. The Act-IF instances require between one and
three vehicles. This limits the cross neighbourhood that only evaluates moves between
two different routes. Two-opt-1 only works on a single route and as a result produces a
larger move-neighbourhood on these instances. On all the instances, the other move op-
erators made marginal contributions with Efficient-IF-Split being the most effective. Flip
made very little impact, which may be attributed to relocate and exchange automatically
inverting arcs if the inversion produces a better move.

The average times, per iteration, for the different operators to scan their respective
neighbourhoods and return the best move are shown in Figure 5.16. The three main move
operators, relocate, exchange and cross exhibit quadratic growth. This is due to their
moves being applied between all arcs in TTT (t). Exchange had the longest execution time
per iteration, yet its savings contribution was low in comparison to relocate. Although not

© University of Pretoria

5.4. COMPUTATIONAL RESULTS 107

Cen−IF Lpr−IF Act−IF

● ●

●

●

●

● ● ● ● ●

●●

●●

●●

●

●●

●

●●
●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●●●●●●●●● ●●●●●●●●●●

●●
●●●●●

●
●
●
●

●

●

●

●

●

●

●

●

●●

●●

●

●● ●● ●● ●0.00

0.02

0.04

Rel Cro Exc 2Op1 Flp OpIF RV Rel Cro Exc 2Op1 Flp OpIF RV Rel Cro Exc 2Op1 Flp OpIF RV

Local Search move operator

S
a

v
in

g
s

fr
a

ct
io

n
 (

∆Z
L

S
f

)
p

er
 m

o
v

e
o

p
er

a
to

r

LS−BRB LS−BFB

Figure 5.15: Cost saving contributions on waste collection benchmark sets of Relo-
cate (Rel), Cross (cro), Exhange (Exc), Two-Opt-1 (2Opt1), Efficient-IF-Split (OpIF),
Reduce-Vehicles (RV) and Flip (Flp) move operators within the LS-Basic-Full-Best (LS-
BFB) and LS-Basic-Reduced-Best (LS-BFR) setups.

●●●●●●●●●●●●

●●●
●
●
●●
●
●
●
●●●●●●●●●●●●●●

●●

●●

●●

●●●

●●

●

●

●●

●

●

●

●

●●

●●

●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●
●

●●
●
●●
●
●
●
●
●
●●

●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●
●●●●
●
●●

●●●●●● ●●●●●● ●●●●●●
●●
●
●
●
●

●
●
●
●

●

●

0

2

4

6

0 2000 4000

Instance size (τ)

A
v

er
a

g
e

C
P

U
 T

im
e

(s
ec

o
n

d
s)

 p
er

 i
te

ra
ti

o
n

●

●

Rel

Cro

Exc

Flp

OpIF

RV

Figure 5.16: Average time required per iteration by each move operator to find and re-
turn its best improving move within LS-Basic-Full-Best (LS-BFB) and LS-Basic-Reduced-
Best (LS-BFR) setups on waste collection benchmark sets.

© University of Pretoria

108 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

considered in this thesis, it should be interesting to determine what impact its elimination
will have on the efficiency of LS. The execution time of two-opt-1 increased linearly since
it only focusses on one route at a time. Flip, Efficient-IF-Split and Reduce-Vehicles are
also very efficient, but as shown in Figure 5.15, they have the smallest contributions to
total LS savings.

The aim of the move-operator analysis was to rank the operators for their application
within first-move. Since the focus of this thesis is on large waste collection instances,
we prioritised the results on Cen-IF and Lpr-IF over those on Act-IF and ranked the
move-operators in the order shown Figure 5.15. The highest ranking operator is thus
relocate and the lowest is flip. The second aim of the analysis was to identify operators
for elimination. Here we relied on the same ranking and identified two-opt-1, Efficient-IF-
Split, and flip as elimination candidates. The primary aim of Reduce-Vehicles is to reduce
the fleet size, not to reduce solution cost, therefore it was not considered for elimination,
despite its small contribution to savings.

5.4.2 First-move local search

To evaluate the acceleration potential of first-move tests were performed on two LS se-
tups, namely LS-Basic-Full-First (LS-BFF) and LS-Basic-Reduced-First (LS-BRF). The
sequence in which the move operators was applied by LS-BFF was relocate, cross, ex-
change, two-opt-1 and flip, followed by Efficient-IF-Split and Reduce-Vehicles. LS-BRF
used a reduced move-set in the sequence of relocate, cross, exchange and Reduce-Vehicles.
The two setups were then compared against LS-BFB and LS-BRB.

Results for the fleet size reduction capabilities of all the LS setups are shown in Ta-
ble 5.1. All the setups produced identical results, reducing the fleet sizes for eight out
of the fourteen excessive-fleet initial solutions. On the Cen-IF-b starting solution pro-
duced by Improved-Merge the setups were able to reduce the fleet size by eight-vehicles,
which represents a 28% reduction. Six local optimum solutions remained with an excess
fleet size, with most coming from the Efficient-Route-Cluster starting solutions. On these
instances different implementations, such as multi-start versions, are required to allow
Reduced-Vehicles more opportunities to reduce the fleet size.

The cost savings and computational times of the all the setups are shown in Figure 5.17.
As shown in Figure 5.17a, the cost savings obtained through LS-BFF and LS-BRF were
less than those of LS-BFB and LS-BRB, with LS-BRF performing the worst. On Act-
IF, LS-BFF performed better than LS-BRB since it evaluates two-opt-1 moves, which,
as discussed earlier, is a major contributor to savings on the benchmark instances. The
computational times of each setup to reach local optima are shown in Figure 5.17b. On
large problem instances LS-BFF and LS-BRF are significantly faster than LS-BFB and
LS-BFB, with LS-BRF being the most efficient. On the largest Cen-IF instance, LS-BFF
and LS-BRF took at most thirty-minutes to reach local optima, whereas LS-BRB and
LS-BFB took in excess of three hours. The LS-BFF and LS-BRF setups can thus be
used as-is under medium time-limits, but their increased speed comes at a trade-off in
solution quality. On large instances the setups can only be executed a few times, which
limits their use within metaheuristic applications. The test results are consistent with the
findings of Belenguer et al. [6] on the MCARP and supports their recommendation that
more advanced accelerated LS setups be developed for large MCARPs.

© University of Pretoria

5.4. COMPUTATIONAL RESULTS 109

Table 5.1: Fleet size reduction capabilities of four local search setups on fourteen excessive-
fleet initial solutions.

KBF

Instance KBF Initial solution |TTT (0)| LS-BFB LS-BRB LS-BFF LS-BRF

Cen-IF-b 21 IM 29 8 8 8 8
PS 22 1 1 1 1

ERC 22 - - - -

Cen-IF-c 19 PS 20 1 1 1 1
ERC 20 - - - -

Lpr-IF-a-02 1 ERC 2 - - - -
Lpr-IF-a-04 5 IM 6 1 1 1 1
Lpr-IF-a-05 8 IM 9 1 1 1 1

Lpr-IF-b-02 1 IM 2 - - - -
PS 2 - - - -

ERC 2 - - - -

Lpr-IF-b-05 8 IM 9 1 1 1 1

Lpr-IF-c-03 4 IM 5 1 1 1 1
ERC 5 1 1 1 1

Number of solutions with reduced fleets 8 8 8 8

KBF: Best known fleet size; |TTT 0|: fleet size of the initial solution; |TTT (t)| − KBF difference between the
local optimum and best known fleet size; IM: Improved-Merge; PS: Path-Scanning ; ERC : Efficient-Route-
Cluster

●

●

●

●

●

●

●

●

●

0.000

0.025

0.050

0.075

0.100

Cen−IF Lpr−IF Act−IF

Benchmark set

C
o

st
 i

m
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

L
S

f
)

LS−BRF LS−BFF LS−BRB LS−BFB

(a) Fraction by which the LS setups improved the
cost of the initial solutions.

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●
●

●
●

●●●●

●
●

●
●●
●

●
●

●
●

●
●

●
●

●
●
●
●

●●

●●

●
●

●●

●

●
●●

●
●●
●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●●
●●

●
●

●●

●●
●●

●
●

●

●

●

●

●●

●
●

●
●

●●

●●

●
●

●

●●●

●●

●●●●

●●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

3 h

50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

E
x

ec
u

ti
o

n
 t

im
e

o
n

 a
 l

o
g

10
 s

ca
le

● ●LS−BRF LS−BFF LS−BRB LS−BFB

(b) CPU times and trend-lines of the LS setups ver-
sus problem instance size τ = |RRR|.

Figure 5.17: Comparison of LS-Basic-Full-Best (LS-BFB), LS-Basic-Reduced-Best (LS-
BFR), LS-Basic-Full-First (LS-BFF) and LS-Basic-Reduced-First (LS-BRF) setups on
waste collection benchmark sets.

© University of Pretoria

110 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

5.5 Conclusion

LS is an important and widely applied improvement method for CARPs, and is used as
the basic optimisation component of more intelligent metaheuristic improvement methods
for the problems. In this chapter four basic LS setups were developed and tested on waste
collection benchmark instances. Tests showed that LS is capable of improving MCARPTIF
initial solutions by reducing the cost and number of required vehicles of the initial solution.
On realistically sized instances, the most efficient LS version with a first-move strategy and
a reduced move neighbourhood took between five and thirty-minutes to improve an initial
solution to its local optimum. To be more effective in situations where LS has to be called
numerous times, or when short time-limits are imposed, the LS implementations have
to be accelerated, a task made difficult due to the MCARPTIF being asymmetrical and
due to additional move-cost calculations resulting from IF visits. Parallelisation may offer
opportunities by allowing for the heuristics to be run on multiple instances simultaneously,
but acceleration mechanisms would still be needed to speed-up LS per run.

In the next chapter we adapted and implemented advanced LS acceleration mecha-
nisms, originally developed for the Vehicle Routing Problem (VRP) and CARP, to the
MCARPTIF. The mechanisms allow LS to be used under medium as well as short exe-
cution time-limits on large instances, and are thus ideal candidates for incorporating into
advanced metaheuristic methods.

© University of Pretoria

Chapter appendix

5.A First-move versus best-move strategies

Figure 5.18 shows the execution of two basic first-move and best-move LS setups, using
only the relocate move operator, on two problem instances. The time required by the
setups to find and return an improving move in each iteration is shown in Figure 5.18a.
The execution time of best-move is relatively stable since it scans the entire neighbourhood
for the best move in each iteration. The variance in its iteration time is due to the pre-move
evaluation mechanisms that we implemented in the basic LS setups. The execution time
of first-move is much more erratic. In the beginning of its execution, first-move quickly
finds an improving move by virtue of there being more improving moves available. As the
search progresses, improving moves become more scarce, and first-move has to scan more
of the neighbourhood to find them. By the end of the search, the execution of first-move is
close to that of best-move since the entire neighbourhood has to be searched to determine
if a local optimum has been reached.

The savings obtained per iteration during the execution of the setups are shown in
Figure 5.18b. For each iteration best-move finds the best improving move, and as a result,
its first moves have the biggest savings. As these moves become exhausted, best-move
gradually starts to make smaller and smaller improving moves, until no more improving
moves are left. First-move indiscriminately makes an improving move the moment that
it is found. As a result, both small and big improving moves are made throughout its
execution, until none are left. The total savings obtained through the setups over their
execution-times are shown in Figure 5.18c. On the Lpr-IF-a-05 instance best-move took
longer than first-move to reach a local optimum. The quality of its local optimum solution
was also better. The opposite was observed on Lpr-IF-c-05 where first-move took longer
and reached a better local optimum. In general best-move is expected to be slower but
reach better local optima than first-move, but as shown, this is not always the case.

5.B Additional cross moves for the MCARPTIF

The cost calculations and feasibility checks are not given in Figure 5.22, but can be inferred
using Figures 5.12 and 5.19 to 5.21.

111

© University of Pretoria

112 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Lpr−IF−a−05 Lpr−IF−c−05

0.0

0.1

0.2

0.3

0 50 100 150 200 250 0 50 100 150 200 250

Iteration number

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

 p
er

 i
te

ra
ti

o
n

First−move strategy Best−move strategy

(a) Time required per iteration to find and make an improving move.

Lpr−IF−a−05 Lpr−IF−c−05

0

100

200

300

0 50 100 150 200 250 0 50 100 150 200 250

Iteration number

S
a

v
in

g
s

p
er

 i
te

ra
ti

o
n

First−move strategy Best−move strategy

(b) Absolute cost savings per iteration.

Lpr−IF−a−05 Lpr−IF−c−05

0

2000

4000

0 10 20 30 0 10 20 30

Total execution time (in seconds)

T
o

ta
l

sa
v

in
g

s

First−move strategy Best−move strategy

(c) Total savings over the execution-time of LS.

Figure 5.18: Illustration of the difference between best-move and first-move setups using
only the relocate move operator on two Path-Scanning initial solutions.

© University of Pretoria

5.B. ADDITIONAL CROSS MOVES FOR THE MCARPTIF 113

Figure 5.19: The cost and feasibility checks when two routes are crossed at a position
preceded by an arc task, and on the last IF visit in a subtrip.

Figure 5.20: The cost and feasibility checks when two routes are crossed at a position
preceded by an arc task, and on the first IF visit in a subtrip.

© University of Pretoria

114 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

Figure 5.21: The cost and feasibility checks when two routes are crossed at a position
preceded by an arc task, and on the first arc following an IF visit.

© University of Pretoria

5.B. ADDITIONAL CROSS MOVES FOR THE MCARPTIF 115

Figure 5.22: Further examples of cross moves, depending on the positions of Ti,j,k and
Tl,m,n. The cost and feasibility checks for the moves can be calculated similar to the moves
shown in Figures 5.12 and 5.19 to 5.21.

© University of Pretoria

116 CHAPTER 5. BASIC LOCAL SEARCH HEURISTICS

© University of Pretoria

Chapter 6

Accelerated local search heuristics

In this chapter we develop three acceleration mechanisms that enable Local Search (LS) to
better cope with realistically sized waste collection instances. The acceleration mechanisms
significantly improve the efficiency of LS, allowing it to be used to improve constructive
heuristic solutions even when short execution times are available. In a recent survey on
the heuristics for the Capacitated Arc Routing Problem (CARP), Prins [69] state that
the development of metaheuristics capable of efficiently tackling huge instances should be
investigated in priority. All the current metaheuristics for CARPs rely on some form of LS,
either using it directly as a sub-procedure to improve multiple-solutions, or by extending
it to escape local optima. Efficient LS implementations are thus critical to achieve the
goal of developing practically relevant metaheuristics for waste collection planning.

6.1 Introduction

In the previous chapter we showed that basic LS implementations cannot deal with real-
istically sized instances within reasonable computing times, with the most efficient setup
taking between five and thirty-minutes to improve a single solution to a local optimum.
This necessitated us to develop and apply advanced accelerations mechanisms to speed up
LS. Three acceleration mechanisms, originally developed for the Vehicle Routing Prob-
lem (VRP) and CARP, were adapted to the Mixed Capacitated Arc Routing Problem
under Time Restrictions with Intermediate Facilities (MCARPTIF), and tests on large
instances show that the mechanisms enable LS to reach local optima within short and
medium execution time-limits. The efficiency of the implementations allows them to be
applied within multi-start frameworks, whereby multiple initial solutions are improved
and the best local optimum solution returned.

In the next section we review LS acceleration mechanisms that have been developed
for the CARP and VRP. In Section 6.3 we show how the acceleration mechanisms can be
adapted to the MCARPTIF. Computational results for our accelerated LS implementa-
tions are presented in Section 6.4, followed by our main research findings and conclusions
in Section 6.5.

6.2 Acceleration mechanisms for the CARP and VRP

The computational time required by an exhaustive or near-exhaustive search, such as the
basic LS heuristics developed in the previous chapter, increases quadratically with instance
size, making the methods impractical when dealing with large instances. This issue is not
unique to the MCARPTIF and has been addressed for the CARP and VRP through the

117

© University of Pretoria

118 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

development of advanced acceleration mechanisms. In this section we review three of the
mechanisms and discuss their applicability to the MCARPTIF. We also review methods
that enhance the improvement capability of LS.

6.2.1 Nearest neighbour lists

The first acceleration mechanism that we review is Nearest-Neighbour-Lists, the mecha-
nism proposed by Belenguer et al. [6] to improve their Memetic Algorithm. The mech-
anism was developed by Beullens et al. [10] to improve the efficiency of their Guided
Local Search metaheuristic, which is still one of the fastest heuristics for the CARP [69].
Nearest-Neighbour-Lists enable LS to scan a promising subset of the full neighbourhood.
For each required arc u, a nearest neighbour list, NNNu ⊂ RRR/{u, inv(u)}, is established that
contains its df × |RRR|e closest required arcs, where 0 < f ≤ 1. The lists are sorted based
on the distance from v to u, and the parameter f is user-specified at the beginning of the
procedure. The evaluation of moves can then be limited through Nearest-Neighbour-Lists.
For example, when evaluating a relocate move where u is inserted after v, the condition
v ∈NNNu can be enforced, in which case the insert position is limited to closest neighbours
of u. The length of the Nearest-Neighbour-Lists is controlled through f . A low value of
f produces a small subset of the move neighbourhood that can be quickly scanned, but
improving moves outside of the reduced neighbourhood will not be considered, resulting
in LS terminating before reaching local optima. As f → 1 the full set of moves will be
evaluated, but without any sort of acceleration taking place. A balance is thus sought
between keeping f low enough to accelerate LS, but high enough so that it terminates at
high-quality solutions.

Based on the recommendation of Belenguer et al. [6] to use Nearest-Neighbour-Lists
to accelerate LS for the Mixed Capacitated Arc Routing Problem (MCARP), and its suc-
cessful application to the CARP by Beullens et al. [10], we chose to adapt the mechanism
for the MCARPTIF. A downside of the mechanism is that there is trade-off between its
acceleration and solution improvement capabilities, which we critically evaluate through
tests on the large waste collection problem instances.

In the rest of this section we review mechanisms that accelerate LS without compro-
mising solution quality.

6.2.2 Static move descriptors

In most LS implementations, after a move is made the entire move-neighbourhood is re-
scanned, despite the move only modifying a small portion of the solution. For example,
when an arc is relocated in the same route, all moves not involving that route will be
unaffected, yet in most cases the moves will be rescanned. To address this inefficiency
Zachariadis and Kiranoudis [92] develop Static-Move-Descriptors that describe every pos-
sible LS move towards a new solution. Importantly, they allow information on all moves
to be recorded and reused in following iterations. During an LS iteration the best move is
identified and implemented, and in the following iterations, only moves that involve arcs
that were influenced by previously implemented moves are rescanned, and their descriptors
updated. The best move is then identified and the process repeats until a local optimum
is reached. Static-Move-Descriptors allow LS to return the same local optima as basic
LS with a best-move strategy. As such, its application does not result in any trade-off on
solution quality.

Zachariadis and Kiranoudis [92] test the acceleration mechanism on the VRP and show
that on small test instances with less than 400 required nodes, their accelerated LS has a

© University of Pretoria

6.2. ACCELERATION MECHANISMS FOR THE CARP AND VRP 119

similar execution time of a basic best-move version. On larger problems, the accelerated LS
becomes much faster per iteration, exhibiting linearithmic (n log n) growth with problem
size, whereas the basic LS heuristic exhibits quadratic growth. On a 1200 required-nodes
VRP instance the basic LS implementation takes about 8 times longer per iteration than
the accelerated version.

Beullens et al. [10] implement a similar strategy, which they refer to as edge-marking,
for the CARP. They further link edge-marking with Nearest-Neighbour-Lists and a first-
move strategy. As such, their LS is not guaranteed to return true local optima with respect
to its move operators. Their tests are also limited to the small gdb and bccm instances,
making it difficult to predict what effect the acceleration mechanism will have on large
MCARPTIF instances. As such, we chose to only adapt the Static-Move-Descriptors of
Zachariadis and Kiranoudis [92] for the MCARPTIF. The adaptation was made easier
due to the solution representation, encoding scheme, and move operators of the VRP
being similar to those that we developed for the MCARPTIF in the previous chapter. We
further linked Static-Move-Descriptors with Nearest-Neighbour-Lists, and evaluated the
solution cost and execution time trade-off of the linked and unlinked versions on large
waste collection instances.

6.2.3 Compounding independent moves

The last acceleration mechanism that we review is Compound-Independent-Moves, as ap-
plied to the VRP by Ergun et al. [28]. The mechanism is based on the same principle as
Static-Move-Descriptors. Moves that are not influenced by a previous move are considered
independent from that move, and if two improving moves are independent, both can be
made in the same iteration, subject to their feasibility when made together. Ergun et al.
[28] use this basic concept to create new neighbourhoods by compounding (combining)
smaller independent moves. A series of compounded independent moves, constituting a
single super-move, is then made in each iteration.

There are different methods to determine which independent moves to compound.
A greedy approach, which we refer to as Greedy-Compound-Independent-Moves, will start
with the best move and then continue to the next best improving move that is independent
from all previous moves made. LS will then move to the next iteration when no more
independent moves are left, whereupon the full neighbourhood is again scanned.

Since Compounded-Independent-Moves are seen as a single super-move, a greedy ap-
proach may not produce the best compounded move in terms of total improvement. To
illustrate, let π1 be the best move which is dependent on the second and third best moves,
π2 and π3, with π2 and π3 being independent from each other and having a better com-
bined savings than π1. In this case, making the compounded move of π2 and π3 instead
of π1 is a better move in the compounded neighbourhood.

Ergun et al. [28] show that finding the best moves to compound into a super-move is
in itself an NP-hard problem, for which they develop a multi-label shortest path algo-
rithm to search the compounded neighbourhood heuristically. Implementing the heuristic
is non-trivial, and we leave its application to the MCARPTIF for future work. We in-
stead developed and tested the Greedy-Compounded-Independent-Moves mechanism. The
mechanism was linked with Static-Move-Descriptors as well as Nearest-Neighbour-Lists
and critically evaluated on large waste collection instances.

© University of Pretoria

120 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

6.2.4 Other improvement mechanisms

In addition to the acceleration mechanisms reviewed thus far, a few procedures have
been developed for the CARP to extend the improvement capabilities of LS. One such
procedure commonly used in LS-based metaheuristics is to allow infeasible moves. The cost
of an infeasible move is penalised by a value linked to constraint violations. By allowing
infeasible moves, LS may move to unexplored regions of the solution space that cannot be
reached via feasible moves alone. It may also allow LS to move through infeasible regions
to reach local optima more quickly.

Ghiani et al. [31] develop a Tabu Search metaheuristic for the Capacitated Arc Routing
Problem under Time Restrictions with Intermediate Facilities (CARPTIF) that is allowed
to make infeasible moves, as well as moves that relocate arcs into new empty routes, thus
increasing the fleet size, and moves that include additional Intermediate Facility (IF) visits
within a route. The moves also consider relocating an IF visit to a different position in
a route, as well as the removal of an IF. Unfortunately the benchmark sets used by the
authors are no longer publicly available, making it difficult it compare their approach
against our MCARPTIF heuristics.

Brandão and Eglese [12] develop a Tabu Search metaheuristic that also uses infeasible
moves. According to Prins [69], their Tabu Search algorithm is still the fastest meta-
heuristic on standard CARP benchmark sets. The metaheuristic is improved by Mei et al.
[59] who develop a global repair operator. The operator scans routes that exceed capacity
and moves serviced edges from the routes to other routes in which the same edges are
deadheaded. In doing so, the total solution cost remains the same and infeasible routes
are made feasible. In this thesis we developed a similar strategy that identifies improving
infeasible moves, and through the Compounded-Independent-Moves mechanisms indenti-
fies neutral complimentary moves (with zero cost) that will result in the infeasible moves
becoming feasible.

In this section we reviewed advanced acceleration mechanisms that have been suc-
cessfully applied to the CARP and VRP. The acceleration mechanisms that we chose
to implement for the MCARPTIF were Nearest-Neighbour-Lists, Static-Move-Descriptors
and Greedy-Compounded-Independent-Moves. We also developed procedures that allow
LS to make infeasible moves linked with repairing moves.

Our acceleration mechanisms only work with the relocate, exchange and cross move-
operators developed in the previous chapter, and which our computational tests showed
are the main cost-savings contributors on realistic waste collection instances. Details for
the move operators can be found in the previous chapter, in Section 5.3. Although not
considered in this thesis, the mechanisms can be easily incorporated into flip and Efficient-
IF-Split. More research is required to incorporate it into two-opt-1 as it involves route
and route segment reversals, which we leave for future work.

6.3 Accelerated and extended local search for the MCARP-
TIF

Consistent with our terminology from the previous chapters, an MCARPTIF solution,
TTT , is a list, [TTT 1, . . . ,TTT |TTT |], of |TTT | vehicle routes. Each route, TTT i, is a list of subtrips
[TTT i,1, . . . ,TTT i,|TTT i|], and each subtrip, TTT i,j , consists of a list of arc tasks [Ti,j,1, . . . , Ti,j,|TTT i,j |].
The pointer function, inv(u) = v, is used to return the opposing arc of u. The travel time
for the shortest path from arc u to arc v is given by D(u, v) and it is assumed that the
shortest path is always followed between consecutive tasks. The cost of route TTT i is given

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 121

as Z(TTT i) and the cost of the solution is given as Z(TTT). Let RRR be the set of all required arc
tasks and let RRRT ⊆ RRR be the set of arcs that is currently in solution TTT , excluding dummy
arcs. It thus consists of all the arc tasks with inv(u) = 0, and one of the opposing arcs,
u or u′, of a required edge, where inv(u) = u′. Lastly, let u and v be two different tasks,
which can be in the same or different routes or subtrips.

Unlike the basic LS heuristics that we developed in the previous chapter, the accel-
eration mechanisms require an arc-focussed search whereby moves are evaluated between
sets of arcs. Using relocate as an example, moves will be evaluated between u ∈ RRR and
v ∈ RRRT . A specific relocate move in which arc u ∈ RRR is relocated in-front of arc v ∈ RRRT is
referred to as relocate(u, v),1. To make our algorithm descriptions more concise, the cost
of a move is returned using Algorithm 6.1, and the feasibility of a move is checked using
Algorithm 6.2. Both algorithms take as input a move identification parameter, movei,

Algorithm 6.1: Move-Cost

Input : Current solution TTT ; move type movei; arcs u and v involved in the move.
Output: Cost of the move ∆Z.

1 (i, j, k) = T−1(u);
2 (l,m, n) = T−1(v);

3 // relocate is assigned a unique identifier, in this case movei = 1 //;
4 if movei = 1 then
5 Using TTT i,j , calculate ∆Zrem depending on the relative position of Ti,j,k as shown in Chapter 5,

Figure 5.5;
6 Using u and TTT l,m, calculate ∆Zin depending on the relative position of Tl,m,n as shown in

Chapter 5, Figure 5.6;
7 ∆Z = ∆Zrem + ∆Zin;

8 // exchange is assigned a unique identifier, in this case movei = 2 //;
9 if movei = 2 then

10 Using v and TTT i,j , calculate ∆Zrepu
depending on the relative position of Ti,j,k as shown in

Chapter 5, Figure 5.9;
11 Using u and TTT l,m, calculate ∆Zrepv

depending on the relative position of Tl,m,n as shown in
Chapter 5, Figure 5.9;

12 ∆Z = ∆Zrepu
+ ∆Zrepv

;

13 // cross is assigned a unique identifier, in this case movei = 3 //;
14 if movei = 3 then
15 Using Ti,j,k and Tl,m,n, calculate ∆Z depending on the relative positions of Ti,j,k and Tl,m,n as

shown in Chapter 5, Figures 5.12 and 5.19 to 5.22;

16 return (∆Z)

which uniquely identifies the type of move being considered. The location of the arcs have
to be determined when calculating the cost of the move, again later when checking if it
is feasible, and lastly when implementing the move. This requires a mapping function,
T−1(u) = (i, j, k), that maps each arc u ∈ RRR to its current location in the solution such
that Ti,j,k = u. When inv(u) 6= 0, the function lets inv(u) point to the same position as
u, such that

T−1(inv(u)) = T−1(u), (6.1)

= (i, j, k). (6.2)

1With the arc-focused search, the relocate move cannot consider the case of inserting an arc before an
IF. To evaluate these moves we developed a relocate-after operator, which considers relocating arcs after
the last arcs in subtrips. We do not give a detailed description of the operator since it is almost identical
to the normal relocate operator.

© University of Pretoria

122 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Algorithm 6.2: Check-Feasibility

Input : Current solution TTT ; move type movei; arcs u and v involved in the move.
Output: Logical flag, feasible, for the feasibility of a move.

1 (i, j, k) = T−1(u);
2 (l,m, n) = T−1(v);

3 feasible = False;
4 if movei = 1 then // for a relocate move //
5 Using TTT , (i, j, k), u and (l,m, n) check if the relocate conditions shown in Chapter 5, Figure 5.7

are met;
6 if all relocate conditions are met then feasible = True ;

7 if movei = 2 then // for an exchange move //
8 Using TTT , (i, j, k), u, (l,m, n) and v check if the exchange conditions as shown in Chapter 5,

Figure 5.10 are met;
9 if all exchange conditions are met then feasible = True ;

10 if movei = 3 then // for a cross move //
11 Using TTT , (i, j, k), u, (l,m, n) and v check if the cross conditions shown in Chapter 5,

Figures 5.12 and 5.19 to 5.22 are met;
12 if all cross conditions are met then feasible = True ;

13 return (feasible)

This allows relocate and exchange to automatically consider arc inversion moves, hence
why relocate moves are evaluated for u ∈ RRR, and not just for u ∈ RRRT . It is assumed that
T−1(u) is automatically updated for all u ∈ RRR whenever the solution changes.

As further modifications to our basic LS heuristics, all improving moves, and in some
instances of non-improving moves are stored and returned when searching move neigh-
bourhoods, instead of returning a single move for implementation. And lastly, feasibility
checks are ignored when searching for improving moves. All the improving moves are re-
turned, and the feasibility checks are performed on a subset of improving candidate moves
prior to their implementation.

6.3.1 Nearest neighbour lists

The first acceleration method that we adapted to the MCARPTIF was Nearest-Neighbour-
Lists, originally developed for the CARP by Beullens et al. [10]. The lists are used in each
LS iteration to scan a reduced but promising subset of the full solution neighbourhood. To
illustrate why this may be beneficial, consider the example network shown in Figure 6.1.
Assume that u is serviced together with all its nearest neighbours in a route, and that v is
serviced with all its neighbours in a different route. A relocate move between arcs u and v
would evaluate the move of relocating arc u from its current service position to be serviced
directly before v. Traveling from v to u and then back to v will significantly increase the
amount of deadheading in the route of v. From a route design perspective, it would be
ideal for arc u to be serviced directly after one of its nearest neighbour arcs. Similarly,
if an arc is to be relocated before v, it would be ideal if the arc is one of the nearest
neighbours of v. Nearest-Neighbour-Lists formally encapsulate this concept and enables
LS to ignore unpromising moves. There may however be cases where such unpromising
moves still improve the solution, in which case LS may terminate before reaching local
optima.

The Nearest-Neighbour-Lists of u ∈ RRR∪{σ} is formally defined as NNNu ⊂ RRR/{u, inv(u)}
and it contains its s = df ×m|RRR∪{σ}e closest required arcs, where 0 < f ≤ 1 and is user-

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 123

Figure 6.1: Example of a waste collection area to be serviced. Moves involving u or v
should ideally be limited to their respective nearest neighbour arcs.

specified. With our implementation, the lists are sorted in non-decreasing order based on
the travel time from u to v, given by D(u, v). For all algorithms the full neighbourhood
list is always available and f , which we defined as a global variable, is directly used to limit
the move set. Individual arcs in NNNu are given as Nu,i where Nu,1 is the nearest neighbour
of u.

Finding improving relocate moves can be accelerated through the Nearest-Neighbour-
Lists as shown in Algorithm 6.3. The acceleration, which takes place in lines 4 to 6,

Algorithm 6.3: Find-Relocate-Moves

Input : Current solution TTT ; savings threshold, ∆Z; arcs RRRu to be considered for relocation; arcs
RRRv before which the relocate arcs can be placed; savings list MMM consisting of information
needed to implement moves.

Output: Updated savings list MMM , with information of moves with savings less (better) than ∆Z
added to MMM .

1 // both orientations of an edge task can be considered for relocation, so RRRu ⊂ RRR //;
2 for u ∈ RRRu do
3 (i, j, k) = T−1(u);
4 s = df × |RRR|e;
5 RRR′v = RRRv ∩ {Nu,1, Nu,2, . . . , Nu,s} // the possible relocation positions are limited to arcs that

are in the current solution and that are nearest neighbours of u. //;
6 for v ∈ RRR′v do
7 ∆Z =Move-Cost(TTT ,movei = 1, u, v) // Algorithm 6.1 //;

8 if ∆Z < ∆Z then
9 MMM = MMM ∪ {(∆Z,movei = 1, u, v)} ;

10 return (MMM)

depends on f . If f is small, relatively few relocate positions will be considered, but the
risk of the algorithm missing improving moves increases. If f = 1, no acceleration will
take place and all improving moves will be considered. Other options are available to limit

© University of Pretoria

124 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

the move set. For instance, a relocate move between Ti,j,k = u and Tl,m,n = v may be
evaluated if the following condition holds:

u ∈NNNTl,m,n−1
. (6.3)

Alternatively, in addition to Equation (6.3), the following two conditions may also be
enforced:

v ∈NNNu, (6.4)

Ti,j,k+1 ∈NNNTi,j,k−1
. (6.5)

Since the purpose of the lists is to limit moves to a promising subset of the neighbourhood,
and not to limit the moves as much as possible, we only enforced the membership condition
of v ∈ {Nu,1, . . . , Nu,s}.

Using Figure 6.1 as an example, assume that v is serviced in a route together with
the neighbours of u, and that v is serviced together with the neighbours of u. In this
case an exchange move between u and v would make sense. However, checking if u ∈
{Nv,1, . . . , Nv,s} or v ∈ {Nu,1, . . . , Nu,s} would eliminate the move, unless f → 1. For this
reason we instead enforced the membership condition that v ∈ {Nupre,1, . . . , Nupre,s} where
T−1(u) = (i, j, k) and upre = Ti,j,k−1 on exchange moves. An improving exchange move
can then be found using Algorithm 6.4.

Algorithm 6.4: Find-Exchange-Moves

Input : Current solution TTT ; savings threshold, ∆Z; arcs RRRu and RRRv to be considered for
exchange; savings list MMM consisting of information needed to implement moves.

Output: Updated savings list MMM , with information of moves with savings less (better) than ∆Z
added to MMM .

1 // both orientations of an edge task can be considered for relocation, so RRRu ⊂ RRR //;
2 for u ∈ RRRu do
3 (i, j, k) = T−1(u);
4 upre = Ti,j,k−1;
5 s = df × |RRR|e;
6 RRR′v = RRRv ∩ {Nupre,1, . . . , Nupre,s};
7 for v ∈ RRR′v do
8 // an exchange between v and u is the same as an exchange between u and v, so only one

has to be evaluated //;
9 ∆Z =Move-Cost(TTT ,movei = 2, u, v) // Algorithm 6.1 //;

10 if u < v then

11 if ∆Z < ∆Z then
12 MMM = MMM ∪ {(∆Z,movei = 2, u, v)} ;

13 return (MMM)

The last move operator that we modified was cross. A cross move between Ti,j,k = u
and Tl,m,n = v will relocate arc v directly after Ti,j,k−1. The Nearest-Neighbour-List
membership condition for exchange can thus also be used for cross. An improving cross
move can be found using Algorithm 6.5.

6.3.2 Greedily compounding independent moves

The second acceleration method that we adapted for the MCARPTIF was Independent-
Compound-Moves. In our basic best-move LS implementations, all improving moves are

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 125

Algorithm 6.5: Find-Cross-Moves

Input : Current solution TTT ; savings threshold, ∆Z; arcs RRRu and RRRv to be considered for the cross
move; savings list MMM consisting of information needed to implement moves.

Output: Updated savings list MMM , with information of moves with savings less (better) than ∆Z
added to MMM .

1 // routes can only be crossed at arcs that are currently in the solution, so RRRu ⊂ RRRT //;
2 for u ∈ RRRT do
3 (i, j, k) = T−1(u);
4 upre = Ti,j,k−1;
5 s = df × |RRR|e;
6 RRR′v = RRRv ∩ {Nupre,1, . . . , Nupre,s};
7 for v ∈ RRR′v do
8 if u < v then
9 ∆Z =Move-Cost(TTT ,movei = 3, u, v) // Algorithm 6.1 //;

10 if ∆Z < ∆Z then
11 MMM = MMM ∪ {(∆Z,movei = 3, u, v)} ;

12 return (MMM)

compared, and the best move implemented. The idea behind Independent-Compound-
Moves is to identify independent improving moves and to apply them all simultaneously
in a single LS iteration to form a single super improving move. A move between arcs u1

and v1 is considered independent from a between u2 and v2 if implementing either of the
moves does not change the move-cost of the other move. The independent moves can then
be made together in one LS iteration without having to recalculate their move costs.

Figure 6.2 shows four possible improving moves on the example route TTT 1, as well as
the outcome of compounding two of the independent moves into a single super-move. To
determine if moves are independent, consider Move 1 which involves relocating arc u2

before arc u8. The cost of the move is calculated as

∆Z = D(u1, u3)−D(u1, u2)−D(u2, u3) +D(u7, u2) +D(u2, u8)−D(u7, u8), (6.6)

Arcs used in the cost calculation, in addition to u2 and u8, are underlined in Figure 6.2.
Move 2 will change the location of u2 and u3 relative to each other, and is thus dependent
on Move 1, the reason being that the cost calculation for Move 2 would no longer be valid
after Move 1 is implemented. Move 4 will change the location of u8 by removing it from
the solution and replacing it with inv(u8). As such, it is also dependent on Move 1. Move 3
does not change the location of any of the arcs used for the cost calculation of Move 1.
Should Move 1 be implemented, the cost of Move 3 will remain the same, which is why the
moves are considered independent and can be implemented in the same LS iteration. If
Move 2 is implemented instead of Move 3, the cost of Move 4 will be unchanged, so Move 2
and 4 could be implemented in the same LS iteration, instead of Move 1 and 3. However,
the combined cost of the moves is only -45. Similarly the combined cost of Moves 3 and
4 is only -25. Move 1 and 3 should be compounded into a super-move as it gives the best
combined savings.

To identify a sequence of independent moves, we refer to two consecutive arcs, θk and
θk+1, in a route as being linked, with the link given as (θk, θk+1). When determining the
cost of a move, the links that will change (be broken) and the new links that will be formed
through the move are used for the cost calculation. For the relocate move in Figure 6.2
between arcs u2 and u8, the links used to calculate ∆Z are those between the underlined
and highlighted arcs, specifically (u1, u2), (u2, u3) and (u7, u8). These links are referred to

© University of Pretoria

126 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Figure 6.2: Four possible improving moves on the example route TTT 1. The arcs between
which the moves are applied are highlighted in grey, and arcs used to calculate the costs
of the moves are underlined.

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 127

as the move’s cost-links. If another move were to break any of the cost-links of a move,
the two moves are dependent and cannot be compounded into a super-move. Costs-links
can be broken if one of the arcs in the links are removed or replaced, or if an arc is inserted
in between the linked arcs.

To simplify our notations, the functions pre(u) and post(u) are defined to return the
arc tasks before and after arc u, respectively, such that:

(i, j, k) = T−1(u), (6.7)

pre(u) =

{
Ti,j,k−1 if k > 2 or j = 1,

Ti,j−1,|TTT i,j−1|−1 otherwise,
(6.8)

post(u) =

{
Ti,j,k+1 if k < |TTT i,j − 1|,
Ti,j+1,2 otherwise.

(6.9)

Equations (6.7) to (6.9) allow for cost-links to be established between two arcs that are
separated by an IF visit. This is necessary when a move involves arcs that are adjacent to
IF visits. To check if two moves are independent, one simply needs to check if any of the
move’s cost-links are broken by the other move. The cost-links for all the move types are
shown in Table 6.1, and the conditions under which each type of move will break a cost-
link can found in Table 6.2. Once MMM has been populated with information of improving

Table 6.1: Cost-links of moves between arcs u and v.

Move operator Cost-links involving u Cost-links involving v

Relocate(u, v)
(
pre(u), u

)
and

(
u, post(u)

) (
pre(v), v

)
Exchange(u, v)

(
pre(u), u

)
and

(
u, post(u)

) (
pre(v), v

)
and

(
v, post(v)

)
Cross(u, v)

(
pre(u), u

) (
pre(v), v

)
pre(u) and post(u) are defined in Equations (6.7) to (6.9).

Table 6.2: Conditions for a move between arcs u and v to break the cost-link (θk, θk+1).

Move operator Condition for breaking the cost-link (θk, θk+1)

Relocate(u, v) If u = θk or u = θk+1 or v = θk+1

Exchange(u, v) If u = θk or u = θk+1 or v = θk or v = θk+1

Cross(u, v) If u = θk+1 or v = θk+1

moves, Tables 6.1 and 6.2 can be used to determine which of the moves are independent.
The next step is then to compound the moves into a single feasible super-move.

When taking capacity and route-duration constraints into consideration, finding the
best moves to compound into a feasible super move becomes an NP-Hard problem [28].
To solve the compounding problem we developed a greedy heuristic that identifies and
immediately makes feasible independent moves. A high-level description of the heuristic
can be found in Algorithm 6.6. The algorithm takes as input MMM . Each entry in the
list, π ∈ MMM , contains critical move information, including the moves cost, ∆Z, a unique
identifier for the move type, and the arcs between which the move is applied. The list is
sorted from the best to the worst improving move. Starting with the first move in the
list, the heuristic checks if the move is feasible. If so, the move is implemented. The
heuristic then moves to the next improving move in MMM and checks if it is independent

© University of Pretoria

128 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Algorithm 6.6: Greedy-Compound-Independent-Moves

Input : Current solution TTT ; savings threshold, ∆Z; savings-list MMM .
Output: Neighbouring solution, TTT ′, with independent moves implemented on TTT ; total savings,

∆Ztotal, resulting from the compounded moves.

1 Let CCC = ∅ and ∆Ztotal = 0;
2 Order MMM from the best to worst improving move;
3 Let TTT ′ = TTT ;

4 for π ∈MMM do
5 (∆Z,movei, u, v) = π;

6 if ∆Z < ∆Z then
7 if according to Table 6.2 the move does not break any of the cost-links in CCC then
8 feasible =Check-Feasibility(TTT , u, v) // Algorithm 6.2 //;
9 if feasible = True then

10 Add all the move’s cost-links shown in Table 6.1 to CCC ;
11 Implement the move on TTT ′;
12 Let ∆Ztotal = ∆Ztotal + ∆Z;
13 // for a pure find-best implementation the heuristic would stop here and

immediately return TTT and ∆Ztotal //;

14 return (TTT , ∆Ztotal)

from all previous moves that have been implemented in the current LS iteration. If it is
independent, the heuristic further checks if the move is feasible. If the move passes both
checks, it is implemented. This process repeats until all improving moves in MMM have been
evaluated for implementation.

Infeasible moves are included in MMM since route costs and subtrip loads change as
the independent moves are implemented. Moves that are infeasible at the start of the
iteration may become feasible later. It is also possible that infeasible moves high-up in MMM
will later-on become feasible. One option is to rescan MMM from the first entry each time an
independent move is made. Alternatively, the moves can be carried over to the next LS
iteration for implementation.

Sorting MMM in each iteration adds to the time-complexity of LS. Other non-sort based
options can be used to scan MMM , such as scanning MMM in a random sequence or simply
scanning it in the sequence in which the moves were added. The savings list can also be
implemented as a priority-queue whereby it is already sorted when passed to Algorithm 6.6.
We leave these implementations and their evaluation for future work.

By treating the compounded moves as a single super-move, the general structure of
LS using Greedy-Independent-Compound-Moves remain the same. The only requirements
are that all improving moves be returned through Algorithms 6.3 to 6.5, which allows for
Nearest-Neighbour-Lists acceleration, and that moves be implemented using Algorithm 6.6.

6.3.3 Static move descriptors

The most computationally expensive component of LS is scanning the move neighbour-
hood for improving moves. Nearest-Neighbour-Lists accelerate LS by reducing the size
of the move neighbourhood, whereas Greedy-Compound-Independent-Moves attempt to
better exploit the information gained from scanning the neighbourhood by implementing
multiple improving moves at once. The last acceleration mechanism that we adapt for the
MCARPTIF builds on the latter by using Static-Move-Descriptors, proposed by Zachari-
adis and Kiranoudis [92] for the VRP. Static-Move-Descriptors are solution independent
and in their full application they describe every possible move and its costs towards a

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 129

new solution. This allows LS to appropriately record and reuse information gained from
scanning the neighbourhood. When a move is implemented, only those moves that are
affected by it are rescanned and their descriptors updated.

With our Nearest-Neighbour-Lists implementation, essential move information con-
tained in π ∈ MMM are ∆Z; a unique identifier for the move-type, movei; arc u involved
in the move; and arc v involved in the move. Information used for the feasibility checks
can also be added, such as pre- and post-arcs of u and v, the change in load to the arcs’
subroutes, and the change in cost to the arcs’ routes. The move information contained
in π meets all the requirements for a static descriptor. The only modification needed is
then to update MMM after each LS iteration, instead of repopulating it from scratch. In the
first LS iteration, MMM will be populated with the descriptors of all the improving moves,
thereafter it only needs to be updated.

To describe how MMM can be updated at each iteration, consider an LS implementation
that only uses the relocate operator. In the first LS iteration the savings list, MMM , of all
improving moves can be found and returned using Algorithm 6.3. The list is then sorted
and its first, thus best, feasible improving move will be implemented using a modified ver-
sion of Algorithm 6.6. After the move is implemented the next step is to determine which
of the descriptors have to be updated. Returning to our Greedy-Compound-Independent-
Moves implementation, recall that each move has cost-links as defined in Table 6.1. After
a move is implemented, all other moves whose cost-links have been broken by the move,
as defined in Table 6.2, have to be rescanned and their descriptors updated. Importantly,
only these moves have to be updated.

A relocate move between u and v has three cost links, (pre(u), u), (u, post(u)) and
(v, post(v)). If the first implemented move in MMM between u∗ and v∗ broke any of these
links, the move between u and v has to be rescanned to update its move descriptor.
Based on Table 6.2, a cost-link of the move between u and v would have been broken
if u∗ ∈ {pre(u), u, post(u), v, post(v)} or if v∗ ∈ {u, post(u), post(v)}. To update the
descriptors, all moves which involve relocating arc pre(u∗), u∗, post(u∗), v∗ or post(v∗)
have to be rescanned, so too all moves in which an arc is inserted before u∗, post(u∗)
or post(v∗). To update the move descriptors, MMM is scanned and any descriptor with u
or inv(u) ∈ {pre(u∗), u∗, post(u∗), v∗, post(v∗)} or v ∈ {u∗, post(u∗), post(v∗)} is removed.
Thereafter the descriptors are updated and inserted back into MMM as follows:

RRRu = {pre(u∗), u∗, post(u∗), v∗, post(v∗)} (6.10)

RRR(inv)
u = {inv(u′) : u′ ∈ RRRu and inv(u′) 6= 0} (6.11)

RRRv = {u∗, post(u∗), post(v∗)} (6.12)

MMM ′ = Find-Relocate-Moves(∆Z,RRRu ∪RRR(inv)
u ,RRRT ,MMM) (6.13)

MMM ′′ = Find-Relocate-Moves(∆Z,RRR/RRRu ∪RRR(inv)
u ,RRRv,MMM

′) (6.14)

MMM = MMM ′′ (6.15)

in Equations (6.13) and (6.14), Algorithm 6.3 is called to find improving relocate moves,
but with the move setsRRRu andRRRv significantly reduced. Nearest-Neighbour-Lists may also
be activated by setting f < 1 to further accelerate the search. The first time LS searches
for improving relocate moves, the full neighbourhood is scanned which takes O(|RRR|×|RRRT |).
Thereafter, the neighbourhood is scanned in O(|RRR|+ |RRRT |).

Since both Static-Move-Descriptors and Greedy-Independent-Compound-Moves rely
on move independence, we use two sets, UUUa and UUU b, to store the arcs of cost-links of
implemented moves. The sets are used to determine if candidate moves are independent
from all the moves already implemented in the current LS iteration. The sets are also used

© University of Pretoria

130 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

to update the savings list. A move which was applied between two arcs u and v can either
break one or two cost-links on u and v. The first set, UUUa, is used to check if a move that
breaks two cost-links on u or v is independent from previous moves. Such moves include
exchange where the two cost-links (pre(u), u) and (u, post(u)) associated with u as well
as the two cost-links (pre(v), v) and (v, post(v)) of v are broken; and the remove portion
of relocate where the two costs links (pre(u), u) and (u, post(u)) are broken. The second
set, UUU b, is similarly used to check if a move that only breaks one cost-link on u or v is
independent from previous moves. Such moves include cross where cost links (pre(u), u)
and (pre(v), v) are broken, and the insert portion of relocate where the cost-link (pre(v), v)
is broken. When a move is implemented, its cost-link arcs can be added to UUUa and UUU b
using Algorithm 6.7. Using UUUa and UUU b, Algorithm 6.8 can then be used to check if a move

Algorithm 6.7: Update-Move-Dependence-Arc-Sets

Input : Move information, π; dependent arc set, UUUa, for two-cost-link arc changes; dependent arc
set, UUUb, for one-cost-link arc changes.

Output: Updated sets, UUUa and UUUb, with arcs from cost-links of move π added to the sets.

1 (∆Z,movei, u, v,) = π;

2 if movei = 1 then // if it’s a relocate move //
3 RRR′rem = {pre(u), u, post(u), v, post(v)};
4 RRRrem = RRR′rem ∪ {inv(u′) : u′ ∈ RRR′rem and inv(u′) 6= 0};
5 UUUa = UUUa ∪RRRrem;
6 UUUb = UUUb ∪ {u, post(u), post(v)};

7 if movei = 2 then // if it’s an exchange move //
8 RRR′exc = {pre(u), u, post(u), pre(v), v, post(v)};
9 RRRexc = RRR′exc ∪ {inv(u′) : u′ ∈ RRR′exc and inv(u′) 6= 0};

10 UUUa = UUUa ∪RRRexc;
11 UUUb = UUUb ∪ {u, post(u), v, post(v)};

12 if movei = 3 then // if it’s a cross move //
13 UUUa = UUUa ∪ {pre(u), u, pre(v), v};
14 UUUb = UUUb ∪ {u, v};
15 return (UUUa, UUUb)

is independent from all the already implemented moves.

Algorithm 6.8: Check-Move-Independence

Input : Move information, π; dependent arc set UUUa for two-cost-link changes; dependent arc set
UUUb for one-cost-link changes.

Output: Logical flag, independent, for the independence of a move from previous moves.

1 (∆Z,movei, u, v,) = π;
2 independent = True;

3 if movei = 1 then // if it’s a relocate move //
4 if u ∈ UUUa or inv(u) ∈ UUUa or v ∈ UUUb or inv(v) ∈ UUUb then independent = False ;

5 if movei = 2 then // if it’s an exchange move //
6 if u ∈ UUUa or inv(u) ∈ UUUa or v ∈ UUUa or inv(v) ∈ UUUa then independent = False ;

7 if movei = 3 then // if it’s a cross move //
8 if u ∈ UUUb or inv(u) ∈ UUUb or v ∈ UUUb or inv(v) ∈ UUUb then independent = False ;

9 return (independent)

To formally link all three acceleration mechanisms developed in this chapter, moves
can be compounded using Algorithm 6.9 and the savings list can be updated using Algo-

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 131

rithm 6.10. The structure of the accelerated LS heuristic, with all three mechanisms, is

Algorithm 6.9: Greedy-Compound-Moves

Input : Current solution, TTT ; savings threshold, ∆Z; savings-list, MMM .
Output: Neighbouring solution, TTT ′, with independent moves implemented on TTT ; total savings,

∆Ztotal, resulting from the compounded moves; dependent arc set UUUa for two-cost-link
changes; dependent arc set UUUb for one-cost-link changes.

1 UUUa = ∅;
2 UUUb = ∅;
3 ∆Ztotal = 0;
4 TTT ′ = TTT ;
5 Order MMM from the best to worst improving move;

6 for π ∈MMM do
7 (∆Z,movei, u, v) = π;

8 if ∆Z < ∆Z then
9 independent =Check-Move-Independence(π,UUUa,UUUb) // Algorithm 6.8 //;

10 if independent = True then
11 feasible =Check-Feasibility(TTT ′, u, v) // Algorithm 6.2 //;
12 if feasible = True then
13 (UUUa,UUUb) =Update-Move-Dependence-Arc-Sets(π,UUUa,UUUb) // Algorithm 6.7 //;
14 Implement the move on TTT ′;
15 ∆Ztotal = ∆Ztotal + ∆Z;
16 // for a pure find-best implementation the heuristic would stop here and

immediately return TTT and ∆Ztotal //;

17 return (TTT ’, ∆Ztotal, UUUa, UUUb)

then as shown in Algorithm 6.11.

6.3.4 Extending the move neighbourhood

The last improvement that we applied to LS was to extend the move neighbourhoods
generated by cross, relocate and exchange. Extending the neighbourhoods increases the
computational time of LS, therefore the extensions were exclusively used by our accelerated
LS implementations.

The first extension that we implemented was to allow cross to swap the end portions
of subtrips, instead of the end portions of entire routes. When a cross move is applied
between Ti,j,k = u and Tl,m,n = v, where

TTT i =
[
. . . ,TTT i,j−1, [. . . , Ti,j,k−2, Ti,j,k−1, Ti,j,k, Ti,j,k+1, . . .],TTT i,j+1, . . .

]
, (6.16)

TTT l =
[
. . . ,TTT l,m−1, [. . . , Tl,m,n−2, Tl,m,n−1, Tl,m,n, Tl,m,n+1, . . .],TTT l,m+1, . . .

]
, (6.17)

the end result would then be

TTT ′i =
[
. . . ,TTT i,j−1, [. . . , Ti,j,k−2, Ti,j,k−1, Tl,m,n, Tl,m,n+1, . . .],TTT i,j+1, . . .

]
, (6.18)

TTT ′l =
[
. . . ,TTT l,m−1, [. . . , Tl,m,n−2, Tl,m,n−1, Ti,j,k, Ti,j,k+1, . . .],TTT l,m+1, . . .

]
. (6.19)

Note that TTT i,j+1 remains in TTT ′i and TTT l,m+1 in TTT ′l. The move consists of two compounded
cross moves between u and v, and Ti,j+1,2 and Tl,m+1,2, and requires that all four arcs be
added to UUUa and UUU b. The move may be applied between different routes as well as different
subtrips in the same route. In our implementations, we only evaluated the subtrip cross
move between Ti,j,k = u and Tl,m,n = v if Ti,j+1,1 = Ti,m+1,1, in which case the cost of the

© University of Pretoria

132 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Algorithm 6.10: Update-Savings-List

Input : Dependent arc set, UUUa, for two-cost-link arc changes; dependent arc set, UUUb, for
one-cost-link arc changes; move savings list, MMM ; move-cost threshold, ∆Z.

Output: Updated move savings list, MMM ′

1 MMM ′ = ∅;
2 for π ∈MMM do
3 independence =Check-Move-Independence(π,UUUa,UUUb) // Algorithm 6.8 //;
4 if independence = True then
5 MMM ′ = MMM ′ ∪ {π}

6 MMM ′ = Find-Relocate-Moves(∆Z,UUUa,RRRT ,MMM
′) // Algorithm 6.3 //;

7 MMM ′ = Find-Relocate-Moves(∆Z,RRR/UUUa,UUUb,MMM
′);

8 MMM ′ = Find-Exchange-Moves(∆Z,UUUa,RRR) // Algorithm 6.4 //;

9 MMM ′ = Find-Exchange-Moves(∆Z,RRR/UUUa,UUUa,MMM
′);

10 MMM ′ = Find-Cross-Moves(∆Z,UUUb,RRRT) // Algorithm 6.5 //;

11 MMM ′ = Find-Cross-Moves(∆Z,RRRT /UUUb,UUUb,MMM
′);

12 return (MMM ′)

Algorithm 6.11: Accelerated-Local-Search

Input : Initial solution, TTT (0) ∈XXX, savings threshold ∆Z.
Output: Local optimum solution, TTT (t)

1 t = 0;
2 MMM = ∅;

3 MMM = Find-Relocate-Moves(TTT (0),∆Z,RRR,RRRT ,MMM) // Algorithm 6.3 //;

4 MMM = Find-Exchange-Moves(TTT (0),∆Z,RRR,RRR,MMM) // Algorithm 6.4 //;

5 MMM = Find-Cross-Moves(TTT (0),∆Z,RRRT ,RRRT ,MMM) // Algorithm 6.5 //;
6 repeat

7 Use Reduce-Vehicles on TTT (t) to reduce the fleet, and let TTT ′ be the result;

8 if |TTT ′| < |TTT (t)| then // the fleet size has been reduced //

9 Set TTT (0) = TTT ′ and return to line 1;

10 if MMM 6= ∅ then

11 (TTT ′,∆Ztotal,UUUa,UUUb) = Greedy-Compound-Moves(TTT (t),∆Z,MMM) // Algorithm 6.9 //;

12 if ∆Ztotal < ∆Z then

13 Set TTT (t+1) = TTT ′;

14 MMM ′′ = Update-Savings-List(UUUa,UUUb,MMM,∆Z) // Algorithm 6.10 //;
15 MMM = MMM ′′;
16 t = t+ 1;

17 else a feasible move could not be found;

18 else an improving move could not be found;

19 until a feasible improving move could not be found;

20 return (TTT (t))

© University of Pretoria

6.3. ACCELERATED AND EXTENDED LS FOR THE MCARPTIF 133

move between Ti,j+1,2 and Tl,m+1,2 will be zero. Otherwise a normal cross move between
the routes was evaluated. The evaluation was always done in the order of first checking if
a feasible subtrip move can be made, otherwise checking if a feasible route move can be
made.

The second extension that we implemented was to compound two cross moves on the
same subtrip. Recall that when finding the best cross move between arcs u and v, the
conditions i 6= j or j 6= m must hold since the move has to be applied between two different
routes or subtrips. There are cases where two cross moves on the same subtrip can be
compounded into a single double-cross move, without having to recalculate move costs. Let
∆Z1 be the cost for the cross move between tasks Ti,j,k1 = u1 and Ti,j,n1 = v1, and let ∆Z2

be the cost of the second move on the same subtrip between Ti,j,k2 = u2 and Ti,j,n2 = v2.
If k1 < k2 − 1, k2 < n1 − 1 and n1 < n2 − 1 the two cross moves can be compounded to
produce an exchange between sections [Ti,j,k1 , . . . , Ti,k2−1] and [Ti,n1 , . . . , Ti,n2−1]. In this
case the original route

TTT i,j = [. . . , Ti,j,k1−1, Ti,j,k1 . . . , Ti,k2−1, Ti,k2 , . . . , Ti,n1−1, Ti,n1 , . . . , Ti,n2−1, Ti,n2 , . . .],

(6.20)

will become

TTT ′i,j = [. . . , Ti,j,k1−1, Ti,n1 , . . . , Ti,n2−1, Ti,k2 , . . . , Ti,n1−1, Ti,j,k1 , . . . , Ti,k2−1, Ti,n2 , . . .].

(6.21)

The cost of the double-cross move is ∆Z1 + ∆Z2, and it can also be implemented if
k2 < k1 − 1, k1 < n2 − 1 and n2 < n1.

The last extension that we implemented was to compound an infeasible improving
move with a non-improving move. We applied this for exchange and relocate between
different subtrips on the same route, thereby only load constraints are of concern. A move
that violates the capacity constraint of subtrip TTT l,m can be linked with an independent
relocate move that removes arc v′ from TTT l,m. The two moves are compounded if v′ can
be feasibly inserted into another subtrip, and if its removal frees-up enough capacity in
TTT l,m for the infeasible move to become feasible. This type of move is referred to as an
infeasible-compound move.

For the double-cross and infeasible-compound moves we used a greedy approach, similar
to Greedy-Compound-Moves, to decide which two moves to compound. Cross moves were
grouped according to the subtrips on which they are applied, and the moves in each group
were sorted from best to worst savings. Starting with the best move, the heuristic would
scan the rest of the moves in the subtrip group until one is found that meets all the
double-cross conditions. If none is found, the process repeats from the second best move
in a group. If a move was found, both are implemented if they are independent from all
the previous moves made in the LS iteration. Each subtrip group is then scanned through
this process.

The same approach is followed for infeasible moves. First, infeasible subtrip moves are
grouped according to subtrips together with complimentary non-improving relocate moves
that removes arcs from the subtrip. Starting with the best infeasible move, the non-
improving complimentary relocate moves for that subtrip are scanned from best to worst.
When a non-improving move is found that releases enough capacity from the subtrip, and
which is independent from the infeasible and previous moves, both are implemented. The
process then repeats for the second best infeasible move, and is applied to all subtrip
groups.

© University of Pretoria

134 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Both double-cross and infeasible-compound may consider pairing improving and non-
improving moves, as long as the combined moves result in an improvement. The move
neighbourhood can thus be extended by adding non-improving moves to MMM . Since MMM is
sorted in each LS iteration, its size can be limited by specifying a threshold saving ∆Z,
which is passed to Algorithms 6.3 to 6.5. Only moves with ∆Z < ∆Z are then added
to MMM . Feasible moves with ∆Z < 0 can be directly implemented, and double-cross and
infeasible-compound moves can be implemented if ∆Z1 + ∆Z2 < 0, where ∆Z1 and ∆Z2

are the respective savings of the two compounded moves.

For our LS implementation we searched for and applied double-cross and infeasible-
compound only once LS reached a local optima. If an improving double-cross and infeasible-
compound was found, the savings list was updated and LS reverted to the normal accel-
erated search, otherwise it terminated.

6.4 Computational results

The aim of this chapter was to develop and evaluate efficient LS heuristics that can be
used to improve the initial solutions within short and medium time-limits, and that can
be extended to develop efficient metaheuristics for the MCARPTIF. For the majority
of our computational tests we relied on the Act-IF, Lpr-IF and Cen-IF waste collection
benchmark sets, as they cover a range of realistic instances. The Cen-IF instances are
especially important as they are consistent in size with the very large problem instances
found in practice. All sets are discussed in detail in Chapter 2, Section 2.4.2.

Computational tests were performed on four accelerated LS setups, and their re-
sults compared against the basic setups of the previous chapter. For each accelerated
setup, Static-Moved-Descriptors and Nearest-Neighbour-Lists were always applied, as was
Nearest-Neighbour-Lists that limit moves to an arc’s f nearest neighbours. Two of the
setups made the best-move at each iteration, whereas the other two employed the Greedy-
Independent-Compound-Moves mechanism. The setups were divided between those that
relied on the relocate, cross, exchange and Reduced-Vehicles move operators, and those
who also evaluated double-cross and infeasible-compound moves. A summary of the differ-
ent LS setups and their acronyms, including those from the previous chapter, are shown
in Table 6.3.

All LS setups were programmed in Python version 2.7, with critical procedures op-
timised using Cython version 0.17.1. Experiments were run on a Dell PowerEdge R910
4U Rack Server with 128GB RAM with four Intel Xeon E7540 processors each having 6
cores, and 12 threads and with a 2GHz base frequency. Experiments were run without
using programmatic multi-threading or multiple processors.

For the first part of our tests we analysed the execution time of, and the savings
obtained through the accelerated LS heuristics on three deterministic initial solutions per
benchmark instance. The solutions were generated using Path-Scanning, Improved-Merge
and Efficient-Route-Cluster with their primary objective set to minimise the fleet size.
Detailed descriptions of the heuristics can be found in Chapter 4, Section 4.3. The aim
of the tests was to determine if the acceleration mechanisms improve the efficiency of
LS, and to determine if their implementation reduces the quality of the local optima
at which LS terminates. As an output of the first tests we identified dominated LS
setups and eliminated then from further testing. For the second part of our tests we
linked the remaining LS setups with the randomised multi-start constructive heuristics,
thereby allowing LS to improve multiple initial solutions per instance and return the best
improved solution. The aim of the tests was to find the best constructive heuristic and LS

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 135

Table 6.3: The main local search versions and their respective setups tested for the
MCARPTIF.

Accelerated setups are linked with Static-Move-Descriptors and Nearest-Neighbour-Lists with f nearest
neighbours; for setups where f is not specified the level f = 1 was used. For the reduced neigbourhoods,
relocate, cross, exchange and Reduce-Vehicles are applied. For the extended move neighbourhoods, double-
cross and infeasible-compound are also applied.

setup combination, to be used under short and medium execution times, and to identify
candidate setups that can extended to develop efficient metaheuristics for the MCARPTIF.

6.4.1 Analysis of acceleration mechanisms and extended move neigh-
bourhoods

For our first tests we analysed the efficiency of the accelerated LS setups by measuring
the CPU time required by the setups to reach local optima. To compare the improvement
capabilities of different setups we further measured the fractional cost improvement made
by LS to an initial solution, calculated as

∆ZfLS =
Z
(
TTT (0)

)
− Z

(
TTT (t)

)
Z
(
TTT (0)

) , (6.22)

where Z(TTT (0)) is the cost of the initial solution and Z(TTT (t)) is the cost of the local opti-
mum solution returned by LS. This measurement was taken over three initial solutions
per problem instance, generated using the Path-Scanning, Improved-Merge and Efficient-
Route-Cluster heuristics. Out of the sixty-three initial solutions for the Act-IF, Lpr-IF
and Cen-IF instances, fourteen are known to have an excessive fleet-size, this after Reduce-
Vehicles were applied to the solutions. To analyse the fleet reduction capabilities of LS we
counted the number of instances, out of the fourteen, on which the LS setups were able
to reduce the fleet size up-to its known minimum size.

The accelerated setups employ three mechanisms, namely, Static-Move-Descriptors,
Greedy-Compound-Independent-Moves and Nearest-Neighbour-Lists. Our first tests only
focussed on Static-Move-Descriptors. Thereafter we tested the setup using Static-Move-
Descriptors as well as Greedy-Compound-Independent-Moves, and lastly we tested the
setups using all three mechanisms.

© University of Pretoria

136 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Static-Move-Descriptors

An advantage of Static-Move-Descriptors is that it does not effect solution quality. An LS
setup will reach the same local optima, with or without its application. As such, the mech-
anism can always be applied in combination with other acceleration mechanisms without
compromising solution quality, assuming that it does in fact accelerate the search. To test
this assumption the LS-Accelerated-Reduced-Best (LS-ARB) setup with f = 1 was eval-
uated against LS-Basic-Full-Best (LS-BFB) and LS-Basic-Reduced-Best (LS-BRB) from
the previous chapter. Results for the tests are shown in Figure 6.3. The execution times

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●
●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

3 h

50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

E
x

ec
u

ti
o

n
 t

im
e

o
n

 a
 l

o
g

10
 s

ca
le

● ●LS−ARB LS−BRB LS−BFB

(a) CPU times and trend-lines of the LS setups ver-
sus problem instance size τ = |RRR|.

● ●

●

●

0.000

0.025

0.050

0.075

0.100

Cen−IF Lpr−IF Act−IF

Benchmark set

C
o

st
 i

m
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

L
S

f
)

LS−ARB LS−BRB LS−BFB

(b) Fraction by which the LS setups improved initial
solutions.

Figure 6.3: Comparison of LS-Accelerated-Reduced-Best (LS-ARB), LS-Basic-Reduced-
Best (LS-BRB) and LS-Basic-Full-Best (LS-BFB) on waste collection benchmark sets.

of the setups are shown in Figure 6.3a which confirms that LS-ARB is significantly quicker
than both LS-BRB and LS-BFB, particularly on the large Cen-IF instances. On the large
instances, the execution time of LS-ARB was about half-that of LS-BRB, and as shown in
Figure 6.3b the cost savings of the two setups were identical. The vehicle fleet reduction
of the setups were also identical, whereby K was reduced to its known minimum on eight
of the fourteen excessive-fleet initial solutions. Based on these results we chose to always
use Static-Move-Descriptors within the accelerated setups. We also eliminated LS-BRB
from further testing since LS-ARB is quicker and produces the same local optima.

The acceleration effect of the Static-Move-Descriptors was not as significant as those
observed by Zachariadis and Kiranoudis [92] on similarly sized VRP instances, indicating
that there is still room for improvement. One such improvement, which Zachariadis and
Kiranoudis [92] found to be critical for their application, is in the use of priority-queues to
avoid having to sort the savings list at the start of each LS iteration. All our accelerated
LS setups would benefit from this improvement, which we leave for future work.

Greedy-Compound-Independent-Moves

The second acceleration mechanism that we evaluated was Greedy-Compound-Independent-
Moves. To test the effect of the mechanism, the LS-Accelerate-Reduced-Greedy (LS-ARG)

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 137

setup that employs the mechanism in conjunction with Static-Move-Descriptors was tested
against LS-ARB and LS-BFB on the waste collection instances. Results for the tests are
shown in Figure 6.4. As shown in Figure 6.4a, the computational time of LS-ARG is much

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

3 h

50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

E
x

ec
u

ti
o

n
 t

im
e

o
n

 a
 l

o
g

10
 s

ca
le

● ●LS−ARG LS−ARB LS−BFB

(a) CPU times and trend-lines of the LS setups ver-
sus problem instance size τ = |RRR|.

●

●

●

●

●

0.000

0.025

0.050

0.075

0.100

Cen−IF Lpr−IF Act−IF

Benchmark set

C
o

st
 i

m
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

L
S

f
)

LS−ARG LS−ARB LS−BFB

(b) Fraction by which the LS setups improved initial
solutions.

Figure 6.4: Comparison of LS-Accelerated-Reduced-Greedy (LS-ARG), LS-Accelerated-
Reduced-Best (LS-ARB) and LS-Basic-Full-Best (LS-BFB) on waste collection benchmark
sets.

lower than the times of the other setups, especially on large instances where it took less
than three minutes to reach local optima on all but two of the largest Cen-IF instances.
The difference in computational times between LS-ARG and LS-ARB increases with prob-
lem size, indicating that LS-ARG has better scalability. The reason for this is discussed
in more detail in Section 6.A at the end of the chapter.

As shown in Figure 6.4b, the improvement of LS-ARG is very similar to that of LS-
ARB, outperforming the setup on Cen-IF and Act-IF. LS-ARB had slightly better im-
provements on Cen-IF, saving it from being completely dominated. The vehicle fleet
reduction of LS-ARG was also identical to that of LS-ARB and LS-BFB, in that the fleet
size was reduced to its known minimum on eight of the fourteen excessive-fleet initial
solutions.

Nearest-Neighbour-Lists

The third acceleration mechanism that we tested was Nearest-Neighbour-Lists. The mech-
anism reduces the move neigbourhood by limiting moves between arcs to a fraction f of
the closest neighbours. For the computational tests, LS-ARG and LS-ARB were tested at
three levels, namely f ∈ {0.25, 0.5, 0.75}, and compared against the previously tested se-
tups with f = 1. Results for the setups are shown in Figure 6.5. As shown in Figure 6.5a,
reducing the move neighbourhood significantly reduced the computational times of the
setups. At f = 0.25, LS-ARG took less than 80 seconds on the large Cen-IF instances
to reach local optima. However, as shown in Figure 6.5b, the reduction in computational
times comes at a price, with the coinciding savings of the setups being inversely correlated
to f . Some of the LS-ARG-f setups have negative savings, meaning they increased the

© University of Pretoria

138 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

LS−ARG LS−ARB

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●
●

●

●
●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
● ●

●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

E
x

ec
u

ti
o

n
 t

im
e

o
n

 a
 l

o
g

10
 s

ca
le

● ● f = 0.25 f = 0.5 f = 0.75 f = 1

(a) CPU times and trend-lines of the LS setups versus problem instance size τ = |RRR|.

LS−ARG LS−ARB

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

−0.04

0.00

0.04

0.08

Cen−IF Lpr−IF Act−IF Cen−IF Lpr−IF Act−IF

Benchmark set

C
o

st
 i

m
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

L
S

f
)

 f = 0.25 f = 0.5 f = 0.75 f = 1

(b) Fraction by which the LS setups improved initial solutions.

Figure 6.5: Comparison of LS-Accelerated-Reduced-Greedy (LS-ARG) and LS-
Accelerated-Reduced-Best (LS-ARB) at four Nearest-Neighbour-Lists f -levels on waste
collection benchmark sets.

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 139

cost of the initial solutions. This was as a result of their fleet reductions. During their
execution, Reduce-Vehicles was able to reduce the fleet size, but by doing so it increased
solution cost. The LS-ARG-f setups improved the solution cost thereafter to local optima,
but the local optima still had higher costs than the initial solutions. Table 6.4 shows the
fleet sizes of the local optima solution on the excessive-fleet initial solutions. Unlike the
previous acceleration mechanisms, the nearest-neighbour lists negatively affected the fleet-
reduction capabilities of the setups. LS-ARG-0.25 and LS-ARG-0.5 could only reduce the
fleet sizes of three solutions, whereas LS-ARB-0.25 and LS-ARB-0.5 could at least reduce
four solutions.

Linking Nearest-Neighbour-Lists with Static-Move-Descriptors and Greedy-Compound-
Independent-Moves allows LS to be used under short execution time-limits. However, as
shown Figure 6.5b and Table 6.4, its application reduces solution quality in correlation to
lower f values. The setups were therefore subjected to further testing.

Extended move neighbourhood

The last setups that we tested used an extended neighbourhood when searching for im-
proving moves. In addition to the relocate, exchange, cross and Reduce-Vehicle moves,
the extended setups also evaluated double-cross and infeasible-compound moves. The
extended-moves combine an improving move, which cannot be implemented on its own,
with an independent complimentary move. The complimentary move need not be im-
proving, as long as the combined moves result in an improvement on the current solution.
Recall that the savings list is sorted and scanned in each iteration to identify complimen-
tary moves. To keep these operations efficient, only moves with savings below a user-set
threshold can be included in the savings list. The challenge is then to determine good cost-
thresholds for the setups, keeping in mind that it may be benchmark and even instance
specific.

To establish a move-cost threshold we analysed the move-cost landscape of LS with a
reduced neighbourhood at the first LS iterations. For each initial solution, LS was called
but terminated before an improving move was made. Instead, the number of improving
and worsening moves were recorded, as well as the number of neutral moves with zero
cost. Figure 6.6 shows the results of the tests on the waste collection sets. The number
of available moves increases quadratically with problem size, with worsening moves being
the most prevalent. Of interest is the amount of neutral moves, which in most cases
outnumbers the improving moves. In an MCARPTIF solution, required arcs and edges
are often dead-headed in routes. When a move results in the arc being serviced instead
of dead-headed in a particular route, the cost of the move is zero. For the extended move
neighbourhoods we chose to exploit this characteristic by setting the move-cost threshold
to one, thereby allowing LS to only return improving and neutral moves. An advantage
of this approach is that it keeps the savings-list relatively short, but more importantly, a
unique threshold does not have to be determined for each problem instance. Regardless
of whether the move costs are between [−10, 10] or [−10000, 10000], neutral moves always
have zero cost, and as shown in Figure 6.6 there are usually a significant number of neutral
moves available.

To evaluate the impact of the extended neighbourhood, LS-Accelerated-Extended-
Greedy and LS-Accelerated-Extended-Best were tested on the three starting solutions for
the waste collection sets. The results for the setups in comparison to LS-ARG and LS-ARB
with a reduced neighbourhood are shown in Figure 6.7. The extended neighbourhood in-
creased the computational time of both setups, more so on the mid-sized Lpr-IF instances
(Figure 6.7a). On the large Cen-IF instances the computational times required to find lo-

© University of Pretoria

140 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

T
a
b

le
6.4:

F
leet

size
red

u
ction

,
∆
K

L
S ,

of
L

S
-A

R
G

-f
an

d
L

S
-A

R
B

-f
setu

p
s

on
fou

rteen
ex

cessive-fl
eet

in
itial

solu
tion

s.

L
S
-A

R
G

L
S
-A

R
B

In
sta

n
ce

K
B

F
In

itia
l

|T TT
(0

)|
f

=
0
.2

5
f

=
0
.5

f
=

0
.7

5
f

=
1

f
=

0
.2

5
f

=
0
.5

f
=

0
.7

5
f

=
1

C
en

-IF
-b

2
1

IM
2
9

7
7

7
8

7
7

7
8

P
S

2
2

-
-

1
1

-
1

1
1

E
R

C
2
2

-
-

-
-

-
-

-
-

C
en

-IF
-c

1
9

P
S

2
0

-
-

1
1

1
1

1
1

E
R

C
2
0

-
-

-
-

-
-

-

L
p
r-IF

-a
-0

2
1

E
R

C
2

-
-

-
-

-
-

-
-

L
p
r-IF

-a
-0

4
5

IM
6

1
1

1
1

1
1

1
1

L
p
r-IF

-a
-0

5
8

IM
9

1
1

1
1

1
1

1
1

L
p
r-IF

-b
-0

2
1

IM
2

-
-

-
-

-
-

-
-

P
S

2
-

-
-

-
-

-
-

-
E

R
C

2
-

-
-

-
-

-
-

-

L
p
r-IF

-b
-0

5
8

IM
9

-
-

-
1

-
1

1
1

L
p
r-IF

-c-0
3

4
IM

5
-

-
-

1
-

-
-

1
E

R
C

5
-

-
-

1
-

-
-

1

N
u

m
ber

o
f

so
lu

tio
n

s
w

ith
red

u
ced

fl
eets

3
3

5
8

4
6

6
8

K
B

F
:

B
est

k
n
ow

n
fl
eet

size;
In

itia
l:

C
o
n
stru

ctiv
e

h
eu

ristic
v
ersio

n
;|T TT

0|:
fl
eet

size
o
f

th
e

in
itia

l
so

lu
tio

n
.

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 141

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●●●●

●

●●

●
●
●

●●●

●

●●

●

●●

●
●
●

●●●

●●●

●
●●

●
●●

●●●

●
●●

●
●●

●
●
●

●
●●

●

●
●

●

●●

●

●●

1e+01

1e+03

1e+05

1e+07

50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

N
u

m
b

er
 o

f
p

o
ss

ib
le

 L
S

 m
o

v
es

 o
n

 a
 l

o
g

10
 s

ca
le

● ●Improving Neutral Worsening moves

Figure 6.6: Move landscape analysis at the first iteration of LS with a reduced neighbour-
hood on waste collection benchmark sets.

cal optima were relatively close. Better costs savings were obtained through the extended
neighbourhood, especially on the Cen-IF instances (Figure 6.7b), but it had no impact on
vehicle fleet reduction, with LS-AEB and LS-AEG producing identical fleet sizes to those
of LS-ARB and LS-ARG. True to its purpose, the extended neighbourhood allowed the
LS setups to reach better local optima, and as expected, it increased the computational
times of the setups in doing so.

The initial tests on the three acceleration mechanisms showed that they have the
desired impact of improving the efficiency of LS, and that their solutions can be improved
through the extended move neighbourhood. In the rest of this section we critically evaluate
and compare all the setups, with the aim to identify and eliminate setups that are both
slower and produce worse solutions than other setups.

6.4.2 Domination analysis

Thus far we have evaluated the efficiency and improvement capabilities of thirty-two accel-
erated LS setups, including those with different nearest-neighbour f levels. In most cases
there is a direct trade-off between the solution quality and computational efficiency of the
setups. The same holds for the four basic LS setups developed and tested in the previous
chapter. Tests on LS-Basic-Full-Best (LS-BFB) showed that it is too slow for medium exe-
cution time-limits, with execution times in excess of 30 minutes on large Cen-IF instances.
As a result, it was eliminated from further testing. LS-BFB was also eliminated since it
was dominated by LS-Accelerated-Reduced-Best (LS-ARB); both produce the same local
optima, but LS-ARB is much quicker.

The domination of setups on the waste collection benchmark sets, similar to that of
LS-ARB over LS-BRB, was then used to identify and eliminate sub-performing setups

© University of Pretoria

142 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Greedy−Compound−Independent−Move strategy Best−Move strategy

●

●

●●
●
●

●●

●
●●●

●

●

●
●
●

●

●

●

●
●
●
●

●
●

●

●●
●●

●

●
●●
●

●
●

●

●

●

●

●●●

●

●

●

●●●

●●
●

●
●

●

●
●●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●

●
●
●

●
●
●

●
●

●

●
●
●

●●

●
●●●

●●
●

●
●

●

●
●

●
●

●
●

●●
●
●
●●

●
●●
●●●

●

●

●●
●
●

●●

●●

●●

●

●

●●●
●

●
●

●●
●
●

●●

●
●●●

●●
●●
●●

●

●

●●●

●

●●
●

●

●

●

●●

●●

●
●

●●

●
●
●●

●●

●●●●

●
●
●
●

●

●

●
●●●

●

●

●●

●
●
●●

●●
●

●●●

●●

●●
●
●

●●

●●●●

●●●

●●

●

●●

●●

●

●

●●

●●
●●

●●
●●
●●

0.01 sec

0.1 sec

1 sec

10 sec

3 min

30 min

1 h

50 100 200 500 1000 2000 5000 50 100 200 500 1000 2000 5000

Instance size (τ) on a log10 scale

E
x

ec
u

ti
o

n
 t

im
e

o
n

 a
 l

o
g

10
 s

ca
le

● ●Reduced move neighbourhood Extended move neighbourhood

(a) CPU times and trend-lines of the LS setups versus problem instance size τ = |RRR|.

Greedy−Compound−Independent−Move strategy Best−Move strategy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

Cen−IF Lpr−IF Act−IF Cen−IF Lpr−IF Act−IF

Benchmark set

C
o

st
 i

m
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

L
S

f
)

Reduced move neighbourhood Extended move neighbourhood

(b) Fraction by which the LS setups improved initial solutions.

Figure 6.7: Comparison of LS-Accelerated-Reduced-Greedy (LS-ARG), LS-Accelerated-
Extended-Greedy (LS-AEG), LS-Accelerated-Reduced-Best (LS-ARB) and LS-
Accelerated-Extended-Best (LS-AEB) on waste collection benchmark sets.

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 143

from further study. For the analysis, we calculated the average savings per benchmark
set obtained by the setups over all the initial solutions, the number of excessive-fleet
initial solutions on which they successfully reduced the fleet-size, as well as their average
execution times. A setup was then flagged as dominated if another setup produced the
same or better quality local optima, but required less computational time to do so.

Results for the analysis are shown in Figure 6.8. The domination of the setups in terms

Cen−IF Lpr−IF

●

● ● ●

● ●

● ●

●

● ● ●

●

● ●●

●

●

AEB−0.25

AEB−0.5

AEB−0.75
AEB

AEG−0.25

AEG−0.5

AEG−0.75 AEG

ARB−0.25

ARB−0.5

ARB−0.75

ARB

ARG−0.5

ARG

BFF
BRF

ARG−0.25

ARG−0.75

●

● ●

●

● ● ●

●

●

● ●

●

● ●

●●

●

●

AEB−0.25

AEB−0.5
AEB−0.75

AEB

AEG−0.25

AEG−0.5

AEG−0.75

AEG

ARB−0.25

ARB−0.5 ARB−0.75

ARB

ARG−0.5

ARG−0.75

BFFBRF

ARG−0.25

ARG

0

1

2

3

4

5

0 300 600 900 0.0 2.5 5.0 7.5 10.0

Average execution time (seconds)

N
u

m
b

er
 o

f
so

lu
ti

o
n

s
o

n
 w

h
ic

h
 t

h
e

fl
ee

t
si

ze
 w

a
s

re
d

u
ce

d

● ●Dominated Non−dominated

(a) Number of solutions on which the fleet size was reduced and average execution time of the setups.

Cen−IF Lpr−IF Act−IF

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

AEB−0.25

AEB−0.5

AEB−0.75

ARB−0.25

ARB−0.5

ARB−0.75

ARB

BFF

BRF

ARG−0.25

AEG−0.25

ARG−0.5

AEG−0.5

ARG−0.75

AEG−0.75

ARG
AEG

AEB

●

●

●

●

●

●

●●●

●●

●●

●

●

●

● ●

AEB−0.25

AEB−0.5

AEB−0.75

ARB−0.25

ARB−0.5

ARB−0.75

ARB

BFF

BRF

ARG−0.25

AEG−0.25

ARG−0.5

AEG−0.5

ARG−0.75

AEG−0.75

ARG

AEG AEB

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

AEB−0.75

AEB

ARB−0.5

ARB−0.75

ARB

ARG−0.75

ARG

BFF

BRF

ARG−0.25

AEG−0.25

ARB−0.25

AEB−0.25

ARG−0.5

AEG−0.5

AEG−0.75

AEB−0.5

AEG

0.00

0.01

0.02

0.03

0.04

0 300 600 900 0.0 2.5 5.0 7.5 10.0 0 5 10

Average execution time (seconds)

A
v

er
a

g
e

fr
a

ct
io

n
a

l
sa

v
in

g
s

o
v

er
 i

n
it

ia
l

so
lu

ti
o

n
s

(∆
Z

L
S

f
)

● ●Dominated Non−dominated

(b) Average fractional cost savings and average execution time of the setups.

Figure 6.8: Dominated and non-dominated local search setups in terms of cost savings,
fleet reduction and execution time of the setups on waste collection benchmark sets. A
full list of acronyms used in the setup can be found in Table 6.3 at the beginning of the
setup.

of fleet size reduction is shown in Figure 6.8a. The vehicle fleets could only be reduced
on Cen-IF and Lpr-IF, which is why Act-IF does not feature in the figure. On Cen-IF,
LS-ARG-0.25 and LS-ARG-0.75 were non-dominated as they had the fastest execution
times, while producing fleet reductions similar to those of the other setups. On Lpr-IF,
LS-ARG-0.25 was again non-dominated, as was LS-ARG. The performance of the other
setups in conjunction with their cost-reduction dominance meant that they could not

© University of Pretoria

144 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

be automatically discounted. Two setups, namely LS-ARB-0.25 and LS-AED-0.25, were
clearly outperformed on Cen-IF by quicker setups that produced better fleet reductions,
and required less time to-do so. On Lpr-IF, the five setups LS-ARB-0.5, LS-AEB-0.5,
LS-ARB-0.75, LS-AEB-0.75 and LS-ARB, were similarly outperformed. As shown in
Figure 6.8b, these setups were dominated on cost-savings as well, and could thus be
eliminated from further testing. The other setups produced very similar fleet reductions.
This necessitated us to rely mostly on cost-savings to eliminate some of them from further
testing.

The domination of the setups in terms of average cost savings and computational time
is shown in Figure 6.8b. On all three sets, LS-BFF and LS-BRF were always dominated
by LS-AEG and subsequently eliminated form further testing. On Cen-IF and Lpr-IF
the LS-AEB setup had the highest execution time, but remained non-dominated since
it produced the best local-optima. The Nearest-Neighbour-Lists reduced the execution
time of the accelerated setups, more so for LS-AEB-0.25 to 0.75 and LS-ARB-0.25 to
0.75, but in most cases the coinciding reduction in solution quality meant that the setups
were dominated by LS-ARG-f and LS-AEG-f . Except for LS-ARB-0.25 on Act-IF, all
the accelerated best-move setups with f ∈ {0.25, 0.5, 0.75} were dominated, as well as
LS-ARB-0.25 on Cen-IF and Lpr-IF. As a result, the setups were eliminated from further
testing, leaving only LS-AEB from the LS-Accelerated-Best group. LS-ARG and the three
LS-ARG-0.25 to 0.75 setups were non-dominated on all three sets. Although a few of the
LS-AEG-0.25 to 0.75 setups were dominated on the Lpr-IF set, none were eliminated since
they were non-dominated on Act-IF and Cen-IF. In summary, the nine non-dominated
setups that were subjected to further testing were LS-AEB, LS-AEG-f and LS-ARG-f ,
both with f ∈ {0.25, 0.5, 0.75, 1}.

Figure 6.8 shows that the non-dominated and dominated setups were fairly consistent
between the waste collection sets, although some discrepancies were observed between the
Act-IF and other two sets. The dominated and non-dominated analysis may therefore
give different results when the test sets are substantially different.

Tests on constructive heuristics in Chapter 4 showed that heuristic performance varies
between benchmark sets, highlighting the need for tests to be conducted on realistic prob-
lem instances. To determine if the same is true for LS improvement procedures, the
domination analysis were repeated on the mval-IF-3L set. The set has instances similar
to the gdb and bccm sets regularly used for computational tests on CARPs. All sets are
discussed in detail in Chapter 2, Section 2.4.2.

Results for the domination analysis on mval-IF-3L are shown in Figure 6.9, includ-
ing results for the four basic LS heuristics from the previous chapter. The differences
in the solution quality on this set are much more prominent, whereas the difference in
computational times are much smaller. Out of the 102 initial solutions used for the tests,
forty-eight had known excessive fleet sizes. The fastest setup, LS-ARG-0.25, reduced the
fleets of only seven solutions, whereas LS-BRF reduced the fleet on twenty-solutions. In
terms of cost savings, LS-ARG-0.25 had an average savings of 2.5%. The average savings
of LS-BRF was close to 8%. With both setups taking, on average, less than 0.075 seconds
to improve the initial solutions, it would be difficult to motivate why the quicker, but
poorly performing LS-ARG-0.25 setup should be considered for further testing. LS-BRF
performed well in reducing costs and the best in reducing fleet sizes, and it was quicker
than the accelerated LS-AEG and LS-AEB setups. With its computational time of less
than 0.075 seconds, LS-BRF would be a good candidate under short and medium term
execution times. Yet, on the waste collection sets, LS-BRF was always dominated by LS-
AEG (Figure 6.8). On the large Cen-IF instances, LS-BRF took, on average, close to ten

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 145

mval−IF−3L

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

AEB−0.25

AEB−0.5

AEB−0.75

AEB

AEG−0.25

AEG−0.5

AEG−0.75

AEG

ARB−0.25

ARB−0.5

ARB−0.75 ARB

ARG

BFB

BFF

BRB

ARG−0.25

ARG−0.5

ARG−0.75

BRF

0

5

10

15

20

25

0.00 0.04 0.08 0.12

Average execution time (seconds)

N
u

m
b

er
 o

f
so

lu
ti

o
n

s
o

n
 w

h
ic

h
 t

h
e

fl
ee

t
si

ze
 w

a
s

re
d

u
ce

d
● ●Dominated Non−dominated

(a) Number of solutions on which the fleet size was
reduced and execution time of the setups.

mval−IF−3L

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

● ●
●

●

AEB−0.75

ARB−0.25

ARB−0.5

ARB−0.75

ARB

ARG BFB

BRB

ARG−0.25

AEG−0.25

AEB−0.25

ARG−0.5

AEG−0.5

AEB−0.5

ARG−0.75

AEG−0.75

BRF BFF

AEG
AEB

0.000

0.025

0.050

0.075

0.00 0.04 0.08 0.12

Average execution time (seconds)
A

v
er

a
g

e
fr

a
ct

io
n

a
l

sa
v

in
g

s
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

s
(∆

Z
L

S
f

)

● ●Dominated Non−dominated

(b) Average fractional cost savings and execution
time of the setups.

Figure 6.9: Dominated and non-dominated local search setups in terms of cost savings,
fleet reduction and execution time of the setups on the mval-IF-3L benchmark set.

minutes to reach local optima, whereas LS-AEG took on average just over two minutes to
reach better local optima.

Tests on the waste collection instances show that LS-BRF cannot be used for waste
collection planning. This confirms the need for computational tests to be performed on
realistic waste collection instances, as the performance of heuristics on small instances
cannot be used to predict their performance in more practical settings.

Returning to our tests on the waste collection instances. If the LS setups were called
to improve the deterministic Path-Scanning, Improved-Merge and Efficient-Route-Cluster
solutions, then the best LS heuristic would be LS-AEG-1. The best combined setup would
be limited to the constructive heuristics linked with LS-AEG-1 with combined execution
times less than predetermined time-limits When additional execution time is available
better local optimum solutions may be found through a multi-start application, whereby
the LS setups are allowed to improve multiple different initial solutions for the same
instance, from the which the best is returned. The question is then whether the quicker
setups that terminate at worse local optima will produce better results than the slower
better local optima setups under the same total execution time-limits. This brings us to
the final computational tests of this chapter.

6.4.3 Multi-start performance evaluation

To compare solution quality of the multi-start and deterministic LS setups over different
problem instances the least cost and least vehicle fleet size solutions, found during all our
computational tests on the LS setups, were used as a baseline. The solution quality of a
local optimum solution, TTT (t), was then analysed using the cost gap, Zgap, of the solution
from the best known cost, calculated as:

Zgap =
Z(TTT (t))− ZBF

ZBF
, (6.23)

© University of Pretoria

146 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

where ZBF is the cost of the best solution found for a problem instance during our LS
computational tests.

For vehicle fleet size evaluations, the fleet size gap, Kgap, for a heuristic solution was
calculated as:

Kgap = |TTT (t)| −KBF, (6.24)

where KBF is the minimum fleet size found for a problem instance during all our LS
computational tests.

To evaluate the LS setups under multi-start conditions the following experiments were
conducted. First, each LS setup was linked with the following randomised multi-start con-
structive heuristics: Efficient-Cluster-Random-Link (ERCRL), Path-Scanning-Random-
Link (PSRL) and Randomised-Merge (RM). The linked setups were then used to generate
and improve up to 1000 solutions under a one-hour time-limit, and the cost and required
fleet size for each improved solution was captured. We then calculated the number of
solutions that can be generated by the randomised heuristic and improved to local optima
by an LS setup within different execution time-limits, ranging from one to thirty-minutes
at thirty-second intervals. Each constructed and LS-improved solution represents an inde-
pendent run. Using the probability mass function of a binomial distribution and taking as
input the number of solutions that can be generated within the different time-limits, we
then calculated the expected cost gap, Zgap, and fleet size gap, Kgap, of the best improved
solution over multiple runs, found within different execution time-limits2. For the calcu-
lations, minimising K was always set as the primary objective. To evaluate the variance
of the setups we calculated the 99th percentile cost gap, Z99th

gap , and fleet size gap, K99th

gap ,
for different execution time-limits, and used the values as performance upper-bounds. For
performance lower bounds we calculated the 1st percentile cost gap, Z1st

gap, and fleet size

gap, K1st

gap. Together the performance upper and lower bound values represent the cost and
fleet size range of each setup under different execution time-limits. Cost and vehicle gap
values are given as an interval [Z1st

gap, Zgap, Z
99th

gap] and [K1st

gap,Kgap,K
99th

gap]. An illustration
of the analysis can be found in Section 6.B at the end of the chapter.

Multi-start setups with reduced nearest-neighbour-lists

The first test that we conducted focussed on the impact of the Nearest-Neighbour-Lists on
the LS-Accelerated-Extended-Greedy-f (LS-AEG-f) and LS-Accelerated-Reduced-Greedy-
f (LS-ARG-f) setups. We also compared the setups against LS-Accelerated-Extended-
Best (LS-AEB), which had the best improvement capability, but long execution times.
Results for the setups linked with the four randomised constructive heuristics on the Cen-
IF instances are shown in Figure 6.16. Cost gap intervals for the different setups are shown
in Figure 6.16a. Due to its long execution time, LS-AEB could not complete a single run
on Cen-IF-b. It also required in excess of 25 minutes to complete a single run on Cen-
IF-c, which is too close to the 30 minute medium execution time threshold. The ability
of LS-AEG to complete more runs resulted in it dominating LS-AEB. In fact, LS-AEG
dominated all the other LS-AEG-f setups with f ∈ {0.25, 0.5, 0.75} over all the construc-
tive heuristics and problem instances. The solution quality of LS-AEG-f decreases with
f , meaning that the additional runs that are possible from the very efficient setups do not
make up for their worse local optima. These setups may still be useful, especially on the

2A more in-depth discussion of the calculation procedure, which is the same procedure used in Chap-
ter 4 to compare the randomised and deterministic constructive heuristics, can be found in Chapter 4,
Section 4.4.1, with specific reference to Figure 4.2 and Equations (4.57) and (4.58).

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 147

E
R

C
R

L
P

S
R

L
R

M

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0

0
.0

2

0
.0

4

0
.0

6

Cen−IF−a Cen−IF−b Cen−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Cost gap from best known solution (Zgap)

● ●
A

E
G

−
0

.2
5

A

E
G

−
0

.5

A
E

G
−

0
.7

5

A
E

G
−

1

A

E
B

−
1

(a
)

C
o
st

g
a
p

in
te

rv
a
l,

[Z
1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

L
S

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s.

E
R

C
R

L
P

S
R

L
R

M

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●●●

●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●

−
0

.5
0

−
0

.2
5

0
.0

0

0
.2

5

0
.5

0 0123

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1.
0

0

Cen−IF−a Cen−IF−b Cen−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Vehicle gap from best known solution (Kgap)

●● ●
A

E
G

−
0

.2
5

A

E
G

−
0

.5

A
E

G
−

0
.7

5

A
E

G
−

1

A

E
B

−
1

(b
)

F
le

et
si

ze
g
a
p

in
te

rv
a
l,

[K
1
s
t

g
a
p
,K

g
a
p
,K

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

L
S

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s.

F
ig

u
re

6
.1

0:
C

o
st

a
n

d
fl

ee
t

si
ze

g
a
p

s
of

th
e

m
u

lt
i-

st
ar

t
L

S
-A

cc
el

er
at

ed
-E

x
te

n
d

ed
-B

es
t-

1
(A

E
B

-1
)

an
d

L
S

-A
cc

el
er

at
ed

-E
x
te

n
d

ed
-G

re
ed

y
-f

(A
E

G
-f

)
se

tu
p

s
li

n
ke

d
w

it
h

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
-R

a
n

d
o
m

-L
in

k
(E

R
C

R
L

),
P

a
th

-S
ca

n
n

in
g-

R
a
n

d
o
m

-L
in

k
(P

S
R

L
)

an
d

R
a
n

d
o
m

is
ed

-M
er

ge
(R

M
)

co
n

st
ru

ct
iv

e
h

eu
ri

st
ic

s
o
n

C
en

-I
F

in
st

a
n

ce
s.

© University of Pretoria

148 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

large Cen-IF-b and Cen-IF-c instances where LS-AEG requires in excess of 180 seconds
to complete a single run. Alternatively, LS-AEG may be terminated prior to reaching a
local optimum, and its solution returned.

Fleet size gap intervals for the setups are shown in Figure 6.16b. On Cen-IF-a, all
setups were able to match best known fleet size. The LS-Accelerated-Reduced-Greedy-f
(LS-AEG-f) setups linked with ERCRL were able to match the best known fleet size on
Cen-IF-b, but required in excess of 180 seconds to be expected to do so. The same was
also observed on Cen-IF-c, but here at least LS-AEG-0.25 linked with ERCRL was able
to reach a zero fleet size gap within 180 seconds. The LS-AEG-1 setup was able to reduce
the fleet sizes of the constructive heuristic solutions, but only if sufficient execution times
are available.

The same results shown in Figure 6.16 were observed for the LS-AEG-f setups on
Cen-IF, as well for all the setups on Act-IF and large Lpr-IF instances; the results can be
found in Section 6.C at the end of the chapter. On smaller instances, where LS-AEB could
execute for multiple runs it performed either the same or worse than LS-ARG. As a result,
it was eliminated from further testing. On all the waste collection instances, the LS-AEG-
1 and LS-ARG-1 setups performed the best under time-limits, and the setups with the
lowest f values performed the worst. As a result, the LS-AEG-0.25 to LS-AEG-0.75 and
LS-ARG-0.25 to LS-ARG-0.75 setups were also eliminated from further testing.

Accelerated LS under short and medium time-limits

For our final analysis we compared the multi-start LS-ARG and LS-AEG setups, annotated
M-ARG and M-AEG, linked with randomised constructive heuristics, against the pure
multi-start randomised constructive heuristics, annotated as M-RCH, as well as LS-AEG
linked with the deterministic constructive heuristics, annotated as D-AEG. The aim of the
analysis was to find the best constructive heuristic and LS setup under short and medium
execution time-limits.

Summary results for the setups on the Cen-IF instances are shown in Figure 6.11.
As shown in Figure 6.11a, the cost gaps of the deterministic and multi-start LS setups
were less than the pure M-RCH setups, which confirms that our LS implementations are
effective in improving initial solutions of constructive heuristics, and efficient enough to
do so within short time-limits. As shown in Figure 6.11b, the LS setups were also effective
in reducing the fleet sizes of initial solutions. In four of the nine cases, M-RCH produced
excess fleet solutions even when allowed thirty minutes of execution time. In all cases, the
multi-start LS setups reduced the fleet to its best-known size, but they did require more
than three minutes of execution-time to do so.

Returning to Figure 6.11a, the cost gap intervals of the multi-start LS-ARG and LS-
AEG setups were very close, with the dominance of any one setup over the other being
dependent on the problem instance solved and the constructive heuristic used to supply
initial solutions. The deterministic setup performed surprisingly well, especially when
linked with ERC, even outperforming the multi-start setups on the Cen-IF-b instance.
A downside of the multi-start setups is that they have a wide cost-range. When more
execution time is available, the expected cost of the multi-start setups approaches their
lower-bound cost-values, but their cost ranges remain wide on the large instances. On
these instances, where only a few LS runs are possible, the deterministic LS-AEG setup
linked with ERC is the best option given its consistent and good performance. On the very
large Cen-IF-b and Cen-IF-c instances, with more than 5000 required arcs and edges, none
of the LS setups could complete a single run within 180 seconds. When limited execution
time is available one can thus rely exclusively on the constructive heuristics, or consider

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 149

E
R

C
P

S
M

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
● ●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

Cen−IF−a Cen−IF−b Cen−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Cost gap from best known solution (Zgap)

D
et

er
m

in
is

it
ic

 s
et

u
p

M
u

lt
i−

st
a

rt
 s

et
u

p

●● ●
M

−
R

C
H

D

−
A

E
G

M

−
A

E
G

M

−
A

R
G

(a
)

C
o
st

g
a
p

in
te

rv
a
l,

[Z
1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s.

E
R

C
P

S
M

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1.
0

0 05

10 0
.0

0
.5

1.
0

1.
5

2
.0

Cen−IF−a Cen−IF−b Cen−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

se
co

n
d

s)

Vehicle gap from best known solution (Kgap)

D
et

er
m

in
is

it
ic

 s
et

u
p

M
u

lt
i−

st
a

rt
 s

et
u

p

●● ●
M

−
R

C
H

D

−
A

E
G

M

−
A

E
G

M

−
A

R
G

(b
)

F
le

et
si

ze
g
a
p

in
te

rv
a
l,

[K
1
s
t

g
a
p
,K

g
a
p
,K

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s.

F
ig

u
re

6.
11

:
C

o
st

a
n

d
fl

ee
t

si
ze

ga
p

s
on

C
en

-I
F

in
st

an
ce

s
of

th
e

m
u

lt
i-

st
ar

t
(M

)
an

d
d

et
er

m
in

is
ti

c
(D

)
se

tu
p

s
of

L
S

-A
cc

el
er

at
ed

-R
ed

u
ce

d
-

G
re

ed
y

(A
R

G
)

a
n

d
L

S
-A

cc
el

er
at

ed
-E

x
te

n
d

ed
-G

re
ed

y
(A

E
G

)
li

n
ke

d
w

it
h

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
(E

R
C

),
P

a
th

-S
ca

n
n

in
g

(P
S

)
an

d
M

er
ge

(M
)

co
n

st
ru

ct
iv

e
h
eu

ri
st

ic
s,

as
w

el
l

a
s

th
e

m
u

lt
i-

st
ar

t
ra

n
d

om
is

ed
co

n
st

ru
ct

iv
e

h
eu

ri
st

ic
(M

-R
C

H
)

se
tu

p
s

on
th

ei
r

ow
n

.

© University of Pretoria

150 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

using an LS-ARG-f or LS-AEG-f setup, with f set sufficiently low. Alternatively, and
the option that we used in this thesis, the LS-ARG and LS-AEG setups can be terminated
prior to reaching local optima.

Cost-gap results for the setups on the Act-IF set and large Lpr-IF type 5 instances are
shown in Figure 6.12. As shown in Figure 6.12a, RM performed extremely poorly, with
cost-gaps close to 20% on Act-IF-a. The multi-start LS setups were able to significantly
improve the RM solutions, bringing it on par with the solutions of ERCRL and PSRL.
The best performing setups were ERC and PS linked with LS-AEG and LS-ARG, which
performed almost identically. With their extra runs they also outperformed the deter-
ministic LS-AEG setup. The same results were observed on the large Lpr-IF instances
(Figure 6.12b). On all instances, the LS setups were able to produce good quality so-
lutions within 180 seconds. The setups also produced solutions with fleet sizes equal to
best-known values.

To compare the different LS setups under short and medium execution time-limits,
the expected cost gaps and fleet-sizes of the setups were measured at three and thirty
minute execution time-limits. The values were then compared against the MRCH setups
at the same time-limits, as well as the pure Deterministic Constructive Heuristics (DCHs).
Average results over the Act-IF, Cen-IF, Lpr-IF, as well as the smaller sized mval-IF-3L
instances are shown in Table 6.5.

Over all the instances, the best performing LS setups under medium execution time-
limits were the multi-start LS-AEG and LS-ARG setups linked with ERCRL. In compari-
son to the MRCH setups, the multi-start LS setups produced significantly better solutions,
with their average cost-gaps always being less than 2.1%, regardless of the constructive
heuristics with which they were linked. Cost gaps of the MRCH setups were in excess of
10% in some cases, thus confirming the benefit of developing and implementing LS heuris-
tics for the MCARPTIF. LS made the biggest impact on the mval-IF-3L instances, but
the results have to be interpreted with caution, since the instances are not representative
of realistic waste collection, in terms of size and network configuration.

Where an execution time-limit of three-minutes was enforced, the best performing
setups were again LS-AEG and LS-ARG linked with ERCRL. The LS setups produced
significantly better solutions than the MRCH setups, but only on the Act-IF, Lpr-IF and
mval-IF-3L instances. On the large Cen-IF-a and Cen-IF-b instances, the deterministic
and multi-start LS-AEG and LS-ARG setups terminated prior to reaching local optimum.
The setups linked with IM and RM could not be used at all due the time required to
construct a single initial solution exceeding three minutes. By terminating before a local
optimum could be reached the differences in performance between the LS-AEG and LS-
ARG setups and MRCH setups were less prominent. This shows that more execution time
is required for LS to be truly effective under short execution time-limits on realistically
sized instances. LS-AEG linked with ERC performed the best over all three waste collec-
tion sets, and it has the benefit of being completely deterministic, whereas the multi-start
setups have a wide cost ranges when limited to a few runs.

Table 6.6 shows the total number of instances per benchmark set for which the setups
produced solutions with excess fleet sizes. The best performing LS setups were again the
multi-start LS-AEG and LS-ARG setups linked with ERCRL. When allowed 30 minutes
of execution time, the two setups matched the best known fleet sizes on 53 out of 55
instances. The deterministic LS-AEG setup linked with ERC again performed well on the
waste collection sets, producing an excess fleet size on only one instance. The setup also
performed well under short time-limits, though it did produce excess fleet solutions on
two of the three Cen-IF instances. This can be mitigated by relaxing the time-limits from

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 151

E
R

C
P

S
M

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.0

0

0
.0

3

0
.0

6

0
.0

9

Act−IF−a Act−IF−b Act−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Cost gap from best known solution (Zgap)

D
et

er
m

in
is

it
ic

 s
et

u
p

M
u

lt
i−

st
a

rt
 s

et
u

p

●● ●
M

−
R

C
H

D

−
A

E
G

M

−
A

E
G

M

−
A

R
G

(a
)

C
o
st

g
a
p

in
te

rv
a
l,

[Z
1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s

o
n

A
ct

-I
F

.

E
R

C
P

S
M

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.1

2
5

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

Lpr−IF−a−05 Lpr−IF−b−05 Lpr−IF−c−05

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Cost gap from best known solution (Zgap)

D
et

er
m

in
is

it
ic

 s
et

u
p

M
u

lt
i−

st
a

rt
 s

et
u

p

●● ●
M

−
R

C
H

D

−
A

E
G

M

−
A

E
G

M

−
A

R
G

(b
)

C
o
st

g
a
p

in
te

rv
a
l,

[Z
1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s

o
n

L
p

r-
IF

.

F
ig

u
re

6
.1

2:
C

os
t

an
d

fl
ee

t
si

ze
ga

p
s

on
A

ct
-I

F
an

d
C

en
-I

F
in

st
an

ce
s

of
th

e
m

u
lt

i-
st

ar
t

(M
)

an
d

d
et

er
m

in
is

ti
c

(D
)

se
tu

p
s

of
L

S
-A

cc
el

er
at

ed
-

R
ed

u
ce

d
-G

re
ed

y
(A

R
G

)
an

d
L

S
-A

cc
el

er
at

ed
-E

x
te

n
d

ed
-G

re
ed

y
(A

E
G

)
li

n
ke

d
w

it
h

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
(E

R
C

),
P

a
th

-S
ca

n
n

in
g

(P
S

)
an

d
M

er
ge

(M
)

co
n

st
ru

ct
iv

e
h

eu
ri

st
ic

s,
a
s

w
el

l
a
s

th
e

m
u

lt
i-

st
ar

t
ra

n
d

om
is

ed
co

n
st

ru
ct

iv
e

h
eu

ri
st

ic
(M

-R
C

H
)

se
tu

p
s

on
th

ei
r

ow
n

.

© University of Pretoria

152 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

t

T
ab

le
6
.5

:
A

verag
es

for
th

e
ex

p
ected

p
ercen

tage
cost

gap
s,
Z

g
a
p

%
,

of
h

eu
ristic

setu
p

s
u

n
d

er
sh

ort-term
an

d
m

ed
iu

m
-term

an
d

p
lan

n
in

g
ex

ecu
tion

tim
e-lim

its
o
f

th
ree

a
n

d
th

irty
m

in
u

tes,
resp

ectiv
ely.

Z
g
a
p

%
a
t

3
m

in
u
tes

Z
g
a
p

%
a
t

3
0

m
in

u
tes

S
et

C
o
n
stru

ct
D

C
H

M
R

C
H

D
A

E
G

M
A

E
G

M
A

R
G

D
C

H
M

R
C

H
D

A
E

G
M

A
E

G
M

A
R

G

A
ct-IF

E
R

C
2
.2

1
.5

1
.0

0
.3

0
.3

2
.2

1
.5

1
.0

0
.2

0
.2

IM
1
3
.9

1
4
.6

2
.1

1
.2

1
.3

1
3
.9

1
3
.7

2
.1

1
.0

1
.0

P
S

2
.0

1
.4

0
.8

0
.4

0
.3

2
.0

1
.4

0
.8

0
.2

0
.1

M
ea

n
6
.0

5
.8

1
.3

0
.6

0
.6

6
.0

5
.5

1
.3

0
.5

0
.4

C
en

-IF
E

R
C

2
.8

3
.8

3
.0
∗

3
.0
∗

3
.0
∗

2
.8

3
.5

1
.1

1
.2

1
.3

IM
-

-
-

-
-

2
.0

2
.8

1
.0

0
.7

0
.8

P
S

7
.1

6
.5

4
.5
∗

4
.1
∗

4
.1
∗

7
.1

6
.0

2
.6

2
.0

2
.0

M
ea

n
5
.0

5
.1

3
.8

3
.6

3
.6

3
.9

4
.1

1
.5

1
.3

1
.4

L
p

r-IF
E

R
C

2
.0

1
.3

0
.8

0
.2

0
.2

2
.0

1
.3

0
.8

0
.1

0
.1

IM
3
.8

4
.3

1
.1

0
.9

0
.8

3
.8

3
.9

1
.1

0
.6

0
.6

P
S

2
.6

1
.9

0
.8

0
.3

0
.3

2
.6

1
.9

0
.8

0
.2

0
.3

M
ea

n
2
.8

2
.5

0
.9

0
.5

0
.5

2
.8

2
.4

0
.9

0
.3

0
.3

m
va

l-IF
-3

L
E

R
C

1
6
.4

1
0
.9

8
.3

0
.8

0
.8

1
6
.4

1
0
.9

8
.3

0
.7

0
.8

IM
2
1
.3

9
.2

1
0
.2

1
.4

1
.6

2
1
.3

8
.8

1
0
.2

1
.1

1
.2

P
S

1
6
.5

8
.3

8
.4

1
.6

1
.8

1
6
.5

8
.3

8
.4

1
.5

1
.7

M
ea

n
1
8
.0

9
.4

9
.0

1
.3

1
.4

1
8
.0

9
.3

9
.0

1
.1

1
.2

G
lo

ba
l

E
R

C
5
.8

4
.4

3
.3

0
.4

0
.5

5
.8

4
.3

2
.8

0
.5

0
.6

IM
-

-
-

-
-

1
0
.3

7
.3

3
.6

0
.8

0
.9

P
S

7
.1

4
.5

3
.6

0
.8

0
.8

7
.1

4
.4

3
.1

1
.0

1
.0

M
ea

n
6
.5

4
.4

3
.4

0
.6

0
.6

7
.7

5
.3

3
.2

0
.8

0
.8

D
C

H
:

D
eterm

in
istic

C
o
n
stru

ctiv
e

H
eu

ristic;
M

R
C

H
:

M
u
lti-sta

rt
R

a
n
d
o
m

ised
C

o
n
stru

ctiv
e

H
eu

ristic;
D

A
E

G
:

D
eterm

in
istic

L
S
-A

E
G

;
M

A
E

G
:

M
u
lit-sta

rt
L

S
-A

E
G

;
M

A
R

G
:

M
u
lti-sta

rt
L

S
-A

R
G

.
*
In

ca
ses

w
h
ere

th
e

ex
ecu

tio
n

tim
e

o
f

th
e

L
S
-A

E
G

a
n
d

L
S
-A

R
G

setu
p
s

w
ere

to
o

lo
n
g

to
co

m
p
lete

a
sin

g
le

ru
n
,

th
e

h
eu

ristic
w

a
s

term
in

a
ted

p
rio

r
to

rea
ch

in
g

lo
ca

l
o
p
tim

a
.

© University of Pretoria

6.4. COMPUTATIONAL RESULTS 153

T
a
b

le
6.

6:
N

u
m

b
er

of
in

st
an

ce
s

o
n

w
h

ic
h

th
e

of
h

eu
ri

st
ic

se
tu

p
s

fa
il

ed
to

p
ro

d
u

ce
so

lu
ti

on
s

w
it

h
th

e
k
n

ow
n

m
in

im
u

m
fl

ee
t

si
ze

.

3
m

in
u
te

ex
ec

u
ti

o
n

ti
m

e-
li
m

it
s

3
0
m

ex
ec

u
ti

o
n

ti
m

e-
li
m

it
s

S
et

C
o
n
st

ru
ct

D
C

H
M

R
C

H
D

A
E

G
M

A
E

G
M

A
R

G
D

C
H

M
R

C
H

D
A

E
G

M
A

E
G

M
A

R
G

A
ct

-I
F

E
R

C
0

0
0

0
0

0
0

0
0

0
IM

2
0

0
0

0
2

0
0

0
0

P
S

0
0

0
0

0
0

0
0

0
0

T
o

ta
l

2
0

0
0

0
2

0
0

0
0

C
en

-I
F

E
R

C
3

2
2
∗

1
∗

2
∗

3
2

0
0

0
IM

-
-

-
-

-
2

1
0

0
0

P
S

2
2

2
∗

2
∗

2
∗

2
1

0
0

0

T
o

ta
l

5
4

4
3

4
7

4
0

0
0

L
p

r-
IF

E
R

C
9

1
1

0
0

9
1

1
0

0
IM

8
6

1
0

0
8

5
1

0
0

P
S

2
1

1
0

0
2

1
1

0
0

T
o

ta
l

1
9

8
3

0
0

1
9

7
3

0
0

m
va

l-
IF

-3
L

E
R

C
1
6

1
8

1
2

2
2

1
6

1
8

1
2

2
2

IM
2
4

1
2

1
9

5
5

2
4

1
2

1
9

5
5

P
S

1
5

7
1
2

4
4

1
5

7
1
2

4
4

T
o

ta
l

5
5

3
7

4
3

1
1

1
1

5
5

3
7

4
3

1
1

1
1

G
lo

ba
l

to
ta

l
E

R
C

2
8

2
1

1
5

3
4

2
8

2
1

1
3

2
2

IM
3
6

1
8

2
0

5
5

3
6

1
8

2
0

5
5

P
S

1
9

1
0

1
5

6
6

1
9

9
1
3

4
4

T
o

ta
l

8
3

4
9

5
0

1
4

1
5

8
3

4
8

4
6

1
1

1
1

D
C

H
:

D
et

er
m

in
is

ti
c

C
o
n
st

ru
ct

iv
e

H
eu

ri
st

ic
;

M
R

C
H

:
M

u
lt

i-
st

a
rt

R
a
n
d
o
m

is
ed

C
o
n
st

ru
ct

iv
e

H
eu

ri
st

ic
;

D
A

E
G

:
D

et
er

m
in

is
ti

c
L

S
-A

E
G

;
M

A
E

G
:

M
u
lt

i-
st

a
rt

L
S
-A

E
G

;
M

A
R

G
:

M
u
lt

i-
st

a
rt

L
S
-A

R
G

.
*
In

ca
se

s
w

h
er

e
th

e
ex

ec
u
ti

o
n

ti
m

e
o
f

th
e

L
S
-A

E
G

a
n
d

L
S
-A

R
G

se
tu

p
s

w
er

e
to

o
lo

n
g

to
co

m
p
le

te
a

si
n
g
le

ru
n
,

th
e

h
eu

ri
st

ic
w

a
s

te
rm

in
a
te

d
p
ri

o
r

to
re

a
ch

in
g

lo
ca

l
o
p
ti

m
a
.

© University of Pretoria

154 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

three to four minutes, thereby allowing the setups to reach local optima.
Results for the setups on the MCARPTIF instances show that the best setup under

short and medium time-limits is LS-AEG linked with ERCRL. LS-AEG linked with ERC
also performed well and it has the benefit of being completely deterministic. The choice
between using randomised multi-start or deterministic setups need not be mutually ex-
clusive. Our recommended option would be to always use LS-AEG to improve the initial
solution from ERC for a first run. Thereafter, LS-AEG can be used to improve multiple
initial solutions generated by ERCRL until an imposed execution time-limit is reached.
This will significantly improve the worst-case performance of the setup, and enable it to
produce consistent results, even on large instances where only a few randomised runs, if
any, can be completed.

6.5 Conclusion

In this section we evaluated accelerated LS setups for the MCARPTIF. Efficient LS
setups is an important area of research for CARPs, given their use within metaheuristic
applications which currently struggle to deal with realistically sized instances. Three
acceleration mechanisms were developed and linked with LS, of which the setup with
Static-Move-Descriptors and Greedy-Compound-Independent-Moves performed the best.

The Nearest-Neighbour-Lists mechanism had the desired effect of improving the effi-
ciency of LS, but its resulting reduction in solution quality limited its application. The long
execution times of LS linked only with Static-Mode-Descriptors also limited its application
on realistically sized instances. Although not considered in this thesis, the implementa-
tions of both mechanisms can be improved by using priority-queues instead of sorting the
move list at each iteration. More intelligent applications of Nearest-Neighbour-Lists may
also improve its performance, for example, by applying the mechanism only to specific
move operators. The number of nearest neighbours can also be parameterised for each
move operator.

In the previous chapter we showed that basic LS setups are too slow to practically deal
with large MCARPTIF instances. On instances with more than 1000 required arcs and
edges, the basic setups took between fifteen minutes and three hours to improve a single
solution. The accelerated setups, developed in this chapter, took at most four minutes to
improve the same solutions, with the most efficient version taking less than 60 seconds.
Our implementations were thus effective in improving the initial solutions of constructive
heuristics, and efficient enough to do so within short execution time-limits.

The significance of our research contribution on LS heuristics extends beyond the
MCARPTIF. Our acceleration mechanisms can be applied as-is to LS for the CARP and
MCARP, thereby improving the efficiency of metaheuristics that rely on LS and allowing
them to more effectively deal with large instances.

In the next chapter the efficient LS-Accelerated-Extended-Greedy heuristic is further
extended into a Tabu Search metaheuristic, and its performance compared against pure LS
on large waste collection problem sets. The metaheuristic is also tested on MCARP and
CARPTIF benchmark sets and compared against existing metaheuristics for the problems.
Lastly, to evaluate the practical limits of our heuristics, further tests are performed on a
huge MCARPTIF instance with 6280 required arcs and edges.

© University of Pretoria

Chapter appendix

6.A Accelerated best-move versus accelerated compounded
moves

Figure 6.13 illustrates the difference between only using Static-Move-Descriptors and when
combining it with Greedy-Compound-Independent-Moves. For both setups, in the first it-
eration the entire move neighbourhood is scanned to populate the move savings list, which
is why the first iteration takes the longest to complete, as shown inFigure 6.13a. In the
following iterations, the computational times of the setups are significantly less. With the
best-move strategy, after making the best move, LS only has to update the affected move
descriptors and reorder the savings list. Greedy-Compound-Independent-Moves makes mul-
tiple moves in each iteration. As a result, its computational time per iteration is higher
since it has to update the descriptors of more than one move. As it approaches the local
optimum, there are less improving moves available and its per iteration time converges to
that of best-move. It reaches the local optima after only a few iterations, whereas best-
move takes over a hundred-iterations. As shown in Figure 6.13c, with its multiple moves,
the savings obtained in each iteration of Greedy-Compound-Independent-Moves is high in
the first few iterations, but reduces as it approaches local optima. In comparison, the
savings of best-move is less per iteration since it only makes a single move. As shown in
Figure 6.13c, by making multiple moves per iteration the total execution time of Greedy-
Compound-Independent-Moves is less than that of best-move. On the Lpr-IF-a-05 instance
best-move reached a better local optimum whereas Greedy-Compound-Independent-Moves
reached a better local optimum on Lpr-IF-c-05.

6.B Multi-start analysis

An illustration of the multi-start analysis is shown in Figure 6.14, which focusses on
Path-Scanning-Random-Link (PSRL) linked with LS-AEG-0.25 and LS-AEG on the Cen-
IF-b problem instance. On average, the time required by PSRL to generate an initial
solution is about 5 seconds. LS-AEG-0.25 and LS-AEG then took, on average, 25 and 230
seconds, respectively, to improve the solution to local optima. As shown in Figure 6.14a,
PSRL linked with the much quicker LS-AEG-0.25 setup can generate and improve up-
to sixty solutions within thirty minutes, whereas PSRL and LS-AEG can only generate
and improve up-to six solutions and needs at least 235 seconds to complete one run.
Figure 6.14b shows the expected cost of the best improved solution found within different
execution time-limits by the setups, which is based on the number of runs that can be
completed by the setups within the time-limits. It also shows the cost-range for each
setup, ranging from the 1st to 99th percentile, at different execution time-limits. Even
though LS-AEG-0.25 can perform more runs than LS-AEG under equal time-limits, the
ability of LS-AEG to find better local optima gives it a better expected performance when

155

© University of Pretoria

156 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

Lpr−IF−a−05 Lpr−IF−c−05

1

2

3

0 25 50 75 100 0 50 100

Iteration number

C
P

U
 T

im
e

(i
n

 s
ec

o
n

d
s)

 p
er

 i
te

ra
ti

o
n

Best−move Greedy−Compound−Independent−Moves

(a) Time required per iteration to find and make an improving move.

Lpr−IF−a−05 Lpr−IF−c−05

0

500

1000

1500

0 50 100 0 50 100

Iteration number

T
o

ta
l

ex
ec

u
ti

o
n

 t
im

e
(i

n
 s

ec
o

n
d

s)
 o

f
L

S

Best−move Greedy−Compound−Independent−Moves

(b) Absolute cost savings per iteration.

Lpr−IF−a−05 Lpr−IF−c−05

0

2000

4000

6000

0 10 20 30 0 10 20 30

Total execution time (in seconds)

T
o

ta
l

sa
v

in
g

s

Best−move strategy Greedy−Compound−Independent−Moves strategy

(c) Total savings over the execution-time of LS.

Figure 6.13: Illustration of the difference between LS only using Static-Move-Descriptors
and using it in combination with Greedy-Compound-Independent-Moves. The LS setups
only employed the relocate move operator and initial solution were generated using Path-
Scanning.

© University of Pretoria

6.C. RESULTS FORMULTI-START LS SETUPSWITH NEAREST-NEIGHBOUR-LISTS157

PSRL

● ● ● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ●0

20

40

60

C
en

−
IF

−
b

3 10 15 20 25 30

Execution time limit (minutes)

N
u

m
b

er
 o

f
g

en
er

a
te

d
 a

n
d

 i
m

p
ro

v
ed

 s
o

lu
ti

o
n

s
●AEG−0.25 AEG

(a) Number of solutions that can be generated with
Path-Scanning-Random-Link and improved with the
LS setups within different execution time-limits.

PSRL

● ●

●

● ● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

0.01

0.02

0.03

0.04

0.05

C
en

−
IF

−
b

3 10 15 20 25 30

Execution time limit (minutes)

C
o

st
 g

a
p

 f
ro

m
 b

es
t

k
n

o
w

n
 s

o
lu

ti
o

n
 (

Z
g

a
p
)

●●●AEG−0.25 AEG

(b) Cost gap interval, [Z1st

gap, Zgap, Z
99th

gap], for the best
solution found by the LS setups within different ex-
ecution time-limits.

Figure 6.14: Illustration of the multi-start analysis on LS-AEG-0.25 and LS-AEG setups
with Path-Scanning-Random-Link.

more than 235 execution-seconds are available. With its few runs, LS-AEG has a wider
cost-range, but its upper-bound cost-value is still better than the lower-bound cost-value
of LS-AEG-0.25. When taking the cost-range and expected performance of the setups
into consideration, LS-AEG is the better setup for medium term planning. Recall that for
short-term planning we imposed a three minute time-limit, in which case LS-AEG cannot
be used. LS-AEG-0.25, with its thirty second run-time, can be used for this purpose.

6.C Results for multi-start LS setups with nearest-neighbour-
lists

© University of Pretoria

158 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

E
R

C
R

L
P

S
R

L
R

M

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●

●
●

●
●

●
●

●

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.10

0

0
.0

0

0
.0

5

0
.10

0
.15

0
.0

0

0
.0

2

0
.0

4

0
.0

6

Cen−IF−aCen−IF−bCen−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ecu
tio

n
 tim

e lim
it (m

in
u

tes)

Cost gap from best known solution (Zgap)

●●
A

R
G

−
0

.2
5

A

R
G

−
0

.5

A
R

G
−

0
.7

5

A
R

G

(a
)

C
o
st

g
a
p

in
terva

l,
[Z

1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

est
so

lu
tio

n
fo

u
n
d

b
y

th
e

L
S

setu
p
s

w
ith

in
d
iff

eren
t

ex
ecu

tio
n

tim
e-lim

its.

E
R

C
R

L
P

S
R

L
R

M

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●

−
0

.5
0

−
0

.2
5

0
.0

0

0
.2

5

0
.5

00 1 2 3

0
.0

0

0
.2

5

0
.5

0

0
.7

5

1.0
0

Cen−IF−aCen−IF−bCen−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ecu
tio

n
 tim

e lim
it (m

in
u

tes)

Vehicle gap from best known solution (Kgap)

●●●
A

R
G

−
0

.2
5

A

R
G

−
0

.5

A
R

G
−

0
.7

5

A
R

G
−

1

(b
)

F
leet

size
g
a
p

in
terva

l,
[K

1
s
t

g
a
p
,K

g
a
p
,K

9
9
t
h

g
a
p

],
fo

r
th

e
b

est
so

lu
tio

n
fo

u
n
d

b
y

th
e

L
S

setu
p
s

w
ith

in
d
iff

eren
t

ex
ecu

tio
n

tim
e-lim

its.

F
igu

re
6
.1

5:
C

ost
a
n

d
fl

eet
size

g
a
p

s
of

th
e

m
u

lti-start
L

S
-A

ccelerated
-E

x
ten

d
ed

-B
est-1

(A
E

B
-1)

an
d

L
S

-A
ccelerated

-R
ed

u
ced

-G
reed

y
-f

(A
E

G
-f

)
setu

p
s

u
n

d
er

ex
ecu

tion
tim

e-lim
its

on
C

en
-IF

in
stan

ces.

© University of Pretoria

6.C. RESULTS FORMULTI-START LS SETUPSWITH NEAREST-NEIGHBOUR-LISTS159

E
R

C
R

L
P

S
R

L
R

M

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0
.0

0

0
.0

3

0
.0

6

0
.0

9

0
.1

2

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

Act−IF−a Act−IF−b Act−IF−c

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Cost gap from best known solution (Zgap)

●● ●
A

E
G

−
0

.2
5

A

E
G

−
0

.5

A
E

G
−

0
.7

5

A
E

G
−

1

A

E
B

−
1

(a
)

C
o
st

g
a
p

in
te

rv
a
l,

[Z
1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

L
S

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s

o
n

A
ct

-I
F

in
st

a
n
ce

s.

E
R

C
R

L
P

S
R

L
R

M

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.0

0
0

0
.0

2
5

0
.0

5
0

0
.0

7
5

0
.1

0
0

0
.0

0

0
.0

2

0
.0

4

0
.0

6

Lpr−IF−a−05 Lpr−IF−b−05 Lpr−IF−c−05

3
10

15
2

0
2

5
3

0
3

10
15

2
0

2
5

3
0

3
10

15
2

0
2

5
3

0

E
x

ec
u

ti
o

n
 t

im
e

li
m

it
 (

m
in

u
te

s)

Cost gap from best known solution (Zgap)

●● ●
A

E
G

−
0

.2
5

A

E
G

−
0

.5

A
E

G
−

0
.7

5

A
E

G
−

1

A

E
B

−
1

(b
)

C
o
st

g
a
p

in
te

rv
a
l,

[Z
1
s
t

g
a
p
,Z

g
a
p
,Z

9
9
t
h

g
a
p

],
fo

r
th

e
b

es
t

so
lu

ti
o
n

fo
u
n
d

b
y

th
e

L
S

se
tu

p
s

w
it

h
in

d
iff

er
en

t
ex

ec
u
ti

o
n

ti
m

e-
li
m

it
s

o
n

L
p

r-
IF

in
st

a
n
ce

s.

F
ig

u
re

6
.1

6:
C

o
st

ga
p

s
of

th
e

m
u

lt
i-

st
ar

t
L

S
-A

cc
el

er
at

ed
-E

x
te

n
d

ed
-B

es
t-

1
(A

E
B

-1
)

an
d

L
S

-A
cc

el
er

at
ed

-E
x
te

n
d

ed
-G

re
ed

y
-f

(A
E

G
-f

)
se

tu
p

s
li

n
ke

d
w

it
h

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
-R

a
n

d
o
m

-L
in

k
(E

R
C

R
L

),
P

a
th

-S
ca

n
n

in
g-

R
a
n

d
o
m

-L
in

k
(P

S
R

L
)

an
d

R
a
n

d
o
m

is
ed

-M
er

ge
(R

M
)

co
n

st
ru

ct
iv

e
h

eu
ri

st
ic

s
o
n

A
ct

-I
F

a
n

d
L

p
r-

IF
in

st
an

ce
s.

© University of Pretoria

160 CHAPTER 6. ACCELERATED LOCAL SEARCH HEURISTICS

© University of Pretoria

Chapter 7

An accelerated tabu search
metaheuristic

In this chapter we extend the efficient Local Search (LS) heuristics into a Tabu Search (TS)
metaheuristic for the Mixed Capacitated Arc Routing Problem under Time Restrictions
with Intermediate Facilities (MCARPTIF). Computational tests are performed on large
waste collection instances on which the metaheuristic proved to be effective, outperform-
ing the constructive heuristic and LS setups under short, medium and long execution
time-limits. We also test our TS on available Mixed Capacitated Arc Routing Prob-
lem (MCARP) and Capacitated Arc Routing Problem under Time Restrictions with In-
termediate Facilities (CARPTIF) benchmark sets, and compare the solution quality of
our methods against available lower-bound values, and against two existing metaheuris-
tics. On large MCARP instances our TS again proved to be effective, by finding new best
solutions for the instances, and efficient, as it found those new best solutions in under 5
minutes. This shows that on large instances there is much room for improvement over
the existing methods. A final test was conducted on a huge instance with 6280 required
arcs and edges. Two of our constructive heuristics were able to quickly generate starting
solutions, whereafter our efficient LS setup improved the solutions to local optima within
thirty-minutes. Thereafter TS further improved the solutions within a 24-hour execution
time-limit.

7.1 Introduction

In the previous chapter we developed efficient LS heuristics for the MCARPTIF, which on
their own significantly improved the initial solutions generated by constructive heuristics.
A drawback of these methods is that they terminate at local optima. Single solution
metaheuristics, such as Variable Neighbourhood Research, Tabu Search and Guided Local
Search, have been designed specifically to overcome this issue [80]. They allow LS to
escape local optima and intelligently guide the search through the solution space towards
unexplored regions, with the aim of eventually reaching a global optimum.

In this chapter we develop a TS heuristic for MCARPTIF by extending the efficient
local search mechanisms developed in the previous chapter. The aim of this chapter is
not to come up with the best possible metaheuristic for the MCARPTIF, one that will be
difficult to beat in future studies on our benchmark sets. The drawback of this aim, referred
to as competitive testing, is well documented by Hooker [47], and more recently by Sörensen
[79]. One of their main criticisms being that it does not advance practical relevance of
research on heuristics and metaheuristics. In line with the two authors’ advocation, our

161

© University of Pretoria

162 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

aim is instead to improve the general understanding of a key ingredient of metaheuristics,
namely LS. The purpose of this chapter is to determine if our research on efficient LS
procedures can be easily extended to develop an efficient metaheuristic. If successful, it
opens the door for existing Capacitated Arc Routing Problem (CARP) metaheuristics
that rely on LS to be improved, thereby bringing CARP research one step closer to the
development of efficient solution methods for the huge waste collection instances found in
practice.

Thus far the quality of the solutions produced by our heuristics has been internally
evaluated. Although our tests indicate that certain heuristics are better than others, there
is a risk that all our heuristics are still inadequate for waste collection planning, with
the “good” heuristics actually performing poorly, and the other methods performing very
poorly. To better evaluate the quality of our solution methods we performed computational
tests on the MCARP. The MCARPTIF can be reduced to MCARP, thereby making it
possible to use our algorithms as-is on the problem. Tests were performed on the available
MCARP benchmark sets, and our solution methods were critically evaluated using lower-
bound values for the instances, reported in [6, 40], and against the Memetic Algorithm of
Belenguer et al. [6]. Tests were also conducted on existing CARPTIF instances, and the
performance of our heuristics was evaluated against the Variable Neighbourhood Search
metaheuristic of Polacek et al. [68]

As a final evaluation of our heuristics we performed computational tests on a huge waste
collection instance with 6280 required arcs and edges. The largest instance in literature
used for testing, prior to our Cen-IF set, is the Lpr-c-05 instance with only 803 required
arcs and edges. The purpose of the last test was to establish application boundaries for
our heuristics and to identify specific components that should be improved, in future work,
to allow the algorithms to more efficiently deal with similarly sized instances.

7.2 Tabu search for the MCARPTIF

LS starts with an initial solution and progressively moves to an improving neighbour
solution. When none are available the search is said to be stuck in a local optimum and
it terminates. One way to escape local optima is to allow LS to move to non-improving
solutions with the hope that these moves will eventually lead to a better local optima,
or even the global optimum. If left unchecked this may result in cycling whereby the
same few solutions are visited over and over again until the search is terminated. To
illustrate, assume LS is at a local optimum and it always makes the best available move.
At its current position the best available move is a non-improving move out of the local
optimum. After making this move, its reversal now represents an improving move since
it returns the search back towards the local optimum, which is better than the current
solution. The non-improving move is then duly reversed, whereafter it is again made since
it is still the best move out-of the local optimum. The search will then cycle between
making and reversing the same non-improving move. A popular way of avoiding this
is to enable LS to “remember” solutions that it recently visited, and consider them as
tabu. LS heuristics that are extended via this mechanism are classified as Tabu Search
metaheuristics, originally developed by Glover [36], and they represent some of the most
widely used metaheuristic methods [80]. It is also the metaheuristic that we chose to apply
to the MCARPTIF.

Since TS is an extension of LS, the advances that we made in the previous chapter on
efficient LS heuristics automatically caries over to TS implementations. We do, however,
note that TS is one of many LS based metaheuristics that can be applied to CARPs, all

© University of Pretoria

7.2. TABU SEARCH FOR THE MCARPTIF 163

which could potentially benefit from our work on LS. We leave their development and
evaluation against our TS for future work.

7.2.1 Basic instruments

Algorithm 7.1 shows the high-level framework of our TS implementation for the MCARPTIF.
In its simplest form it stores information of recently applied moves in a tabu-list, βββ, and

Algorithm 7.1: Tabu-Search

Input : An initial solution TTT (0) ∈XXX, execution time-limit timelim, and a tabu tenure γ.
Output: Incumbent solution TTT ∗.

1 t = 0;
2 βββ = [] // the tabu-list is initially empty //;

3 TTT ∗ = TTT (0) // the initial solution is set as the incumbent //;
4 repeat

5 Using Local Search move operators, scan the move-neighbourhood of TTT (t) and find the best
feasible move, and using the tabu-list βββ find the best non-tabu feasible move.;

6 Implement the best feasible move and let TTT ′ be the result;
7 if TTT ′ is a better solution than TTT ∗ then // either in cost or fleet size //
8 TTT ∗ = TTT ′ // the improved solution is set as the new incumbent //;

9 TTT (t+1) = TTT (t);

10 else

11 Implement the best non-tabu feasible move and let TTT (T+1) be the result // if none could
be found the search terminates //;

12 Add the necessary information of the best non-tabu move to βββ;

13 t = t+ 1;
14 Remove move information from βββ that have been in the tabu-list for more than γ iterations;

15 until the execution time-limit, timelim, is reached or a feasible move could not be made;
16 return (TTT ∗)

then uses the information to identify moves that will result in the search returning to a
previously visited solution. Such moves are made tabu and are not allowed to be imple-
mented. In so doing, TS avoids cycling. Populating the tabu-list with information on
all the visited solutions is not practical for efficiency reasons. Instead, only partial move
information is stored, and only for a limited period. After a certain number of iterations
has passed since a move was made, referred to as the tabu tenure and denoted by γ, the
information associated with the move is deleted from the list.

During its execution TS keeps track of and updates the best solution found so far,
referred to as the incumbent solution. Tabu criteria may be overwritten under specific
conditions, referred to as aspiration criteria. The most commonly used criterion is to
allow a tabu move if it results in a new incumbent solution. Ideally TS would stop
when it reaches the global optimum, but given the nature of heuristics there is no way of
knowing when this actually occurs, unless explicit information is available on the optimal
solution cost. Different stopping criteria can instead be used to terminate the search,
such as stoping the search after a certain number of moves have been made, or if the
algorithm has failed to find a new incumbent solution in the last t moves. Alternatively,
and consistent with all our previous computational tests, the search can terminate at a
specified execution time-limit.

More advanced mechanisms have been developed to improve the performance of TS,
such as medium-term memory to identify common elements in high-quality solutions, and
long-term memory to guide the search to unexplored regions of the solution space [80].

© University of Pretoria

164 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

With our aim to demonstrate the usefulness of our efficient LS heuristics within a meta-
heuristic, we chose to limit our implementation to its bare-minimum components, and
purposefully avoided adding mechanisms that require user-set parameters. We also chose
to reuse our existing LS components wherever possible.

7.2.2 Application of efficient local search components within Tabu Search

The best performing LS setup, developed in the previous chapter, was found to be LS
linked with Static-Move-Descriptors and Greedy-Compound-Independent-Moves, using an
extended move neighbourhood with double-cross and infeasible-compound moves in addi-
tion to relocate, exchange and cross.

TS has to be capable of making improving and non-improving moves. The search
operators for the different move-types, shown in Algorithms 6.3 to 6.5 in Section 6.1, can be
used as-is without modification to return both types of moves for possible implementation.
In fact, the operators have already been applied in this fashion to return non-improving,
neutral moves for the extended move neighbourhood. Critical information of each move
is stored in MMM and includes the cost of the move, ∆Z, a unique move identifier, movei,
and the two arcs, u and v, between which the move is applied. After the improving and
non-improving moves have been returned via MMM the list is ordered from best to worst
move. With LS, all the independent moves are then implemented in a greedy fashion
using Greedy-Compound-Moves (Algorithm 6.9 in Section 6.3).

TS requires that move information be evaluated against information in the tabu-list,
βββ. Tabu moves may then not be implemented, unless certain aspiration criteria are met.
In each LS iteration, Greedy-Compound-Moves sorts and scans the move list MMM . The first
feasible move in MMM is implemented, and all subsequent moves in MMM that are dependent
on the candidate move are ignored. The process repeats with the second best feasible
independent move and continues until all moves in MMM have been considered for implemen-
tation. A candidate move between arcs u′ and v′ is considered dependent on a previous
move between arcs u1 and v1 if it disturbs any of the arcs incident to u1 and v1, or if
it directly involves the arcs or their inverse. After an independent move between arcs u
and v is made, Update-Move-Dependence-Arc-Sets (Algorithm 6.7) adds the two arcs as
well as their incident arcs to the sets UUUa and UUU b. A candidate move between u′ and v′ is
dependent on an already implemented move if either of the arcs are in UUUa or UUU b, depending
on the exact move type. If it is dependent on a previous move, the move is skipped from
implementation in the current LS iteration.

For TS, after a move between arcs u and v has been made, both arcs are typically added
to the tabu-list βββ. A candidate move between u′ and v′ is considered tabu if either u′ or
v′ are in βββ. This prevents the counter-move that reverses the just-implemented move.
Although Greedy-Compound-Moves was originally developed to speed up LS, it avoids
cycling as a side-effect within an LS iteration. Similar to a TS implementation, arcs that
are added to UUUa and UUU b remain tabu until all independent, thus non-tabu moves in MMM
have been made. Greedy-Compound-Moves can thus be used as-is to make improving and
non-improving moves in MMM while enforcing tabu criteria to prevent short-term cycling.
The dependent arc sets, UUUa and UUU b, then double as tabu-lists.

If MMM contains a large number of non-improving moves, all of the independent moves
will be implemented in a single LS iteration, not just the best non-improving move. This
does not bode well for a TS application. Furthermore, Greedy-Compound-Moves does not
finely control when arcs should be removed from UUUa. The set is simply emptied at the
start of each LS iteration. Arcs involving the last move made by Greedy-Compound-Moves
will not be made tabu, whereas arcs of the first move will be kept tabu during the entire

© University of Pretoria

7.2. TABU SEARCH FOR THE MCARPTIF 165

LS iterations. A few modifications are thus required to make Greedy-Compound-Moves
more appropriate for a TS application.

7.2.3 Greedily compounding independent non-tabu moves

Algorithm 7.2 shows a modified version of Greedy-Compound-Moves, called Tabu-Greedy-
Compound-Moves, that uses the tabu-list to prohibit tabu moves. The first modification

Algorithm 7.2: Tabu-Greedy-Compound-Moves

Input : Current solution, TTT ; savings threshold, ∆Z; savings-list, MMM ; set of tabu arcs, βββ.
Output: Neighbouring solution, TTT ′, with independent moves implemented on TTT ; dependent arc set

UUUa for two-cost-link changes; dependent arc set UUUb for one-cost-link changes; and the set
of new arcs to add to the tabu-list, βββ′.

1 UUUa = ∅;
2 UUUb = ∅;
3 ∆Ztotal = 0;
4 TTT ′ = TTT ;
5 βββ′ = ∅;
6 Order MMM from the best to worst improving move;

7 for π ∈MMM do
8 (∆Z,movei, u, v) = π;

9 if ∆Z < ∆Z then
10 if u /∈ βββ and v /∈ βββ then
11 independent =Check-Move-Independence(π,UUUa,UUUb) // Algorithm 6.8 //;

12 else
13 independent = False;

14 if independent = True then
15 feasible =Check-Feasibility(TTT ′, u, v) // Algorithm 6.2 //;
16 if feasible = True then
17 (UUUa,UUUb) =Update-Move-Dependence-Arc-Sets(π,UUUa,UUUb) // Algorithm 6.7 //;
18 Implement the move on TTT ′;
19 βββ′ = βββ′ ∪ {u, v} ∪ {inv(u) : inv(u) 6= 0, inv(v) : inv(v) 6= 0};

20 return (TTT ′, UUUa, UUUb, βββ
′)

can be found in lines 10 to 13. The tabu-list, βββ, is a set containing all arcs that are tabu.
If a move between u and v is to be allowed, then u, v /∈ βββ. If it is not allowed, the move can
be flagged as either dependent on a previous move or as infeasible; either option will result
in the move not being implemented. The second modification is shown in line 17. After a
move between u and v is implemented, the arcs as well as their inverse arcs are added to a
second tabu-list, βββ′. Other moves involving either of the arcs will be disqualified in line 11
since they are dependent on the move. As a result, βββ does not have to be immediately
updated.

After Tabu-Greedy-Compound-Moves has scanned and made all the feasible, indepen-
dent, non-tabu moves, a second procedure aptly named Update-Tabu-List (shown in Al-
gorithm 7.3) is used to update the tabu-list. Arcs of moves made in the current iteration,
stored in βββ′, are added to the tabu-list βββ, and arcs that have been in the list for longer than
the tabu-tenure, γ, are removed from βββ . This requires the use of the function fm, which
returns the iteration at which arc u was last directly involved in a move. As an example,
if arcs u1 and v1 were part of a relocate move in iteration t− 10, then fm(u1) = t− 10 and
fm(v1) = t−10. In line 1 and 2, fm is updated for all the arcs in βββ′. In line 3 these arcs are
added into the tabu-list, βββnew, which will be used by Tabu-Greedy-Compound-Moves in

© University of Pretoria

166 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

Algorithm 7.3: Update-Tabu-List

Input : Current iteration t; tabu tenure γ; tabu-list βββ; just made moves βββ′; arc move iteration
function fm.

Output: Updated tabu-list βββnew; and arc move iteration function fm.

1 for u ∈ βββ′ do
2 fm(u) = t;

3 βββnew = βββ′ ∪ {u ∈ βββ : fm(u) ≤ t− γ};
4 return (βββnew, fm)

the next iteration. Also in line 3, by checking fm(u) ∀u ∈ βββ against the current iteration t,
all arcs that were involved in a move before iteration t−γ are removed from the tabu-list,
since they have been in the list for longer than γ iterations. The remaining arcs are added
to βββnew and will remain tabu in the next iteration.

7.2.4 Accelerated Tabu Search

Tabu-Greedy-Compound-Moves and Update-Tabu-List are the only additions needed to
create the full TS algorithm shown in Algorithm 7.4. In each TS iteration, the algorithm
ignores the tabu-list to see if the feasible independent improving moves result in a new
incumbent solution. If so, the moves are implemented. This is done in Lines 16 to 22
by calling the normal LS Greedy-Compound-Moves algorithm, and by setting the move
threshold to ∆Z = 0, thereby only allowing improving moves. In lines 24 to 28, if a
new incumbent solution is not found, all the non-tabu feasible moves are implemented.
Thereafter, in line 31, the tabu-list is updated by adding the new tabu-arcs to the list, and
by removing tabu-arcs that have been in the list for more than γ iterations. The search
repeats until a user-specified execution time-limit has been reached, at which point the
algorithm terminates and the incumbent solution is returned.

Tabu-Greedy-Compound-Moves will make all independent non-tabu moves per itera-
tion. It is therefore critical to establish an appropriate move cost threshold, ∆Z, that will
allow TS enough freedom to explore non-improving moves, but prevent it from worsening
the solution beyond repair. It should also be taken into consideration that ∆Z limits the
number of moves in MMM , and that the computational time required to sort MMM , and to check
the feasibility, independence and tabu state of the moves increases as a function of |MMM |,1.

In Figure 6.6 in Section 6.4.1 we showed that a significant number LS moves have zero
cost that neither improve nor worsen the solution. The neutral moves remain available
at local optima and creates large, flat plateaus that have to be successfully navigated to
reach new local optima. If one move is made per iteration, the tabu tenure must be set
large enough to prevent TS from cycling through a small region in the plateau.

An advantage of Tabu-Greedy-Compound-Moves is that it can make all the independent
neutral moves within a single iteration, allowing it to quickly navigate through plateaus. It
also results in TS being less sensitive towards the size of the problem instance. For small
instances, fewer feasible moves are available and a short tenure is required, otherwise
the search becomes too restricted. With large instances, more independent moves are
available per iteration, all of which will be made by Tabu-Greedy-Compound-Moves. As
a result, Tabu-Greedy-Compound-Moves navigates the search far away from the current
position within a single iteration. Tabu moves can then be made non-tabu after only a

1A slight deviation from Algorithm 6.11 that we did implement was to sort MMM at the start of each
iteration, instead of sorting it in Greedy-Compound-Moves, and then needlessly again in Tabu-Greedy-
Compound-Moves.

© University of Pretoria

7.2. TABU SEARCH FOR THE MCARPTIF 167

Algorithm 7.4: Accelerated-Tabu-Search

Input : Initial solution, TTT (0) ∈XXX; savings threshold, ∆Z; tabu tenure γ; execution time-limit,
timelim.

Output: Incumbent solution, TTT ∗

1 // tabu-search initialisation //;
2 t = 0;

3 TTT ∗ = TTT (0);
4 βββ = ∅ // initially no arcs are tabu //;
5 for u ∈ RRR do
6 fm(u) = −tau;

7 MMM = ∅;

8 MMM = Find-Relocate-Moves(TTT (0),∆Z,RRR,RRRT ,MMM) // Algorithm 6.3 //;

9 MMM = Find-Exchange-Moves(TTT (0),∆Z,RRR,RRR,MMM) // Algorithm 6.4 //;

10 MMM = Find-Cross-Moves(TTT (0),∆Z,RRRT ,RRRT ,MMM) // Algorithm 6.5 //;

11 // timenow is a global variable tracking the execution time of the algorithm //;
12 while timenow ≤ timelim do

13 Use Reduce-Vehicles on TTT (t) to reduce the fleet, and let TTT ′ be the result ;

14 if |TTT ′| < |TTT (t)| then // the fleet size has been reduced //

15 Set TTT (0) = TTT ′ and return to line 1;

16 if MMM 6= ∅ then
17 // first the aspiration criteria is checked //;

18 (TTT ′,∆Ztotal,UUU
′
a,UUU

′
b) = Greedy-Compound-Moves(TTT (t), 0,MMM) // Algorithm 6.9 //;

19 if Z(TTT ′) < Z(TTT ∗) or |TTT ′| < |TTT ∗| then
20 TTT ∗ = TTT ′;

21 TTT (t+1) = TTT ′;
22 UUUa = UUU ′a;
23 UUUb = UUU ′b;
24 βββ′ = ∅;

25 else
26 // non-tabu moves are made//;

27 (TTT ′,UUUa,UUUb,βββ
′) = Tabu-Greedy-Compound-Moves(TTT (t),∆Z,MMM,βββ) // Algorithm 7.2 //;

28 TTT (t+1) = TTT ′;
29 if Z(TTT ′) < Z(TTT ∗) or |TTT ′| < |TTT ∗| then
30 TTT ∗ = TTT ′;

31 (βββ, fm) = Update-Tabu-List(t, γ,βββ,βββ′, fm) // Algorithm 7.3 //;

32 MMM ′ = Update-Savings-List(UUUa,UUUb,MMM,∆Z) // Algorithm 6.10 //;
33 MMM = MMM ′;
34 t = t+ 1;

35 return (TTT ∗)

© University of Pretoria

168 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

few iterations, as is required with small instances. Furthermore, by carefully setting ∆Z,
Tabu-Greedy-Compound-Moves can remain close to improving solutions while navigating
through plateaus.

In this thesis we chose to set ∆Z = 1, thereby allowing only neutral moves. By doing
so, MMM is kept relatively short and parameter-tuning does not have to be performed on ∆Z.
When using ∆Z = 1, the aspiration criteria becomes redundant. Any feasible move with
∆Z < 0 will result in a new incumbent solution. Since MMM is sorted at the start of each
iteration, improving candidate moves are always scanned first. The tabu criteria is only
relevant to the neutral moves that follow them. By updating Tabu-Greedy-Compound-
Moves as shown in Algorithm 7.5 the aspiration criteria can be automatically applied
without having to call Greedy-Compound-Moves.

Algorithm 7.5: Neutral-Tabu-Greedy-Compound-Moves

Input : Current solution, TTT ; savings-list, MMM ; set of tabu arcs, βββ.
Output: Neighbouring solution, TTT ′, with independent moves implemented on TTT ; dependent arc set

UUUa for two-cost-link changes; dependent arc set UUUb for one-cost-link changes; and the set
of new arcs to add to the tabu-list, βββ′.

1 UUUa = ∅;
2 UUUb = ∅;
3 ∆Ztotal = 0;
4 TTT ′ = TTT ;
5 βββ′ = ∅;
6 Order MMM from the best to worst improving move;

7 for π ∈MMM do
8 (∆Z,movei, u, v) = π;
9 if ∆Z < 0 or (u /∈ βββ and v /∈ βββ) then

10 independent =Check-Move-Independence(π,UUUa,UUUb) // Algorithm 6.8 //;
11 if independent = True then
12 feasible =Check-Feasibility(TTT ′, u, v) // Algorithm 6.2 //;
13 if feasible = True then
14 (UUUa,UUUb) =Update-Move-Dependence-Arc-Sets(π,UUUa,UUUb) // Algorithm 6.7 //;
15 Implement the move on TTT ′;
16 βββ′ = βββ′ ∪ {u, v} ∪ {inv(u) : inv(u) 6= 0, inv(v) : inv(v) 6= 0};

17 return (TTT ′, UUUa, UUUb, βββ
′)

The final TS implementation used for our computational tests, which only makes
improving and neutral moves, is shown in Algorithm 7.6. A key feature of the algorithm
is that it only has two parameters2, namely the tabu-tenure, τ , and the amount of time
that it is allowed to execute, timelim. It is also fully deterministic. The only other input
that it requires is an initial solution TTT (0). Minimal parametrisation is thus required before
applying the algorithm.

7.3 Computational results

The aim of this chapter was to evaluate the impact of the accelerated LS heuristics within a
metaheuristic application, and to determine if the metaheuristic can be used on large waste
collection instances. Computational tests were performed on the Neutral-Accelerated-
Tabu-Search (NATS) metaheuristic, linked with different constructive heuristics.

2The Nearest-Neighbour-Lists can also be activated, in which case the nearest neighbour fraction, f ,
will become a third parameter.

© University of Pretoria

7.3. COMPUTATIONAL RESULTS 169

Algorithm 7.6: Neutral-Accelerated-Tabu-Search

Input : Initial solution, TTT (0) ∈XXX; tabu tenure γ; execution time-limit, timelim.
Output: Incumbent solution, TTT ∗

1 // tabu-search initialisation //;
2 t = 0;

3 TTT ∗ = TTT (0);
4 βββ = ∅ // initially no arcs are tabu //;
5 for u ∈ RRR do
6 fm(u) = −tau;

7 ∆Z = 1;
8 MMM = ∅;

9 MMM = Find-Relocate-Moves(TTT (0),∆Z,RRR,RRRT ,MMM) // Algorithm 6.3 //;

10 MMM = Find-Exchange-Moves(TTT (0),∆Z,RRR,RRR,MMM) // Algorithm 6.4 //;

11 MMM = Find-Cross-Moves(TTT (0),∆Z,RRRT ,RRRT ,MMM) // Algorithm 6.5 //;

12 // timenow is a global variable tracking the execution time of the algorithm //;
13 while timenow ≤ timelim do

14 Use Reduce-Vehicles on TTT (t) to reduce the fleet, and let TTT ′ be the result ;

15 if |TTT ′| < |TTT (t)| then // the fleet size has been reduced //

16 Set TTT (0) = TTT ′ and return to line 1;

17 if MMM 6= ∅ then
18 // non-tabu moves are made//;

19 (TTT ′,UUUa,UUUb,βββ
′) = Neutral-Tabu-Greedy-Compound-Moves(TTT (t),MMM,βββ) // Algorithm 7.5 //;

20 TTT (t+1) = TTT ′;
21 if Z(TTT ′) < Z(TTT ∗) or |TTT ′| < |TTT ∗| then
22 TTT ∗ = TTT ′;

23 (βββ, fm) = Update-Tabu-List(t, γ,βββ,βββ′, fm) // Algorithm 7.3 //;

24 MMM ′ = Update-Savings-List(UUUa,UUUb,MMM,∆Z) // Algorithm 6.10 //;
25 MMM = MMM ′;
26 t = t+ 1;

27 return (TTT ∗)

© University of Pretoria

170 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

For the first part of our tests we relied on the Act-IF, Lpr-IF and Cen-IF waste col-
lection benchmark sets. The aim of the tests was to determine if NATS is successful in
improving solutions beyond the local optima of pure LS heuristics. Next we tested the per-
formance of NATS on MCARP benchmark sets, and evaluated its solution quality against
lower bound values for the instances reported in Gouveia et al. [40]. We further evaluated
NATS against two other metaheuristics, namely the MCARP Memetic Algorithm of Be-
lenguer et al. [6], and the CARPTIF Variable Neighbourhood Search algorithm of Polacek
et al. [68]. For our final evaluation NATS was tested on the Cen-IF-Full instance with
5734 required edges and 555 required arcs, giving it a problem size of τ = 12 023. Prior to
our work, the largest instance used for computational tests was Lpr-c-05 with τ = 1190.

To evaluate and compare the performance of our algorithms we used Equation (7.1)
to calculate the cost gap, Zgap, between an algorithm’s solution TTT and the best known
solution for the instance:

Zgap =
Z(TTT)− ZBF

ZBF
, (7.1)

where ZBF is the cost of the best solution found for the instance during all our computa-
tional tests.

We also measured the fleet size gap, Kgap, between TTT and the best known fleet size for
the instance:

Kgap = |TTT ∗| −KBF, (7.2)

where KBF is the minimum fleet size found for a problem instance during all our tests.

NATS takes as input two parameters, namely its execution time-limit, timelim and its
tabu tenure, γ. Preliminary tests showed that a tabu tenure of γ = 3 gave acceptable
results on both small and large test instances. NATS was subsequently always tested with
γ = 3. A description of the tests and their results can be found in Section 7.A at the end
of the chapter.

All algorithms were programmed in Python version 2.7, with critical procedures op-
timised using Cython version 0.17.1. Computational experiments were run on a Dell
PowerEdge R910 4U Rack Server with 128GB RAM with four Intel Xeon E7540 proces-
sors each having 6 cores, and 12 threads and with a 2GHz base frequency. Experiments
were run without using programmatic multi-threading or multiple processors.

7.3.1 Results on the MCARPTIF instances

To evaluate the performance of NATS on the MCARPTIF waste collection tests we linked
the heuristic with the three deterministic constructive heuristics, Path-Scanning (PS),
Improved-Merge (IM) and Efficient-Route-Cluster (ERC), and set its execution time-limit
to one hour, in accordance with long execution time-limits. For each of the three setups,
referred to as PS-NATS, IM-NATS and ERC-NATS, we recorded the incumbent solution
over its execution, allowing us to analyse the improvement of NATS over different time
intervals. This allowed us to evaluate the solutions of the NATS setups at the short and
medium execution time-limits, and allowed us to directly compare the setups against the
best LS setups from the previous chapter.

Results for the best LS setup per problem instance, and for the NATS setups on the
three largest Lpr-IF instances, and the Cen-IF and Act-IF sets are shown in Figure 7.1. As
show in Figure 7.1a, on the large Cen-IF instances, NATS regularly found new incumbent
solutions throughout its execution within the one hour limit. This indicates that it may

© University of Pretoria

7.3. COMPUTATIONAL RESULTS 171

Cen−IF−a Cen−IF−b Cen−IF−c

RM−AEG

ERC−AEG

ERC−AEG

0.00

0.03

0.06

0.09

0 3 15 30 45 60 0 3 15 30 45 60 0 3 15 30 45 60

Execution time (minutes)

C
o

st
 g

a
p

 f
ro

m
 b

es
t

k
n

o
w

n
 s

o
lu

ti
o

n
 (

Z
g

a
p
)

ERC−NATS PS−NATS IM−NATS Best LS setup

(a) Results on Cen-IF instances.

Lpr−IF−a−05 Lpr−IF−b−05 Lpr−IF−c−05

ERCRL−AEG ERCRL−AEG

ERCRL−AEG

0.00

0.02

0.04

0.06

0 3 15 30 45 60 0 3 15 30 45 60 0 3 15 30 45 60

Execution time (minutes)

C
o

st
 g

a
p

 f
ro

m
 b

es
t

k
n

o
w

n
 s

o
lu

ti
o

n
 (

Z
g

a
p
)

ERC−NATS PS−NATS IM−NATS Best LS setup

(b) Results on the three largest Lpr-IF instances.

Act−IF−a Act−IF−b Act−IF−c

ERCRL−AEG PSRL−AEG
PSRL−AEG

0.00

0.05

0.10

0.15

0 3 15 30 45 60 0 3 15 30 45 60 0 3 15 30 45 60

Execution time (minutes)

C
o

st
 g

a
p

 f
ro

m
 b

es
t

k
n

o
w

n
 s

o
lu

ti
o

n
 (

Z
g

a
p
)

ERC−NATS PS−NATS IM−NATS Best LS setup

(c) Results on the Act-IF instances.

Figure 7.1: Comparison between the best performing Local Search (LS) setup
per problem instance and Path-Scanning (PS), Improved-Merge (IM) and Efficient-
Route-Cluster (ERC) constructive heuristics linked with Neutral-Accelerated-Tabu-
Search (NATS) on waste collection benchmark sets.

© University of Pretoria

172 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

yet find better solutions if allowed a longer execution time. The biggest improvements
between incumbent solutions were observed early on in the search. Thereafter it decreases
exponentially as a function of execution time. On the smaller Cen-IF-a instance IM-NATS
stagnated after only 15 minutes. The solution at which it stagnated was also worse than
that of the RM-LS-AEG multi-start setup. Since minimising fleet size was set as the main
objective, IM-NATS initially worsened the solution cost on Cen-IF-b to decrease the fleet
size. Thereafter it was able to reduce the cost well below that of the excess fleet incumbent.
With the exception of IM-NATS on Cen-IF-a, all the NATS setups outperformed the best
LS setups, although the time required for it to do so depended on the quality of its initial
solution. Over all the setups, the best initial solution resulted in the best incumbent
solution. This highlights the need for developing effective constructive heuristics, even
when there is sufficient time available to improve the solutions with metaheuristics.

On the Lpr-IF instances all the NATS setups outperformed the best LS setups, and
they did so relatively quickly within 3 minutes. The biggest improvements were observed
early on in the search, although NATS was still able to regularly find new incumbent
solutions up-to its one hour limit. The initial solutions again influenced the quality of the
final incumbent solution.

On the small Act-IF instances the multi-start LS setups outperformed NATS, except
for PS-NATS on Act-IF-b, which also happens to be the largest instance in the set. On
all instances NATS completely stagnated after only a few minutes. This shows the limits
of NATS in that it still gets stuck in local optima on small problem instances. One option
to improve its performance is to link it with multi-start constructive heuristics, thereby
allowing it to improve different initial solutions under short execution time-limits.

To compare the performance of all the different heuristics developed in this thesis
under short medium and long time-limits, the average Zgap values of the heuristic setups
were calculated over all the instances per benchmark set. The short execution time-
limit was set to 3 minutes, and the medium and long time-limits were set at 30 and 60
minutes, respectively. NATS was then compared against the pure multi-start randomised
constructive heuristics of Chapter 4, which we simply abbreviate as M-CH for Multi-
Start-Constructive-Heuristics, as well as the deterministic and multi-start LS-Accelerated-
Extended-Greedy setups of Chapter 6, respectively abbreviated as D-LS and M-LS.

The constructive heuristic setups consisted of Efficient-Route-Cluster-Random-Link
(ERCRL), Path-Scanning-Random-Link (PSRL) and Randomised-Merge (RM). For the D-
LS and NATS setups, the deterministic versions of Efficient-Route-Cluster, Path-Scanning
and Improved-Merge were used to generate a single solution per instance, which were then
improved with the setups. For the M-LS setups, the M-CH setups were used to provide
different starting solutions, and each was improved to its local optimum. Since the M-CH
and M-LS setups are randomised, their expected solution cost at the different execution
time-limits were used to calculate Zgap. The execution times of the D-LS, M-LS and NATS
setups included the time to generate the initial solutions.

Summary results for the different setups on the Cen-IF, Lpr-IF, Act-IF and mval-
IF-3L benchmark sets are shown in Table 7.1. Full result tables are available from Ap-
pendix A.2.1. The pure M-CH setups performed the worst, with Randomised-Merge being
the worst among all of them. It also failed to construct a solution for the Cen-IF-b and Cen-
IF-c instances within three minutes. Efficient-Route-Cluster-Random-Link performed the
best on the Cen-IF, Lpr-IF and Act-IF instances, with an average Zgap of between 1.6%
and 4.4% on the sets. On the mval-IF-3L set it performed the worst. The performance
of the M-CH setups did not improve by much when allowed more execution time, which
shows that the additional execution time is better used on improvement heuristics.

© University of Pretoria

7.3. COMPUTATIONAL RESULTS 173

T
a
b

le
7
.1

:
A

ve
ra

g
e

co
st

g
a
p

s,
Z

g
a
p

in
%

,
of

d
iff

er
en

t
op

ti
m

is
at

io
n

al
go

ri
th

m
s

u
n

d
er

sh
or

t,
m

ed
iu

m
an

d
lo

n
g

ex
ec

u
ti

on
ti

m
e-

li
m

it
s

on
M

C
A

R
P

T
IF

b
en

ch
m

a
rk

se
ts

.

3
m

in
u
te

ti
m

e-
li
m

it
3
0

m
in

u
te

ti
m

e-
li
m

it
6
0

m
in

u
te

ti
m

e-
li
m

it

S
et

C
o
n
st

ru
ct

M
-C

H
D

-L
S

M
-L

S
N

A
T

S
M

-C
H

D
-L

S
M

-L
S

N
A

T
S

M
-C

H
D

-L
S

M
-L

S
N

A
T

S

C
en

-I
F

E
R

C
4
.4

1
.7

3
.3

1
.5

4
.1

1
.7

1
.8

0
.7

4
.1

1
.7

1
.8

0
.4

P
S

7
.1

3
.1

4
.3

3
.3

6
.6

3
.1

2
.6

1
.7

6
.6

3
.1

2
.6

1
.5

M
-
∗

-
∗

-
∗

-
∗

3
.4

1
.5

1
.2

0
.9

3
.4

1
.5

1
.2

0
.5

M
ea

n
5
.1

2
.1

3
.1

1
.8

4
.7

2
.1

1
.9

1
.1

4
.7

2
.1

1
.9

0
.8

L
p

r-
IF

E
R

C
1
.8

1
.3

0
.8

0
.3

1
.8

1
.3

0
.6

0
.2

1
.8

1
.3

0
.6

0
.2

P
S

2
.5

1
.3

0
.8

0
.4

2
.5

1
.3

0
.7

0
.3

2
.5

1
.3

0
.7

0
.3

M
4
.8

1
.7

1
.4

0
.6

4
.5

1
.7

1
.1

0
.4

4
.5

1
.7

1
.1

0
.3

M
ea

n
3
.0

1
.4

1
.0

0
.4

2
.9

1
.4

0
.8

0
.3

2
.9

1
.4

0
.8

0
.3

A
ct

-I
F

E
R

C
1
.6

1
.2

0
.5

0
.6

1
.6

1
.2

0
.3

0
.6

1
.6

1
.2

0
.3

0
.6

P
S

1
.5

0
.9

0
.5

0
.5

1
.5

0
.9

0
.4

0
.5

1
.5

0
.9

0
.4

0
.5

M
1
4
.8

2
.2

3
.0

1
.2

1
3
.9

2
.2

2
.3

1
.1

1
3
.9

2
.2

2
.3

1
.1

M
ea

n
6
.0

1
.5

1
.3

0
.8

5
.7

1
.5

1
.0

0
.7

5
.7

1
.5

1
.0

0
.7

m
va

l-
IF

-3
L

E
R

C
1
2
.6

1
0
.0

2
.4

1
.9

1
2
.6

1
0
.0

2
.3

1
.7

1
2
.6

1
0
.0

2
.3

1
.7

P
S

1
0
.0

1
0
.1

3
.2

2
.4

1
0
.0

1
0
.1

3
.1

2
.4

1
0
.0

1
0
.1

3
.1

2
.4

M
1
0
.9

1
1
.9

3
.0

3
.6

1
0
.6

1
1
.9

2
.6

3
.6

1
0
.6

1
1
.9

2
.6

3
.6

M
ea

n
1
1
.2

1
0
.7

2
.9

2
.6

1
1
.1

1
0
.7

2
.7

2
.6

1
1
.1

1
0
.7

2
.7

2
.6

G
lo

ba
l

E
R

C
5
.1

3
.5

1
.7

1
.1

5
.0

3
.5

1
.3

0
.8

5
.0

3
.5

1
.3

0
.7

P
S

5
.3

3
.9

2
.2

1
.6

5
.1

3
.9

1
.7

1
.2

5
.1

3
.9

1
.7

1
.2

M
8
.6

4
.3

2
.2

1
.5

8
.1

4
.3

1
.8

1
.5

8
.1

4
.3

1
.8

1
.4

M
ea

n
6
.3

3
.9

2
.1

1
.4

6
.1

3
.9

1
.6

1
.2

6
.1

3
.9

1
.6

1
.1

M
-C

H
:

M
u
lt

i-
st

a
rt

R
a
n
d
o
m

is
ed

C
o
n
st

ru
ct

iv
e

H
eu

ri
st

ic
;

D
-L

S
:

D
et

er
m

in
is

ti
c

L
o
ca

l
S
ea

rc
h

A
cc

el
er

a
te

d
-E

x
te

n
d
ed

-G
re

ed
y
;

M
-L

S
:

M
u
lt

i-
st

a
rt

L
o
ca

l
S
ea

rc
h

A
cc

el
er

a
te

d
-

E
x
te

n
d
ed

-G
re

ed
y
;

N
A

T
S
:

N
eu

tr
a
l-

A
cc

el
er

a
te

d
T

a
b
u

S
ea

rc
h
;

E
R

C
:

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
;

P
S
:

P
a

th
-S

ca
n

n
in

g
;

M
:

M
er

ge
;
∗
M

er
ge

fa
il
ed

to
co

n
st

ru
ct

in
it

ia
l

so
lu

ti
o
n
s

w
it

h
in

3
m

in
u
te

s.

© University of Pretoria

174 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

Under short execution times, the D-LS setups performed better than the M-LS setups
on the Cen-IF and Lpr-IF sets, and yet on smaller instances they performed worse,
significantly so on mval-IF-3L where their average Zgap values were over 10%, compared
to 2.9% for the M-LS setups. Since D-LS improves a single solution to its local optimum
its performance remained constant over different execution time-limits. M-LS did benefit
from longer execution times, and more so on the Cen-IF instances where its average Zgap

decreased from 3.1% to 1.9%.

As expected NATS performed the best out of all the setups. Of interest is that it did
so even under short execution time-limits. This can be attributed to the accelerated LS
mechanism from which it was developed. NATS also benefited the most from extended
execution times, especially where it started with poor initial solutions. On the smaller
Act-IF and mval-IF-3L sets, its performance was close to that of M-LS, with the latter
producing slightly better solutions in some cases.

To evaluate the performance of the different setups in minimising the vehicle fleet size,
the Kgap of the different setups were evaluated. We then calculated the total number of
instances per benchmark set on which a setup produced a solution with an excess fleet-size,
thus with Kgap > 0. Results on the Cen-IF, Lpr-IF, Act-IF and mval-IF-3L benchmark
sets are shown in Table 7.2. Again, as expected, the M-CH setups performed the worst.
On all 55 problem instances, Efficient-Route-Cluster-Random-Link produced excessive
fleet-sized solutions on 23 (42%) and Randomised-Merge on 20 (36%) of the instances.
Path-Scanning-Random-Link performed better, producing excess fleet-size solutions on 12
(21%) of the instances. The excess fleet-size solutions occurred despite Reduce-Vehicles
being applied to each initial solution. NATS performed better than D-LS, but it still
produced excess fleet size solutions on some of the Lpr-IF and mval-IF-3L instances. Due
to their multi-start nature the M-LS setups performed the best in minimising the fleet-
size over all the benchmark sets. However, under short-execution time-limits on the large
Cen-IF instances the M-LS setups performed worse than NATS. When allowed longer
execution times the setups performed the same on the benchmark set. Both NATS and
M-LS performed the best when linked with Efficient-Route-Cluster and Efficient-Route-
Cluster-Random-Link, respectively.

Results on the waste collection benchmark sets showed that NATS linked with Efficient-
Route-Cluster performed the best in terms of minimising solution cost. Except for a few
of the smaller Lpr-IF instances, the setup also performed similarly to M-LS linked with
Efficient-Route-Cluster-Random-Link in minimising the fleet size. The role of constructive
heuristics still remains important, with the quality of the initial solutions influencing the
final incumbent solution at which NATS terminates. Results on the large Cen-IF and
Lpr-IF instances showed that NATS is efficient enough to be used under short, medium
and long execution time-limits.

7.3.2 Evaluation against existing solution approaches

A shortcoming of our evaluation of heuristics thus far is that their solution quality was
internally measured against the best solutions found during all our computational tests.
This is useful for identifying the best performing heuristic among those tested, but there
is a risk that all the heuristics are poor, including NATS. To gain more confidence in the
performance of NATS, further tests were performed on the MCARP.

The MCARPTIF can be reduced to the MCARP by setting the route duration limit
sufficiently large, thereby only the vehicle capacity constraint is taken into consideration,
and by setting the vehicle depot as the only available Intermediate Facility (IF). NATS
can then be used as-is to solve the MCARP. It can also be used as-is on the Capacitated

© University of Pretoria

7.3. COMPUTATIONAL RESULTS 175

T
a
b

le
7.

2:
N

u
m

b
er

o
f

p
ro

b
le

m
in

st
an

ce
s

p
er

M
C

A
R

P
T

IF
b

en
ch

m
ar

k
se

t
on

w
h

ic
h

th
e

d
iff

er
en

t
op

ti
m

is
at

io
n

al
go

ri
th

m
s

u
n

d
er

sh
or

t,
m

ed
iu

m
an

d
lo

n
g

ex
ec

u
ti

o
n

ti
m

e-
li

m
it

s
p

ro
d

u
ce

d
ex

ce
ss

-fl
ee

t
so

lu
ti

on
s.

3
m

in
u
te

ti
m

e-
li
m

it
3
0

m
in

u
te

ti
m

e-
li
m

it
6
0

m
in

u
te

ti
m

e-
li
m

it

S
et

C
o
n
st

ru
ct

#
in

s
M

-C
H

D
-L

S
M

-L
S

D
N

A
T

S
M

-C
H

D
-L

S
M

-L
S

D
N

A
T

S
M

-C
H

D
-L

S
M

-L
S

D
N

A
T

S

C
en

-I
F

E
R

C
3

2
0

1
0

2
0

0
0

2
0

0
0

P
S

3
2

0
2

0
1

0
0

0
1

0
0

0
M

3
-
∗

-
∗

-
∗

-
∗

1
0

0
0

1
0

0
0

T
o

ta
l

9
4

0
3

0
4

0
0

0
4

0
0

0
F

ra
ct

io
n

0
.4

4
0
.0

0
0
.3

3
0
.0

0
0
.4

4
0
.0

0
0
.0

0
0
.0

0
0
.4

4
0
.0

0
0
.0

0
0
.0

0

L
p

r-
IF

E
R

C
1
5

2
2

1
2

2
2

1
2

2
2

1
2

P
S

1
5

2
2

1
1

2
2

1
1

2
2

1
1

M
1
5

7
2

1
1

6
2

1
1

6
2

1
1

T
o

ta
l

4
5

1
1

6
3

4
1
0

6
3

4
1
0

6
3

4
F

ra
ct

io
n

0
.2

4
0
.1

3
0
.0

7
0
.0

9
0
.2

2
0
.1

3
0
.0

7
0
.0

9
0
.2

2
0
.1

3
0
.0

7
0
.0

9

A
ct

-I
F

E
R

C
3

0
0

0
0

0
0

0
0

0
0

0
0

P
S

3
0

0
0

0
0

0
0

0
0

0
0

0
M

3
0

0
0

0
0

0
0

0
0

0
0

0

T
o

ta
l

9
0

0
0

0
0

0
0

0
0

0
0

0
F

ra
ct

io
n

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

m
va

l-
IF

-3
L

E
R

C
3
4

1
9

1
3

3
6

1
9

1
3

3
6

1
9

1
3

3
6

P
S

3
4

8
1
3

5
9

8
1
3

5
9

8
1
3

5
9

M
3
4

1
3

2
0

5
1
3

1
3

2
0

4
1
3

1
3

2
0

4
1
3

T
o

ta
l

1
0
2

4
0

4
6

1
3

2
8

4
0

4
6

1
2

2
8

4
0

4
6

1
2

2
8

F
ra

ct
io

n
0
.3

9
0
.4

5
0
.1

3
0
.2

7
0
.3

9
0
.4

5
0
.1

2
0
.2

7
0
.3

9
0
.4

5
0
.1

2
0
.2

7

G
lo

ba
l

E
R

C
5
5

2
3

1
5

5
8

2
3

1
5

4
8

2
3

1
5

4
8

P
S

5
5

1
2

1
5

8
1
0

1
1

1
5

6
1
0

1
1

1
5

6
1
0

M
5
5

2
0

2
2

6
1
4

2
0

2
2

5
1
4

2
0

2
2

5
1
4

T
o

ta
l

1
6
5

5
5

5
2

1
9

3
2

5
4

5
2

1
5

3
2

5
4

5
2

1
5

3
2

F
ra

ct
io

n
0
.3

3
0
.3

2
0
.1

2
0
.1

9
0
.3

3
0
.3

2
0
.0

9
0
.1

9
0
.3

3
0
.3

2
0
.0

9
0
.1

9

#
in

s:
n
u
m

b
er

o
f
p
ro

b
le

m
in

st
a
n
ce

s
p

er
b

en
ch

m
a
rk

se
t;

M
-C

H
:
M

u
lt

i-
st

a
rt

R
a
n
d
o
m

is
ed

C
o
n
st

ru
ct

iv
e

H
eu

ri
st

ic
;
D

-L
S
:
D

et
er

m
in

is
ti

c
L

o
ca

l
S
ea

rc
h

A
cc

el
er

a
te

d
-E

x
te

n
d
ed

-
G

re
ed

y
;

M
-L

S
:

M
u
lt

i-
st

a
rt

L
o
ca

l
S
ea

rc
h

A
cc

el
er

a
te

d
-E

x
te

n
d
ed

-G
re

ed
y
;

N
A

T
S
:

N
eu

tr
a
l

A
cc

el
er

a
te

d
T

a
b
u

S
ea

rc
h
;

E
R

C
:

E
ffi

ci
en

t-
R

o
u

te
-C

lu
st

er
;

P
S
:

P
a

th
-S

ca
n

n
in

g
;

M
:

M
er

ge
;
∗
M

er
ge

fa
il
ed

to
co

n
st

ru
ct

in
it

ia
l

so
lu

ti
o
n
s

w
it

h
in

3
m

in
u
te

s.

© University of Pretoria

176 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

Arc Routing Problem under Time Restrictions with Intermediate Facilities (CARPTIF),
thus allowing us to compare NATS against two existing metaheuristics developed for
these problems, namely the MCARP Memetic Algorithm if Belenguer et al. [6] and the
CARPTIF Variable Neighbourhood Search of Polacek et al. [68].

We first compare NATS against the Memetic Algorithm (MA) of Belenguer et al. [6]
on the mval and Lpr MCARP benchmark sets, for which lower bound values are available
from [6, 40]. Belenguer et al. [6] report on the performance of their MA for a single run
under a one hour execution time-limit, and further give the costs of the best solution found
during all their computational tests. We relied directly on their reported solution costs,
and did not attempt to reimplement their MA. For our tests on NATS we again imposed
a one hour execution time-limit, and then measured the lower bound cost gap, LBgap,
between the solution of NATS, TTT ∗, and the lower bound values, ZLB, reported in [6, 40],
using the following equation:

LBgap =
Z(TTT ∗)− ZLB

ZLB
. (7.3)

Results for NATS and the MA of Belenguer et al. [6] on nine Lpr instances are shown
in Figure 7.2. The nine instances are the largest in the set. The same results with the gap
measured against the previous best known solutions can be found in Section 7.B at the end
of the chapter. PS-NATS required less than three minutes to outperform MA on the Lpr-
a-05, Lpr-b-05 and Lpr-c-05 instances. It also found new best solutions for the instances
in under five minutes. In comparison to MA, the tests confirm that NATS is extremely
effective on large instances. It produced high quality solutions with gaps of less than 1.5%
from lower-bound values. On the smaller Lpr-a-04 and Lpr-b-04 instances, the IM-NATS
setup also outperformed MA, but it required more time to do so. The only instance on
which it could find a new best solution was Lpr-b-04. It also failed to outperform MA
on the Lpr-c-04 instance within a one hour execution time-limit. All the NATS setups
failed to outperform the MA on the smaller Lpr-a-03, Lpr-b-03 and Lpr-c-03 instances.
The solution costs of NATS were still within 1% of the best known solutions, but similar
to tests on the MCARPTIF, the algorithm seems to be less effective on small instances.
Although not shown, NATS was similarly outperformed on the six smaller Lpr-a-01 to
Lpr-c-02 instances, on which MA was able to find proven optimal solutions.

To evaluate NATS on the smaller problem instances, we linked it with Efficient-Route-
Cluster-Random-Link, Path-Scanning-Random-Link and Randomised-Merge and allowed
it a reduced execution time of between one and three minutes to improve different initial
solutions. Different initial solutions were then improved until the global execution time-
limit of 60 minutes was reached. We tested this setup on the Lpr and mval benchmark
sets, as well as the bccm-IF set, used by Polacek et al. [68] to evaluate their Variable
Neighbourhood Research metaheuristic. For the Lpr instances, the execution time per
run was set to three minutes, and for the mval and bccm-IF instances it was set to one
minute. Full results for the tests can be found in Appendix A.2.2.

Summary results for the deterministic and the multi-start NATS setup are shown in
Table 7.3. The table shows the average LBgap values of the setups over the Lpr and
mval instances, and the average gap from the best solutions found by Polacek et al. [68]
on the bccm-IF instances. On the Lpr and mval instances, the multi-start NATS setups
performed better than the deterministic version. The setups further managed to find
new best solutions on the smaller Lpr-a-03 and Lpr-b-03 instances, as well as a few mval
instances. The multi-start NATS setups produced solutions with cost gaps of less than 1%
from lower-bound values, thus indicating that on the MCARP instances NATS is capable

© University of Pretoria

7.3. COMPUTATIONAL RESULTS 177

Lpr−a Lpr−b Lpr−c

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

S
ize 0

3
S

ize 0
4

S
ize 0

5

0 3 15 30 45 60 0 3 15 30 45 60 0 3 15 30 45 60

Execution time (minutes)

L
o

w
er

 b
o

u
n

d
 g

a
p

 (
L

B
g

a
p
)

PS−NATS IM−NATS ERC−NATS MA

Figure 7.2: Lower-bound gaps of NATS setups, in comparison to a Memetic Algorithm
[6], on nine Lpr instances.

Table 7.3: Average lower-bound and best-known cost gaps for NATS setups on MCARP
and CARPTIF benchmark sets.

Multi-start Deterministic

Set MA [6] PSRL-NATS RM-NATS ERCRL-NATS PS-NATS IM-NATS ERC-NATS

Lpr 0.41 0.50 0.44 0.48 0.51 0.49 0.57
mval 0.71 0.56 0.96 0.93 2.34 2.34 3.00
bccm-IF∗ 3.21 2.40 6.09 6.31 8.24 14.24

Mean 1.42 1.27 2.50 3.05 3.69 5.94

∗Solutions for the Variable Neighbourhood Search heuristic reported in Polacek et al. [68] are still the best
known, giving the Variable Neighbourhood Search heuristic an average best known cost gap of 0%.

© University of Pretoria

178 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

of producing high quality solutions. On bccm-IF, the deterministic NATS setups performed
extremely poorly, with average gaps of between 6% and 14% from the best known solutions.
The multi-start version performed better, with an average gap of around 2.4% when linked
with RM. Over all the instances, NATS linked with RM performed the best, but it is clear
that NATS was not as effective on small MCARP and CARPTIF instances as the existing
methods, whereas it performed extremely well on large instances.

7.3.3 Computational tests on the Cen-IF-Full instance

The previous tests showed that NATS can effectively deal with large Cen-IF instances
with up-to 2755 required arcs and edges. Despite being three times larger than the Lpr-
c-05 instance, these instances are smaller than the waste collection problems often found
in practice, which according to Prins [69] can contain tens of thousands of arcs.

To test the limits of our heuristics we performed a final set of tests on the Cen-IF-Full
instance, which is a combination of all three Cen-IF instances. The instance contains 5734
required edges and 555 required arcs, giving it an instance size of τ = 12 023.

The algorithms were executed over four steps. First, all the pre-calculations were
performed and stored for future use; second, initial solutions were generated using de-
terministic constructive heuristics; third, each initial solution was improved to its local
optimum using LS; and lastly, each local optimum solution was further improved using
NATS with a tabu tenure of γ = 3.

Before applying the heuristics we first had to pre-calculate the quickest dead-heading
path times between all the arcs and edges of the instance. Thereafter the best IF to
visit between all the required arcs and edges had to be calculated. The time required
for this pre-calculation is seldom reported in literature, but becomes significant for huge
instances. The shortest-paths for the Cen-IF-Full instance were calculated using our
adapted Floyd-Warshall algorithm (Algorithm 2.1 in Section 2.A), which together with
the IF calculations took 84 minutes to complete. The pre-calculation data was stored
for future use, ensuring it did not have to be incurred each time a heuristic was called.
This also applies in practice, assuming of course that the road network of the service area
remains the same. Once stored, the pre-calculation data still had to be loaded each time
computational tests were performed. This took on average 200 seconds, which already
makes it impossible for the heuristics to be used within our short execution time-limit of
3 minutes.

Once the instance-data is loaded, the next step was to generate in initial solution for
the instance using Path-Scanning, Efficient-Route-Cluster and Improved-Merge. All three
heuristics were used without imposing a time limit and their solution costs compared.
Results for the heuristics are shown in the top of Table 7.4. Path-Scanning and Efficient-
Route-Cluster again proved to be efficient, taking 14 and 33 seconds, respectively, to
generate five and four deterministic solutions, respectively, and return the best. If the
loading time of the pre-calculation data can be reduced the two constructive heuristics
may yet prove effective under short time-limits. The same cannot be said for the less
efficient Improved-Merge, which took 49 minutes to generate an initial solution. It did
manage to produce the lowest cost solution but the solution had a fleet size of 66 vehicles,
compared to 51 vehicles required by the other two heuristic solutions

For the next step the initial solutions were improved using LS-Accelerated-Extended-
Greedy (LS-ARG), again without imposing a time-limit. Results for this step are also
shown in Table 7.4. On the Path-Scanning and Efficient-Route-Cluster initial solutions,
LS-ARG took over 20 minutes to reach local optima, and the total savings obtained
through this step was only 2% and 3%, respectively. LS-ARG took even longer on the

© University of Pretoria

7.3. COMPUTATIONAL RESULTS 179

Table 7.4: Performance of the optimisation algorithms on the Cen-IF-Full instance.

Optimisation algorithm Performance metric ERC PS IM

Constructive heuristics Total execution time (minutes) 0.5 0.2 49
timelim =∞ Cost 1 405 725 1 449 403 1 403 820

Fleet size 51 51 66

Cost gap (Zgap) 4.0% 7.1% 3.8%
Fleet gap (Kgap) 3 3 18

Accelerated Local Search Total execution time (minutes) 23 24 125
timelim =∞h Cost 1 377 454 1 397 684 1 388 147

Fleet size 51 51 49

Cost gap (Zgap) 1.7% 3.4% 2.7%
Fleet gap (Kgap) 3 3 1

NATS Total execution time (minutes) 60 60 49∗

timelim = 1h Cost 1 372 593 1 392 452 1 403 820∗

Fleet size 51 50 66∗

Cost gap (Zgap) 1.5% 3.0% 7.1%∗

Fleet gap (Kgap) 3 2 18∗

NATS Total execution time (minutes) 1440 1440 1440
timelim = 24h Cost 1 354 280 1 363 592 1 352 301

Fleet size 48 49 48

Cost gap (Zgap) 0.1% 0.8% 0.0%
Fleet gap (Kgap) 0 1 0

ERC: Efficient-Route-Cluster ; PS: Path-Scanning ; IM: Improved-Merge; NATS: Neutral Accelerated Tabu
Search. ∗Under a 1-hour execution time-limit IM takes 49 minutes to generate a single solution, leaving too
little time to complete a single TS or LS iteration, hence why the values are as given for the constructive
heuristic.

© University of Pretoria

180 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

Improved-Merge solution, but here it was at least capable of reducing the fleet size by
17 vehicles. In fact, after this step, the local optimum Improved-Merge solution required
only 49 vehicles, compared to the 51 vehicles of the other solutions. The execution time
of LS-ARG prevents it from being used under short time-limits, but it can be used under
medium time-limits when linked with either Path-Scanning or Efficient-Route-Cluster.

The last step was to further improve the solutions using NATS. For this step we
originally imposed the long execution time-limit of one hour. The time-limit includes
the time to load the pre-calculation-data, to generate the initial solution and to improve
it to its local optimum using LS-ARG. These three steps already took in excess of 125
minutes on the Improved-Merge solution. Results for NATS on the Path-Scanning and
Efficient-Route-Cluster local optimum solutions are shown in Table 7.4. NATS improved
the local optima solutions by a meagre 0.35% and 0.36%, although it did reduce the fleet
size of the Path-Scanning solution from 51 to 50 vehicles. Despite the efficiency of our
NATS implementation, it struggled to significantly improve the initial solutions within
our medium and long execution time-limits.

To further evaluate NATS we extended its execution time to 24 hours. Results for the
test are shown in Figure 7.3. Figure 7.3a shows the cost gap of NATS over its execution

0.00

0.02

0.04

0.06

0 4 8 12 16 20 24

Execution time (hours)

C
o

st
 g

a
p

 f
ro

m
 b

es
t

k
n

o
w

n
 s

o
lu

ti
o

n
 (

Z
g

a
p
)

ERC−NATS PS−NATS IM−NATS

(a) Cost gap between the current incumbent solu-
tion of NATS and the best known solution over its
execution time.

0

5

10

15

0 4 8 12 16 20 24

Execution time (hours)

V
eh

ic
le

 g
a

p
 f

ro
m

 b
es

t
k

n
o

w
n

 s
o

lu
ti

o
n

 (
K

g
a

p
)

ERC−NATS PS−NATS IM−NATS

(b) Fleet size gap between the current incumbent
solution of NATS and the best known solution over
its execution.

Figure 7.3: Performance of NATS under a 24-hour execution time-limit on the Cen-IF-Full
instance.

time and Figure 7.3b show the vehicle fleet gap. Jumps in the costs of the incumbent
solutions shown in Figure 7.3a correspond with fleet reductions of Figure 7.3b, with min-
imising the fleet size being our primary objective. When allowed sufficient execution time,
NATS was able to reduce the fleet sizes. On the Path-Scanning solution, this resulted in
a temporary increase in solution cost, whereafter NATS was able to reduce the solution
cost below its previous lowest level. The same also occurred once on the Improved-Merge
solution. After being improved by NATS the Improved-Merge solution turned out to be
the best. Previous tests indicated that our Efficient-Route-Cluster constructive heuristic
is the best option for producing starting solutions. Yet, in this final test it was outper-

© University of Pretoria

7.4. CONCLUSION 181

formed by Randomised-Merge, which happened to perform quite poorly on other waste
collection instances. This shows that our NATS is still sensitive towards its initial solu-
tions, highlighting the need for more research on constructive heuristics.

Under a 24 hour execution time-limit NATS proved to be effective on the giant Cen-
IF-Full instance, but more research is required before the heuristic can be used for short
and medium term-planning.

7.4 Conclusion

The aim of this thesis was to develop heuristics capable of generating and improving feasi-
ble solutions for the MCARPTIF under different execution time-limits. Different methods
have been developed and critically evaluated in the preceding chapters, culminating in the
development of our Neutral Accelerated Tabu Search metaheuristic. The metaheuristic
was developed by extending the accelerated LS mechanisms from the previous chapter,
and has the unique characteristic of only having two parameters, a tabu tenure and an
execution time-limit. Tests on the large waste collection instances showed that it can be
used under short and long execution time-limits, outperforming the pure LS setup from
which it was developed. It also outperformed an existing metaheuristic on large MCARP
instances. It did, however, struggle on small instances, and although its performance was
improved when allowed multiple-starts, the existing metaheuristics reigned supreme on
the small MCARP and CARPTIF instances.

The main aim of this chapter was determine if our research on efficient LS procedures
can be easily extended to develop an efficient metaheuristic. The simplicity of our TS
metaheuristic and its performance on waste collection sets showed that the extension is
indeed possible, thereby creating an opportunity to improve the performance of existing
LS metaheuristics on large instances. On small instances the existing heuristics are more
than adequate, and difficult to improve upon. The practical relevance of further improving
the performance of heuristics on small instances is questionable. We therefore recommend
that more tests be performed on large instances, similar in size to those encountered in
practice.

To establish the limits of our heuristics we performed further tests on a huge MCARPTIF
instance. Two of our MCARPTIF constructive heuristics were capable of producing initial
solutions within 30 seconds. LS then took close to 30 minutes to improve the solutions,
and thereafter NATS required up-to 24 hours to significantly improve the local optimum
solutions. In terms of our original goal of developing heuristics capable of generating and
improving feasible solutions for the MCARPTIF under different execution time-limits,
these results showed that our heuristics can be used for this purpose on realistic instances.

© University of Pretoria

182 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

© University of Pretoria

Chapter appendix

7.A Tabu tenure parameterisation

The following experiments were conducted to analyse the impact of the tabu tenure, γ,
on the improvements made by Neutral Accelerated Tabu Search (NATS) on the initial
solutions. NATS was used to improve three initial solutions per problem instance, gen-
erated by the Improved-Merge, Path-Scanning and Efficient-Route-Cluster constructive
heuristics. Tests were performed on the Act-IF, Cen-IF and Lpr-IF waste collection
benchmark sets, as well as the mval-IF-3L sets. NATS was tested at six tabu tenure lev-
els: γ ∈ {0, 3, 5, 10, 15, 20}. The improvement made by NATS at each γ level to the initial
solution was measured as:

∆ZfTS =
Z(TTT (0))− Z(TTT ∗)

Z(TTT (0))
, (7.4)

where Z(TTT (0)) is the cost of the initial solution and Z(TTT ∗) is the cost of the final incumbent
solution returned by NATS. On each instance NATS was allowed a maximum execution
time-limit of 30 minutes, and the incumbent was saved at 60 sec, 5, 15 and 30 minute
intervals to determine if the best tenure changes when NATS is allowed more execution
time. Results for the tests are shown in Figure 7.4 The best improvements were observed
at γ ∈ {3, 5}, and the worst improvements were observed at γ = 0. This was observed
over all four benchmark sets which confirms that small tabu tenures are appropriate on
small and large problem instances. The difference between the different γ levels was small,
indicating that NATS is not very sensitive to the tabu tenure. Based on the tests we chose
to always use NATS at γ = 3, but we do note that γ = 5 could also have been used.

7.B Results for NATS on the MCARP

Figure 7.5 shows the cost gaps of NATS and the Memetic Algorithm [6] from the previously
best known solutions on nine of the largest Lpr MCARP benchmark instances. A negative
cost gap implies that NATS was able to find a new best solution for an instance. As shown
in the figure, NATS achieves this very quickly on the large size 5 instances, but failed to
do so on the smaller size 3 instances.

183

© University of Pretoria

184 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

time limit: 60 sec time limit: 5 min time limit: 15 min time limit: 30 min

●
●

●
●

●

●
●

●

●
●

●● ●●

●

●

● ●

●

●

● ●

●●
●
●

●

●
●

●

●● ●●

●

●
●

●

●

● ●

●

●

● ●

●●
●
●

●
●

●

●●
●● ●

●

●

●

● ●

●

●

● ●

●●
●
●

●

●
●

●

●●
●● ●

●

●

●

●

● ●

●

●

● ●

0.025

0.050

0.075

0.100

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.08

0.0

0.1

0.2

0.3

0.4

A
ct−

IF
C

en
−

IF
L

p
r−

IF
m

v
a

l−
IF

−
3

L

0 3 5 10 15 20 0 3 5 10 15 20 0 3 5 10 15 20 0 3 5 10 15 20

Tabu tenure (τ)

Im
p

ro
v

em
en

t
o

v
er

 i
n

it
ia

l
so

lu
ti

o
n

 (
∆Z

T
S

f
)

Figure 7.4: Improvement of Neutral Accelerated Tabu Search at different tabu tenure levels
to three initial solutions per problem instance.

© University of Pretoria

7.B. RESULTS FOR NATS ON THE MCARP 185

Lpr−a Lpr−b Lpr−c

0.00

0.02

0.04

0.00

0.02

0.04

0.00

0.02

0.04

S
ize 0

3
S

ize 0
4

S
ize 0

5

0 3 15 30 45 60 0 3 15 30 45 60 0 3 15 30 45 60

Execution time (minutes)

C
o

st
 g

a
p

 f
ro

m
 p

re
v

io
u

sl
y

 b
es

t
k

n
o

w
n

 s
o

lu
ti

o
n

 (
B

K
g

a
p
)

PS−NATS IM−NATS ERC−NATS MA

Figure 7.5: Cost gap between the NATS setups and the previous best known solutions, in
comparison to the Memetic Algorithm of [6], on nine Lpr MCARP problem instances.

© University of Pretoria

186 CHAPTER 7. AN ACCELERATED TABU SEARCH METAHEURISTIC

© University of Pretoria

Chapter 8

Research contributions and future
work

The research question that this thesis attempted to answer was: ‘how should municipalities
design and optimise residential waste collection routes for their waste collection vehicles?’
To answer the research question we formulated the Mixed Capacitated Arc Routing Prob-
lem under Time Restrictions with Intermediate Facilities (MCARPTIF) and formulated
three specific aims for the thesis, all relating to the development of heuristics for the prob-
lem. In the next section we revisit the research aims and discuss how they were addressed
in the preceding chapters. In Section 8.2 we discuss the research contributions of this
thesis, focussing on the utility of our research and how the utility was demonstrated. In
the last section we discus future research opportunities related to our work.

8.1 Research aims

In this thesis four aims were formulated.

(1) Find the appropriate Arc Routing Problem formulation for the MCARPTIF.

The MCARPTIF consists of elements of the Capacitated Arc Routing Problem (CARP),
Mixed Capacitated Arc Routing Problem (MCARP), and Capacitated Arc Routing Prob-
lem under Time Restrictions with Intermediate Facilities (CARPTIF). The three existing
problem definitions were combined into a complete formulation for the MCARPTIF prob-
lem, thus addressing the first research aim.

(2) Identify potential solution methods for the MCARPTIF under different execution
time-limits.

The time-limits are applicable to situations involving short, medium and long term plan-
ning. Despite what we considered to be a common practical application, the MCARPTIF
has to our knowledge not been formally studied in literature. To identify potential solution
methods we therefore focussed on studies of the CARP, MCARP and CARPTIF. With
all three problems being NP-hard, and by extension so too the MCARPTIF, the most
effective methods for dealing with the problems are based on heuristic and metaheuristic
solution techniques. To address the second research aim we identified existing constructive
heuristics that could be adapted to the MCARPTIF and used them when short execution
times are available. We further identified Local Search (LS) methods for the MCARP that

187

© University of Pretoria

188 CHAPTER 8. RESEARCH CONTRIBUTIONS AND FUTURE WORK

could be adapted and used to improve the initial solutions, and ultimately extended into
a metaheuristic for the MCARPTIF.

(3) Develop heuristics capable of generating and improving feasible solutions for the
MCARPTIF under different execution time-limits.

When combined, the heuristics that we developed form a three-phased approach. The
contribution of each phase to the area of arc routing is as follows.

For Phase 1 we developed and tested constructive heuristics to generate initial solutions
for the MCARPTIF. We first developed optimal and efficient splitting procedures and
used these to develop giant tour based constructive heuristics for the problem. Next we
extended two existing MCARP heuristics to deal with Intermediate Facilities (IFs). We
also developed a vehicle reduction procedure that allowed the heuristics to better deal with
cases where the fleet size has to be minimised. Benchmark tests were performed on realistic
waste collection instances, thus improving the practical significance of our results, as well
as instances developed from existing CARP, MCARP and CARPTIF benchmark sets.
Results among the sets varied, with the giant-tour based heuristics performing the best
on the waste collection instances. All the heuristics proved capable of quickly generating
MCARPTIF solutions, thus addressing the first part of research aim three. The differences
in heuristic performance among the sets highlighted the need for tests to be performed on
realistic waste collection instances, few of which are currently available in literature.

For Phase 2 we developed basic LS heuristics that relied on best-move and first-move
strategies. The heuristics employed five move operators, of which relocate, exchange and
cross made the biggest contribution to the savings obtained through LS. Even when the
basic LS heuristics were limited to the three main move operators, the heuristics proved
to be too slow on realistically sized waste collection instances. This necessitated us to
implement advanced acceleration mechanisms that enabled LS to more quickly reach lo-
cal optima. The two most effective acceleration mechanisms were Static-Move-Descriptors
and Greedy-Compound-Independent-Moves. Both significantly accelerated LS without neg-
atively effecting its solution quality. Through the acceleration mechanisms, LS took at
most four minutes to reach local optima on our largest test instances, whereas the basic
setups took between fifteen minutes and three hours. Although LS was originally con-
sidered for situations where medium execution time-limits are available, the acceleration
mechanisms made it possible for LS to be applied under short execution time-limits as
well, thereby exceeding the second part of research aim three. Our work on LS is signif-
icant in the context of CARPs as all the current metaheuristics for the problems rely on
some form of LS.

For Phase 3 we extended the accelerated LS heuristic to develop a Tabu Search (TS)
metaheuristic, capable of further improving initial solutions beyond local optima. A key
feature of the TS is that it only has two parameters, a tabu tenure and an execution
time-limit. It is also fully deterministic. Tests were performed on large waste collection
instances, as well as existing MCARP and CARPTIF benchmark sets, allowing the TS
to be directly compared against existing solution approaches for the problems. Our main
goal was to determine if our research contribution on efficient LS procedures could be
easily extended to develop an efficient metaheuristic for the MCARPTIF. The simplicity
of the metaheuristic and its performance on large instances showed that the extension is
indeed possible, thereby creating an opportunity to improve the performance of existing LS
metaheuristics on large instances. Similar to LS, we originally considered TS for situations
where medium to long execution time-limits are available. The efficiency of its underlying

© University of Pretoria

8.2. RESEARCH CONTRIBUTIONS 189

LS procedures made it possible for TS to be applied under short execution time-limits as
well, where it outperformed the LS methods on large instances.

(4) Critically evaluate the heuristics in terms of their solution quality and execution
times.

This aim was addressed throughout the development of our heuristics. To address research
aim four we developed two benchmark sets, termed Act-IF and Cen-IF, that are based on
actual road networks where waste collection occurs. The Cen-IF set contains instances
with up-to 2775 required arcs and edges, whereas the largest instance prior to this thesis
contained only 803. Throughout the thesis, benchmark tests were performed on the re-
alistic waste collection instances, thus improving the practical significance of our results.
The size of the Cen-IF instances made it possible to critically evaluate the scalability of
our heuristics, and to identify inefficiencies that would have gone unnoticed if tests were
limited to the smaller benchmark instances.

To fully address aim four, a last test was performed on the huge Cen-IF-Full waste
collection instance with 6289 arcs and edges. Two of our constructive heuristics were
capable of producing initial solutions within short execution time-limits. LS was then
able to improve the two solutions within medium time-limits. Thereafter the TS required
up-to 24 hours to significantly improve the local optimum solutions. The last test showed
that the efficacy of our improvement heuristics is limited by instance size, and that more
research still has to be done on the improvement heuristics to allow them to be used under
short execution time-limits on huge instances.

Tests on the Cen-IF and Cen-IF-Full sets showed that the common practice of testing
and proving the effectiveness of heuristics on rather small randomly generated instances
does not guarantee that the heuristics will be capable of dealing with more realistic prob-
lems. By performing tests on the more realistic waste collection instances we were able
to critically evaluate the heuristics in terms of their solution quality and execution times,
thus addressing the fourth and final aim of this thesis.

8.2 Research contributions

The research methodology that we followed was based on the Design Research paradigm, as
defined for Operations Research by Manson [56]. Design research requires the development
of one or more artefacts, which in this thesis represented the heuristics that we developed
for the MCARPTIF. To determine if the research contributions are significant, Manson
[56] poses two questions, taken from Hevner et al. [46]. The two questions are:

“What utility does the new artefact(s) provide?” and “What demonstrates this
utility?”

Hevner et al. [46] give five testing statements through which we can evaluate our research
contributions to determine their significance, and in so doing answer the above two ques-
tions.

(1) “If existing artefacts are adequate, then the production of new artefacts is unneces-
sary.”

Existing artefacts for the MCARPTIF are not adequate for two reasons. First, to our
knowledge this thesis presents the first formal study on the MCARPTIF, as such there

© University of Pretoria

190 CHAPTER 8. RESEARCH CONTRIBUTIONS AND FUTURE WORK

are no existing heuristics for the problem that could have been used as-is. It was therefore
necessary to adapt and extend existing heuristics for the problem, thereby creating new
artefacts for the MCARPTIF. Second, the existing heuristics are not adequate when
dealing with large instances. In literature, computational tests are mostly being performed
on small instances, although more recently a set of medium sized instances, introduced
by Brandão and Eglese [12], have also been used. Heuristics are developed to outperform
existing methods on the small and medium test instances, thereby leading to competitive
testing [47]. The existing heuristics have thus become extremely effective in dealing with
small to medium sized instances and are becoming increasingly difficult to improve upon.
However, as our tests on the MCARP instances showed, the performance of these heuristics
on large instances leave room for improvement. We therefore recommend that more tests
be performed on large instances, similar in size to those encountered in practice.

(2) “If the new artefact does not map adequately to the real world, it cannot provide
utility.”

The MCARPTIF closely models residential waste collection problems and therefore ad-
equately maps to the real world. Despite what we considered to be a common practical
application, the MCARPTIF has not been formally studied in literature. It should be
noted that not all waste collection problems faced in practice deal with mixed road net-
works and Intermediate Facilitys (IFs). The CARP and MCARP therefore do adequately
map to the real world in certain situations, but not always. An advantage of focussing
on the MCARPTIF, in addition to the problem considering IFs and mixed networks,
is that it can be reduced to the CARP and MCARP. The heuristics developed in this
thesis can therefore be used as-is on the CARP and MCARP, allowing our artefacts to
map adequately to a wider range of situations encountered in practical waste collection
applications. Similar to how we extended methods for the CARP and MCARP to the
MCARPTIF, our work can be extended in future studies to deal with multiple depots,
heterogeneous fleets, and stochastic demand, among others.

(3) “If the artefact does not solve the problem, it has no utility.”

The developed heuristics proved capable of producing high quality feasible solutions for the
MCARPTIF. Finding the optimal solution for the MCARPTIF is not practically possible
on large instances due to the problem being NP-hard. For this reason we relied on
heuristic solution techniques. The heuristics proved capable of generating and improving
feasible solutions for the problem, which are adequate for practical applications. Another
aspect that we focussed on is the vehicle fleet size. In CARP literature the fleet is often
assumed to be unlimited, which is seldom the case in practice. A solution requiring more
vehicles than what is available should be considered infeasible. To allow heuristics to
better deal with this situation we developed a vehicle reduction heuristic that aggressively
tries to reduce the vehicle fleet size, even if it results in an increase in solution cost.

(4) “If utility is not demonstrated, then there is no basis upon which to accept the claims
that it provides any contribution.”

In this thesis all our computational tests were performed on realistically sized waste col-
lection instances, thereby improving and demonstrating the practical significance and re-
search utility of our results. The heuristics were further tested under different execution

© University of Pretoria

8.3. FUTURE RESEARCH OPPORTUNITIES 191

time-limits, as is often encountered in practice. The ultimate goal is to demonstrate the
utility of our work in the form of a case study, in which the actual improvements in the
waste collection process resulting from new routes can be measured. Such a case study is
dependent on heuristics capable of generating new collection routes. Through this thesis
we have laid the foundations for such a case study.

The fifth and last statement is:

(5) “If the problem, the artefacts, and its utility are not presented in a manner such that
the implications for research and practice are clear, then publication in the literature
is not appropriate.”

The final validation of our research ultimately depends on whether it is deemed acceptable
for publication. We believe that our two publications in [86] and [87], based on the contents
of Chapters 3 and 4, shows the significance of our research in the area of CARPs.

8.3 Future research opportunities

This thesis constitutes the first work on the MCARPTIF, which leaves much scope for
future research opportunities. Specific research opportunities were referred to directly in
the preceding chapters. The focus of this chapter is therefore on more general research
themes.

All the existing LS based heuristics for the CARP, MCARP, and CARPTIF can be
tested with our efficient LS procedures on large instances. Our developed heuristics can
also be extended to deal with other realistic MCARPTIF generalisations, such as cases
with heterogeneous fleets, multiple vehicle depots, and stochastic demand. The evaluation
of our heuristics can also be improved, specifically by using anytime behaviour analysis as
proposed by López-Ibáñez and Stützle [55].

However, we feel that a more critical and essential research contribution would be to
develop more realistic benchmark problems. The Cen-IF and Cen-IF-Full sets developed
in this thesis contributes towards this goal, but the instances still contain too much ran-
domly generated information. Realistic benchmark problems are critical for developing
useful heuristics capable of solving actual waste collection routing problems.

The last research opportunity that we wish to highlight is the integration of our routing
heuristics into strategic optimisation models, such as determining vehicle fleet composi-
tions, determining the location of intermediate facilities and sectoring a large collection
area into collection zones. Our heuristics can then be used to provide decision support in
other critical areas of waste management.

© University of Pretoria

192 CHAPTER 8. RESEARCH CONTRIBUTIONS AND FUTURE WORK

© University of Pretoria

Bibliography

[1] Ahr, D. and Reinelt, G. (2015). The capacitated arc routing problem: combinatorial
lower bounds. In Corberán, Á. and Laporte, G., editors, Arc routing: problems, methods,
and applications, volume 20 of MOS-SIAM Series on Optimization, chapter 8, pages
159–181. SIAM.

[2] Amberg, A., Domschke, W., and Voß, S. (2000). Multiple center capacitated arc
routing problems: a tabu search algorithm using capacitated trees. European Journal
of Operational Research, 124(2):360–376.

[3] Bartolini, E., Cordeau, J.-F., and Laporte, G. (2013). Improved lower bounds and
exact algorithm for the capacitated arc routing problem. Mathematical Programming,
137(1-2):409–452.

[4] Bautista, J., Fernández, E., and Pereira, J. (2008). Solving an urban waste collection
problem using ant heuristics. Computers & Operations Research, 35(9):3020–3033.

[5] Beasley, J. E. (1983). Route first—cluster second methods for vehicle routing. Omega,
11(4):403–408.

[6] Belenguer, J., Benavent, E., Lacomme, P., and Prins, C. (2006). Lower and upper
bounds for the mixed capacitated arc routing problem. Computers & Operations Re-
search, 33(12):3363–3383.

[7] Belenguer, J. M. and Benavent, E. (2003). A cutting plane algorithm for the capaci-
tated arc routing problem. Computers & Operations Research, 30(5):705–728.

[8] Belenguer, J. M., Benavent, E., and Irnich, S. (2015). The capacitated arc routing
problem: exact algorithms. In Corberán, Á. and Laporte, G., editors, Arc routing:
problems, methods, and applications, volume 20 of MOS-SIAM Series on Optimization,
chapter 9, pages 183–221. SIAM.

[9] Benavent, E., Campos, V., Corberán, A., and Mota, E. (1992). The capacitated arc
routing problem: Lower bounds. Networks, 22(7):669–690.

[10] Beullens, P., Muyldermans, L., Cattrysse, D., and Van Oudheusden, D. (2003). A
guided local search heuristic for the capacitated arc routing problem. European Journal
of Operational Research, 147(3):629–643.

[11] Bode, C. and Irnich, S. (2012). Cut-first branch-and-price-second for the capacitated
arc-routing problem. Operations Research, 60(5):1167–1182.

[12] Brandão, J. and Eglese, R. (2008). A deterministic tabu search algorithm for the
capacitated arc routing problem. Computers & Operations Research, 35(4):1112–1126.

193

© University of Pretoria

194 BIBLIOGRAPHY

[13] Campbell, James F., L. A. and Perrier, N. (2015). Advances in vehicle routing for
snow plowing. In Corberán, A. and Laporte, G., editors, Arc routing: problems, methods,
and applications, volume 20 of MOS-SIAM Series on Optimization, chapter 15, pages
351–370. SIAM.

[14] Christiansen, C. H., Lysgaard, J., and Wøhlk, S. (2009). A branch-and-price algo-
rithm for the capacitated arc routing problem with stochastic demands. Operations
Research Letters, 37(6):392–398.

[15] Chu, F., Labadi, N., and Prins, C. (2006). A scatter search for the periodic capacitated
arc routing problem. European Journal of Operational Research, 169(2):586–605.

[16] City of Cape Town (2015). Integrated annual report: 2014/15. Available online from
https://www.capetown.gov.za/en/IDP/Documents [last accessed 24 April 2016].

[17] Constantino, M., Gouveia, L., Mourão, M. C., and Nunes, A. C. (2015). The mixed
capacitated arc routing problem with non-overlapping routes. European Journal of
Operational Research, 244(2):445–456.

[18] Corberán, Á. and Laporte, G. (2015). Arc routing: problems, methods, and applica-
tions, volume 20. SIAM.

[19] Corberán, A. and Prins, C. (2010). Recent results on arc routing problems: an
annotated bibliography. Networks, 56(1):50–69.

[20] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to algorithms.
MIT-Press.

[21] Coutinho-Rodrigues, J., Rodrigues, N., and Cĺımaco, J. (1993). Solving an urban
routing problem using heuristics: a successful case study. Belgian Journal of Operations
Research, Statistics and Computer Science, 33(1):2.

[22] De Rosa, B., Improta, G., Ghiani, G., and Musmanno, R. (2002). The arc routing
and scheduling problem with transshipment. Transportation Science, 36(3):301–313.

[23] Del Pia, A. and Filippi, C. (2006). A variable neighborhood descent algorithm for a
real waste collection problem with mobile depots. International transactions in opera-
tional research, 13(2):125–141.

[24] Doulabi, S. H. H. and Seifi, A. (2013). Lower and upper bounds for location-arc
routing problems with vehicle capacity constraints. European Journal of Operational
Research, 224(1):189 – 208.

[25] Dror, M., editor (2000). Arc Routing: Theory, Solutions, and Applications. Boston:
Kluwer Academic Publishers.

[26] Eiselt, H. A., Gendreau, M., and Laporte, G. (1995a). Arc routing problems, part I:
The Chinese Postman Problem. Operations Research, 43(2):231–242.

[27] Eiselt, H. A., Gendreau, M., and Laporte, G. (1995b). Arc routing problems, part II:
The Rural Postman Problem. Operations Research, 43(3):399–414.

[28] Ergun, Ö., Orlin, J. B., and Steele-Feldman, A. (2006). Creating very large scale
neighborhoods out of smaller ones by compounding moves. Journal of Heuristics,
12(1):115–140.

© University of Pretoria

BIBLIOGRAPHY 195

[29] Gendreau, M. (2003). An introduction to tabu search. In Glower, F. and Kochen-
berger, G., editors, Handbook of Metaheuristics. Kluwer Academic Publishers.

[30] Ghiani, G., Guerriero, F., Improta, G., and Musmanno, R. (2005). Waste collection
in Southern Italy: solution of a real-life arc routing problem. International Transactions
in Operational Research, 12(2):135–144.

[31] Ghiani, G., Guerriero, F., Laporte, G., and Musmanno, R. (2004). Tabu search
heuristics for the arc routing problem with intermediate facilities under capacity and
length restrictions. Journal of Mathematical Modelling and Algorithms, 3(3):209–223.

[32] Ghiani, G., Improta, G., and Laporte, G. (2001). The capacitated arc routing problem
with intermediate facilities. Networks, 37(3):134–143.

[33] Ghiani, G., Laganá, D., Laporte, G., and Mari, F. (2010). Ant colony optimiza-
tion for the arc routing problem with intermediate facilities under capacity and length
restrictions. Journal of Heuristics, 16(2):211–233.

[34] Ghiani, G. and Laporte, G. (2015). The undirected rural postman problem. In Cor-
berán, Á. and Laporte, G., editors, Arc routing: problems, methods, and applications,
volume 20 of MOS-SIAM Series on Optimization, chapter 5, pages 85–99. SIAM.

[35] Ghiani, G., Mourão, M. C., Pinto, L., and Vigo, D. (2015). Routing in waste collection
applications. In Corberán, Á. and Laporte, G., editors, Arc routing: problems, methods,
and applications, volume 20 of MOS-SIAM Series on Optimization, chapter 15, pages
351–370. SIAM.

[36] Glover, F. (1986). Future paths for integer programming and links to artificial intel-
ligence. Computers & Operations Research, 13(5):533–549.

[37] Glower, F. and Kochenberger, G., editors (2003). Handbook of Metaheuristic. Kluwer
Academic Publishers.

[38] Golden, B. L., DeArmon, J. S., and Baker, E. K. (1983). Computational experiments
with algorithms for a class of routing problems. Computers & Operations Research,
10(1):47–59.

[39] Golden, B. L. and Wong, R. T. (1981). Capacitated arc routing problems. Networks,
11(3):305–315.

[40] Gouveia, L., Mourão, M. C., and Pinto, L. S. (2010). Lower bounds for the mixed
capacitated arc routing problem. Computers & Operations Research, 37(4):692–699.

[41] Grandinetti, L., Guerriero, F., Laganà, D., and Pisacane, O. (2012). An optimization-
based heuristic for the multi-objective undirected capacitated arc routing problem.
Computers & Operations Research, 39(10):2300–2309.

[42] Greistorfer, P. (2003). A tabu scatter search metaheuristic for the arc routing problem.
Computers & Industrial Engineering, 44(2):249–266.

[43] Groves, G., Le Roux, J., and Van Vuuren, J. (2004). Network service scheduling and
routing. International transaction in operational research, 11(6):613–643.

[44] Hertz, A., Laporte, G., and Mittaz, M. (2000). A tabu search heuristic for the
capacitated arc routing problem. Operations Research, 48(1):129–135.

© University of Pretoria

196 BIBLIOGRAPHY

[45] Hertz, A. and Mittaz, M. (2001). A variable neighborhood descent algorithm for the
undirected capacitated arc routing problem. Transportation Science, 35(4):425–435.

[46] Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in infor-
mation systems research. MIS quarterly, 28(1):75–105.

[47] Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of Heuristics,
1(1):33–42.

[48] Irnich, S., Funke, B., and Grünert, T. (2006). Sequential search and its application
to vehicle-routing problems. Computers & Operations Research, 33(8):2405–2429.

[49] Karadimas, N. V., Papatzelou, K., and Loumos, V. G. (2007). Optimal solid waste
collection routes identified by the ant colony system algorithm. Waste Management &
Research, 25(6):139–147.

[50] Krushinsky, D. and Van Woensel, T. (2015). An approach to the asymmetric multi-
depot capacitated arc routing problem. European Journal of Operational Research,
244(1):100–109.

[51] Lacomme, P., Prins, C., and Ramdane-Chérif, W. (2004). Competitive memetic
algorithms for arc routing problems. Annals of Operations Research, 131(4):159–185.

[52] Laporte, G. (2015). The undirected chinese postam problem. In Corberán, Á. and
Laporte, G., editors, Arc routing: problems, methods, and applications, volume 20 of
MOS-SIAM Series on Optimization, chapter 3, pages 53–64. SIAM.

[53] Li, L. Y. and Eglese, R. W. (1996). An interactive algorithm for vehicle routeing for
winter-gritting. Journal of the Operational Research Society, 47(2):217–228.

[54] Liu, T., Jiang, Z., and Geng, N. (2013). A memetic algorithm with iterated local
search for the capacitated arc routing problem. International Journal of Production
Research, 51(10):3075–3084.

[55] López-Ibáñez, M. and Stützle, T. (2014). Automatically improving the anytime
behaviour of optimisation algorithms. European Journal of Operational Research,
235(3):569–582.

[56] Manson, N. (2006). Is operations research really research? ORiON: The Journal of
ORSSA, 22(2):155–180.

[57] Martinelli, R., Poggi, M., and Subramanian, A. (2013). Improved bounds for large
scale capacitated arc routing problem. Computers & Operations Research, 40(8):2145–
2160.

[58] Martinez, C., Loiseau, I., Resende, M., and Rodriguez, S. (2011). BRKGA algorithm
for the capacitated arc routing problem. Electronic Notes in Theoretical Computer
Science, 281:69–83.

[59] Mei, Y., Li, X., and Yao, X. (2014). Cooperative co-evolution with route distance
grouping for large-scale capacitated arc routing problems. IEEE Transactions on Evo-
lutionary Computation, 18(3):435–449.

[60] Mourão, M. C. and Almeida, M. T. (2000). Lower-bounding and heuristic methods for
a refuse collection vehicle routing problem. European Journal of Operational Research,
121(2):420–434.

© University of Pretoria

BIBLIOGRAPHY 197

[61] Mourão, M. C. and Amado, L. (2005). Heuristic method for a mixed capacitated
arc routing problem: a refuse collection application. European Journal of Operational
Research, 160(1):139–153.

[62] Mourão, M. C., Nunes, A. C., and Prins, C. (2009). Heuristic methods for the
sectoring arc routing problem. European Journal of Operational Research, 196(3):856–
868.

[63] Muyldermans, L. and Pang, G. (2010). A guided local search procedure for the
multi-compartment capacitated arc routing problem. Computers & Operations Re-
search, 37(9):1662–1673.

[64] Muyldermans, L. and Pang, G. (2015). Variants of the capacitated arc routing prob-
lem. In Corberán, Á. and Laporte, G., editors, Arc routing: problems, methods, and
applications, volume 20 of MOS-SIAM Series on Optimization, chapter 10, pages 223–
253. SIAM.

[65] National Treasury (2011). Local Government Budgets and Expenditure Review:
2006/07–2012/13. Republic of South Africa. Available online from http://

www.treasury.gov.za/publications/igfr/2011/lg/default.aspx [last accessed 24
April 2016].

[66] Nemhauser, G., Kan, A. R., and Todd, M. (1989). Preface. In G.L. Nemhauser,
A. R. K. and Todd, M., editors, Optimization, volume 1 of Handbooks in Operations
Research and Management Science, pages v – ix. Elsevier.

[67] Pearn, W. L. (1989). Approximate solutions for the capacitated arc routing problem.
Computers & Operations Research, 16(6):589–600.

[68] Polacek, M., Doerner, Karl F. Hartl, R. F., and Maniezzo, V. (2008). A variable
neighborhood search for the capacitated arc routing problem with intermediate facilities.
Journal of Heuristics, 14(5):405–423.

[69] Prins, C. (2015). The capacitate arc routing problem: heuristics. In Corberán, Á.
and Laporte, G., editors, Arc routing: problems, methods, and applications, volume 20
of MOS-SIAM Series on Optimization, chapter 7, pages 131–157. SIAM.

[70] Prins, C., Lacomme, P., and Prodhon, C. (2014). Order-first split-second methods
for vehicle routing problems: A review. Transportation Research Part C: Emerging
Technologies, 40:179–200.

[71] Rardin, R. (1997). Optimization in Operations Research. Prentice Hall.

[72] Rardin, R. L. and Uzsoy, R. (2001). Experimental evaluation of heuristic optimization
algorithms: a tutorial. Journal of Heuristics, 7(3):261–304.

[73] Rodrigues, A. M. and Soeiro Ferreira, J. (2015). Waste collection routing—limited
multiple landfills and heterogeneous fleet. Networks, 65(2):155–165.

[74] Sahoo, S., Kim, S., Kim, B.-I., Kraas, B., and Popov Jr., A. (2005). Routing opti-
mization for waste management. Interfaces, 35(1):24–36.

[75] Santos, L., Coutinho-Rodrigues, J., and Antunes, C. H. (2011). A web spatial deci-
sion support system for vehicle routing using google maps. Decision Support Systems,
51(1):1–9.

© University of Pretoria

http://www.treasury.gov.za/publications/igfr/2011/lg/default.aspx
http://www.treasury.gov.za/publications/igfr/2011/lg/default.aspx

198 BIBLIOGRAPHY

[76] Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2008). Implementing a multi-
vehicle multi-route spatial decision support system for efficient trash collection in Por-
tugal. Transportation Research Part A: Policy and Practice, 42(6):922–934.

[77] Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2009). An improved heuristic
for the capacitated arc routing problem. Computers & Operations Research, 36(9):2632–
2637.

[78] Santos, L., Coutinho-Rodrigues, J., and Current, J. R. (2010). An improved ant
colony optimization based algorithm for the capacitated arc routing problem. Trans-
portation Research Part B: Methodological, 44(2):246–266.

[79] Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International Transac-
tions in Operational Research, 22(1):3–18.

[80] Talbi, E. (2009). Metaheuristics: From design to implementation. Wiley, New Jersey.

[81] Tang, K., Mei, Y., and Yao, X. (2009). Memetic algorithm with extended neighbor-
hood search for capacitated arc routing problems. IEEE Transactions on Evolutionary
Computation, 13:1151–1166.

[82] Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. Euro-
pean Journal of Operational Research, 22(3):329–337.

[83] Usberti, F. L., França, P. M., and França, A. L. M. (2013). Grasp with evolution-
ary path-relinking for the capacitated arc routing problem. Computers & Operations
Research, 40(12):3206–3217.

[84] Viotti, P., Pelettini, A., Pomi, R., and Innocetti, C. (2003). Genetic algorithms as
a promising tool for optimisation of the MSW collection routes. Waste Management
Research, 21(4):292–298.

[85] Willemse, E. J. and Joubert, J. W. (2012). Applying min−max k postmen prob-
lems to the routing of security guards. Journal of the Operational Research Society,
63(2):245–260.

[86] Willemse, E. J. and Joubert, J. W. (2016a). Benchmark dataset for undirected and
mixed capacitated arc routing problems under time restrictions with intermediate facil-
ities. Data in Brief, 8:972–977.

[87] Willemse, E. J. and Joubert, J. W. (2016b). Constructive heuristics for the mixed
capacity arc routing problem under time restrictions with intermediate facilities. Com-
puters & Operations Research, 68:30–62.

[88] Willemse, E. J. and Joubert, J. W. (2016c). Library of benchmark test sets for
variants of the capacitated arc routing problem under time restrictions with intermediate
facilities, v3. Mendeley Data, DOI: 10.17632/9x4vd92rcj.3. Available online from
http://dx.doi.org/10.17632/9x4vd92rcj.3.

[89] Willemse, E. J. and Joubert, J. W. (2016d). Splitting procedures for the mixed
capacitated arc routing problem under time restrictions with intermediate facilities.
Operations Research Letters, 44(5):569–574.

[90] Winston, W. and Venkataramanan, M. (2003). Introduction to mathematical pro-
gramming, volume one of Operations research. California: Duxbury.

© University of Pretoria

http://dx.doi.org/10.17632/9x4vd92rcj.3
http://dx.doi.org/10.17632/9x4vd92rcj.3

BIBLIOGRAPHY 199

[91] Wøhlk, S. (2008). A decade of capacitated arc routing. In Golden, B., Raghavan, S.,
and Wasil, E., editors, The Vehicle Routing Problem: Latest Advances and New Chal-
lenges, volume 43 of Operations Research/Computer Science Interfaces Series, pages
29–48. Springer US.

[92] Zachariadis, E. E. and Kiranoudis, C. T. (2010). A strategy for reducing the com-
putational complexity of local search-based methods for the vehicle routing problem.
Computers & Operations Research, 37(12):2089–2105.

© University of Pretoria

200 BIBLIOGRAPHY

© University of Pretoria

Appendices

201

© University of Pretoria

© University of Pretoria

Appendix A

Detailed results tables

A.1 Full results for constructive heuristics

This section contains full result tables, referred to in Chapter 4, for the MCARPTIF
constructive heuristics. Heuristics tested include Path-Scanning (PS), Path-Scanning-
Random-Link (PSRL), Improved-Merge (IM), Randomised-Merge (RM), Efficient-Route-
Cluster (ERC), Efficient-Route-Cluster-Random-Link (ERCRL), Route-Cluster (RC) and
Route-Cluster-Random-Link (RCRL).

A.1.1 Results on Act-IF, Cen-IF and lpr-IF

Results for all heuristics for Act-IF, Cen-IF and Lpr-IF problem instances are shown in
Table A.1. Results for deterministic heuristic versions are shown for cost, Z, and number
of required vehicles, K. For the randomised versions results are shown for the expected
values of Z and K, when the heuristics are allowed 100 runs (α = 100). Computational
times of the heuristics for the sets are shown in Table A.2.

203

© University of Pretoria

2
0
4

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

Table A.1: Heuristic results for Act-IF, Cen-IF and Lpr-IF sets

Best found IM RM(100) PS PSRL(100) ERC ERCRL(100) RC RCRL(100)

1st Obj Instance Z K Z K Z K Z K Z K Z K Z K Z K Z K

min Z Cen-IF-a 231431 9 235650 9 233135 10 251726 9 250258 9 237433 13 239082 16 237433 11 239005 12
Cen-IF-b 594142 21 597825 30 596913 31 610737 22 610799 22 597253 26 601669 28 594142 27 599486 26
Cen-IF-c 512669 19 515952 20 514160 23 550367 20 548107 20 526067 31 529738 33 526067 22 529574 25

Mean Zgap and Kgap 1.0 % 3.3 0.5 % 5 6.3 % 0.7 5.9 % 0.7 1.9 % 7 2.6 % 9.3 1.7 % 3.7 2.5 % 4.7

Act-IF-a 22351 1 25398 1 26457 1 22499 1 22470 1 22553 1 22587 1 22553 1 22533 1
Act-IF-b 72244 3 87808 4 87054 4 73040 3 72816 3 73151 3 72789 3 72821 3 72598 3
Act-IF-c 49972 2 54911 3 55415 2 50400 2 50209 2 50445 2 50189 2 50296 2 50125 2

Mean Zgap and Kgap 15.0 % 0.7 16.6 % 0.3 0.9 % 0 0.6 % 0 1.0 % 0 0.8 % 0 0.8 % 0 0.5 % 0

Lpr-IF-a-01 13594 1 13954 1 13877 1 13783 1 13717 1 13810 2 13718 1 13713 1 13639 1
Lpr-IF-a-02 28399 1 29113 2 28786 1 29516 2 28789 1 28966 2 28718 1 28720 1 28551 1
Lpr-IF-a-03 77670 3 78565 4 78095 4 80261 3 79775 3 78896 4 78840 5 78834 4 78712 4
Lpr-IF-a-04 132824 5 142214 7 152995 7 133006 5 133746 5 133840 6 133432 6 133733 6 133166 6
Lpr-IF-a-05 211345 8 216907 10 227939 10 212252 8 212548 8 212295 9 212213 9 211840 9 211784 8
Lpr-IF-b-01 14835 1 15261 1 15122 1 15009 1 14915 1 14927 1 14914 1 14927 1 14875 1
Lpr-IF-b-02 28773 1 29196 2 29078 2 29955 2 29752 2 29230 2 29085 2 29230 2 29031 2
Lpr-IF-b-03 79664 3 80215 3 80268 4 80786 3 80897 3 80690 5 80124 5 80624 4 79998 4
Lpr-IF-b-04 131493 5 136204 6 139558 6 134580 5 133794 5 132940 6 132689 6 132387 6 132267 6
Lpr-IF-b-05 219670 8 224653 10 234169 10 222874 8 222684 8 221413 9 220783 10 220782 9 220305 9
Lpr-IF-c-01 18735 1 19004 1 18910 1 18837 1 18811 1 18845 1 18814 1 18807 1 18771 1
Lpr-IF-c-02 36605 2 37338 2 37317 2 36903 2 36834 2 36858 2 36797 2 36737 2 36700 2
Lpr-IF-c-03 113648 4 117256 5 118103 6 114908 4 114450 4 114293 5 114330 5 114127 5 114067 5
Lpr-IF-c-04 172944 7 174065 8 173674 8 176151 7 176470 7 174438 9 174010 10 174255 9 173783 9
Lpr-IF-c-05 271558 10 277458 11 279447 13 276587 10 276887 10 272676 13 272257 14 272271 13 271981 13

Mean Zgap and Kgap 2.4 % 0.9 3.6 % 1.1 1.7 % 0.1 1.4 % 0.1 1.0 % 1.1 0.7 % 1.2 0.8 % 0.9 0.4 % 0.8

min K Cen-IF-a 231431 9 235650 9 233476 9 251726 9 250258 9 242929 9 242680 9 238868 9 240410 9
Cen-IF-b 594142 21 605708 29 609014 25 610737 22 610799 22 599029 22 605166 22 596721 22 601452 21
Cen-IF-c 512669 19 529887 19 515652 19 550367 20 547883 20 528713 20 539099 19 532141 19 534676 19

© University of Pretoria

A
.1
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

C
O
N
S
T
R
U
C
T
IV

E
H
E
U
R
IS
T
IC

S
205

Mean Zgap and Kgap 2.4 % 2.7 1.3 % 1.3 6.3 % 0.7 5.9 % 0.7 3.0 % 0.7 4.0 % 0.3 2.5 % 0.3 3.1 % 0

Act-IF-a 22351 1 25398 1 26457 1 22499 1 22470 1 22553 1 22587 1 22553 1 22533 1
Act-IF-b 72244 3 79179 3 85858 3 73040 3 72816 3 73151 3 72789 3 72821 3 72598 3
Act-IF-c 49972 2 53771 2 54916 2 50400 2 50209 2 50445 2 50189 2 50296 2 50125 2

Mean Zgap and Kgap 10.3 % 0 15.7 % 0 0.9 % 0 0.6 % 0 1.0 % 0 0.8 % 0 0.8 % 0 0.5 % 0

Lpr-IF-a-01 13594 1 13954 1 13877 1 13783 1 13717 1 13816 1 13718 1 13713 1 13639 1
Lpr-IF-a-02 28399 1 28678 1 28726 1 28776 1 28789 1 28966 2 28692 1 28720 1 28551 1
Lpr-IF-a-03 77670 3 79775 3 78521 3 80261 3 79775 3 79576 3 79382 3 79103 3 78958 3
Lpr-IF-a-04 132824 5 140752 6 150247 6 133006 5 133746 5 134452 5 133838 5 133838 5 133234 5
Lpr-IF-a-05 211345 8 216390 9 226016 9 212252 8 212548 8 213366 8 212801 8 212300 8 211784 8
Lpr-IF-b-01 14835 1 15261 1 15122 1 15009 1 14915 1 14927 1 14914 1 14927 1 14875 1
Lpr-IF-b-02 28773 1 29196 2 29078 2 29955 2 29752 2 29230 2 29085 2 29230 2 29031 2
Lpr-IF-b-03 79664 3 80215 3 80992 3 80786 3 80897 3 81338 3 80818 3 80872 3 80131 3
Lpr-IF-b-04 131493 5 140297 5 141052 5 134580 5 133794 5 133763 5 133226 5 132840 5 132363 5
Lpr-IF-b-05 219670 8 230112 9 231697 9 222874 8 222684 8 222582 8 222835 8 220837 8 220728 8
Lpr-IF-c-01 18735 1 19004 1 18910 1 18837 1 18811 1 18845 1 18814 1 18807 1 18771 1
Lpr-IF-c-02 36605 2 37338 2 37317 2 36903 2 36834 2 36858 2 36797 2 36737 2 36700 2
Lpr-IF-c-03 113648 4 117256 5 117345 5 114763 4 114450 4 114293 5 114846 4 114715 4 114067 4
Lpr-IF-c-04 172944 7 177241 7 174195 7 176151 7 176470 7 175302 7 174765 7 174590 7 174034 7
Lpr-IF-c-05 271558 10 280380 10 281448 11 276587 10 276887 10 276318 10 275637 10 274146 10 273463 10

Mean Zgap and Kgap 2.9 % 0.3 3.5 % 0.4 1.5 % 0.1 1.4 % 0.1 1.4 % 0.2 1.1 % 0.1 0.9 % 0.1 0.5 % 0.1

© University of Pretoria

206 APPENDIX A. DETAILED RESULTS TABLES

Table A.2: Computational times, in seconds, of heuristics to complete 100 runs (α = 100)
for Cen-IF and Lpr-IF, Act-IF sets.

Instance α IM RM PS PSRL ERC ERCRL RC RCRL

Cen-IF-a 100 48.2 4818.3 0.8 9.5 1.1 18.0 15.6 259.5
Cen-IF-b 100 478.3 47830.6 5.4 67.3 7.1 117.7 68.3 1138.5
Cen-IF-c 100 393.6 39364.4 7.1 89.0 9.6 160.2 63.0 1050.0

Mean time 306.7 30671.1 4.4 55.3 5.9 98.6 49.0 816.0

Act-IF-a 1000 1.0 98.8 0.0 0.5 0.1 1.2 1.4 23.0
Act-IF-b 1000 8.5 851.1 0.2 1.9 0.3 5.3 8.5 141.3
Act-IF-c 1000 2.9 293.4 0.1 1.8 0.2 2.5 3.2 53.5

Mean time 4.1 414.4 0.1 1.4 0.2 3.0 4.4 72.6

Lpr-IF-a-01 100 0.1 5.3 0.0 0.3 0.0 0.4 0.1 1.4
Lpr-IF-a-02 100 0.2 23.6 0.1 1.8 0.1 1.2 0.4 7.1
Lpr-IF-a-03 100 2.3 225.4 0.1 1.2 0.2 3.4 2.6 43.3
Lpr-IF-a-04 100 5.9 585.5 0.2 2.3 0.3 5.4 4.8 80.7
Lpr-IF-a-05 100 9.7 971.5 0.4 4.5 0.7 11.3 8.5 141.9
Lpr-IF-b-01 100 0.0 2.9 0.0 0.1 0.0 0.3 0.1 1.2
Lpr-IF-b-02 100 0.1 13.3 0.1 0.9 0.0 0.8 0.4 6.5
Lpr-IF-b-03 100 1.4 143.4 0.1 1.2 0.2 3.5 2.7 44.3
Lpr-IF-b-04 100 3.2 319.6 0.2 2.6 0.4 6.1 5.0 83.1
Lpr-IF-b-05 100 10.2 1018.8 0.3 4.2 0.6 10.2 8.2 135.9
Lpr-IF-c-01 100 0.1 8.2 0.0 0.2 0.0 0.3 0.1 1.1
Lpr-IF-c-02 100 0.3 33.4 0.0 0.4 0.0 0.8 0.3 5.1
Lpr-IF-c-03 100 3.6 361.6 0.3 4.2 0.3 4.9 1.6 26.5
Lpr-IF-c-04 100 9.2 917.2 0.2 3.1 0.4 6.7 3.1 51.7
Lpr-IF-c-05 100 19.6 1961.7 0.5 5.8 0.7 12.2 5.5 91.7

Mean time 4.4 439.4 0.2 2.2 0.3 4.5 2.9 48.1

A.1.2 Results on small benchmark sets

Heuristics tested in Chapter 4 were Improved-Merge (IM), Randomised-Merge (RM), Path-
Scanning (PS), Path-Scanning-Random-Link (PSRL), Efficient-Route-Cluster (ERC), Efficient-
Route-Cluster-Random-Link (ERCRL), Route-Cluster (RC) and Route-Cluster-Random-
Link (RCRL). Results for all heuristics for mval-IF-3L, bccm-IF-3L, gdb-IF-3L, bccm-IF-3L
and gdb-IF problem instances are shown in Tables A.3 to A.7. Results for deterministic
heuristic versions are shown for cost, Z, and number of required vehicles, K. For the ran-
domised versions results are shown for the expected values of Z and K, when the heuristics
are allowed 1000 runs (α = 1000). Computational times of the heuristics for all the sets
are shown in Tables A.8 to A.12.

© University of Pretoria

A
.1
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

C
O
N
S
T
R
U
C
T
IV

E
H
E
U
R
IS
T
IC

S
207

Table A.3: Heuristic results for mval-IF-3L set

Best found IM RM(1000) PS PSRL(1000) ERC ERCRL(1000) RC RCRL(1000)

1st Obj Instance Z K Z K Z K Z K Z K Z K Z K Z K Z K

min Z mval-IF-3L-1A 250 2 312 3 294 3 281 3 250 2 276 3 268 3 276 3 268 3
mval-IF-3L-1B 309 3 360 4 316 3 349 3 336 3 362 4 336 3 356 3 317 3
mval-IF-3L-1C 356 3 452 6 387 4 448 4 398 4 426 5 397 4 410 5 377 4
mval-IF-3L-2A 413 2 545 3 525 3 511 3 442 2 523 3 494 3 523 3 493 3
mval-IF-3L-2B 429 2 488 3 477 3 517 3 442 2 490 3 483 3 490 3 481 3
mval-IF-3L-2C 506 3 691 5 582 3 551 3 524 3 619 3 555 3 586 3 528 3
mval-IF-3L-3A 136 2 166 3 158 3 148 2 139 2 149 2 138 2 149 2 138 2
mval-IF-3L-3B 149 2 173 3 173 3 179 3 151 2 174 3 154 2 172 3 154 2
mval-IF-3L-3C 123 2 188 4 147 2 149 2 131 2 150 2 140 2 146 2 131 2
mval-IF-3L-4A 645 3 749 4 717 4 766 4 698 3 751 4 722 4 741 4 714 4
mval-IF-3L-4B 757 4 829 4 804 4 825 4 791 4 791 4 777 4 791 4 759 4
mval-IF-3L-4C 769 4 864 6 867 5 834 4 802 4 856 5 798 4 846 4 788 4
mval-IF-3L-4D 782 4 886 5 820 4 902 4 832 4 906 5 839 4 865 4 790 4
mval-IF-3L-5A 790 4 991 6 990 5 813 4 806 4 853 4 819 4 853 4 819 4
mval-IF-3L-5B 743 4 935 5 963 5 799 4 762 4 815 4 776 4 815 4 773 4
mval-IF-3L-5C 824 4 976 6 1054 6 885 4 841 4 952 5 937 5 950 5 935 5
mval-IF-3L-5D 821 4 1020 6 1004 6 890 4 845 4 920 5 898 5 902 5 878 4
mval-IF-3L-6A 347 3 384 3 357 3 410 3 387 3 397 3 378 3 397 3 369 3
mval-IF-3L-6B 334 3 389 4 345 3 432 3 393 3 394 4 358 4 376 3 358 3
mval-IF-3L-6C 419 3 483 4 427 4 549 4 503 4 549 6 482 6 525 4 473 4
mval-IF-3L-7A 390 4 423 4 394 4 454 4 427 4 438 5 421 4 438 5 421 4
mval-IF-3L-7B 447 4 518 5 471 5 543 5 512 5 536 7 494 5 536 6 488 5
mval-IF-3L-7C 494 4 546 5 505 5 614 5 573 5 571 8 536 7 560 6 526 6
mval-IF-3L-8A 668 4 714 4 687 4 694 4 686 4 698 4 675 4 698 4 675 4
mval-IF-3L-8B 591 3 692 4 630 4 607 3 610 3 669 4 644 4 663 4 632 3
mval-IF-3L-8C 660 4 744 6 670 5 732 4 696 4 769 6 735 4 734 5 697 4
mval-IF-3L-9A 543 4 693 7 654 6 620 5 591 5 655 6 603 5 655 6 603 5
mval-IF-3L-9B 527 4 639 6 637 6 597 5 574 5 600 5 588 5 600 5 587 5
mval-IF-3L-9C 528 4 605 5 633 6 585 5 547 4 598 5 571 5 598 5 570 5
mval-IF-3L-9D 649 5 711 6 696 6 715 6 681 5 738 6 719 7 714 6 686 6
mval-IF-3L-10A 833 5 896 6 959 7 871 5 850 5 926 6 868 5 926 6 868 5
mval-IF-3L-10B 820 5 951 7 935 6 855 5 829 5 907 6 849 5 907 6 849 5
mval-IF-3L-10C 782 5 796 5 871 6 843 5 806 5 832 5 801 5 825 5 794 5

© University of Pretoria

2
0
8

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

mval-IF-3L-10D 795 5 892 7 881 6 841 5 809 5 884 7 846 6 863 6 813 5

Mean Zgap and Kgap 18.0 % 1.3 12.4 % 0.9 13.6 % 0.4 6.2 % 0.2 14.7 % 1.1 8.3 % 0.6 13.0 % 0.7 6.4 % 0.4

min K mval-IF-3L-1A 250 2 312 3 277 3 281 3 250 2 276 3 268 3 276 3 268 3
mval-IF-3L-1B 309 3 344 3 315 3 349 3 332 3 366 3 334 3 356 3 317 3
mval-IF-3L-1C 356 3 434 5 380 4 448 4 398 4 435 4 397 4 413 4 377 3
mval-IF-3L-2A 413 2 545 3 501 2 433 2 430 2 523 3 494 2 523 3 493 2
mval-IF-3L-2B 429 2 488 3 475 2 517 3 436 2 490 3 483 3 490 3 481 2
mval-IF-3L-2C 506 3 632 4 543 3 551 3 524 3 619 3 555 3 586 3 528 3
mval-IF-3L-3A 136 2 161 2 151 2 144 2 139 2 149 2 138 2 149 2 138 2
mval-IF-3L-3B 149 2 173 3 171 2 179 3 151 2 174 3 154 2 172 3 154 2
mval-IF-3L-3C 123 2 205 3 134 2 149 2 131 2 150 2 140 2 146 2 131 2
mval-IF-3L-4A 645 3 697 3 707 3 718 3 684 3 751 4 722 3 741 4 714 3
mval-IF-3L-4B 757 4 829 4 780 4 825 4 791 4 791 4 777 4 791 4 759 4
mval-IF-3L-4C 769 4 884 5 822 4 834 4 802 4 868 4 798 4 846 4 788 4
mval-IF-3L-4D 782 4 922 4 806 4 898 4 832 4 906 5 839 4 865 4 790 4
mval-IF-3L-5A 790 4 896 5 948 4 813 4 806 4 853 4 819 4 853 4 819 4
mval-IF-3L-5B 743 4 825 4 925 4 799 4 762 4 815 4 776 4 815 4 773 4
mval-IF-3L-5C 824 4 996 5 1017 5 875 4 838 4 952 5 937 4 950 5 935 4
mval-IF-3L-5D 821 4 987 5 952 5 890 4 845 4 920 5 898 4 902 5 878 4
mval-IF-3L-6A 347 3 384 3 357 3 410 3 387 3 397 3 378 3 397 3 369 3
mval-IF-3L-6B 334 3 368 3 345 3 432 3 391 3 400 3 358 3 376 3 358 3
mval-IF-3L-6C 419 3 483 4 431 3 549 4 503 4 553 4 488 4 525 4 473 4
mval-IF-3L-7A 390 4 423 4 394 4 454 4 427 4 440 4 421 4 440 4 421 4
mval-IF-3L-7B 447 4 518 5 458 4 543 5 503 4 557 5 494 4 545 5 488 4
mval-IF-3L-7C 494 4 546 5 505 5 610 5 573 5 575 6 536 5 619 5 532 5
mval-IF-3L-8A 668 4 714 4 679 4 694 4 686 4 698 4 675 4 698 4 675 4
mval-IF-3L-8B 591 3 692 4 618 3 607 3 606 3 669 4 644 3 663 4 632 3
mval-IF-3L-8C 660 4 741 5 670 4 732 4 696 4 785 4 735 4 742 4 697 4
mval-IF-3L-9A 543 4 660 5 634 5 620 5 591 5 656 5 603 4 656 5 603 4
mval-IF-3L-9B 527 4 597 5 622 5 597 5 543 4 600 5 588 5 600 5 587 5
mval-IF-3L-9C 528 4 605 5 609 5 585 5 539 4 598 5 571 5 598 5 570 4
mval-IF-3L-9D 649 5 711 6 674 5 715 6 677 5 738 6 717 6 714 6 686 5
mval-IF-3L-10A 833 5 893 5 913 5 871 5 850 5 926 6 868 5 926 6 868 5
mval-IF-3L-10B 820 5 902 6 907 5 855 5 829 5 907 6 849 5 907 6 849 5
mval-IF-3L-10C 782 5 796 5 838 5 843 5 806 5 832 5 801 5 825 5 794 5
mval-IF-3L-10D 795 5 967 6 851 5 841 5 809 5 889 6 846 5 863 6 813 5

© University of Pretoria

A
.1
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

C
O
N
S
T
R
U
C
T
IV

E
H
E
U
R
IS
T
IC

S
209

Mean Zgap and Kgap 16.3 % 0.7 9.1 % 0.2 12.6 % 0.3 5.7 % 0.1 15.2 % 0.6 8.3 % 0.2 13.5 % 0.6 6.4 % 0.1

Table A.4: Heuristic results for bccm-IF-3L set

Best found IM RM(1000) PS PSRL(1000) ERC ERCRL(1000) RC RCRL(1000)

1st Obj Instance Z K Z K Z K Z K Z K Z K Z K Z K Z K

min Z bccm-IF-3L-1A 189 2 258 3 230 2 201 2 190 2 191 2 190 2 191 2 191 2
bccm-IF-3L-1B 189 2 259 4 225 2 208 2 196 2 207 2 196 2 199 2 190 2
bccm-IF-3L-1C 237 2 310 7 251 3 260 3 244 2 285 4 255 3 271 3 248 3
bccm-IF-3L-2A 264 2 345 2 299 2 293 2 278 2 297 2 282 2 288 2 282 2
bccm-IF-3L-2B 274 2 361 3 281 2 304 2 286 2 304 2 290 2 288 2 280 2
bccm-IF-3L-2C 357 2 498 5 375 2 400 2 363 2 430 3 398 2 412 2 379 2
bccm-IF-3L-3A 92 2 111 2 106 2 97 2 93 2 102 2 93 2 102 2 93 2
bccm-IF-3L-3B 93 2 113 2 106 2 105 2 94 2 104 2 94 2 102 2 93 2
bccm-IF-3L-3C 103 2 156 6 110 2 118 2 107 2 124 2 109 2 118 2 106 2
bccm-IF-3L-4A 418 2 547 4 519 3 474 2 439 2 486 3 438 2 472 2 435 2
bccm-IF-3L-4B 419 2 553 5 510 3 475 2 445 2 492 3 454 2 492 3 446 2
bccm-IF-3L-4C 426 2 565 6 516 3 458 2 451 2 526 3 455 2 492 3 440 2
bccm-IF-3L-4D 505 3 615 7 552 3 577 3 533 3 586 4 536 3 542 3 507 3
bccm-IF-3L-5A 494 3 744 4 667 4 541 3 509 3 560 3 520 3 542 3 517 3
bccm-IF-3L-5B 496 3 746 5 656 4 548 3 509 3 558 3 527 3 548 3 517 3
bccm-IF-3L-5C 510 3 762 6 668 4 560 3 521 3 596 3 530 3 568 3 531 3
bccm-IF-3L-5D 568 3 790 7 700 4 584 3 579 3 648 3 620 3 638 3 591 3
bccm-IF-3L-6A 233 2 287 3 245 2 260 2 247 2 266 3 246 2 258 2 244 2
bccm-IF-3L-6B 249 2 285 2 260 2 286 2 272 2 291 3 263 2 283 3 258 2
bccm-IF-3L-6C 359 3 401 4 359 3 419 3 397 3 421 4 399 4 411 4 390 4
bccm-IF-3L-7A 295 3 363 4 318 3 348 3 329 3 332 3 313 3 326 3 310 3
bccm-IF-3L-7B 309 3 371 4 319 3 355 3 333 3 326 3 322 3 326 3 315 3
bccm-IF-3L-7C 378 4 438 5 379 4 424 4 412 4 439 6 406 6 428 5 395 4
bccm-IF-3L-8A 411 2 563 4 514 3 472 3 422 2 460 3 418 2 460 3 419 2
bccm-IF-3L-8B 410 2 563 5 523 3 445 3 422 2 476 3 452 3 460 3 438 3
bccm-IF-3L-8C 495 3 614 8 539 3 557 3 516 3 560 4 522 3 529 3 514 3
bccm-IF-3L-9A 366 3 513 5 481 4 387 3 375 3 419 4 390 3 402 3 390 3
bccm-IF-3L-9B 378 3 513 5 481 4 397 3 381 3 426 4 406 3 424 4 394 3
bccm-IF-3L-9C 380 3 527 7 481 5 400 3 390 3 446 4 419 4 430 4 413 3

© University of Pretoria

2
1
0

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

bccm-IF-3L-9D 460 4 571 7 524 5 492 4 466 4 518 5 490 4 504 5 478 4
bccm-IF-3L-10A 476 3 648 5 627 5 511 3 490 3 535 4 499 3 522 3 499 3
bccm-IF-3L-10B 487 3 648 5 639 4 505 3 497 3 538 4 519 3 538 4 497 3
bccm-IF-3L-10C 490 3 656 5 631 4 527 3 503 3 565 4 536 3 556 4 519 3
bccm-IF-3L-10D 586 4 689 7 661 4 606 4 591 4 641 4 616 4 635 4 605 4

Mean Zgap and Kgap 31.6 % 2.2 17.3 % 0.6 10.1 % 0.1 4.0 % 0.0 14.0 % 0.6 6.1 % 0.2 10.8 % 0.4 4 % 0.1

min K bccm-IF-3L-1A 189 2 220 2 230 2 201 2 190 2 191 2 190 2 191 2 191 2
bccm-IF-3L-1B 189 2 264 3 225 2 208 2 196 2 207 2 196 2 199 2 190 2
bccm-IF-3L-1C 237 2 309 6 251 2 260 3 244 2 298 3 255 3 271 3 247 2
bccm-IF-3L-2A 264 2 345 2 299 2 293 2 278 2 297 2 282 2 288 2 282 2
bccm-IF-3L-2B 274 2 372 2 281 2 304 2 286 2 304 2 290 2 288 2 280 2
bccm-IF-3L-2C 357 2 452 4 375 2 400 2 363 2 430 3 398 2 412 2 379 2
bccm-IF-3L-3A 92 2 111 2 106 2 97 2 93 2 102 2 93 2 102 2 93 2
bccm-IF-3L-3B 93 2 113 2 106 2 105 2 94 2 104 2 94 2 102 2 93 2
bccm-IF-3L-3C 103 2 131 5 110 2 118 2 107 2 124 2 109 2 118 2 106 2
bccm-IF-3L-4A 418 2 529 3 519 2 474 2 439 2 486 3 438 2 472 2 435 2
bccm-IF-3L-4B 419 2 542 4 510 2 475 2 445 2 492 3 454 2 492 3 446 2
bccm-IF-3L-4C 426 2 676 4 516 2 458 2 451 2 526 3 455 2 492 3 440 2
bccm-IF-3L-4D 505 3 614 6 552 3 577 3 533 3 590 3 536 3 542 3 507 3
bccm-IF-3L-5A 494 3 744 4 667 3 541 3 509 3 560 3 520 3 542 3 517 3
bccm-IF-3L-5B 496 3 691 4 656 3 548 3 509 3 558 3 527 3 548 3 517 3
bccm-IF-3L-5C 510 3 722 4 668 3 560 3 521 3 596 3 530 3 568 3 531 3
bccm-IF-3L-5D 568 3 818 5 700 3 584 3 579 3 648 3 620 3 638 3 591 3
bccm-IF-3L-6A 233 2 299 2 245 2 260 2 247 2 272 2 246 2 258 2 244 2
bccm-IF-3L-6B 249 2 285 2 260 2 286 2 272 2 299 2 263 2 287 2 258 2
bccm-IF-3L-6C 359 3 437 3 359 3 419 3 397 3 423 3 399 3 417 3 388 3
bccm-IF-3L-7A 295 3 337 3 318 3 348 3 329 3 332 3 313 3 326 3 310 3
bccm-IF-3L-7B 309 3 371 4 319 3 355 3 333 3 326 3 322 3 326 3 315 3
bccm-IF-3L-7C 378 4 490 4 379 4 424 4 412 4 484 4 410 4 454 4 395 4
bccm-IF-3L-8A 411 2 540 3 514 3 472 3 419 2 460 3 418 2 460 3 419 2
bccm-IF-3L-8B 410 2 529 4 523 3 421 2 421 2 476 3 452 2 460 3 438 2
bccm-IF-3L-8C 495 3 624 7 539 3 557 3 516 3 580 3 522 3 529 3 514 3
bccm-IF-3L-9A 366 3 439 4 481 4 387 3 375 3 419 4 390 3 402 3 390 3
bccm-IF-3L-9B 378 3 461 4 481 4 397 3 381 3 426 4 406 3 424 4 394 3
bccm-IF-3L-9C 380 3 485 5 481 4 399 3 390 3 446 4 419 3 430 4 413 3
bccm-IF-3L-9D 460 4 565 6 524 4 492 4 466 4 518 5 490 4 520 4 478 4

© University of Pretoria

A
.1
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

C
O
N
S
T
R
U
C
T
IV

E
H
E
U
R
IS
T
IC

S
211

bccm-IF-3L-10A 476 3 567 4 627 4 511 3 490 3 535 4 499 3 522 3 499 3
bccm-IF-3L-10B 487 3 628 4 639 4 505 3 497 3 538 4 519 3 538 4 497 3
bccm-IF-3L-10C 490 3 653 4 631 4 527 3 503 3 565 4 536 3 556 4 519 3
bccm-IF-3L-10D 586 4 678 5 661 4 606 4 591 4 641 4 613 4 635 4 605 4

Mean Zgap and Kgap 28.4 % 1.2 17.3 % 0.2 9.9 % 0.1 4.0 % 0.0 14.8 % 0.4 6.2 % 0.0 11.2 % 0.3 4.0 % 0.0

Table A.5: Heuristic results for gdb-IF-3L set

Best found IM RM(1000) PS PSRL(1000) ERC ERCRL(1000) RC RCRL(1000)

1st Obj Instance Z K Z K Z K Z K Z K Z K Z K Z K Z K

min Z gdb-IF-3L-1 308 2 316 3 308 2 337 2 310 2 338 4 318 2 337 3 308 2
gdb-IF-3L-2 337 2 369 5 345 2 362 2 341 2 361 3 347 2 353 3 338 2
gdb-IF-3L-3 275 2 301 4 276 2 281 2 283 2 297 3 284 2 289 2 276 2
gdb-IF-3L-4 344 2 427 4 383 2 377 2 349 2 424 2 369 2 396 2 369 2
gdb-IF-3L-5 448 2 520 4 468 2 490 2 458 2 528 3 495 2 516 3 466 2
gdb-IF-3L-6 293 2 341 4 301 2 313 2 293 2 313 2 303 2 313 2 294 2
gdb-IF-3L-7 342 2 349 4 343 2 349 2 343 2 387 3 351 2 387 3 342 2
gdb-IF-3L-8 419 3 449 5 422 4 471 4 448 4 470 4 458 4 466 4 446 4
gdb-IF-3L-9 343 3 374 6 361 3 388 3 365 3 402 4 372 3 381 4 352 3
gdb-IF-3L-10 312 2 374 3 323 2 355 2 317 2 336 2 322 2 336 2 316 2
gdb-IF-3L-11 447 3 532 4 477 4 495 3 465 3 509 4 481 3 505 3 469 3
gdb-IF-3L-12 624 2 826 3 710 3 662 2 641 2 777 3 682 3 727 3 659 2
gdb-IF-3L-13 594 2 634 3 600 2 640 2 609 2 640 3 604 2 623 2 602 2
gdb-IF-3L-14 110 2 134 6 112 3 132 3 114 2 132 3 120 2 125 3 112 2
gdb-IF-3L-15 58 1 62 3 58 1 62 2 60 1 62 2 58 1 60 1 58 1
gdb-IF-3L-16 131 4 139 5 131 4 141 4 133 4 139 4 133 4 139 4 133 4
gdb-IF-3L-17 93 3 97 5 93 3 99 3 95 3 97 3 95 3 97 3 95 3
gdb-IF-3L-18 178 3 210 6 194 4 186 3 180 3 197 3 188 3 190 3 188 3
gdb-IF-3L-19 83 1 91 1 83 1 91 1 91 1 93 1 83 1 93 1 83 1
gdb-IF-3L-20 147 2 162 3 150 2 147 2 147 2 165 3 155 2 160 3 155 2
gdb-IF-3L-21 164 4 171 6 166 4 170 4 166 4 174 5 166 5 172 5 166 4
gdb-IF-3L-22 215 5 229 8 219 6 226 5 218 5 227 6 220 6 225 6 220 6
gdb-IF-3L-23 243 6 258 9 245 7 255 6 250 6 259 8 251 8 255 7 249 7

Mean Zgap and Kgap 11.7 % 1.9 3.0 % 0.3 7.8 % 0.1 2.6 % 0.0 11.3 % 0.8 4.5 % 0.3 8.8 % 0.5 2.5 % 0.1

© University of Pretoria

2
1
2

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

min K gdb-IF-3L-1 308 2 366 2 308 2 337 2 310 2 358 2 318 2 338 2 308 2
gdb-IF-3L-2 337 2 371 4 345 2 362 2 341 2 361 3 347 2 365 2 338 2
gdb-IF-3L-3 275 2 336 3 276 2 281 2 283 2 345 2 284 2 289 2 276 2
gdb-IF-3L-4 344 2 422 3 383 2 377 2 349 2 424 2 369 2 396 2 369 2
gdb-IF-3L-5 448 2 511 3 464 2 490 2 458 2 528 3 495 2 516 3 466 2
gdb-IF-3L-6 293 2 375 3 301 2 313 2 293 2 313 2 303 2 313 2 294 2
gdb-IF-3L-7 342 2 386 3 343 2 349 2 343 2 387 3 351 2 387 3 342 2
gdb-IF-3L-8 419 3 446 4 422 3 471 4 450 3 470 4 458 3 466 4 446 3
gdb-IF-3L-9 343 3 386 3 358 3 388 3 365 3 402 4 372 3 402 3 352 3
gdb-IF-3L-10 312 2 366 2 312 2 355 2 317 2 336 2 322 2 336 2 316 2
gdb-IF-3L-11 447 3 495 3 465 3 495 3 465 3 519 3 481 3 505 3 469 3
gdb-IF-3L-12 624 2 769 3 681 2 662 2 641 2 777 3 682 2 727 3 659 2
gdb-IF-3L-13 594 2 653 2 600 2 640 2 609 2 644 2 604 2 623 2 602 2
gdb-IF-3L-14 110 2 129 4 112 2 132 3 112 2 132 3 120 2 125 3 112 2
gdb-IF-3L-15 58 1 64 2 58 1 62 2 60 1 62 2 58 1 60 1 58 1
gdb-IF-3L-16 131 4 141 4 131 4 141 4 133 4 139 4 133 4 139 4 133 4
gdb-IF-3L-17 93 3 103 4 93 3 99 3 95 3 97 3 95 3 97 3 95 3
gdb-IF-3L-18 178 3 196 4 188 3 186 3 180 3 197 3 188 3 190 3 188 3
gdb-IF-3L-19 83 1 91 1 83 1 91 1 91 1 93 1 83 1 93 1 83 1
gdb-IF-3L-20 147 2 160 2 148 2 147 2 147 2 165 3 151 2 165 2 151 2
gdb-IF-3L-21 164 4 176 4 166 4 170 4 166 4 178 4 166 4 174 4 166 4
gdb-IF-3L-22 215 5 228 7 219 5 226 5 218 5 227 6 219 5 229 5 219 5
gdb-IF-3L-23 243 6 267 7 247 6 255 6 250 6 261 7 253 6 255 7 249 6

Mean Zgap and Kgap 13.3 % 0.7 2.3 % 0.0 7.8 % 0.1 2.5 % 0.0 12.6 % 0.5 4.4 % 0.0 9.6 % 0.3 2.3 % 0.0

Table A.6: Heuristic results for bccm-IF set

Best found IM RM(1000) PS PSRL(1000) ERC ERCRL(1000) RC RCRL(1000)

1st Obj Instance Z 1 K Z K Z K Z K Z K Z K Z K Z K Z K

min Z bccm-IF-1A 229 6 301 9 261 7 309 8 240 6 365 10 309 8 365 10 309 8
bccm-IF-1B 229 6 301 9 261 7 309 8 242 6 365 10 309 8 365 10 309 8
bccm-IF-1C 259 8 326 10 287 8 347 9 303 8 390 11 337 9 390 11 330 9

1Best solution costs include those reported in [68].

© University of Pretoria

A
.1
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

C
O
N
S
T
R
U
C
T
IV

E
H
E
U
R
IS
T
IC

S
213

bccm-IF-2A 434 6 480 7 434 6 507 7 441 6 743 11 687 10 743 11 687 10
bccm-IF-2B 434 6 480 7 436 6 507 7 441 6 743 11 681 10 743 11 681 10
bccm-IF-2C 488 7 595 9 533 8 612 9 558 8 863 13 754 11 863 13 754 11
bccm-IF-3A 120 5 138 6 129 5 145 6 128 5 174 7 153 6 174 7 153 6
bccm-IF-3B 120 5 138 6 128 5 134 5 128 5 174 7 157 6 174 7 157 6
bccm-IF-3C 126 5 164 8 141 6 168 7 143 6 201 8 173 7 199 8 164 7
bccm-IF-4A 533 8 632 9 617 9 775 10 625 8 939 14 767 10 939 14 767 10
bccm-IF-4B 533 8 632 9 614 9 770 10 630 8 939 14 812 11 939 14 812 11
bccm-IF-4C 533 8 632 9 619 9 766 10 625 8 939 14 790 11 939 14 790 11
bccm-IF-4D 538 9 692 10 640 10 697 9 689 9 974 14 839 12 974 14 842 12
bccm-IF-5A 879 13 1103 16 990 14 1083 15 1007 14 1848 27 1608 23 1848 27 1608 23
bccm-IF-5B 879 13 1103 16 991 14 1083 15 1011 14 1848 27 1599 23 1848 27 1599 23
bccm-IF-5C 879 13 1103 16 994 14 1083 15 1006 14 1848 27 1596 23 1848 27 1596 23
bccm-IF-5D 879 13 1103 16 996 14 1085 15 1009 14 1848 27 1616 23 1848 27 1616 23
bccm-IF-6A 343 7 377 8 348 7 410 8 357 7 448 9 387 8 448 9 387 8
bccm-IF-6B 343 7 377 8 349 7 410 8 361 7 448 9 383 8 448 9 383 8
bccm-IF-6C 367 8 415 10 389 9 483 10 437 9 486 11 439 10 486 11 441 10
bccm-IF-7A 444 11 469 12 445 11 525 13 460 11 620 16 527 14 620 16 527 14
bccm-IF-7B 444 11 469 12 446 11 525 13 477 12 620 16 523 13 620 16 523 13
bccm-IF-7C 444 11 469 12 452 11 529 13 481 12 620 16 527 14 620 16 527 14
bccm-IF-8A 545 9 676 11 630 10 745 11 675 10 987 16 917 14 987 16 917 14
bccm-IF-8B 545 9 676 11 624 10 745 11 673 10 987 16 876 14 987 16 876 14
bccm-IF-8C 547 10 676 11 659 10 748 11 732 11 1007 16 909 14 1007 16 909 14
bccm-IF-9A 634 14 699 17 669 15 748 17 667 15 1082 26 976 23 1082 26 976 23
bccm-IF-9B 546 14 699 17 657 15 748 17 670 15 1082 26 933 22 1082 26 933 22
bccm-IF-9C 622 14 699 17 653 15 748 17 670 15 1082 26 963 22 1082 26 963 22
bccm-IF-9D 546 14 684 16 670 15 719 16 670 15 1082 26 955 22 1082 26 955 22
bccm-IF-10A 731 13 809 15 784 14 801 14 761 13 1179 21 1095 20 1179 21 1095 20
bccm-IF-10B 732 13 809 15 783 14 801 14 759 13 1179 21 1034 18 1179 21 1034 18
bccm-IF-10C 740 13 809 15 782 14 801 14 756 13 1179 21 1085 19 1179 21 1085 19
bccm-IF-10D 732 13 809 15 785 14 802 14 792 14 1179 21 1087 20 1179 21 1087 20

Mean Zgap and Kgap 18.1 % 1.9 9.9 % 0.7 25.4 % 1.6 12.3 % 0.5 68.6 % 6.9 48.0 % 4.6 68.5 % 6.9 47.7 % 4.6

min K bccm-IF-1A 229 6 289 8 257 7 280 7 240 6 365 10 309 8 365 10 309 8
bccm-IF-1B 229 6 289 8 258 7 280 7 240 6 365 10 309 8 365 10 309 8
bccm-IF-1C 259 8 317 9 279 8 335 9 298 8 390 11 337 9 390 11 330 9
bccm-IF-2A 434 6 480 7 434 6 507 7 441 6 743 11 687 9 743 11 687 9

© University of Pretoria

2
1
4

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

bccm-IF-2B 434 6 480 7 436 6 507 7 441 6 743 11 681 9 743 11 681 9
bccm-IF-2C 488 7 549 8 533 8 554 8 553 8 863 13 754 10 863 13 754 10
bccm-IF-3A 120 5 131 5 125 5 145 6 128 5 174 7 153 6 174 7 153 6
bccm-IF-3B 120 5 131 5 125 5 134 5 127 5 174 7 157 6 174 7 157 6
bccm-IF-3C 126 5 159 7 139 6 151 6 143 6 201 8 173 7 199 8 164 6
bccm-IF-4A 533 8 612 8 589 8 769 10 622 8 957 13 767 10 957 13 767 10
bccm-IF-4B 533 8 612 8 603 8 702 9 626 8 957 13 812 10 957 13 812 10
bccm-IF-4C 533 8 612 8 592 8 766 10 625 8 957 13 790 10 957 13 790 10
bccm-IF-4D 538 9 692 10 629 9 697 9 689 9 974 14 839 11 974 14 842 11
bccm-IF-5A 879 13 1059 15 986 14 1025 14 1007 14 1848 27 1608 22 1848 27 1608 22
bccm-IF-5B 879 13 1059 15 991 14 1025 14 1006 14 1848 27 1599 22 1848 27 1599 22
bccm-IF-5C 879 13 1059 15 981 13 1025 14 1001 14 1848 27 1596 22 1848 27 1596 22
bccm-IF-5D 879 13 1059 15 989 14 1085 15 1009 14 1848 27 1616 22 1848 27 1616 22
bccm-IF-6A 343 7 377 8 347 7 410 8 357 7 448 9 387 8 448 9 387 8
bccm-IF-6B 343 7 377 8 345 7 410 8 359 7 448 9 383 8 448 9 383 8
bccm-IF-6C 367 8 430 9 389 9 473 10 433 9 486 11 439 9 486 11 441 9
bccm-IF-7A 444 11 469 12 445 11 525 13 457 11 620 16 527 13 620 16 527 13
bccm-IF-7B 444 11 469 12 446 11 525 13 465 11 620 16 523 13 620 16 523 13
bccm-IF-7C 444 11 469 12 452 11 526 13 476 12 620 16 527 13 620 16 527 13
bccm-IF-8A 545 9 666 10 630 9 742 11 675 10 987 16 917 13 987 16 917 13
bccm-IF-8B 545 9 666 10 624 10 742 11 670 10 987 16 876 13 987 16 876 13
bccm-IF-8C 547 10 670 10 659 10 688 10 701 10 1007 16 909 13 1007 16 909 13
bccm-IF-9A 634 14 685 16 669 15 713 16 664 15 1090 25 976 22 1090 25 976 22
bccm-IF-9B 546 14 685 16 657 15 713 16 667 15 1090 25 933 21 1090 25 933 21
bccm-IF-9C 622 14 685 16 653 14 713 16 667 15 1090 25 963 21 1090 25 963 21
bccm-IF-9D 546 14 684 16 670 15 719 16 667 15 1082 26 955 21 1082 26 955 21
bccm-IF-10A 731 13 786 14 766 14 760 13 755 13 1179 21 1095 19 1179 21 1095 19
bccm-IF-10B 732 13 786 14 765 14 760 13 753 13 1179 21 1034 17 1179 21 1034 17
bccm-IF-10C 740 13 786 14 768 14 760 13 751 13 1179 21 1085 18 1179 21 1085 18
bccm-IF-10D 732 13 786 14 766 14 802 14 763 13 1179 21 1087 19 1179 21 1087 19

Mean Zgap and Kgap 15.5 % 1.1 8.6 % 0.5 21.4 % 1.2 11.4 % 0.4 69.0 % 6.7 48.0 % 3.9 68.9 % 6.7 47.7 % 3.9

© University of Pretoria

A
.1
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

C
O
N
S
T
R
U
C
T
IV

E
H
E
U
R
IS
T
IC

S
215

Table A.7: Heuristic results for gdb-IF set

Best found IM RM(1000) PS PSRL(1000) ERC ERCRL(1000) RC RCRL(1000)

1st Obj Instance Z K Z K Z K Z K Z K Z K Z K Z K Z K

min Z gdb-IF-1 345 6 351 6 345 6 407 7 350 6 441 8 383 7 441 8 383 7
gdb-IF-2 345 6 399 7 366 7 353 6 354 6 465 9 393 7 457 8 393 7
gdb-IF-3 312 6 326 6 312 6 332 6 327 6 379 7 337 6 379 7 334 6
gdb-IF-4 460 6 548 7 462 6 483 6 462 6 756 10 659 8 756 10 659 8
gdb-IF-5 586 7 645 8 640 8 649 8 593 7 1012 13 841 10 1012 13 841 10
gdb-IF-6 301 4 341 5 302 4 339 4 310 4 355 6 310 4 355 5 310 4
gdb-IF-7 371 6 412 7 373 6 457 8 373 6 504 9 424 7 504 9 424 7
gdb-IF-8 445 10 477 11 456 10 516 11 478 10 630 15 535 12 624 15 529 12
gdb-IF-9 354 9 386 11 368 10 395 9 390 9 485 13 454 11 471 12 446 11
gdb-IF-10 423 7 470 8 425 7 569 10 479 8 623 11 577 10 623 11 577 10
gdb-IF-11 606 10 697 12 628 10 726 12 661 11 939 16 853 14 939 16 853 14
gdb-IF-12 835 8 1092 10 903 9 941 9 846 8 1419 14 1211 12 1419 14 1211 12
gdb-IF-13 602 5 634 6 618 6 700 6 644 6 714 7 652 7 712 7 652 7
gdb-IF-14 138 8 179 10 138 8 141 8 139 8 209 12 178 10 209 12 178 10
gdb-IF-15 60 3 64 5 60 3 64 4 60 3 66 4 64 4 66 4 64 4
gdb-IF-16 156 12 157 12 157 12 156 12 156 12 195 16 172 13 195 16 172 13
gdb-IF-17 99 8 105 9 99 8 105 9 101 8 117 10 109 9 117 10 109 9
gdb-IF-18 222 10 268 13 241 12 244 11 228 10 330 16 315 15 330 16 315 15
gdb-IF-19 83 3 91 3 83 3 91 3 83 3 93 3 83 3 93 3 83 3
gdb-IF-20 179 7 191 8 179 7 191 7 180 7 231 9 203 8 231 9 203 8
gdb-IF-21 190 12 202 13 192 12 210 13 194 12 232 16 213 14 232 16 213 14
gdb-IF-22 265 19 285 20 265 19 288 20 276 19 316 23 298 21 316 23 298 21
gdb-IF-23 282 20 299 23 286 21 302 22 295 21 343 28 317 24 343 28 317 24

Mean Zgap and Kgap 11.0 % 1.2 2.2 % 0.3 11.2 % 0.8 3.4 % 0.2 34.8 % 3.6 20.2 % 1.9 34.5 % 3.5 20 % 1.9

min K gdb-IF-1 345 6 351 6 345 6 373 6 347 6 441 8 383 6 441 8 383 6
gdb-IF-2 345 6 399 7 366 7 353 6 354 6 471 8 393 7 457 8 393 7
gdb-IF-3 312 6 326 6 312 6 332 6 321 6 379 7 337 6 379 7 334 6
gdb-IF-4 460 6 495 6 462 6 483 6 462 6 756 10 659 7 756 10 659 7
gdb-IF-5 586 7 645 8 640 8 646 8 593 7 1012 13 841 10 1012 13 841 10
gdb-IF-6 301 4 341 5 302 4 339 4 310 4 367 5 310 4 355 5 310 4
gdb-IF-7 371 6 412 7 373 6 457 8 373 6 504 9 424 7 504 9 424 7

© University of Pretoria

2
1
6

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

gdb-IF-8 445 10 472 10 454 10 492 10 474 10 634 14 535 11 628 14 529 11
gdb-IF-9 354 9 388 10 365 9 395 9 385 9 511 12 454 10 471 12 446 10
gdb-IF-10 423 7 470 8 425 7 524 9 477 8 623 11 577 10 623 11 577 10
gdb-IF-11 606 10 694 11 619 10 686 11 641 10 939 16 853 13 939 16 853 13
gdb-IF-12 835 8 1092 10 903 8 915 9 846 8 1419 14 1211 11 1419 14 1211 11
gdb-IF-13 602 5 634 6 617 6 700 6 640 6 714 7 652 6 721 6 652 6
gdb-IF-14 138 8 179 10 138 8 141 8 139 8 209 12 178 10 209 12 178 10
gdb-IF-15 60 3 64 4 60 3 64 4 60 3 66 4 64 4 66 4 64 4
gdb-IF-16 156 12 157 12 157 12 156 12 156 12 195 16 172 13 195 16 172 13
gdb-IF-17 99 8 105 8 99 8 103 8 101 8 117 10 109 8 117 10 109 8
gdb-IF-18 222 10 268 13 237 11 244 11 227 10 330 16 315 14 330 16 315 14
gdb-IF-19 83 3 91 3 83 3 91 3 83 3 93 3 83 3 93 3 83 3
gdb-IF-20 179 7 191 8 179 7 188 7 180 7 231 9 203 7 231 9 203 7
gdb-IF-21 190 12 202 13 191 12 207 13 193 12 232 16 214 13 232 16 214 13
gdb-IF-22 265 19 285 20 265 19 286 20 274 19 316 23 298 20 316 23 298 20
gdb-IF-23 282 20 295 22 285 20 302 22 293 21 343 28 317 23 343 28 317 23

Mean Zgap and Kgap 10.4 % 0.9 1.9 % 0.2 9.3 % 0.6 2.9 % 0.1 35.5 % 3.4 20.2 % 1.3 34.6 % 3.4 20 % 1.3

© University of Pretoria

A.1. FULL RESULTS FOR CONSTRUCTIVE HEURISTICS 217

Table A.8: Computational times, in seconds, of heuristics for mval-IF-3L.

Instance α IM RM PS PSRL ERC ERCRL U RCRL

mval-IF-3L-1A 1000 0.1 61.2 0.0 4.2 0.0 3.4 0.1 12.2
mval-IF-3L-1B 1000 0.1 56.1 0.0 4.7 0.0 5.2 0.0 8.2
mval-IF-3L-1C 1000 0.1 53.3 0.0 3.8 0.0 3.5 0.0 6.1
mval-IF-3L-2A 1000 0.0 41.6 0.0 3.1 0.0 2.7 0.0 6.8
mval-IF-3L-2B 1000 0.0 44.6 0.0 2.3 0.0 3.4 0.1 9.7
mval-IF-3L-2C 1000 0.0 44.0 0.0 2.3 0.0 4.4 0.0 6.0
mval-IF-3L-3A 1000 0.0 46.3 0.0 2.1 0.0 2.4 0.1 8.7
mval-IF-3L-3B 1000 0.0 38.8 0.0 3.8 0.0 3.4 0.0 7.7
mval-IF-3L-3C 1000 0.0 38.2 0.0 4.0 0.0 4.6 0.0 6.6
mval-IF-3L-4A 1000 0.2 162.5 0.1 7.8 0.1 12.7 0.3 42.1
mval-IF-3L-4B 1000 0.2 175.7 0.0 4.6 0.1 8.6 0.2 33.3
mval-IF-3L-4C 1000 0.2 171.5 0.0 4.3 0.1 9.1 0.2 27.3
mval-IF-3L-4D 1000 0.2 169.4 0.0 5.4 0.1 10.4 0.1 19.3
mval-IF-3L-5A 1000 0.2 191.8 0.0 4.5 0.0 7.5 0.2 26.5
mval-IF-3L-5B 1000 0.3 299.6 0.0 3.5 0.0 7.5 0.1 21.3
mval-IF-3L-5C 1000 0.3 251.5 0.0 4.5 0.1 9.2 0.1 23.6
mval-IF-3L-5D 1000 0.3 308.4 0.0 4.0 0.1 8.5 0.1 20.0
mval-IF-3L-6A 1000 0.1 149.3 0.0 3.3 0.0 4.7 0.1 15.2
mval-IF-3L-6B 1000 0.1 136.7 0.0 2.6 0.0 5.4 0.1 13.5
mval-IF-3L-6C 1000 0.2 161.3 0.1 6.4 0.0 5.1 0.0 8.3
mval-IF-3L-7A 1000 0.3 281.8 0.0 3.0 0.1 9.2 0.1 20.8
mval-IF-3L-7B 1000 0.3 268.6 0.0 3.5 0.0 6.7 0.1 18.2
mval-IF-3L-7C 1000 0.3 273.0 0.1 12.1 0.1 10.0 0.1 15.2
mval-IF-3L-8A 1000 0.2 175.6 0.0 4.4 0.0 6.8 0.2 28.6
mval-IF-3L-8B 1000 0.2 172.3 0.0 6.2 0.0 6.8 0.2 25.3
mval-IF-3L-8C 1000 0.1 136.3 0.0 4.5 0.0 7.7 0.1 10.7
mval-IF-3L-9A 1000 0.3 314.8 0.0 6.2 0.1 11.5 0.3 44.4
mval-IF-3L-9B 1000 0.3 337.9 0.0 6.0 0.1 10.5 0.2 33.1
mval-IF-3L-9C 1000 0.3 327.1 0.1 13.7 0.1 11.0 0.2 35.3
mval-IF-3L-9D 1000 0.3 313.7 0.1 7.2 0.1 14.2 0.2 30.0
mval-IF-3L-10A 1000 0.3 333.1 0.1 15.3 0.1 22.8 0.3 57.7
mval-IF-3L-10B 1000 0.3 316.8 0.0 6.2 0.2 28.2 0.4 59.4
mval-IF-3L-10C 1000 0.3 337.6 0.1 12.2 0.1 24.1 0.4 61.9
mval-IF-3L-10D 1000 0.3 320.1 0.1 6.4 0.1 18.4 0.2 38.7

Mean time 0.2 191.5 0.0 5.5 0.1 9.1 0.1 23.6

Table A.9: Computational times, in seconds, of heuristics for bccm-IF-3L.

Instance α IM RM PS PSRL ERC ERCRL RC RCRL

bccm-IF-3L-1A 1000 0.1 63.6 0.0 1.6 0.0 2.1 0.0 5.2
bccm-IF-3L-1B 1000 0.1 69.3 0.0 1.5 0.0 2.7 0.0 4.5
bccm-IF-3L-1C 1000 0.1 65.7 0.0 2.7 0.0 3.1 0.0 3.7
bccm-IF-3L-2A 1000 0.0 49.4 0.0 1.7 0.0 2.3 0.0 5.1
bccm-IF-3L-2B 1000 0.1 56.7 0.0 1.7 0.0 2.1 0.0 4.3
bccm-IF-3L-2C 1000 0.1 50.9 0.0 1.6 0.0 4.3 0.0 3.7
bccm-IF-3L-3A 1000 0.1 54.4 0.0 3.6 0.0 2.1 0.0 5.4
bccm-IF-3L-3B 1000 0.1 51.3 0.0 2.3 0.0 2.2 0.0 4.7
bccm-IF-3L-3C 1000 0.1 50.3 0.0 2.4 0.0 2.4 0.0 3.2
bccm-IF-3L-4A 1000 0.2 216.3 0.1 7.7 0.0 8.0 0.1 22.5
bccm-IF-3L-4B 1000 0.2 220.1 0.0 3.1 0.0 8.1 0.1 19.5
bccm-IF-3L-4C 1000 0.2 213.8 0.1 7.1 0.0 6.3 0.1 15.8
bccm-IF-3L-4D 1000 0.2 226.7 0.0 3.3 0.0 5.3 0.1 10.4
bccm-IF-3L-5A 1000 0.2 192.7 0.0 3.6 0.0 3.3 0.1 13.2
bccm-IF-3L-5B 1000 0.2 193.0 0.0 4.3 0.0 6.0 0.1 12.1

© University of Pretoria

218 APPENDIX A. DETAILED RESULTS TABLES

bccm-IF-3L-5C 1000 0.2 199.9 0.0 4.3 0.0 4.2 0.1 9.7
bccm-IF-3L-5D 1000 0.2 188.5 0.0 3.4 0.0 6.5 0.1 9.9
bccm-IF-3L-6A 1000 0.1 108.6 0.0 2.2 0.0 6.3 0.1 11.5
bccm-IF-3L-6B 1000 0.1 117.0 0.0 3.9 0.0 4.6 0.1 9.2
bccm-IF-3L-6C 1000 0.1 119.8 0.0 2.7 0.0 5.3 0.0 6.0
bccm-IF-3L-7A 1000 0.2 192.5 0.0 2.7 0.0 6.3 0.1 13.7
bccm-IF-3L-7B 1000 0.2 201.6 0.0 5.5 0.0 6.2 0.1 15.2
bccm-IF-3L-7C 1000 0.2 201.1 0.0 3.6 0.0 6.2 0.1 8.4
bccm-IF-3L-8A 1000 0.2 182.0 0.0 5.3 0.0 5.6 0.1 14.5
bccm-IF-3L-8B 1000 0.2 181.4 0.0 3.0 0.0 4.7 0.1 11.8
bccm-IF-3L-8C 1000 0.2 179.6 0.0 3.1 0.0 4.9 0.0 6.8
bccm-IF-3L-9A 1000 0.4 368.2 0.0 4.0 0.1 14.3 0.2 36.7
bccm-IF-3L-9B 1000 0.4 413.4 0.1 12.7 0.0 6.9 0.2 30.2
bccm-IF-3L-9C 1000 0.5 540.4 0.1 7.8 0.1 10.7 0.2 35.1
bccm-IF-3L-9D 1000 0.4 394.8 0.0 6.2 0.1 13.1 0.1 18.5
bccm-IF-3L-10A 1000 0.4 426.9 0.1 7.6 0.1 14.4 0.2 37.6
bccm-IF-3L-10B 1000 0.4 413.9 0.1 8.3 0.1 9.3 0.2 35.4
bccm-IF-3L-10C 1000 0.4 428.9 0.1 7.1 0.1 8.4 0.2 27.1
bccm-IF-3L-10D 1000 0.4 437.3 0.0 4.7 0.0 8.1 0.1 14.2

Mean time 0.2 207.9 0.0 4.3 0.0 6.1 0.1 14.3

Table A.10: Computational times, in seconds, of heuristics for gdb-IF-3L.

Instance α IM RM PS PSRL ERC ERCRL RC RCRL

gdb-IF-3L-1 1000 0.0 19.5 0.0 1.2 0.0 2.4 0.0 2.2
gdb-IF-3L-2 1000 0.0 27.8 0.0 2.5 0.0 2.6 0.0 3.3
gdb-IF-3L-3 1000 0.0 20.4 0.0 1.7 0.0 2.3 0.0 2.4
gdb-IF-3L-4 1000 0.0 16.4 0.0 1.3 0.0 1.5 0.0 1.8
gdb-IF-3L-5 1000 0.0 28.4 0.0 3.6 0.0 3.4 0.0 3.9
gdb-IF-3L-6 1000 0.0 20.8 0.0 1.5 0.0 1.5 0.0 1.8
gdb-IF-3L-7 1000 0.0 23.7 0.0 1.2 0.0 1.8 0.0 2.2
gdb-IF-3L-8 1000 0.1 95.8 0.0 3.8 0.0 5.0 0.0 6.6
gdb-IF-3L-9 1000 0.1 117.6 0.0 3.2 0.0 6.2 0.0 6.1
gdb-IF-3L-10 1000 0.0 27.9 0.0 3.3 0.0 2.3 0.0 3.1
gdb-IF-3L-11 1000 0.1 94.8 0.0 3.1 0.0 4.1 0.0 5.3
gdb-IF-3L-12 1000 0.0 24.2 0.0 3.5 0.0 2.1 0.0 2.3
gdb-IF-3L-13 1000 0.0 29.2 0.0 1.9 0.0 2.4 0.0 2.4
gdb-IF-3L-14 1000 0.0 18.5 0.0 2.4 0.0 1.8 0.0 2.3
gdb-IF-3L-15 1000 0.0 19.2 0.0 2.1 0.0 1.5 0.0 1.9
gdb-IF-3L-16 1000 0.0 32.2 0.0 1.8 0.0 2.3 0.0 2.6
gdb-IF-3L-17 1000 0.0 34.4 0.0 1.7 0.0 1.9 0.0 2.4
gdb-IF-3L-18 1000 0.1 59.1 0.0 1.9 0.0 2.6 0.0 3.4
gdb-IF-3L-19 1000 0.0 5.4 0.0 1.7 0.0 1.0 0.0 1.0
gdb-IF-3L-20 1000 0.0 21.5 0.0 3.0 0.0 2.1 0.0 2.4
gdb-IF-3L-21 1000 0.0 43.4 0.0 2.2 0.0 2.7 0.0 3.2
gdb-IF-3L-22 1000 0.1 94.4 0.0 3.0 0.0 5.7 0.0 6.4
gdb-IF-3L-23 1000 0.1 136.7 0.1 10.8 0.0 6.9 0.1 9.3

Mean time 0.0 44.0 0.0 2.7 0.0 2.9 0.0 3.4

Table A.11: Computational times, in seconds, of heuristics for bccm-IF.

Instance α IM RM PS PSRL ERC ERCRL RC RCRL

bccm-IF-1A 1000 0.1 70.2 0.0 4.3 0.0 5.2 0.0 5.6
bccm-IF-1B 1000 0.1 69.5 0.0 5.8 0.0 4.9 0.0 5.5
bccm-IF-1C 1000 0.1 68.7 0.0 5.3 0.0 5.9 0.0 6.3

© University of Pretoria

A.1. FULL RESULTS FOR CONSTRUCTIVE HEURISTICS 219

bccm-IF-2A 1000 0.1 63.5 0.0 3.3 0.0 4.1 0.0 4.6
bccm-IF-2B 1000 0.1 51.6 0.0 4.1 0.0 5.5 0.0 6.1
bccm-IF-2C 1000 0.1 56.2 0.1 7.6 0.0 4.7 0.0 5.0
bccm-IF-3A 1000 0.1 58.6 0.0 3.8 0.0 3.4 0.0 4.0
bccm-IF-3B 1000 0.1 56.2 0.0 2.4 0.0 4.5 0.0 4.9
bccm-IF-3C 1000 0.1 55.0 0.0 3.3 0.0 3.8 0.0 4.2
bccm-IF-4A 1000 0.2 223.3 0.0 4.7 0.1 10.8 0.1 12.5
bccm-IF-4B 1000 0.2 234.3 0.1 8.3 0.1 10.5 0.1 12.6
bccm-IF-4C 1000 0.2 222.3 0.1 11.5 0.1 10.2 0.1 11.8
bccm-IF-4D 1000 0.2 227.3 0.1 6.5 0.0 8.1 0.1 9.7
bccm-IF-5A 1000 0.2 203.1 0.2 22.1 0.1 8.7 0.1 9.5
bccm-IF-5B 1000 0.2 199.9 0.1 10.3 0.0 8.2 0.1 9.3
bccm-IF-5C 1000 0.2 209.6 0.1 14.0 0.1 8.8 0.1 9.6
bccm-IF-5D 1000 0.2 198.4 0.1 14.1 0.0 7.9 0.1 8.8
bccm-IF-6A 1000 0.1 116.6 0.0 4.9 0.0 7.6 0.1 9.0
bccm-IF-6B 1000 0.1 127.6 0.0 3.8 0.0 7.5 0.1 8.5
bccm-IF-6C 1000 0.1 118.0 0.1 11.9 0.1 8.8 0.1 9.6
bccm-IF-7A 1000 0.2 203.7 0.1 10.9 0.1 10.3 0.1 11.6
bccm-IF-7B 1000 0.2 219.9 0.1 10.8 0.1 10.5 0.1 11.3
bccm-IF-7C 1000 0.2 211.4 0.1 18.2 0.1 10.4 0.1 11.3
bccm-IF-8A 1000 0.2 189.5 0.1 10.6 0.0 6.8 0.0 8.1
bccm-IF-8B 1000 0.2 194.9 0.1 12.0 0.0 7.0 0.0 8.2
bccm-IF-8C 1000 0.2 180.8 0.1 14.4 0.0 7.8 0.1 8.8
bccm-IF-9A 1000 0.5 492.4 0.2 20.9 0.1 11.9 0.1 13.5
bccm-IF-9B 1000 0.6 636.7 0.1 18.3 0.1 11.4 0.1 12.8
bccm-IF-9C 1000 0.4 392.1 0.2 30.3 0.1 11.6 0.1 13.2
bccm-IF-9D 1000 0.4 396.7 0.2 26.3 0.1 11.9 0.1 13.9
bccm-IF-10A 1000 0.7 745.7 0.2 20.2 0.1 9.6 0.1 11.7
bccm-IF-10B 1000 0.7 685.7 0.2 22.3 0.1 9.9 0.1 11.7
bccm-IF-10C 1000 0.4 435.4 0.1 11.4 0.1 9.4 0.1 11.4
bccm-IF-10D 1000 0.4 431.2 0.1 18.7 0.1 10.3 0.1 11.7

Mean time 0.2 236.6 0.1 11.7 0.0 8.2 0.1 9.3

Table A.12: Computational times, in seconds, of heuristics for gdb-IF.

Instance α IM RM PS PSRL ERC ERCRL RC RCRL

gdb-IF-1 1000 0.0 24.1 0.0 2.4 0.0 3.4 0.0 3.5
gdb-IF-2 1000 0.0 34.7 0.0 4.1 0.0 4.2 0.0 4.8
gdb-IF-3 1000 0.0 24.4 0.0 4.9 0.0 3.6 0.0 3.9
gdb-IF-4 1000 0.0 19.6 0.0 3.5 0.0 4.2 0.0 4.3
gdb-IF-5 1000 0.0 37.3 0.1 7.9 0.0 4.5 0.0 4.5
gdb-IF-6 1000 0.0 21.6 0.0 2.8 0.0 2.5 0.0 2.7
gdb-IF-7 1000 0.0 23.5 0.1 7.8 0.0 5.2 0.0 5.5
gdb-IF-8 1000 0.1 110.5 0.1 11.6 0.0 5.0 0.0 6.1
gdb-IF-9 1000 0.2 164.6 0.0 5.5 0.0 5.6 0.1 8.4
gdb-IF-10 1000 0.0 28.5 0.0 4.9 0.0 4.6 0.0 4.6
gdb-IF-11 1000 0.1 108.3 0.0 5.6 0.0 6.5 0.0 7.1
gdb-IF-12 1000 0.0 30.3 0.0 6.1 0.0 4.6 0.0 4.7
gdb-IF-13 1000 0.0 34.2 0.0 6.1 0.0 4.9 0.0 4.3
gdb-IF-14 1000 0.0 26.9 0.0 4.8 0.0 5.1 0.0 4.9
gdb-IF-15 1000 0.0 17.9 0.0 1.5 0.0 1.4 0.0 1.6
gdb-IF-16 1000 0.0 46.2 0.1 11.9 0.0 7.3 0.0 7.2
gdb-IF-17 1000 0.0 37.9 0.0 5.3 0.0 3.5 0.0 3.7
gdb-IF-18 1000 0.1 70.4 0.1 11.2 0.0 5.5 0.0 5.6
gdb-IF-19 1000 0.0 5.7 0.0 1.2 0.0 1.6 0.0 1.7
gdb-IF-20 1000 0.0 24.2 0.0 5.0 0.0 4.4 0.0 4.5
gdb-IF-21 1000 0.1 55.4 0.1 9.5 0.0 6.3 0.0 6.5
gdb-IF-22 1000 0.1 114.5 0.1 11.3 0.0 6.0 0.0 6.3

© University of Pretoria

220 APPENDIX A. DETAILED RESULTS TABLES

gdb-IF-23 1000 0.2 158.0 0.2 30.6 0.1 8.8 0.1 9.7

Mean time 0.1 53.0 0.1 7.2 0.0 4.7 0.0 5.0

A.2 Full results for the tabu search metaheuristic

This section contains full result tables, referred to in Chapter 7, for the Neutral Accelerated
Tabu Search metaheuristic.

A.2.1 Results on Act-IF, Cen-IF, Lpr-IF and mval-IF-3L

In this subsection results are shown for the following heuristic setups: Multi-start Ran-
domised Constructive Heuristic (M-CH); Deterministic Local Search Accelerated-Extended-
Greedy (D-LS); Multi-start Local Search Accelerated-Extended-Greedy (M-LS); and Neutral-
Accelerated Tabu Search (NATS). All the setups were tested with the following construc-
tive heuristics: Efficient-Route-Cluster (ERC); Path-Scanning (PS); and Merge (M). So-
lution cost results for the setups are shown in Table A.13, and vehicle fleet size results are
shown in Table A.14. The results are summarised in Tables 7.1 and 7.2 in Chapter 7.

© University of Pretoria

A
.2
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

T
H
E

T
A
B
U

S
E
A
R
C
H

M
E
T
A
H
E
U
R
IS
T
IC

221

Table A.13: Expected cost, Z, for the constructive heuristic, accelerated Local Search, and Neutral Accelerated Tabu Search setups under
different time-limits on the Cen-IF, Lpr-IF, Act-IF, and mval-IF-3L sets.

3 minute time-limit 30 minute time-limit 60 minute time-limit

Instance Construct M-CH D-LS M-LS NATS M-CH D-LS M-LS NATS M-CH D-LS M-LS NATS

Cen-IF-a ERC 24033643 23411100 23584719 23262900 239939 234111 234085 231205 239939 234111 234085 230813
Cen-IF-a PS 24818280 24031300 23897837 23732600 247214 240313 237646 235445 247214 240313 237646 235403
Cen-IF-a M - - - - 233728 232868 231544 231114 233728 232868 231544 230998
Cen-IF-b ERC 60337412 58451400 59884614 58451400 601158 584514 588237 580050 601158 584514 588237 578098
Cen-IF-b PS 61164996 58698300 59984126 59680000 609561 586983 587751 581087 609561 586983 587751 578601
Cen-IF-b M - - - - 608468 592205 591971 588898 608468 592205 591971 583936
Cen-IF-c ERC 53227870 52114300 52958534 52114300 530889 521143 519464 516139 530889 521143 519464 514179
Cen-IF-c PS 54837915 52753700 53762008 52753700 544847 527537 524012 521997 544847 527537 524012 520612
Cen-IF-c M - - - - 527485 514852 513461 511569 527485 514852 513461 510197

Lpr-IF-a-01 ERC 1359400 1360900 1352300 1356400 13594 13609 13523 13564 13594 13609 13523 13564
Lpr-IF-a-01 PS 1366700 1358900 1352600 1358900 13667 13589 13526 13589 13667 13589 13526 13589
Lpr-IF-a-01 M 1382000 1368600 1352300 1361500 13820 13686 13523 13615 13820 13686 13523 13615
Lpr-IF-a-02 ERC 2843700 2837700 2821500 2824600 28437 28377 28215 28246 28437 28377 28215 28246
Lpr-IF-a-02 PS 2867900 2863500 2820200 2824300 28679 28635 28202 28243 28679 28635 28202 28243
Lpr-IF-a-02 M 2859388 2834600 2826446 2823200 28586 28346 28250 28232 28586 28346 28250 28232
Lpr-IF-a-03 ERC 7881300 7798800 7765252 7723300 78813 77988 77496 77214 78813 77988 77496 77214
Lpr-IF-a-03 PS 7950700 7815400 7772843 7711400 79507 78154 77612 77114 79507 78154 77612 77114
Lpr-IF-a-03 M 7848945 7815900 7768119 7722400 78161 78159 77534 77109 78161 78159 77534 77109
Lpr-IF-a-04 ERC 13310400 13181800 13118764 13001200 133104 131818 130989 129867 133104 131818 130989 129867
Lpr-IF-a-04 PS 13342600 13118500 13122663 13015700 133426 131185 131048 129954 133426 131185 131048 129954
Lpr-IF-a-04 M 14831969 13310900 13251175 13023800 147133 133109 132069 129962 147133 133109 132069 129962
Lpr-IF-a-05 ERC 21142400 20895000 20835738 20640200 211424 208950 208013 205776 211424 208950 208013 205478
Lpr-IF-a-05 PS 21173100 20811100 20837468 20633700 211731 208111 208077 206068 211731 208111 208077 205870
Lpr-IF-a-05 M 22645953 21005700 21037759 20724700 226460 210057 209475 206388 226460 210057 209475 206254
Lpr-IF-b-01 ERC 1483500 1487600 1483500 1483900 14835 14876 14835 14839 14835 14876 14835 14839
Lpr-IF-b-01 PS 1483500 1487500 1483500 1483900 14835 14875 14835 14839 14835 14875 14835 14839
Lpr-IF-b-01 M 1506800 1487000 1483500 1483500 15068 14870 14835 14835 15068 14870 14835 14835
Lpr-IF-b-02 ERC 2894200 2893700 2872900 2872000 28942 28937 28729 28720 28942 28937 28729 28720
Lpr-IF-b-02 PS 2963100 2930900 2870200 2902000 29631 29309 28702 29020 29631 29309 28702 29020
Lpr-IF-b-02 M 2893900 2884000 2869615 2872000 28939 28840 28687 28720 28939 28840 28687 28720
Lpr-IF-b-03 ERC 7997700 7951100 7877869 7835600 79977 79511 78664 78142 79977 79511 78664 78142

© University of Pretoria

2
2
2

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

Lpr-IF-b-03 PS 8041500 7943300 7893573 7844900 80415 79433 78871 78277 80415 79433 78871 78277
Lpr-IF-b-03 M 8100210 7943800 7968199 7868900 80574 79438 79409 78624 80574 79438 79409 78624
Lpr-IF-b-04 ERC 13231100 13125400 12977640 12910900 132311 131254 129591 128808 132311 131254 129591 128808
Lpr-IF-b-04 PS 13325200 13097600 13049569 12949600 133252 130976 130142 129254 133252 130976 130142 129254
Lpr-IF-b-04 M 14109176 13314700 13284024 13006000 139574 133147 132074 129260 139574 133147 132074 129225
Lpr-IF-b-05 ERC 22055500 21754700 21711695 21534300 220555 217547 216697 214647 220555 217547 216697 214430
Lpr-IF-b-05 PS 22210500 21762600 21738801 21502100 222105 217626 217119 214807 222105 217626 217119 214773
Lpr-IF-b-05 M 23278332 22083100 22134278 21671700 230891 220831 220488 215538 230891 220831 220488 215538
Lpr-IF-c-01 ERC 1873500 1877300 1870400 1870600 18735 18773 18704 18706 18735 18773 18704 18706
Lpr-IF-c-01 PS 1876500 1880300 1871700 1873600 18765 18803 18717 18736 18765 18803 18717 18736
Lpr-IF-c-01 M 1880300 1886600 1870400 1873700 18803 18866 18704 18737 18803 18866 18704 18737
Lpr-IF-c-02 ERC 3668900 3664400 3637900 3643300 36689 36644 36379 36433 36689 36644 36379 36433
Lpr-IF-c-02 PS 3668800 3651000 3639200 3639300 36688 36510 36392 36393 36688 36510 36392 36393
Lpr-IF-c-02 M 3718583 3672700 3648130 3643300 37168 36727 36458 36433 37168 36727 36458 36433
Lpr-IF-c-03 ERC 11417000 11353200 11293938 11239100 114170 113532 112797 112144 114170 113532 112797 112144
Lpr-IF-c-03 PS 11413700 11284700 11278174 11183400 114137 112847 112601 111793 114137 112847 112601 111793
Lpr-IF-c-03 M 11750708 11358300 11387859 11242500 116692 113583 113495 112336 116692 113583 113495 112336
Lpr-IF-c-04 ERC 17360400 17218500 17216930 17051800 173604 172185 171859 170045 173604 172185 171859 170045
Lpr-IF-c-04 PS 17625800 17372900 17300649 17150700 176258 173729 172716 171011 176258 173729 172716 170873
Lpr-IF-c-04 M 17457400 17290500 17233073 17137700 174000 172905 171956 170728 174000 172905 171956 170728
Lpr-IF-c-05 ERC 27380410 27152900 27018341 26773400 273802 271529 269521 265892 273802 271529 269521 265716
Lpr-IF-c-05 PS 27633438 27037600 27027203 26695600 276318 270376 269831 265260 276318 270376 269831 265009
Lpr-IF-c-05 M 28313355 27104800 27179909 26768400 282373 271048 270684 266179 282373 271048 270684 265903

Act-IF-a ERC 2242400 2235300 2211866 2221000 22424 22353 22094 22210 22424 22353 22094 22210
Act-IF-a PS 2236600 2227700 2220244 2224900 22366 22277 22168 22249 22366 22277 22168 22249
Act-IF-a M 2635124 2251900 2307005 2239500 26218 22519 22831 22395 26218 22519 22831 22395
Act-IF-b ERC 7251700 7201500 7170806 7155700 72517 72015 71590 71557 72517 72015 71590 71557
Act-IF-b PS 7268300 7200200 7159985 7125000 72683 72002 71458 71250 72683 72002 71458 71250
Act-IF-b M 8271009 7323800 7256126 7220400 81602 73238 72338 72049 81602 73238 72338 72049
Act-IF-c ERC 5008100 4998400 4962054 4976100 50081 49984 49570 49761 50081 49984 49570 49761
Act-IF-c PS 4997500 4975400 4960447 4963400 49975 49754 49531 49634 49975 49754 49531 49634
Act-IF-c M 5377832 5029700 4998175 4971700 53476 50297 49841 49717 53476 50297 49841 49717

mval-IF-3L-1A ERC 26800 25000 25000 25000 268 250 250 250 268 250 250 250
mval-IF-3L-1A PS 25000 27700 25000 25900 250 277 250 259 250 277 250 259
mval-IF-3L-1A M 28100 27800 25900 25900 281 278 259 259 281 278 259 259
mval-IF-3L-1B ERC 33000 32500 30800 30900 330 325 308 309 330 325 308 309

© University of Pretoria

A
.2
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

T
H
E

T
A
B
U

S
E
A
R
C
H

M
E
T
A
H
E
U
R
IS
T
IC

223

mval-IF-3L-1B PS 33200 32800 30800 30900 332 328 308 309 332 328 308 309
mval-IF-3L-1B M 31500 32100 30700 30900 315 321 307 309 315 321 307 309
mval-IF-3L-1C ERC 38600 38000 33900 35400 386 380 339 354 386 380 339 354
mval-IF-3L-1C PS 38700 38700 33000 31800 387 387 330 318 387 387 330 318
mval-IF-3L-1C M 36100 40100 35000 36900 361 401 350 369 361 401 350 369
mval-IF-3L-2A ERC 49300 50100 41300 41300 493 501 413 413 493 501 413 413
mval-IF-3L-2A PS 41300 42300 41300 41300 413 423 413 413 413 423 413 413
mval-IF-3L-2A M 42500 41300 41300 41300 425 413 413 413 425 413 413 413
mval-IF-3L-2B ERC 46900 43500 42300 43500 469 435 423 435 469 435 423 435
mval-IF-3L-2B PS 43500 43700 42500 43700 435 437 425 437 435 437 425 437
mval-IF-3L-2B M 42900 48500 42900 46900 429 485 429 469 429 485 429 469
mval-IF-3L-2C ERC 53900 53500 48800 49200 539 535 488 492 539 535 488 492
mval-IF-3L-2C PS 52100 48800 48100 46700 521 488 481 467 521 488 481 467
mval-IF-3L-2C M 54500 56500 47900 48000 545 565 479 480 545 565 479 480
mval-IF-3L-3A ERC 13900 14100 13500 13500 139 141 135 135 139 141 135 135
mval-IF-3L-3A PS 13800 14200 13500 13600 138 142 135 136 138 142 135 136
mval-IF-3L-3A M 13700 14300 13500 13500 137 143 135 135 137 143 135 135
mval-IF-3L-3B ERC 15600 15800 14700 15000 156 158 147 150 156 158 147 150
mval-IF-3L-3B PS 15100 17200 14700 14700 151 172 147 147 151 172 147 147
mval-IF-3L-3B M 15500 16900 14700 16100 155 169 147 161 155 169 147 161
mval-IF-3L-3C ERC 13100 13800 11700 11600 131 138 117 116 131 138 117 116
mval-IF-3L-3C PS 13300 13300 11900 12200 133 133 119 122 133 133 119 122
mval-IF-3L-3C M 13200 14200 11800 12000 132 142 118 120 132 142 118 120
mval-IF-3L-4A ERC 73000 65300 64408 64400 730 653 644 644 730 653 644 644
mval-IF-3L-4A PS 67600 67200 64611 64600 676 672 646 646 676 672 646 646
mval-IF-3L-4A M 66100 68200 64401 64400 661 682 644 644 661 682 644 644
mval-IF-3L-4B ERC 77800 75800 69914 73900 778 758 698 739 778 758 698 739
mval-IF-3L-4B PS 77000 76100 73652 73900 770 761 736 739 770 761 736 739
mval-IF-3L-4B M 78400 79200 71673 73900 784 792 711 739 784 792 711 739
mval-IF-3L-4C ERC 78900 79800 72037 70000 789 798 716 700 789 798 716 700
mval-IF-3L-4C PS 80800 78200 75032 73300 808 782 750 733 808 782 750 733
mval-IF-3L-4C M 79600 78600 75337 73300 796 786 753 733 796 786 753 733
mval-IF-3L-4D ERC 80700 85200 74466 74200 807 852 742 742 807 852 742 742
mval-IF-3L-4D PS 82100 78900 76711 72200 821 789 766 722 821 789 766 722
mval-IF-3L-4D M 79600 86400 75467 76900 796 864 753 769 796 864 753 769
mval-IF-3L-5A ERC 81500 79900 77000 77600 815 799 770 776 815 799 770 776
mval-IF-3L-5A PS 79200 81100 77400 77600 792 811 774 776 792 811 774 776
mval-IF-3L-5A M 89929 77900 77750 76700 899 779 775 767 899 779 775 767

© University of Pretoria

2
2
4

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

mval-IF-3L-5B ERC 76500 73700 70941 71100 765 737 709 711 765 737 709 711
mval-IF-3L-5B PS 76500 77500 71300 71500 765 775 713 715 765 775 713 715
mval-IF-3L-5B M 83501 74100 71189 70500 820 741 709 705 820 741 709 705
mval-IF-3L-5C ERC 91600 82100 79119 77500 916 821 791 775 916 821 791 775
mval-IF-3L-5C PS 82900 84900 79114 78900 829 849 791 789 829 849 791 789
mval-IF-3L-5C M 94771 89000 79260 82700 940 890 789 827 940 890 789 827
mval-IF-3L-5D ERC 86600 89400 77381 75600 866 894 771 744 866 894 771 744
mval-IF-3L-5D PS 84100 84100 78641 75200 841 841 786 752 841 841 786 752
mval-IF-3L-5D M 94316 88800 78587 76300 942 888 782 763 942 888 782 763
mval-IF-3L-6A ERC 37400 36000 34400 34200 374 360 344 342 374 360 344 342
mval-IF-3L-6A PS 36600 37200 34900 34500 366 372 349 345 366 372 349 345
mval-IF-3L-6A M 35600 36500 34518 34500 356 365 345 345 356 365 345 345
mval-IF-3L-6B ERC 37000 35900 34200 34500 370 359 342 345 370 359 342 345
mval-IF-3L-6B PS 38500 37100 35200 35900 385 371 352 359 385 371 352 359
mval-IF-3L-6B M 34400 41200 33911 37500 344 412 339 375 344 412 339 375
mval-IF-3L-6C ERC 47900 47700 42300 43600 479 477 423 436 479 477 423 436
mval-IF-3L-6C PS 51100 49300 43800 48300 511 493 438 483 511 493 438 483
mval-IF-3L-6C M 42600 45300 42124 41200 426 453 421 412 426 453 421 412
mval-IF-3L-7A ERC 41600 39600 39400 38800 416 396 394 388 416 396 394 388
mval-IF-3L-7A PS 43000 43000 40000 38800 430 430 400 388 430 430 400 388
mval-IF-3L-7A M 39212 40800 38800 38800 390 408 388 388 390 408 388 388
mval-IF-3L-7B ERC 49900 46200 45000 44200 499 462 450 442 499 462 450 442
mval-IF-3L-7B PS 49100 48500 45610 43700 491 485 456 437 491 485 456 437
mval-IF-3L-7B M 45567 49100 44239 44200 453 491 440 442 453 491 440 442
mval-IF-3L-7C ERC 53100 51700 48300 48000 531 517 483 480 531 517 483 480
mval-IF-3L-7C PS 56200 54100 50417 49000 562 541 504 490 562 541 504 490
mval-IF-3L-7C M 50449 53200 49007 50100 503 532 488 501 503 532 488 501
mval-IF-3L-8A ERC 69700 68400 65300 64400 697 684 653 644 697 684 653 644
mval-IF-3L-8A PS 63400 65000 63400 64400 634 650 634 644 634 650 634 644
mval-IF-3L-8A M 68400 67000 65048 66400 684 670 649 664 684 670 649 664
mval-IF-3L-8B ERC 63600 66100 57000 57200 636 661 570 572 636 661 570 572
mval-IF-3L-8B PS 60900 60000 58100 58200 609 600 581 582 609 600 581 582
mval-IF-3L-8B M 61200 63500 58891 59500 612 635 588 595 612 635 588 595
mval-IF-3L-8C ERC 69200 68900 60369 57400 692 689 603 574 692 689 603 574
mval-IF-3L-8C PS 69500 69000 62600 60100 695 690 626 601 695 690 626 601
mval-IF-3L-8C M 66100 68400 61141 58700 661 684 608 587 661 684 608 587
mval-IF-3L-9A ERC 61200 61100 53072 52100 612 611 529 521 612 611 529 521
mval-IF-3L-9A PS 59300 58000 53279 52300 593 580 531 523 593 580 531 523

© University of Pretoria

A
.2
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

T
H
E

T
A
B
U

S
E
A
R
C
H

M
E
T
A
H
E
U
R
IS
T
IC

225

mval-IF-3L-9A M 59874 58300 54384 55400 591 583 534 554 591 583 534 554
mval-IF-3L-9B ERC 58200 53200 51387 50500 582 532 512 505 582 532 512 505
mval-IF-3L-9B PS 53700 54100 51506 50900 537 541 515 509 537 541 515 509
mval-IF-3L-9B M 59426 55100 50700 50000 592 551 504 500 592 551 504 500
mval-IF-3L-9C ERC 56900 56200 52555 52200 569 562 523 522 569 562 523 522
mval-IF-3L-9C PS 53900 56400 51588 52700 539 564 515 523 539 564 515 523
mval-IF-3L-9C M 59894 56200 53675 51900 595 562 522 519 595 562 522 519
mval-IF-3L-9D ERC 71100 64700 63171 59400 711 647 630 584 711 647 630 584
mval-IF-3L-9D PS 66600 67700 62926 58900 666 677 624 589 666 677 624 589
mval-IF-3L-9D M 65711 65900 61797 59100 654 659 612 591 654 659 612 591
mval-IF-3L-10A ERC 86200 84100 81172 80300 862 841 811 803 862 841 811 803
mval-IF-3L-10A PS 84300 83700 81414 80400 843 837 813 804 843 837 813 804
mval-IF-3L-10A M 89545 84400 80969 80300 877 844 808 801 877 844 808 801
mval-IF-3L-10B ERC 85000 82000 79840 80000 850 820 798 792 850 820 798 792
mval-IF-3L-10B PS 83000 81500 79832 79000 830 815 798 790 830 815 798 790
mval-IF-3L-10B M 86792 83500 80619 79200 865 835 804 792 865 835 804 792
mval-IF-3L-10C ERC 80000 76100 74341 73300 800 761 742 733 800 761 742 733
mval-IF-3L-10C PS 80600 77600 74651 73400 806 776 741 728 806 776 741 728
mval-IF-3L-10C M 81463 77000 74121 73900 811 770 738 732 811 770 738 732
mval-IF-3L-10D ERC 82100 81000 76352 72000 821 810 761 720 821 810 761 720
mval-IF-3L-10D PS 81600 81300 75275 72000 816 813 742 720 816 813 742 720
mval-IF-3L-10D M 84532 82900 76283 71000 845 829 755 710 845 829 755 710

Table A.14: Expected fleet size, K, for the constructive heuristic, accelerated Local Search, and Neutral Accelerated Tabu Search setups
under different time-limits on the Cen-IF, Lpr-IF, Act-IF, and mval-IF-3L sets.

3 minute time-limit 30 minute time-limit 60 minute time-limit

Instance Construct M-CH D-LS M-LS NATS M-CH D-LS M-LS NATS M-CH D-LS M-LS NATS

Cen-IF-a ERC 9 9 9 9 9 9 9 9 9 9 9 9
Cen-IF-a PS 9 9 9 9 9 9 9 9 9 9 9 9
Cen-IF-a M - - - - 9 9 9 9 9 9 9 9
Cen-IF-b ERC 22 21 22 21 22 21 21 21 22 21 21 21
Cen-IF-b PS 22 21 22 21 22 21 21 21 22 21 21 21
Cen-IF-b M - - - - 27 21 21 21 27 21 21 21

© University of Pretoria

2
2
6

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

Cen-IF-c ERC 20 19 19 19 20 19 19 19 20 19 19 19
Cen-IF-c PS 20 19 20 19 19 19 19 19 19 19 19 19
Cen-IF-c M - - - - 19 19 19 19 19 19 19 19

Lpr-IF-a-01 ERC 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-a-01 PS 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-a-01 M 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-a-02 ERC 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-a-02 PS 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-a-02 M 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-a-03 ERC 3 3 3 3 3 3 3 3 3 3 3 3
Lpr-IF-a-03 PS 3 3 3 3 3 3 3 3 3 3 3 3
Lpr-IF-a-03 M 3 3 3 3 3 3 3 3 3 3 3 3
Lpr-IF-a-04 ERC 5 5 5 5 5 5 5 5 5 5 5 5
Lpr-IF-a-04 PS 5 5 5 5 5 5 5 5 5 5 5 5
Lpr-IF-a-04 M 6 5 5 5 6 5 5 5 6 5 5 5
Lpr-IF-a-05 ERC 8 8 8 8 8 8 8 8 8 8 8 8
Lpr-IF-a-05 PS 8 8 8 8 8 8 8 8 8 8 8 8
Lpr-IF-a-05 M 9 8 8 8 8 8 8 8 8 8 8 8
Lpr-IF-b-01 ERC 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-b-01 PS 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-b-01 M 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-b-02 ERC 2 2 1 2 2 2 1 2 2 2 1 2
Lpr-IF-b-02 PS 2 2 1 2 2 2 1 2 2 2 1 2
Lpr-IF-b-02 M 2 2 1 2 2 2 1 2 2 2 1 2
Lpr-IF-b-03 ERC 3 3 3 3 3 3 3 3 3 3 3 3
Lpr-IF-b-03 PS 3 3 3 3 3 3 3 3 3 3 3 3
Lpr-IF-b-03 M 3 3 3 3 3 3 3 3 3 3 3 3
Lpr-IF-b-04 ERC 5 5 5 5 5 5 5 5 5 5 5 5
Lpr-IF-b-04 PS 5 5 5 5 5 5 5 5 5 5 5 5
Lpr-IF-b-04 M 5 5 5 5 5 5 5 5 5 5 5 5
Lpr-IF-b-05 ERC 8 8 8 8 8 8 8 8 8 8 8 8
Lpr-IF-b-05 PS 8 8 8 8 8 8 8 8 8 8 8 8
Lpr-IF-b-05 M 9 8 8 8 9 8 8 8 9 8 8 8
Lpr-IF-c-01 ERC 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-c-01 PS 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-c-01 M 1 1 1 1 1 1 1 1 1 1 1 1
Lpr-IF-c-02 ERC 2 2 2 2 2 2 2 2 2 2 2 2

© University of Pretoria

A
.2
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

T
H
E

T
A
B
U

S
E
A
R
C
H

M
E
T
A
H
E
U
R
IS
T
IC

227

Lpr-IF-c-02 PS 2 2 2 2 2 2 2 2 2 2 2 2
Lpr-IF-c-02 M 2 2 2 2 2 2 2 2 2 2 2 2
Lpr-IF-c-03 ERC 4 4 4 4 4 4 4 4 4 4 4 4
Lpr-IF-c-03 PS 4 4 4 4 4 4 4 4 4 4 4 4
Lpr-IF-c-03 M 5 4 4 4 5 4 4 4 5 4 4 4
Lpr-IF-c-04 ERC 7 7 7 7 7 7 7 7 7 7 7 7
Lpr-IF-c-04 PS 7 7 7 6 7 7 7 6 7 7 7 6
Lpr-IF-c-04 M 7 7 7 6 7 7 7 6 7 7 7 6
Lpr-IF-c-05 ERC 10 10 10 10 10 10 10 10 10 10 10 10
Lpr-IF-c-05 PS 10 10 10 10 10 10 10 10 10 10 10 10
Lpr-IF-c-05 M 11 10 10 10 11 10 10 10 11 10 10 10

Act-IF-a ERC 1 1 1 1 1 1 1 1 1 1 1 1
Act-IF-a PS 1 1 1 1 1 1 1 1 1 1 1 1
Act-IF-a M 1 1 1 1 1 1 1 1 1 1 1 1
Act-IF-b ERC 3 3 3 3 3 3 3 3 3 3 3 3
Act-IF-b PS 3 3 3 3 3 3 3 3 3 3 3 3
Act-IF-b M 3 3 3 3 3 3 3 3 3 3 3 3
Act-IF-c ERC 2 2 2 2 2 2 2 2 2 2 2 2
Act-IF-c PS 2 2 2 2 2 2 2 2 2 2 2 2
Act-IF-c M 2 2 2 2 2 2 2 2 2 2 2 2

mval-IF-3L-1A ERC 3 2 2 2 3 2 2 2 3 2 2 2
mval-IF-3L-1A PS 2 3 2 3 2 3 2 3 2 3 2 3
mval-IF-3L-1A M 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-1B ERC 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-1B PS 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-1B M 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-1C ERC 4 4 3 4 4 4 3 4 4 4 3 4
mval-IF-3L-1C PS 4 4 3 3 4 4 3 3 4 4 3 3
mval-IF-3L-1C M 3 4 3 4 3 4 3 4 3 4 3 4
mval-IF-3L-2A ERC 3 3 2 2 3 3 2 2 3 3 2 2
mval-IF-3L-2A PS 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-2A M 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-2B ERC 3 2 2 2 3 2 2 2 3 2 2 2
mval-IF-3L-2B PS 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-2B M 2 3 2 3 2 3 2 3 2 3 2 3
mval-IF-3L-2C ERC 3 3 3 3 3 3 3 3 3 3 3 3

© University of Pretoria

2
2
8

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

mval-IF-3L-2C PS 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-2C M 3 4 3 3 3 4 3 3 3 4 3 3
mval-IF-3L-3A ERC 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-3A PS 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-3A M 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-3B ERC 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-3B PS 2 3 2 2 2 3 2 2 2 3 2 2
mval-IF-3L-3B M 2 3 2 3 2 3 2 3 2 3 2 3
mval-IF-3L-3C ERC 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-3C PS 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-3C M 2 2 2 2 2 2 2 2 2 2 2 2
mval-IF-3L-4A ERC 4 3 3 3 4 3 3 3 4 3 3 3
mval-IF-3L-4A PS 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-4A M 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-4B ERC 4 4 3 4 4 4 3 4 4 4 3 4
mval-IF-3L-4B PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-4B M 4 4 3 4 4 4 3 4 4 4 3 4
mval-IF-3L-4C ERC 4 4 3 3 4 4 3 3 4 4 3 3
mval-IF-3L-4C PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-4C M 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-4D ERC 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-4D PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-4D M 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5A ERC 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5A PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5A M 5 4 4 4 5 4 4 4 5 4 4 4
mval-IF-3L-5B ERC 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5B PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5B M 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5C ERC 5 4 4 4 5 4 4 4 5 4 4 4
mval-IF-3L-5C PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5C M 5 5 4 5 5 5 4 5 5 5 4 5
mval-IF-3L-5D ERC 4 5 4 4 4 5 4 4 4 5 4 4
mval-IF-3L-5D PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-5D M 5 5 4 4 5 5 4 4 5 5 4 4
mval-IF-3L-6A ERC 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-6A PS 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-6A M 3 3 3 3 3 3 3 3 3 3 3 3

© University of Pretoria

A
.2
.

F
U
L
L
R
E
S
U
L
T
S
F
O
R

T
H
E

T
A
B
U

S
E
A
R
C
H

M
E
T
A
H
E
U
R
IS
T
IC

229

mval-IF-3L-6B ERC 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-6B PS 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-6B M 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-6C ERC 4 4 3 3 4 4 3 3 4 4 3 3
mval-IF-3L-6C PS 4 4 3 4 4 4 3 4 4 4 3 4
mval-IF-3L-6C M 3 4 3 3 3 4 3 3 3 4 3 3
mval-IF-3L-7A ERC 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-7A PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-7A M 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-7B ERC 5 4 4 4 5 4 4 4 5 4 4 4
mval-IF-3L-7B PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-7B M 4 5 4 4 4 5 4 4 4 5 4 4
mval-IF-3L-7C ERC 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-7C PS 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-7C M 5 5 4 5 5 5 4 5 5 5 4 5
mval-IF-3L-8A ERC 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-8A PS 3 4 3 4 3 4 3 4 3 4 3 4
mval-IF-3L-8A M 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-8B ERC 4 4 3 3 4 4 3 3 4 4 3 3
mval-IF-3L-8B PS 3 3 3 3 3 3 3 3 3 3 3 3
mval-IF-3L-8B M 3 4 3 4 3 4 3 4 3 4 3 4
mval-IF-3L-8C ERC 4 4 3 3 4 4 3 3 4 4 3 3
mval-IF-3L-8C PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-8C M 4 4 3 3 4 4 3 3 4 4 3 3
mval-IF-3L-9A ERC 5 5 4 4 5 5 4 4 5 5 4 4
mval-IF-3L-9A PS 5 5 4 4 5 5 4 4 5 5 4 4
mval-IF-3L-9A M 5 5 4 5 5 5 4 5 5 5 4 5
mval-IF-3L-9B ERC 5 4 4 4 5 4 4 4 5 4 4 4
mval-IF-3L-9B PS 4 4 4 4 4 4 4 4 4 4 4 4
mval-IF-3L-9B M 5 5 4 4 5 5 4 4 5 5 4 4
mval-IF-3L-9C ERC 5 5 4 5 5 5 4 5 5 5 4 5
mval-IF-3L-9C PS 4 5 4 5 4 5 4 5 4 5 4 5
mval-IF-3L-9C M 5 5 5 5 5 5 4 5 5 5 4 5
mval-IF-3L-9D ERC 6 5 5 5 6 5 5 5 6 5 5 5
mval-IF-3L-9D PS 5 6 5 5 5 6 5 5 5 6 5 5
mval-IF-3L-9D M 5 6 5 5 5 6 5 5 5 6 5 5
mval-IF-3L-10A ERC 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10A PS 5 5 5 5 5 5 5 5 5 5 5 5

© University of Pretoria

2
3
0

A
P
P
E
N
D
IX

A
.
D
E
T
A
IL
E
D

R
E
S
U
L
T
S
T
A
B
L
E
S

mval-IF-3L-10A M 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10B ERC 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10B PS 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10B M 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10C ERC 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10C PS 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10C M 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10D ERC 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10D PS 5 5 5 5 5 5 5 5 5 5 5 5
mval-IF-3L-10D M 5 5 5 5 5 5 5 5 5 5 5 5

© University of Pretoria

A.2. FULL RESULTS FOR THE TABU SEARCH METAHEURISTIC 231

A.2.2 Results on lpr, mval and bccm-IF

In this subsection results are shown for the deterministic and accelerated Neutral-Accelerated
Tabu Search (NATS) setups when linked with the following constructive heuristics: Efficient-
Route-Cluster (ERC); Efficient-Route-Cluster-Random-Link (ERCRL); Path-Scanning (PS);
Path-Scanning-Random-Link (PSRL); Improved-Merge (IM); and Randomised-Merge (RM).
The results are summarised in Table 7.3 in Chapter 7. Results are shown in Tables A.15
and A.16 for the setups, as well as the Memetic Algorithm of [6] on the MCARP lpr and
mval set. Results are shown in Table A.17 for the same setups, as well as the Variable
Neighbourhood Search (VNS) algorithm of [68] on the CARPTIF bccm-IF set.

Table A.15: Cost results for the Memetic Algorithm (MA) of [6] and for the multi-start
and deterministic Neutral Accelerated Tabu Search (NATS) setups linked with different
constructive heuristics on the lpr set when allowed 60 minutes of execution time.

Multi-start Deterministic

Set MA [6] PSRL-NATS RM-NATS ERCRL-NATS PS-NATS IM-NATS ERC-NATS

Lpr-a-01 13484 13484 13487 13484 13484 13501 13512
Lpr-a-02 28052 28069 28086 28052 28216 28150 28109
Lpr-a-03 76155 76201 76147 76278 76549 76708 76493
Lpr-a-04 127930 127753 127676 127919 127624 127719 127839
Lpr-a-05 206086 205581 205865 206068 204599 205494 206000
Lpr-b-01 14835 14835 14835 14835 14839 14835 14839
Lpr-b-02 28654 28654 28654 28654 28654 28654 28654
Lpr-b-03 77878 77907 78182 77934 77998 78484 78024
Lpr-b-04 127454 127538 127571 127551 127751 127246 127564
Lpr-b-05 212279 211881 212184 212285 210926 211054 211489
Lpr-c-01 18639 18639 18639 18639 18706 18666 18736
Lpr-c-02 36339 36339 36339 36361 36456 36408 36417
Lpr-c-03 111632 112029 111866 112198 111800 111725 112533
Lpr-c-04 169487 171033 169573 169534 171601 169749 169718
Lpr-c-05 260538 261428 260321 260780 259132 259883 260362

© University of Pretoria

232 APPENDIX A. DETAILED RESULTS TABLES

Table A.16: Cost results for the Memetic Algorithm (MA) of [6] and for the multi-start and
deterministic Neutral Accelerated Tabu Search setups linked with different constructive
heuristics on the mval set when allowed 60 minutes of execution time.

Multi-start Deterministic

Set MA [6] PSRL-NATS RM-NATS ERCRL-NATS PS-NATS IM-NATS ERC-NATS

mval-01A 230 230 230 230 233 233 230
mval-01B 261 261 261 261 294 261 267
mval-01C 315 315 316 316 369 316 331
mval-02A 324 324 324 324 324 324 324
mval-02B 395 395 395 395 401 395 395
mval-02C 526 534 545 544 551 565 569
mval-03A 115 115 115 115 118 116 118
mval-03B 142 142 142 142 142 146 144
mval-03C 166 166 166 168 166 170 172
mval-04A 580 580 580 580 590 580 594
mval-04B 650 650 650 650 654 652 652
mval-04C 631 630 633 632 630 649 653
mval-04D 776 756 763 769 762 795 798
mval-05A 597 599 597 599 610 608 614
mval-05B 615 615 617 619 619 627 623
mval-05C 697 697 701 697 697 709 701
mval-05D 757 739 741 741 739 754 751
mval-06A 326 326 326 326 335 329 336
mval-06B 317 317 320 317 327 323 342
mval-06C 375 371 371 376 378 375 392
mval-07A 364 364 364 364 377 364 370
mval-07B 412 414 412 412 415 421 416
mval-07C 428 428 428 432 435 440 437
mval-08A 581 581 581 585 581 589 603
mval-08B 531 531 536 531 532 543 553
mval-08C 638 638 643 644 635 656 667
mval-09A 458 458 458 458 459 465 458
mval-09B 453 453 459 453 456 465 461
mval-09C 434 434 436 434 434 435 435
mval-09D 520 520 520 520 520 534 532
mval-10A 634 643 643 643 643 654 647
mval-10B 662 662 662 662 663 669 666
mval-10C 624 624 624 624 624 628 635
mval-10D 650 650 650 650 650 672 651

© University of Pretoria

A.2. FULL RESULTS FOR THE TABU SEARCH METAHEURISTIC 233

Table A.17: Cost results for the Variable Neighbourhood Search (VNS) algorithm of [68]
and for the multi-start and deterministic Neutral Accelerated Tabu Search setups linked
with different constructive heuristics on the bccm-IF set when allowed 60 minutes of
execution time.

Multi-start Deterministic

Set VNS [68] PSRL-NATS RM-NATS ERCRL-NATS PS-NATS IM-NATS ERC-NATS

val1A-IF 229 229 229 229 251 253 232
val1B-IF 229 229 238 229 251 253 232
val1C-IF 259 270 271 269 275 291 296
val2A-IF 434 480 434 480 487 532 557
val2B-IF 434 480 434 480 487 532 557
val2C-IF 488 532 532 599 553 590 597
val3A-IF 120 120 120 122 123 125 123
val3B-IF 120 120 120 120 123 125 123
val3C-IF 126 141 132 140 146 151 159
val4A-IF 533 538 538 538 587 568 583
val4B-IF 533 538 538 538 587 568 583
val4C-IF 533 538 538 568 568 568 583
val4D-IF 538 574 559 578 604 602 604
val5A-IF 879 925 925 1084 929 929 1239
val5B-IF 879 925 925 1013 929 929 1239
val5C-IF 879 925 925 1019 929 929 1239
val5D-IF 879 925 925 1089 929 931 1239
val6A-IF 343 343 343 343 344 344 344
val6B-IF 343 343 343 343 344 344 344
val6C-IF 367 371 373 375 383 402 371
val7A-IF 444 444 444 444 444 447 444
val7B-IF 444 444 444 444 444 447 444
val7C-IF 444 444 444 444 453 447 444
val8A-IF 545 548 551 551 551 591 603
val8B-IF 545 548 554 549 551 591 603
val8C-IF 547 568 575 563 589 579 630
val9A-IF - 569 569 565 598 572 627
val9B-IF 546 564 569 570 598 572 627
val9C-IF - 570 567 574 598 572 627
val9D-IF 546 567 565 570 570 595 625
val10A-IF - 672 641 676 687 680 683
val10B-IF - 674 676 677 687 680 683
val10C-IF - 674 647 671 687 680 683
val10D-IF - 674 674 678 680 678 679

© University of Pretoria

	Abstract
	Acronyms
	Problem acronyms
	Algorithm acronyms

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Municipal solid waste collection and transportation
	Capacitated Arc Routing Problems
	Problem statement
	Research design
	Research methodology
	Document structure

	Capacitated Arc Routing Problems in literature
	Arc routing problems in literature
	Terms and notations
	Chinese and rural postmen
	The Capacitated Arc Routing Problem

	Extensions of the Capacitated Arc Routing Problem
	Mixed networks
	Intermediate facilities
	Treatment of vehicle fleet size
	The MCARPTIF formally defined

	Solution approaches for Capacitated Arc Routing Problems
	Problem difficulty
	Constructive heuristics
	Improvement heuristics

	Evaluating heuristics
	Evaluation criteria
	Problem test instances

	Conclusion
	Chapter appendix
	Modelling and calculating shortest paths with turn penalties
	Generic algorithm running time analysis
	Cen-IF problem instance description

	Splitting procedures
	Introduction
	Splitting procedures for the CARP and CARPTIF
	New splitting procedures
	Splitting procedures for the MCARPIF
	Splitting procedures for the MCARPTIF
	Heuristic splitting procedures for the MCARPTIF

	Computational results
	Conclusion

	Constructive heuristics
	Introduction
	Constructive heuristics for CARPs
	Constructive heuristics for the MCARPTIF
	Path-Scanning
	Merge
	Route-First-Cluster-Second heuristics
	Vehicle Reduction heuristic

	Computational results
	Evaluation criteria
	Computational time and break even analysis
	Performance evaluation

	Main findings
	Conclusion
	Chapter appendix
	Detailed algorithm descriptions
	Multiple run solution constructor
	Path-Scanning algorithm
	Randomised-Merge algorithm
	Reduce-Vehicles algorithm

	Basic local search heuristics
	Introduction
	Local search for the CARP and MCARP
	MCARP move operators
	Basic acceleration strategies

	Basic local search for the MCARPTIF
	Flip
	Relocate
	Exchange
	Cross
	Two-opt-1

	Computational results
	Best-move local search
	First-move local search

	Conclusion
	Chapter appendix
	First-move versus best-move strategies
	Additional cross moves for the MCARPTIF

	Accelerated local search heuristics
	Introduction
	Acceleration mechanisms for the CARP and VRP
	Nearest neighbour lists
	Static move descriptors
	Compounding independent moves
	Other improvement mechanisms

	Accelerated and extended LS for the MCARPTIF
	Nearest neighbour lists
	Greedily compounding independent moves
	Static move descriptors
	Extending the move neighbourhood

	Computational results
	Analysis of acceleration mechanisms and extended move neighbourhoods
	Domination analysis
	Multi-start performance evaluation

	Conclusion
	Chapter appendix
	Accelerated best-move versus accelerated compounded moves
	Multi-start analysis
	Results for multi-start LS setups with nearest-neighbour-lists

	An accelerated tabu search metaheuristic
	Introduction
	Tabu search for the MCARPTIF
	Basic instruments
	Application of efficient local search components within Tabu Search
	Greedily compounding independent non-tabu moves
	Accelerated Tabu Search

	Computational results
	Results on the MCARPTIF instances
	Evaluation against existing solution approaches
	Computational tests on the Cen-IF-Full instance

	Conclusion
	Chapter appendix
	Tabu tenure parameterisation
	Results for NATS on the MCARP

	Research contributions and future work
	Research aims
	Research contributions
	Future research opportunities

	Bibliography
	Appendices
	Detailed results tables
	Full results for constructive heuristics
	Results on Act-IF, Cen-IF and lpr-IF
	Results on small benchmark sets

	Full results for the tabu search metaheuristic
	Results on Act-IF, Cen-IF, Lpr-IF and mval-IF-3L
	Results on lpr, mval and bccm-IF

