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Abstract. A Clifford A-algebra of a quadratic A-module (E , q) i san as -
sociative and unital A-algebra (i.e. sheaf of A-algebras) associated with 
the quadratic ShSetX -morphism q, and satisfying a certain universal 
property. By introducing sheaves of sets of orthogonal bases (or simply 
sheaves of orthogonal bases), we show that with every Riemannian qua-
dratic free A-module of finite rank, say, n, one can associate a Clifford 
free A-algebra of rank 2n. This “main” result is stated in Theorem 3.2.
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Introduction

Abstract Differential Geometry (ADG, in short) offers ways to circumvent
singularities, which arise in physics due to the inefficiency of the classical
differential geometry (CDG, viz. differential geometry of smooth manifolds)
when applied in the quantum domain (quantum field theory, for instance).
Mallios in [7] expounds on the entanglement of the notion of smooth manifolds
in the quantum domain. To remedy this undesirable shortfall of CDG, Mallios
suggests a sheaf-theoretic démarche. In this axiomatic setting, smooth mani-
folds are replaced by vector sheaves (i.e. locally free A-modules). See [4, 5, 6].

It is in this purely algebraic setting that we envisage to cast a look
at sheaves of Clifford algebras over a given sheaf A of unital and commu-
tative algebras. Sheaves of Clifford algebras over A are also called Clifford
A-algebras.

Clifford A-algebras are defined in a way to be a generalization of Clif-
ford algebras of quadratic vector spaces, but instead of considering arbitrary
quadratic free A-modules (E , q) of finite rank (in the pair (E , q), E is a free
A-module of finite rank and q is a quadratic SET S-morphism sending the
underlying sheaf of sets of E into the underlying sheaf of sets of A) we con-
sider Riemannian quadratic free A-modules (E , q) of finite rank; these are
quadratic free A-modules such that the q-induced A-bilinear morphism is
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a Riemannian A-metric, viz. a symmetric positive definite A-bilinear mor-
phism, cf. [4, p. 318, Definition 8.2]. The motivation behind this restricting to
Riemannian quadratic free A-modules of finite rank lays in the fact that the
Gram-Schmidt orthogonalization process affords one with orthogonal gauges
of Riemannian free A-modules of finite rank, where the ordered algebraized
space (X,A) is enriched with square root and satisfies the inverse-closed sec-
tion condition. See [4, pp, 335-340] and [10] for details on the Gram-Schmidt
orthogonalization process and its generalization to symplectic free A-modules
of finite rank, respectively.

Making use of techniques underlying the proof in [2, pp 294, 295, The-
orem VIII.2.B] that every quadratic vector space of finite dimension admits
a Clifford algebra, we show in Theorem 3.2, deemed to be the main result
of the paper, that with every Riemannian quadratic free A-module of finite
rank is associated up to A-isomorphism a Clifford free A-algebra of rank 2n

if the rank of the Riemannian quadratic free A-module is n.
Throughout the paper, the pair (X,A), or just A, will denote a fixed

C-algebraized space, with X a topological space and A a sheaf (over X) of
unital and commutative algebras. We will assume that all sheaves encountered
herein are defined over the topological space X. On the other hand, we will
also mainly use the notation of [4]; thus, for instance, A-ModX will stand
for the category of A-modules with their respective A-morphisms.

1. Clifford A-Morphisms

In this section, we introduce Clifford A-morphims, a notion derived from the
classical one, viz. Clifford maps of quadratic vector spaces (cf. [2, p. 287-289]).

Definition 1.1. Let E be an A-module and F : A-ModX −→ ShSetX the
forgetful functor of the category of A-modules into the category of sheaves
of sets. A morphism q ∈ HomShSetX (F (E), F (A)) is called A-quadratic on E
if the following are satisfied:

(1) Given any open subset U of X and scalar λ ∈ A(U), define λ ∈
HomA(U)(A(U),A(U)) ≡ EndA(U)A(U) � A(U) by

λ(s) := λs,

for every s ∈ A(U). Then,

qU ◦ λ ≡ q ◦ λ := ev(λ2, q(−)) ≡ evU (λ2, qU (−)),

where ev ∈ HomShSetX (F (EndAA) ⊕ F (A), F (A)) (ev is called the
evaluation morphism) is given by

evU (ψ, α) ≡ ev(ψ, α) := ψU (α) ≡ ψU · α
for any open U ⊆ X and sections α ∈ A(U) and ψ ∈ (EndAA)(U).

(2) The morphism Bq ∈ HomShSetX (F (E) ⊕ F (E), F (A)), given by

Bq := (q ◦ +) − (q ◦ pr1) − (q ◦ pr2),
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where pri,+ : F (E)⊕F (E) −→ F (E) are the i-th projection and addition
morphisms, respectively, is A-bilinear.

The pair (E , q) is called a quadratic A-module.

We shall denote by
QA|U (E|U ,A|U ) (1)

the set of A|U -quadratic morphisms on E|U . The set (1) is an A(U)-module.
In fact, for any α ∈ A(U) and q ≡ (qV )U⊇V, open ∈ QA|U (E|U ,A|U ), one sets
the following:

(α · q)V := α|V · qV ≡ α · qV ,
which thus provides the A(U)-module structure of (1). On the other hand,
it is readily verified that the collection (QA|U (E|U ,A|U ), σU

V ) is a complete

presheaf of modules (the restriction maps are defined as follows: if
q ∈ QA|U (E|U ,A|U ), then σU

V (q) := (qW )V⊇W, open). The sheaf generated
by this complete presheaf is called the sheaf of quadratic morphisms of E
and is denoted

Q(E ,A) ≡ Q(E).

Given an arbitrary A-bilinear form b on E , the morphism

qb := b ◦ Δ, (2)

where Δ is the diagonal A-morphism of E (that is, for every open U in X and
section s in E(U), ΔU (s) ≡ Δ(s) := (s, s)), is clearly a quadratic A-morphism
on E.

Let B(E) ≡ L2
A(E , E ;A) be the A-module of A-bilinear forms (cf. [9]),

the ShSetX - morphism Ξ : B(E) −→ Q(E) such that

ΞU (b) := qb, (3)

for any open U ⊆ X and section b ∈ B(E)(U) := L2
A|U (E|U , E|U ;A|U ), where

qb is given as in (2), is clearly an A-morphism, with the sub-A-module A(E)
of skew-symmetric A-bilinear forms being the kernel of Ξ. On the other hand,
it is immediate that Θ : Q(E) −→ B(E), such that, for every open U ⊆ X
and section q ∈ Q(E)(U),

ΘU (q) := Bq, (4)

is an A-morphism of Q(E) into the sub-A-module S(E) of B(E) of symmetric
A-bilinear forms.

Suppose now that the characteristic of A is not 2, that is the charac-
teristic of every individual algebra A(U), where U is an open subset of X, is
not 2. In the above A-morphism Θ, let’s replace Bq in (4) by the symmetric
A|U -bilinear form

bq :=
1
2
Bq (5)

for every quadratic A|U -form q ∈ Q(E)(U). So, one has

bq =
1
2
{(q ◦ +) − (q ◦ pr1) − (q ◦ pr2)}, (6)
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where pri : E|U⊕E|U −→ E|U (i = 1, 2) is the i-th projection and, as expected,
+ : E|U ⊕ E|U −→ E|U is the addition A|U -morphism. Clearly,

bq ◦ Δ = q, (7)

with Δ the diagonal A|U -morphism on E|U .
Setting

Θ̃ =
1
2
Θ,

one has
Ξ ◦ Θ̃ = IdQ(E),

which implies that Θ̃ is injective and Ξ surjective. Clearly, ImΘ̃ ⊆ S(E).
Conversely, for any symmetric b ∈ B(E)(U), one has that ΞU (b) := qb = b◦Δ
and

bq = b.

Thus, if we consider Ξ|S(E), it is clear that

Θ̃ ◦ Ξ = IdS(E).

Hence, we have proved:

Proposition 1.1. Let (E , q) be a quadratic A-module, with A a sheaf of algebras
of characteristic other than 2. Then,

Q(E) = S(E), (8)

within an A-isomorphism.

So, we come now to the following crucial notion.

Definition 1.2. Let (E , q) be a quadratic A-module, and K an associative and
unital A-algebra. A sheaf morphism ϕ ∈ HomA(E ,K) is called a Clifford sheaf
morphism if

ϕ2 = ev(q,−) · 1, (9)
where: (a) ev : HomA(E ,A)⊕E −→ A is the evaluation A-morphism, namely

evU (ψ, s) := ψU (s),

for any open U in X and sections s ∈ E(U), ψ ∈ HomA(E ,A)(U), and (b)
1 ∈ HomShSetX (K,K) is the constant ShSetX -morphism 1W (t) = 1K(W ) for
every open W ⊆ X and section t ∈ K(W ).

For every open U ⊆ X and section s ∈ E(U), (9) becomes

ϕU (s)2 ≡ ϕ(s)2 := q(s) · 1 ≡ qU (s) · 1K(U).

On the other hand, let us consider another section t ∈ E(U); then, we have

ϕU (s)ϕU (t) + ϕU (t)ϕU (s) = 2bU (s, t) · 1K(U), (10)

where
b := Θ̃X(q).

We will call b the A-bilinear morphism induced by the quadratic A-morphism
q.
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Remark 1.1. We shall assume throughout the paper the following: (a) the
characteristic of the sheaf of algebras A is not 2, (b) A-algebras K, targets of
Clifford A-morphisms, must not have zero divisors, that is, for any open set
U in X and nowhere-zero sections s, t ∈ K(U), the product section s · t ≡ st
is nowhere zero, (c) if s ∈ K(U) is nowhere zero, then the annihilator of s is
trivially zero, that is

{α ∈ A(U) : αs = 0} = {0}.

It follows from (10) and Remark 1.1 that ϕU (s) = 0 implies that
bU (s, t) = 0 for any t ∈ E(U). If q is non-degenerate, the above condition
ϕU (s) = 0 implies that s = 0. Thus, any Clifford A-morphism of a non-
isotropic quadratic A-module is injective.

Assuming the notations of Definition 1.2, if L is another associative and
unital A-algebra and Φ ∈ HomA(K,L) a unital A-morphism, which means
that, for every open U ⊆ X, ΦU : K(U) −→ L(U) is an A(U)-morphism
of the associative and unital A(U)-algebras K(U) and L(U), so that, for all
sections s, t ∈ K(U),

ΦU (st) = ΦU (s)ΦU (t), ΦU (1K(U)) = 1L(U),

then Φ◦ϕ ∈ HomA(E ,L) is a Clifford sheaf morphism. Indeed, for every open
U ⊆ X and section s ∈ E(U),

(ΦU ◦ ϕU )(s)2 = ΦU (ϕU (s))ΦU (ϕU (s)) = ΦU (ϕU (s)2)

= ΦU (qU (s) · 1K(U)) = qU (s)ΦU (1K(U)) = qU (s) · 1L(U).

Definition 1.3. A quadratic A-module (E , q) is called Riemannian if the q-
induced A-bilinear morphism b is a Riemannian A-metric, i.e., a strongly non-
degenerate A-valued inner product, which is symmetric and positive definite.

We recall (see [4, pp. 335-340]) that for any ordered algebraized space
(X,A) satisfying the inverse-closed section condition ([10]), i.e., every no-
where-zero section of A is invertible, and enriched with square root, i.e., every
nonnegative section of A has a square root, if (E , ρ) is a free Riemannian A-
module of finite rank n ∈ N and

(s1, . . . , sn) ⊆ E(U)n � En(U),

where U is open in X, is a (local) gauge of E , then there exists an orthonormal
gauge of E, obtained from (s1, . . . , sn), say,

(t1, . . . , tn) ⊆ E(U)n;

more accurately, t1, . . . , tn are such that

ρU (ti, tj) = δij ,

for all 1 ≤ i, j ≤ n, and

[t1, . . . , tm] = [s1, . . . , sm],

for every 1 ≤ m ≤ n.
Hence, we have
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Proposition 1.2. Let (X,A) be an ordered algebraized space, enriched with
square root, and satisfying the inverse-closed section condition. Moreover, let
(E , q) be a Riemannian quadratic free A-module of rank n, K an associative
and unital A-algebra, and ϕ an A-morphism of E into K. Then, ϕ is Clifford
if and only if

ϕU (ei)2 = qU (ei) · 1K(U), i = 1, . . . , n (11)

and

ϕU (ei)ϕU (ej) + ϕU (ej)ϕU (ei) = 0, 1 ≤ i �= j ≤ n, (12)

for any open U ⊆ X and orthogonal gauge (e1, . . . , en) of (E(U), qU ) ≡
(E(U), bU ), where b ≡ (bU )X⊇U, open is the q-induced Riemannian A-metric.

Proof. The condition is obviously necessary. Indeed, let us consider an open
subset U of X, and an orthogonal basis (e1, . . . , en) of (E(U), qU ). Clearly,
for any i = 1, . . . , n,

ϕU (ei)2 = qU (ei) · 1K(U).

As for (12), one easily applies (10) and the fact that (e1, . . . , en) is orthogonal.
Conversely, for any open U ⊆ X and section s ∈ E(U), with s =∑n

i=1 α
iei, we have

ϕU (s)2 =

[
n∑

i=1

αiϕU (ei)

]2

=
n∑

i=1

(αi)2ϕU (ei)2

=

[
n∑

i=1

(αi)2qU (ei)

]
1K(U) =

[
n∑

i=1

qU (αiei)

]
1K(U) = qU (s) · 1K(U).

�

Remark 1.2. For the remainder of the paper, unless otherwise mentioned, any
pair (E , q) will denote a Riemannian quadratic free A-module of finite rank,
where the sheaf A of algebras satisfies the inverse-closed section condition and
is enriched with square root. In this context, if ϕ is a Clifford A-morphism
of (E , q) into K, then, for any orthogonal gauge (e1, . . . , en) ⊆ E(U)n of E on
an open U ⊆ X, ϕU (ei), for any i = 1, . . . , n, is nowhere zero. Indeed, if b is
the Riemannian A-metric associated with q, then qU (ei) = bU (ei, ei); since b
is Riemannian and ei is nowhere zero, therefore ϕU (ei) is nowhere zero.

In the same vein, we observe the following. As in [2, p. 288], we reduce the
number of terms in products over K(U) as follows: For a product

a ≡ ϕU (ei1)ϕU (ei2) · · ·ϕU (eip), 1 ≤ p ≤ n,

i) if ik > ik+1, we interchange ϕU (eik) and ϕU (eik+1
) and multiply by

(−1): since
ϕU (eik)ϕU (eik+1

) + ϕU (eik+1
)ϕU (eik) = 0,

a does not change.
ii) if ik = ik+1, we replace ϕU (eik)ϕU (eik+1

) = ϕU (eik)2 by qU (eik) ·
1K(U). Here, as well, a does not change.

6



   

This process will ultimately yield the following expression:

a = λϕU (ej1)ϕU (ej2) · · ·ϕU (ejm),

where λ ∈ A(U), and J ≡ (1 ≤ j1 < j2 < · · · < jm ≤ n) an increasing
sequence of indices.

As a convention, we let

ϕU (eJ) := ϕU (ej1)ϕU (ej2) · · ·ϕU (ejm),

where J ≡ (1 ≤ j1 < j2 < · · · < jm ≤ n), and

ϕU (e∅) := 1K(U)

for the empty sequence ∅. Clearly, the 2n elements ϕU (eJ) of K(U) lin-
early span the sub-A(U)-algebra L(U) of K(U), generated by 1K(U) and
ϕU (E(U)) ≡ ϕ(E)(U). Thus, we have proved the following.

Theorem 1.1. Let ϕ be a Clifford A-morphism of a Riemannian quadratic free
A-module (E , q) of rank n into an associative and unital A-algebra K. Then,
K contains a generalized locally free A-module with maximum rank ≤ 2n, and
containing the unital line sub-A-module and the sub-A-module ϕ(E).

2. Clifford A-Algebras of Quadratic A-Modules

Roughly speaking, a sheaf of Clifford algebras or a Clifford A-algebra of a
quadratic A-module (E , q) is a universal A-algebra in which we can embed E ,
and such that the square A-morphism in the sought A-algebra corresponds to
the quadratic A-morphism on E . This loose definition of a Clifford A-algebra
may be traced back to [3, p. 749].

Definition 2.1. By a Clifford A-algebra of a quadratic A-module (E , q), we
mean any pair (C, ϕC), where C is an associative and unital A-algebra and
ϕC ∈ HomA(E , C) is a Clifford A-morphism, which satisfies the following
conditions:
(1) C is generated by the sub-A-algebra ϕC(E) and the unital line sub-A-

algebra 1C of C.
(2) Every Clifford A-morphism ϕ ∈ HomA(E ,K), where K is an associative

and unital A-algebra, factors through the Clifford A-morphism ϕC , i.e.,
there is a 1-respecting A-morphism Φ ∈ HomA(C,K) such that

ϕ = Φ ◦ ϕC .

Since Φ(ϕC(E)) = ϕ(E), C is generated by its unital line sub-A-algebra
and the sub-A-algebra ϕC(E), and Φ is 1-respecting, it follows that Φ is
uniquely determined by the Clifford A-morphism ϕ. If we denote by

HomCl
A (E ,K)

the sheaf of Clifford maps, then HomCl
A (E ,K) is isomorphic to a subsheaf of

HomA(C,K). In fact, given any open subset U of X, let ϑ ∈ HomCl
A (E ,K)(U),

that is, ϑ ∈ HomCl
A|U (E|U ,K|U ). Since C ≡ (C, ϕC) is a Clifford A-algebra of
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(E , q), for any open V ⊆ U , there is a ΘV ∈ HomA(V )(C(V ),K(V )) such
that ΘV (1C(V )) = 1K(V ) and ϑV = ΘV ◦ (ϕC)V . We contend that the family
Θ ≡ (ΘV )U⊇V, open defines an A|U -morphism Θ ∈ HomA|U (C|U ,K|U ) ≡
HomA(C,K)(U). Since, for any open V ⊆ U , ΘV ∈ HomA(V )(C(V ),K(V ))
and ΘV (1C(V )) = 1K(V ), we need only to show that if (λU

V ), (ρUV ) and (σU
V )

are the families of restriction maps of the sheaves K, E and C, respectively,
then

λU
V ◦ ΘU = ΘV ◦ σU

V ,

for any open sets U , V in X with V ⊆ U . With no loss of generality, let
s ∈ C(U), with s = (ϕC)U (e) for some e ∈ E(U). Then, based on the diagram
below

E(U)
ϑU ��

ρU
V

��
(ϕC)U

��

K(U)

λU
V

��

E(V )

(ϕC)V �� ϑV

��

C(U)

σU
V

��

ΘU

��

C(V )
ΘV

�� K(V )

,

clearly, one has

(λU
V ◦ ΘU )((ϕC)U (e)) = (λU

V ◦ αU )(e) = (αV ◦ ρUV )(e)

= (ΘV ◦ (ϕC)V ◦ ρUV )(e) = (ΘV ◦ σU
V )((ϕC)U (e)).

Next, for every open U in X, we denote by HomA|U (C|U ,K|U ) the A(U)-
module consisting with A|U -morphisms Θ, uniquely determined by Clifford
A|U -morphisms ϑ ∈ HomCl

A|U (E|U ,K|U ). Furthermore, let (αU
V ) be the collec-

tion of restriction maps for the A-module HomA(C,K). The collection

(HomA|U (C|U ,K|U ), αU
V ) (13)

clearly determines a presheaf. Moreover, it is a complete presheaf. Indeed, if
U = ∪i∈IUi and Θ1, Θ2 ∈ HomA|U (C|U ,K|U ) with

αU
Ui

(Θ1) ≡ Θ1|Ui = Θ2|Ui ≡ αU
Ui

(Θ2)

for every i ∈ I, then, clearly, Θ1 = Θ2. Now, let (Θi) ∈ ∏
i∈I HomA|U (C|U ,K|U )

such that, for any Uij ≡ Ui ∩ Uj �= ∅ in U ≡ {Ui, i ∈ I}, one has

Θi|Uij = Θj |Uij .

Then, since HomA|U (C|U ,K|U ) ⊆ HomA|U (C|U ,K|U ) = HomA(C,K)(U), for
any open U in X, there is Θ ∈ HomA(C,K)(U) such that

Θ|Ui = Θi,

for every i ∈ I. It follows that Θ is 1-respecting; in addition, since it is linear,
Θ ∈ HomA|U (C|U ,K|U ). Hence,

HomCl
A (E ,K) � HomA(C,K) ⊆ HomA(C,K),

where HomA(C,K) is the sheafification of the complete presheaf (13).
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Condition (2) of Definition 2.1 could therefore be restated as follows:
(2′) For every associative and unital A-algebra K, HomCl

A (E ,K) is isomor-
phic to a subsheaf of HomA(C,K).

Lemma 2.1. Let (C, ϕC) be a Clifford A-algebra of a quadratic A-module
(E , q). Then, (C′, ϕC′) is also a Clifford A-algebra of (E , q) if and only if
there is an A-isomorphism Φ : C −→ C′ such that Φ ◦ ϕC = ϕC′ .

Proof. Suppose (C′, ϕC′) is also a Clifford A-algebra. Then, there exist unique
A-morphisms Φ : C −→ C′ and Φ′ : C′ −→ C such that Φ ◦ ϕC = ϕC′ and
Φ ◦ ϕC′ = ϕC . Since Φ′ ◦ Φ ◦ ϕC = Φ′ ◦ ϕC′ = ϕC , the diagram

E ϕC ��

ϕC
��

C

C
Φ′◦Φ

��

is commutative. But, only one A-morphism exists making the above diagram
commutative; and clearly IdC does just that. As C is generated by ϕC(E) and
its unital line sub-A-algebra, Φ′ ◦ Φ = IdC . In a similar way, one shows that
Φ◦Φ′ = IdC′ , whence we see that Φ is an A-isomorphism with Φ−1 = Φ′. �

Now, if ϕC is the Clifford A-morphism of a Riemannian quadratic free
A-module (E , q) into its Clifford A-algebra C ≡ C(E , q), the A-morphism ϕ′,
such that ϕ′ := −ϕC , is another Clifford A-morphism of E into C; thus there
exists an A-endomorphism Π of (the unital A-algebra) C such that

Π(1C) = 1C , Π ◦ ϕC = ϕ′ = −ϕC . (14)

Clearly,
Π2(1C) = 1C , Π2 ◦ ϕC = ϕC ; (15)

it follows that Π is an A-involutive automorphism of C, called the principal
A-automorphism of the Clifford A-algebra C(E , q).

For every open U ⊆ X, let C+(U) denote the sub-A(U)-module of the
A(U)-algebra Γ(U, C) ≡ C(U) consisting of the eigenvector sections of ΠU for
the eigenvalue section +1 (cf. [9]). It is evident that C+(U) is a sub-A(U)-
algebra of C(U), containing any product of any even number of nowhere-zero
sections in (ϕC)U (E(U)):

(ϕC)U (s1)(ϕC)U (s2) · · · (ϕC)U (s2p).

Conversely, if (e1, e2, . . . , en) is an orthogonal basis of E(U), reducing the
number of terms in any product

(ϕC)U (ei1)(ϕC)U (ei2) · · · (ϕC)U (eip),

as described in Section 1, does not change the parity of the number of terms
involved. Thus, C+(U) is linearly generated by the elements (ϕC)U (eJ ), with
J = (1 ≤ j1 < · · · < jm ≤ n) for an even m.

By letting U vary over the open subsets of X, the family (C+(U),+λU
V ),

where +λ
U
V := σU

V |C+(U), with the (σU
V ) being the restriction maps for the

(complete) presheaf of sections ΓC of the A-algebra C, forms a complete
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presheaf of algebras on X. Indeed, let U = (Uα)α∈I be an open covering,
and let s, t ∈ C+(U) such that

+λ
U
Uα

(s) ≡ sα = tα ≡ +λ
U
Uα

(t)

for every α ∈ I. Since C+(U) ⊆ C(U), and C is an A-algebra, it follows that
s = t. Thus, axiom (S1) (cf. [4, p. 46, Definition 11.1]) is fulfilled. For axiom
(S2) (ibid.), let sα ∈ C+(Uα), α ∈ I, such that for any Uαβ ≡ Uα ∩ Uβ �= ∅
in U , one has

+λ
Uα

Uαβ
(sα) ≡ sα|Uαβ

= sβ |Uαβ
≡ +λ

Uβ

Uαβ
(sβ).

Without loss of generality, suppose that

sα = (ϕC)Uα(sα,1) · · · (ϕC)Uα(sα,2p)

and
sβ = (ϕC)Uβ

(sβ,1) · · · (ϕC)Uβ
(sβ,2q)

with sα,1, . . . , sα,2p ∈ E(Uα) and sβ,1, . . . , sβ,2q ∈ E(Uβ). It is evident that
there exists an s ∈ C(U) such that

σU
Uα

(s) ≡ s|Uα = sα,

for every α ∈ I. Clearly, s is of the form

s = (ϕC)U (s11) · · · (ϕC)U (s12p1
) + · · · + (ϕC)U (s1k) · · · (ϕC)U (sk2pk

),

where for any i = 1, . . . , k, pi is an integer ≤ n, and every si1, . . . , s
i
2pi

∈ E(U).
Indeed, if s contains a product of an odd number of terms, then, for any Uα ∈
U , s|Uα := sα /∈ C+(U). Thus, C+ ≡ (C+(U),+λU

V ) is a complete presheaf of
algebras. The sheafification of the presheaf C+, denoted C+ ≡ SC+, is called
the even sub-A-algebra of the Clifford A-algebra C.

Now, let C−(U) be the eigen sub-A(U)-module of C(U) for the eigen-
value section −1. Clearly, elements of C−(U) ⊆ C(U) are products of an odd
number of terms of (ϕC)U (E(U)). One proceeds as above to show that pairs
(C−(U),−λU

V ), where −λU
V = σU

V |C−(U), yield a complete presheaf. However,
we notice that every C−(U) is not an algebra; so the presheaf (C−(U),−λU

V )
is not a presheaf of algebras, but a presheaf of modules instead. Its sheafifi-
cation, denoted C−, is called the sub-A-module of odd products of C.

Definition 2.2. Let C be an A-algebra. The A-algebra C∗, in which products
are defined to be products in C but in the reverse order, is called the opposite
A-algebra of C.

Specifically, let U be open in X and s, t ∈ C(U); then, if ∗ denotes
product in C∗(U), one has

s ∗ t := ts.

Now, considering still ϕC as a Clifford A-morphism of the Riemannian
quadratic free A-module (E , q) into its Clifford A-algebra C, ϕC , which we
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denote by ϕ∗
C , as an A-morphism from E into C∗, is again a Clifford A-

morphism. Thus, there exists a 1-respecting A-morphism τ : C −→ C∗ such
that

τ ◦ ϕC = ϕ∗
C .

But, τU ((ϕC)U (s)) = (ϕ∗
C)U (s) = (ϕC)U (s) for any open set U in X and

section s ∈ E(U), and since 1C and ϕC(E) = ϕ∗
C(E) generate both C and

C∗, it follows that τ is bijective, hence, a 1-respecting A-isomorphism of
C into C∗. We conclude that τ is the only A-antiautomorphism, fixing the
sections of ϕC(E). As for any open U in X and sections s1, . . . , sk ∈ E(U),
τU ((ϕC)U (s1) · · · (ϕC)U (sk)) = (ϕC)U (sk) · · · (ϕC)U (s1), it follows that τ2 =
1, i.e., τ is an A-involution.

Using sections, one easily sees that Π ◦ τ = τ ◦ Π, which is the only
A-antiautomorphism of C sending sections of ϕC(E) into their opposites. On
the other hand, Π ◦ τ is an A-involution and is called the conjugate of C.

3. Construction of Clifford A-Algebras

We construct Clifford A-algebras mimicking the classical case, as presented
by [2, p. 294, Théorème VIII. 2. B]. Chevalley [1] and Lang [3] construct
(classical) Clifford algebras of modules (or vector spaces) by considering the
tensor algebra of the module (vector space) concerned. Since the problem is
universal in its nature, the two approaches result into isomorphic algebras.
For our approach, we first need the following.

Proposition 3.1. Let (E , q) be a Riemannian free A-module of rank n. For
every open U in X, let B(U) be the set consisting of all the orthogonal bases
of E(U). If, for every U, V ∈ τX with V ⊆ U ,

ρUV : B(U) −→ B(V )

denotes the natural restriction, the collection B := (B(U), ρUV ) determines a
complete presheaf of sets (of orthogonal bases).

Proof. That B is a presheaf is immediate. Now, let U be an open subset of X
and U ≡ (Ui)i∈I a covering of U . Next, let s ≡ (s1, . . . , sn) and t ≡ (t1, . . . , tn)
be bases of E(U), i.e. s, t ∈ B(U), such that s|Ui = t|Ui for every i ∈ I. More
explicitly, sj |Ui = tj |Ui for every i ∈ I and j = 1, . . . , n. Since sj , tj ∈ E(U)
(j = 1, . . . , n), it follows that sj = tj ; thus, s = t. Hence, axiom (S1) (cf. [4,
p. 46, Definition 11. 1]) is fulfilled.

For axiom (S2) (ibid.), let si ∈ B(Ui) such that, for every Ui ∩ Uj ≡
Uij �= ∅ in U ,

si|Uij = sj |Uij .

Again, using the fact that Γ(E) is complete, one has that there exists tk ∈
E(U) such that tk|Ui = ski , k = 1, . . . , n. Therefore, t ≡ (t1, . . . , tn) is such
that t|Ui

= si, i ∈ I. Clearly, t is orthogonal. �
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Keeping with the notations of Proposition 3.1, we will call the sheaf
generated by B the sheaf of orthogonal bases of E, and will denote it by B,
i.e. B = SB.

Theorem 3.1. Let (E , q) be a Riemannian quadratic free A-module of rank n,
C an associative and unital A-algebra, and ϕC ∈ HomA(E , C) a Clifford A-
morphism such that, given the sheaf of orthogonal bases eU := (eU,1, . . . , eU,n)
of E, the sheaf of sets, consisting of elements of the form

(ϕC)U (eU,J ) := (ϕC)U (eU,j1)(ϕC)U (eU,j2) · · · (ϕC)U (eU,jm),

where J = (1 ≤ j1 < j2 < · · · < jm ≤ n), assuming that (ϕC)U (eU,∅) = 1C(U),
is a sheaf of bases for the underlying free A-module of C. Then, the pair
(C, ϕC) is a Clifford A-algebra of (E , q).

Proof. In fact, let ϕ be a Clifford A-morphism of (E , q) into some associative
and unital A-algebra K. Moreover, let Φ be an A-morphism of C into K, given
by:

ΦU ((ϕC)U (eU,J )) := ϕU (eU,J ),
where

ϕU (eU,J ) := ϕU (eU,j1)ϕU (eU,j2) · · ·ϕU (eU,jm)
with J := (1 ≤ j1 < j2 < · · · < jm ≤ n).

We claim that Φ is multiplicative and 1-respecting, hence an A-mor-
phism of the A-algebras C and K. To this end, it suffices to show that every
ΦU is multiplicative on ((ϕC)U (eU,J))J∈P(In), where In = {1, . . . , n}.

Let us consider the product in C(U):

(ϕC)U (eU,J) · (ϕC)U (eU,J ′)

= (ϕC)U (eU,j1) · · · (ϕC)U (eU,jm)(ϕC)U (eU,j′1) · · · (ϕC)U (eU,j′p), (16)

and the following product in K(U):

(ϕU )(eU,J ) · (ϕU )(eU,J ′)

= (ϕU )(eU,j1) · · · (ϕU )(eU,jm)(ϕU )(eU,j′1) · · · (ϕU )(eU,j′p). (17)

The right-hand sides of (16) and (17) reduce to

(ϕC)U (eU,J ) · (ϕC)U (eU,J ′) = λ(ϕC)U (eU,L)

ϕU (eU,J ) · ϕU (eU,J ′) = λϕU (eU,L),

where L = (1 ≤ l1 < l2 < · · · < lr ≤ n). Therefore, given J and J ′:

ΦU ((ϕC)U (eU,J )(ϕC)U (eU,J ′)) = ΦU (λ(ϕC)U (eU,L)) = λΦU ((ϕC)U (eU,L))

= λϕU (eU,L) = ϕU (eU,J)ϕU (eU,J ′) = ΦU ((ϕC)U (eU,J))ΦU ((ϕC)U (eU,J ′));

furthermore, since ΦU (1C(U)) = ΦU ((ϕC)U (eU,∅)) = ϕU (eU,∅) = 1K(U), ΦU is
an A(U)-morphism, taking C(U) into K(U). Hence, Φ ∈ HomA(C,K) and is
1-respecting.

As C is generated by the sub-A-algebra ϕC(E) and the unital line sub-
A-algebra 1C of C, then C is a Clifford A-algebra of (E , q). �
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Theorem 3.2. With every Riemannian quadratic free A-module (E , q), there
is an associated Clifford free A-algebra C ≡ C(E , q); moreover, rank C = 2n if
n = rank E.

Proof. Let B be a sheaf of orthogonal bases of E ≡ (E , q), and P the sheaf of
algebras of anticommutative polynomials over A, such that if p ∈ P(U), for
some open U in X, then p is an anticommutative polynomial in e1, e2, . . . , en,
where (e1, e2, . . . , en) is a fixed orthogonal basis in B(U). If U and V are open
subsets of X with V a subopen of U , we fix orthogonal bases (e1, . . . , en) and
(f1, . . . , fn) in E(U) and E(V ), respectively, in such a way that ρUV (ei) ≡
ei|V = fi, for every i = 1, . . . , n, where the {ρUV } are restriction maps for the
(complete) presheaf of sections of E . Furthermore, we denote by 1P(U) ≡ 1
the polynomial em1

1 em2
2 . . . emn

n , where mi = 0, i = 1, . . . , n. On every open
U ⊆ X, define the product in P(U) as follows:

(ep1

1 ep2

2 . . . epn
n ) · (eq11 eq22 . . . eqnn ) = (−1)

∑
i<j qipjep1+q1

1 . . . epn+qn
n . (18)

Moreover, still under the assumption that (e1 . . . en) is the fixed orthogonal
basis of E(U), the section em1

1 em2
2 . . . emn

n of P over U such that

mi =
{

0 i �= j
1 i = j

is denoted ej . This notation ensures an identification of E with a sub-A-
module of P. On the other hand, in every P(U), one has

eiej = −ejei i �= j.

The product thus defined on every P(U) is associative, for one easily
shows that, by multiplying both members of (18) on the right by a polynomial
er11 er22 . . . ernn , one obtains the following equality:∑

i<j

qipj +
∑
i<j

ri(pj + qj) =
∑
i<j

(qi + ri)pj +
∑
i<j

riqi.

For every i, 1 ≤ i ≤ n, let qU (ei) := ai ∈ A(U). Next, consider the
correspondence

U �−→ C(U) ⊆ P(U), (19)
where C(U) is the free A(U)-module, with a basis consisting of the 2n sections

em1
1 em2

2 . . . emn
n ,

where 0 ≤ mi ≤ 1 for every i. It is clear that the correspondence (19) together
with the restriction maps restricted to the C(U), where U runs over the open
subsets of X, yield a free A-module of rank 2n. We will denote the free A-
module thus obtained by C ≡ (C(U), λU

V ). Let’s also consider the projection
A-morphism π ∈ HomA(P, C), defined by:

πU (ep1

1 ep2

2 · · · epn
n ) := a

� p1
2 	

1 · · · a�
pn
2 	

n ep1

1 ep2

2 · · · epn
n ,

where (e1, e2, · · · , en) is the fixed orthogonal basis of E(U),

�pi
2
� = max{x ∈ Z : x ≤ pi

2
}
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for every 1 ≤ i ≤ n, and

pi = 2li + pi, li ∈ Z, pi ∈ Z,

viz. pi is the remainder of pi modulo 2.
Given sections f and g of the A-algebra P over an open subset U of X,

one has
πU (f · g) = πU (πU (f) · πU (g)),

which is easily verified by taking f = ep1

1 · · · epn
n and g = eq11 · · · eqnn .

Finally, we define on the free A-module C the following multiplication:
if s, t ∈ C(U), where U is open in X, then

s ∗ t := πU (s · t).
∗ is associative; the proof of this fact may be found in [2, p. 295]. Hence, C is
an associative and unital free A-algebra, which contains E . Let’s denote by
ιC the inclusion E ⊆ C. Since, for every open U ⊆ X and the corresponding
orthogonal basis (e1, · · · , en) of E(U),

(ιC)U (ei)2 = ai · 1C(U)

and

(ιC)U (ei)(ιC)U (ej) + (ιC)U (ej)(ιC)U (ei) = 0, 1 ≤ i �= j ≤ n,

the pair C ≡ (C, ιC) is a Clifford A-algebra of (E , q), by virtue of Theorem
3.1. �
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