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Abstract 

A synthetic  ̅ chart is a combination of a conforming run-length chart and an  ̅ chart, or 

equivalently, a 2-of-(H+1) runs-rules (RR) chart with a head-start feature. However, a synthetic  ̅ 

chart combined with an  ̅ chart is called a Synthetic- ̅ chart. In this article, we build a framework 

for Shewhart Synthetic- ̅ and improved RR (i.e. 1-of-1 or 2-of-(H+1) without head-start) charts by 

conducting an in-depth zero-state and steady-state study to gain insight into the design of different 

classes of these schemes and their performance using the Markov chain imbedding technique. More 

importantly, we propose a modified side-sensitive Synthetic- ̅ chart, and then using overall 

performance measures we show that this new chart has a uniformly better performance than its 

Shewhart competitors. We also provide easy to use tables for each of the chart‟s design parameters 

to aid practical implementation. Moreover, a performance comparison with their corresponding 

counterparts (i.e. synthetic  ̅ and RR charts) is conducted. 
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1. Introduction 

In statistical process control and monitoring (SPCM) field, control charts are usually used to 

distinguish between the chance and the assignable causes of variation. When a process has only 

chance causes of variation present, it is said to be statistically in-control (IC), otherwise, the process 

is said to be out-of-control (OOC). Assume that {     i ≥ 1; j = 1, 2,…, n} is a sequence of samples 

from iid N(     
 ) distribution where    and   

  are the specified IC mean and variance, 

respectively. Let  ̅  denote the plotting statistic calculated from {   } at sampling point i. A 

Shewhart control chart that is usually used to monitor  ̅  is called the  ̅ chart and it signals when a 

single plotting statistic falls above the upper control limit (UCL) or below the lower control limit 

(LCL) which are given by 

UCL =       , CL =   , LCL =       , (1) 

where k is the distance of the control limits from the center line (CL). 

 A Shewhart  ̅ chart is known to be more effective in detecting (sudden) large process shifts 

in the process mean, however, it is poor in detecting small and moderate mean shifts. Hence, there 

has been a variety of alternative control charts proposed in the literature to efficiently monitor the 

process mean. Amongst the most popular control charts, we point out a few; these are cumulative 

sum (CUSUM), exponentially weighted moving average (EWMA) and control charts based on the 

change point model. In order to further increase the sensitivity of Shewhart, CUSUM and EWMA  ̅ 
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charts, various adaptations and generalizations of these basic charts have been considered, for 

example, the variable sampling interval, variable sample size, variable sample size and interval, 

variable parameter, double sampling, supplementing runs-rules (RR) and integrating these schemes 

with other monitoring schemes; see for instance Celano et al.
1
, Reynolds and Arnold

2
, Daudin

3
, 

Koutras et al.
4
, Scariano and Calzada

5
, Costa

6
, Wu and Spedding

7
, Khoo et al.

8
, Abbas et al.

9,10
, Haq 

et al.
11

, etc. In this paper, we concentrate on the two latter adaptations i.e. the supplementary RR 

schemes and integrating the Shewhart  ̅ scheme with the conforming run-length (CRL) scheme – 

called a synthetic chart; we discuss these two next. 

 Firstly, a “run” is defined as an uninterrupted sequence of the same elements bordered at 

each end by other types of elements, see Balakrishnan and Koutras
12

. Koutras et al.
4
 gave a 

literature review on Shewhart-type charts with supplementary RR to improve an  ̅ chart in 

detecting small shifts. Most notable of these, is the paper by Klein
13

, where the author proposed two 

powerful rules that improved the ability of the  ̅ chart to detect small shifts, by means of a Markov 

chain approach, whereby the control limits in Equation (1) can be adjusted to give the desired ARL0. 

The two rules suggested by Klein
13

 are the 2-of-2 and 2-of-3. Later, Acosta-Mejia
14

 studied the 

general form of these rules i.e. w-of-(w+v) where w ≥ 2 and v ≥ 0 are specified positive integers. 

Note that both Klein
13

 and Acosta-Mejia
14

 showed that these rules require at least w plotting 

statistics before an OOC event can be observed, hence, the  ̅ chart is more effective than these rules 

in detecting large shifts as it requires 1 plotting statistic to issue a signal. Thus, to increase the 

performance of the rules in Klein
13

, Khoo and Ariffin
15

 proposed two improved runs-rules (IRR)  ̅ 

schemes which are a combination of the basic  ̅ chart and the two rules of Klein
13

 i.e. 1-of-1 or 2-

of-2 and 1-of-1 or 2-of-3. Then, Acosta-Mejia
14

 studied the general form of the Khoo and Ariffin
15

 

rules i.e. 1-of-1 or w-of-(w+v), which signal an OOC event when one plotting statistic falls beyond 

either the LCL or UCL; or when w out of w+v plotting statistics fall in between the UCL (LCL) and 

upper (lower) warning limits (i.e. UWL (LWL)), respectively. That is, the limits of the IRR  ̅ 

scheme are given by 

UCL =        , UWL =        , CL =   , LWL =        , LCL =         (2) 

where    and    are the distances of the control and warning limits from the CL, respectively, with 

     . Khoo and Ariffin
15

 showed that the IRR retains the small shift sensitivity of the rules in 

Klein
13

 and has a better performance for large shifts compared to the Klein
13

 rules. 

Secondly, a synthetic  ̅ chart to monitor the process mean consists of two sub-charts, one, a 

basic  ̅ chart and a second, a CRL chart. For a synthetic chart, an OOC signal is not based on a 

single plotting statistic falling beyond the control limits in Equation (1), instead, when a sample 

produces a value beyond the control limits in Equation (1), that sample is marked as nonconforming 

and the control procedure moves to the second sub-chart and a signal is obtained depending on the 
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outcome of the CRL sub-chart. Note that when a sample produces a value falling between LCL and 

UCL, then that sample is marked as conforming. Bourke
16

 defined a CRL as the number of 

conforming samples between two consecutive nonconforming samples, inclusive of the 

nonconforming sample at the end. The CRL chart signals when an observed CRL value is less than 

or equal to some threshold, say H (an integer, greater or equal to 1), which is defined to be the 

threshold / control limit of the CRL chart. To make the run-length analysis of the synthetic chart 

easier, Davis and Woodall
17

 showed that a synthetic chart is a special case of a RR chart i.e. a 2-of-

(H+1) with a head-start (HS) feature. The HS feature implies that we assume that (at time 0) the 

first observation is nonconforming, consequently, we need at least one other nonconforming sample 

within the next H sampling points, for a 2-of-(H+1) runs-type chart to issue a signal. Similar to 

Khoo and Ariffin
15

, Wu et al.
18

 improved the sensitivity of the synthetic  ̅ chart of Wu and 

Spedding
7
 to efficiently monitor both small and large shifts called a Synthetic- ̅ chart. A Synthetic-

 ̅ chart consists of two sub-charts, one, a synthetic  ̅ chart and second, a basic  ̅ chart. An OOC 

signal is observed when one plotting statistic falls beyond either the LCL or UCL in Equation (2); or 

when CRL ≤ H. 

The performance of the RR and synthetic  ̅ charts based on Equation (1) have been 

investigated and reported in Shongwe and Graham
19

. The focus of this paper is on the performance 

of the IRR and Synthetic- ̅ charts with the limits in Equation (2) – these are summarized in Table I. 

For these charts, when a sample produces a value between the UCL (LCL) and UWL (LWL), that 

sample is marked as nonconforming, whereas, a value between the UWL and LWL is marked as 

conforming. 

Table I: Types of IRR and Synthetic- ̅ charts 

IRR  ̅ charts Synthetic- ̅ charts 

(i) Non-side-sensitive (NSS) 1-of-1 or w-of-(w+v):  

 Discussed here  – (IRR1) 

(i) NSS 1-of-1 or 2-of-(H+1):  

 Wu et al.
18

 – (SC1) 

(ii) Standard side-sensitive (SSS) 1-of-1 or w-of-(w+v): 

 Khoo and Ariffin
15

 – (IRR2) 

(ii) SSS 1-of-1 or 2-of-(H+1):  

 Discussed here – (SC2) 

(iii) Revised side-sensitive (RSS) 1-of-1 or w-of-(w+v): 

 Discussed here – (IRR3) 

(iii) RSS 1-of-1 or 2-of-(H+1): 

 Machado and Costa
21

 – (SC3) 

(iv) Modified side-sensitive (MSS) 1-of-1 or w-of-(w+v):  

 Antzoulakos and Rakitzis
22

 – (IRR4) 

(iv) MSS 1-of-1 or 2-of-(H+1):  

 Proposed in this paper – (SC4) 

 

 Firstly, there are four types of IRR  ̅ schemes that are based on the limits in Equation (2) 

which are as follows: 

(i) the NSS 1-of-1 or w-of-(w+v) (adopted from Derman and Ross
20

 – denoted by IRR1) with 

the charting regions shown in Figure 1(a). Hence, IRR1 gives an OOC signal when either 

one plotting statistic falls on the action region (i.e. region E), or when w nonconforming  
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(ii) 
(a) NSS regions 

(b) SSS / RSS regions 

(c) MSS regions 

Figure 1: The control / warning limits and the corresponding regions 

samples out of w+v successive samples fall on the warning region (i.e. region U), which are 

separated by at most v conforming samples that fall on the central region (i.e. region O). 

(iii)the SSS 1-of-1 or w-of-(w+v) (by Khoo and Ariffin
15

 – denoted by IRR2) with the charting

regions shown in Figure 1(b). Hence, IRR2 gives an OOC signal when either one plotting 
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statistic falls on the action region (i.e. region E), or when w nonconforming samples out of 

w+v successive samples fall on the upper (lower) warning region which are separated by at 

most v samples that fall on either the central region or the lower (upper) warning region, 

respectively. 

(iv)  the RSS 1-of-1 or w-of-(w+v) (adopted from Machado and Costa
21

 – denoted by IRR3) with

the charting regions shown in Figure 1(b). Hence, IRR3 gives an OOC signal when either 

one plotting statistic falls on the action region (i.e. region E), or when w nonconforming 

samples out of w+v successive samples fall on the upper (lower) warning region which are 

separated by at most v conforming samples that fall on the central region, respectively. 

(v)  the MSS 1-of-1 or w-of-(w+v) (by Antzoulakos and Rakitzis
22

 – denoted by IRR4) with the

charting regions shown in Figure 1(c). Hence, IRR4 gives an OOC signals when either one 

plotting statistic falls on the action region (i.e. region E), or when w nonconforming samples 

out of w+v successive samples fall on the upper (lower) warning region which are separated 

by at most v conforming samples that fall on the upper (lower) central region, respectively. 

Secondly, there are three types of Synthetic- ̅ schemes that are based on the limits in Equation (2)

which are as follows: 

(i) the NSS Synthetic- ̅ chart (by Wu et al.
18

 – denoted by SC1) with the charting regions

shown in Figure 1(a). Hence, SC1 gives an OOC signal when either one plotting statistic 

falls on the action region (i.e. region E), or when two nonconforming samples out of H+1 

successive samples fall on the warning region (i.e. region U), which are separated by at most 

H-1 conforming samples that fall on the central region (i.e. region O). 

(ii)  the SSS Synthetic- ̅ chart (adopted from Davis and Woodall
17

 – denoted by SC2) with the

charting regions shown in Figure 1(b). Hence, SC2 gives an OOC signal when either one 

plotting statistic falls on the action region (i.e. region E), or when two nonconforming 

samples out of H+1 successive samples fall on the upper (lower) warning regions which are 

separated by at most H-1 samples that fall on either the central region or the lower (upper) 

warning region, respectively. 

(iii) the RSS Synthetic- ̅ chart (by Machado and Costa
21

 – denoted by SC3) with the charting

regions shown in Figure 1(b). Hence, SC3 gives an OOC signal when either one plotting 

statistic falls on the action region (i.e. region E), or when two nonconforming samples out of 

H+1 successive samples fall on the upper (lower) warning region which are separated by at 

most v conforming samples that fall on the central region, respectively. 

For a fair comparison, we only consider IRR charts with w = 2 so that v = H-1 and w+v = H+1. 

Unlike the 2-of-(H+1) rules based on Equation (1) with two parameters i.e. H and k; Equation (2) 
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has three design parameters, i.e. H,    and   . The three types of Synthetic- ̅ charts in Table I (i.e.

SC1, SC2 and SC3) have runs-type rules similar to those in IRR1, IRR2 and IRR3, respectively. 

Therefore, the aim of this paper is to supplement on the work done by the authors listed in Table I, 

by proposing a Synthetic- ̅ chart that has runs-type rules similar to those in Antzoulakos and

Rakitzis
22

, called the modified side-sensitive Synthetic- ̅ chart, denoted by SC4. That is, this paper

makes a contribution to both the synthetic-type and runs-type  ̅ schemes by:

 prosing a new Shewhart-type Synthetic- ̅ chart;

 using a Markov chain approach, we employ a design criterion with more emphasis on the

overall performance to investigate the effectiveness of the 1-of-1 or 2-of-(H+1)  ̅ runs-type

charts as H increases i.e. H ≤ 20.

 we give recommendations on what the optimal value of H should be used, so that the

corresponding chart (i.e. IRR1, IRR2, IRR3, IRR4, SC1, SC2, SC3 and SC4) each results in the

best overall performance; depending on the upper bound on the range of shifts.

 to supplement on the zero-state (ZS) average run-length (ARL) performance of the IRR2 and

IRR4 in Khoo and Ariffin
15

 and Antzoulakos and Rakitzis
22

, respectively, we study the steady-

state (SS) performance of these charts. Moreover, we evaluate the ZS performance of the SC3

scheme, then propose its ZS and SS mode IRR version (i.e. IRR3) and we evaluate the ZS and

SS performance of the IRR1 and SC2 schemes.

 Finally, we compare the overall performance of the schemes in Table I with their corresponding

counterparts that are based on Equation (1) discussed in Shongwe and Graham
19

.

The goal of this paper is to compare a variety of Shewhart synthetic-type and runs-type  ̅

schemes to monitor the process mean for normally distributed data. Thus, the schemes discussed 

herein will not outperform more advanced schemes like the basic EWMA, CUSUM, or EWMA and 

CUSUM with IRR, respectively, (with or without a HS feature); an interested reader may see for 

instance 
5, 8-11, 23

. Thus, this paper must be considered as a framework for quality practitioners who

utilise Shewhart synthetic and runs-rules charts. The rest of the paper is as follows: In Section 2, we 

present the operation of the MSS Synthetic- ̅ chart as well as the ZS and SS performance measures

using the Markov chain imbedding technique discussed in the Appendix. In Section 3, we evaluate 

the OOC performance of the proposed Synthetic- ̅ chart and compare its specific shift and overall

performance with the Shewhart-type charts listed in Table I. In Section 4, we compare the overall 

performance of the schemes in Table I with their counterparts based on Equation (1). Finally, in 

Section 5 we give concluding remarks. 
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2. Operation and design considerations

2.1 Operation of the modified side-sensitive Synthetic- ̅ chart

Consider Figure 1(c), the MSS Synthetic- ̅ (i.e. SC4) chart signals when either one plotting

statistic falls on the action region (i.e. region E), or when two nonconforming samples out of H+1 

successive samples fall on the upper (lower) warning region which are separated by at most H-1 

conforming samples that fall on the upper (lower) central region, respectively. This means that the 

SC4 chart signals when all the H+1 consecutive samples that lead to an OOC event fall on one side 

of the CL. To clearly describe the operation of the SC4 chart, we need to define two types of CRLs 

i.e. lower CRL (denoted by CRLL) and upper CRL (denoted by CRLU). A CRLL is the number 

conforming samples (i.e. falling on region C) that are plotted in between the two consecutive 

nonconforming samples on region D, inclusive of the nonconforming sample at the end. However, a 

CRLU is the number conforming samples (i.e. falling on region B) that are plotted in between the 

two consecutive nonconforming samples on region A, inclusive of the nonconforming sample at the 

end. Note that the absence of a conforming sample implies that either the CRLU or CRLL equals 1. 

Thus the SC4 chart operates as follows: 

Step (i) On the next sampling point, take a sample of size n and compute  ̅ .

Step (ii) If  ̅  LCL or  ̅   UCL go to Step (vii). 

Step (iii) If LWL   ̅   UWL then return to Step (i). 

Step (iv) If LCL   ̅   LWL go to Step (v), or if UWL   ̅   UCL go to Step (vi). 

Step (v) If CRLL ≤ H go to Step (vii), otherwise return to Step (i). 

Step (vi) If CRLU ≤ H go to Step (vii), otherwise return to Step (i). 

Step (vii) Issue an OOC signal, and then take necessary corrective action to find and remove 

the assignable causes. Then return to Step (i). 

2.2 Design considerations 

The Markov chain imbedding technique, its properties as well as the construction of the 

TPMs for each of the schemes listed in Table I is discussed in the Appendix. Moreover, illustrative 

examples with H =1 and 5 are shown in the Appendix. 

The performance of a chart at some specific shift is usually measured by ARL given by  

                   (3) 

where   is the initial probability vector (depending on whether a ZS or SS mode is of interest by the 

user). In SPCM, ZS and SS modes are used to characterize short and long term run-length 

properties of a control chart, respectively. The ZS run-length is the number of sampling points at 

which the chart first signals given it begins in some initial state, that is, we assume that the mean 

shift always takes place at the beginning of the process and thus all sample points within the span 

are taken under the OOC condition. However, the SS run-length is the number of sampling points at 
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which the chart first signals given that the process begins and stays IC for a very long time, then at 

some random time, an OOC signal is observed, see Champ
24

, Davis and Woodall
17

, Zhang and

Wu
25

 and Machado and Costa
21,26

. This is further discussed in the Appendix. The ARL based on the

ZS mode is denoted by ZSARL, whereas that based on the SS mode is denoted by SSARL. While the 

ZSARL and SSARL at   = 0 are the same, the OOC (i.e.   ≠ 0) ZSARL and SSARL are usually not 

the same.  

Because the ARL only measures the performance of a chart at some specific shifts, a number 

of authors have suggested the use of additional indices to measure the overall performance of the 

charts, see for example, Wu et al.
27

, Abujiya et al.
28

 and Machado and Costa
21

. Since it is usually

unknown what specific shift value(s) a control chart should be optimized for, Wu et al.
27

 stated that

it is more efficient to design a chart such that it has a better overall performance than its 

competitors. Thus, when the aim is to measure the overall performance of the chart over a range of 

shifts (i.e. 0 < δ ≤ δmax, where δmax is the upper bound of the mean shift that is of interest by the 

user), the objective function must be defined in terms of the extra quadratic loss (EQL) i.e.  

    
 

    
∫          

    

 

            (4) 

Since it is generally assumed that all mean shifts within the range 0 < δ ≤ δmax occur with equal 

probability, a uniform distribution of   is implied, see Wu et al.
27

 and Machado and Costa
21

. Hence

Equation (4) may equivalently be written as  

    
 

    
∑          

    

 

           (5) 

Here, we use a step shift ( ) of size 0.1. In addition to the EQL, Wu et al.
27

 suggested the

performance comparison index (PCI) to measure the relative effectiveness of two different charts. 

In this paper, we shall use the SC4 scheme as the benchmark; hence the PCI is given by  

PCI = 
   

      
 , (6) 

where EQLSC4 is EQL of the „benchmark‟ SC4 scheme. Also, the ratio of the ARLs is usually used 

to measure the overall effectiveness of a benchmark chart against other competitors, see Wu et al.
27

.

Hence, assuming a uniform distribution in  , the average ratio of ARLs is given by 

      
 

    
∑

      

         

    

 

(7) 

where ARLSC4( ) is the ARL produced by the SC4 scheme. If the value of PCI or ARARL is larger 

than one, the competing chart will produce larger OOC ARL over a larger shift range and / or to a 

larger degree compared to the SC4 scheme and thus, the competing chart is relatively less effective. 
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However, if the PCI or ARARL is smaller than one, the competing chart will have higher overall 

effectiveness than the SC4 scheme. 

In the next section, we conduct an empirical study of the SC4 scheme and compare its 

performance to the schemes listed in Table I for the ZS and SS mode. 

3. Discussion

Firstly, we use Equations (2) and (3) in conjunction with Equations (8) to (15) and Tables 

IX to XII (in the Appendix) to determine the corresponding values of    for    = 3.1, 3.2,…, 5.0 

when H = 1, 2,…, 20 so that ARL0 = 200, 370.4, 500, 1000. However, due to space limitation, only 

the results relating to ARL0 = 370.4 are reported here. Hence, in Table II we show the values of    

for    = 3.1, 3.5, 4.0, 5.0 when H = 1, 2,…, 20 such that ARL0 = 370.4. In Table II, we observe the 

following: (i) As H increases, the values of    for the SC4 and IRR4 schemes converge to some 

specific value for each   – this is not the case for the other schemes; (ii) When H = 1, we see that

IRR2≡IRR3≡IRR4 and SC2≡SC3≡SC4 in ZS mode, whereas in SS mode, IRR1≡SC1 and 

IRR2≡IRR3≡IRR4≡SC2≡SC3≡SC4 – this is explained in Tables IX to XII in the Appendix. 

Secondly, in Tables III and IV, we compute the EQL and PCI when H = 1 and 5 with δmax = 

5. For each scheme, as    increase from 3.1 to 5.0 (for some corresponding   ), the smallest EQL 

value is boldfaced. For instance, the S4 scheme in ZS mode with H = 1,    = 3.7,    = 1.8167 

results in an EQL = 161.65. Furthermore, for each    we compute the PCI (in bracket) with the SC4 

scheme used as the benchmark in ZS and SS, respectively. We see that when    = 4.0, the (SC2, 

SC3, SC4) schemes are 19.13%, 34.83% and 55.78% better than the (SC1), (IRR2, IRR3, IRR4) 

and (IRR1) schemes in ZS mode, respectively; whereas in SS mode, (SC2, SC3, SC4, IRR2, IRR3, 

IRR4) schemes are 15.33% better than the IRR1 and SC1 schemes. When H = 5, the ZS EQL of the 

SC4 scheme is uniformly better than the other schemes, whereas the SS EQL of the SC4 and IRR4 

are jointly better than the other schemes. 

Thirdly, The OOC ZSARL and SSARL performance for each of the schemes with minimum 

EQL highlighted in bold in Tables III and IV are shown in Tables V and VI, respectively. We see 

that the SC4 scheme has a uniformly better OOC ZSARL performance; however, in SS, the SC4 

scheme is outperformed by the other schemes in some cases once   > 3. Based on Tables III to VI, 

the overall performance measure i.e. EQL, PCI and ARARL of the SC4 scheme are either less or 

equal to those of the other schemes (with equality occurring only when H = 1). The results in these 

tables are further illustrated in Figure 2. 
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Table II: The values of  for the zero-state and steady-state 1-of-1 or 2-of-(H+1) IRR and Synthetic- ̅ charts when   = 3.1, 3.5, 4.0, 5.0, H = 1,…, 20 and 

ARL0 = 370.4 
k1 = 3.1 k1 = 3.5 

Zero-state Steady-state Zero-state Steady-state 

H IRR1 IRR2 IRR3  IRR4 SC1 SC2 SC3  SC4 
IRR1 

& SC1 

IRR2 

& SC2 

 IRR3 

& SC3 

IRR4 

& SC4 
IRR1 IRR2 IRR3  IRR4 SC1 SC2 SC3  SC4 

IRR1 

& SC1 

IRR2 

& SC2 

 IRR3 

& SC3 

IRR4 

& SC4 

1 2.1705 2.0393 2.0393 2.0393 2.1884 2.0664 2.0664 2.0664 2.1710 2.0398 2.0398 2.0398 1.9698 1.8221 1.8221 1.8221 1.9818 1.8401 1.8401 1.8401 1.9703 1.8227 1.8227 1.8227 

2 2.2907 2.1690 2.1677 2.1150 2.3144 2.2046 2.2035 2.1469 2.2914 2.1698 2.1685 2.1157 2.1046 1.9671 1.9646 1.9056 2.1207 1.9909 1.9886 1.9269 2.1054 1.9680 1.9654 1.9064 

3 2.3568 2.2406 2.2386 2.1425 2.3846 2.2822 2.2807 2.1765 2.3576 2.2416 2.2395 2.1433 2.1794 2.0475 2.0435 1.9357 2.1985 2.0754 2.0720 1.9585 2.1804 2.0486 2.0446 1.9366 

4 2.4017 2.2894 2.2869 2.1544 2.4327 2.3359 2.3340 2.1894 2.4027 2.2906 2.2881 2.1553 2.2306 2.1026 2.0976 1.9486 2.2523 2.1340 2.1298 1.9721 2.2319 2.1039 2.0989 1.9496 

5 2.4354 2.3262 2.3232 2.1600 2.4693 2.3767 2.3746 2.1954 2.4367 2.3276 2.3246 2.1609 2.2693 2.1442 2.1384 1.9545 2.2931 2.1786 2.1738 1.9782 2.2708 2.1458 2.1399 1.9555 

6 2.4622 2.3555 2.3522 2.1626 2.4984 2.4096 2.4073 2.1982 2.4636 2.3571 2.3538 2.1635 2.3002 2.1775 2.1710 1.9572 2.3260 2.2145 2.2092 1.9811 2.3019 2.1793 2.1727 1.9583 

7 2.4843 2.3809 2.3762 2.1638 2.5227 2.4378 2.4346 2.1996 2.4859 2.3826 2.3779 2.1648 2.3259 2.2072 2.1980 1.9585 2.3534 2.2463 2.2389 1.9825 2.3277 2.2092 2.2000 1.9596 

8 2.5030 2.4004 2.3965 2.1644 2.5433 2.4605 2.4580 2.2002 2.5048 2.4023 2.3984 2.1654 2.3477 2.2287 2.2210 1.9591 2.3768 2.2703 2.2643 1.9832 2.3498 2.2309 2.2232 1.9602 

9 2.5192 2.4182 2.4141 2.1647 2.5613 2.4809 2.4784 2.2006 2.5211 2.4203 2.4162 2.1657 2.3666 2.2492 2.2410 1.9594 2.3973 2.2929 2.2865 1.9835 2.3689 2.2516 2.2435 1.9605 

10 2.5335 2.4339 2.4296 2.1649 2.5772 2.4991 2.4964 2.2007 2.5355 2.4362 2.4319 2.1659 2.3834 2.2673 2.2586 1.9595 2.4154 2.3129 2.3062 1.9836 2.3858 2.2699 2.2613 1.9606 

11 2.5461 2.4480 2.4435 2.1649 2.5914 2.5153 2.5126 2.2008 2.5484 2.4504 2.4459 2.1659 2.3983 2.2835 2.2744 1.9596 2.4317 2.3309 2.3240 1.9837 2.4010 2.2863 2.2773 1.9607 

12 2.5575 2.4606 2.4559 2.1650 2.6041 2.5300 2.5273 2.2008 2.5599 2.4632 2.4585 2.1660 2.4118 2.2981 2.2886 1.9597 2.4464 2.3472 2.3401 1.9837 2.4146 2.3011 2.2917 1.9608 

13 2.5678 2.4721 2.4672 2.1650 2.6158 2.5435 2.5407 2.2009 2.5704 2.4749 2.4700 2.1660 2.4240 2.3114 2.3015 1.9597 2.4599 2.3621 2.3548 1.9837 2.4271 2.3147 2.3048 1.9608 

14 2.5773 2.4826 2.4775 2.1650 2.6265 2.5558 2.5530 2.2009 2.5799 2.4855 2.4805 2.1660 2.4352 2.3236 2.3133 1.9597 2.4723 2.3758 2.3683 1.9837 2.4385 2.3271 2.3169 1.9608 

15 2.5859 2.4922 2.4870 2.1650 2.6363 2.5672 2.5644 2.2009 2.5887 2.4953 2.4902 2.1660 2.4456 2.3348 2.3242 1.9597 2.4837 2.3886 2.3809 1.9837 2.4490 2.3385 2.3280 1.9608 

16 2.5939 2.5012 2.4958 2.1650 2.6454 2.5778 2.5749 2.2009 2.5969 2.5044 2.4991 2.1660 2.4552 2.3452 2.3343 1.9597 2.4944 2.4004 2.3926 1.9837 2.4588 2.3491 2.3383 1.9608 

17 2.6014 2.5095 2.5040 2.1650 2.6539 2.5877 2.5848 2.2009 2.6044 2.5129 2.5074 2.1660 2.4641 2.3549 2.3437 1.9597 2.5043 2.4115 2.4035 1.9837 2.4679 2.3590 2.3479 1.9608 

18 2.6083 2.5172 2.5116 2.1650 2.6619 2.5969 2.5940 2.2009 2.6115 2.5208 2.5152 2.1660 2.4724 2.3640 2.3525 1.9597 2.5136 2.4219 2.4138 1.9837 2.4764 2.3683 2.3569 1.9608 

19 2.6147 2.5245 2.5187 2.1650 2.6693 2.6056 2.6027 2.2009 2.6181 2.5282 2.5225 2.1660 2.4802 2.3725 2.3607 1.9597 2.5224 2.4317 2.4235 1.9837 2.4844 2.3771 2.3653 1.9608 

20 2.6208 2.5313 2.5254 2.1650 2.6763 2.6138 2.6109 2.2009 2.6243 2.5352 2.5294 2.1660 2.4875 2.3806 2.3685 1.9597 2.5307 2.4410 2.4326 1.9837 2.4919 2.3853 2.3733 1.9608 

k1 = 4 k1 = 5 

Zero-state Steady-state Zero-state Steady-state 

H IRR1 IRR2 IRR3  IRR4 SC1 SC2 SC3  SC4 
IRR1 

& SC1 

IRR2 

& SC2 

 IRR3 

& SC3 

IRR4 

& SC4 
IRR1 IRR2 IRR3  IRR4 SC1 SC2 SC3  SC4 

IRR1 

& SC1 

IRR2 

& SC2 

 IRR3 

& SC3 

IRR4 

& SC4 

1 1.9370 1.7866 1.7866 1.7866 1.9483 1.8035 1.8035 1.8035 1.9376 1.7872 1.7872 1.7872 1.9323 1.7815 1.7815 1.7815 1.9435 1.7983 1.7983 1.7983 1.9329 1.7821 1.7821 1.7821 

2 2.0742 1.9341 1.9313 1.8713 2.0893 1.9564 1.9539 1.8914 2.0750 1.9350 1.9322 1.8721 2.0698 1.9294 1.9265 1.8664 2.0849 1.9515 1.9490 1.8863 2.0706 1.9303 1.9274 1.8672 

3 2.1503 2.0159 2.0115 1.9018 2.1684 2.0422 2.0384 1.9232 2.1514 2.0170 2.0126 1.9027 2.1462 2.0114 2.0069 1.8969 2.1641 2.0374 2.0335 1.9182 2.1472 2.0125 2.0080 1.8979 

4 2.2025 2.0720 2.0664 1.9148 2.2230 2.1015 2.0968 1.9369 2.2038 2.0734 2.0678 1.9158 2.1985 2.0676 2.0620 1.9100 2.2188 2.0969 2.0921 1.9318 2.1998 2.0690 2.0633 1.9110 

5 2.2420 2.1144 2.1079 1.9207 2.2645 2.1467 2.1413 1.9431 2.2435 2.1160 2.1095 1.9218 2.2381 2.1101 2.1035 1.9159 2.2604 2.1422 2.1367 1.9380 2.2396 2.1117 2.1051 1.9169 

6 2.2735 2.1483 2.1410 1.9235 2.2979 2.1832 2.1772 1.9460 2.2752 2.1501 2.1429 1.9246 2.2697 2.1441 2.1367 1.9186 2.2939 2.1787 2.1726 1.9409 2.2714 2.1459 2.1386 1.9197 

7 2.2997 2.1787 2.1685 1.9248 2.3258 2.2155 2.2072 1.9473 2.3016 2.1808 2.1706 1.9259 2.2960 2.1747 2.1643 1.9199 2.3219 2.2111 2.2026 1.9423 2.2979 2.1767 2.1664 1.9210 

8 2.3220 2.2005 2.1919 1.9254 2.3497 2.2398 2.2329 1.9480 2.3241 2.2028 2.1942 1.9265 2.3183 2.1964 2.1878 1.9205 2.3458 2.2354 2.2284 1.9429 2.3205 2.1987 2.1900 1.9216 

9 2.3414 2.2214 2.2123 1.9257 2.3705 2.2626 2.2554 1.9483 2.3437 2.2239 2.2148 1.9268 2.3378 2.2174 2.2081 1.9208 2.3667 2.2583 2.2509 1.9432 2.3401 2.2199 2.2107 1.9219 

10 2.3585 2.2398 2.2302 1.9258 2.3890 2.2829 2.2753 1.9484 2.3610 2.2426 2.2330 1.9269 2.3549 2.2359 2.2261 1.9209 2.3852 2.2786 2.2709 1.9434 2.3575 2.2386 2.2289 1.9221 

11 2.3738 2.2564 2.2462 1.9259 2.4056 2.3012 2.2933 1.9485 2.3765 2.2593 2.2492 1.9270 2.3703 2.2525 2.2422 1.9210 2.4019 2.2969 2.2889 1.9435 2.3730 2.2554 2.2452 1.9221 

12 2.3876 2.2713 2.2607 1.9259 2.4206 2.3177 2.3096 1.9485 2.3905 2.2744 2.2639 1.9270 2.3841 2.2674 2.2567 1.9210 2.4169 2.3135 2.3052 1.9435 2.3871 2.2706 2.2599 1.9222 

13 2.4001 2.2848 2.2738 1.9259 2.4344 2.3329 2.3245 1.9485 2.4033 2.2882 2.2773 1.9270 2.3967 2.2810 2.2699 1.9210 2.4307 2.3287 2.3201 1.9435 2.3998 2.2844 2.2733 1.9222 

14 2.4116 2.2973 2.2859 1.9259 2.4470 2.3468 2.3382 1.9486 2.4150 2.3009 2.2895 1.9270 2.4082 2.2935 2.2819 1.9211 2.4434 2.3426 2.3339 1.9435 2.4116 2.2971 2.2856 1.9222 

15 2.4222 2.3088 2.2970 1.9259 2.4587 2.3597 2.3509 1.9486 2.4258 2.3126 2.3008 1.9270 2.4188 2.3051 2.2931 1.9211 2.4551 2.3556 2.3466 1.9435 2.4224 2.3089 2.2969 1.9222 

16 2.4320 2.3194 2.3073 1.9259 2.4696 2.3718 2.3627 1.9486 2.4358 2.3235 2.3113 1.9270 2.4287 2.3157 2.3034 1.9211 2.4660 2.3677 2.3585 1.9435 2.4325 2.3198 2.3075 1.9222 

17 2.4412 2.3294 2.3169 1.9259 2.4797 2.3830 2.3738 1.9486 2.4451 2.3336 2.3211 1.9270 2.4379 2.3257 2.3130 1.9211 2.4762 2.3789 2.3696 1.9435 2.4418 2.3299 2.3173 1.9222 

18 2.4497 2.3387 2.3258 1.9259 2.4893 2.3936 2.3842 1.9486 2.4538 2.3431 2.3303 1.9270 2.4464 2.3350 2.3220 1.9211 2.4858 2.3896 2.3800 1.9435 2.4506 2.3395 2.3265 1.9222 

19 2.4577 2.3474 2.3342 1.9259 2.4982 2.4036 2.3940 1.9486 2.4621 2.3520 2.3389 1.9270 2.4545 2.3438 2.3304 1.9211 2.4948 2.3995 2.3898 1.9435 2.4588 2.3484 2.3351 1.9222 

20 2.4653 2.3556 2.3421 1.9259 2.5067 2.4130 2.4033 1.9486 2.4698 2.3604 2.3470 1.9270 2.4621 2.3520 2.3383 1.9211 2.5033 2.4090 2.3991 1.9435 2.4666 2.3569 2.3432 1.9222 
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Table III: The EQL and PCI (in brackets) of the 1-of-1 or 2-of-(H+1) IRR and Synthetic- ̅ charts when H = 1, δmax = 5 and ARL0 = 370.4

  3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 

ZS 

IRR1 
225.82 223.95 225.69 228.81 232.60 236.62 240.72 244.78 248.75 252.57 256.21 259.70 263.02 266.19 269.17 271.99 274.66 277.15 279.48 281.67 

(1.2497) (1.3165) (1.3634) (1.4010) (1.4338) (1.4626) (1.4891) (1.5134) (1.5363) (1.5578) (1.5781) (1.5974) (1.6158) (1.6336) (1.6503) (1.6663) (1.6817) (1.6961) (1.7095) (1.7223) 

IRR2,IRR3,IRR4 
207.93 201.94 200.94 201.95 203.95 206.52 209.37 212.39 215.50 218.61 221.68 224.69 227.62 230.46 233.20 235.83 238.31 240.68 242.94 245.05 

(1.1507) (1.1871) (1.2138) (1.2365) (1.2572) (1.2765) (1.2952) (1.3132) (1.3310) (1.3483) (1.3654) (1.3821) (1.3984) (1.4143) (1.4297) (1.4447) (1.4592) (1.4729) (1.4860) (1.4984) 

SC1 
198.56 191.59 189.33 188.83 189.16 189.85 190.71 191.59 192.39 193.15 193.80 194.35 194.79 195.19 195.49 195.73 195.90 196.08 196.19 196.29 

(1.0989) (1.1263) (1.1437) (1.1562) (1.1660) (1.1735) (1.1798) (1.1846) (1.1882) (1.1913) (1.1937) (1.1955) (1.1967) (1.1978) (1.1986) (1.1991) (1.1995) (1.2000) (1.2000) (1.2002) 

SC2, SC3, SC4 
180.69 170.11 165.54 163.32 162.23 161.78 161.65 161.74 161.92 162.13 162.35 162.58 162.77 162.95 163.11 163.23 163.32 163.40 163.48 163.55 

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 

SS 

IRR1, SC1 
225.07 222.79 224.21 227.07 230.59 234.39 238.31 242.18 245.98 249.62 253.10 256.43 259.60 262.60 265.44 268.13 270.67 273.04 275.29 277.39 

(1.0857) (1.1082) (1.1220) (1.1318) (1.1389) (1.1440) (1.1480) (1.1505) (1.1523) (1.1533) (1.1536) (1.1535) (1.1532) (1.1525) (1.1516) (1.1507) (1.1497) (1.1486) (1.1477) (1.1467) 

IRR2,IRR3,IRR4, 

SC2, SC3, SC4 

207.31 201.04 199.82 200.63 202.47 204.88 207.59 210.50 213.46 216.45 219.40 222.30 225.12 227.85 230.49 233.02 235.44 237.72 239.86 241.90 

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 

Table IV: The EQL and PCI (in brackets) of the 1-of-1 or 2-of-(H+1) IRR and Synthetic- ̅ charts when H = 5, δmax = 5 and ARL0 = 370.4

 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 

ZS 

IRR1 
223.15 219.07 219.02 220.62 223.04 225.90 229.02 232.22 235.47 238.68 241.85 244.94 247.95 250.85 253.66 256.32 258.87 261.27 263.57 265.71 

(1.4232) (1.5074) (1.5618) (1.6049) (1.6422) (1.6754) (1.7065) (1.7353) (1.7627) (1.7888) (1.8137) (1.8377) (1.8605) (1.8824) (1.9037) (1.9237) (1.9428) (1.9608) (1.9779) (1.9942) 

IRR2 
205.80 198.89 197.24 197.70 199.21 201.35 203.81 206.53 209.33 212.21 215.09 217.95 220.75 223.49 226.15 228.71 231.17 233.53 235.74 237.83 

(1.3126) (1.3685) (1.4065) (1.4382) (1.4667) (1.4933) (1.5187) (1.5434) (1.5670) (1.5904) (1.6131) (1.6351) (1.6564) (1.6771) (1.6973) (1.7165) (1.7349) (1.7526) (1.7691) (1.7849) 

IRR3 
205.37 198.28 196.50 196.86 198.32 200.40 202.84 205.51 208.30 211.15 214.03 216.86 219.67 222.39 225.06 227.62 230.08 232.41 234.64 236.71 

(1.3098) (1.3644) (1.4012) (1.4321) (1.4602) (1.4863) (1.5114) (1.5357) (1.5593) (1.5825) (1.6051) (1.6269) (1.6483) (1.6689) (1.6891) (1.7083) (1.7267) (1.7442) (1.7608) (1.7765) 

IRR4 
191.16 183.72 181.79 181.98 183.25 185.14 187.38 189.87 192.47 195.16 197.87 200.59 203.28 205.90 208.47 210.95 213.32 215.62 217.78 219.82 

(1.2192) (1.2641) (1.2963) (1.3238) (1.3492) (1.3731) (1.3962) (1.4188) (1.4409) (1.4626) (1.4839) (1.5049) (1.5253) (1.5451) (1.5646) (1.5832) (1.6010) (1.6182) (1.6343) (1.6498) 

SC1 
187.97 177.29 172.45 169.88 168.44 167.67 167.23 167.01 166.91 166.89 166.92 166.94 166.98 167.02 167.04 167.08 167.10 167.11 167.13 167.12 

(1.1988) (1.2199) (1.2297) (1.2358) (1.2402) (1.2435) (1.2461) (1.2481) (1.2495) (1.2507) (1.2518) (1.2524) (1.2529) (1.2533) (1.2536) (1.2540) (1.2541) (1.2541) (1.2542) (1.2542) 

SC2 
172.16 159.35 153.50 150.28 148.38 147.22 146.49 146.04 145.78 145.60 145.50 145.46 145.43 145.41 145.41 145.42 145.41 145.42 145.42 145.42 

(1.0980) (1.0965) (1.0946) (1.0932) (1.0925) (1.0919) (1.0915) (1.0914) (1.0913) (1.0912) (1.0912) (1.0913) (1.0912) (1.0912) (1.0913) (1.0914) (1.0913) (1.0914) (1.0913) (1.0914) 

SC3 
171.84 158.88 152.92 149.64 147.70 146.50 145.75 145.30 145.01 144.83 144.74 144.68 144.65 144.63 144.62 144.62 144.62 144.62 144.63 144.64 

(1.0959) (1.0932) (1.0905) (1.0886) (1.0875) (1.0865) (1.0860) (1.0858) (1.0856) (1.0855) (1.0855) (1.0855) (1.0854) (1.0853) (1.0854) (1.0854) (1.0854) (1.0854) (1.0854) (1.0855) 

SC4 
156.79 145.33 140.24 137.47 135.82 134.83 134.20 133.82 133.58 133.43 133.34 133.29 133.27 133.26 133.24 133.24 133.25 133.25 133.25 133.25 

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 

SS 

IRR1, SC1 
221.46 216.44 215.70 216.68 218.60 220.99 223.64 226.47 229.33 232.19 235.01 237.77 240.46 243.06 245.54 247.95 250.24 252.39 254.44 256.37 

(1.1641) (1.1867) (1.1973) (1.2032) (1.2069) (1.2088) (1.2096) (1.2098) (1.2093) (1.2082) (1.2068) (1.2053) (1.2034) (1.2014) (1.1992) (1.1973) (1.1952) (1.1932) (1.1912) (1.1895) 

IRR2, SC2 
204.57 197.01 194.88 194.91 196.08 197.86 200.05 202.48 205.01 207.64 210.28 212.90 215.47 218.00 220.44 222.80 225.06 227.24 229.27 231.20 

(1.0753) (1.0802) (1.0818) (1.0823) (1.0825) (1.0823) (1.0820) (1.0817) (1.0810) (1.0805) (1.0798) (1.0792) (1.0783) (1.0775) (1.0766) (1.0758) (1.0750) (1.0743) (1.0734) (1.0728) 

IRR3, SC3 
204.14 196.41 194.16 194.11 195.21 196.98 199.13 201.52 204.05 206.66 209.27 211.89 214.48 216.98 219.42 221.80 224.07 226.22 228.26 230.19 

(1.0731) (1.0769) (1.0777) (1.0779) (1.0777) (1.0775) (1.0770) (1.0766) (1.0760) (1.0754) (1.0747) (1.0740) (1.0733) (1.0725) (1.0717) (1.0710) (1.0702) (1.0695) (1.0686) (1.0681) 

IRR4, SC4 
190.24 182.39 180.15 180.08 181.13 182.82 184.89 187.19 189.64 192.17 194.73 197.28 199.83 202.32 204.75 207.10 209.37 211.53 213.59 215.52 

(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 
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Table V: The zero-state and steady-state OOC ARL values of the 1-of-1 or 2-of-(H+1) IRR and 

Synthetic- ̅ charts when H = 1, δmax = 5 and ARL0 = 370.4

Zero-state Steady-state 

IRR1 IRR2, IRR3, IRR4 SC1 SC2, SC3, SC4 IRR1, SC1 IRR2, IRR3, IRR4, SC2, SC3, SC4 

  3.2 3.3 3.4 3.7 3.2 3.3 

  2.0700 1.8756 2.0014 1.8167 2.0705 1.8762 

δ 

0 370.4 370.4 370.4 370.4 370.4 370.4 
0.1 352.10 343.56 352.32 341.14 352.06 343.53 

0.2 305.31 280.70 305.65 274.03 305.24 280.64 

0.3 246.93 212.25 246.66 203.01 246.83 212.16 

0.4 190.96 155.04 189.46 145.31 190.83 154.93 

0.5 144.09 112.30 141.32 103.22 143.95 112.18 

0.6 107.61 81.74 103.91 73.72 107.47 81.62 

0.7 80.28 60.17 76.10 53.24 80.14 60.05 

0.8 60.19 44.91 55.88 38.99 60.05 44.80 

0.9 45.50 34.04 41.33 28.97 45.38 33.93 

1 34.78 26.20 30.88 21.85 34.66 26.10 

1.1 26.90 20.49 23.34 16.73 26.80 20.40 

1.2 21.08 16.26 17.87 13.01 20.99 16.18 

1.3 16.74 13.11 13.87 10.26 16.66 13.03 

1.4 13.47 10.72 10.91 8.21 13.40 10.65 

1.5 10.99 8.89 8.70 6.67 10.92 8.83 

1.6 9.08 7.47 7.04 5.49 9.02 7.41 

1.7 7.60 6.36 5.77 4.58 7.54 6.31 

1.8 6.44 5.48 4.80 3.88 6.39 5.43 

1.9 5.52 4.77 4.04 3.32 5.47 4.73 

2 4.78 4.20 3.45 2.88 4.74 4.16 

2.1 4.19 3.74 2.98 2.53 4.15 3.70 

2.2 3.71 3.36 2.61 2.25 3.67 3.33 

2.3 3.31 3.04 2.31 2.02 3.28 3.01 

2.4 2.99 2.78 2.07 1.83 2.96 2.75 

2.5 2.71 2.56 1.87 1.68 2.69 2.53 

2.6 2.49 2.37 1.71 1.56 2.46 2.34 

2.7 2.29 2.21 1.58 1.45 2.27 2.19 

2.8 2.13 2.07 1.47 1.37 2.10 2.05 

2.9 1.99 1.95 1.38 1.30 1.97 1.93 

3 1.86 1.85 1.31 1.24 1.84 1.83 

3.1 1.76 1.75 1.25 1.19 1.74 1.74 

3.2 1.67 1.67 1.20 1.15 1.65 1.66 
3.3 1.58 1.60 1.16 1.12 1.57 1.58 

3.4 1.51 1.53 1.13 1.10 1.50 1.52 

3.5 1.45 1.47 1.10 1.08 1.44 1.46 
3.6 1.39 1.42 1.08 1.06 1.38 1.41 

3.7 1.34 1.37 1.06 1.05 1.33 1.36 

3.8 1.30 1.33 1.05 1.04 1.29 1.32 

3.9 1.26 1.29 1.04 1.03 1.25 1.28 

4 1.22 1.25 1.03 1.02 1.22 1.24 

4.1 1.19 1.22 1.02 1.02 1.19 1.21 

4.2 1.16 1.19 1.02 1.01 1.16 1.18 

4.3 1.14 1.16 1.01 1.01 1.13 1.16 

4.4 1.12 1.14 1.01 1.01 1.11 1.13 
4.5 1.10 1.12 1.01 1.00 1.10 1.11 

4.6 1.08 1.10 1.01 1.00 1.08 1.09 

4.7 1.07 1.08 1.00 1.00 1.07 1.08 
4.8 1.06 1.07 1.00 1.00 1.05 1.07 

4.9 1.04 1.05 1.00 1.00 1.04 1.05 

5 1.04 1.04 1.00 1.00 1.03 1.04 

EQL 223.95 200.94 188.83 161.65 222.79 199.82 

ARARL 1.4084 1.2827 1.1499 1.0000 1.1004 1.0000 

PCI 1.3854 1.2430 1.1681 1.0000 1.1149 1.0000 
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Table VI: The zero-state and steady-state OOC ARL values of the 1-of-1 or 2-of-(H+1) IRR and 

Synthetic- ̅ charts when H = 5, δmax = 5 and ARL0 = 370.4

Zero-state Steady-state 

IRR1 IRR2 IRR3 IRR4 SC1 SC2 SC3 SC4 IRR1,SC1 IRR2,SC2 IRR3,SC3 IRR4,SC4 

  3.3 3.3 3.3 3.3 4.0 4.5 4.6 4.6 3.3 3.3 3.4 3.4 

  2.3105 2.1891 2.1842 2.0053 2.2645 2.1426 2.1369 1.9383 2.3119 2.1907 2.1577 1.9752 

  

0 370.4 370.3 370.4 370.4 370.3 370.3 370.3 370.3 370.5 370.4 370.4 370.3 

0.1 350.52 340.37 340.05 336.56 349.68 334.93 334.28 330.02 350.47 340.42 338.59 334.69 

0.2 300.04 272.16 271.21 261.74 296.98 257.71 256.12 245.45 299.85 272.10 267.50 257.28 

0.3 238.21 200.92 199.70 186.97 231.95 181.82 179.96 166.77 237.88 200.76 195.06 181.66 

0.4 180.36 143.78 142.61 129.59 171.15 124.39 122.75 110.21 179.93 143.55 138.23 124.81 

0.5 133.26 102.53 101.57 89.80 122.24 84.94 83.67 73.02 132.79 102.27 97.91 85.98 

0.6 97.68 73.84 73.09 63.09 86.10 58.64 57.71 49.13 97.20 73.57 70.21 60.19 

0.7 71.80 54.02 53.46 45.23 60.59 41.15 40.48 33.75 71.34 53.76 51.24 43.08 

0.8 53.26 40.25 39.83 33.18 42.96 29.42 28.95 23.72 52.84 40.00 38.14 31.58 

0.9 40.04 30.56 30.25 24.91 30.85 21.46 21.12 17.08 39.65 30.32 28.96 23.72 

1 30.57 23.64 23.41 19.15 22.52 15.97 15.73 12.61 30.22 23.43 22.42 18.25 

1.1 23.72 18.63 18.46 15.05 16.74 12.13 11.96 9.54 23.41 18.43 17.69 14.37 

1.2 18.72 14.94 14.81 12.08 12.69 9.40 9.28 7.39 18.44 14.76 14.21 11.56 

1.3 15.01 12.18 12.08 9.89 9.81 7.43 7.34 5.86 14.76 12.02 11.61 9.48 

1.4 12.23 10.08 10.01 8.25 7.73 5.99 5.93 4.76 12.01 9.94 9.63 7.93 

1.5 10.12 8.47 8.41 6.99 6.22 4.93 4.88 3.94 9.92 8.34 8.11 6.74 

1.6 8.49 7.22 7.17 6.01 5.09 4.12 4.09 3.34 8.31 7.10 6.93 5.81 

1.7 7.22 6.22 6.19 5.24 4.25 3.51 3.48 2.88 7.05 6.11 5.99 5.08 

1.8 6.21 5.43 5.40 4.63 3.61 3.04 3.02 2.52 6.06 5.33 5.24 4.50 

1.9 5.41 4.79 4.77 4.13 3.12 2.67 2.65 2.24 5.27 4.70 4.64 4.03 

2 4.76 4.26 4.24 3.72 2.73 2.38 2.37 2.03 4.64 4.18 4.14 3.64 

2.1 4.23 3.83 3.81 3.38 2.43 2.15 2.14 1.85 4.11 3.75 3.73 3.31 

2.2 3.79 3.46 3.45 3.09 2.19 1.96 1.95 1.71 3.68 3.39 3.38 3.04 

2.3 3.42 3.16 3.15 2.85 1.99 1.81 1.80 1.59 3.32 3.09 3.09 2.81 

2.4 3.11 2.90 2.89 2.64 1.83 1.68 1.67 1.50 3.02 2.83 2.85 2.62 

2.5 2.85 2.67 2.67 2.46 1.70 1.57 1.57 1.42 2.77 2.61 2.63 2.44 

2.6 2.62 2.48 2.47 2.31 1.59 1.48 1.48 1.35 2.55 2.43 2.45 2.29 

2.7 2.43 2.31 2.31 2.17 1.50 1.41 1.40 1.29 2.36 2.26 2.29 2.16 

2.8 2.26 2.16 2.16 2.05 1.42 1.34 1.34 1.25 2.19 2.12 2.15 2.05 

2.9 2.11 2.03 2.03 1.94 1.36 1.29 1.29 1.20 2.05 1.99 2.02 1.94 

3 1.98 1.92 1.92 1.84 1.30 1.24 1.24 1.17 1.93 1.88 1.91 1.85 

3.1 1.87 1.82 1.81 1.75 1.25 1.20 1.20 1.14 1.82 1.78 1.82 1.77 

3.2 1.76 1.72 1.72 1.67 1.21 1.17 1.17 1.12 1.72 1.69 1.73 1.69 

3.3 1.67 1.64 1.64 1.60 1.18 1.14 1.14 1.10 1.63 1.61 1.65 1.62 

3.4 1.59 1.57 1.57 1.54 1.15 1.12 1.12 1.08 1.56 1.54 1.58 1.56 

3.5 1.52 1.50 1.50 1.48 1.12 1.10 1.09 1.06 1.49 1.48 1.52 1.50 

3.6 1.46 1.44 1.44 1.42 1.10 1.08 1.08 1.05 1.43 1.42 1.46 1.45 

3.7 1.40 1.39 1.39 1.38 1.08 1.06 1.06 1.04 1.37 1.37 1.40 1.40 

3.8 1.35 1.34 1.34 1.33 1.07 1.05 1.05 1.03 1.33 1.32 1.36 1.35 

3.9 1.30 1.30 1.30 1.29 1.05 1.04 1.04 1.03 1.28 1.28 1.31 1.31 

4 1.26 1.26 1.26 1.25 1.04 1.03 1.03 1.02 1.24 1.24 1.27 1.27 

4.1 1.23 1.22 1.22 1.22 1.03 1.03 1.03 1.02 1.21 1.21 1.24 1.24 

4.2 1.19 1.19 1.19 1.19 1.03 1.02 1.02 1.01 1.18 1.18 1.21 1.21 

4.3 1.17 1.16 1.16 1.16 1.02 1.02 1.02 1.01 1.15 1.15 1.18 1.18 

4.4 1.14 1.14 1.14 1.14 1.02 1.01 1.01 1.01 1.13 1.13 1.15 1.15 

4.5 1.12 1.12 1.12 1.12 1.01 1.01 1.01 1.01 1.11 1.11 1.13 1.13 

4.6 1.10 1.10 1.10 1.10 1.01 1.01 1.01 1.00 1.09 1.09 1.11 1.11 

4.7 1.08 1.08 1.08 1.08 1.01 1.01 1.01 1.00 1.08 1.08 1.09 1.09 

4.8 1.07 1.07 1.07 1.07 1.01 1.00 1.00 1.00 1.06 1.06 1.08 1.08 

4.9 1.06 1.06 1.06 1.06 1.00 1.00 1.00 1.00 1.05 1.05 1.06 1.06 

5 1.04 1.04 1.04 1.04 1.00 1.00 1.00 1.00 1.04 1.04 1.05 1.05 

EQL 219.02 197.24 196.50 181.79 166.89 145.41 144.62 133.24 215.70 194.88 194.11 180.08 

ARARL 1.7686 1.5852 1.5789 1.4432 1.2797 1.1078 1.1014 1.0000 1.2072 1.0886 1.0834 1.0000 

PCI 1.6438 1.4803 1.4748 1.3643 1.2525 1.0913 1.0854 1.0000 1.1978 1.0822 1.0779 1.0000 
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Zero-state (a) δmax = 1 Steady-state 

Zero-state (b) δmax = 2 Steady-state 

Zero-state (c) δmax = 3 Steady-state 

Zero-state (d) δmax = 5 Steady-state 

Figure 2: The zero-state and steady-state EQL values of the 1-of-1 or 2-of-(H+1) IRR and 

Synthetic- ̅ charts when H = 1, 2, … , 20 for an ARL0 = 370.4

Next, we investigate whether the SC4 scheme has a uniformly better overall OOC 

performance as H varies from 1 to 20 by plotting the values of the minimum ZS and SS EQL for 
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each scheme listed in Table I (similar to those in Tables V and VI). It is clear from Figure 2 that the 

SC4 scheme outperform all the other schemes once H > 1, both in ZS and SS modes for a variety of 

δmax values. Moreover, the convergence of    values as H increases for the SC4 and IRR4 schemes 

result in the convergence of their EQL values. The EQL values of the IRR2 and IRR3 as well as 

SC2 and SC3 schemes are almost equal, however, with those of the IRR3 and SC3 just slightly 

better. The IRR1 scheme is the worst performing scheme and the SC1 scheme become less effective 

as δmax decrease. For each of the schemes, we recommend a value of H that corresponds to the 

minimum of the EQL curve depending on the desired δmax. The results in Figure 2 are further 

illustrated by the results in Tables VII and VIII when δmax = 5. That is, we see that the PCIs and 

ARARLs of the IRR2 and IRR3 as well as SC2 and SC3 schemes are relatively close to each other. 

Also, IRR1 has the worst performance, for instance, when H = 5, it is 64.38% and 76.86% worse 

than the SC4 scheme in ZS with respect to the PCI and ARARL, respectively. The PCIs and 

ARARLs of the SC4 scheme have a uniformly better performance with equality in performance 

occurring only when H = 1 and with the IRR4 in SS. 

Table VII: The zero-state and steady-state PCI values of the 1-of-1 or 2-of-(H+1) IRR and 

Synthetic- ̅ charts for δmax = 5 when H = 1, 2, … , 20 and ARL0 = 370.4

Zero-state Steady-state 

H IRR1 IRR2 IRR3 IRR4 SC1 SC2 SC3 SC4 IRR1&SC1 IRR2&SC2 IRR3&SC3 IRR4&SC4 

1 1.3854 1.2430 1.2430 1.2430 1.1681 1.0000 1.0000 1.0000 1.1149 1.0000 1.0000 1.0000 

2 1.5057 1.3485 1.3463 1.3107 1.2088 1.0358 1.0332 1.0000 1.1485 1.0283 1.0267 1.0000 

3 1.5719 1.4099 1.4063 1.3405 1.2300 1.0606 1.0565 1.0000 1.1694 1.0507 1.0481 1.0000 

4 1.6144 1.4510 1.4463 1.3559 1.2435 1.0783 1.0732 1.0000 1.1853 1.0683 1.0648 1.0000 

5 1.6438 1.4803 1.4748 1.3643 1.2525 1.0913 1.0854 1.0000 1.1978 1.0822 1.0779 1.0000 

6 1.6653 1.5023 1.4959 1.3692 1.2589 1.1012 1.0946 1.0000 1.2072 1.0931 1.0883 1.0000 

7 1.6817 1.5215 1.5123 1.3721 1.2636 1.1112 1.1020 1.0000 1.2149 1.1034 1.0969 1.0000 

8 1.6944 1.5334 1.5256 1.3737 1.2673 1.1157 1.1081 1.0000 1.2213 1.1097 1.1041 1.0000 

9 1.7050 1.5451 1.5369 1.3748 1.2705 1.1214 1.1133 1.0000 1.2267 1.1164 1.1104 1.0000 

10 1.7138 1.5554 1.5464 1.3753 1.2734 1.1266 1.1181 1.0000 1.2314 1.1223 1.1159 1.0000 

11 1.7215 1.5645 1.5550 1.3757 1.2762 1.1314 1.1226 1.0000 1.2356 1.1275 1.1209 1.0000 

12 1.7286 1.5726 1.5627 1.3758 1.2789 1.1360 1.1268 1.0000 1.2395 1.1324 1.1256 1.0000 

13 1.7350 1.5804 1.5700 1.3760 1.2817 1.1404 1.1309 1.0000 1.2430 1.1369 1.1299 1.0000 

14 1.7409 1.5874 1.5767 1.3760 1.2844 1.1446 1.1348 1.0000 1.2464 1.1412 1.1339 1.0000 

15 1.7468 1.5943 1.5832 1.3761 1.2873 1.1490 1.1388 1.0000 1.2496 1.1453 1.1377 1.0000 

16 1.7521 1.6009 1.5893 1.3761 1.2902 1.1531 1.1427 1.0000 1.2527 1.1491 1.1413 1.0000 

17 1.7573 1.6071 1.5951 1.3761 1.2931 1.1572 1.1465 1.0000 1.2557 1.1528 1.1448 1.0000 

18 1.7622 1.6130 1.6007 1.3761 1.2961 1.1613 1.1503 1.0000 1.2585 1.1564 1.1481 1.0000 

19 1.7670 1.6189 1.6061 1.3761 1.2991 1.1652 1.1540 1.0000 1.2612 1.1600 1.1513 1.0000 

20 1.7716 1.6244 1.6113 1.3761 1.3021 1.1692 1.1578 1.0000 1.2638 1.1631 1.1544 1.0000 
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Table VIII: The zero-state and steady-state ARARL values of the 1-of-1 or 2-of-(H+1) IRR and 

Synthetic- ̅ charts for δmax = 5 when H = 1, 2, … , 20 and ARL0 = 370.4

Zero-state Steady-state 

H IRR1 IRR2 IRR3 IRR4 SC1 SC2 SC3 SC4 IRR1&SC1 IRR2&SC2 IRR3&SC3 IRR4&SC4 

1 1.4084 1.2827 1.2827 1.2827 1.1499 1.0000 1.0000 1.0000 1.1004 1.0000 1.0000 1.0000 

2 1.5651 1.4095 1.4073 1.3686 1.2040 1.0377 1.0352 1.0000 1.1393 1.0277 1.0262 1.0000 

3 1.6603 1.4887 1.4849 1.4090 1.2381 1.0674 1.0632 1.0000 1.1694 1.0523 1.0497 1.0000 

4 1.7230 1.5443 1.5391 1.4308 1.2624 1.0902 1.0848 1.0000 1.1906 1.0724 1.0683 1.0000 

5 1.7686 1.5852 1.5789 1.4432 1.2797 1.1078 1.1014 1.0000 1.2072 1.0886 1.0834 1.0000 

6 1.8024 1.6166 1.6091 1.4505 1.2924 1.1218 1.1146 1.0000 1.2199 1.1015 1.0955 1.0000 

7 1.8315 1.6436 1.6328 1.4549 1.3021 1.1355 1.1253 1.0000 1.2301 1.1136 1.1055 1.0000 

8 1.8517 1.6613 1.6520 1.4575 1.3096 1.1428 1.1343 1.0000 1.2312 1.1173 1.1109 1.0000 

9 1.8682 1.6780 1.6682 1.4591 1.3159 1.1512 1.1421 1.0000 1.2380 1.1249 1.1181 1.0000 

10 1.8819 1.6927 1.6821 1.4600 1.3216 1.1588 1.1493 1.0000 1.2437 1.1317 1.1244 1.0000 

11 1.8936 1.7057 1.6943 1.4607 1.3267 1.1659 1.1559 1.0000 1.2488 1.1376 1.1301 1.0000 

12 1.9041 1.7172 1.7054 1.4609 1.3316 1.1726 1.1621 1.0000 1.2536 1.1433 1.1362 1.0000 

13 1.9137 1.7281 1.7157 1.4611 1.3364 1.1790 1.1682 1.0000 1.2578 1.1484 1.1411 1.0000 

14 1.9223 1.7380 1.7252 1.4612 1.3411 1.1852 1.1740 1.0000 1.2618 1.1532 1.1456 1.0000 

15 1.9308 1.7476 1.7343 1.4614 1.3458 1.1913 1.1798 1.0000 1.2655 1.1578 1.1499 1.0000 

16 1.9385 1.7567 1.7428 1.4614 1.3505 1.1973 1.1854 1.0000 1.2691 1.1621 1.1540 1.0000 

17 1.9459 1.7654 1.7509 1.4614 1.3552 1.2031 1.1910 1.0000 1.2726 1.1663 1.1579 1.0000 

18 1.9529 1.7735 1.7587 1.4614 1.3599 1.2089 1.1964 1.0000 1.2757 1.1703 1.1616 1.0000 

19 1.9598 1.7816 1.7662 1.4615 1.3645 1.2145 1.2017 1.0000 1.2789 1.1743 1.1652 1.0000 

20 1.9662 1.7892 1.7734 1.4615 1.3691 1.2201 1.2070 1.0000 1.2818 1.1778 1.1687 1.0000 

4. Comparison with the 2-of-(H+1) runs-rules and synthetic  ̅ charts

In this section, we compare the overall performance of the schemes in Table I with their 

corresponding counterparts that are based on Equation (1) which are discussed in Shongwe and 

Graham
19

. As explained in Figure 1, the synthetic-type and runs-type charts may be classed into

four categories i.e. NSS, SSS, RSS and MSS. The NSS, SSS, RSS, MSS synthetic  ̅ charts were

proposed by Wu and Spedding
7
, Davis and Woodall

17
, Machado and Costa

26
, Shongwe and

Graham
19

 – these are denoted by S1, S2, S3, S4, respectively. The NSS, SSS, RSS, MSS 2-of-

(H+1) RR  ̅ charts were proposed by Derman and Ross
20

, Klein
13

, adopted from Machado and

Costa
26

, Antzoulakos and Rakitzis
29

 – these are denoted by RR1, RR2, RR3, RR4, respectively.

In Figure 3, the ZS and SS EQLs of these schemes are compared with those listed in Table I 

when δmax = 5 and we overlaid the EQL value of 253.99 of the  ̅ chart to measure its performance

against these schemes. We see that in ZS, the Synthetic- ̅ and synthetic  ̅ charts have an almost

equal EQL values, with the Synthetic- ̅ having just slightly lower EQLs. Hence, in ZS it follow that

it is better to use the more effective one-sided Synthetic- ̅ discussed in Wu et al.
18

 rather than the

two-sided Synthetic- ̅ chart discussed here. However, in SS, there is a significant difference

between the Synthetic- ̅ and synthetic  ̅ charts with SC1, SC2, SC3 and SC4 having a better

performance than the S1, S2, S3 and S3 schemes, respectively. For RR and IRR schemes, there is a 

significant performance difference especially when δmax is large, with the IRR1, IRR2, IRR3 and 

IRR4 better than the RR1, RR2, RR3 and RR4, respectively. Note that as δmax decrease, the EQL 
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values of the IRR and RR schemes become closer to each other, respectively. Finally, the  ̅ chart 

outperform some of the RR schemes, however, as δmax decrease, it becomes less effective.      

Zero-state (a) NSS Steady-state 

Zero-state (b) SSS Steady-state 

Zero-state (c) RSS Steady-state 

Zero-state (d) MSS Steady-state 

Figure 3: Comparison of the EQL values of the IRR and Synthetic-  ̅ charts with the RR and

synthetic  ̅ charts when H = 1, 2,…, 20 for ARL0 = 370.4 and δmax = 5
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5. Conclusion

In this paper, we proposed a MSS Synthetic- ̅ (i.e. SC4) chart using a Markov chain

imbedding technique and compared its ZS and SS ARL, EQL, PCI and ARARL performance with its 

seven Shewhart-type competitors. The convergence in the design parameter    as H increases for 

some given    have a direct effect on the specific shift and overall performance of the SC4 chart. 

Hence, for all values of H considered here, the new SC4 scheme yields a uniformly better ZS OOC 

ARL, whereas, in SS, the OOC ARL is only better for small and moderate shifts. However, the 

overall performance measures for the SC4 scheme both in ZS and SS are either the same or better 

than those of the other schemes discussed here; with equality occurring only when H = 1 and with 

the IRR4 in SS mode. Furthermore, we compared the EQL performance of the 1-of-1 or 2-of-(H+1) 

IRR and Synthetic- ̅ charts with the 2-of-(H+1) RR and synthetic  ̅ charts in terms of NSS, SSS,

RSS, MSS categories. We observed that there is no significant benefit in adopting the more 

complicated ZS Synthetic- ̅ schemes over ZS synthetic  ̅ schemes, however, the respective SS

Synthetic- ̅ schemes have a significant benefit over the SS synthetic  ̅ schemes.

Note that the results presented here only hold when the observations are from a normal distribution, 

hence, for other distributions, these will need to be re-evaluated or nonparametric counterparts need 

to be considered. 
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Appendix 

The transition probability matrix (TPM) of the Markov chain for any general (integer) value 

of M > 0 is given by 

             (

      

 
       

   
 
 
 
    

      

 
      

 ) (8) 

where        is the essential TPM, the vector        satisfies        with        

           and                  . In order to construct the TPM, we follow the Markov chain 

imbedding technique discussed briefly by Antzoulakos and Rakitzis
22,29

, Low et al.
30

 and in detail

by Fu and Lou
31

. This entails dividing the chart into separate distinct regions (see Figure 1) i.e. let

{ ̅ ; i ≥ 1} be a sequence of iid trials taking values in the set    = {O, U, E},    = {A, O, D, E} and
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   = {A, B, C, D, E} for the (IRR1, SC1), (IRR2, SC2, IRR3, SC3) and (IRR4, SC4), respectively. 

Then, define the probability that a plotting statistic falls in each region:  

(i)    denotes the probability that a point falls between the UWL and UCL i.e.    ̅    ; 

(ii)    denotes the probability that a point falls between the CL and UWL i.e.    ̅    ; 

(iii)    denotes the probability that a point falls between the LWL and CL i.e.    ̅    ; 

(iv)    denotes the probability that a point falls between the LCL and LWL i.e.    ̅    ; 

(v)   =  +   denotes the probability that a point falls between the LWL and UWL i.e.    ̅    ; 

(vi)   =  +   denotes the probability that a point falls either between the UWL and UCL, or LCL 

and LWL i.e.    ̅    ; 

(vii)   denotes the probability that a point falls either above the UCL, or below the LCL i.e. 

   ̅    . 

For some sample size, n, suppose that the values of    and   
  are known. Thus the probabilities of 

a plotting statistic falling in a specific region are given by 

             ̅        (    √ )   (    √ )

            ̅        (    √ )   (  √ ) 

             ̅       (  √ )   (     √ )

             ̅        (     √ )   (     √ )

             ̅                   

             ̅              ̅                   

         ̅          ̅          (    √ )   (     √ );

(9) 

respectively, where      denotes the cumulative distribution function (cdf) of the standard normal 

distribution and   is the shift parameter expressed in terms of the standard deviation units and we 

let CL = 0. 

Moreover, we need to define the compound patterns that result in an OOC event (which is 

also known as the waiting time until the first occurrence of an OOC signal). For example, the 

sequence of plotting statistics „AA‟ indicates two consecutive plotting statistics falling in region A, 

whereas „ABA‟ indicates the first plotting statistic falling in region A, the second in region B and 

the third in region A, etc. The symbol „±‟ is used to denote the assumption that (at time 0) the first 

observation falls either on the upper or lower warning region (i.e. HS feature), so that „±A‟ indicate 

the first plotting statistic falls either on region A or D and the second on region A. Following Fu 

and Lou
31

, we let the sequences of conforming and nonconforming samples, say      ABBA, to be 

the l
th

 simple pattern within a sequence of n four-state trials from, say, set   . Furthermore, let    to 

be r
th

 simple pattern with the sequence of states starting with a HS state, say    = {±OOA}. Then, 

define   as a compound pattern if it is the union of   distinct simple patterns i.e.          
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    . Similarly, define   as a compound pattern if it is the union of   distinct simple patterns i.e. 

             . Let W denote the waiting time for the first occurrence of either   or  . 

Then the run-length distribution of a control chart coincides with the waiting time distribution of W. 

That is, the run-length distribution of the chart becomes the waiting time until the first occurrence 

of one of the patterns,   ,…,   ,   ,…,    and these are the absorbing states of the Markov chain, 

where  +  denotes the number of patterns (or sequences) of the  ̅  that cause the chart to signal.

Then we define the Markov chain with the state space, Ω, operating on { ̅ ; i ≥ 1} as follows:

 the absorbing state – corresponding to the union of   ,…,   ,   ,…,   ; in order to reduce the 

dimension of the TPM, the  +  absorbing states which signal the entrance of the Markov chain 

to each of the  +  distinct simple patterns may be substituted by a single absorbing state, 

denoted by OOC; 

 the sub-patterns – corresponding to the distinct first element(s) of the simple pattern   ,…,   

and   ,…,    without the last element. These sub-patterns are non-absorbing and are denoted 

by   ,…,    and   ,…,    where     and    , respectively, with one of these    equal to 

the transient state, denoted by  , corresponding to the IC central region in Figure 1.

For any H > 0, the dimension (i.e. M+1) of the TPM in Equation (8) for the schemes listed in Table 

I are given by 

IRR1: (H+1)+1,   IRR2: (H
2
+H+1)+1,  IRR3: (2H+1)+1,  IRR4: (2H+1)+1 (10a)

and 

SC1:(H+1)+1, SC2:[(H
2
+H+1)+H]+1, SC3:[(2H+1)+H]+1, SC4:[(2H+1)+(2H-1)]+1, (10b) 

respectively. That is, M, the dimension of the essential TPM, is given by 

M =  {
                                                         
                                                    

(11) 

where 

  =  {
                                                            
                                                         

(12) 

Based on this, for any H > 0, we define the state spaces as follows 

IRR1 & SC1: Ω = {    ,  ,… ,   ; OOC} 

IRR2, IRR3, IRR4: Ω = {  ,…,       

 
  

,       

 

  ,       

 
  

, …,   ; OOC} 

SC2, SC3, SC4: Ω = {  ,…,       

 
  

,       

 

  ,       

 
  

, …,   ;   , …,   ; OOC} 

(13) 

In this paper, we considered H = 1, 2,…, 20, hence, in Table IX we show the dimension of the 

TPMs for each scheme listed in Table I. 
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Table IX: The dimension (M+1)×(M+1) of the TPM of the embedded Markov chain approach for 

the 1-of-1 or 2-of-(H+1) IRR and Synthetic- ̅ charts when H = 1,…, 20

H IRR1 IRR2 IRR3 IRR4 SC1 SC2 SC3 SC4 

1 3×3 4×4 4×4 4×4 3×3 5×5 5×5 5×5 

2 4×4 8×8 6×6 6×6 4×4 10×10 8×8 9×9 

3 5×5 14×14 8×8 8×8 5×5 17×17 11×11 13×13 

4 6×6 22×22 10×10 10×10 6×6 26×26 14×14 17×17 

5 7×7 32×32 12×12 12×12 7×7 37×37 17×17 21×21 

6 8×8 44×44 14×14 14×14 8×8 50×50 20×20 25×25 

7 9×9 58×58 16×16 16×16 9×9 65×65 23×23 29×29 

8 10×10 74×74 18×18 18×18 10×10 82×82 26×26 33×33 

9 11×11 92×92 20×20 20×20 11×11 101×101 29×29 37×37 

10 12×12 112×112 22×22 22×22 12×12 122×122 32×32 41×41 

11 13×13 134×134 24×24 24×24 13×13 145×145 35×35 45×45 

12 14×14 158×158 26×26 26×26 14×14 170×170 38×38 49×49 

13 15×15 184×184 28×28 28×28 15×15 197×197 41×41 53×53 

14 16×16 212×212 30×30 30×30 16×16 226×226 44×44 57×57 

15 17×17 242×242 32×32 32×32 17×17 257×257 47×47 61×61 

16 18×18 274×274 34×34 34×34 18×18 290×290 50×50 65×65 

17 19×19 308×308 36×36 36×36 19×19 325×325 53×53 69×69 

18 20×20 344×344 38×38 38×38 20×20 362×362 56×56 73×73 

19 21×21 382×382 40×40 40×40 21×21 401×401 59×59 77×77 

20 22×22 422×422 42×42 42×42 22×22 442×442 62×62 81×81 

Note that        is the row vector of initial probabilities associated with the ZS mode so that the 

initial state on the TPM corresponds to the value of 1. From Equation (13), it follows that the initial 

state is given by 

IRR1:         (1 0 0 … 0) i.e. the 1
st
 one

  SC1:         (0 1 0 … 0) i.e. the 2
nd

 one

IRR2, IRR3, IRR4:         (0 0 …       

 

…0 0) i.e. the (
   

 
)th

 one

SC2, SC3, SC4:         (0 0 …0       …0) i.e. the ( +1)
th

 one

(14) 

In SS, the vector   is replaced by a vector  ,  i.e. the SS initial probability vector given by 

                      (15) 

where the sum of the elements in Equation (15) sum to unity. Champ
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 showed that when    is 

obtained from      (i.e.   = 0) after diving each element by its corresponding row sum, then       

is a vector such that         subject to ∑   
 
     1. 

For illustration purpose, in Table X we give the compound patterns of the eight schemes in Table I 

when H ≤ 5 with charting regions in Figure 1.  
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Table X: Compound patterns
1
 of the Markov chain imbedding technique for the 1-of-1 or 2-of-

(H+1) IRR and Synthetic- ̅ charts when H ≤ 5

The breakdown of these compound patterns is done in Table XI by first defining the absorbing 

states and then obtaining the corresponding non-absorbing states from these. Then Table IX and 

Equations (10) to (13) are used to construct the TPMs in Table XII for H = 1 and 5. The 

construction of the TPMs of the other values of H follows in a similar manner.  
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1
 The boldfaced simple patterns with a HS feature (i.e. starting with „±‟) correspond to  , see Table XI. 

H IRR1 / SC1 IRR2 / SC2 IRR3 / SC3 IRR4 / SC4 

1 E, UU E, AA, ±A 

DD,  ±D 

E, AA, ±A 

DD, ±D 

E, AA, ±A 

DD,  ±D 

2 UOU AOA, ADA, ±OA 

DOD, DAD, ±OD 

AOA, ±OA 

DOD, ±OD 

ABA, ±BA 

DCD, ±CD 

3 UOOU AOOA, AODA, ADOA, ±OOA 

DOOD, DOAD, DAOD, ±OOD 

AOOA, ±OOA 

DOOD, ±OOD 

ABBA, ±BBA 

DCCD, ±CCD 

4 UOOOU AOOOA, AOODA, AODOA, ADOOA, ±OOOA 

DOOOD, DOOAD, DOAOD, DAOOD, ±OOOD 

AOOOA, ±OOOA 

DOOOD, ±OOOD 

ABBBA, ±BBBA 

DCCCD, ±CCCD 

5 UOOOOU AOOOOA, AOOODA, AOODOA, AODOOA, ADOOOA, ±OOOOA 

DOOOOD, DOOOAD, DOOAOD, DOAOOD, DAOOOD, ±OOOOD 

AOOOOA, ±OOOOA 

DOOOOD, ±OOOOD 

ABBBBA, ±BBBBA 

DCCCCD, ±CCCCD 



23 

Table XI: Components of the TPMs of the IRR and Synthetic- ̅ charts when H = 1 and 5

H Type         Ω 

1 IRR1 
  = {O}   ={E},   ={UU} None   ={U} None { ,  ;OOC} 

SC1 

IRR2 
  = {O} 

  ={E},   ={AA},   ={DD} 

None 

  ={A},   ={D} 

None {  , ,  ;OOC} IRR3 

IRR4   = {B,C} 

SC2 
  = {O} 

  ={±A},   ={±D}   ={±} {  , ,  ;  ;OOC} SC3 

SC4   = {B,C} 
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Table XI: (continued) 

H Type         Ω 

5 

IRR1 

SC1 
  = {O} 

  ={E},   ={UU}, 

  ={UOU},   ={UOOU}, 

  ={UOOOU}, 

  ={UOOOOU} 

None 

  ={U},   ={UO}, 

  ={UOO}, 

  ={UOOO}, 

  ={UOOOO}  

None { ,  ,  ,  ,  ,  ;OOC} 

IRR2 

   = {O} 

  ={E},   ={ADOOOA}, 

  ={AODOOA}, 

  ={AOODOA}, 

  ={AOOODA}, 

  ={AOOOOA}, …, 

   ={ADA},    ={AOA}, 

   ={AA},    ={DD}, 

   ={DOD},    ={DAD},  …, 

   ={DOOOOD}, 

   ={DOOOAD}, 

   ={DOOAOD}, 

   ={DOAOOD}, 

   ={DAOOOD}  

None   ={ADOOO}, 

  ={AODOO}, 

  ={AOODO}, 

  ={AOOOD}, 

  ={AOOOO}, …, 

   ={AD}, 

   ={AO},    ={A}, 

   ={D},    ={DO}, 

   ={DA}, …, 

   ={DOOOO}, 

   ={DOOOA}, 

   ={DOOAO}, 

   ={DOAOO}, 

   ={DAOOO} 

None {  ,…,   , ,   ,…,   ;OOC} 

SC2 

  ={±A},   ={±D}, 

  ={±OA}, 

  ={±OD}, 

  ={±OOA}, 

  ={±OOD}, 

  ={±OOOA}, 

  ={±OOOD}, 

  ={±OOOOA}, 

   ={±OOOOD} 

  ={±}, 

  ={±O}, 

  ={±OO}, 

  ={±OOO}, 

  ={±OOOO} 

{  ,…,   , ,   ,…,   ;  ,…,  ;OOC} 

IRR3 

  = {O} 

  ={E},   ={AOOOOA}, 

  ={AOOOA},   ={AOOA}, 

  ={AOA},   ={AA}, 

  ={DD},   ={DOD}, 

  ={DOOD},    ={DOOOD}, 

   ={DOOOOD} 

None 

  ={AOOOO}, 

  ={AOOO}, 

  ={AOO}, 

  ={AO},   ={A},  

  ={D},   ={DO}, 

  ={DOO}, 

   ={DOOO}, 

   ={DOOOO} 

None {  ,…,  , ,  ,…,   ;OOC} 

SC3 

  ={±A},   ={±D}, 

  ={±OA}, 

  ={±OD}, 

  ={±OOA}, 

  ={±OOD}, 

  ={±OOOA}, 

  ={±OOOD}, 

  ={±OOOOA}, 

   ={±OOOOD} 

  ={±}, 

  ={±O}, 

  ={±OO}, 

  ={±OOO}, 

  ={±OOOO} 

{  ,…,  , ,  ,…,   ;  ,…,  ;OOC} 

IRR4 

  = {B,C} 

  ={E},   ={ABBBBA}, 

  ={ABBBA},   ={ABBA}, 

  ={ABA},   ={AA}, 

  ={DD},   ={DCD}, 

  ={DCCD},    ={DCCCD}, 

   ={DCCCCD} 

None 

  ={ABBBB}, 

  ={ABBB}, 

  ={ABB},   ={AB}, 

  ={A},    ={D}, 

  ={DC},   ={DCC}, 

   ={DCCC}, 

   ={DCCCC} 

None {  ,…,  , ,  ,…,   ;OOC} 

SC4 

  ={±A},   ={±D}, 

  ={±BA}, 

  ={±CD}, 

  ={±BBA}, 

  ={±CCD}, 

  ={±BBBA}, 

  ={±CCCD}, 

  ={±BBBBA}, 

   ={±CCCCD} 

  ={±}, 

  ={±B}, 

  ={±C}, 

  ={±BB}, 

  ={±CC}, 

  ={±BBB}, 

  ={±CCC}, 

  ={±BBBB}, 

  ={±CCCC} 

{  ,…,  , ,  ,…,   ;  ,…,  ;OOC} 
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Table XII: TPMs of the Synthetic- ̅ and IRR (by removing the   states) charts when H = 1 and 5

H=1 SC1 and IRR1 SC2, SC3 and SC4 (removing   yields IRR2, IRR3 and IRR4) 
    OOC 

        

    1-  

OOC 1 

       OOC 

        +  

          

        +  

     +  +  

OOC 1 

H=5 SC1 and IRR1 
            OOC 

        

    1-  

    1-  

    1-  

    1-  

    1-  

OOC 1 

SC3 (removing  ,  ,…,   yields IRR3) 
                             OOC 

        +  

        +  

        +  

        +  

        +  

          

        +  

        +  

        +  

         +  

         +  

     +  +  

     +  +  

     +  +  

     +  +  

     +  +  

OOC 1 

SC4 (removing  ,  ,…,   yields IRR4) 
                                 OOC 

    +      +  

          +  

          +  

          +  

          +  

      +      

          +  

          +  

          +  

           +  

       +    +  

       +  +  

         +  

         +  

         +  

         +  

         +  

         +  

   +      +  

     +    +  

OOC 1 
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Table XII: (continued) 

SC2 (removing  ,  ,…,   yields IRR2) 
                                                                                        OOC 

      +  +  

      +  +  

      +  +  

      +  +  

        +  

      +  +  

      +  +  

      +  +  

        +  

       +  +  

       +  +  

         +  

       +  +  

         +  

         +  

          

         +  

         +  

       +  +  

         +  

       +  +  

       +  +  

         +  

       +  +  

       +  +  

       +  +  

         +  

       +  +  

       +  +  

       +  +  

       +  +  

     +  +  

     +  +  

     +  +  

     +  +  

     +  +  

OOC 1 
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