Onderstepoort J. Vet. Res. (1964), 31 (2), 143-150 Printed in the Republic of S. Afr. by the Government Printer, Pretoria

THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP IN THE COASTAL AREA OF THE EASTERN PROVINCE

L. W. ROSSITER, Principal State Veterinarian, Grahamstown, Cape Province

INTRODUCTION

A survey of the seasonal incidence of the nematode parasites of sheep and goats in the coastal areas of the Eastern Province, has been carried out. In a preliminary report Rossiter (1961) described the vegetation and farming practices in this region, as well as methods of carrying out this survey. His observations were made on three flocks; faecal samples were regularly collected and differential egg counts carried out.

The reliability of egg counts as an index of the worm burdens has been doubted (Roberts, 1957; Muller, 1961; Reinecke, 1963). This problem can be solved by comparing egg counts with worm burdens. Simultaneously, data from regular *post mortem* examinations can be used to study the epizootiology of the various species.

MATERIALS AND METHODS

The experiment was carried out on the farm "Lincoln" in the frost-free area on the coastal peneplain, about 10 miles inland from Port Alfred. Fifty weaned lambs, 9 to 12 months of age, were introduced from the Karoo in April, 1962. Immediately on arrival they were drenched with thiabendazole to rid them of round worms; they were then grazed with the farm flock of the same age for two weeks. Thereafter they were run on their own in a small 20 morgen camp consisting of mixed sour veld. They gradually became infested as was confirmed by faecal egg counts and by August, 1962 they had acquired a moderate infestation.

The flock became heavily infested in summer; some died but were not examined. The entire flock was therefore treated with half doses (10 gm) of phenothiazine on 27 December, 21 February and 24 April.

Differential egg counts were carried out every two weeks on the entire experimental flock.

Two sheep were slaughtered every 14 days, but in four instances the periods varied from 12 to 21 days. These animals were randomly selected, but such animals as were severely affected by helminthiasis, were immediately included in the slaughter group. After starvation for 36 hours, faecal samples were collected for differential egg counts and the sheep slaughtered. Slaughter took place on the alternate week to the sampling of the entire flock for faecal egg counts.

Examination post mortem is described elsewhere (Reinecke, 1961).

The experiment ran from 17 September, 1962 to 3 September, 1963, and climatic data were recorded for this period.

Received on 20 July, 1964, for publication--Editor

US OSTERTAGIA	HAEMONCHUS OSTERTAGIA	OSTERTAGIA	OSTERTAGIA	TAGIA				TRI	TRICHOSTRONGYI US	RONGY	SUI		OESOP	OESOPHAGO- STOMUM	NEM DII	NEMATO- DIRUS	TRI- CHU- RIS
*3rd *4th	*4th	*4th		0 0	circum- cincta	trifur- cata	3rd	4th	axei	ruga- tus	colubri- formis	pieter- sei	4th	colum- bianum	4th	spa- thiger	globu- losa
1,006 20 0 730 0 0	20 0		00		320	65 18	00	00	40 120	658 423	282 282	00	00	24 43	00	220	13
1,150 20 6 3,240 0 42	20		42		380 2,380	62 577	00	20 0	180 800	141 1,622	68 811	276	00	14 71	00	00	20
1,860 38 82 510 30 32	38		32		1,030	27	00	00	118 242	499	182 242	454 767	00	71 32	00	00	40
2,416 143 121 499 10 20			121 20	1	741 494	141	76	288 345	682 85	704 359	384 265	128	00	30	00	00	124
920 52 95 843 0 196	52		95	1	252 350	22	438	829 0	375 133	1,102	375	1,028	30	46 22	10 313	50	15
7,650 0 143 883 0 36			143		1,080 260	272	00	50	213 290	153	144 41	72 396	00	38 61	260	1,006	17
5,416 0 300 4,054 0 190			300		984 1,576	329 277	00	50	516 666	912 540	357 135	714 451	4 6	41 88	406 763	00	10
1,553 0 58 4,347 0 100			58		1,277 671	319	00	00	130 296	691 273	221 55	321 218	00	80 24	187 20	503 433	30
1,040 0 0 0	00		00		636	00	00	00	180 0	597 601	1C4 64	165 408	233 37	31	510 36	140 340	21 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00		80		502	158	00	00	80 20	225 608	199 401	99 207	20	25	745 140	00	17
2,390 0 0 470 0 0			00		306 0	00	00	00	43 20	657 280	0 70	196 0	160 92	24	570 40	00	00
00	00		00		20	00	00	00	40 143	216 207	118 74	26 15	07	0	193 78	0 80	00
1,050 0 0 20	00		20		190	180	00	00	20 126	16 920	285	381	22 80	00	100 276	$^{10}_{176}$	06
170 0 8 810 0 18	0		00		56	0	0	0	90	789	116	255	50	0	160	10	00

TABLE 1.-Worms recovered post mortem

THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP

L. W. ROSSITER

Date	uee	HAE	HAEMONCHUS	SUH		OSTER	OSTERTAGIA			TRI	TRICHOSTRONGYLUS	RONGY	SUL		OESOI	0ESOPHAGO- STOMUM	NEMATO- DIRUS	ATO- US	TRI- CHU- RIS
-	No.	3rd	4th	con- toi tus	*3rd	*4th	circum- cincta	trifur- cata	3rd	4th	axei	ruga- tus	colubri- formis	pieter- sei	4th	colum- bianum	4th	spa- thiger	globu- losa
16 Apr 25	250 194	00	1,711	2,690	00	50	135	19	00	00	110 164	545 426	425 284	120 0	306 190	114 3	00	00	21 20
29 Apr	98 83	00	30 640	633	00	10	0 191	00	00	00	20 116	519 706	91 132	45	86 40	07	380 190	168	50
13 May	57 149	00	40	06	00	00	32	00	00	0	355	346 795	186 292	238	22	0	66 238	00	14
27 May 12	122	00	73 210	1,149	00	50	233	00	00	00	245	1,653	713 145	177 0	93 100	19	10	951 0	3-1
10 Jun	70 28	00	530 115	480 10	00	30	82 0	00	00	00	220 518	1,686	813 345	407 148	85 84	60	35	00	10
24 Jun 12	120 82	00	850 340	20 820	00	40	130	00	00	00	482 120	732 452	282 219	111 109	17	40	20	00	00
9 Jul	187 180	00	805 646	305 2,787	00	10	42 240	00	00	00	215 326	707	385 319	193 94	44	19	33	100	00
22 Jul 10	104 291	00	253 483	1,443 2,265	00	14	151	00	00	00	141 206	626 1,193	179 410	90 261	30 45	20 70	231	00	00
5 Aug 7	72 22	00	1,666	670	00	0	26 0	00	00	00	126 111	2,111	53	435	24	67 4	127	20	00
19 Aug 231 111	12	00	1,900	4,476	00	28	300	00	00	00	74	924	261 502	93	12	60 23	0 120	00	00
[3 Sep 209 121	60	00	245 776	610 1,246	00	00	00	00	00	00	50 118	499 221	218 102	63	00	54 4	00	00	00

-

THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP

RESULTS

Species Recovered post mortem

This is summarized in Table 1.

Parasites of the abomasum

Haemonchus contortus: This species rapidly built up to a peak in December when treatment became necessary to prevent mortality. It was the dominant species except during those periods immediately following treatment with half doses of phenothiazine; during these periods more *Trichostrongylus* spp., and on rare occasions more *Nematodirus spathiger*, were present. This was to be expected as at these dosage rates only *H. contortus* is affected.

It is of interest that immature stages were present in all but five animals, and also that these were present in winter and spring, which were comparatively dry. Only two animals did not have either larval or adult *H. contortus*.

Ostertagia spp.: Numerically O. circumcincta dominated O. trifurcata. Worm burdens reached their peak from October to January. Third and fourth stage larvae were recorded neither in such numbers nor as consistently as those of H. contortus. Immature worms were recovered from October to January, coincidental with the higher adult worm burdens.

The worm counts rose steeply in October, while those of *H. contortus* only showed a marked rise two months later. This appears to indicate that *Ostertagia* spp. respond more readily to rain in the cooler spring months, but that once *H. contortus* increases, *Ostertagia* spp. tend to disappear.

Trichostrongylus axei: This parasite was present in moderate numbers in all but three sheep. Larval stages were recovered from the abomasum in five autopsies only, in October and November. The adult worm burden rose from October to December, fell to a low level in the summer months, rose again in June and fell steadily until September.

Parasites of the small intestine

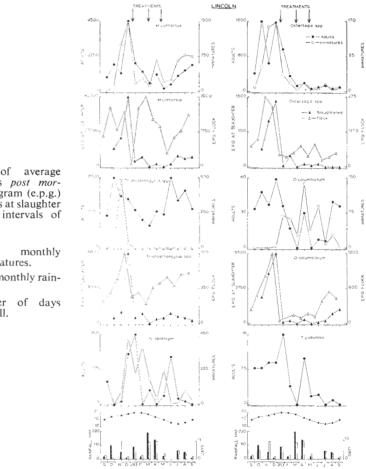
Trichostrongylus spp.: Most of the parasites in the small intestine belonged to this genus. The increase in worm burdens in October is due to 4,055 worms recovered from sheep 169; this was far in excess of the number of worms in other sheep slaughtered at the time. Worm counts fell sharply during the summer months, but rose steadily in autumn to reach a peak in August. Larval stages were recovered in small numbers in October, larger numbers in November and then disappeared.

The order of prevalence of the species was T. rugatus, T. colubriformis and T pietersei. During October, however, T. pietersei was dominant.

Phenothiazine at half dosage levels had no effect on this genus; worm burdens were already falling prior to treatment, but rose sharply after the second and third treatment.

Nematodirus spathiger: This species was recovered from 32 autopsies. A striking feature was the recovery of only fourth stage larvae in 15 of these sheep.

With the exception of the animals slaughtered on 16 April, this species was consistently recovered from mid-November to May; at other times it made an erratic appearance.


Parasites of the caecum and colon

Oesophagostomum columbianum: This species was always present in moderate numbers. A marked feature was the predominance of fourth stage larvae from January to June inclusive; adults were more numerous during the rest of the survey period. The larval predominance coincided with the phenothiazine treatment. This drug is known to be more effective against adults than larval stages, thus accounting for the reversed ratio.

Trichuris globulosa: This species was consistently recovered from September to mid-January and again in May.

A comparison between differential egg counts and worm burdens

The results of four autopsies as well as the average egg counts for that period, have been grouped together in an attempt to indicate general trends rather than individual fluctuations. The data are illustrated graphically in Figure 1.

- FIG. I .-- Comparison of average worm burdens post mortem, eggs per gram (e.p.g.) of faeces counts at slaughter and of flock intervals of four weeks.
 - $\cdot \cdot = Mean$ temperatures.
 - == Total monthly rainfall.
 - [] = Number of days rain fell.

THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP

(a) Haemonchus contortus

There appears to be a fairly close correlation between egg counts performed before slaughter and worms recovered *post mortem*. The average egg count of the flock did not always agree with the autopsy results.

Worm burdens increased rapidly after the rains in November and half doses of phenothiazine controlled this infestation. There was not the same increase in worm burdens, however, after heavy rains in March and April.

The graph in Figure 1 does not give a true reflection of the effects of the second and third anthelmintic treatments, as the results were grouped irrespective of the time of treatment. Autopsy results summarized in Table 1 show the effects of treatment.

(b) Ostertagia spp.

There is little or no correlation between egg counts and number of worms recovered *post mortem*. Heavy worm burdens did not cause a corresponding increase in egg counts of slaughtered sheep. Worm counts rose suddenly in October and were falling steadily before treatment was initiated in December. Phenothiazine did not suppress the worm burdens to the same extent as it did the egg counts.

(c) Trichostrongylus spp.

There is little correlation between the egg counts of the slaughtered sheep and their respective worm burdens. Both worm burdens and egg counts fell prior to treatment, but rose steadily even after the third dose of phenothiazine. The heavy rains in March and April were followed by a rise in worm burdens in late autumn and winter; this was also reflected in the egg counts of the flock, but not in those of the slaughtered animals.

(d) Oesophagostomum columbianum

There is little correlation between egg counts and worm burdens.

(e) Nematodirus spathiger

No comparison can be made between egg counts and worm burdens, as eggs were only recovered twice from individual sheep.

(f) Trichuris globulosa

Similar remarks apply as to the preceding species.

DISCUSSION

It is undesirable to treat an experimental flock during the survey period. As, however, some died in December from heavy H. contortus infestations treatment was essential to prevent further mortalities.

Treatment could be aimed either at the complete elimination or the partial control of the nematodes. The elimination of the worms by a highly effective anthelmintic with a wide range of efficacy, e.g. thiabendazole, would have created an almost worm-free flock and jeopardized the main object of the experiment. The other alternative was the partial control of the worms, particularly those responsible for the mortalities. This was the method chosen. The entire flock was treated with half doses of phenothiazine. This solved the immediate problem, but had little effect on other genera except adult *O. columbianum*. The survey could continue, but further treatment was again necessitated by abnormally heavy rains.

The treatments depressed egg laying in all worms and therefore faecal egg counts were lower and did not give a true reflection of the worm burdens.

An important observation was, that in spite of treatment, there was a very close relationship between egg counts of slaughtered sheep and the adult worm burdens of H. contortus. The flock egg count averages did not correspond to the same extent and flock averages should accordingly be treated with reserve. In the other species, neither egg count data of slaughtered sheep nor the average egg count of the flock, was a reliable index of infestation.

This experiment emphasizes the importance of third and fourth stage larvae in a study of this nature; this was particularly noticeable in *O. columbianum* and *N. spathiger*. To establish the presence of immature worms, slaughter and critical examination of the worms present is essential.

It is interesting to note so many fourth stage larvae of *O. columbianum* from mid-summer to autumn and so few adults later in the year. In experimental infestations there is an inverse ratio between the number of *O. columbianum* larvae dosed and the number that eventually develop into adults (Sarles, 1944). These experiments confirm Sarles' observations, under field conditions. At various times the experimental sheep showed moderate to severe diarrhoea; this possibly resulted in the expulsion of the larvae as demonstrated by Sarles. This has also been observed in calves, experimentally infested with *Oesophagostomum radiatum* (Roberts, Elek & Keith, 1962).

It has been shown by Kates & Turner (1953) that lambs rapidly develop a resistance to *N. spathiger*. In many of the sheep slaughtered fourth stage larvae were recovered while adults were absent. It is suggested that this is part of immune-mechanism, as is the case with other worms, e.g. *Haemonchus placei* (Roberts, 1957) and *Ostertagia* spp. (Sommerville, 1954).

Peak *H. contortus* infestation appears to be from December or January to April. Summer rains stimulated outbreaks of haemonchosis, thus confirming Gordon's (1948) observations.

Ostertagia spp. make their appearance earlier; they reach a peak from October to December and taper off from January onwards. Whilst the development of H. contortus is adversely affected by temperatures below $18 \cdot 3^{\circ}C$ (Gordon, 1948), this is not the case with Ostertagia spp. No doubt this accounts for its earlier appearance and peak.

Strategic dosing

Gordon (1948) defined strategic drenching as preventive dosing to control potential outbreaks of worm infestation; this is based on the epizootiology of the various genera. In the coastal areas of the Eastern Province the following strategic drenches are recommended:—

- 1. October to control Ostertagia spp.
- 2. December to control H. contortus and O. columbianum.
- 3. April to control Trichostrongylus spp.

Tactical dosing, i.e. dosing according to the rainfall, should be practised when rain, in excess of 15 mm, is recorded in a period of seven to ten days, particularly from spring to autumn.

THE EPIZOOTIOLOGY OF NEMATODE PARASITES OF SHEEP

Anthelmintics effective against both larvae and adults (e.g. thiabendazole and methyridine) may be given at any time after such rains. On the other hand, if other anthelmintics, only effective against adults, are used, at least three weeks should elapse before treatment so that the larvae may develop to adults.

CONCLUSIONS

Seasonal incidence trends of the nematode parasites of sheep can best be determined by slaughtering sheep at regular intervals and carrying out total and differential worm counts *post mortem*. Differential egg count data are reliable with *Haemonchus contortus* only.

SUMMARY

An experiment comparing critical slaughter results with egg count data collected *ante mortem* is described.

Haemonchus contortus was prevalent from December to April; Ostertagia sppfrom October to December; Trichostrongylus spp. from July to August.

No obvious trends were discernible either with *Oesophagostumum columbianum* or *Nematodirus spathiger*, although larval stages of both species were plentiful from mid-summer to autumn.

Strategic dosing is recommended in October, December and April.

ACKNOWLEDGEMENTS

A very real debt of gratitude is due to Dr. R. K. Reinecke, Head of the Department of Parasitology, Onderstepoort for his guidance and support during the course of the experiment and for invaluable assistance in the preparation of this paper and Miss M. Collins for drawing the graph.

Thanks are also due to Mr. R. R. Dalbock for technical assistance and to Messrs. E. N. S. Warren and Sons of "Lincoln" without whose co-operation this experiment would not have been possible.

The author expresses his thanks to the Chief, Veterinary Field Serv ces for his asistance and permission to publish this paper.

References

GORDON, H. McL., 1948. The epidemiology of parasitic diseases with special reference to studies with nematode parasites of sheep. *Aust. Vet. J.* 24, 17-44.

- KATES, K. C. & TURNER, J. H., 1953. Experimental studies on the pathogenicity of Nematodirus spathiger, a trichostrongylid parasite of sheep. Am. J. Vet. Res. 14, 72-81.
- MULLER, G. L., 1961. Cited by Hobbs, W. B.; Rossiter, L. W.; Reinecke, R. K.; Muller, G. L.; Verster, Anna; van der Walt, K.; and Tustin, R. C. Symposium: Helminth Research in South Africa. J.S. Afr. Vet. Med. Ass., 32, 477–479.

REINECKE, R. K., 1961. Helminth Research in South Africa. III. The diagnosis of nematode parasites in ruminants for worm survey purposes. J.S. Afr. Vet. Med. Ass., 32, 167–173.

REINECKE, R. K., 1963. Methods of testing anthelmintics in sheep. J.S. Afr. Vet. Med. Ass., 34, 233-246.

ROBERTS, F. H. S., 1957. Reactions of calves to infestation with the stomach worm, *Haemonchus placei* (Place, 1893) Ransom, 1911. *Aust. J. Agric. Res.*, 8, 740–767.

ROBERTS, F. H. S., ELEK, P. & KEITH, R. K., 1962. Studies on resistance in calves to experimental infections with the nodular worm, *Oesophagostomum radiatum* (Rudolphi, 1803) Railliet, 1898. Aust. J. Agric. Res., 13, 551–573.

ROSSITER, L. W., 1961. Helminth research in South Africa. II. Seasonal incidence of nematode parasites of small stock in the Grahamstown area. J.S. Afr. Vet. Med. Ass., 32, 157–162.

- SARLES, M. P., 1944. Effects of experimental nodular worm (*Oesophagostomum columbianum*) infection in sheep. U.S. Dept. Agric. Tech. Bull. 875, pp. 19.
- SOMMERVILLE, R. I., 1954. Histiotrophic Phase of the Nematode Parasite, Ostertagia circumcincta. Aust. J. Agric. Res., 5, 130-140.