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Abstract. We study the limit of the stochastic model for two dimensional second grade
fluids subjected to the periodic boundary conditions as the stress modulus tends to
zero. We show that under suitable conditions on the data the whole sequence of strong
probabilistic solutions (uα) of the stochastic second grade fluid converges to the unique
strong probabilistic solution of the stochastic Navier-Stokes equations.

1. Introduction

Let D = [0, L]2 ⊂ R2, L > 0, be a periodic square, T > 0 a fixed time. Let α denote
a sequence of positive numbers (αn)n∈N which converges to zero as n converges to ∞;
we shall express this by just writing α → 0. We consider a complete probability space
(Ω,F , P ) endowed with the filtration F t, 0 ≤ t ≤ T , which is the σ-field generated by a
given Rm-valued standard Wiener process {W(s), 0 ≤ s ≤ T} and the null sets of F . In
this paper we investigate the behavior of the sequence (uα) of strong probabilistic solutions
of the following problems:




d(uα − α∆uα) + (−ν∆uα + curl(uα − α∆uα)× uα +∇P)dt = F dt + GdW
in Ω× (0, T ]×D,

div uα = 0 in Ω× (0, T ]×D,´
D uαdx = 0 in Ω× (0, T ],

uα(0) = u0 in Ω×D,

(1)

when α → 0. The system (1), which is to be understood in the sense of distributions, is the
equations of motion for an incompressible second grade fluid driven by random external
forces. Here uα is the velocity of the fluid, P is a modified pressure given by

P = −p̃− (1/2)|uα|2R2 + αuα.∆uα + (α/4)tr(∇uα + (∇uα)t).

Throughout we assume that (1) is subject to the periodic boundary condition. We refer to
[23] and [17] for further reading on fluid of complexity two and on second grade fluids. The
interest in the investigation of mathematical and physical problems related to second grade
fluids arises from the fact that they describe a large class of Non-Newtonian fluids such as
dilute polymeric solutions (solution of swollen gel or oil polyols ), industrial fluids (oils,...),
slurry flows; just to cite a few. Second grade fluids are also connected to Turbulence
Theory. Indeed the discussion on the relation between Non-Newtonian fluids, especially
fluids of differential type, and Turbulence Theory started with the work of Rivlin [28]. It
was rediscovered recently (see, for example, [18] and [12] ) that the flow of second grade
fluids can be used as a basis for a turbulence closure model.

In the deterministic case, i.e when G(t, x) ≡ 0, existence and uniqueness results are
given in [14], [13] for instance. It is known from [21] that under general assumption on the
data the weak solution (in the partial differential equations sense) of second grade fluids
equations converges weakly to the weak solution of the Navier-Stokes equations. We also
refer to [7] for interesting discussions related to their relationship with other fluid models.
Although there are lots of papers dealing with stochastic partial differential equations and
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hydrodynamics (see, for instance, [1], [2], [4],[5], [6], [9], [8], [10], [15], [16] ,[20],[22], [24],[29],
[30],[31]), there are only few known results for the stochastic version of second grade fluids.
The existence of weak probabilistic (or martingale) solution was recently proved in [26]. In
this paper, we show that we can construct a sequence (uαj ) of strong stochastic solutions
of (1) that converges in a certain sense (see Theorem 3.5 and Remark 3.6) to the stochastic
weak solution of the stochastic Navier-Stokes equations (SNSE) as αj → 0. This result was
first established in [25]. We also prove that the whole sequence (uα) converges in probability
to the unique stochastic strong solution of the stochastic Navier-Stokes equations in the
topology of L2(0, T ;H) as α → 0 (see Theorem 3.7). Our proof, which is inspired by the
papers [2] and [21], relies on deriving estimates (independent of α) for the velocity uα

in Sobolev H1 norm. Unfortunately, (1) contains a very highly nonlinear term (see the
curl-term) and using only the information on the H1 norm of uα is not sufficient to pass to
the limit in this term. To overcome this difficulty, we proved an interesting and technical
mean-type estimate (see Lemma 4.4) which allows to use the deep compactness results
of Prokhorov and Skorokhod. This approach is a probabilistic refinement of the idea in
[21]. The convergence of the whole sequence to the strong probabilistic solution of the
Stochastic Navier-Stokes equations is obtained by using a technical lemma (Lemma 5.1 )
which originated in [20]. The present paper generalizes the deep result obtained by Iftimie
in [21]. Our work also emphasizes the theory of Rivlin in [28].

The layout of this paper is as follows. In addition to the current introduction this article
consists of four other sections. In Section 2 we give some notations, necessary backgrounds
of probabilistic or analytical nature. We formulate the hypotheses relevant for the paper
and our main results in Section 3. The fourth section is devoted to the proof of the first
main result. Finally, we prove in the last section that the whole sequence of the strong
probabilistic solution for the stochastic model for second grade fluids converges to that of
the stochastic Navier-Stokes equations in dimension two.

2. Preliminaries-Notations

For a Banach space X we denote by X the space of R2-valued functions such that each
component is an element of X. We denote by H1

0(D) the space of functions u that belong
to the Sobolev space of periodic functions H1(D) and satisfying

ˆ

D
u(x)dx = 0.

We also introduce the spaces

V =
{

u ∈ C∞per(D) : div u = 0 and
ˆ

D
udx = 0

}

V = closure of V in H1
0(D)

H = closure of V in L2(D),

where C∞per(D) denotes the space of infinitely differentiable periodic function with period
L.
We denote by (·, ·) and | · | the inner product and the norm induced by the inner product
and the norm in L2(D) on H, respectively. Thanks to Poincaré’s inequality, we can endow
V with the gradient scalar product (resp. the norm)

(
(., .)

)
(resp. ||.||). In the space V,

the latter norm is equivalent to the norm generated by the following scalar product

(u, v)V = (u, v) + α((u, v)), for any u and v ∈ V.

More precisely we have

(P + α)−1|v|V2 ≤ ||v||2 ≤ (α)−1|v|V2, for any v ∈ V. (2)
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We also introduce the following space

W =
{

u : div u = 0,

ˆ

D
udx = 0, and curl (u− α∆u) ∈ L2(D)

}
.

We provide this space with the norm |.|W generated by the scalar product

(u, v)W = (curl(u− α∆u), curl(v − α∆v)).

This norm is equivalent to the usual H3(D)-norm onW. For any Banach space X, p, r ≥ 1,
we set Lp,r(0, T,Ω, X) = Lp(Ω,F , P ; Lr(0, T ;X). Next we give some results on which most
of proofs in forthcoming sections rely.

Theorem 2.1. [ see [32]] Let X, B, Y three Banach spaces such that the following embed-
ding are continuous

X ⊂ B ⊂ Y.

Moreover, assume that the embedding X ⊂ B is compact, then the set F consisting of
functions v ∈ Lq(0, T ; B) ∩ L1

loc(0, T ;X), 1 ≤ q ≤ ∞ such that

sup
0≤h≤1

ˆ t2

t1

|v(t + h)− v(t)|Y dt → 0, ash → 0,

for any 0 < t1 < t2 < T is compact in Lp(0, T ; B) for any p < q.

We also need the following product formulas, we refer to [11] for their proof in the case
of the whole space (see [19] for the case of periodic condition).

Theorem 2.2. Let D be a n-dimensional periodic box and let β, γ ∈ R such that β+γ > 0,
β < n

2 , γ < n
2 . If u ∈ Hγ(D) and v ∈ Hβ(D), then there exists a positive constant C such

that
|uv|Hγ+β−n

2
≤ C|u|Hγ |v|Hβ .

If |γ| < n
2 , then

|uv|H−n
2−ε ≤ C ′|u|Hγ |v|H−γ , (3)

for any u ∈ Hγ(D), v ∈ H−γ(D) and ε > 0 .

3. Hypotheses and the main results

In this section we will recall briefly the previous results on the problem (1) and will
formulate our main results.

3.1. The hypotheses. We assume that
(I) F = F (t, x) is a V-valued function defined on [0, T ] × D such that the following

holds for any 2 ≤ p < ∞
ˆ T

0
|F (t, x)|pV < ∞.

(II) G = G(t, x) is a V⊗m-valued function defined on [0, T ]×D such that the following
holds ˆ T

0
|G(t, x)|pV⊗m < ∞,

for any 2 ≤ p < ∞.
(III) We further assume that u0 ⊂ V∩H3 is nonrandom and that there exists a positive

constant C independent of α such that |u0|V < C. Suppose also that ν > 0.
We continue with the definition of the concept of the strong probabilistic solution for

the problem (1).

Definition 3.1. By a strong probabilistic solution of the system (1), we mean a stochastic
process uα such that
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(1) uα ∈ Lp(Ω,F , P ; L∞(0, T ;W)) ∩ Lp(Ω,F , P ;L∞(0, T ;V)) with 2 ≤ p < ∞,
(2) For almost all t, uα(t) is F t-measurable,
(3) P -a.s the following integral equation holds

(uα(t)− uα(0), φ)V +
ˆ t

0
[ν((uα, φ)) + (curl(uα(s)− α∆uα(s))× uα(s), φ)] ds

=
ˆ t

0
(F, φ)ds +

ˆ t

0
(G,φ)dW(s)

for any t ∈ (0, T ] and φ ∈ V.
Remark 3.2. In the above definition the quantity

´ t
0 (G,φ)dW(s) should be understood

as ˆ t

0
(G,φ)dW(s) =

m∑

k=1

ˆ t

0
(Gk, φ)dWk(s),

where Gk and Wk denote the k-th component of G and W, respectively.

We recall now two results from the paper [27].

Theorem 3.3. Under the assumptions (I), (II) and (III) the problem (1) has a solution
in the sense of the above definition. Moreover, almost surely the paths of the solution are
W-valued weakly continuous.

Let uα
1 and uα

2 be two strong probabilistic solutions of the problem (1) defined on the
stochastic basis (Ω,F ,F t, P ). If we set Uα = uα

1 −uα
2 , then we have Uα = 0 almost surely.

3.2. Statement of the main theorems. Before we proceed to the statement of our main
theorem we introduce the SNSE




dv + (−ν∆v + (v.∇v) +∇P)dt = Fdt + GdW̄
in Ω̄× (0, T ]×D,

div v = 0 in Ω̄× (0, T ]×D,´
D vdx = 0 in Ω̄× (0, T ],

v(0) = u0 in Ω̄×D.

(4)

and recall the concept of a weak probabilistic solution of the problem.

Definition 3.4. By a weak probabilistic solution of (4), we mean a system

(Ω̄, F̄ , P̄ , F̄ t, W̄, v),

where
(1) (Ω̄, F̄ , P̄ ) is a complete probability space, F̄ t is a filtration on (Ω̄, F̄ , P̄ ),
(2) W̄(t) is an m-dimensional F̄ t-standard Wiener process,
(3) v(t) ∈ Lp(Ω̄, F̄ , P̄ ; L2(0, T ;V)) ∩ Lp(Ω̄, F̄ , P̄ ; L∞(0, T ;H)), ∀ 2 ≤ p < ∞,
(4) For almost all t, v(t) is F̄ t-measurable,
(5) P-a.s the following integral equation holds

(v(t)− v(0), φ) +
ˆ t

0
[ν((v, φ))+ < v.∇v, φ >] ds

=
ˆ t

0
(F, φ)ds +

ˆ t

0
(G,φ)dW̄(s)

(5)

for any t ∈ (0, T ] and φ ∈ V.
In this article we prove the following result.
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Theorem 3.5. Under the hypotheses (I)-(III) there exist a probability space (Ω̄, F̄ , P̄ ),
a family of probability measures (Παj ), a probability measure Π, and stochastic processes
(Wαj , uαj ), (W̄, v) such that the law of (Wαj , uαj ) (resp. (W̄, v)) is Παj (resp. Π) and
Wαj → W̄ uniformly P̄ -a.s. when j →∞ (αj → 0). The pair (Wαj , uαj ) satisfies P̄−a.s.
(1) in the sense of distribution and as j →∞ (αj → 0)

uαj ⇀ v, weakly in Lp(Ω̄, F̄ , P̄ ; L2(0, T ;V)), (6)

uαj ⇀ v weakly-* in Lp(Ω̄, F̄ , P̄ ;L∞(0, T ;H)), (7)

for all 2 ≤ p < ∞ and (Ω̄, F̄ , P̄ , v, W̄) is a weak probabilistic solution of (4).

Remark 3.6. Since we are in 2-D then it is known that under our hypotheses (I)-(III)
the problem (4) has a strong probabilistic solution which is unique, see for example [22].
This implies that the process v of the above theorem is a strong probabilistic solution of
the Stochastic Navier Stokes Equations (4).

The convergence of the whole sequence (uα) to the (either strong or weak probabilistic)
solution of the stochastic Navier-Stokes equations could not be proved in [25]. The second
main goal of this work is to prove the following convergence result.

Theorem 3.7. For the given stochastic system (Ω,F , P ),F t,W defined in Introduction, we
have that the whole sequence uα converges in probability to v in the topology of L2(0, T ;H),
i.e ||uα−v||L2(0,T ;H converges to zero in probability. Here v is the unique strong probabilistic
solution of the stochastic Navier-Stokes equations.

4. Proof of Theorem 3.5

This section is devoted to the proof of our first main result.

4.1. Uniform a priori estimates. In this subsection we derive some estimates uniform
in α. These inequalities do not follow from previous works (see [24]) which explode when
α → 0. Throughout C denotes unessential positive constant independent of α, and which
may change from one line to the next. Since we α → 0 we may assume that α = (αn) ⊂
[0, 1), at least for large n .

Lemma 4.1. For α ∈ (0, 1) we have

E sup
0≤s≤T

(|uα(s)|2 + α||uα(s)||2) + E

ˆ T

0
||uα(s)||2ds ≤ C, (8)

E sup
0≤s≤T

(|uα(s)|2 + α||uα(s)||2) p
2 + E

(ˆ T

0
||uα(s)||2ds

) p
2

≤ C, (9)

for any 2 ≤ p < ∞.

Before we prove this result it is important to make the following remark.

Remark 4.2. We recall that the continuous linear operator (I + αA)−1, where A is the
usual Stokes operator, establishes a bijective correspondence between the spaces Hl(D)∩V
(resp. H) and Hl+2(D)∩V, l > 1 (resp. l = 0). Furthermore for any w ∈ V, and f ∈ Hl(D),
l ≥ 0,

((I + αA)−1f, w)V = (f, w), (10)

|(I + αA)−1f |V ≤ C|f | (11)

Proof. We start the proof of our lemma by proving (8). Since uα is a solution of (1) then

duα + (I + αA)−1Auαdt + (I + αA)−1B̂(uα, uα)dt = (I + αA)−1Fdt + (I + αA)−1GdW,



6 P. A. RAZAFIMANDIMBY AND M. SANGO

holds P -a.s. for any t ∈ [0, T ]. Here we have set

B̂(uα, uα) = curl(uα − α∆uα)× uα.

For the rest of this section and the paper we write

(I + αA)−1F = F̂ ,

(I + αA)−1G = Ĝ.

Ito’s formula implies that

d|uα|2V + 2((I + αA)−1Auα, uα)Vdt + 2((I + αA)−1B̂(uα, uα), uα)Vdt

= (F̂ , uα)Vdt + |Ĝ|2V⊗mdt + 2(Ĝ, uα)VdW.

By the relationship (10) in the above remark and the equation

(B̂(uα, uα), uα) = 0,

we obtain that

d|uα|2V + 2||uα||2dt = 2(F, uα)dt + |Ĝ|2V⊗mdt + 2(Ĝ, uα)VdW.

This relation combined with Cauchy-Schwarz’s inequality and (11) imply that

d|uα|2V + 2||uα||2dt ≤ (|F |2 + |uα|2)dt + |Ĝ|2V⊗mdt + 2(Ĝ, uα)VdW.

Recalling the definition of |.|2V we deduce that

d|uα|2V + 2||uα||2dt ≤ |F |2V + |uα|2Vdt + |Ĝ|2V⊗mdt + 2(Ĝ, uα)VdW. (12)

Taking the sup over 0 ≤ s ≤ t, t ∈ [0, T ] and passing to the mathematical expectation
yield

E sup
0≤s≤t

|uα|2V + 2E

ˆ t

0
||uα||2ds ≤ C + E

ˆ t

0
|uα|2Vds + 2E sup

0≤s≤t

∣∣∣∣
ˆ s

0
(Ĝ, uα)VdW

∣∣∣∣ ,

where the assumptions on F and G were used. Burkhölder-Davis-Gundy’s inequality im-
plies

E sup
0≤s≤t

|uα|2V + 2E

ˆ t

0
||uα||2ds ≤ C + E

ˆ t

0
|uα|2Vds + 6E

(ˆ t

0
(Ĝ, uα)2Vds

) 1
2

.

Cauchy’s inequality implies

E sup
0≤s≤t

|uα|2V+2E
ˆ t

0
||uα||2ds ≤ C+E

ˆ t

0
|uα|2Vds+

1
2
E sup

0≤s≤t
|uα(s)|2V+CE

ˆ t

0
|Ĝ|2V⊗mds,

or

E sup
0≤s≤t

|uα|2V + 4E

ˆ t

0
||uα||2ds ≤ C + CE

ˆ t

0
|uα|2Vds.

Here we have used (11) and the assumption on G. It follows from Gronwall’s inequality
that

E sup
0≤s≤t

|uα|2V + 2E

ˆ t

0
||uα||2ds < C,

for any t ∈ [0, T ]. This completes the proof of (8).
We continue with the proof of (9). For 2 ≤ p < ∞ and t ∈ [0, T ] the following holds:

|uα|pV + p

ˆ t

0
|uα|p−2

V ||uα||2ds = |u0|pV + p

ˆ t

0
|uα|p−2

V (F̂ , uα)ds +
p

2

ˆ t

0
|uα|p−2

V |Ĝ|2Vds

+
(p− 2)p

2

ˆ t

0
|uα|p−4

V (Ĝ, uα)Vds + p

ˆ t

0
|uα|p−2

V (Ĝ, uα)VdW.
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Owing to (11) and the above estimate we see that

|uα|pV ≤ |u0|pV + p

ˆ t

0
|uα|p−1

V |F |ds +
p

2
C

ˆ t

0
|uα|p−2

V |G|2ds +
(p− 2)p

2
C

ˆ t

0
|uα|p−2

V |G|2ds

+ p

ˆ t

0
|uα|p−2

V (Ĝ, uα)VdW.

We derive from this by using Young’s inequality that

|uα|pV ≤ |u0|pV + C

ˆ t

0
|uα|pVds + C

ˆ t

0
|F |pds + C

ˆ t

0
|G|pds + p

ˆ t

0
|uα|p−2

V (Ĝ, uα)VdW.

Taking the sup over 0 ≤ s ≤ t, passing to the mathematical expectation and using the
assumptions on F and G imply

E sup
0≤s≤t

|uα|pV ≤ |u0|pV + CE

ˆ t

0
|uα|pVds + pE sup

0≤s≤t

∣∣∣∣
ˆ s

0
|uα|p−2

V (Ĝ, uα)VdW
∣∣∣∣ .

Invoking the Martingale inequality yields

E sup
0≤s≤t

|uα|pV ≤ CE

ˆ t

0
|uα|pVds + pE

(ˆ s

0
t|uα|2p−2

V |Ĝ|2Vds

) 1
2

.

We infer from this estimate, Young’s inequality, (11) along with the assumption on G and
Gronwall’s inequality that

E sup
0≤s≤t

|uα(s)|pV < C, (13)

for any t ∈ [0, T ] and 2 ≤ p < ∞. We deduce from (12) with the help of this last estimate
that

E

(ˆ t

0
||uα||2ds

) p
2

≤ C + CE

∣∣∣∣
ˆ t

0
(Ĝ, uα)VdW

∣∣∣∣
p
2

.

We obtain from this with the help of the Martingale inequality and (13) that

E

(ˆ t

0
||uα||2ds

) p
2

≤ C.

And this completes the proof of (9), hence the lemma. ¤
Remark 4.3. For 1 ≤ p < ∞, the following estimates are valid

E sup
0≤s≤T

(|uα(s)|2 + α||uα(s)||2) p
2 + E

(ˆ T

0
||uα(s)||2ds

) p
2

< C, (14)

We will need the following key estimate.

Lemma 4.4. For any δ ∈ (0, 1) we have

E sup
|θ|≤δ

ˆ T−δ

0
|uα(t + θ)− uα(t)|2H−4 ≤ Cδ.

Proof. In what follows we set
∂

∂xi
= ∂i, for any i,

and we rewrite the first equation in (1) as follows (see [21] for the details)
∂

∂t
(uα − α∆uα)− ν∆uα + uα.∇uα − α

∑

j,k

∂j∂k(uα
j ∂ku

α) + α
∑

j,k

∂j(∂ku
α
j ∂ku

α)

= α
∑

j,k

∂k(∂ku
α
j∇uα

j )−∇P] + F + G
dW
dt

,

(15)
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where
∇P] =

1
2
∇(|uα|2 + α|∇uα|2) +∇P.

We set Φ = P(uα − α∆uα) where P is the Leray projector. We see from (15) that

dΦ + {νAuα + P(uα.∇uα)− α
∑

j,k

P(∂j∂k(uα
j ∂ku

α)) + α
∑

j,k

P(∂j(∂ku
α
j ∂ku

α))}dt

= α
∑

j,k

P(∂k(∂ku
α
j∇uα

j ))dt + Fdt + GdW.

This implies

Φ(t + θ)− Φ(t) =
ˆ t+θ

t
{−νAuα + α

∑

j,k

(
P(∂j∂k(uα

j ∂ku
α))− P(∂j(∂ku

α
j ∂ku

α))
)}ds

−
ˆ t+θ

t
P(uα.∇uα)ds +

ˆ t+θ

t
{α

∑

j,k

P(∂k(∂ku
α
j∇uα

j )) + F}ds +
ˆ tθ

t
GdW,

for any θ > 0. We infer from this that

|Φ(t + θ)− Φ(t)|2H−4 ≤ 2



ˆ t+θ

t



+|uα.∇uα|H−4 + α

∑

j,k

|∂j∂k(uα
j ∂ku

α)|H−4



 ds




2

+ 4



ˆ t+θ

t



α

∑

j,k

[|∂j(∂ku
α
j ∂ku

α)|H−4 + |∂k(∂ku
α
j∇uα

j )|H−4 ] + |F |H−4



 dst




2

+ 2
ˆ t+θ

t
ν|Auα|H−4ds + 2

∣∣∣∣
ˆ t+θ

t
GdW

∣∣∣∣
2

H−4

,

which implies

|Φ(t + θ)− Φ(t)|2H−4 ≤ Cθ

ˆ t+θ

t



+|uα.∇uα|2H−4 + α2

∑

j,k

|∂j∂k(uα
j ∂ku

α)|2H−4



 dt

+ Cθ

ˆ t+θ

t



α2

∑

j,k

[|∂j(∂ku
α
j ∂ku

α)|2H−4 + |∂k(∂ku
α
j∇uα

j )|2H−4 ] + |F |2


 dt

+ Cθ

ˆ t+θ

t
ν|Auα|2H−4ds + 2

∣∣∣∣
ˆ t+θ

t
GdW

∣∣∣∣
2

H−4

.

It is not hard to see that
|Auα|2H−4 ≤ C|uα|2. (16)

For n = 2 Theorem 2.2 implies that

|uα.∇uα|2H−4 ≤ C|uα|2|∇uα|2, (17)

α2|∂j∂k(uα
j ∂ku

α)|2H−4 ≤ C|uα
j ∂ku

α|2H−2 ≤ C|uα|2|∇uα|2. (18)

From the same theorem we have that

|∂ku
α
j ∂ku

α|H−2 ≤ C|∇uα|2 ∀k, j,

from which we derive that

α2|∂j(∂ku
α
j ∂ku

α)|2H−4 ≤ αCα|∇uα|2|∇uα|2. (19)

A similar argument can be used to show that

α2|∂k(∂ku
α
j∇uα

j )|2H−4 ≤ αCα|∇uα|2|∇uα|2. (20)
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The estimates (16)-(20) along with (9) allow us to write

E

ˆ T−δ

0
sup

0≤θ≤δ
|Φ(t + θ)− Φ(t)|2H−4dt ≤ Cδ2 + Cδ + CδE

ˆ T−δ

0

ˆ t+θ

t
α|∇uα|2|∇uα|2dsdt

+ CE

ˆ T−θ

0
sup

0≤θ≤δ

∣∣∣∣
ˆ t+θ

t
GdW

∣∣∣∣
2

H−4

dt.

But (9) implies that

E sup
0≤t≤T

α
p
2 |∇uα(t)|p + νE

(ˆ T

0
|∇uα(t)|2dt

) p
2

≤ C, 2 ≤ p < ∞.

From which we deduce that

E

ˆ T−δ

0
sup

0≤θ≤δ
|Φ(t+θ)−Φ(t)|2H−4dt ≤ Cδ2+Cδ+Cδ+CE

ˆ T−δ

0
sup

0≤θ≤δ

∣∣∣∣
ˆ t+θ

t
GdW

∣∣∣∣
2

H−4

dt.

By making use of the Martingale inequality, the assumption on G we obtain that

E

ˆ T−δ

0
sup

0≤θ≤δ
|Φ(t + θ)− Φ(t)|2H−4dt ≤ Cδ.

For almost all (t, ω) ∈ [0, T ]× Ω we have

uα(t + θ)− uα(t) = (I + αA)−1(Φ(t + θ)− Φ(t)),

which implies that

|uα(t + θ)− uα(t)|2Hβ < |Φ(t + θ)− Φ(t)|2Hβ , ∀β ∈ R.

Indeed for any φ ∈ Hβ(D) such that div φ = 0 and
´
D φ(x)dx = 0 we have

|φ|2Hβ =
∞∑

j=1

|φj |2λ2β
j <

∞∑

j=1

(1 + αλj)|φj |2λ2β
j ,

that is,
|φ|2Hβ < |φ + αAφ|2Hβ ,

where φ =
∑∞

j=1 φjej , and Aej = λjej , j = 1, 2, ...; the ej-s are the eigenfunctions of the
operator A and the λj-s are the corresponding eigenvalues. It follows from this remark
that

E

ˆ T−δ

0
sup

0≤θ≤δ
|uα(t + θ)− uα(t)|2H−4dt ≤ Cδ.

A similar argument can be carried out to proving the same estimate for the case θ < 0. ¤

4.2. Compactness result and passage to the limit. The following compactness result
plays a crucial role in the proof of the tightness of the probability measures generated by
the sequence (uα)α∈[0,1).

Lemma 4.5. Let µn, νn two sequences of positive real numbers which tend to zero as
n →∞, the injection of

Dνn,µn =

{
q ∈ L∞(0, T ;H) ∩ L2(0, T ;V ); sup

n

1
νn

sup
|θ|≤µn

(ˆ T

0
|q(t + θ)− q(t)|2H−4

)1/2

< ∞
}

in L2(0, T ;H) is compact.
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The proof, which is similar to the analogous result in [1], follows from the application
of Lemmas 2.1, 5.2 and 4.4. The space Dνn,µn is a Banach space with the norm

||q||Dνn,µn
= ess sup

0≤t≤T
|q(t)|+

(ˆ T

0
||q(t)||2

)1/2

+sup
n

1
νn

sup
|θ|≤µn

(ˆ T

0
|q(t + θ)− q(t)|2H−4

)1/2

.

Alongside Dνn,µn , we also consider the space Xp,νn,µn , 1 ≤ p < ∞, of random variables ζ
endowed with the norm

E||ζ||Xp,νn,µn
= Eess sup

0≤t≤T
|ζ(t)|p + E

(ˆ T

0
||ζ(t)||2

)p/2

+ E sup
n

1
νn

sup
|θ|≤µn

(ˆ T

0
|ζ(t + θ)− ζ(t)|2H−4

)1/2

;

Xp,νn,µn is a Banach space.
Combining (14) and the estimates in Lemma 4.4 we have

Proposition 4.6. For any real number p ∈ [1,∞) and for any sequences νn, µn converging
to 0 such that the series

∑
n

√
µn

νn
converges, the sequence (uα)α∈[0,1) is bounded uniformly

in α in Xp,νn,µn for all n.

Next we consider the space S = C(0, T ;Rm) × L2(0, T ;H) equipped with the Borel
σ-algebra B(S). For α ∈ [0, 1), let Φα be the measurable S-valued mapping defined on
(Ω,F , P ) by

Φα(ω) = (W(ω), uα(ω)).

For each α we introduce a probability measure Πα on (S;B(S)) defined by

Πα(S) = P (Φ−1
α (S)), for any S ∈ B(S).

Theorem 4.7. The family of probability measures {Πα : α ∈ [0, 1)} is tight in (S;B(S)).

Proof. For ε > 0 we should find compact subsets

Σε ⊂ C(0, T ;Rm);Yε ⊂ L2(0, T ;H),

such that

P (ω : W(ω, .) /∈ Σε) ≤ ε

2
, (21)

P (ω : uα(ω, .) /∈ Yε) ≤ ε

2
, (22)

for all α.
The quest for Σε is made by taking into account some facts about Wiener process such

as the formula
E|W(t)−W(s)|2j = (2j − 1)!(t− s)j , j = 1, 2, .... (23)

For a constant Lε > 0 depending on ε to be fixed later and n ∈ N, we consider the set

Σε = {W(.) ∈ C(0, T ;Rm) : sup
t,s∈[0,T ]

|t−s|< 1
n6

n|W(s)−W(t)| ≤ Lε}.

The set Σε is relatively compact in C(0, T ;Rm) by Arzela-Ascoli’s theorem. Furthermore
Σε is closed in C(0, T ;Rm), therefore it is compact in C(0, T ;Rm). Making use of Markov’s
inequality

P (ω; ζ(ω) ≥ β) ≤ 1
βk

E[|ζ(ω)|k],
for any random variable ζ and real numbers k we get
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P (ω : W(ω) /∈ Σε) ≤ P


∪n





ω : sup
t,s∈[0,T ]

|t−s|< 1
n6

|W(s)−W(t)| ≥ Lε

n






 ,

≤
∞∑

n=1

n6−1∑

i=0

(
n

Lε

)4

E sup
iT
n6≤t≤ (i+1)T

n6

|W(t)−W(iTn−6|4,

≤ C
∞∑

n=1

n6−1∑

i=0

(
n

Lε

)4

(Tn−6)2n6 =
C

L4
ε

∞∑

n=1

1
n2

,

where we have used (23). Since the right hand side of (23) is independent of α, then so is
the constant C in the above estimate. We take L4

ε = 1
2Cε

(∑∞
n=1

1
n2

)−1 and get (21).
Next we choose Yε as a ball of radius Mε in Dνn,µm centered at 0 and with νn, µn

independent of ε, converging to 0 and such that the series
∑

n

√
µn

νn
converges, from Lemma

4.5, Yε is a compact subset of L2(0, T ;H). Furthermore, we have

P (ω : uα(ω) /∈ Yε) ≤P
(
ω : ||uα||Dνn,µm

> Mε

)

≤ 1
Mε

(
E||uα||Dνn,µm

)
,

≤ 1
Mε

(
E||uα||X1,νn,µn

)
,

≤ C

Mε
,

where C > 0 is independent of α (see Proposition 4.6 for the justification.)
Choosing Mε = 2Cε−1, we get (22). From the inequalities (21)-(22) we deduce that

P (ω : W(ω) ∈ Σε; uα(ω) ∈ Yε) ≥ 1− ε,

for all α ∈ [0, 1). This proves that for all α ∈ [0, 1)

Πα(Σε × Yε) ≥ 1− ε,

from which we deduce the tightness of {Πα : α ∈ [0, 1)} in (S,B(S)). ¤

Prokhorov’s compactness result enables us to extract from (Πα) a subsequence (Παj )
such that

Παj weakly converges to a probability measure Π on S.

Skorokhod’s Theorem ensures the existence of a complete probability space (Ω̄, F̄ , P̄ ) and
random variables (Wαj , uαj ) and (W̄, v) defined on (Ω̄, F̄ , P̄ ) with values in S such that

The probability law of (Wαj , uαj ) is Παj , (24)

The probability law of (W̄, v) is Π, (25)

Wαj → W̄ in C(0, T ;Rm) P̄ − a.s., (26)

uαj → v in L2(0, T ;H) P̄ − a.s.. (27)

We let F̄ t be the σ-algebra generated by (W̄(s), v(s)), 0 ≤ s ≤ t and the null sets of F̄ .
We will show that W̄ is an F̄ t-adapted standard Rm-valued Wiener process. To fix this,
it is sufficient to show that for any 0 < t1 < t2 < . . . < tm = T , the increments process
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W̄(tj)− W̄(tj−1)) are independent with respect to F̄ tj−1 , distributed normally with mean
0 and variance tj − tj−1. That is, to show that for any λj ∈ Rm and i2 = −1

Ē exp


i

m∑

j=1

λj(W̄(tj)− W̄(tj−1))


 =

m∏

j=1

exp
(
−1

2
λ2

j (tj − tj−1)
)

. (28)

The equation (28) will follow if we have

Ē
[
exp

(
iλ(W̄(t + θ)− W̄(t))

)/ F̄ t] = exp
(
−|λ|

2θ

2

)
. (29)

We rely on the fact that for any random variables X and Y on any probability space
(Ω̄, F̄ , P̄ ) such that X is F̄-measurable and Ē|Y | < ∞, Ē|XY | < ∞, we have

Ē(XY/F̄) = XĒ(Y/F̄), ĒĒ(Y/F̄) = Ē(Y ),

that is,
Ē(XY ) = Ē(XĒ(Y/F̄)). (30)

Now, let us consider an arbitrary bounded continuous functional ϑt(W, v) on S depending
only on the values of W and v on (0, T ). Owing to the independence of W(t) to ϑt(W, v)
and the fact that W is a Wiener process, we have

E [exp (iλ(W(t + θ)−W(t))) ϑt(W, v)]

= E [exp (iλ(W(t + θ)−W(t)))]E [ϑt(W, v)]

= exp
(
−|λ|

2θ

2

)
E [ϑt(W, v)] .

In view of (24)-(25), this implies that

Ē [exp (iλ(Wαj (t + θ)−Wαj (t)))ϑt(Wαj , v)]

= Ē [exp (iλ(Wαj (t + θ)−Wαj (t)))] Ē [ϑt(Wαj , v)]

= exp
(
−|λ|

2θ

2

)
Ē [ϑt(Wαj , v)] .

Now, the convergence (26) and the continuity of ϑ allow us to pass to the limit in this
latter equation and obtain

Ē
[
exp

(
iλ(W̄(t + θ)− W̄(t))

)
ϑt(W̄, v)

]
= exp

(
−|λ|

2θ

2

)
Ē

[
ϑt(W̄, v)

]
,

which, in view of (30), implies (29). The choice of the above filtration implies then that
W̄ is a F̄ t-standard m-dimensional Wiener process.

By a similar method as used in [2] (see also [26]), we can prove the following result.

Theorem 4.8. For any j ≥ 1, φ ∈ V, for all t ∈ [0, T ] the following holds almost surely

(uαj , φ)V +
ˆ t

0
{(νAuαj + B(uαj , uαj ), φ)}dt = (u0, φ)V +

ˆ t

0
(R(uαj ) + F (uαj ), φ)dt

+
ˆ t

0
(G,φ)dWαj ,

(31)

where

B(uαj , uαj ) = P(uαj .∇uαj ),

R(uαj ) = α
∑

i,k

P
(
∂i∂k(u

αj

i ∂ku
αj ) + ∂i(∂ku

αj

i ∂ku
αj )− ∂k(∂ku

αj

i ∇u
αj

i )
)
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To back the main theorem we have to pass to the limit in the equation (31). Since uαj

satisfies (31) then uαj satisfies the estimates in Lemma 5.2. Consequently, we can extract
from (uαj ) a subsequence denoted by the same symbol such that

uαj ⇀ v weak- ∗ in L2(Ω̄, F̄ , P̄ ; L∞(0, T ;H)),

uαj ⇀ v weakly in L2(Ω̄, F̄ , P̄ ;L2(0, T ;V)). (32)

We derive from (18)-(20) that

R(uαj ) → 0 in L2(Ω̄, F̄ , P̄ ; L2(0, T ;H−4)).

Thus
(R(uαj ), φ) → 0 in L2(Ω̄, F̄ , P̄ ; L2(0, T )), ∀φ ∈ V.

Since A is linear and strongly continuous then owing to (32) we have

Auαj ⇀ Av weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T ;H−1)).

Hence

< Auαj , φ >⇀< Av, φ > weakly in L2(Ω̄, F̄ , P̄ ; L2(0, T )) for any φ ∈ V.

We derive from (27), the estimate (9) of Lemma 5.2 and Vitali’s Theorem that

uαj → v strongly in L2(Ω̄, F̄ , P̄ ;L2(0, T ;H)). (33)

For any element ζ ∈ L∞(Ω̄× [0, T ], dP̄ ⊗ dt) and for any φ ∈ V we have

E

ˆ T

0
< B(uαj , uαj ), ζφ > dt = −

∑

i,k

E

ˆ

D×[0,T ]
u

αj

i ∂iφkζu
αj

k dx⊗ dt.

Owing to (33)

ζ∂iφku
αj

k → ζ∂iφkvk strongly in L2(Ω̄, F̄ , P̄ ; L2(0, T ;H)).

This and (33) again imply that

−
∑

i,k

E

ˆ

D×[0,T ]
u

αj

i ∂iφkζu
αj

k dx⊗ dt → −
∑

i,k

E

ˆ

D×[0,T ]
vi∂iφkζvkdx⊗ dt

= E

ˆ T

0
< B(v, v), ζφ > dt.

That is

< uαj .∇uαj , φ >⇀< v.∇v, φ > weakly in L2(Ω̄, F̄ , P̄ ; L∞(0, T )) for any φ ∈ V.

We readily have that
ˆ t

0
(G,φ)dWαj ⇀

ˆ t

0
(G,φ)dW̄ weakly in L2(Ω̄, F̄ , P̄ ; L∞(0, T )) for any φ ∈ V.

We have that

(uαj , φ)V = (uαj − αj∆uαj , φ)

= (uαj , φ) + αj((uαj , φ)).

This implies that

(uαj − αj∆uαj − v, φ) = (uαj − v, φ) + αj((uαj , φ)).

It follows from Lemma 5.2 and (33) that

(uαj − αj∆uαj − v, φ) → 0 strongly in L2(Ω̄, F̄ , P̄ ; L∞(0, T )) for any φ ∈ V.

Using all these convergences we can derive from (31) that the following holds almost surely

(v, φ) + ν

ˆ t

0
{((v, φ)) + (P(v.∇v), φ)}ds = (u0, φ) +

ˆ t

0
(F (v), φ)ds +

ˆ t

0
(G,φ)dW̄,
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for any φ ∈ V and t ∈ [0, T ]. That is the system (Ω̄, F̄ , F̄ t, P̄ ); (W̄, v) is a weak solution of
the stochastic Navier-Stokes equations.
Owing to the estimates

Ē sup
0≤s≤T

|v(s)| p2 + νĒ

(ˆ T

0
||v(s)||2ds

)P
2

< ∞,

the H-valued process v(.) has almost surely a weak-continuous modification. This ends the
proof of Theorem 3.5.

5. Proof of Theorem 3.7

The main ingredients of the proof of Theorem 3.7 are the pathwise uniqueness for the
two-dimensional stochastic Navier-Stokes equations and the following lemma whose proof
can be found in [20].

Lemma 5.1. Let X be a Polish space. A sequence of a X-valued random variables {xn; n ≥
0} converges in probability if and only if for every subsequence of joint probability laws,
{νnk,mk

; k ≥ 0}, there exists a further subsequence which converges weakly to a probability
measure ν such that

ν ({(x, y) ∈ X ×X; x = y}) = 1.

Now, let
S = L2(0, T ;H)× C(0, T ;Rm),

SH = L2(0, T ;H), SW = C(0, T : Rm),
and

SH,H = L2(0, T ;H)× L2(0, T ;H).
For any S ∈ B(SH) we set Πα(S) = P (uα ∈ S), and Πα

W(S) = P (W ∈ S) for S ∈ B(SW).
Next, we define the joint probability laws

Πα,β = Πα ×Πβ,

να,β = Πα ×Πβ ×Πα
W .

The following tightness property holds.

Lemma 5.2. The collection να,β (and hence any subsequence {ναj ,βj}) is tight on SH,H×
SW .

Proof. The proof is very similar to Theorem 4.7. For any ε > 0 we choose the sets Σε, Yε

exactly as in the proof of Theorem 4.7 with appropriate modification on the constants
Mε, Lε so that Πα(Yε) ≥ 1− ε

4 and ΠW(Σε) ≥ 1− ε
2 for every α ∈ (0, 1). Now let us take

Kε = Yε × Yε × Σε which is a compact in S; it is not difficult to see that {να,β(Kε) ≥
(1− ε

4)2(1− ε
2) ≥ 1− ε for all α, β. This completes the proof of the lemma. ¤

Lemma 5.2 implies that there exists a subsequence from {ναj ,βj} still denoted by {ναj ,βj}
which converges to a probability measure ν. By Skorokhod’s theorem there exists a prob-
ability space (Ω̄, F̄ , P̄ ) on which a sequence (uαj , vβj ,Wj) is defined and converges almost
surely in SH,H ×SW to a couple of random variables (u, v, W ). Furthermore, we have

Law(uαj , vβj ,Wj) = ναj ,βj ,

Law(u, v, W ) = ν.

Now let Zu
j = (uαj ,Wj), Zv

j = (vβj ,Wj), Zu = (u,W ) and Zv = (v,W ) We can infer
from the above argument that

(
Παj ,βj

)
converges to a measure Π such that

Π(·) = P̄ ((u, v) ∈ ·).
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As above we can show that Zu
j and Zv

j satisfy Theorem 4.8 and that Zu and Zv satisfy the
stochastic Navier-Stokes equation (see (3.4)) on the same stochastic system (Ω̄, F̄ , P̄ ), F̄ t,W .
Since we are in two-dimensional case then we see that u(0) = v(0) almost surely and u = v
in L2(0, T ;H). Therefore

Π
(
{(x, y) ∈ SH,H; x = y}

)
= P̄

(
u = v in L2(0, T ;H)

)
= 1.

This fact together with Lemma 5.1 imply that the original sequence (uα) defined on the
original probability space (Ω,F , P ) converges in probability to an element v in the topology
of SH. By a passage to the limits argument as in the previous section it is not difficult
to show that v is the unique solution of the stochastic Navier-Stokes Equations (on the
original probability system (Ω,F ,P),F t,W ). This ends the proof of Theorem 3.7.
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