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Abstract 

The increasing complexity of software applications can lead to operational failures that have 

disastrous consequences. In order to prevent the recurrence of such failures, a thorough post-

mortem investigation is required to identify the root causes involved. This root-cause analysis 

must be based on reliable digital evidence to ensure its objectivity and accuracy. However, 

current approaches to software failure analysis do not promote the collection of digital evidence 

for causal analysis. This leaves the system vulnerable to the reoccurrence of a similar failure. 

  

A promising alternative is offered by the field of digital forensics. Digital forensics uses proven 

scientific methods and principles of law to determine the cause of an event based on 

forensically sound evidence. However, being a reactive process, digital forensics can only be 

applied after the occurrence of costly failures. This limits its effectiveness as volatile data that 

could serve as potential evidence may be destroyed or corrupted after a system crash.  

 

In order to address this limitation of digital forensics, it is suggested that the evidence collection 

be started at an earlier stage, before the software failure actually unfolds, so as to detect the high-

risk conditions that can lead to a major failure. These forerunners to failures are known as near 

misses. By alerting system users of an upcoming failure, the detection of near misses provides 

an opportunity to collect at runtime failure-related data that is complete and relevant.  

 

The detection of near misses is usually performed through electronic near-miss management 

systems (NMS). An NMS that combines near-miss analysis and digital forensics can contribute 

significantly to the improvement of the accuracy of the failure analysis. However, such a system 

is not available yet and its design still presents several challenges due to the fact that neither 

digital forensics nor near-miss analysis is currently used to investigate software failures and their 

existing methodologies and processes are not directly applicable to failure analysis.  

 

This research therefore presents the architecture of an NMS specifically designed to address the 

above challenges in order to facilitate the accurate forensic investigation of software failures. The 

NMS focuses on the detection of near misses at runtime with a view to maximising the collection 

of appropriate digital evidence of the failure. The detection process is based on a mathematical 

model that was developed to formally define a near miss and calculate its risk level. A prototype 

of the NMS has been implemented and is discussed in the thesis. 
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  CHAPTER 1         

INTRODUCTION 

  

1.1 Introduction 

IT systems are ubiquitous in today’s interconnected society and play a vital role in a number 

of industries such as banking, telecommunications and aviation. Software, in particular, is 

embedded in most technical and electronic products, ranging from massive machines such as 

airplanes to lightweight devices such as mobile phones. Software applications are essential to 

the proper functioning of these products and their associated service offerings. Due to the 

reliance of modern living on these products and services, software failures that result in their 

unavailability or malfunctioning can cause disasters and may even be fatal. Unfortunately, such 

software failures have occurred since the beginning of the computer age, as is evidenced by the 

number of highly publicised IT accidents reported in the media. 

 

One example of a crisis caused by a software failure is the system outage that occurred at the 

Royal Bank of Scotland (RBS), a major bank in the UK, in December 2013. Due to an 

unspecified technical glitch, the bank’s various electronic channels were unavailable for a day 

and customers were unable to make payments or withdraw cash with their debit cards 

(Finnegan, 2013). This failure was not the first experienced by RBS. In June 2012, another 

major outage occurred and left millions of customers unable to access their bank accounts for 

four days, due to a failure in a piece of batch-scheduling software. As a result, deposits were 

not reflected in bank accounts, payrolls were delayed, credit ratings were downgraded and 

utility bills were not paid (Worstall, 2012). Recently, in November 2014, RBS was fined 56 

million pounds by British regulators for the software failure that occurred in 2012 (BBC News, 

2014). 

 

Preventing the recurrence of catastrophes such as the examples quoted above is crucial and 

requires a thorough post-mortem investigation to determine and rectify the root cause. To 

ensure the validity of its results, such an investigation must be based on reliable digital evidence 

such as log files, database dumps and reports from system-monitoring tools. Sound evidence 
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of the software failure promotes the objectivity and comprehensiveness of the investigation, 

which implies greater accuracy of the results. Furthermore, reliable evidence is valuable in the 

event that the software failure leads to a product liability lawsuit. 

 

However, current informal approaches to failure analysis do not promote the collection and 

preservation of digital evidence. Rather than depending on objective evidence analysis, failure 

analysis methods often rely on the investigator’s experience with the system to identify the 

cause of the problem. Troubleshooting in particular, which is usually the first response to a 

system failure, focuses on restoring the system to its operational state as quickly as possible. 

This allows little time and resources to collect evidence of the failure. Besides, system 

restoration often requires rebooting, which destroys or tampers with valuable information that 

could pinpoint the root cause of the problem (Trigg & Doulis, 2008). Both these ‘solutions’ 

leave the system vulnerable to the recurrence of a similar failure. 

 

In order to ensure that the failure analysis is based on reliable evidence, the investigation must 

follow a process that favours the collection and analysis of such evidence. The investigation 

must also follow a standard process that can be reproduced by independent investigators to 

ensure the objectivity and reliability of the results. The literature indicates that the scientific 

method is well suited for this purpose as it requires evidence to confirm a hypothesis made 

about the root cause of an investigated event (Young, 2007). It also requires independent 

verification to confirm the results of the investigation (Young, 2007). Indeed, the scientific 

method is a standard procedure used by scientists to investigate a problem, with the aim to 

reduce potential bias from the investigator and ensure repeatability of the results (Bernstein, 

2009).  

 

Using an investigation approach that applies the scientific method therefore seems a logical 

step to improve the accuracy of current approaches to failure analysis. A brief literature 

investigation points to the forensic approach, as forensic science applies the scientific method 

to reconstruct past events based on objective evidence (Vacca & Rudolph, 2010). The field of 

digital forensics, as the application of forensic science to digital systems, certainly appears to 

be a promising solution.  
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Digital forensics follows established procedures meticulously to ensure the accuracy and 

completeness of digital evidence and to interpret it objectively based on scientific analysis 

(Vacca & Rudolph, 2010). Despite the fact that it is currently limited to criminal and security 

events, digital forensics can very well provide an effective alternative for investigating major 

software failures. However, as it adopts a reactive approach, digital forensics can only be 

applied after the occurrence of a failure. This limits the effectiveness of the investigation, since 

volatile data that could serve as potential evidence may be lost or corrupted after a system 

crash. 

 

In order to address this limitation of digital forensics, it is suggested that the forensic 

investigation be started at an earlier stage, before the software failure actually unfolds, so as to 

detect the high-risk conditions that can lead to a major failure. These forerunners to failures are 

known in the risk analysis literature as near misses (Jones, Kirchsteiger & Bjerke, 1999). By 

definition, a near miss is a hazardous situation where the sequence of events could have caused 

an accident had it not been interrupted (Jones et al., 1999). This interruption can be caused by 

chance or by human intervention. A simple example of a near miss in everyday life is the case 

of a driver crossing a red traffic light at a busy intersection at high speed without causing a 

collision.  

 

As a near miss is very close to an entire accident sequence, it provides a fairly complete set of 

data about the potentially ensuing accident. Such data can be used as evidence to reconstruct 

the impending accident and to identify its root cause. In the case of software applications, the 

term ‘accident’ refers to a major failure. By alerting system users of an upcoming failure, the 

detection of near misses provides an opportunity to collect at runtime failure-related data that 

is complete and relevant. It eliminates the need to log all system activity, which can result in 

vast amounts of data presenting challenges for storage and analysis. Since current digital 

forensic tools are limited in their ability to handle and interpret large volumes of data (Nassif 

& Hruschka, 2011; Guarino, 2013) the detection and analysis of near misses can serve as an 

effective data reduction mechanism. 

 

Near-miss analysis is usually performed through so-called near-miss management systems 

(NMS), which are software tools used to report, analyse and track near misses (Oktem, 2002). 

In many industries that are prone to high-risk accidents, these systems have been implemented 
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for decades with a view to improving safety. Examples of such industries include the aviation, 

the nuclear, the chemical, and the healthcare industries (Phimister, Vicki, Bier & Kunreuther, 

2004). NMSs have a successful track record in organisations where they have been designed 

effectively, as they provide valuable additional information on accidents and their root cause. 

For instance, evidence shows that the use of such systems has contributed to the improvement 

of safety in the aviation industry (Phimister et al., 2004). It is therefore expected that an NMS 

can also be a valuable learning tool with regard to software failures.  

 

An NMS that combines near-miss analysis (obtaining appropriate digital evidence of a failure) 

and digital forensics (performing an objective analysis of the evidence) can contribute 

significantly to the improvement of the accuracy of the failure analysis. However, such a 

system is not available yet and its design still presents several challenges due to the fact that 

neither digital forensics nor near-miss analysis is currently used to investigate software failures. 

Its existing processes and methodologies are not directly applicable to the specificity of the 

software industry (for near-miss analysis) or of software failures (for digital forensics).  

 

For example, digital forensics, which is used to identify and prosecute the perpetrator of a 

computer crime, does not provide for quickly restoring a failed system to minimise downtime 

before starting the investigation. Regarding near-miss analysis – in many industries, near 

misses are obtained from observed physical events and conditions. However, in the software 

industry such an exercise is particularly challenging – in the case of software applications, 

some near misses might not be visible at all, as no system failure actually occurred. 

 

The aim of this research is to design an NMS that can address the above challenges to facilitate 

the forensic investigation of software failures. As illustrated in Figure 1.1, the proposed NMS 

lies at the intersection of failure analysis, digital forensics and near-miss analysis. It will focus 

on the detection and prioritisation of near misses at runtime with a view to maximising the 

collection of appropriate digital evidence of the failure. 
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Digital forensics

Proactive 
accident 

investigation

Event 
reconstruction 

through scientific 
analysis of digital 

evidence

Near-miss analysis

Failure analysis

Causal analysis of 
software failures

NMS

 

Figure 1.1: The proposed NMS in relation to the fields of failure analysis, digital forensics and 

near-miss analysis 

1.2 Thesis statement 

Against the background of the above discussion, the main claim of this research can be 

formulated as follows: Near-miss analysis can help identify and collect more relevant and 

complete digital evidence of a software failure. This has the potential to improve the accuracy 

of the ensuing forensic analysis of the failure.  

 

Proving the above claim through the design of an appropriate NMS is the goal of this research. 

 

1.3 Problem statement 

The problem addressed by the current research can be formulated as follows: Current failure 

analysis methods are informal and lack accuracy and objectivity, which can lead to the 

recurrence of disastrous software failures. The combination of the scientific approach of 

digital forensics and the sound evidence of the failure obtained through near-miss analysis has 

the potential to address this issue but is not available yet. The design of an NMS to fill this gap 

faces a number of challenges due to the specificities of software failure investigations that are 

not catered for by existing processes and methodologies of either digital forensics or near-miss 

analysis.  

 

1.4 Research Questions 

This research will address the above problem by answering the following main research 

question: What should the architecture for a near-miss management system look like such that 
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it can improve the completeness and relevance of digital evidence of a software failure, thereby 

improving the accuracy of its forensic analysis? 

 

In order to design such an architecture, research will need to be conducted to answer the 

following fundamental questions that arise as sub-problems: 

 

 How can the methodology of digital forensics be applied to the investigation of software 

failures? 

This requires reviewing techniques and procedures used in digital forensics and identifying the 

ones suitable for investigating software failures. It also entails adapting relevant but currently 

unsuitable procedures in order for them to satisfy the specificity of software failure 

investigations. 

 

 How can near-miss analysis be applied to the software industry effectively? 

This entails reviewing challenges to near-miss analysis across industries and identifying issues 

specific to the software industry. Assessing challenges to near-miss analysis requires a solid 

understanding of this discipline and its state-of-the-art. The literature on the topic indicates 

that, across industries, the two main challenges to near-miss analysis are the detection and 

prioritisation of near misses. These two challenges must therefore be reviewed from a software 

application perspective. 

 

Addressing these challenges effectively entails reviewing previous work in near-miss analysis 

and identifying solutions, if any, applicable to the software industry. If necessary, these 

solutions can be modified according to the specific requirements of the software industry. 

Otherwise, new and suitable solutions must be provided. 

 

1.5 Scope and context of the study 

This research is limited to operational failures, in other words software failures that occur after 

the design, development and testing phases when a system is in production. Contrary to a pre-

production system, an operational system is a finished product, which has been tested and is 

expected to work as intended. The margin for failures is therefore low due to the potentially 

severe impact of such occurrences.. 
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Operational failures are the focus of this thesis as the reliability and performance level of a 

system can only be truly assessed when in production. Contrary to software failures 

experienced during software development and testing, operational failures occur in real-life 

affecting “real” users. They are harder to contain and predict than failures and defects that 

occur during system development, where the system is operating in a controlled and safe 

environment and potential recurrences of the failure are not detrimental to the intended end 

users. The cost of operational failures is therefore significantly higher compared to pre-

production failures. The associated cost of a forensic investigation is therefore more valuable 

for an operational system. 

 

1.6 Research methodology 

The following steps will be taken to solve the problem stated in Section 1.3.  

 

The first step is to conduct a literature study on failure analysis to understand current practices 

in this field. This is achieved through reviewing the literature on major software failures that 

occurred within the last five years. The cause and impact of the failures are first reviewed to 

assess the significance of the problem. Then follows an extensive study of the literature 

available on the investigation of such failures.  

 

The second step is to critically assess the effectiveness of the documented failure investigation 

process and identify its limitations in terms of the accuracy and objectivity of the results. 

Requirements for improvement are subsequently formulated, which constitute the foundation 

for the design of the NMS proposed in this research. 

 

The third step is to design a solution for the above requirements, in the form of a suitable NMS 

architecture. The first aspect of the architecture is the investigation process, which is based on 

digital forensics and therefore requires a review of the digital forensics process from a software 

failure perspective. The review aims to determine how digital forensic methodology can be 

applied to software failure investigations and what changes need to be made. An adapted digital 

forensic investigation process that meets the specified requirements is then designed and tested 

against the case study of a real-life software failure. The second aspect of the NMS architecture 

involves the near-miss analysis and therefore requires its review and critical examination from 

a software failure perspective. Challenges to near-miss analysis for investigating software 
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failures are examined. Solutions to the challenges are then proposed, in the form of a definition 

of near misses for software systems and a mathematical model to enable the detection of near 

misses based on this definition. 

 

Afterwards an NMS architecture that integrates all the above partial solutions is designed. The 

NMS includes all the necessary phases of a digital forensic investigation, as well as the created 

mathematical model to detect near misses and enable the collection of evidence of the failure 

before the root-cause analysis is conducted. 

 

The fourth and final step is to test the viability of the NMS architecture through the 

implementation of a prototype. Several experiments are conducted to demonstrate the detection 

of near misses and the forensic investigation of a failure based on the evidence collected from 

the near-miss detection. 

 

1.7 Terminology used in the thesis 

In order to avoid any misunderstanding, it is important to correctly interpret the terminology 

used in this thesis. Therefore, the researcher provides a brief definition of what is meant by the 

relevant terms used around the concepts of an accident, a failure and a near miss. 

 

Event: a real-time factual occurrence that could seriously impact an operation (Jucan, 2005) 

 

Condition: Any system state, whether precursor or resulting from an event, that may have 

adverse implications for the normal system’s functionality (Jucan, 2005). 

 

Accident: An undesirable event resulting in injury or damage (Jones et al., 1999). 

 

Accident sequence: Sequence of events that result in an accident. The accident sequence starts 

with an initiating event such as a human error, and ends when the accident unfolds, also known 

as the accident end-state (Saleh et al., 2013). 

 

Incident: Any undesirable event, including accidents and near misses (Jones et al., 1999). 
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Cause: A condition or an event that results in or participates in the occurrence of an effect. 

Causes can be classified as:  

 Direct Cause: A cause that resulted in the occurrence.  

 Contributing Cause (also Contributing Factor): A cause that contributed to an 

occurrence but would not have caused it by itself.  

 Root Cause: The cause that, if corrected, would prevent recurrence of this and similar 

occurrences (Jucan, 2005).  

 

 

Failure: the inability of a system or component to perform its required functions within 

specified performance requirements (IEEE, 1999). This definition applies to both hardware and 

software system failures. 

 

Digital forensics: the use of scientifically derived and proven methods towards the 

preservation, collection, validation, identification, analysis, interpretation and presentation of 

digital evidence derived from digital sources for the purposes of facilitating or furthering the 

reconstruction of events found to be criminal, or for anticipating the unauthorised actions 

shown to be disruptive to planned operations (Palmer, 2001). 

 

Near miss: a hazardous situation, event or unsafe act where the sequence of events could have 

caused an accident if it had not been interrupted (Jones et al., 1999). 

 

Near-miss management system: software system used to report, analyse and track near misses 

(Oktem, 2002). 

 

Since the concept of a near miss is pivotal to this study, it requires a more specific definition 

as the generic one presented above. As it is not formally used in the software industry and has 

not yet been applied to digital forensics, there is no literature available on near misses with 

regard to software systems. The next section therefore provides an explanation of this concept 

as used in other industries and then formulates a definition of a near miss relevant for the 

purpose of this research.  
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1.8 Defining the near-miss concept 

1.8.1 Current definitions of near miss 

The concept of a near miss is primarily used in the domain of risk analysis and safety with 

regard to accident investigation and prevention (Saleh, Saltmarsh, Favarò, & Brevault, 2013). 

In the same way that what constitutes an accident differs from one industry to the next, what is 

considered a near miss also varies between industries. Even within an industry, a near miss 

may be defined differently from one organisation or field of practice to the next.  

 

In order to fully comprehend the concept, this section presents an explanation of a near miss 

from three perspectives. Firstly, a general discussion of a near miss in everyday life is provided. 

Secondly, near misses are defined more formally from a risk analysis and safety perspective. 

Finally, industry-specific definitions of near misses are provided to illustrate how the formal 

concept is applied in practice.  

 

1.8.1.1 General definition of a near miss  

The expression ‘near miss’ can be interpreted incorrectly as ‘almost missing a set target’. The 

expression is better understood through its synonyms which are a ‘near accident’, ‘close call’, 

and ‘near hit’. A general and broad explanation of the expression ‘near miss’ is provided as 

follows: 

A near miss is an unplanned event that did not result in injury, illness, or damage – but 

had the potential to do so. Only a fortunate break in the chain of events prevented an 

injury, fatality or damage; in other words, a miss that was nonetheless very near (MIC, 

2014).  

 

According to the American Heritage Dictionary of Idioms (Ammer, 2013), the expression ‘near 

miss’ originated during World War II, to refer to a bomb exploding in the water close enough 

to a ship to damage its hull. Soon afterward it acquired its present meanings. 

 

1.8.1.2 Definition of near miss from a risk analysis and safety perspective 

In the risk analysis and safety literature, a near miss is defined based on its relation to an 

accident or an accident sequence.  
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The concept near miss is used to identify high-risk conditions that can lead up to an accident. 

Such forerunners to failures are formally known as accident sequence precursors (ASP) or more 

simply as accident precursors (Saleh et al., 2013). ASPs are defined as “conditions, events and 

sequences that precede and lead up to accidents” (Phimister et al., 2004). They are also defined 

as ‘‘events that must occur for an accident to happen in a given scenario’’ (Carroll, 2004).  

 

A near miss is a special type of ASP. It is a precursor whose elements differ only slightly from 

the potential accident or whose mitigating factors are unlikely or not robust (Phimister et al., 

2004). In contrast to other ‘early’ precursors in the accident sequence, a near miss is the closest 

to the accident end-state (Saleh et al., 2013). It is very similar to the complete accident 

sequence, with only a few elements missing, either by chance or due to some human 

intervention. In simpler terms, a near miss is one step away from the accident. The researcher 

illustrates in Figure 1.2 this relation between a near miss, the preceding ASPs and the associated 

accident. In Figure 1.2, the accident is preceded by four ASPs. The fourth and last ASP is a 

near-miss event in case the accident does not unfold.  

Initiating 
event

Accident

Near miss

Accident sequence

Near-miss sequence
No Accident

Interruption?ASP1 ASP2 ASP3 ASP4

No

Yes

 

Figure 1.2: Relation between a near miss, its preceding ASPs and the subsequent accident in the 

accident sequence 

 

Based on the above discussion, a near miss can be defined generally as “a hazardous condition 

where the accident sequence was interrupted” (Andriulo & Gnoni, 2014). This definition is 

discussed as follows based on the near-miss example mentioned in Chapter 1. 

 

A simple fictitious example of a near miss in everyday life is a driver crossing a red traffic light 

at a busy intersection at high speed without causing a collision. In this example, there are two 

risky situations or ASPs: (1) crossing a red light, and (2) driving at high speed. Crossing a busy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

12 

 

intersection is a contributing factor to the likelihood of an accident but not an ASP, as it cannot 

by itself lead to an accident. The combination of the two ASPs and the contributing factor 

makes this event a high-risk situation conducive to an accident. The fact that no collision 

occurred makes this event a near miss. Various scenarios are possible to explain the lack of a 

collision: 

 The driver’s driving ability to avoid incoming cars  

 The carefulness of the drivers of the incoming cars 

 The speeding driver and the driver of an incoming car managed to stop right before 

crashing into each other 

 Luck 

 

The concept of near miss can be applied to almost any process in any industry. It is currently 

used in a number of industries including the chemical, aviation, nuclear, military and healthcare 

industries to learn about accident causes and prevent their occurrence and/or recurrence 

(Phimister, Oktem, Kleindorfer, & Kunreuther, 2003). Some interest has also been shown in 

its application in the construction industry (Wu, Yang, Chew, Yang, Gibb, & Li, 2010), oil and 

gas industry (Cooke, Ross, & Stern, 2011), financial industry (Mürmann & Oktem, 2002; 

Oktem, Wong, & Oktem, 2010), manufacturing industry (Gnoni, Andriulo, Nardone & 

Maggio, 2013) and outdoor activity sector (Goode, Salmon, Lenne & Finch, 2014). Various 

examples of near misses in some of these industries are provided in Kleindorfer, Oktem, 

Pariyani and Seider (2012). Examples of how near misses are defined in some of these 

industries are provided next in an attempt to determine how suitable these definitions are for 

the software industry. 

 

1.8.1.3 Industry-specific definitions of near misses 

This section presents definitions of near misses from three different industries: the aviation 

industry, which was the pioneer in the formal investigation of near misses (NASA, 2006); the 

medical field, which has a considerable amount of literature on the topic; and the occupational 

health and safety sector, which touches a number of industries. Examples are provided to 

illustrate the definitions, after which a critical assessment of the suitability of these definitions 

with regard to software systems is conducted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

13 

 

In the aviation industry, more specifically in air-traffic control, a near miss is defined as “any 

circumstance in flight where the degree of separation between two aircraft is considered by 

either pilot to have constituted a hazardous situation involving potential risk of collision” (US 

Department of Defense, 2005). This definition limits near misses to the specific scenario 

whereby two aircraft passed one another too closely without causing a collision. 

 

In the medical field, a near miss is defined as “an event that could have resulted in unwanted 

consequences, but did not because either by chance or through timely intervention the event 

did not reach the patient” (ISMP-Canada, 2014). For example, a hospital doctor mistakenly 

prescribes penicillin to a patient who is allergic to the drug. The error goes unnoticed by both 

the pharmacist and the nurse, but the patient mentions his allergic condition just before 

swallowing the tablets and the nurse stops him just in time (Nashef, 2003). 

 

In the occupational health and safety domain, near misses are defined as “incidents where no 

property was damaged and no personal injury sustained, but where, given a slight shift in time 

or position, damage and/or injury easily could have occurred” (US Department of Labour, 

2010). For example, a construction worker is walking on a designated path on a construction 

site and a wrench falls from scaffolding above, nearly hitting him (Pettinger, 2013). 

 

Although near-miss definitions were provided for only three industries, they illustrate various 

points about an industry’s view on the near-miss concept.  

 

Firstly, the above definitions all define near misses as observed physical events. Two factors 

are considered: 

 The actual impact of the event (no collision in air-traffic control, patient not affected in 

medical field, or no injury or property damage in occupational health and safety) 

 The potential impact of the event if the accident sequence had not been interrupted 

(aircraft collision, affected patient, property damage or injury) 

 

Secondly, the definitions are narrow in the sense that they point to a specific type of event or 

situation, sometimes only applicable in the industry at hand (e.g. aircraft collision only 

applicable to aviation, affected patient only applicable to medicine). Therefore none of these 

definitions can be applied to the software industry for the following reasons:  
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 In the case of software applications, no physical near-miss event might be observed 

since no ‘accident’ occurred (the term ‘accident’ referring to a failure). 

 The exact impact of a software ‘accident’ is not known beforehand. As illustrated 

earlier with the example of the RBS software failure, the consequences of software 

failures vary, based on the system involved. Since consequences can range from 

financial loss to loss of life, they cannot all be grouped under the expression ‘injury or 

property damage’ as is the case in occupational safety. 

 

A broader and more relevant definition of a near miss with regard to software systems is 

therefore required. This is formulated in the next section. 

 

1.8.2 Proposed definition of a near miss for software systems 

The starting point for defining near misses in software systems is the following definition from 

Jones et al. (1999): a near miss is “a hazardous situation, event or unsafe act where the sequence 

of events could have caused an accident if it had not been interrupted”. 

 

In terms of software systems, the term ‘accident’ may be substituted by the term ‘major failure’. 

Indeed, the software literature does not refer to adverse events as accidents but as failures. 

According to the definition provided earlier, accidents result in significant loss. Since a 

software failure may or may not result in loss, it can be argued that significant loss is incurred 

only when the failure is severe. Therefore the following definition roughly based on that of 

Jones et al. (1999) above is proposed for a near miss with regard to software systems: 

 

A near miss is an unplanned high-risk event or system condition that could have caused a major 

software failure if it had not been interrupted either by chance or timely intervention. 

 

The researcher illustrates the relation between a near miss and the associated software failure 

in terms of risk and loss in Figure 1.3. The early precursors in the accident sequence are also 

indicated in Figure 1.3. 

 

The above definition is the general definition for near misses used throughout the rest of this 

thesis. In Chapter 6, a formal definition for near misses is provided to enable their automated 

detection by the proposed NMS. 
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near miss 

Failure

Minor failure

Major failure

Time

Loss

ASP1 ASP2 ASP3

Risk

 

Figure 1.3: Relation between near-miss and failure in terms of risk level of event and loss 

incurred 

 

Based on the above definition, examples of near misses in software systems can now be 

recognised. The researcher experienced a practical example of a near miss with a mobile 

procurement application developed in her research centre (Cashmore, 2012). Due to ineffective 

memory management caused by a programming error, one user unwittingly exceeded the 

specified limit of items in the product catalogue stored on his phone, and continuously added 

new items to the catalogue. Contrary to what would normally have been expected, this did not 

cause the application to crash. Investigations of this near miss revealed that the programming 

error overruled the code written to enforce the limit on the number of catalogue items. 

 

1.9 Layout of thesis 

This thesis consists of 11 chapters as depicted in Figure 1.4. 

 

Chapter 1 provides an introduction to the thesis and indicates how the research is structured. 

It also provides a brief introduction to the concept of near miss, how it is defined across 

industries and its proposed definition for the software industry as used throughout the thesis. 

Since near-miss analysis is the central point of this research, a clear understanding of the 

concept of a near miss (new to digital forensics) is essential. 

 

Chapter 2 is an overview of past software failures of significant magnitude, followed by a case 

study of their ineffective investigation. It provides a motivation for the significance of this 

study and a background for further explanations of the proposed NMS. Requirements to 

improve the investigation of software failures are provided. 
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Chapter 3 provides background information on digital forensics and motivates its potential 

application in the investigation of software failures, based on the requirements specified in 

Chapter 3.  

 

Chapter 4 examines challenges to the application of digital forensics to software failure 

analysis and reviews previous work conducted on this topic. It then presents an adapted forensic 

investigation process suitable for software failures. This investigation process is based on  

solutions identified from the literature review of previous work and on the requirements 

specified in Chapter 2. The proposed process is validated with a case study of the real-life 

example of a major software failure. Limitations of the process are discussed, following the 

evaluation of the results of the case study. 

 

Chapter 5 proposes near-miss analysis as a solution to the limitations of the forensic process 

described in the previous chapter. An overview of the field of near-miss analysis is provided. 

Challenges to near-miss analysis are then presented from a software perspective. 

 

Chapter 6 presents proposed solutions to the challenges regarding near-miss analysis 

identified in the previous chapter. The solutions are presented as a mathematical model for 

defining, detecting and prioritising near misses.  

 

Chapter 7 presents the NMS architecture. The architecture combines the mathematical model 

designed in Chapter 6 with the adapted forensic investigation process presented in Chapter 4. 

 

Chapter 8 is the first chapter of a three-part series that describes the implementation of a 

prototype for the NMS architecture proposed in the preceding chapter. The prototype focuses 

on the detection of near misses. This chapter presents the design phase of the prototype 

implementation. 

 

Chapter 9 describes the first experiment of the prototype implementation. The goal of this 

experiment is to obtain a data set suitable for the subsequent forensic analysis and near-miss 

detection. 
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Chapter 10 is the last of the three chapters describing the prototype implementation. It portrays 

the last experiments that were conducted to enable the detection of near misses at runtime. 

 

Chapter 11 concludes the thesis. 

Chapter 1: 
Introduction

Chapter 2: 
Software failures: overview 

of recent cases

Chapter 3: 
Using digital forensics for 
accurate investigation of 

software failures

Chapter 4: 
The adapted digital forensic  

process for  failure 
investigations

Chapter 5: 
Near-miss analysis: an 

overview

Chapter 7: 
The NMS architecture

Chapter 9: 
Prototyping the NMS – The 

data set 

Chapter 10: 
Prototyping the NMS – 

Detecting near misses at run 
time

Chapter 11: 
Conclusion

Prototyping 
the NMS 
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Figure 1.4: Graphical depiction of layout of thesis  
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  CHAPTER 2         

SOFTWARE FAILURES:  OVERVIEW OF RECENT 

CASES 
 

2.1 Introduction 

Since major software failures often result in disasters ranging from financial loss to loss of 

lives, preventing their recurrence is absolutely necessary. As indicated in Chapter 1, a post-

mortem investigation is required to identify their root cause and implement appropriate 

countermeasures. However, history shows that such an investigation is often conducted 

inefficiently and inaccurately, with no proper supporting evidence, which allows for the 

recurrence of severe accidents. 

 

This chapter reviews the problem of major software failures with the aim of determining how 

to improve the accuracy of their root-cause analysis so that major accidents do not reoccur. 

This is achieved through the following two steps. Firstly, a review of recent cases of major 

software failures is conducted to demonstrate the reality and seriousness of this issue. Secondly, 

an analysis of the investigation of those failures is performed to identify limitations and 

establish requirements for improvement. These requirements form the basis for the design of 

the NMS proposed in this thesis. 

 

In order to demonstrate the diversity of software failures, the presented cases of failures cover 

a number of different industries. Although their public reports are obtained mainly from the 

software literature, some were encountered in the medical literature. Indeed, reports on recent 

cases of software failures in the healthcare industry are scarce in the computer science field, 

especially in the software literature. Therefore, it was deemed necessary to also review relevant 

literature from the medical domain to broaden the pool of software failure cases.  

 

Medical software failures are particularly relevant for the purposes of this research for two 

reasons: they can be fatal and legislation requires an in-depth investigation of these accidents. 
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Hence, comprehensive reports on their investigation are sometimes available, in contrast to the 

lack of proper reporting on software glitches with lesser consequences in other industries. 

 

This chapter is structured as follows. Section 2.2 provides background information on software 

failures by presenting a definition of a software failure and explaining the main causes and 

consequences of these events. Section 2.3 reviews recent cases of severe software failure. 

Section 2.4 examines the typical approach for investigating software failures through a case 

study of three fatal medical software failures and the investigations conducted subsequently. 

Finally, Section 2.5 presents the lessons learnt from the literature review of these software 

failures and develops requirements for improving their investigation.  

 

2.2 Background on software failures  

This section presents some general background information on the problem of software 

failures. The section first establishes a definition of a software failure as is relevant for this 

research. This is followed by a review of the causes, manifestations and consequences of 

software failures.  

 

2.2.1 Definition of a software failure 

According to Laprie (1992) “a system failure occurs when the delivered service no longer 

complies with the specifications, the latter being an agreed description of the system's expected 

function and/or service”. This applies to both hardware and software failures. 

 

Similarly, the IEEE computer dictionary defines a failure as “the inability of a system or 

component to perform its required functions within specified performance requirements” 

(IEEE, 1990). This definition also applies to both hardware and software systems.  

 

More commonly, the universal dictionary of the English language defines a  failure as “non 

performance of action which was necessary, expected” (Wyld, 1961). 

 

All three definitions above present the term failure in relation to some predefined 

specification(s). These specifications set the expected level of performance of a system, in other 

words what is considered ‘normal’ functioning.  
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Therefore, for the purposes of the research in hand, the definition of a software failure is an 

unplanned cessation of a software system or component to function as specified.  

 

Software systems can fail for various reasons as will be discussed next. 

 

2.2.2 Common causes of software failures 

Common causes of software failures include resource exhaustion (e.g. memory leaks), system 

overload (e.g. network congestion), logic errors (e.g. incorrect formula that leads to 

miscalculations), misconfigurations (e.g. inappropriate settings due to changes) and security 

breaches (e.g. malicious software such as viruses and worms) (Pertet & Narasimhan, 2005).  

 

Besides the above causes, human errors such as entering incorrect data, and glitches in routine 

maintenance operations, for instance failed software upgrade, also account for a significant 

number of failures. Industry research (Vision Solutions, 2004) shows that the latter accounts 

for about 15% of all software failures. Environmental problems (e.g. a power failure) can also 

cause a software system to stop functioning properly.  

  

Failures can originate from the software programs of the server, the client or the network 

system (Marcus & Stern, 2003). In each case, they can manifest in either of several ways 

presented below. 

 

2.2.3 Manifestations of software failures 

Generally speaking, software failures result in downtime and poor system performance. The 

standard definition of downtime is “the period of time during which a system or component is 

not operational or has been taken out of service” (IEEE, 1990). The term ‘outage’ is also often 

used as a synonym of downtime. It is worth noting that a failure results in unplanned downtime, 

in contrast to planned downtime, which is the result of scheduled maintenance operations such 

as backups and upgrades (Pertet & Narasimhan, 2005). 

 

Downtime and poor system performance can manifest in any one of the following ways as 

indicated by Pertet and Narasimhan (2005): 
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 Partial or entire system unavailability: Either the entire system or parts of it are 

down. The user may receive error messages such as “file not found” or “system 

unavailable” or his request may time out.  

 System exceptions and access violations: The executing process may terminate 

abruptly, causing the application to hang or crash, with or without a warning message. 

 Incorrect results: The system is operational but delivers wrong results such as some 

miscalculations or incorrect items (e.g. the wrong dosage of a requested medication). 

 Data loss or corruption: The user is unable to access previously available data (e.g. a 

previously saved file) due to some accidental erasure or corruption.  

 Performance slowdown: The system is unusually slow to respond to a user query.  

 

In many cases, awareness of a software failure only occurs when the failure becomes visible to 

the end-users in one of the ways mentioned above. In most cases the above signs of software 

failure result in mere inconvenience, but they can in some instances have tragic consequences 

and cause a negative impact on both the service provider and the end-users. Consequences of 

software failures are reviewed next.  

 

2.2.4 Consequences of software failures 

A major software failure affects both the service provider and the service consumer, and it may 

have a negative impact on both company revenue and end-user well-being.  

 

The service provider mainly suffers from a substantial loss of revenue. This can be due to a 

loss of productivity, repair costs (repairing and replacing damaged equipment, hiring external 

consultants to resolve the problem), product liability litigations or compensation paid to 

frustrated customers (Ponemon Institute, 2011). In addition, the service provider also suffers 

from a tarnished reputation, which can cause a fall in its stock price, affect staff morale and in 

turn result in increased customer churn (Mappic, 2013). Study reports indicate that unplanned 

downtime costs businesses across North America and Europe a total of 26.5 billion USD in 

lost revenue each year (Harris, 2011) and an average of 5 600 USD per minute (Ponemon 

Institute, 2011). 
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Furthermore, a system crash can open the door for unauthorised access to confidential 

information by weakening security barriers such as firewalls and intrusion detection systems 

(Bihina Bella, Eloff & Olivier, 2012). This can lead to a breach of privacy of the customers’ 

records or of the company’s trade secrets. 

 

The service consumer can suffer from frustration because the service is unavailable, slow or 

delivers incorrect results. As software is embedded in a range of devices in a number of 

industries, a failed software application can affect any area of a consumer’s day-to-day life, 

including the financial, transport, telecommunications, legal and healthcare areas. Some 

examples of the consequences of failed software in the above industries include the following: 

overcharged bills, cancellation of scheduled flights, unavailability of mobile communication 

services, wrongful arrests, and wrong medical procedures. Based on how widely the software 

system is used, these consequences can span entire countries and even cross continents. This 

is illustrated in the next section where real-life examples are offered of major software failures 

in the industries mentioned above. 

   

2.3 Overview of recent major software failures 

This section reviews cases of major software failure that occurred within the last six years to 

illustrate the prevalence of such events and their catastrophic impact. The review starts with a 

list of online sources of software failure cases in Section 3.3.1 and then discusses in more detail 

interesting cases selected from these sources in Section 3.3.2. 

 

2.3.1 Lists of cases of major software failure available online 

For the sake of protecting their public image, affected companies often underreport 

catastrophes that result from software malfunctions (Sommer, 2010), even more so when 

human lives were at risk (Bogdanich, 2010). However, various lists of worldwide software 

failures are publicly available on the web in an attempt to shed light on the extent of the problem 

and help avoid the recurrence of similar problems. Section 2.3.1.1 presents lists collected from 

the computer science literature by the author of this thesis, while Section 2.3.1.2 reviews lists 

collected by the author from the medical field. As mentioned in the Introduction (2.1), medical 

accidents are of particular interest to this research as detailed reports on their investigations are 

usually available. This is in contrast to the other failures listed in this section, where only 
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limited information about their investigation and technical details of the failures are provided. 

The discussion of these cases of software failures is therefore on a high level for the purpose 

of illustrating the variety and severe impact of major software failures. 

 

2.3.1.1 Lists from the computer science field 

Table 2.1 gives a summary of ten lists of software failure cases maintained by IT professionals. 

These lists were used to find the real-life examples of software failures that are discussed later 

in this chapter. Most of the lists provide a brief summary of the reported failures and focus on 

their impact, with little or no details on what caused the problem or how it was resolved. 

Additional research work is therefore required to find this information. For this reason, Table 

2.1 has seven columns that help assess how detailed and complete the list is, since detailed lists 

require less additional research work. The seven columns are as follows: 

 Name or source of list: The title of the list, if available, or its website 

 Author: Name and affiliation of the main author of the list 

 Date of earliest failure: Year and month (if available) of earliest failure recorded in 

the list 

 Date of latest failure: Year and month (if available) of latest failure recorded in the list 

 Failure count: Number of entries in the list 

 Source of reference material provided? The entry is either a yes or a no, depending 

on whether the list provides references to documentation about the failure 

 Technical details provided? The entry is either a yes or a no, depending on whether 

the list provides details about the cause of the failure and how it was investigated  

 

In addition, Table 2.1 has an extra field called “Selected cases” that lists the failures that were 

selected from each online source for further discussion. These examples were selected by the 

author according to the following criteria: their severity, diversity, learning opportunity in 

terms of root-cause identification and failure resolution, as well as how much additional 

technical information could be found. The latter was limited for many of the examples. 

 

The author of this thesis classified the lists as either dynamic or static, based on when last they 

were updated. Dynamic lists are updated as new events occur, while static lists are no longer 

updated. Several static lists rank events based on their severity. 
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The lists in Table 2.1 are sorted in descending order based on the date of the latest failure in 

each list. Table 2.1 shows that major software failures have been a source of concern for 

decades in various parts of the world, with cases having occurred as early as 1962. The table 

also shows that information on how the failure was investigated and resolved is rarely available, 

which may suggest that the investigation process was not documented or was kept confidential. 

Another observation from the table is the fact that some failures are reported in several lists, 

confirming their significance. In particular, the Therac-25 disaster is reported in every list 

whose earliest failure occurred before 1985. This disaster is therefore worth some attention and 

is discussed in detail in Section 2.4. 

 

Table 2.1: Lists of real-life cases of major software failure collected by the researcher online 

over a period of time  

Name or source 

of list 

Author Date of 

earliest 

failure 

Date of 

latest 

failure 

Failure 

count  

Source of 

reference 

material 

provided? 

Technical 

details 

provided? 

Selected cases 

Dynamic lists 

The Risks Digest, 

online newsletter 

Peter Neumann, 

Computer Science 

Lab, SRI 

International, 

USA 

Aug. 

1985  

Nov. 

2014 

Events 

reported 

every week 

since 1986 

Yes Yes (details 

on cause but 

not on 

investigation 

into failure) 

Rent troubles at New 

York City public 

housing agency in 

2009 (Fernandez, 

2009); Blackberry 

outage in 2011 

(Whittaker, 2011). 

SoftwareQATest.

com 

Rick Hower, 

software testing 

consultant 

1983 Apr. 

2014 

80  No No RBS failure in 2012 

(Finnegan, 2013); 

Axa Rosenburg 

trading error in 2011 

(Greene, 2011). 

“Collection of 

Software Bugs” 

Thomas Huckle, 

Institut für 

Informatik in 

Munich, Germany 

1962 Apr. 

2014 

Over 50 

cases in 

different 

industries 

Yes No (details in 

reference 

material only) 

Therac-25 disaster in 

1985-1987 (Leveson 

& Turner, 1993). 

SQS.com, 

software quality 

testing company 

SQS consultants  2010 Dec. 

2013 

10 per year 

(most are 

high 

profile) 

No No United Airlines 

failure in 2012 

(Karp, 2012); UK 

organ donor register 

error in 2010 

(Roberts, 2010) 

Static lists  
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Name or source 

of list 

Author Date of 

earliest 

failure 

Date 

of 

latest 

failure 

Failure 

count 

Source of 

reference 

material 

provided? 

Technical 

details 

provided? 

Interesting cases 

ACM blog Bertrand Meyer, 

Chair of Software 

Engineering, ETH 

Zurich, 

Switzerland 

1985 

(referenc

e to The 

Risks 

Digest) 

2011 Not 

available, 

cases 

spread out 

on various 

articles 

Yes No (details in 

reference 

material) 

French National 

pension fund error 

in 2009 (Durand-

Parenti, 2009) 

“10 Seriously 

Epic Computer 

Software Bugs”, 

from 

listverse.com, a 

website that 

provides top 10 

lists on various 

topics 

Andrew Jones, no 

affiliation 

provided 

1982 2005 10 No Yes (details 

on cause but 

not on 

investigation 

into failure) 

Therac-25 disaster 

in 1985-1987 

(Leveson & Turner, 

1993) 

“20 Famous 

Software 

Disasters”, from 

DecTopics.com, a 

website on 

software 

development 

topics 

Unspecified 1962 2005 20 Yes (many 

links are 

outdated) 

Yes (details 

on cause but 

not on 

investigation 

into failure) 

Multidata radiation 

accidents in 2001 

(McCormick, 2004). 

Software Horror 

Stories 

Nachum 

Dershowitz, 

School of 

Computer 

Science, Tel Aviv 

University, Israel 

1968 2004 107 Yes Yes (details 

on cause but 

not on 

investigation 

into failure) 

Therac-25 disaster 

in 1985-1987 

(Leveson & Turner, 

1993) 

“History’s Worst 

Software Bugs”, 

from Wired 

News.com, 

technology news 

website 

Simon Garfinkel, 

no affiliation 

provided 

1962 2000 10 Yes Yes (details 

on cause but 

not on 

investigation 

into failure) 

Multidata radiation 

accidents in 2001 

(McCormick, 2004); 

Therac-25 disaster 

in mid-1980s 

(Leveson & Turner, 

1993) 

“10 historical 

software bugs 

with extreme 

consequences”, 

from 

Pingdom.com, a 

website-

monitoring 

company 

Unspecified 1980 2000 10 Yes No Therac-25 disaster 

in mid-1980s 

(Leveson & Turner, 

1993); Multidata 

radiation accidents 

in 2001 

(McCormick, 2004); 
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It is worth noting that although the above lists present software failures in a wide range of 

industries, they do not provide recent examples of software failures in the medical field. Recent 

examples of such failures are therefore presented in the next section.  

 

2.3.1.2 Online sources of software failures from the medical field 

As software is embedded in a number of medical devices, a good place to start looking for 

medical software failures is the portal of the FDA, the U.S. Food and Drug Administration, 

where adverse events due to faulty medical devices have been reported since 1991 (FDA, 

2013). A prominent case from the FDA portal is a fatal oxygen system failure in Minnesota, 

USA, in 2010 (Charette, 2010). 

 

Another valuable source of information on medical software failures is the website of the IAEA 

(International Atomic Energy Agency) (IAEA, 2013a), which provides detailed reports on past 

radiation therapy accidents and related course material with a view to preventing their 

recurrence. Radiation accidents due to software errors gained prominence with the Therac-25 

disaster mentioned earlier (Leveson, 2000) while the IAEA presents more recent cases. The 

New York Times newspaper (Bogdanich, 2011) also published a series of comprehensive 

articles on the topic in 2010, such as the fatal case that occurred in a New York City hospital 

in 2005 (discussed in detail in Section 2.4). 

 

The next section reviews the cases of software failure selected from the above sources. 

 

2.3.2 Overview of prominent cases of recent software failure 

History shows ample examples of the devastating effect of major software failures. Table 2.2 

presents a summary made by the author of this thesis of ten of the cases listed earlier in Table 

2.1 and the examples mentioned in Section 2.3.1.2. The table only lists failures that occurred 

from 2009 onwards. Selected failures that occurred earlier are discussed in Section 2.4 under 

radiation therapy accidents. 

 

Table 2.2 has nine columns that capture the essence of each failure, and the last three indicate 

how its root cause was identified, for how long the bug was present before its discovery and 

how it was fixed. The researcher specifically introduced these three fields to highlight the 
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inefficiency of the investigation process and its adverse effect on the improvement of the 

system. Besides their severity and diversity, the examples were selected based on the 

availability of information on the approach that was used to solve the failure. The examples are 

grouped according to the industry or sector affected. Five industries and sectors are 

represented: finance, airlines, mobile telecommunications, public services (government and 

law enforcement) and healthcare. Software failures in these industries have a direct effect on 

the daily life of service consumers. A brief description of each of the nine columns in Table 

2.2 follows next: 

 

 Industry/sector:  The industry or sector affected 

 Company/institution: The company or institution that experienced the failure  

 Failure description: A brief description of the failure 

 Date: Year of the failure (when available, the month is also specified) 

 Cause of failure: The reported root cause of the failure, if available 

 Impact: Consequences of the failure 

 How was the root cause identified? Approach used to identify the source of the failure 

(usually it is done either by troubleshooting or through a comprehensive investigation) 

 How long was the error present before its discovery? Time duration between the 

introduction of the error in the software and its discovery, if available 

 How was the error fixed? Approach used to correct the faulty software, if available 

 

Table 2.2: Prominent cases of recent software failures collected by the researcher 

Industry / 

Sector 

Company / 

Institution 

Failure description Date Cause of 

failure 

Impact How was the 

root cause 

identified? 

How long 

was the error 

present 

before its 

discovery? 

How was the 

error fixed? 

Finance 

 

RBS (Royal 

Bank of 

Scotland)  

 

 

Total outage: online 

and offline banking 

services unavailable 

for four days in 2012 

and for one day in 

2013 (Finnegan, 

2013) 

Dec. 2013 

and Jun. 

2012 

 

 

Botched 

upgrade to 

batch-

processing 

software 

13 million 

affected users 

throughout 

the UK + 

GBP125 

million in 

compensation 

and system 

recovery  

Independent 

review 

conducted at the 

request of 

government 

(Financial 

Services 

Authority) 

Error 

introduced 

during 

upgrade, date 

unspecified 

 

 

 

Troubleshooting 

(patch from 

manufacturer) 

but problem not 

entirely fixed 
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Industry / 

Sector 

Company / 

Institution 

Failure description Date Cause of 

failure 

Impact How was the 

root cause 

identified? 

How long 

was the error 

present 

before its 

discovery? 

How was the 

error fixed? 

AXA 

Rosenburg 

group  

 

 

Incorrect modelling 

of trading strategy in 

investment portfolio 

for two years 

(Greene, 2011) 

 

Jun. 2009 

(discovery 

of error) 

 

Apr. 2010 

(disclosure 

of coding 

error) 

 

Coding error 

in 

quantitative 

investment 

model, 

which 

minimised 

an important 

risk factor  

Fraud charges 

+  USD25 

million fine + 

requirement 

to pay back 

investors who 

lost USD 217 

million + 

customer 

churn 

Root-cause 

analysis process 

unspecified, 

probably 

software review 

after investors 

lost money 

Programming 

error was 

made two 

years before 

its discovery, 

and kept 

secret for 10 

months after 

its discovery  

New software 

release with 

coding error 

fixed 3 to 5 

months after its 

discovery 

National 

Pension Fund, 

France 

Overestimation of 

the pensions of one 

million people for 25 

years (Durand-

Parenti, 2009) 

2009 Logic error 

in pension 

calculation 

algorithm 

Cost of 

EUR300 

million to tax-

payers in 

pension 

overpayment 

Root-cause 

analysis process 

unspecified 

25-years-old 

bug, 

introduced at 

system’s 

inception 

Logic error was 

rectified 

Airlines  United 

Airlines 

Two-hour outage 

that disrupted flight 

scheduling 

worldwide (Karp, 

2012) 

Nov. 2012 Glitch in 

dispatch 

system 

software 

636 flights 

were delayed 

and 10 

cancelled 

Root cause 

unknown 

Origin of 

software 

problem 

unknown 

Troubleshooting 

but problem not 

entirely fixed 

Mobile 

telecoms 

Blackberry Communication 

services (call, text 

message, e-mail) 

unavailable for four 

days worldwide 

(Whittaker, 2011) 

Oct. 2011 Core switch 

failure, 

faulty 

backup 

system, and 

server 

overload 

Over ¾ of the 

70 million 

users 

worldwide 

were affected 

Troubleshooting Unspecified, 

problem 

generated 

during 

operation 

Troubleshooting 

but problem not 

entirely fixed 

Orange 

(France) 

Services unavailable 

nationwide for 12 

hours (Renault, 

2012) 

Jul. 2012 Bug in core 

network 

device 

26 million 

subscribers 

affected 

nationwide  

Detailed audit 

requested by 

government 

Unspecified Troubleshooting 

+ new device-

monitoring 

measures  

Public 

services 

 

Dallas county 

police force 

About 2 dozens of 

prisoners were 

incorrectly released 

out of jail due to bug 

in the new record-

keeping system 

(Hallman, 2014) 

Jun. 2014 Software 

defects,  

Criminals 

incorrectly 

freed from jail 

and still on 

the loose 

Root-cause 

analysis process 

unspecified 

1 week Unspecified. 

Defects partially 

corrected 
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Industry / 

Sector 

Company / 

Institution 

Failure description Date Cause of 

failure 

Impact How was the 

root cause 

identified? 

How long 

was the error 

present 

before its 

discovery? 

How was the 

error fixed? 

New York 

City public 

housing 

agency 

Millions of welfare 

families were 

overcharged for the 

rent of their public 

housing 

accommodation and 

taken to court for 

non-payment 

(Fernandez, 2009) 

2009 Logic error, 

incorrect 

formula 

used to 

calculate 

rent 

Families 

living in 

constant fear 

of eviction; 

contracted 

debt to pay 

extra rent 

amount  

Root-cause 

analysis process 

unspecified, 

probably 

software review 

after complaints 

from tenants 

8-month-old 

bug 

Logic error 

rectified 

Healthcare 

 

UK organ 

donor register 

Wrong organs 

removed from 25 

donors’ bodies 

(Roberts, 2010) 

Feb. 2010 Errors in the 

data 

conversion 

software 

used during 

system 

upgrade  

Donors’ 

families 

deeply 

affected 

Independent 

review 

requested by 

government 

following 

complaints from 

new donors  

10-year-old 

bug, 

introduced at 

the inception 

of the system  

Ordered a new 

improved 

system (based 

on availability 

of funds )  

Red Wing 

Ambulance, 

Minnesota, 

USA 

Woman died in 

ambulance due to 

spontaneous shut off 

of oxygen delivery 

system (Charette, 

2010) 

Apr. 2010 Software 

glitch in 

oxygen 

system 

Patient died + 

ambulance 

was placed 

under scrutiny 

Independent 

investigations 

by both 

manufacturer 

and ambulance 

staff, but root 

cause was not 

found 

Unknown New improved 

oxygen system 

but the problem 

reoccurred. 

Ambulance now 

carries portable 

oxygen system 

 

The above table shows the following facts about the failure cases that are presented in terms of 

the cause of the failure, as well as the approach used to fix it and to identify the failure’s root 

cause. 

2.3.2.1 Cause of the software failure 

 Failed upgrade: two cases (RBS and UK organ donor register) 

 Logic error in software code: three cases (Axa Rosenburg, France’s national pension 

fund, New York City public housing agency) 

 Bug in core network device: two cases (Blackberry and Orange) 

 Resource exhaustion: 1 case (Blackberry) 

 Human error (incorrect configuration) : one case (Dallas County police force) 
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The above causes are in line with the common causes of software failures presented in Section 

3.2.2. However, two of the failure cases (United Airlines and Red Wing Ambulance) have an 

unidentified root cause, despite the investigations conducted. This is alarming as it implies 

that the problem cannot be solved and is likely to reoccur – which is exactly what happened in 

both cases. 

 

2.3.2.2 Approach used to fix the failure 

 Troubleshooting: RBS, United Airlines, Blackberry, and Orange. In each of these 

cases, troubleshooting was inadequate to solve the problem entirely and additional 

countermeasures had to be applied. This included conducting an in-depth independent 

investigation to accurately find the root cause or using a risk-mitigating solution 

(system-monitoring measures in the case of Orange).    

 New improved system: AXA Rosenburg, UK organ donor register, and Red Wing 

Ambulance. In the latter case, the problem reoccurred with the new system as its root 

cause had not been identified. A risk-mitigating solution was then applied in the form 

of carrying portable oxygen systems. 

 Correction of coding errors and defects: France’s national pension fund, Dallas 

County police force, and New York City public housing agency. 

 

2.3.2.3 Approach used to identify the root cause of the failure 

 Unspecified: In many cases (AXA Rosenburg, France’s national pension fund, Dallas 

County police force, and New York City public housing agency), information on the 

approach that had been followed to identify the root cause of the failure was not 

available. It can be assumed that the approach followed involved a software review 

after the wrong system output had been identified. 

 Comprehensive investigation: This applies to the failures at RBS, Orange, the UK 

organ donor register and the Red Wing Ambulance. An investigation was only 

performed following a request from a higher authority, but this approach was more 

effective than troubleshooting. 
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A brief discussion of the above software failures follows next. The discussion is organised in 

five sections, one for each industry or sector affected.  

 

2.3.3  Software failures according to industry or sector 

2.3.3.1 Software failures in the financial industry 

The 2012 SQS list of worst software failures indicates that the financial and banking sectors 

are the top industries affected by these problems. This is mostly due to their legacy systems not 

being upgraded due to economic constraints. The banking sector is the most error-prone as a 

result of new trends such as mobile banking, online retail shopping and cloud computing, since 

these new technologies are not always compatible with existing IT infrastructure (SQS.com, 

2013).   

 

One case in point is the system failure at RBS (Royal Bank of Scotland), a major bank in the 

UK, in December 2013. As indicated in Chapter 1, an unspecified technical glitch caused the 

bank’s various electronic channels to be unavailable for several hours, leaving customers 

unable to make payments or withdraw cash (Finnegan, 2013). This failure occurred after 

another major outage in 2012, which left 13 million customers unable to access their bank 

accounts for four days due to a failure in a piece of batch-scheduling software (Worstall, 2012).  

 

AXA Rosenburg Group, a global investment company, is another example of a financial 

company that was seriously affected by its legacy system. The equity investment firm was 

charged with fraud and fined USD 25 million in February 2011 for hiding a coding error in 

their quantitative investment model (Greene, 2011). The faulty program affected the Group’s 

trading strategy and investment returns and caused investors a loss of USD 217 million.  

 

Another costly error due to a legacy system was found in the French national pension fund 

system. A software design error caused the overestimation of the pensions of about a million 

people, which amounted to a cost of over EUR300 million to tax payers. Although it was only 

discovered in 2009, the error had been present since the inception of the IT system in 1984 

(Durand-Parenti, 2009).  
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Other industries that often make the headlines for their software glitches are the airline industry 

and the mobile telecommunications industry, because of their high reliance on IT systems. 

Given the high usage of their services as part of our daily lives, these failures have an emotional 

impact on many people across geographical borders, as will be shown next.  

 

2.3.3.2 Software failures in the airline industry 

In November 2012, for the third time in that year, a glitch in the dispatch system software of 

United Airlines, the world’s largest airline, caused havoc on a number of flight schedules at 

airports in the USA and around the world. Altogether 636 flights were delayed and ten 

cancelled due to the two-hour outage, leaving passengers stranded in airport lobbies (Karp, 

2012).  

 

2.3.3.3 Software failures in the mobile telecommunications industry 

A well-known example of a mobile telecommunications failure is the Blackberry outage that 

occurred in October 2011. A core switch failure combined with a faulty backup system cut off 

over three quarters of the 70 million Blackberry smartphone users worldwide for almost four 

days (Whittaker, 2011). The outage started in Europe and the Middle East and spread to Africa, 

Latin America, the USA and Canada (Feldman, 2011). It is worth noting that shorter outages 

had already occurred in 2007 and 2008 for similar reasons (Horton, 2008). This implies that 

the root cause of the failure had not been properly addressed, hence the recurrence of the 

problem. 

 

More recently, in July 2012, a software bug in a core network device of Orange, a major mobile 

operator in France, caused a 12-hour outage that affected 26 million subscribers nationwide. 

The magnitude of the event turned this national crisis literally into an affair of state and the 

government ordered an independent root-cause analysis (Renault, 2012).  

 

Although it is not often reported, software errors also affect law enforcement and government 

agencies, which can result in wrongful criminal charges brought against citizens. Two failure 

examples from these public services resulted in civil court cases and are presented next.  
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2.3.3.4 Software failures in public services 

In June 201, more than 20 prisoners in Dallas County were incorrectly released out of jail due 

to a software glitch in the new record-tracking system. Due to heavy workload and some 

incorrect system configuration, some cases were not filed into the system within the prescribed 

timeframe. As a result, some criminals were mistakenly released and at the time of press, they 

were still on the loose although the police were looking for them. Police plan to find them and 

send back to jail and they have made changes to the record-tracking system to fix some of the 

defects and prevent further problems (Hallman, 2014). 

 

Another case of wrongful incrimination happened in New York City in 2009, where hundreds 

of welfare families were overcharged in rent due to an error in the rent calculation system of 

the city’s Housing Authority (Fernandez, 2009). Many families were taken to court and 

threatened with eviction for failing to pay the extra amount (up to USD 200). This computer 

error ran for nine months and left many tenants in a constant fear of being thrown out in the 

street, while it pushed some people to resort to debt to pay for the overcharge (Fernandez, 

2009).  

 

Extreme cases of software failures are a real threat to human well-being and can actually result 

in injury and loss of life. Examples from the healthcare industry where this is often the case are 

discussed next. 

 

2.3.3.5 Software failures in the healthcare industry 

Although they are chronically underreported (Bogdanich, 2010), software failures abound in 

medical devices. To support this argument, Roberts (2012) states that in 2011 software failures 

were responsible for 24% of all medical device recalls by the FDA. The review of the medical 

literature conducted on this topic highlights three principal areas of concern: radiation therapy 

machines, external infusion pumps and implantable medical devices such as pace makers.  

 

Software design flaws in these machines cause problems such as incorrect dosages of 

medication, administration of incorrect treatment or abrupt system shutdown, which are often 

the result of operators’ errors. Medical reports point to the following recurring causes for these 

faults: poor user interface design, unclear error messages and inadequate input validation. 
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Fatalities due to faulty software in these machines are often kept confidential but some are 

reported on the FDA and the IAEA portals. The cases discussed next represent some examples 

of such errors. The first two are not as recent as the examples listed in Table 3.2, but they were 

the latest that could be found to illustrate the above point. 

 

In 2004 a patient with an implantable drug pump died from an overdose because the operator 

set the bolus interval to 20 minutes instead of 20 hours, thus at 60 times the prescribed rate. 

The operator’s error was due to the poor user interface where the hour and minute fields for a 

bolus rate were ambiguously labelled on the computer screen (FDA, 2004a). One other death 

and seven serious injuries have been attributed to this data entry error (FDA, 2004b). 

 

In 2007 a programming error unexpectedly shut down a patient’s implantable infusion pump 

during use. The issue was caused by an overflow in the memory buffer that feeds the main 

processor. The underdosed patient’s blood pressure dropped and he experienced increased 

intracranial pressure, followed by brain death (FDA, 2007). Interestingly, brain death is listed 

as the cause of the death (FDA, 2007), instead of the software failure. 

 

More recently, in April 2010, a woman was killed by an oxygen software failure in an 

ambulance in Minnesota, USA. Unknown to the paramedic and for some unidentified reason, 

the oxygen delivery system spontaneously shut off for eight minutes (Charette, 2010).  

 

A more morbid example is provided by the faulty software of the UK organ donor register. The 

wrong organs were taken from the bodies of 25 donors due to the software misreading their 

donor forms. Although the software error was introduced in 1999, the problem was only 

discovered in 2010 after new donors complained that their information was incorrect following 

a thank-you note from the organ donor agency (Roberts, 2010).  

 

2.3.4 Lessons learnt 

The overview of software failures presented earlier in the chapter proves that these events are 

an unfortunate reality. Although technical details on the investigations were not available, 

several issues emerged from this review:  
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 Many software errors are discovered accidentally rather than through a routine check 

or through system monitoring. For this reason, they can remain hidden for a long time 

and cause significant problems in the long run.  

 Software failures are usually resolved through troubleshooting only, unless an in-depth 

investigation is ordered by a regulation authority.  

 Troubleshooting alone is inadequate and cannot prevent the recurrence of failures. This 

suggests that troubleshooting may not identify the real source of the problem. 

 A comprehensive investigation is often necessary to accurately identify the root cause 

of the failure. 

 

The next section delves into the above issues in more detail by presenting a case study of three 

fatal software failures. These are cases of radiation overdoses whose technical reports are 

publicly available. Although these cases are not as recent as the examples described earlier, 

they indicate a recurring pattern in the way software failures are handled. This trend is not 

apparent from the above examples, due to the limited information available on their 

investigation. 

 

2.4 Case study of software-induced radiation overdoses: AECL 

Therac-25, Multidata RTP/2 and Varian IMRT  

This section presents the researcher’s case study of three series of radiation overdose due to 

software malfunctions so as to demonstrate their similarities and infer valuable lessons in terms 

of failure investigation. Unlike other software failures whose technical details have been 

shielded from public view, comprehensive reports on these disasters are publicly available 

online, hence their selection. Although the three accidents occurred over a period of two 

decades and involved three different radiation therapy systems, they show striking similarities 

that suggest that history repeats itself. The same mistakes are still being made, which shows 

that software developers, manufacturers and operators do not learn from past failures. All three 

cases resulted in death and subsequent lawsuits and they clearly illustrate the devastating effect 

of software failures and of an inadequate post-mortem investigation.  

 

The three cases in question are the Therac-25 disaster in the USA and Canada between 1985 

and 1987, the radiation accidents at the Panama National Cancer Institute in 2001 and the 
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radiation overexposure at the St. Vincent Hospital in New York City in 2005. More recent 

cases of radiation overdose due to software glitches have been reported in 2007 (Bogdanich, 

2010b), 2008 (Bogdanich, 2010b) and 2009 (Bogdanich & Rebelo, 2010). However, they could 

not be used as case studies due to the limited information published. 

 

The first and third cases studied in this section involved the software component of a linear 

accelerator, which is a machine that generates beams of high-energy radiation to treat cancer 

patients (Bogdanich, 2010). The second case involved a treatment planning software, which is 

a component of a decision support system used to calculate recommended patients’ treatment 

time and radiation dose (IAEA, 2013b). Table 3.3 presents a summary of each of the three 

cases. 

 

Table 2.3 has twelve fields that provide specific information on each case. Each case is 

described in a separate column and each field is a row entry in that column. Although Table 

2.3 contains the same fields as Table 2.2, it also displays the following differences: 

 No field is provided for “Industry/Sector” as all cases are medical accidents. 

 No field is provided for “For how long was the error present before its discovery?” as 

the software bugs responsible for each accident were all introduced during system 

development. 

 

Table 2.3 contains the following five additional fields: 

 Impact on other parties. Besides the patients who were directly involved, the software 

manufacturer, the hospital and the machine operators were all severely affected by the 

accidents and sometimes held accountable for it. 

 Factors that facilitated the overdose: Various prior events and conditions contributed 

significantly to each overdose. If these had been addressed effectively early on, the 

administration of the overdose could have been prevented. 

 Factors that contributed to the negative impact of the accident: A number of factors 

allowed the overdose and its negative health impact to persist for an unnecessary long 

period of time. If these had been addressed sooner, this could have limited the impact 

of the accident and may even have saved the patients’ lives. 

 How was the overdose detected? Unlike failures described in Section 2.3.2, which 

have symptoms that are immediately visible (e.g. system outage and incorrect 
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calculation), the radiation overdose was not visible immediately after the treatment had 

been administered. 

 Initial reaction from manufacturer: This indicates how the system manufacturer 

reacted when hospital staff suspected and alleged that the software was the cause of the 

radiation overdose. This initial reaction played an important role in the subsequent 

investigation. 

 

The above five fields were used to highlight the similarity between the accidents and the factors 

that had a negative impact on the investigation and subsequent system improvement.  

 

Table 2.3:  Researcher’s summary of 3 cases of radiation overdose due to software errors 

Machine/Product Therac-25 linear accelerator Radiation treatment planning 

software RTP/2 

Linear accelerator for IMRT 

(Intensity Modulated Radiation 

Therapy) 

Software 

manufacturer 

AECL (Atomic Energy of Canada 

Limited) 

Multidata Systems International (US 

firm) 

Varian Medical Systems (US firm)  

Year of accident 1985-1987 2001 2005 

Location 11 hospitals throughout the USA and 

Canada 

Panama National Cancer Institute in 

Panama City 

St. Vincent Hospital in New York 

City 

Accident 

description 

A series of six machine malfunctions 

occurred in various hospitals either due 

to operators entering incorrect data or 

the system crashing unexpectedly. 

Each time, the machine tripped and 

generated misleading error messages, 

but also delivered an extremely higher 

dose of radiation. 

The software allowed the operators to 

enter input data in an incorrect format, 

which led to the miscalculation of 

patients’ treatment time and an 

overexposure to radiation for several 

months. 

 

The computer crashed while the 

physician was trying to save the 

revised treatment plan. The 

instructions for the machine 

calibrations were mistakenly 

deleted and the machine delivered 

a higher level of radiation for three 

consecutive days of treatment. 

Root cause of 

software failure 

Race condition (programming error) No validation of input data (logic 

error) 

Non fail-safe termination (data 

corruption) 

How was the 

overdose 

detected? 

Continued symptoms of radiation 

overdose for several weeks 

Continued unusual reactions in some 

patients for several months 

Patient’s unusual reaction to 

treatment observed by his family  

Initial reaction 

from 

manufacturer 

Overconfident about software quality; 

rejected possibility that software was 

faulty; blamed patient’s symptoms on 

hardware faults or operator’s incorrect 

use of machine 

Overconfident about software quality; 

rejected possibility that software was 

faulty; blamed patient’s symptoms on 

operator’s incorrect use of machine 

Blamed accident on operator’s 

negligence 
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Machine/Product Therac-25 linear accelerator Radiation treatment planning 

software RTP/2 

Linear accelerator for IMRT 

(Intensity Modulated Radiation 

Therapy) 

How was the root 

cause identified? 

Manufacturer investigation at the 

request of FDA after an informal 

troubleshooting approach 

 Troubleshooting by independent 

experts  

 independent investigation from 

IAEA requested by Panama 

Government   

 FDA investigation of 

manufacturer’s operations 

Manufacturer investigation 

submitted to the FDA. Details on 

the investigation were not found 

How was the 

software bug 

corrected? 

Manufacturer corrected bugs at the 

request of FDA. 

The manufacturer conducted a recall 

and in-field correction of the software 

and provided a detailed description of 

the cause and circumstances of the 

incorrect data entry. 

Manufacturer corrected bug and 

distributed an improved software 

with a fail-safe provision to its 

customers worldwide. 

Factors that 

facilitated the 

overdose 

 Unclear user manual 

 Poor system feedback 

 No investigation of prior harmless 

software malfunctions  

 No reporting of initial accidents to 

other users 

 Familiarity with similar and 

harmless malfunctions 

 Lack of a routine check 

 Unclear user manual 

 Poor system feedback 

 No investigation of prior harmless 

software malfunctions  

 No reporting of previous software 

malfunctions to other users 

 Lack of a routine check 

 Poor system feedback 

 No investigation of prior 

harmless software malfunctions  

 Familiarity with similar and 

harmless malfunctions 

 Lack of a routine check 

 

Factors that 

contributed to 

negative impact 

of accident 

 Late detection of overdose 

 Delayed root-cause analysis 

 Delayed software correction 

 Informal troubleshooting approach  

 Late detection of overdose 

 Delayed root-cause analysis 

 Delayed software correction 

 

 Late detection of overdose 

 Delayed root-cause analysis 

 Delayed software correction 

Impact on 

cancer patients 

Six patients were overdosed: three 

patients died and three were severely 

burnt. 

28 patients were overdosed: 18 died, 

and the others developed serious 

health complications.  

After two years of declining 

health, the patient died of his 

radiation injuries. 

Impact on other 

parties 

 The machine was recalled by the 

FDA in 1987.  

 FDA requested a corrective action 

plan (CAP) from AECL. 

 The AECL and hospital received 

lawsuits from affected patients 

and their families. 

 The three responsible physicians 

were trialled for murder. Two 

were sentenced to four years’ 

imprisonment and banned from 

practising their profession for 

seven years.   

 The FDA banned the 

manufacturer from operating in 

the USA. 

 The FDA blamed the hospital 

for negligence and the 

manufacturer for the faulty 

system.  

 The city fined the hospital for 

USD1000.  

 Hospital paid financial 

settlement to victim’s family. 

 

Table 2.3 shows that the three medical accidents are very similar in terms of the following 

aspects that confirm the observations made in Section 2.3.4. 

 How was the overdose detected? Patient’s unusual reaction to treatment (and not 

planned software output verification)  
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 How was the root cause identified? Through troubleshooting, followed by thorough 

investigation (software review) 

 Factors that facilitated the overdose: Lack of a routine check of the software 

operations 

 Factors that contributed to the negative impact of the accidents: Late detection of 

the overdose 

 

Table 2.3 also reveals the following aspects of the accidents that did not emerge from the 

software failures presented in Section 2.3. 

 Factors that facilitated the overdose: No reporting of previous software failures and 

no investigation of prior harmless malfunctions  

 Factors that contributed to the negative impact of the accidents: Delayed root-cause 

analysis, delayed software correction 

 

Before discussing the above issues further, a brief chronological description of the accidents is 

presented next. 

 

2.4.1 Accident description 

2.4.1.1 Therac-25  

Several bugs in this linear accelerator caused a series of six malfunctions in different hospitals 

between 1985 and 1987. In every accident, the machine was either unable to process 

instructions as they were given or it displayed misleading and unclear error messages. This led 

the operators into unknowingly administering a massive overdose of radiation that exceeded 

the prescribed dose by a hundred times (Leveson & Turner, 1993). Besides the fact that the 

accident caused the death of three patients and serious injury to three others, affected patients 

or their families filed several lawsuits against the various hospitals and the AECL. All lawsuits 

were settled out of court and the machine was recalled by the FDA in 1987 (McCormick, 2004). 

 

2.4.1.2 Multidata RTP/2 Treatment Planning Software 

The Multidata treatment planning software (TPS) enabled therapists to draw on a computer 

screen the placement of metal shields (called blocks) designed to protect healthy tissue from 
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radiation (McCormick, 2004). The TPS’s normal operation only allowed up to four blocks, but 

one oncologist requested a fifth block to further protect the more sensitive tissue. The 

physicians tried a new data entry method to bypass the software constraint by drawing the five 

blocks as a single large block with a hole in the middle. The TPS accepted the invalid input 

data without giving a warning but, unknown to the physicians, calculated an incorrect treatment 

time that caused double the normal dose of radiation (IAEA, 2013b).  

 

The impact of this failure was monumental. The modified treatment plan was administered to 

28 patients treated for cancer of the prostate or the cervix (IAEA, 2001). Of them, 18 died, 

while the others developed serious health complications (Borras, 2006). The FDA issued an 

injunction against Multidata to prohibit the firm from operating in the USA until they fixed the 

bug and became fully compliant with the FDA safety standards (McCormick, 2004). In 

addition, the three physicians who inadvertently administered the radiation overdose were 

trialled for murder because they were legally required to verify the software calculation by 

hand (Garfinkel, 2005). One was acquitted, while the other two were sentenced to four years 

in prison and banned from practising their profession for seven years (Diaz, 2004).  

 

2.4.1.3 Varian IMRT linear accelerator 

In March 2005 a patient who was being treated for a tongue cancer was mistakenly 

administered the wrong treatment with a radiation seven times his prescribed dose. The 

problem occurred during the fifth radiation session, after the patient’s reformulated treatment 

plan was accidentally deleted due to a system crash. The patient died from ensuing health 

complications two years later. The government investigators who conducted an enquiry found 

that both the hospital and the manufacturer were to blame for the accident. The city of New 

York levied a USD1000 fine against the hospital and ordered the hospital to pay a financial 

settlement to the victim’s family. 

 

2.4.2 How was the overdose detected? 

In each of the above three radiation overdose cases, the patients developed obvious radiation 

burn symptoms shortly after the treatment. These were reddened and swollen skin in the case 

of the Therac-25, diarrhoea with the Multidata TPS, and swollen head and neck with the Varian 
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linear accelerator. However, because the symptoms were initially attributed to the disease, they 

were not followed up.  The overdose was only discovered later in an unplanned way. 

 

In the first case, the overdose was confirmed after the fourth and fifth accidents when the 

hospital technician managed to reproduce the conditions surrounding the accidents and 

measured the resulting dose. A day later, AECL followed the same procedure and confirmed 

the overdose. In the second case, a physician accidentally discovered the computer 

miscalculations many months after the overdose had been administered. When calculating the 

dosages for two patients with the same treatment, she suddenly noticed a mismatch between 

her results and the software’s calculations (McCormick, 2004). The overdose was then 

confirmed through treatment simulation and the treatment was suspended (IAEA, 2013b). In 

the third case, the physician only conducted a verification test on the treatment plan after the 

third session and discovered the incorrect machine settings.  

 

2.4.3 How was the root cause identified? 

The root cause of the radiation accidents was only discovered through thorough software 

inspection, often after a number of unsuccessful troubleshooting attempts. Indeed, the 

investigators initially “diagnosed” the system failures based on their experience with the 

system and without supporting evidence, which is typical of troubleshooting. The basic 

investigation method was to try to reproduce the malfunction in order to find its origin.  

 

This strategy is evident from the case of the Therac-25 where the AECL engineers initially 

suspected a hardware fault. They hardwired the conditions for this fault to occur and applied 

certain countermeasures, claiming afterwards that the problem had been solved. Their claim 

was proved incorrect as similar failures reoccurred after the suspected hardware problem had 

been fixed.  

 

The same subjective diagnosis approach is also apparent in the case of the Panama accident. 

Some independent experts discovered the flaw in the software algorithm responsible for the 

overdose, based on their experience with a similar failure. Indeed, one of the radiotherapist 

experts said that the calculation error was a problem that had occurred in older similar treatment 

software. He remembered seeing a physician in the USA make this error ten years earlier and 

he consequently looked for it during the investigation. Fortunately in this case, independent 
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reviews from the IAEA and FDA confirmed his suspicion through testing of the software by 

using different data entry approaches (IAEA, 2001). 

 

2.4.4 Factors that facilitated the overdose 

In the case of all three accidents, no verification test was conducted right away to validate the 

output of the medical software. No routine check or system monitoring was in place to verify 

the proper functioning of the machine. This allowed the incorrect dose to be unwittingly 

administered several times to different patients. Two other factors that are recurrent in the three 

accidents also facilitated the overdose: the underreporting of system failures and the 

disregarding of harmless malfunctions.  

 

As a matter of fact, the first and third malfunctions of the Therac-25 were not reported to other 

users of the machine until later accidents also occurred (Leveson, 1993). This gave users a false 

sense of confidence in the proper functioning of the machine. Besides, the previous numerous 

malfunctions of the machine were never investigated as they had been harmless. Indeed, since 

the installation of the machine (two years before the accidents), the operators had become 

accustomed to its frequent malfunctions – up to 40 per day – which had never affected any 

patient prior to the deadly accidents. In such cases, the operator would simply call a hospital 

technician to reset the machine and restore it to service (Leveson, 1993).  

 

In the case of the Varian software, malfunctions of the software were equally common. 

Operators were used to its frequent but harmless crashes which they regularly reported to the 

manufacturer but which were never investigated (Bogdanich, 2010). Likewise, in the case of 

the Panama accident, the manufacturer neither reported nor investigated the miscalculations 

reported by previous customers close to a decade earlier. 

 

Nevertheless, reports show that in all three cases these minor problems followed similar 

patterns as the deadly failures (e.g. machine abruptly stops and restarts, same unclear error 

messages or miscalculations). Against the background of the discussion on the near-miss 

concept in the previous chapter, these minor problems were clearly cases of near misses. They 

were, in hindsight, clearly worth some attention and could well have provided distinct clues 

about the design flaw that caused the accidents.  
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2.4.5 Factors that contributed to the negative impact of the accidents 

In each of the three accidents, the overdose was only detected long after it had been 

administered, which implies that it was significantly harming the patients over a period of time.  

 

The benefit of early failure detection is demonstrated with another case of the Varian software 

failure. Indeed, a similar problem with the Varian software occurred in a different hospital 

several months after the notorious accident mentioned above. Fortunately, the overdose was 

detected soon after the treatment and the patient was not injured (Bogdanisch, 2010). It is safe 

to say that the early detection of this software error saved the patient’s life. 

 

2.4.6 Lessons learnt 

The three cases examined above clearly demonstrate that, in general, software failures are not 

handled efficiently. They reveal some clear limitations in the investigation of software failures 

and the resulting catastrophic consequences. More specifically, they confirm the observations 

made previously about the unplanned and inadvertent detection of software errors by using 

troubleshooting as an ineffective first reaction to a failure, as well as the problem posed by not 

reporting software failures and not investigating recurring near misses. Even more recent cases 

of radiation overdose caused by software failures (Bogdanich, 2010b) show similar patterns. 

This motivates the need for a more efficient and accurate failure investigation process that 

caters for these shortcomings. Designing a system to implement such an investigation process 

is the goal of this study. The shortcomings that have been identified are used as the basis for 

developing the key requirements that a near-miss management system should comply with. 

These requirements are established in the following section. 

 

2.5 Requirements for accurate failure investigation 

This section presents the key requirements for the proposed NMS inferred from the lessons 

learnt in the previous section. A brief review is given of the limitations identified in the existing 

approach towards failure investigation and then the requirements are established to address 

these limitations. 
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2.5.1 Limitations in the investigation of software failures 

This section examines the limitations in the investigation process observed by the author of 

this thesis from all software failures reviewed in Sections 2.3 and 2.4. The limitations that are 

presented are those that the author found recurring in a number of cases and that directly affect 

the quality of the ensuing investigation. 

2.5.1.1 Troubleshooting as the first response to a major software failure 

Companies affected by failures are often reluctant to conduct a thorough investigation, as it is 

costly and time-consuming. They rather focus on quickly putting back the system into 

operation through troubleshooting. However, troubleshooting lacks objectivity and accuracy. 

It is a short-term solution and in-depth investigations are needed to find a long-term solution. 

Besides, by restoring and rebooting the system, troubleshooting tampers with digital evidence 

of the failure, which can have a negative effect on the subsequent investigation. 

 

2.5.1.2 Lack of a standard investigation process 

The above review of various failure cases indicates that each failure is handled differently. 

There is no common procedure to investigate failures to identify the root cause. This leads to 

some subjectivity in the procedure used and in the results obtained. Moreover, in many cases, 

details of the investigation process are not available, making it hard to assess its effectiveness 

or to reproduce the investigation to confirm its results. 

 

2.5.1.3 No investigation of near misses 

Near misses are not given any attention as they cause no harm. However, they clearly show 

similar patterns as the serious failures and can therefore provide valuable insight into software 

weaknesses and bigger threats.  

 

Examples of near misses in software systems were provided by the reports of the three deadly 

medical accidents involving radiation therapy machines. Another example is the three-day 

Blackberry outage that occurred in 2011. 

 

With regard to the Blackberry case, the outage was intermittent and comprised a succession of 

smaller failures, which indicates that different things went wrong at different times. Press 
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reports indicate that firstly, a central server went down, then the backup system failed; e-mail 

traffic was then rerouted to another main server, which soon became overloaded (Mashable, 

2011). Each of these unsafe events was a precursor to the subsequent outage. This catastrophic 

event could have been a mere near miss if the faulty backup server had been replaced or 

repaired before the second main server became overloaded.  

 

Regarding the radiation therapy accidents, all three cases were preceded by a number of 

harmless malfunctions following similar patterns as the deadly accidents. The correct handling 

of these near misses could have helped prevent the accidental death of a number of cancer 

patients. 

 

2.5.1.4 No real-time detection of failures 

Some software failures are only detected long after they occurred, due to the lack of a 

continuous monitoring of the system’s operations. As a result, the impact of the failure can be 

significant and data that could help in the investigation may get lost as it gets overwritten by 

subsequent operations. 

 

2.5.2 Requirements for accurate software failure investigation  

From the previous discussion on the limitations in the failure investigation process, it is clear 

that a detailed investigation, rather than a quick fix, is required to prevent the recurrence of a 

similar failure. The investigation must have the following qualities: 

 Objectivity: In order to provide reliable results, the investigation must be objectively 

based on an analysis of data about the failure. The results should be independently 

verifiable and not subject to the investigator’s familiarity with the system.  

 Comprehensiveness: The investigation must be comprehensive to cater for all possible 

causes of the failure, which must all be tested. 

 Reproducibility: A different investigator should obtain the same results by following 

the same procedure as the initial investigators. This is best achieved through a standard 

investigation process, which eliminates the risk of subjectivity. 

 Admissibility in court: Although it cannot be inferred from the limitations discussed 

earlier, it is important to realise that a number of the reviewed failures resulted in 
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lawsuits. It is therefore imperative that the investigation process and the results obtained 

be admissible in a court of law, in the event of litigations. 

 

The failure investigation approach must also ensure the following: 

 Continuous system monitoring: Monitoring of a system’s operations and behaviour 

is required to avoid accidental or fortuitous discovery of failures, and to allow for the 

real-time detection of errors and risky conditions that are conducive to failures. 

 Investigation of near misses: Identifying and addressing the root cause of near misses, 

even though they are harmless, can help prevent a more serious accident from 

developing and can also provide valuable information for conducting the root-cause 

analysis of the subsequent failure.  

 

Several root-cause analysis methods have been proposed to address the above requirements 

and are commonly available today. Examples include application performance management 

(APM), business transaction management (BTM), change and configuration management 

(CCM) and the war room approach (Neebula.com, 2012). Except for the war room approach, 

these methods focus on maintaining and improving application performance through the 

continuous analysis of the end-user experience (APM), tracking the flow of transactions along 

a business transaction path (BTM) or detecting inappropriate changes and configurations 

(CCM) to prevent significant performance drop and related failures. The war room approach 

brings experts from different disciplines (e.g. server, network, application) into the same room 

so that they can analyse the problem together to quickly find its root cause (Neebula.com, 

2012).   

 

Despite its value, the war room is still vulnerable to the subjectivity of the participants and 

dependent on their knowledge of their specific discipline. The other methods, although 

valuable, focus on performance improvement and not on preventing the recurrence of failures; 

hence some manual guessing about the root cause of the failure is required (Neebula.com, 

2012).  Furthermore, none of the above methods simultaneously covers all the requirements 

identified above and none of them caters for the eventuality of a product liability lawsuit.  

 

The solution to this problem suggested in this study is to use digital evidence of the failure as 

the basis of the investigation. Such a strategy has the potential to satisfy all the requirements 
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established previously. Indeed, rather than relying on the investigator’s experience with the 

system, the investigation must follow a predefined process that collects and analyses evidence 

of the failure to find its origin. This will ensure the objectivity and reproducibility of the 

investigation. Besides, digital evidence is required for formal court proceedings. Compliance 

with the last two requirements (continuous system monitoring and investigation of near misses) 

can greatly assist with the process of obtaining reliable digital evidence. Continuous system 

monitoring can indeed detect failures as they occur and can therefore facilitate the collection 

of evidence before it gets overwritten by subsequent operations. Furthermore, the investigation 

of near misses provides an additional source of evidence about system malfunctions that can 

supplement the failure investigation.  

 

Although digital evidence is primarily in the form of log files, it may also include any other 

data about the failure. Preserving the integrity of this evidence is necessary to ensure the 

reliability of the root-cause analysis. The informal troubleshooting approaches that are often 

adopted to conduct root-cause analysis do not promote the collection and preservation of digital 

evidence. In fact, in order to restore the system to its normal operational state, rebooting is 

often required, which completely destroys or at least tampers with potential evidence (Trigg & 

Doulis, 2008).  

 

Before looking for alternative solutions, a logical step is to turn to the field of digital forensics, 

which uses objective evidence to provide clarity on the cause and circumstances of an event 

while adhering to principles of law (Vacca & Rudolph, 2011). It can therefore serve as an 

effective alternative to investigate software failures, although it is currently limited to the 

investigation of criminal events and security incidents. Digital forensics will be reviewed in 

the next chapter to determine its suitability with regard to the established requirements for a 

more accurate software failure investigation.  

 

2.6 Conclusion 

This chapter presented a number of recent severe software failures and the detailed case study 

of three fatal medical accidents caused by faulty software. The aim was to highlight the 

negative impact of software failures and to identify the limitations in current failure 

investigation practices. The literature review established that, despite their catastrophic 

consequences, major software failures are not given the timely and full attention they require. 
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They are often handled inefficiently and irresponsibly through informal troubleshooting, which 

enables their recurrence.  

 

The limitations in current failure investigation practices create the need for a more accurate 

investigation approach. Requirements for such an approach have been established in this 

chapter, based on the identified shortcomings in failure investigations. Using digital evidence 

as the basis of the investigation was found necessary to meet these requirements, and digital 

forensics was identified as a promising solution to facilitate the collection and analysis of 

digital evidence. A review of the digital forensics process and its prospects as a solution to the 

lack of accuracy in software failure investigations are presented in the next chapter. 
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  CHAPTER 3                       

USING DIGITAL FORENSICS FOR ACCURATE 

INVESTIGATION OF SOFTWARE FAILURES  
 

3.1 Introduction 

This chapter presents digital forensics as a promising solution to the limited accuracy of 

software failure investigations. As demonstrated in the previous chapter, inaccurate 

identification of the cause of the failure leads to the implementation of inappropriate 

countermeasures that are not suitable to prevent the failure from reoccurring. Although it is not 

currently used for failure analysis, the formal process of digital forensics has the potential to 

provide sound evidence of the root cause of the failure by making a scientific analysis of the 

digital evidence in this regard.  

 

To ensure the reliability of the results of a digital forensic investigation, various steps are 

performed to enable the collection of the digital evidence and to preserve its integrity 

throughout the investigation. This process for collecting, preserving and analysing digital 

evidence was identified as favourable to satisfy the requirements established in the previous 

chapter for a more accurate failure investigation, namely objectivity, comprehensiveness, 

reproducibility, and admissibility in court. Supporting activities to foster these desired qualities 

of the investigation included the continuous monitoring of the system to detect failures early, 

and the investigation of near misses as an additional source of evidence of the failure. 

 

Chapter 3 demonstrates the suitability of digital forensics to meet the above requirements. It 

first motivates the selection of digital forensics as a viable alternative for investigating software 

failures. It then discusses how digital forensics can be used to satisfy the requirements for more 

accurate failure analyses. 

 

The chapter is structured as follows: Section 3.2 provides an overview of digital forensics and 

its current applications. Section 3.3 presents several arguments to support the suggestion to use 
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digital forensics to investigate software failures. Section 3.4 reviews the building blocks of 

digital forensics and their potential application in failure investigations to meet the above 

requirements. Finally, Section 3.5 uses these building blocks to determine how suitable digital 

forensics is to improve the accuracy of failure investigations.  

 

3.2 Overview of digital forensics 

This section starts with a brief introduction to the field of digital forensics and then presents an 

overview of its current applications.  

 

3.2.1 Introduction to digital forensics  

Initially called computer forensics (Vacca & Rudolph, 2010), digital forensics is also known 

under a number of different names, including computer forensic science (Noblett, Pollitt, & 

Presley, 2000), forensic computer science (IJoFCS, 2012), forensic computing (McKemmish, 

2008), system forensics, as well as electronic or digital discovery (Vacca & Rudolph, 2010). It 

is a relatively new discipline in the established field of forensic science. Digital forensics was 

recognised as a forensic science by the American Academy of Forensic Sciences in 2008 

(Kessler, 2009).  

 

The term “forensic” means “suitable in a court of law” (Merriam-Webster, 2014). Forensic 

investigations are therefore conducted with a view to achieving that potential outcome. 

Forensic science, often shortened as forensics, is defined as the “application of scientific 

knowledge and methodology to legal problems and criminal investigations” (Free Online Law 

Dictionary, 2013). It deals with the scientific identification, analysis and evaluation of physical 

evidence (Free Online Law Dictionary, 2013). Digital forensics, as the application of forensics 

to computer science, also deals with the scientific handling of evidence, but such evidence is 

in an electronic form and resides on a digital device. 

 

Digital forensics brings scientific rigor, combined with a solid legal foundation, to an 

investigation. This combination makes it an efficient approach to investigations, as it produces 

results that are reliable and legally acceptable in the eventuality of a lawsuit. For this reason, 

digital forensics is used for various legal and regulatory purposes as will be discussed next.  
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3.2.2 Digital forensic applications 

Digital forensics is primarily used for the investigation of computer-related crimes. This 

includes crime cases where the computer is the target of the crime (e.g. hacking), the instrument 

of the crime (e.g. phishing) or a storage facility for evidence about the crime (e.g. money 

laundering) (Vacca & Rudolph, 2010). Note that computer in this context is a broad term that 

refers to any computing device on which information is stored in a binary form (Kessler, 2009). 

This includes laptops, desktops, servers, network devices such as routers and switches, as well 

as mobile devices such as mobile phones, tablets and digital cameras. 

 

Digital forensics is a fast-growing field due to the increased occurrence of cybercrime and 

breaches of information security policies, which affect people’s safety and companies’ trade 

secrets. Digital forensics is used to identify the perpetrators of such malicious acts in order to 

prosecute or take disciplinary action against them. It also has non-prosecutorial applications in 

a number of professions. The following are some examples identified by Vacca and Rudolph 

(2010): 

 The military uses digital forensics to obtain intelligence information from computers 

seized during military actions. 

 Law firms use digital forensic professionals to find digital evidence in support of civil 

cases such as divorce and unfair labour practice. 

 Insurance companies use digital evidence to investigate potential fraud based on, for 

instance, arson or workers’ compensation claims. 

 Data recovery firms use digital forensic techniques to recover data lost due to an 

accident or a hardware or software failure. Note that digital forensics is not used to 

identify the cause of the failure. 

 

As these examples show, even when not used for prosecution, digital forensics is mostly limited 

to cases related to law, regulations or policies. This is understandable as the primary objective 

of a digital forensic investigation is to ensure that the findings can serve as valid evidence in a 

court of law. As in other branches of forensic science, its focus is on the integrity of the 

evidence that must have been collected and handled according to rigorous guidelines and in 

conformity with all applicable laws (Vacca & Rudolph, 2010).  
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It is precisely this emphasis on scientific rigor and standard procedures that distinguishes digital 

forensics from current failure analysis methods. Examples of such methods were discussed in 

the previous chapter and include troubleshooting, application performance management, 

business transaction management, change and configuration management, and the war room 

approach (Neebula.com, 2012). Scientific rigor is also the reason why digital forensics is 

deemed a promising candidate to address the limited accuracy in current practices of software 

failure analysis.  

 

This argument is elaborated on in more detail in the next section. Various factors are discussed 

that indicate that digital forensics can be successfully used in non-criminal failure 

investigations while retaining its legal foundation.  

 

3.3 Motivation for using digital forensics for software failure 

investigations 

This section presents arguments to support the suggestion that digital forensics be used to 

improve the accuracy of software failure investigations. The argumentation is based on the 

following three pillars that are deemed sufficient and appropriate to prove the above point:  

 Supporting software literature that recommends the forensic investigation of system 

failures 

 Formal definition of digital forensics that allows for non-criminal investigations  

 Analogy to other disciplines in forensic science that are also used to investigate non-

criminal adverse events in their respective fields  

These arguments are developed in Sections 3.3.1, 3.3.2 and 3.3.3 respectively. 

 

3.3.1 Supporting literature 

A review of the literature on software failure investigations indicates that a number of authors 

share the view expressed, namely that digital forensics has clear benefits over current failure 

analysis methods. Indeed, for over a decade, several authors (Grady, 1996; Corby, 2000; 

Johnson, 2002; Hatton, 2004; Stephenson, 2003; Jucan, 2010; Hodd, 2010; Meyer, 2011) have 

been advocating an in-depth root-cause analysis of software failures so as to prevent their 

reoccurrence and ultimately improve the faulty software. A number of them (Corby, 2000; 

Stephenson, 2003; Kent, Grance, Chevalier, & Dang, 2006; Turner, 2007; Meyer, 2011) 
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specifically recommended digital forensics to assist in this process. Although many of their 

publications focus on incident response cases (i.e. failures due to security incidents) (Kent et 

al., 2006; Turner, 2007), they indicate that the concept can be applied to other situations as 

well.  

 

One of the first authors to suggest the use of digital forensics in computer failure investigations 

is Michael Corby. Already in 2000, Corby observed that the increased complexity of IT 

systems, combined with a focus on immediate system recovery, makes it challenging to 

establish the source of a failure and to ascertain whether it was intentional or accidental. As a 

solution, he proposed that digital forensic methodology be introduced to collect failure-related 

data before returning the system to operation, so as to prevent the loss of potential evidence in 

a post-mortem analysis. Corby (2007) argued that the proper collection of evidence 

significantly reduces the time needed for and complexity of the digital post-mortem.  

 

Stephenson (2003) also suggested the use of digital forensics for failure investigations but 

focused on security incidents. He argues that investigations of adverse events in the IT industry 

lack structure and formal modelling, which can cast doubt on the credibility of the outcome. 

Digital forensics, due to its mathematical foundation, can add structure and rigor to an 

investigation, thereby providing confidence in the accuracy of the results. He consequently 

proposed an approach to digital post-mortems with a formal modelling of the investigation 

process and possible outcomes using colored Petri Nets (Girualt & Valk, 2003). Although this 

methodology was designed specifically for security incidents, it demonstrates the benefits of 

applying forensic techniques to the investigation of adverse events such as software failures. 

 

In 2006, the American National Institute of Standards and Technology (NIST) published a 

guide on how to integrate digital forensic techniques with incident response (Kent et al., 2006). 

The guide clearly indicates that digital forensics can be used for a number of purposes, 

including troubleshooting operational problems and recovering from accidental system 

damage. Thus, NIST urged every organisation to acquire forensic capability to assist in the 

reconstruction of systems and network events. The guide explains how to establish such a 

forensic capability, as well as how to develop appropriate policies and procedures.  
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A year later, Turner (2007) also highlighted the value of combining the forensic approach with 

the procedure used for incident response, network investigation or system administration. He 

indicated that digital forensic tools and techniques can be used to address limitations of system 

administration procedures following an incident. Examples of such limitations are the loss of 

or tampering with potential evidence and the lack of recording of both the timestamp and the 

actions performed. He therefore recommended incorporating digital forensics as an integral 

part of the post-incident system administration process and proposed a “Digital Evidence Bag” 

to preserve digital evidence used in the investigation as a way to achieve this goal.  

 

More recently, Meyer (2011) promoted the technical analysis of software failures for 

improving software quality and reliability. He even suggested the adoption of a law that 

systematically requests such an investigation for every large-scale software failure. Although 

Meyer (2011) does not specifically refer to the use of digital forensics in the investigation, he 

uses the analogy of airplanes crashes, which are legally required to be investigated thoroughly 

and thus have black boxes to record potential evidence. He believes that this formal detailed 

evidence-based analysis has significantly contributed to the increase in airline safety and argues 

that the IT industry should follow this approach to improve software quality. 

 

In conclusion, the authors mentioned above are of the view that software failures – whether 

accidental or criminal – are not investigated efficiently. This does not only hamper the 

prevention of their recurrence, but also thwarts the correction of faulty software and obstructs 

the improvement of its quality and reliability. It also confirms the findings from the case studies 

of software failures in the previous chapter. As a solution, the authors referred to above 

recommend a formal evidence-based post-mortem analysis through the integration of digital 

forensics. As a matter of fact, using digital forensics for exactly such a purpose is catered for 

in its definition – as will be discussed next. 

 

3.3.2 Definition of digital forensics 

Various definitions of digital forensics are available in the literature, depending on the 

perspective used. It is usually defined from either a legal, a criminal, or a process perspective. 

This section examines some of these definitions to support the argument that digital forensics 

is suitable for failure investigations. It then presents a general definition suitable for the purpose 

of this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

55 

 

3.3.2.1 Existing definitions of digital forensics 

The Digital Forensic Research Workshop (DFRWS) established one of the first formal 

definitions of digital forensics during their first meeting in 2001 (Palmer, 2001:22). It reads as 

follows: 

 

Digital forensics is the use of scientifically derived and proven methods towards the 

preservation, collection, validation, identification, analysis, interpretation and 

presentation of digital evidence derived from digital sources for the purposes of 

facilitating or furthering the reconstruction of events found to be criminal, or helping 

to anticipate the unauthorised actions shown to be disruptive to planned operations. 

 

This definition focuses on the procedure followed in a digital forensic investigation as it lists 

the sequence of steps involved. It also specifies the domains of application of this process – 

reconstruction of criminal events and prevention of unauthorised actions – the latter referring 

to the breaching of policies. This definition reflects the standard application of digital forensics, 

as explained earlier. However, it clearly mentions event reconstruction as a goal, which is also 

the goal of a failure investigation.  

 

Indeed, event reconstruction is the process of determining the underlying conditions and the 

chain of events that have led to an incident (Carrier & Spafford, 2004). It involves examining 

the evidence and proposing hypotheses about the events that occurred in the system and caused 

the incident (Jeyaraman & Atallah, 2006). The purpose of a failure investigation is also to 

identify the root cause of the failure, which is determined by the events and conditions that led 

to the failure. 

 

In 2005 the above definition of digital forensics was revised by Willasen and Mjølsnes (2005: 

page 1) to read as follows: 

Digital forensics is the practice of scientifically derived and proven technical methods 

and tools towards the preservation, collection, validation, identification, analysis, 

interpretation, documentation and presentation of after-the-fact digital information 

derived from digital sources for the purpose of facilitating or furthering the 

reconstruction of the events as forensic evidence. 
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This definition is very similar to the previous one. However, one important difference is that it 

does not qualify the events analysed as criminal and therefore broadens the scope of digital 

forensics to the reconstruction of non-criminal events as well. This provides room for software 

failures as one type of non-criminal event that can be investigated with the digital forensic 

process. 

 

A more recent and shorter definition of digital forensics is suggested by Vacca and Rudolph 

(2010:3): 

Digital forensics is the process of methodically examining computer media as well as 

network components, software and memory for evidence.  

 

This definition does not specify the type of events investigated but focuses on the source of the 

evidence, which can be any component of an IT system, either internal (software and memory) 

or external to the system (network component and storage media). Investigating a software 

failure may also require the examination of these different components of the system. Vacca 

and Rudolph’s definition also refers to following a strict procedure for the investigation by 

qualifying the examination as methodical. 

 

Next follows an analysis of the main aspects of the previous definitions that are relevant for 

the requirements for accurate software failure investigations. 

 

3.3.2.2 How can the definitions of digital forensics satisfy the requirements for accurate 

failure investigation? 

Based on the above review of digital forensic definitions, the following is a presentation of the 

aspects of digital forensics deemed suitable for the requirements established to improve the 

accuracy of software failure investigations. In every relevant aspect presented, the requirement 

that is satisfied is displayed in italics. 

 The techniques and tools used are based on science, which implies the objectivity of the 

investigation. 

 These techniques are applied to digital information obtained from digital sources. They 

accommodate any electronic device as a source of digital information, which allows the 

examination of all relevant components of the failed system and thus contributes to the 

comprehensiveness of the investigation. 
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 The investigation follows a standard predefined procedure, which contributes to its 

objectivity and reproducibility.  

 Forensic evidence is the output of the investigation, in other words legal principles are 

followed so that the results are admissible in court. This also implies the objectivity of 

the findings as they are based on analysed evidence. 

 

In summary, the above analysis demonstrates that digital forensics, by its mere definition, can 

be applied to the investigation of software failures and provide accurate results. The definition 

of digital forensics used in this thesis for this purpose is presented next. 

 

3.3.2.3 Working definition of digital forensics 

Köhn (2012:24) proposed the following definition of digital forensics, which encompasses all 

the aspects discussed above and is therefore adopted in this thesis:  

 

Digital Forensics is a specific, predefined and accepted process applied to digitally 

stored data or digital media using scientific proven and derived methods, based on 

a solid legal foundation, to extract after-the-fact digital evidence with the goal of 

deriving the set of events or actions indicating a possible root cause, where 

reconstruction of possible events can be used to validate the scientifically derived 

conclusions. 

 

The definition of digital forensics served as the second argument to motivate its suitability for 

software failure investigations. The third and last argument is derived from a review of other 

forensic disciplines that are also commonly used for the investigation of non-criminal failures 

and adverse events. They are reviewed in the next section. 

 

3.3.3 Lessons learnt from other forensic disciplines 

Although forensic science is not currently used for failure analysis in the software industry, 

this is not a new concept in other industries. Two industries that systematically make use of 

forensic science for such a purpose are the engineering and the healthcare industries. In the 

engineering industry, this field of practice is called forensic engineering (Noon, 2001), while 

it is known as forensic pathology in the healthcare industry (Dolinak, Matshes & Lew, 2005). 

In each of these disciplines, the goal of the investigation is to improve the quality and reliability 
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of the systems, products and procedures, and to prevent the recurrence of failures and adverse 

events. This is also the aim of the suggested forensic analysis of software failures. Forensic 

engineering and forensic pathology are briefly discussed in Sections 3.3.3.1 and 3.3.3.2 

respectively.  

 

3.3.3.1 Overview of forensic engineering 

Forensic engineering applies various scientific examination tools and techniques, simulations 

and event reconstruction methods to identify the source of disastrous failures in engineering 

products (McDanels, 2006). The emergence of formal failure investigations as currently 

conducted in forensic engineering can be traced to the Industrial Revolution, during which 

many complex machines were introduced. The added complexity led to many accidents that 

required expert analysis to understand their causes and prevent their reoccurrence. The types 

of accidents evolved as engineering products developed from steamboats, railway trains and 

steel bridges in the 1800s to automobiles, home appliances and airplanes in the 1900s (Brown, 

Obenski & Osborn, 2003).  

 

Forensic engineering has evolved from its initial focus on legal investigations in product 

liability cases to its current focus on failure analysis for product and system quality 

improvement purposes. Presently, most forensic engineering investigations never reach the 

courtroom and are conducted mainly with a view to preventing similar accidents in future 

(Carper, 2000).  

 

One such example is the forensic investigation conducted into the collapse of the World Trade 

Center on 11 September 2001, which was undertaken to understand the impact of the fire on 

the collapse of the twin towers – despite the fact that the responsible parties were already known 

(Usmani, Chung & Torero, 2003). Various elements such as the construction design, fire 

properties of materials used, and their thermal expansion were examined through simulations 

and computer-based structural analysis. Based on this analysis it was determined that using 

reinforced concrete instead of lightweight steel, as well as providing an energy-absorbing 

structure could prevent the collapse of such tall buildings in the future (Zhou, 2004). 
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3.3.3.2 Overview of forensic pathology 

Forensic pathology is a branch of medicine “that applies the principles and knowledge of the 

medical sciences to problems in the field of law” (Dimaio & Dimaio, 2001). It has been an 

integral part of medicine since the 19th century and was formally recognised in the United 

States in 1959 by the American Board of Pathology (ItsGov.com, 2011). Forensic pathology is 

primarily used to investigate the cause of death upon a legal request (Dimaio & Dimaio, 2001). 

However, it also has applications in public health and safety to prevent and control diseases 

and to prevent drivers’ injuries.  

 

In public health, forensic pathologists track trends for a potential disease outbreak, the 

emergence of a new infectious disease, or a bioterrorism attack (Springboard, 2014). For 

instance, a forensic autopsy may uncover a previously undetected contagious disease, and this 

knowledge can be used to prevent an outbreak. It may also help identify a hereditary condition 

that will enable family members to proactively seek treatment or limit the effect on new-born 

babies and future offspring (Dolinak et al., 2005).  

 

In public safety, forensic pathology is used particularly to promote driver safety (Springboard, 

2014). As a matter of fact, the investigation of deaths and injuries in road accidents has led to 

policy changes in several countries. For instance, in the United States, such investigations led 

to the introduction of optional fitting and wearing of seat belts in cars in 1955. This legislation 

was later made mandatory in many countries, following its positive effect on road safety and 

reductions in fatalities (Onyiaorah IV, 2013). 

 

The reviews of the above two disciplines show that, through the integration of scientific 

methods and legal principles, the forensic approach has ensured rigorous and comprehensive 

investigations and has created opportunities for improvement and for preventing the recurrence 

of failures and accidents. This effect has been demonstrated for over a century in the 

engineering and medical fields. In view of the above benefits in other fields of forensic science, 

similar benefits are expected in the software industry, based on the application of digital 

forensics to failure investigations. As was the case with forensic engineering, the increased 

complexity of software systems requires more formal and in-depth investigations than are 

currently available through using troubleshooting and other failure analysis methods. 
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Section 3.3 motivated the use of digital forensics for software failure analysis. It showed that 

digital forensics can be applied to non-criminal or legal cases and can be beneficial to failure 

analysis. The next step is to find out how digital forensics can improve its accuracy. This 

requires an understanding of the distinctive characteristics of a digital forensic investigation. 

 

These characteristics are its use of scientific methods and techniques and its adherence to legal 

principles. These elements are reviewed in Sections 3.4 and 3.5 respectively. The investigation 

process is a product of these elements to ensure the legal acceptance of the results (discussed 

in Section 3.6). Examples are provided of how each of these characteristics of digital forensics 

can assist in the accurate investigation of software failures. The examples involve the three 

deadly radiation therapy accidents reviewed in the previous chapter  

 

3.4 The scientific foundation of digital forensics 

As a recognised science, digital forensics must adhere to accepted scientific methodologies. 

Two fundamental ones commonly used in digital forensics are the scientific method and 

mathematical analysis. The scientific method is discussed in Section 3.4.1 and mathematical 

analysis is reviewed in Section 3.4.2. 

 

3.4.1 The scientific method 

This section starts with a general overview of the scientific method. It then examines how the 

scientific method can help improve the accuracy of software failure investigations. 

 

3.4.1.1 Overview of the scientific method 

The scientific method is a process used by scientists to conduct an objective investigation of 

an event. Its aim is to minimise bias or prejudice from the experimenter and ensure the accuracy 

of the results (Bernstein, 2009). It generally consists of the following four steps (Young, 2007): 

1. Observation of an event or problem related to the event 

2. Formulation of a hypothesis (or hypotheses) to explain the event 

3. Prediction of evidence for each hypothesis 

4. Testing of hypothesis and predictions through controlled experimentations by several 

independent experimenters  
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This method is iterative as the steps are repeated until a conclusion can be reached. Findings 

are then reported.  

 

One crucial element of the scientific method is falsification. The scientist must actively seek to 

disprove or falsify the hypothesis (Young, 2007). If experiments and observations discredit the 

initial hypothesis, this hypothesis can be discarded and a more valid one must be created and 

tested. Even if experiments confirm the hypothesis, alternative findings to disprove the 

hypothesis must be explored – this can be done by other scientists (Casey, 2010). In addition, 

new information can emerge during an investigation, and it must be reviewed and evaluated to 

ensure that the hypothesis still stands (Casey, 2010). Furthermore, results are peer reviewed 

before finalisation (Gogolin, 2013). Falsification promotes the objectivity and reproducibility 

of the results and is a key differentiator between a formal scientific investigation such as digital 

forensics and a non-scientific one such as troubleshooting.  

 

3.4.1.2 How can the scientific method help improve the accuracy of software failure 

investigations? 

 

The scientific method promotes the objectivity of the investigation 

If applied to software failures, a digital forensic investigation based on the scientific method 

differs greatly from the troubleshooting approach. Throughout this chapter, troubleshooting is 

used as a reference to existing failure analysis methods as the review of software failure 

investigations in the previous chapter indicates that it is the most common first response to a 

failure. Details on the application and usage of other failure analysis methods were not found 

in the literature review on software failures.  

 

A typical troubleshooting process consists of the following steps (Trigg & Doulis, 20018): 

5. Recreate the problem. This means reproducing the actions that led to the failure. 

6. Isolate the cause of the problem. This is a process of eliminating components that are 

not at fault.  

7. Fix the problem. 

8. Test the solution to see if it solves the problem. 

9. If the problem is not solved, repeat the process, otherwise document the work that was 

performed. 
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It is evident from the above process description that troubleshooting neither uses digital 

evidence to identify the cause of the failure, nor provides digital evidence of the identified 

cause to ensure its reliability. In addition, no peer review of the results is required, so the 

investigator does not have to justify the selected solution to independent parties. The scientific 

method of digital forensics forces the investigator to take these steps to ensure that the results 

are objective and reliable. 

 

The scientific method promotes the reproducibility of the investigation 

The outcome of a troubleshooting process relies on the important first step, which is the 

recreation of the problem. No standard or controlled procedure is followed to perform this step, 

leading to potential bias from the investigator based on his experience. In addition, depending 

on the severity of the failure and the complexity of the system, recreating the problem is not 

always feasible or advisable, which can bring the investigation to a halt with no identified cause 

for the problem. Examples of such situations were provided in Chapter 2. A case in point is the 

death of a woman in an ambulance due to the spontaneous shut off of the oxygen delivery 

system (Charette, 2010). The investigators were unable to recreate the shut off and could not 

determine the reason for it. The ambulance now carries portable oxygen systems as a risk-

mitigating solution. 

 

The scientific method promotes the comprehensiveness of the investigation 

As the above process shows, troubleshooting does not use falsification. As soon as a hypothesis 

(i.e. a potential cause of the failure) is confirmed, the hypothesis is deemed true and the system 

is restored to normal operations. As a result, the root cause may not be addressed and the 

problem may well reoccur at a later stage.  

 

The case of the Therac-25 disaster presented in the previous chapter (Leveson & Turner, 2002) 

illustrates this situation. The engineers from AECL, the software vendor, were set on attributing 

the second radiation accident to a hardware fault and closed their mind to any other explanation 

for the failure. They hardwired the suspected fault, found some design errors that confirmed 

their hypothesis and stopped the investigation right after. As it turned out, this theory was soon 

proved wrong as other accidents occurred after they had fixed the hardware flaw.  
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Situations like these can be avoided by using falsification. Since other failure analysis methods 

do not follow the scientific method (Neebula.com, 2012), it is safe to infer that they too do not 

use falsification. However, unlike troubleshooting, details on their application and usage were 

not found in the literature review on software failures. 

 

3.4.2 Mathematical analysis 

In addition to applying the scientific method, digital forensics also uses other scientific 

methodologies to ensure the credibility of the results. These methodologies are based on 

rigorous mathematical techniques tested and accepted in the computer science community. 

Two main ones are discussed below: the use of a hash algorithm and neural networks. 

 

3.4.2.1 Hash algorithms 

One of the techniques commonly used is a hash algorithm. A hash algorithm generates a unique 

mathematical representation of a data set, drive or file, called a hash value, which can then 

serve as its fingerprint (Noblett et al., 2000). Popular hash functions are MD5, SHA-1 and 

SHA-256 and SHA-3 (Roussev, 2009; Breitinger, Stivaktakis & Baier, 2013). Hash values 

have a number of applications in digital forensic analysis. Some examples follow. 

 

Validation of data authenticity and integrity 

As in other forensic sciences, the evidence collected during an investigation must remain 

unchanged. When acquiring data from a suspect computer, the copied or imaged data must be 

an exact replica of the original data. A hash algorithm is applied to both the original data and 

its image. The resulting hash values of both data sets are then compared to ensure that the 

image has not been altered during acquisition. The hash value of the image is maintained in the 

case file and can be used at any moment during the investigation to verify that the integrity of 

the data has not been compromised (Mabuto & Venter, 2011).  

 

File identification 

Hash values are also used to remove irrelevant files or identify known files of interest to save 

time when searching for pieces of information through the collected data. Examples of 

irrelevant files are known and trusted files such as operating system files and application 

installation files. Examples of files of interest are illegal files such as pirated media or hacking 

scripts (Roussev, 2009). The list of hash values from the collected files is compared to a pre-
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compiled hash set of known files such as the NIST National Software Reference Library (NIST, 

2013), which has a collection of hash values of most common software applications. 

 

Additional applications of hash values include discovering deleted files, processing corrupted 

or formatted computer media, identifying different versions of a file (e.g. a file that is saved as 

an HTML document and also as a text file or a new version of an executable file), and finding 

traces of a file across various data sources (e.g. a file system image and a memory dump) 

(Roussev, 2009). Roussev (2009) provides a detailed explanation of the techniques used for 

these various applications of hash values.  

 

A number of forensic software tools are available to perform data analysis using hashing 

algorithms. Popular ones are FTK from AccessData (AccessData, 2013), Encase from 

Guidance Software (Guidance Software, 2013) and the open source Sleuth Kit maintained by 

Brian Carrier (sleuthkit.org, 2013). Mabuto and Venter (2011) provide a comprehensive list of 

digital forensic techniques and tools that are used in the industry.  

 

3.4.2.2 Neural networks 

One mathematical analysis technique used for data classification that has applications in digital 

forensics is neural networks.  Indeed, one of the challenges in forensic investigations is the 

increasingly large volume of data to be analysed to produce reliable digital evidence (Quick & 

Choo, 2014). Digital forensic tools and techniques mentioned earlier are limited in their ability 

to analyse large data sets. Therefore more powerful mathematical techniques are used when 

appropriate. A particularly suitable technique adopted in the computer science community is 

neural networks. 

 

Neural networks are formally defined as: a computing system made up of a number of simple, 

highly interconnected processing elements, which process information by their dynamic state 

response to external inputs (Caudill, 1989). Neural networks are modelled on biological neural 

networks to identify patterns in data sets (Engelbrecht, 2003). For instance, supervised neural 

networks can be used for complex pattern recognition in network forensics. In Khan, Chatwin 

& Young (2007), the network is trained with consecutive snapshots of the file system to 

recognise the normal behaviour of a program. The trained network can then be used to 

automatically build an execution timeline on a forensic image of a file system to help identify 
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available evidence. Self-organizing maps (SOM’s) have also been proposed for pattern 

classification in digital forensic investigations. A SOM is a model of unsupervised neural 

networks used for the analysis and visualisation of multi-dimensional data (Engelbrecht, 2003). 

SOM’s can display a colored map showing identified clusters in the data set, thereby enabling 

the quick identification of outliers. A case study of the application of SOM’s to digital forensic 

investigations was provided in Fei, Eloff, Venter & Olivier (2005). 

 

3.4.2.3 How can mathematical analysis help improve the accuracy of software failure 

investigations? 

 

Mathematical analysis promotes the legal acceptance of the results 

Current failure analysis methods do not rely on mathematical analysis. Using mathematical 

analysis to authenticate evidence can therefore prove valuable in software failure investigations 

that result in court proceedings, more specifically in product liability litigations. It also helps 

provide sound evidence of the findings. An example is the case discussed in the previous 

chapter, namely of the radiation accident caused by Varian software in the St Vincent Hospital 

(Bogdanich, 2010).  

 

The Varian software wrongfully indicated that the instructions for positioning the radiation 

beam were in place while the corresponding files were actually corrupted and inaccessible. A 

hash value of the image of the system’s hard drive would confirm that this was indeed the case 

at the moment of the accident, and that the files did not get corrupted during the imaging 

process. 

 

The Varian software wrongfully indicated that the instructions for positioning the radiation 

beam were in place while the corresponding files were actually corrupted and inaccessible. A 

hash value of the image of the system’s hard drive would confirm that this was indeed the case 

at the moment of the accident, and that the files did not get corrupted during the imaging 

process. Processing the corrupted files would also show that the correct positioning of the 

radiation beam had been set prior to administering the treatment. This would help prove that 

the machine operator did not enter incorrect settings and that the faulty software was 

responsible for the radiation of the incorrect cells.  
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The Varian software indicated that the treatment plan was saved, while the file was in fact 

missing. Using data recovery techniques could also help recover the missing file and serve as 

further evidence that the correct treatment plan had been set prior to delivering the radiation 

dosage. This would prove that the poorly designed software that displayed a misleading 

“saved” message was to blame for the resulting overdose of radiation. 

 

 The above discussion is obviously a simplification of this complex failure as a more thorough 

analysis would be required to determine the source of the problem. However, it illustrates the 

potential application of a hash value for such a purpose. 

 

Besides its scientific foundation, digital forensics relies on legal principles applicable to the 

handling of the digital evidence. A set of best practices has been developed to ensure adherence 

to these legal requirements and is reviewed in the next section. 

 

3.5 Best practices in digital forensics  

Results of a digital forensic investigation must be forensically sound to be admissible in court. 

Forensic soundness refers to the preservation of the integrity and completeness of the data 

throughout the investigation (McKemmish, 2008). Section 3.4.2 above presented analysis 

techniques used to verify the integrity and completeness of the evidence. These techniques, 

which support best practice developed to ensure forensic soundness of the digital evidence, are 

presented in Section 3.5.1 and their application to software failure investigations is discussed 

in Section 3.5.2. 

 

3.5.1 Overview of best practices in digital forensics 

Minimal handling of original data 

The investigator should minimise manipulation of the original data to prevent its spoliation. 

He/She should rather make a copy of the relevant original data and work with that copy. Data 

duplication must not alter the original data and should provide a complete copy of the drive or 

device being copied (Vacca & Rudolph, 2010).  

 

Keeping account of any change to the data  
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Whenever data is altered during the investigation, the investigator must record details of the 

change and be able to explain its impact on the investigation (Köhn, 2012).  

 

Maintaining the chain of custody  

The chain of custody is a legal term that refers to “the movement and location of evidence from 

the time it is obtained until the time it is presented in court” (Free Online Law Dictionary, 

2013). It is a chronological documentation of the different persons having custody of the 

evidence and being responsible for its integrity as well as the different places where the 

evidence was stored (Free Online Law Dictionary, 2013). This requires recording the handling 

of the collected data. Collected data should therefore be kept by an independent neutral party 

in a secure storage protected from potential tampering (Corby, 2000).  

 

Ensuring transparency of the investigation process 

An audit trail of the process followed should be maintained and should be verifiable by an 

independent party. Reproducing the process should provide the same results. This requires the 

documentation of all the steps taken, tools and techniques used, and any problem or error 

encountered (McKemmish, 2008).  

 

3.5.2 How can digital forensic best practices help improve the accuracy of 

software failure investigations? 

Best practices promote the reproducibility of the investigation 

A detailed documentation of the investigation makes it possible for independent parties to 

reproduce the results without unnecessary time delay. Transparency also provides a learning 

tool that can be used in the event of a similar problem. An example that illustrates this point is 

the case of the Therac-25 series of accidents (Leveson & Turner, 1993), which were 

unsuccessfully handled through troubleshooting.  

 

The Therac-25 overdose of radiation was only acknowledged and confirmed by AECL, the 

software manufacturer, when they recreated the failure after the sixth accident. Indeed, the 

hospital physicist managed through numerous simulations to reproduce the condition that 

elicited the displayed error message and measured the resulting dose. AECL engineers had 

been unsuccessfully trying to reproduce the malfunction for a whole day following the accident 
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and wrongfully assumed that the machine was not at fault. After receiving instructions from 

the physicist, they followed the same procedure as him and finally obtained the same results.  

 

Best practices promote the comprehensiveness of the investigation 

Working on a copy of the data allows the investigator to carry on with the root-cause analysis 

after system restoration, thus minimising disruption to business operations. This gives him/her 

the necessary time to conduct a comprehensive investigation. In troubleshooting, once the 

system is restored, no further investigation is usually conducted. In rare cases where there is a 

subsequent root-cause analysis, causal data may already have been lost during system 

restoration activities, which can jeopardise the investigation.  

 

Best practices promote the objectivity of the investigation 

Following the above principles enables the investigation to be peer-reviewed more easily and 

quickly, as well as conclusions to be verified independently, which is not the case with existing 

failure analysis methods. 

 

Best practices promote the legal acceptance of the results of the investigation 

By observing legal principles to handle the collected data, the forensic soundness of the 

evidence is preserved throughout the investigation. 

 

Applying the scientific method and adhering to applicable principles of law are the foundations 

of a digital forensic investigation. The investigation process is a by-product of these concepts 

and it is reviewed in the next section.  

 

3.6 The digital forensic process 

A digital forensic investigation must follow a structured procedure to ensure forensic 

soundness of the evidence. This structured procedure is referred to as the digital forensic 

process (Mabuto & Venter, 2011). A description of this process is provided in Section 4.4.3.1 

and its potential application in software failure investigations is discussed in Section 4.4.3.2. 
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3.6.1 Overview of the digital forensic process 

The digital forensic process is defined as a number of steps to be performed from the incident 

alert through to the reporting of findings (Casey, 2004). At its most basic level, this process 

has the following three steps: acquisition, analysis and reporting (Carrier, 2004). A description 

of the three phases follows. 

 

3.6.1.1 Acquisition 

The primary objective of this phase is to identify and collect all potential evidence for later 

analysis by using sound forensic procedures that include the following steps:  

 Securing the electronic crime scene. The suspect computer and its surroundings are 

secured to avoid damage to or contamination of potential evidence.  

 Documenting the crime scene. This includes taking handwritten notes of observations 

made and details of the suspect machine. Examples are its make, model, serial number, 

state (on or off) and peripherals such as external hard drives, speakers, webcams and 

cable modem. Documentation of the crime scene also includes taking photographs and 

video tapes of the room, the computer and the computer screen, and conducting 

preliminary interviews with witnesses and victims (Craiger, 2006). 

 Collecting and preserving the evidence. A typical digital forensic investigation makes 

use of both physical and digital evidence (Carrier, 2004). Collecting physical evidence 

involves seizing any suspect or relevant computer medium and computing device. 

Collecting digital evidence requires imaging the hard drive of the suspect device to a 

trusted device using software imaging tools. These tools use a write blocker to prevent 

any writing to the original drive (TechMediaNetwork, 2013). Preserving the evidence 

involves isolating it to avoid its contamination (Mukasey, Sedgwick, & Hagy, 2008).  

 Packaging the evidence. Collected evidence should then be bagged and tagged.  

 

3.6.1.2 Analysis 

This phase examines the acquired data to find evidence that either validates or contradicts a 

hypothesis about the case or that shows that the system was tampered with to hide data. The 

scientific method is applied in this phase to reach conclusions based on the evidence found 

(Carrier, 2004). Mathematical analysis and other digital forensic techniques (e.g. string 

searching, production of time stamps, reconstruction of e-mail and web-browsing activity) 
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(Mabuto & Venter, 2011) are used to analyse the data and reconstruct the crime or incident that 

took place. This phase is typically performed in a digital forensic laboratory. 

 

3.6.1.3 Reporting 

Once the analysis is complete, the conclusions are drawn and the corresponding evidence is 

presented to the relevant party/parties. In a criminal case, this is typically a judge or jury, while 

in a corporate setting it is usually the executives and human resources of the employing 

company (Carrier, 2004). Presentation is usually in the form of a written report along with the 

electronic evidence on a computer medium, but it can also include expert testimony in a court 

of law (Casey, 2004). 

 

3.6.2 Standardising of the forensic investigation process 

The forensic investigation process was recently standardised by ISO/IEC 27043 (2015). This 

standard process is a harmonisation of the various idealised models for common incident 

investigation processes across a number of investigation scenarios where digital evidence is 

involved. The standard forensic investigation process is comprehensive in the sense that it 

includes the complete end-to-end processes from pre-incident preparation through to 

investigation closure as associated concurrent processes. This long list of investigation 

processes and sub-processes are classified into several high-level classes as shown in Figure 

3.1, which encompass the three major phases described earlier.  

 

. 

Figure 3.1: The various classes of digital investigation processes 
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ISO/IEC 27043 (2015) clearly requires that the first response to an incident does not negatively 

impact the possibility to perform a digital investigation, e.g. to avoid powering off the 

equipment, opening or changing files on a live system etc. This supports the argument made in 

the previous chapter that troubleshooting is an inadequate first response to a failure as it can 

tamper with potential digital evidence that may be required in the subsequent root-cause 

analysis. However, no detailed description of the first response sub-processes is provided in 

the Standard, which leaves the identification of an appropriate solution unclear. 

  

Additionally, the Standard stipulates that “identifying potential digital evidence at the incident 

scene is of crucial importance for the remainder of the process, because if potential digital 

evidence is not identified at this point, it might not even exist at a later point during the 

process”. This further supports the argumentation made in this thesis of collecting volatile 

digital evidence at runtime to prevent the potential loss of the evidence after the failure. 

 

Furthermore, the Standard indicates that incident detection procedures should be in place prior 

to the beginning of this process. This is in line with the suggestion to detect near misses at run-

time to alert users of an upcoming failure so that appropriate actions might be taken prior the 

unfolding of the failure. 

 

3.6.3 How can the digital forensic process help improve the accuracy of 

software failure investigations? 

The digital forensic process promotes the reproducibility of the investigation  

A standard process ensures reproducibility of the investigation and promotes its objectivity. 

The case of the Therac-25 disaster is a clear example of how following different procedures 

for root cause analysis can be detrimental. Each of the six incidents was handled differently, 

based on the given engineer’s experience with the system, and consequently produced different 

results each time. The failures were every time attributed to various elements, including the 

hardware, the electric circuit and the operator’s errors. The only common conclusion – which 

eventually proved to be erroneous – was that the software was not at fault. 

 

The digital forensic process promotes the comprehensiveness of the investigation  

The forensic process requires all potential evidence to be collected and analysed, as this 

promotes the comprehensiveness of the investigation. Following the same procedure for the 
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crime scene inspection would be equally valuable. Protecting, isolating and capturing the state 

of the scene of the failure could include taking snapshots of the error message and screenshots 

from the computing device, as well as capturing potential physical evidence such as the 

conditions of the treatment room and the patient’s reaction to treatment (e.g. skin redness) in 

the case of a medical device failure. This would help to reconstruct the chain of events that led 

to the failure and to understand the factors that contributed to the accidents (e.g. misleading 

“Saved” message in the case of the Varian software radiation accident; output diagram 

seemingly correct in the Panama case). 

 

Section 3.6 reviewed the main attributes of digital forensics, their potential application in 

failure investigations and their benefits over current failure analysis in terms of improved 

accuracy. The discussion showed that digital forensics has the potential to provide results that 

are more accurate than current failure analysis methods. The next section provides a summary 

of this discussion to determine how well digital forensics is suited for this purpose. 

 

3.6.4 Suitability of digital forensics for accurate failure investigations 

Table 3.1 summarises the main differences in the investigation process between digital 

forensics and troubleshooting, based on the reviewed characteristics of digital forensics. 

Troubleshooting is used as the most common response mechanism to software failures. 

 

Table 3.1: Differences between digital forensics and troubleshooting 

Digital Forensics Troubleshooting 

Investigation based on standard reproducible process Informal investigation process, not followed 

rigorously, not reproducible 

Scientific analysis Intuitive analysis, relies on experience with the system 

Analysis based on obtained evidence No evidence required 

Review of all possible solutions to problem and 

selection of most convincing one 

Find only the first satisfactory solution to problem  

Falsification inherent to analysis process No falsification 

Peer review of findings No peer review of findings 

Documentation of actions taken and results obtained 

before, during and after investigation 

Documentation only after investigation is complete 

Adherence to applicable legal principles Legal principles are not relevant for the investigation 
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Based on its main characteristics listed in the above table, digital forensics has the ability to 

satisfy the requirements for improved accuracy of failure investigations. Table 3.2 presents a 

summary of how this is achieved. The researcher organised the table in two columns: the first 

column lists each requirement, while the second column indicates the specific aspect of digital 

forensics that makes it suitable for the given requirement. 

 

Table 3.2: Suitability of digital forensics for the requirements of an accurate software failure 

investigation 

Requirement Relevant digital forensic characteristic  

Objectivity  Scientific method 

 Mathematical analysis 

 Best practice for transparency – keeping an audit trail of process 

 Peer review 

Reproducibility  Standard digital forensic process 

 Best practice requiring documentation of process 

 Scientific method with peer review 

Comprehensiveness  Scientific method with falsification 

 Peer review 

 Digital forensic process requiring collection and analysis of all potential 

evidence 

 Best practice requiring to work on a copy of the evidence 

Admissibility in court  Analysis based on obtained evidence  

 Best practices for forensic soundness of evidence 

 Mathematical analysis to authenticate evidence 

 

As Table 3.2 shows, digital forensics can satisfy all four requirements. Examples on how this 

could be achieved were provided throughout the chapter. However, despite these expected 

benefits, digital forensics is currently not used in failure investigations. Various challenges 

related to the nature of software failures have been cited to explain this gap. One of them is the 

volatility of the digital evidence, indicating that the evidence can be compromised following a 

failure. Another challenge is to limit downtime following a failure, which requires the forensic 

analysis to be conducted only after an initial system restoration. Applying digital forensics to 

the investigation of software failures needs to make provision for meeting these challenges. 

The digital forensic process might therefore need to be adapted to the above specific 
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requirements of software failures. The proposed solution to this issue is presented in the next 

chapter, following a review of previous work conducted on this subject. 

 

3.7 Conclusion 

Chapter 3 presented digital forensics as a potentially significant contribution to improving the 

accuracy of software failure investigations, and provided several motivating arguments for 

using digital forensics for such a purpose. The chapter also reviewed the main concepts of 

digital forensics and provided examples on how they can be applied to and benefit failure 

investigations, based on the requirements for accurate failure analysis that were established in 

the previous chapter. Despite being supported by a number of authors and having clear 

advantages over current failure analysis methods, digital forensics is not yet applied to failure 

investigations at this point in time. The next chapter therefore attempts to determine potential 

hindrances in the application of digital forensics to failure analysis and proposes an adapted 

digital forensic process to address such obstacles.  
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  CHAPTER 4              

THE ADAPTED DIGITAL FORENSIC PROCESS 

FOR FAILURE INVESTIGATIONS  
 

4.1 Introduction 

Chapter 3 presented the argument for using digital forensics to investigate software failures 

with greater accuracy. It discussed the supporting view of a number of authors on this topic 

and presented examples of various characteristics of a digital forensic investigation that could 

be applied to failure investigations and promote the requirements established for increased 

accuracy. However, despite this argumentation and although forensic science has been applied 

to failure analysis in some industries for over a century, the fact remains that digital forensics 

is currently not used in the software industry to investigate failures. This was clearly noticeable 

from the review of the investigation of recent cases of major software failures that was 

conducted in Chapter 2.  

 

Chapter 4 therefore attempts to shed light on the factors that hamper the adoption of digital 

forensics in failure analysis and proposes a solution to these challenges. This solution is 

presented as an adapted digital forensic process that will be deemed more suitable for the 

specificities of software failures than the currently available process designed primarily for 

criminal cases. Some elements of this process have been inspired by the results of earlier 

research on the use of digital forensics for failure analysis, which are reviewed in the current 

chapter. The viability of this process is evaluated through the case study of a real-life software 

failure, more specifically the Therac-25 disaster presented in Chapter 2. The current chapter 

again presents this case study. 

 

The chapter is structured as follows. Section 4.2 discusses specificities of software failure 

analysis that are not addressed by the current digital forensic process. Section 4.3 reviews 

previous work conducted on this subject to identify results that can help in the design of the 

proposed process for the forensic investigation of software failures. In Section 4.4 the proposed 
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process is described in detail, while in Section 4.5 it is applied to the Therac-25 accidents to 

examine its viability. 

  

4.2 Challenges to the forensic investigation of software failures 

The previous chapter demonstrated that the digital forensic approach can be applied to the 

investigation of software failures and can promote the accuracy of the investigation. This 

forensic approach involves three main phases (acquisition, analysis and reporting) associated 

with various activities that can be summarised as follows: 

 Identify potential digital evidence of the event investigated  

 Collect the digital evidence with a software imaging tool  

 Store the imaged evidence to a trusted device  

 Verify and maintain the authenticity and completeness of the stored evidence through 

mathematical analysis and best practices  

 Analyse the stored evidence with the scientific method and forensic tools and 

techniques  

 Draw conclusions about the event (e.g. author of crime and modus operandi) based on 

the scientific analysis of the evidence 

 Report the conclusions with supporting evidence 

 

The above process is illustrated in Figure 4.1. 

 

The above process was designed for the investigation of computer crimes. A review of this 

process and the literature on forensic failure analysis indicates that the approach presents 

various challenges with regard to the investigation of software failures. These challenges are 

discussed next.  

Identify evidence Collect evidence

Software imaging 
tool

Store evidence

Trusted device

Verify soundness 
of evidence

Mathematical 
analysis
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soundness of 

evidence
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Analyse evidence
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technique

Acquisition Analysis Reporting

 

Figure 4.1: The digital forensic process 
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4.2.1 The volatility of digital evidence  

As discussed in the first chapter, operational data pertaining to the failure that can be used as 

digital evidence may be lost or corrupted after a system crash. In addition, troubleshooting 

activities such as system rebooting can also tamper with available digital evidence (Trigg & 

Doulis, 2008). Collecting appropriate and reliable evidence may therefore be challenging. This 

is even more so in the case of embedded systems, as is the case for many of the systems 

mentioned in the real-life cases of failures in Chapter 2.  

 

Embedded systems usually have no hard disc and the data is stored in memory chips, built 

internally in the embedded system (Breeuwsma, 2006). Imaging this memory is usually 

particularly challenging for a number of reasons. Firstly, imaging tools may not be authorised 

to run on these systems due to restrictions from the manufacturers. Secondly, the operating 

systems of embedded devices may not include features available on standard desktop operating 

systems for software-based memory imaging. Thirdly, the lack of standardised interfaces in 

embedded systems does not allow for an easy attachment of hardware memory imaging tools 

(Rabaiotti & Hargreaves, 2010). Some specialised tools and techniques for memory imaging 

in embedded systems, although limited, are available. Some examples, such as loading a small 

Linux operating system onto the device or using a test access port to directly access the memory 

chips, are discussed in Breeuwsma (2006) and Rabaiotti & Hargreaves (2010). 

 

As evidence collection is one of the first steps in the forensic approach, it has repercussions for 

the entire forensic process. For this reason, the volatility of the evidence is considered to be the 

biggest challenge posed to a successful forensic investigation of software failures. This is even 

more so seeing that digital forensics relies on the completeness of the evidence to ensure the 

accuracy of the results. The researcher’s proposed solution to this issue is the collection and 

analysis of data from near-miss events, which is not currently catered for in digital forensics. 

Near-miss analysis will be reviewed in detail in Chapter 5. 

 

4.2.2 The lack of forensic tools and techniques for the root-cause analysis of 

software failures 

Various forensic tools and techniques are available for the investigation of computer crimes. 

Although some of these techniques can be applied to failure analysis, they are either used to 
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authenticate evidence (e.g. mathematical analysis) or to find evidence of a known crime (e.g. 

string searching or reconstruction of web-browsing activity). They are not designed to find the 

(unknown) root cause of a failure. There is also no logical method available to pinpoint the root 

cause of a failure by using the scientific techniques that are currently available for data analysis 

(e.g. statistical analysis). Consequently, an accurate failure analysis method with suitable 

scientific techniques needs to be identified. Although the goal of this study is not to identify or 

provide forensic tools and techniques for failure analysis, the design of the prototype in Chapter 

8 highlights some possible solutions. 

 

4.2.3 The need to minimise downtime following a failure 

System downtime can be very costly and minimising its duration is critical. This requires 

restoring the system to its normal functioning before a proper root-cause analysis can be 

performed or completed. It also requires the quick restoration of the system without losing 

potential evidence. Since restoration can disturb potential evidence, the evidence needs to be 

collected before restoring the system (Corby, 2000). This method differs from digital forensics, 

where the analysis can be started as soon as the evidence has been collected, regardless of the 

state (on or off) of the suspect machine. The digital forensic process clearly does not make 

provision for a two-phased approach to evidence collection (firstly collection of evidence and 

secondly system recovery). It is however valuable for the forensic investigation of a software 

failure. 

 

4.2.4 The need for continuous system monitoring  

Ensuring that operational data is captured and preserved after a failure requires continuous 

system monitoring and logging to ensure the availability of the data when needed (Corby, 

2000). Continuous system monitoring also facilitates the early detection of failures, which can 

then be addressed timely. However, system monitoring is not a task performed in digital 

forensics and it is not provided for in its investigation process. 

 

The above challenges are summarised in Table 4.1. 

  

Table 4.1: Challenges to the forensic investigation of software failures 

Challenge Description 
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The volatility of digital evidence Potential digital evidence may be destroyed during 

and after a failure 

The lack of forensic tools and techniques for the root-

cause analysis of software failures 

Available forensic tools and techniques are not 

designed to find the root cause of a failure 

The need to minimise downtime following a failure In order to minimise downtime, the system must be 

restored before starting the digital forensic 

investigation. This process is not catered for in digital 

forensics. 

The need for continuous system monitoring Ensuring the availability of digital evidence requires 

continuous system monitoring but this task is not 

provided for in digital forensics 

  

Proposed solutions for the first two challenges above are described in subsequent chapters, as 

they are novel techniques and methods. The proposed process focuses on the last two 

challenges, which can be addressed through adapting the digital forensic process and 

supplementing it with currently available methods. Despite the number of authors that 

recommend the forensic investigation of software failures, none of them has so far proposed a 

complete process that addresses the above challenges. Before proposing a potential solution to 

fill this gap, earlier work conducted on the forensic investigation of software failures is 

reviewed next. 

 

4.3 Previous work on the forensic investigation of software failures 

This section reviews publications on the forensic investigation of software failures. A review 

of these solutions lays the foundation for future development of a suitable forensic process for 

this purpose. Knowledge about previous work allows the researcher to incorporate and possibly 

improve the solutions suggested by previous researchers. It also facilitates the identification of 

the areas of this process design that have been overlooked and therefore need further 

investigation. 

 

The literature review on the forensic investigation of software failures indicates that research 

on this topic has been conducted under two main disciplines: operational forensics and forensic 

software engineering. These disciplines are reviewed in Section 4.3.1 and 4.3.2 respectively.  
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4.3.1 Previous work on operational forensics 

The term operational forensics was coined by Michael Corby in 2000 (Corby, 2000a). Corby 

defines operational forensics as “the application of computer forensic techniques to identify 

occurrences and underlying causes of observed computer based events”. Besides Corby, only 

one other author, Barry Hood (2010), conducted research on operational forensics. Previous 

work from Corby and from Hood is presented in Sections 4.3.1.1 and 4.3.1.2 respectively. 

 

4.3.1.1 Previous work from Corby 

As its definition suggests, operational forensics uses digital forensic techniques to analyse the 

cause of an event. According to Corby (2000b), digital forensics can be categorised into two 

branches based on the goal of the investigation: operational forensics and prosecutorial 

forensics. Traditionally, digital forensics has been prosecutorial by nature with the objective of 

collecting evidence for prosecution or disciplinary action.  By contrast, the main goal of 

operational forensics is to gather evidence for system correction and improvement (Hodd, 

2010). Unlike prosecutorial forensics, which only deals with computer crimes and security 

incidents, operational forensics handles any kind of computer event. It can be argued that in 

prosecutorial forensics, the stress is placed on the legal aspect of the investigation, while in 

operational forensics the emphasis is on the scientific approach of the analysis. The author of 

this thesis has summarised the distinctions between the two branches of digital forensics in 

Figure 4.2. 

 

 

Figure 4.2: Relationship between prosecutorial forensics and operational forensics 

 

Figure 4.2 shows the differences between the two branches and highlights their commonality, 

which is the collection and examination of digital evidence using forensic procedures. 
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The first publication on the forensic investigation of software failures is from Corby in 2000 

(Corby, 2000a) under the term operational forensics. Corby’s first paper defines the purpose 

and scope of this new discipline. It specifies that operational forensics is used to prevent future 

adverse system events, to define system performance benchmarks and to improve quality of 

service. It also makes suggestions on how to configure systems in a LAN environment to 

facilite the collection of digital evidence following an incident. To this effect, Corby proposes 

a checklist of parameters and methods to maximise evidence collection (e.g. restricting network 

access points to active computers only, and preventing users from changing prescribed desktop 

settings). 

 

Following this initial paper, Corby published three book chapters on operational forensics in 

2000, 2007 and 2011 (Corby, 2000b; Corby, 2007; Corby, 2011) respectively. All three 

chapters focus on the specification of guidelines and procedures to build a pre-incident 

operational forensic program. This program ensures that potential evidence is collected, 

preserved and admissible in court and that the collection process is quick and effective.  

 

The operational forensic pre-incident program (also known as forensic readiness) is built 

around four elements: a policy that specifies evidence retention as the first priority following 

an incident; guidelines on how to respond to an incident to preserve potential evidence (e.g. 

taking a photograph of the screen before rebooting the system); log procedures (e.g. activating 

system logs and keeping them safe on a protected device); and configuration planning (e.g. 

enabling disk mirroring for quick system recovery).  

 

As can be seen from the above review, although operational forensics covers a complete 

forensic investigation, Corby’s published work is mostly limited to how to prepare for potential 

evidence collection before a software failure occurs. Little information is provided on how to 

actually collect this evidence once a failure has occurred. It is worth noting that the second and 

third book chapters are mere updates on the first chapter with only a few changes. This attests 

to the limited progress that was made over the next decade.  

 

4.3.1.2 Previous work from Hood 

Hood, who references Corby’s seminal work (Corby, 2000a), published two articles on 

operational forensics – both in 2010 (Hood, 2010a; Hood, 2010b). In both papers, he extends 
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the scope of operational forensics to include other forensic techniques deemed relevant for 

system improvement. Hence, the scope of the investigation is extended to physical, procedural, 

personnel and organisational areas. He subsequently investigates the use of modelling tools 

such as Petri Nets (Girault & Valk, 2003), which provide flexibility to cover all the above areas 

during an operational investigation. While Hood’s papers focus on the formal modelling of a 

failure, they do not indicate the investigation process.  

 

In addition to the limited work performed specifically on operational forensics, some other 

research has been conducted on the forensic investigation of software failures albeit under 

different names. Forensic software engineering is one such research area. It is reviewed in the 

next section (Johnson, 2002).  

 

4.3.2 Review of previous work on forensic software engineering 

The aim of forensic software engineering is to identify the systemic causes of a major software 

failure, including human issues (e.g. developer’s fatigue or inadequate training), organisational 

issues (e.g. poor management leadership) and system engineering issues (e.g. poor 

communication between development teams) (Johnson, 2002). Therefore, it can be argued that 

while operational forensics focuses on the technical causes of the failure, forensic software 

engineering searches the “software engineering” causes of the failure, in other words the factors 

in the software development process that led or contributed to the malfunction (Hatton, 2004). 

This may include the development process or environment. 

 

Like in the case of operational forensics, publications on forensic software engineering are few 

and remain on a conceptual level. Only two authors have so far published work specifically on 

this topic: Chris Johnson (Johnson, 2002) and Les Hatton (Hatton, 2004; Hatton, 2012). The 

Dependability Research Group at the University of Virginia, US, also did some research on 

this topic, which they refer to as software forensics (Dependability Research Group, 2007). 

The two previous researchers in this field (Johnson, 2002; Hatton, 2004) focus on the 

challenges that must be addressed by forensic software engineering, but they do not provide 

solutions. For instance, they focus on the difficulty in simulating conditions that have led to a 

failure (with a view to failure reconstruction), as well as on the lack of objective measures of 

software quality (with a view to identifying faulty software). They also do not consider the 

value of reliable evidence and how to obtain it. 
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4.3.3 Critical assessment of previous work on the forensic investigation of 

software failures 

The above literature review clearly shows that limited work has been performed on the forensic 

investigation of software failures. No investigation process has been established and no 

forensic failure analysis method has been proposed. The field is essentially still at a conceptual 

level with no application in the industry. It is therefore the objective of this research to build 

on the limited work performed by previous researchers to further develop the field through the 

design of a forensic investigation model that can fill this gap. This model is aimed at addressing 

all the challenges discussed in Section 4.2. The first component of this model is a suitable end-

to-end forensic investigation process that takes into consideration the specificities of failure 

analysis discussed previously. 

 

To this effect, two significant contributions from previous research are used in the current 

thesis. They are the pre-incident operational forensic program and the two-phase approach of 

evidence collection, both proposed by Corby (2007) due to their relevance for this research. A 

pre-incident program is a pre-requisite for a successful forensic investigation as it ensures that 

when a problem occurs, information that can be used as evidence during the investigation is 

readily available and the responsible parties know how to collect it in a forensically sound 

manner. A forensic capability therefore needs to be created in the organisation before a forensic 

investigation can be conducted.  

 

The organisation must be “forensic ready” by taking the following actions: (a) equip personnel 

with necessary forensic skills; (b) identify, acquire and maintain potential evidence such as log 

files and system-monitoring reports, and (c) develop supportive policies and procedures 

(Corby, 2000a; Kent et al., 2006). The organisation must also ensure that all system 

documentation is available and up to date. This includes system specifications, user manuals, 

licensing information, test plans, and a history of changes and reported incidents (Trigg & 

Doulis, 2008).  

 

Once such forensic capability has been established, a forensic investigation can be conducted 

following a major software failure. The next section presents the investigation process 

proposed for this purpose. 
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4.4  The forensic failure investigation process  

This section presents the forensic process proposed to investigate a software failure. The 

proposed investigative process consists of four basic stages. The first two occur immediately 

after the failure has been detected: firstly, collect evidence and secondly, restore the system. 

The third and fourth phases are the evidence analysis and the countermeasures specifications. 

They are conducted once the system has been restored. Phases 1, 3 and 4 are part of a standard 

digital forensic investigation, while Phase 2 is a troubleshooting task. These phases are 

described in Section 4.4.1 up to Section 4.4.4 respectively. 

 

4.4.1 Phase 1: Evidence collection  

This phase corresponds with the acquisition phase of a digital forensic investigation, as was 

described in Chapter 3. Shortly after a failure has been detected, all information that can assist 

in the investigation needs to be collected in a forensically sound manner by maintaining the 

chain of custody and preserving its integrity. The steps of the acquisition process that are 

applicable to this phase include securing and documenting the scene of the failure, followed by 

collecting, preserving and packaging the evidence.  

 

Since the data may be acquired on a running system, the acquisition process is typical of a live 

forensic acquisition procedure (Grobler & von Solms, 2009). Therefore, in order to follow 

forensic best practice, two copies of the original data are made as the original data is released 

to be made operational again. So, the original data is imaged to a forensically sound storage 

device, and another copy of this image is made to another trusted device to be later used for 

analysis. The first image becomes the original data that is used to verify the integrity of the 

second image. A hash value of the original data should be made before it is released back into 

operation. Then a hash value of the first image and of the second image is made to be compared 

against the hash value of the original data throughout the investigation.  

 

For the purpose of failure investigation, the evidence to be collected is classified as either 

primary or secondary. The primary evidence is the electronic data about recent system activity 

(e.g. event logs, network and system-monitoring reports). It is acquired while the system is still 

running, unless of course the failure caused it to shut down. It can also be collected from an 

external logging location, such as a syslog server. The secondary evidence corresponds with 
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the data obtained from documenting the scene of the failure (e.g. screenshot of the error 

message, interviews with the system administrator and the users who reported the failure), as 

well as system documentation as specified earlier in the pre-incident program. This 

documentation helps the investigator to understand the system’s normal functioning and the 

circumstances of the failure.  

 

It is important to note that, contrary to a digital forensic investigation, the failed computing 

device is not seized as physical evidence for analysis in a forensic laboratory. Instead, it is left 

on the scene to be fixed as quickly as possible during the restoration phase, which is described 

next. 

 

4.4.2 Phase 2: System restoration 

Once all the evidence has been acquired, the failure is fixed and the system is restored to its 

operational state as quickly as possible. Restoring the system does not intent to properly fix the 

problem but to quickly find some temporary solution using the troubleshooting approach. A 

restoration might be as simple as rebooting the system or it might necessitate some preliminary 

diagnostic of the failure to fix it. This will follow a typical troubleshooting process, which 

requires a recreation of the problem to isolate its cause (Trigg & Doulis, 2008). This system 

restoration is a temporary solution with temporary countermeasures (e.g. applying a software 

patch) until the root cause of the failure is identified in the subsequent analysis phase. 

 

4.4.3 Phase 3: Root-cause analysis 

Phase 3 corresponds with the analysis phase of a digital forensic investigation. The primary 

evidence collected in the first phase of the forensic failure investigation process is examined in 

a digital forensic laboratory in conjunction with the secondary evidence to identify the root 

cause of failure. Digital forensic and other scientific techniques are used to analyse the digital 

evidence. The investigation follows the scientific method. In the case of the responsibility for 

the software failure being attributed to a criminal or malicious intent, the investigation becomes 

a standard digital forensic case to identify and prosecute the perpetrator. 
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4.4.4 Phase 4: Countermeasures specifications 

This is the reporting phase of a digital forensic investigation. It is a crucial segment of the 

forensic investigation of a software failure as it determines how to ensure that the failure does 

not reoccur. The conclusions reached in the previous phase on the basis of the examined 

evidence are documented and presented to the relevant parties along with recommendations for 

improvements. The timeframe for implementing the recommended changes should also be 

provided.  

 

Ideally, required changes should be implemented immediately, but this is not always possible 

due to financial constraints. In this case, the suitability and durability of the temporary solution 

provided in Phase 2 should be determined. The system operations should be discontinued as 

soon as the temporary solution is no longer sufficient and until the specified corrections have 

been implemented to prevent a similar failure.  

 

The complete investigation process is represented in the flowchart in Figure 4.2.  
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Figure 4.3: The adapted digital forensic process for software failures 
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The above process is generic as it does not indicate specific techniques to examine the collected 

evidence but rather steps that can lead to a thorough investigation of all possible causes of the 

failure and how to choose the most plausible one. The selection of the data analysis techniques 

will be based on the characteristics of the evidence collected (e.g. volume and format). 

 

The main originality of this process is the inclusion of a System Restoration phase between the 

Evidence Collection and the Root-cause Analysis phases, which is not the case with a standard 

digital forensic investigation. Another key novelty is the Countermeasures Specifications 

phase, which forces the adoption of a more permanent solution than the one usually provided 

in the restoration phase. Other novel elements of this process include the systematic collection 

of secondary evidence in addition to the primary evidence, as well as the continuous system 

monitoring. As knowledge is gained about the software failures, information to be monitored 

is adjusted to be more relevant for the evidence analysis. 

 

The benefits of using the digital forensic methodology for software failure investigations were 

discussed in Chapter 3. The advantages of adhering to the proposed process are demonstrated 

in the next section, based on the example of the Therac-25 disaster. 

4.5 Application of the forensic failure investigation process – Case 

study of Therac-25 accidents 

This section illustrates the application of the proposed investigative process in a real-life 

scenario. The example used is the infamous disaster of the Therac-25 radiation therapy 

machine, which was studied in detail in Chapter 2. Poorly designed software that was used to 

administer radiation treatment to cancer patients in the 1980s caused a series of six overdoses 

of radiation, which caused the death of three patients and serious injury to the remaining three 

(Leveson & Turner, 2002). Unlike some more recent software failures, a comprehensive report 

was compiled on the various accidents and investigations resulting from this disaster – hence, 

its selection as case study for the research in hand. 

 

Section 4.5 demonstrates how the proposed process could have been used for the investigation 

using the first two radiation accidents as examples. For each accident, a description of the event 

and how it was handled by means of troubleshooting is provided first. The section then explains 
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how it could have been investigated with the forensic procedures of the proposed process. The 

first accident is presented and discussed in Section 4.5.1 and the second in Section 4.5.2. 

 

4.5.1  Investigation of first Therac-25 accident  

The first Therac-25 accident occurred at the Kennestone Oncology Center in the USA on 3 

June 1985. The machine did not show any sign of unusual activity and did not generate an error 

message. However, the patient felt a high heat sensation after receiving treatment and accused 

the machine’s operator of having burnt her. Shortly after returning home, the patient’s skin 

reddened and swelled and she was in great pain. This was initially attributed to her disease. 

Weeks later, the patient’s breast was removed, and her shoulder and arm were paralysed due 

to obvious radiation burn, but the doctors could not explain its cause. It was later estimated that 

15 000 to 20 000 rads had been administered instead of the set 200 rads.  

 

4.5.1.1 What was done in respect of troubleshooting? 

No investigation was conducted for this accident as there was no information to indicate the 

machine had been responsible for the patient’s condition.  

 

4.5.1.2 What steps could have been taken with the proposed forensic investigation 

process? 

The proposed failure investigation process would not have yielded any result either, as no 

primary or secondary evidence was available. Indeed, the system was not forensic ready as the 

logs were not activated due to memory constraints. There was no system documentation 

available and no previous case had been reported. What could have been done (but was not 

done), however, was to interview the patient and the machine operator and to file a report on 

the incident for future reference. 

 

4.5.2 Investigation of second Therac-25 accident  

The second Therac-25 accident occurred at the Ontario Cancer Foundation in Canada on 26 

July 1985. The machine paused after five seconds of activation and displayed the following 

messages: HTILT, NO DOSE and TREATMENT PAUSE. As the machine indicated that no 

radiation had been administered, the operator retried four (4) times until the machine stopped. 

The patient complained of a burning electric sensation after the treatment. On 30 July, she was 

hospitalised as her skin was swollen and burnt and the machine was put out of service. She 
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died on 3 November 1985 from cancer but the autopsy revealed that the radiation burn would 

have necessitated a complete hip replacement had she survived. It was later estimated that she 

had received 13 000 to 17 000 rads.  

 

4.5.2.1 What was done in respect of troubleshooting? 

No information was collected. The machine was reset by the hospital’s technician who did not 

find anything wrong. However, operation of the machine was discontinued five (5) days later, 

after the patient had been hospitalised.  

 

In order to identify the cause of the problem, AECL first tried to recreate it with no success. 

They suspected a mechanical failure and hardwired its error conditions. They found some 

hardware design flaws and fixed them. They also modified the software to better control the 

positioning of the radiation beam. Based on these changes, AECL claimed a significant 

improvement of the machine, although they concluded that they could not ascertain the exact 

cause of the accident. The machine was put back into operation despite this uncertainty. 

 

 

4.5.2.2 What steps could have been taken with the forensic investigation process? 

4.5.2.2.1 Phase 1: Evidence Collection 

 Collect primary evidence: No log files, but record error messages. 

 Collect secondary evidence: No system specification and test plans, but obtain user 

manual and case history. Also interview the machine’s operator and the patient. 

4.5.2.2.2 Phase 2: System Restoration 

 First reset the machine so that it can resume working.  

 Discontinue usage of the machine as soon as the patient starts developing skin 

reddening and swelling after the treatment.  

 Only put the machine back into service once the investigation has been completed and 

the implemented improvements have been tested. 

4.5.2.2.3 Phase 3: Root-cause Analysis 

Laboratory examination of collected data 

 User manual: The user manual’s description of many error messages was cryptic. The 

meaning of HTILT was unclear. NO DOSE indicates that no dose of radiation has been 

delivered. 
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 Report of first accident: Based on the two patients’ testimony and symptoms, a 

correlation could have been established between the two events. 

Formulation of hypotheses: three possible scenarios 

 Electrical problem since patients experienced electrical shock. 

 Hardware failure.  

 Software error since the software controlled the machine. 

Prediction and production of evidence to support hypotheses 

 Some faulty wire, plug or internal electrical circuit, was expected in the case of the 

electrical problem. The electrical shock theory was ruled out after a thorough inspection 

by an independent engineering company that did not find any electrical problem in the 

machine. 

 In terms of the hardware failure, some design flaw was expected or an incorrect 

positioning of the beam. AECL’s test identified some hardware design flaws, which 

supported the hardware failure theory. 

 Some logic errors in the code were expected to point to a software failure. AECL 

identified some weaknesses in the software, supportive of the software error theory. 

Testing of the hypotheses 

 Thorough testing of the improved machine after correction of the mechanical flaws 

would unfortunately not have prevented another overdose, as other accidents followed 

the second one despite this improvement. However, timeous testing of this hypothesis 

would have ruled out the mechanical failure theory and alerted the investigator to look 

for possible other causes. 

 The only theory that remained involved a software error. Further examination of the 

software would be necessary to identify the bugs responsible for the failure. 

 

The remaining steps of the Root-Cause Analysis phase (failure reconstruction and 

responsibility for failures) depend on the results of the thorough examination of the software 

to identify the bugs. The outcome of Phase 4 also depends on these results. As these results 

were obtained following the sixth and last Therac-25 accident and were explained in detail in 

Chapter 2, they are not covered in this case study.  
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The review of the above two accidents of the Therac-25 highlights the value of both a forensic 

readiness program and the failure investigation process. A well-established forensic readiness 

program would have ensured that appropriate steps were in place to collect evidence of the 

accidents. The failure investigation process would have ensured that the evidence was analysed 

effectively to identify the real source of the accidents. The next section examines in detail the 

benefits and limits of this process. 

 

4.6 Critical assessment of the failure investigation process 

This section provides a critical assessment of the proposed failure investigation process to 

identify areas that require improvement. The advantages of the process are presented in Section 

4.6.1 and its limits in Section 4.6.2. 

 

4.6.1 Advantages of the forensic failure investigation process 

As the above case study demonstrates, the forensic failure investigation process offers many 

advantages over the troubleshooting method used in the case of the Therac-25. It could have 

located the source of the problem as a software error and not a hardware failure as suspected 

by AECL. More importantly, the proposed process demonstrates the need to minimise system 

downtime and to continuously monitor the system. 

 

In essence, a forensic investigation based on this process would have provided more accurate 

results due to the following advantages of the process: 

 Firstly, it would have ensured that the results of the investigation were reliable as they 

were based on objective scientific analysis.  

 Secondly, it would have ensured that the root cause rather than a proximate cause for 

the failure was identified. Appropriate countermeasures could then have been 

implemented before the machine was restored to operation. This would have prevented 

further accidents.  

 Thirdly, the failure process would have helped to improve the quality of the machine 

and AECL’s procedures for failure analysis. AECL had no forensic capability and no 

standard mechanism to follow up on reported incidents, and valuable system 

documentation was missing, including software design specifications and a test plan.  
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It is quite easy to appreciate the value of a forensic pre-incident program in this case as it would 

have ensured that all relevant system documentation and logs were available. However, despite 

all the benefits indicated above, the proposed process also has some limitations that need to be 

addressed to make it viable. These limitations are presented next. 

 

4.6.2 Limitations of the failure investigation process 

As beneficial as this process is, it has the following limitations: 

 It does not address the problem caused by the volatility of the data. 

 The process is reactive as it awaits the occurrence of a failure. Learning from major 

operational failures implies that the high losses associated with these catastrophes 

should occur first. Preventing such events from happening altogether is therefore more 

desirable.  

 

Addressing these limitations requires continuous system monitoring, and looking for 

“operational markers” that indicate a potential failure. As explained in Chapter 1, such events 

are commonly known as near misses. Identifying near misses offers two main benefits: it can 

help prevent the failure from occurring, and it provides an opportunity to collect digital 

evidence of the potential failure before it is destroyed as part of the process of system 

restoration.  

Indeed, it is generally agreed that near misses and related failures have common causes 

(Andriulo & Gnoni, 2014). Conducting a root-cause analysis of a near miss is therefore a valid 

method to identify the root cause of an impending failure. Detecting and investigating near 

misses is a well-established field that is successfully used to improve product reliability in a 

number of industries. It is however not yet in use in digital forensics. The detection of near 

misses is therefore included in the failure investigation process in order to obtain complete and 

relevant digital evidence of the failure. Near-miss analysis is a technique proposed for the 

evidence collection phase of this process and it is reviewed in the next chapter.  

 

4.7 Conclusion 

This chapter examined the challenges experienced in the successful application of digital 

forensics to the investigation of software failures. It reviewed previous work on this subject 

and proposed an adapted digital forensic process that is more suitable for addressing the 
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specified challenges. The process was applied to the case study of the Therac-25 accidents to 

demonstrate its benefits and its application in real life. However, it was found that this forensic 

failure investigation process did not meet all the challenges posed by the forensic investigation 

of software failures – more specifically, it did not deal successfully with the volatility of the 

digital evidence. If the digital evidence were to be lost after a major failure, it would seriously 

limit the accuracy of the forensic investigation.  

 

The detection and analysis of near misses as precursors to major failures was therefore 

identified as a promising solution to this challenge. However, although it is well established in 

many engineering disciplines, near-miss analysis is new to digital forensics. For this reason, 

near-miss analysis, as it exists in the engineering disciplines, is presented in Chapter 5. The 

researcher’s suggestion on how to apply near-miss analysis to digital forensics is discussed in 

Chapter 6. 
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  CHAPTER 5            

NEAR-MISS ANALYSIS:  AN OVERVIEW 
 

5.1 Introduction 

The previous chapter presented the main challenges to using digital forensics for accurate 

failure analysis. It then proposed an adapted digital forensic investigation process that was 

designed to address these challenges. This forensic process for the investigation of software 

failures was limited to solving only two of the four challenges identified, namely the need to 

minimise system downtime following a failure and the need for continuous system monitoring. 

Chapter 5 now presents the proposed solution for the third challenge, while solutions for the 

remaining challenge are described in Chapter 10, as a result of the prototype implementation. 

The challenge addressed in this chapter, which is considered the biggest obstacle to the accurate 

forensic investigation of software failures, is the volatility of the digital evidence. The solution 

that is proposed to address this issue involves the use of near-miss analysis in the evidence 

collection phase of the failure investigation process. 

  

Near misses, as immediate precursors to major failures, can address the above issue by 

providing complete and relevant evidence of the failure before it unfolds. The near-miss 

concept was defined in Chapter 1 and various examples of near misses in several industries 

were provided. Chapter 1 also indicated that near-miss analysis, which is an accident 

investigation technique used in a number of high-risk industries, is not yet formally in use in 

the software industry and not yet applied to digital forensics. This chapter therefore provides 

an overview of near-miss analysis and examines challenges to its application in investigating 

software failures. Proposed solutions to these challenges are developed in the next chapter. 

 

The chapter is structured as follows: Section 5.2 provides some background information on 

near-miss analysis. Section 5.3 presents several arguments to motivate the suggestion to use 

near-miss analysis for the forensic investigation of software failures. Section 5.4 discusses 
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challenges to near-miss analysis, while Section 5.5 reviews previous work aimed at addressing 

such challenges and assesses the suitability of this previous work for software  systems. 

 

5.2 Background on near-miss analysis 

This section provides background information on near-miss analysis. It starts with a description 

and a brief history of the field of near-miss analysis. It then presents the current applications, 

tools and techniques for near-miss analysis.  

 

5.2.1 Overview of near-miss analysis 

5.2.1.1 What is near-miss analysis? 

As near misses are a special type of accident precursor, near-miss analysis is a specialised area 

of the broader field of accident precursor analysis. The American National Aeronautics and 

Space Administration (NASA), which was the first institution to formally investigate accident 

sequence precursors, defines Accident Precursor Analysis as “the process by which an 

organization evaluates observed anomalies and determines if the mechanism at the origin of 

that anomaly could recur with more severe results” (NASA, 2006). This definition refers to 

accident precursors as “observed anomalies”, which is not suitable for the software industry, 

since, as discussed in Chapter 1, accident precursors and near misses in software systems may 

not be visible at all in the absence of a failure. 

 

No standard definition for near-miss analysis, which is also referred to as near-miss 

management, is available in the literature. Authors on this topic usually focus on defining the 

near-miss concept for the specific purpose of their research and in line with their particular 

industry, but they do not provide a definition for near-miss analysis. Near-miss analysis often 

refers to the process of identifying near misses and determining their root cause with a view to 

preventing and predicting accidents (Phimister et al., 2004).  

 

Indeed, various accident investigations have revealed that almost all major accidents were 

preceded by a number of minor accidents and an even higher number of near misses as 

precursors (Mürmann & Oktem, 2002; Oktem, 2013). This is shown in Figure 5.1 in the popular 

safety pyramid (Bird & Germain, 1996). Recognising and handling these signals before an 

accident occurs has the potential to prevent an accident sequence from unfolding (Saleh et al., 
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2013) and to improve safety by providing valuable information about potential accidents 

(Phimister et al., 2004).  

Major Accidents

Minor Accidents

Incidents and 

Observations 

(Near Misses)

 
Figure 5.1: The Safety Pyramid, adapted from Bird and Germain (1996) 

 

Based on a review of the literature, the researcher proposes the following definition of near-

miss analysis with regard to software systems: the root-cause analysis of near misses to prevent 

major software failures and understand their underlying causes.  

 

5.2.1.2 Why near-miss analysis? 

Near-miss analysis is based on the observation that near misses and accidents have common 

causes but different outcomes (Andriulo & Gnoni, 2014). This is due to the fact that a near 

miss is an immediate precursor to the impending accident. It is literally one step away from an 

accident. Therefore, an accident and a related near miss have the same sequence of leading 

events – the only difference is that in the case of a near miss, the sequence was interrupted just 

before the accident occurred.  

 

Due to the interruption in the accident sequence, near misses either result in no loss or the loss 

incurred is minimal, contrary to what happens in the case of accidents. Identifying the cause of 

a near miss is therefore a valid method of identifying the cause of the ensuing accident. It has 

the additional benefit that learning about the accident is conducted without first incurring the 

loss caused by an accident. Besides, if properly recorded, the data pertaining to the accident 

sequence is available and complete since it has not yet been affected by the potential accident. 

  

5.2.2 Tools and techniques used in near-miss analysis 

As a safety enhancement tool, near-miss analysis is often a component of a near-miss 

management program that is integrated with other safety management systems in an 
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organisation. Besides the identification and analysis of near misses, a near-miss management 

program also includes activities for disseminating information about near misses to decision 

makers and for implementing countermeasures (Phimister et al., 2000). This process varies 

from one industry or organisation to the next. It is often done manually but can be automated 

through an electronic system commonly referred to as a near-miss management system (NMS). 

Section 5.2.3.1 gives a brief overview of a typical NMS, while Section 5.2.3.2 to 5.2.3.4 

reviews techniques used in NMSs to perform near-miss analysis. 

 

5.2.2.1 Overview of near-miss management systems 

Near-miss management system is an umbrella term used to refer to software systems used to 

record, analyse and track near misses (Oktem, 2002). They are sometimes referred to as near-

miss systems. An effective NMS aims to quickly recognize near misses from the business 

operations in order to apply prevention measures (Gnoni et al., 2013).  

In order to be effective, an ideal NMS is required to perform all activities of a near-miss 

management program. These activities are summarised in the following seven phases 

(Mürmann & Oktem, 2002; Phimister et al., 2004): 

1. Identification (recognition) of a near miss 

2. Disclosure (reporting) of the identified near miss to the relevant people 

3. Distribution of the information to decision makers 

4. Root-cause analysis (RCA) of the near miss 

5. Solution identification (remedial actions) 

6. Dissemination of actions to the implementers  

7. Resolution of all open actions and completion of reports 

The above seven-stage process is illustrated in Figure 5.2. 

 

Figure 5.2: Near-miss management process (Phimister et al., 2000) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

98 

 

There are essentially two types of NMSs: single or dual. A single NMS only handles near 

misses, while a dual NMS handles both near misses and accidents (Phimister et al., 2000). A 

review of the literature on the design of industry-specific NMSs indicates that most NMSs are 

single. Significant research has been conducted on the design of effective single NMSs (Wu et 

al., 2010; Gnoni et al., 2013; Andriulo & Gnoni, 2014; Goode et al., 2014), especially in the 

healthcare industry for improved patient safety (Barach & Small, 2000; Callum, Kaplan, 

Merkley, Pinkerton, Rabin-Fastman, Romans, Coovadia & Reis, 2001; Aspden, Corrigan, 

Wolcott & Erickson, 2004; Fried, 2009).  

 

Single NMSs usually place a strong emphasis on the identification and disclosure (reporting) 

phases of the near-miss management process described above. As such, they are often called 

near-miss reporting systems and are sometimes limited to that functionality of an NMS (Murff, 

Byrne, Harris, France, Hedstrom & Dittus, 2005; Goode et al., 2014). Barach and Small (2000) 

provide a comprehensive list of proprietary near-miss reporting systems in various industries, 

which provide a user interface where users can enter various details about an observed near 

miss. Near-miss reporting systems are sometimes called incident reporting systems (Macrae, 

2007). 

 

Apart from proprietary “private” near-miss reporting systems, some commercial NMSs are 

publicly available on the market. Commercial NMSs are mostly industry-specific. Examples 

include AlmostME, a near-miss reporting system (Napochi, 2013) for the medical field, and 

Dynamic Risk Predictor Suite (Near-miss Management LLC, 2014), a comprehensive NMS 

designed for manufacturing facilities. 

 

Although an ideal NMS would perform the 7 steps decribed in Figure 5.2, most importantly, 

an NMS focuses on and performs the following three tasks: 

 Identification of near misses 

 Selection and prioritisation of near misses for analysis 

 Root-cause analysis of the selected near misses 

 

Techniques used for these activities are described in the following sections. 
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5.2.2.2 Techniques for near-miss identification 

The identification of near misses is often done manually by means of observation. Recognising 

an observed event or condition as a near miss requires a clear definition of what constitutes a 

near miss with various supporting examples. Organisations therefore spend considerable effort 

to formulate a simple and all-encompassing definition of near misses that is relevant for their 

respective business operations (Ritwik, 2002; Phimister et al., 2003). This definition can differ 

significantly from one industry to the next as was discussed in Chapter 1. 

 

Some effort has also been made at the intelligent detection of near misses through the NMS by 

defining metrics to characterise and quantify near misses. 

 

Much of the industrial work on automated near-miss detection is based on study reports from 

the US Nuclear Regulatory Commission (NRC) and involves the use of Bayesian statistics to 

determine the risk of a severe accident based on operational data of observed unsafe events 

(Belles et al., 2000). Examples of such events include the degradation of plant conditions and 

failures of safety equipment (Belles et al., 2000).  

 

Significant research has also been conducted in other industries to find generic metrics or signs 

of an upcoming accident, such as equipment failure rates, or failures of system components 

(Leveson, 2015). Probabilistic risk analysis (PRA), a recurring suggestion, also consists of 

estimating the risk of failure of a complex system by breaking it down into its various 

components and determining potential failure sequences (Phimister et al., 2004).  

 

More recent research has proposed the use of location tracking information and sensors for 

environment surveillance to detect near misses in dynamic and uncontrolled environments such 

as on construction sites (Wu et al., 2010). In all the above work, near misses are usually 

identified as those events that exceed a predefined level of severity. 

 

5.2.2.3 Techniques for near-miss prioritisation 

Various quantitative and qualitative approaches are used to prioritise near misses across 

industries. Quantitative analysis is reviewed in Section 5.5.1.1 and qualitative analysis in 

Section 5.5.1.2. 
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5.2.2.4 Quantitative analysis 

On the quantitative side, the two main approaches used to prioritise near misses are risk-based 

classification and statistical analysis.  

 

Risk-based classification of near misses 

Risk-based classification ranks near misses based on the severity level of their potential 

consequences or their frequency.  

 

Ritwik (2002) determined the severity of potential consequences with a risk decision matrix 

that assigns a weight to the near-miss “relevancy” or “learning” impact on determining the 

potential worst-case scenario. According to Kleindorfer et al (2012), the risk level of a near 

miss is proportional to the amount of time that the event caused the system to cross predefined 

safety and quality limits, in other words, the amount of time that the system was in an unsafe 

or low-performing state. This time measurement is used to determine the risk of profit losses 

by calculating the actual loss that would be incurred for that unsafe period of time.  

 

Probabilistic risk analysis (PRA) can also be used to determine the risk level of a near miss. 

PRA involves estimating the risk of failure of a complex system by breaking it down into its 

various components and determining potential failure sequences (Vesely, 2011). Using near-

miss data, PRA allows for the severity of potential accidents to be determined (Phimister et al., 

2004). 

 

The frequency of a near miss can be obtained from historical data on reported near misses and 

be used to determine trends in the occurrence of certain events (Phimister et al., 2004). For 

instance, in Greenwell, Knight & Strunk (2003), the increase in the number of reported near 

misses is used to indicate that the process is heading towards a shutdown or an accident.  

 

Statistical analysis to prioritise near misses 

Statistical analysis has also been used to study the significance of near misses. In Bier and 

Mosleh (1990) and in Johnson and Rasmuson (1996), Bayes statistics is proposed to estimate 

the frequency of severe accidents based on the frequency of observed near misses. Bier (1993), 

on the other hand, provides a critical review of previous statistical methods developed for this 

purpose in the nuclear industry. Cooke and Goossens (1990) propose changes to the 
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methodology developed for nuclear power plants to make it suitable for the chemical process 

industry. Various factors such as the existence of initiating events and the probability of 

successful recovery are examined to classify near misses. In the finance industry, regression 

analysis is used to estimate the loss distribution of a near miss – hence the likelihood of a failure 

and its losses within a specific timeframe –so as to assess its level of severity (Mürmann & 

Oktem, 2002).  

 

5.2.2.5 Qualitative analysis 

Qualitative methods are also used to classify near misses based on their closeness to a potential 

accident. Some of these methods include the simulation of potential accidents and modelling 

of new accident scenarios to identify factors and system elements that are most likely to 

contribute to the occurrence or avoidance of an actual accident (March, Sproull & Tamuz, 

2011). Case studies of how this is implemented in the process and transportation industries are 

provided in Van der Schaaf (1991). Another qualitative approach to understand the significance 

of a near miss is the Delphi method. This method is a group decision-making tool by means of 

which information on the probability of an accident can be gained from a panel of experts 

(Linstone & Turoff, 2002). 

 

5.2.2.6 Techniques for near-miss root-cause analysis 

Causal analysis of near misses can be performed with investigation techniques taken from 

engineering disciplines, such as fishbone diagrams, event and causal factor diagrams, event 

tree analysis, fault tree analysis, failure mode and effects analysis (Phimister et al., 2003; Jucan, 

2005; Hecht, 2007; RealityCharting, 2013). The investigation consists of answering a series of 

questions that give insight into the factors that led to the near miss, the possible adverse 

consequences of the near-miss, and the factors that prevented or limited those consequences. 

The investigation can be assisted by various tools such as a comparative timeline to organise 

data and various matrices such as the missed-opportunity matrix and the barrier-analysis matrix 

(Corcoran, 2004).  

 

Statistical analysis has also been proposed for learning from near misses. Some examples are 

using estimation techniques, simulations and regression analysis (Mürmann & Oktem, 2002). 

Historical near-miss data can be used to estimate the loss distribution, i.e. the likelihood of a 

failure and its losses within a specific timeframe. Regression analysis can help determine 
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exacerbating factors such as the frequency of certain operations. This information can then be 

used for simulating possible accident scenarios (Mürmann & Oktem, 2002).  

 

As valuable as the above root-cause analysis techniques are, they do not adhere to forensic 

principles. Thus they are not suitable for the forensic investigation of software failures. To this 

end, it is suggested that the methods and techniques of digital forensics be used as specified in 

the failure investigation process to analyse near misses – the same way as software failures will 

be analysed.  

 

Although new to digital forensics, the value of analysing near misses has been recognised in 

various engineering disciplines, and near-miss analysis has been conducted for over three 

decades. This is shown in the next section, which provides a brief overview of the history of 

near-miss analysis.  

 

5.2.3 History of near-miss analysis 

Although the learning opportunity offered by the analysis of near misses is not used in the IT 

industry, its application to the investigation of accidents in other industries is not a new concept 

at all. The emergence of formal near-miss analysis as currently conducted in a number of 

scientific disciplines can be traced back to the mid-1970s in the United States. This section 

reviews the origin and evolution of near-miss analysis. As a near miss is a type of ASP, the 

history of near-miss analysis is intertwined with the history of ASP analysis. 

 

The analysis of ASPs emerged from the need to improve safety in industries that are prone to 

catastrophic industrial accidents. As is the case with many safety improvement initiatives, ASP 

analysis was initiated formally following tragic events – in particular two accidents that 

occurred in the United States in the 1970s (NASA, 2006). In both cases, the investigation that 

followed found some leading events and conditions that could have prevented the disasters had 

they been identified timely and handled appropriately (Phimister et al., 2004). Hence 

organisational programs, systems and methodologies were created to detect these precursors 

and learn from them. The events in question are the following: 

 The crash of the American TWA Flight 514 that killed all 85 passengers and seven crew 

members in 1974 (NASA, 2006). Following the investigation of this accident, NASA 
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established the Aviation Safety Reporting System in 1976 to report and analyse 

observed ASPs in the aerospace industry (NASA, 2006).  

 The nuclear accident at Three Mile Island that caused the release of toxic gas into the 

environment in March 1979 (Minarick, 1982). Shortly after that accident, the Nuclear 

Regulatory Commission (NRC) initiated an ASP program to identify, analyse and 

document ASPs (including near misses) (Phimister et al., 2004).  

 

NASA and the NRC established quantitative and qualitative analysis techniques to determine 

the risk of a severe accident, based on operational data of observed unsafe events (Belles, 

Cletcher, Copinger, Dolan, Minarick, Muhlheim, O'Reilly, Weerakkody, & Hamzehee, 2000; 

Kirwan, Gibson & Hickling, 2007; NASA, 2011). Examples of such events included the 

degradation of plant conditions and failures of safety equipment (Belles et al., 2000).  

 

The ASP methodology was subsequently adapted for use with other types of industrial 

accidents and adopted by the respective industries. The latter included the chemical industry 

(Ritwik, 2002; Phimister et al., 2003), the oil and gas industry (Cooke et al., 2011; Vinnem, 

Hestad, Kvaløy & Skogdalen, 2010; Skogdalen & Vinnem, 2011), the healthcare industry 

(Barach & Small, 2000; Sujan, 2012) and the finance industry (Mürmann & Oktem, 2002). To 

provide a complete history of ASP analysis falls beyond the scope of this research. However, 

a fairly comprehensive summary was written by Jones et al. (1999).  

 

Nowadays, the analysis of ASPs and near misses has spread to a wide range of subjects. Saleh 

et al. (2013) indicate that over 58 000 articles listed in the Web of Science database have the 

term “precursor” in their title and this concept is used by around hundred different fields of 

science. A number of these articles also have the term “near miss” in the title or as a keyword. 

A keyword search for the term “near miss” in the Science Direct database results in over 83 000 

articles.  

 

In addition, two major research projects on near-miss analysis provide a significant number of 

papers on the topic. The first one is the Near Miss Project at the Risk Management and Decision 

Processes Center at the Wharton School, University of Pennsylvania, which has been ongoing 

since 2000 (Phimister et al., 2000). The researchers conducted more than 100 interviews in 

several plants in five Fortune 500 companies to assess the near-miss programs managed by 
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their Environmental, Health and Safety departments. The second project is the Accident 

Precursor Project which was conducted in 2003 by the US National Academy of Engineering. 

The report of the resulting workshop that extensively reviewed near-miss analysis across 

industries to promote cross-industry knowledge sharing is available in an online book 

(Phimister et al., 2004).  

 

Additionally, several study reports have been produced by the ASP program of the NRC (Belles 

et al., 2000). NASA also published a handbook on precursor analysis in 2011 (NASA, 2011). 

Other research work has been published in workshop proceedings (Bier, 1998; Van der Schaaf, 

1991).  

 

Clearly, near-miss analysis is worth some attention in a variety of disciplines. The next section 

motivates the selection of near-miss analyses for the forensic investigation of failures in the 

software industry, more specifically in the adapted digital forensic process that was presented 

in Chapter 4. 

 

5.3 Motivation for using near-miss analysis in failure investigation 

This section presents arguments to support the suggestion to use near-miss analysis for the 

forensic investigation of software failures. Section 5.3.1 presents benefits of proactively 

investigating near misses compared to reactively investigating failures. Section 5.3.2 presents 

benefits of analysing near misses in comparison to earlier precursors. Section 5.3.3 presents 

cases of the successful application of a near-miss analysis in various industries. 

 

5.3.1 Benefits of near miss-analysis over failure analysis 

The two main reasons for suggesting the use of near-miss analysis to complement the failure 

investigation process are discussed below. The first reason was mentioned in Chapter 1 and the 

second reason was inferred from the review of major software failures in Chapter 2. 

 Near-miss analysis provides an opportunity to proactively collect evidence of the failure 

before it actually unfolds. This limits the risk of having evidence destroyed due to the 

failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

105 

 

 In contrast to severe failures which can be scarce, near misses can be numerous, thus 

they offer ample opportunity to learn more from their richer data sets. More cases of 

near misses also provide more evidence of a particular weakness in a system. 

 

Moreover, it is generally agreed that in many cases accident precursors can be analysed more 

effectively than can accidents – for the following reasons (Oktem et al., 2010; Ritwik, 2002): 

 Investigation of a severe failure is costly and time consuming. Hence, financial 

constraints and resource limitations can severely limit the depth of the investigation. 

Near misses are also smaller in size and easier to deal with than serious accidents.  

 Legal concerns may affect the investigation adversely. For instance, in product liability 

litigations, organisations may well withhold information that could penalise them. 

 

Reporting near misses has also been a legislative recommendation in the European Union since 

1997 under the Seveso II Directive (Seveso II, 1997). These events are to be reported in MARS 

(Major Accident Reporting System), the mandatory reporting system for major industrial 

accidents within the European Union (Jones et al., 1999). In its Annex VI, the Seveso II 

Directive (Seveso II, 1997:33) makes the following recommendation: 

Accidents or “near misses” which Member States regard as being of particular 

technical interest for preventing major accidents and limiting their consequences 

(...) should be notified to the Commission. 

 

5.3.2 Benefits of analysing near misses instead of earlier precursors 

For the purpose of this research it is argued that investigating near misses is more valuable than 

investigating other early accident precursors for the following reasons: 

 Various studies show that the number of precursors to an accident can be considerable 

(Borg, 2002; Bird & Germain, 2006). Selecting only the near misses reduces the 

number of precursors to be investigated, which can save resources required for the 

investigation. 

 As a near miss is closer to the complete accident sequence, investigating a near miss 

provides the most complete pre-emptive evidence about the associated accident. It can 

therefore be used to identify the most accurate root cause of that accident. 

 Early precursors can result in a number of false alarms, as they are further away from 

the unfolding of the accident. As they are closer to the accident, near misses provide 
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the highest level of confidence about the imminence of an accident, which can lead to 

the implementation of the most relevant countermeasures. 

 Early precursors are generally events and conditions that have been observed in the past 

and are easily identifiable. Near misses, on the other hand, are not predefined as they 

can vary from one accident scenario to the other. They are therefore best suited to 

identify new failure modes and possibly prevent them. 

 

5.3.3 Near-miss analysis success stories 

Near-miss analysis is used to help improve the reliability of a system, product or process by 

reducing its risk exposure to a potential disaster. It has a successful track record in organisations 

where it has been effectively implemented. For instance, evidence shows that near-miss 

analysis contributed significantly to the improvement of safety in the aviation industry 

(Phimister et al., 2004). Other examples with measurable benefits are discussed below.  

 Studies from Norsk Hydro, a Norwegian aluminium company, show that when near-

miss analysis was introduced in the organisation in 1985, the number of near misses 

reported went from 0 to 1800 within 13 years. This resulted in a reduction of lost-time 

injuries by around 75% (Jones et al., 1999).  

 In Canada, a petroleum company reduced injury by 80% over a year and by 100% over 

four years after implementing a near-miss reporting program in 1986 (Borg, 2002). 

 In Malaysia, an oil company experienced a reduction in the monthly average cost of 

equipment-related accidents from $675 000 to $80 000 within a year after a near-miss 

reporting program was introduced in 1994 (Borg, 2002). 

 

As beneficial as it is, near-miss analysis also has challenges that need to be addressed before 

its expected benefits can be reaped in the software industry. These challenges are discussed in 

the next section.  

 

5.4 Challenges to near-miss analysis in the software industry 

Across industries, the successful application of near-miss analysis faces three main challenges: 

(1) the detection of events and conditions that can be classified as near misses, (2) the high 

volume of near misses and (3) the root-cause analysis of near misses. A discussion of these 

challenges follows next. 
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5.4.1 Detection of near misses 

Identifying near misses through observed physical events and conditions, as is done in many 

industries, is especially challenging in the software industry. Indeed, in the case of software 

applications, near misses might not even be visible as no system failure occurs and the events 

are virtual rather than physical. A near-miss might occur in the backend of the system (e.g. near 

exhaustion of memory) with no visible sign on the user interface. In the absence of specific 

near misses to refer to, providing a definition that clearly describes near misses in software 

systems is also a challenge. 

 

An automated intelligent near-miss detection process is therefore required. However, although 

existing techniques can provide useful results, they are generally specific to the industry 

concerned and often require prior knowledge about near misses from historical data. 

Regrettably such data is not yet available in the software industry, where the concept of near 

miss is still largely unexplored.  

 

5.4.2 High volume of near misses  

Near misses can be frequent. In actual fact, they can be as much as 7-100 times more frequent 

than accidents (Aspden et al., 2004). In the hydrocarbon process industry, the accepted ratio of 

severe injury to near miss is between 15 and 25 (Ritwik, 2002). More impressively, an 

extensive study of industrial accidents conducted in 1969 indicates that a severe injury can 

have up to 600 near misses as precursors (Nichol, 2012). This is shown in the popular accident 

ratio triangle in Figure 5.3. A more recent study in 2003 suggests that this number could be 

even higher (Nichol, 2012).  

                                              

Figure 5.3: Bird’s accident ratio triangle, adapted from Nichol (2012) 

 

A high volume of near misses is also expected in the software industry, as shown by reports of 

various major software failures. An example is the case of the Therac-25 disaster that was 
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discussed earlier, where up to forty near misses per day had been reported prior to the fatal 

accidents.  This high volume of near misses can become unmanageable due to limited 

investigative resources. Therefore, it is necessary to select and prioritise near misses that are 

passed on for root-cause analysis. 

 

Although they all have some merit, both the quantitative and qualitative approaches that are 

used to classify and prioritise near misses have disadvantages that limit their application to the 

software industry. For instance, the validity of the quantitative analysis techniques depends 

heavily on the risk threshold set for near misses. A high threshold may overlook significant 

events that were not anticipated, especially in new or immature software systems, while a low 

threshold will likely result in many false alarms (Phimister et al, 2004). Besides, generic 

metrics of near misses might not be applicable to all types of systems and all types of failures.  

                                              

As the above review shows, some work is still required to detect, classify and prioritise near 

misses from a software system perspective. The researcher’s vision on how this can be done is 

explained in the next chapter. 

 

5.4.3 Root-cause analysis of near misses  

As valuable as the available techniques for root-cause analysis of near misses are, they do not 

follow sound forensic principles and do not rely on sound digital evidence. Thus they are not 

suitable for the NMS proposed in this paper, which aims to apply the digital forensic 

methodology to analyse near misses in the same way that digital forensics is proposed to 

investigate software failures. The use of digital forensics to investigate near misses and 

software failures also faces specific challenges which were discussed in the previous chapter.  

 

5.5 Conclusion 

Chapter 5 presented near-miss analysis as a promising technique for dealing with the volatility 

of the digital evidence required to conduct a forensic investigation into software failures. As 

near-miss analysis is not yet used in digital forensics, the chapter emphasised its application 

and benefits in other industries to motivate its application in digital forensics. Challenges to 

near-miss analysis for such a purpose (i.e. the high volume of near misses and their difficult 

detection due to the fact that they are not easily observable in a software system) were also 
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presented. Chapter 6 next presents the proposed solution to address these challenges. The 

solution comprises a formal definition of a near miss suitable for the software industry, and a 

mathematical model to detect and prioritise near misses. The architecture of an NMS to 

automate this detection and prioritisation process is presented in Chapter 7. 
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  CHAPTER 6              

THE NEAR-MISS DETECTION AND 

PRIORITISATION MODEL 
 

6.1 Introduction 

The previous chapter presented near-miss analysis as a promising technique for dealing with 

the main challenge to the successful implementation of the failure investigation process 

designed in Chapter 5. This challenge was the potential loss of digital evidence following a 

system crash. As near miss-analysis is new to digital forensics, benefits of this field as used in 

other industries were presented to motivate the selection of this approach.  

 

Near-miss analysis was proposed to proactively collect complete and relevant digital evidence 

of a potential failure before the failure occurs. However, challenges to reap the expected 

benefits of near miss-analysis were also identified, specifically the high volume of near misses 

(which can become unmanageable), and the limited visibility of near misses (which makes their 

detection challenging). 

 

Chapter 7 presents the proposed solution to these problems, namely a mathematical model 

developed to detect and prioritise near misses as they occur on a running system. The design 

of the mathematical model is based on the review of previous work on near-miss analysis that 

was conducted in Chapter 6. This review identified two concepts used across industries that 

were deemed applicable to the software industry: using near-miss analysis to improve the 

reliability of a system and determining the risk level of a near miss based on its failure 

probability, in other words the probability that it will cause the system to fail.  

 

Therefore, although this research does not use near-miss analysis to improve software 

reliability but rather to improve the accuracy of failure analysis, reliability concepts specific to 

the IT industry were used to develop methods to define, detect and prioritise near misses in 

software systems. These concepts are the following: the service level agreement (SLA), which 
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defines the contractually agreed level of reliability of a system; and the reliability theory of IT 

systems, which provides a formula to calculate the failure probability of a system.  

 

The remainder of this chapter is organised as follows: Section 7.2 proposes a definition of the 

concept ‘near miss’ based on the SLA concept, which is suitable for the software industry. 

Section 7.2 subsequently provides a mathematical formula to express the definition in a formal 

manner and to detect near misses. Section 7.3 presents the reliability theory of IT systems as a 

suitable basis for prioritising near misses. The mathematical modelling for a near-miss failure 

probability based on this theory is presented in Section 7.4. Finally, Section 7.5 defines a 

prioritisation method for near misses according to the definition and failure probability formula 

as proposed in this chapter.  

 

6.2 Formal definition of a Near Miss for software systems 

In Chapter 2, a generic definition of a near miss with regard to software systems was proposed 

as follows:  

A near miss is an unplanned high-risk event or system condition that could have caused a 

major software failure if it had not been interrupted either by chance or timely 

intervention. 

 

It was decided that this generic definition needs to be fine-tuned and formalised to enable the 

detection of near misses. 

 

With regard to software systems, a failure is “the inability of a system or component to perform 

its required functions within specified performance requirements” (IEEE, 1990). Since no 

system is immune to a malfunction, no system vendor can guarantee that the system will work 

perfectly and continuously at all time. In other words, some periods of unplanned downtime 

are expected. As an illustration, even the public switched telephone network (PSTN), the 

traditional telephone network that is considered to be the most reliable communications 

network, has some margin for failure with a designed reliability of 99.999% which translates 

to a margin of 5 min and 15 s of downtime in a year (Horton, 2008).  

 

For the above reason, the performance requirements of a typical software system make 

provision for a downtime “allowance”. This allowed downtime can be indicated informally in 
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the system’s specifications document, but it is usually specified formally in a contract between 

the service provider and the receiver of the service (customer). This contract is referred to as 

the service level agreement (SLA) (Sevcik, 2008). 

 

SLA’s are service management contracts that are processed by real-time monitoring and 

measuring of the provided service levels at runtime. SLA’s specify mandatory service 

provisioning terms such as Quality of Service (QoS) attributes and functional service 

properties. They may also include several technical and business service level objectives 

(SLOs) with their metrics used for evaluation of the service level. Thus, SLAs assist with the 

calculation and measurement of service parameters, which in turn indicate the provider’s 

adherence to the promised service levels (Stamou, Kantere, Morin, Longo & Bochicchio, 

2013). 

 

SLA’s typically include the responsibilities of both the customer and the service provider in 

terms of the provision of the service. This includes customer’s requirements to be met by the 

service provider, the fee paid if the requirements are met, the penalty incurred by the service 

provider if they are not satisfied, and the period of time the agreement holds. A critical QoS 

specified in the SLA is the customer’s service availability (Das, 2012). 

 

For instance, the SLA for a website may specify that the site will be operational and available 

to the customer at least 99.9% of the time in any calendar month. This indicates that the website 

should not be down for more than 0.1% of the time in a month. For a 30-day month, this 

corresponds to a downtime limit of 0.03 day or 43 min and 12 s. If the website is down for 

more than this amount of time in a month, it does not meet the customer’s expectation in terms 

of the SLA. Thus it violates the SLA and is considered to have failed. 

 

Therefore, for the purposes of the research in hand an event is considered a failure if its 

resulting downtime exceeds the downtime allowance specified in the SLA. Similarly, an event 

is considered a near miss if it can lead to the exceeding of that allowance. The researcher 

therefore proposes the following specific definition of a near-miss for the purpose of facilitating 

its detection: 
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A near miss is an unsafe event or condition that causes a downtime whose duration is close 

to exceeding the downtime allowance specified in the SLA.  

 

Note that the SLA concept used in the above definition does not necessarily refer to a formal 

contract between the service provider and the customer. It is rather a concept that refers to any 

objective predefined performance level specified for a given system. 

 

This definition of a near miss is illustrated by the earlier example of the SLA of the website 

that specifies a downtime allowance of 43 min and 12 s per month. This allowed downtime 

provides a means to classify an event as one of three possibilities: 

 A failure: SLA violation; monthly downtime exceeds 43 min and 12 s. 

 An acceptable failure: Not close to SLA violation; monthly downtime is significantly 

less than 43 min and 12 s. This downtime is part of the expected system behaviour. 

 A near miss: Close to SLA violation; monthly downtime is close to or equals 43 min 

and 12 s, but not more than that. 

Using the SLA as a measurable characteristic in the definition of a near miss provides a way 

of quantifying the severity of an unsafe condition and prioritising near misses. The SLA 

performance metric used for that purpose is the downtime (as opposed to expected availability), 

as it has a direct effect on a system’s reliability. Indeed, reliability is often expressed in terms 

of the Mean Time Between Failures (MTBF), which is “the average operating time (uptime) 

between failures of a system” (MTL Instruments, 2010). As system failures result in downtime, 

the MTBF is the average operating time between periods of downtime.  

 

The above concept is proposed as the basis to formally define a near miss. This requires 

determining how close the experienced downtime should be from exceeding the allowed 

downtime to be considered a near miss. Specifying a near-miss threshold is suggested for this 

purpose. This threshold will vary from one organisation to the next, depending on its risk 

tolerance. For instance, Organisation A might be comfortable with a 95% threshold (95% of 

the downtime allowed), while Organisation B will limit its risk tolerance level to 75%. This 

would correspond to a total monthly downtime of 41 min and 2 s for Organisation A and 32 

min and 24 s for Organisation B. This threshold-based definition of a near miss can be 

mathematically expressed as follows: 

Dexperienced is the experienced downtime 
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Dallowed is the SLA downtime allowance  

α is the near-miss threshold in percentage; α < 1 

α × Dallowed is the near-miss threshold in time value 

If α × Dallowed ≤  Dexperienced ≤ Dallowed then Dexperienced  is a near miss 

 

Figure 7.1 illustrates the downtime-based classification of events explained above. 

Downtime duration

SLA downtime 

allowance

Near miss 

threshold

Dallowed0

Failure

 α×Dallowed

Near missAcceptable failure

 
Figure 6.1: Classification of unsafe events based on their downtime duration 

 

As an illustration: with reference to the earlier example of Organisation A, a near miss is any 

monthly downtime of between 41 min and 2 s (the 95% threshold) and 43 min and 12 s (the 

SLA downtime allowance). Thus: 

α = 0.95 

Dallowed = 43 min and 12 s 

α × Dallowed = 41 min and 2 s 

If 41 min and 2 s  ≤ Dexperienced ≤ 43 min and 12 s 

then Dexperienced is a near miss. 

  

Note that the downtime allowed is not a static but rather a dynamic value as it diminishes with 

every downtime experienced previously in the same SLA measurement period. Dallowed is thus 

the limit left after experiencing previous downtimes, if any. This needs to be accounted for and 

changes the above formula as explained below.  

 

For the purposes of the research in hand, the formal definition for a near miss is as follows: 

Let T be the current measurement period, usually the current calendar month or the current year. 

Let d be the current day, such as day number 10 of the current month or year. 

T spans the period from the first day of the month or year until the current day. Thus: 

T = [1; d] 

Let n be the number of previous acceptable downtimes in T. 

n ≥ 0 

Dprevious is the total downtime experienced previously in T. 

Dk is the duration of the downtime number k in T. Thus D1 is the duration of the first downtime 

experienced and Dn is the duration of the latest downtime. D0 indicates that no downtime occurred 
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previously. 

Dprevious = ∑ Dk
𝑛
𝑘=0    

Dnow is the downtime experienced currently. 

Dremaining is the SLA downtime limit left after experiencing previous downtimes in T. 

Dremaining = Dallowed – Dprevious 

If α × Dremaining ≤  Dnow ≤ Dremaining → near miss      (1) 

 

Since the downtime allowed is decreasing over time with every new downtime experienced in 

T, the value of Dnow should also reflect the impact of the previous downtimes experienced in 

T. This is achieved by using a weighted moving average (WMA) of all the previous downtimes 

in T to calculate Dnow. A WMA gives more weight to the most recent data in a time series and 

attaches less importance to older data. It is therefore used for trend forecasting (Holt, 2004). 

This is particularly relevant for the research in hand, which aims to predict likely failures based 

on near misses. The WMA of the previous downtimes shows the trends in the system 

downtimes and can indicate whether the system is heading towards a large downtime (for 

instance, through a series of short downtimes).  

 

The WMA of the downtimes is calculated by multiplying each downtime by its position in T 

and dividing the sum of these values by the total of the multipliers. Using the previously defined 

parameters of n (the number of previous acceptable downtimes in T) and Dk (the duration of 

the downtime at position k in T), the WMA for Dnow is formally expressed as follows: 

Dnow=
𝑛(𝐷𝑛)+(𝑛−1)(𝐷𝑛−1)+(𝑛−2)(𝐷𝑛−2)+⋯+2(𝐷2)+1(𝐷1)

𝑛+(𝑛−1)+(𝑛−2)+⋯+2+1
     

 

Equation (1) above enables the identification of near misses among periods of downtime. This 

identification is reactive, i.e. it is performed after the near miss caused a downtime. The 

identified near misses can then be logged so that they can be investigated at a later stage. This 

reactive detection still provides a valuable opportunity to learn about the system weakness that 

has been responsible for the downtime. However, ideally, near misses should be identified 

before they result in downtime so that a system outage may be prevented. A method for 

detecting near misses proactively is provided in Section 7.5. 

 

Once near misses have been defined and recognised, they need to be prioritised for possible 

further investigation. The latter can be accomplished by employing methods from prioritisation 

schemes that have been developed for other industries. They were reviewed in the previous 
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chapter to evaluate their suitability for software systems. This review indicated that previous 

work in near-miss prioritisation is industry-specific and not much of it is applicable to the 

software industry, except for the concept of prioritising near misses based on their failure 

probability. An approach to determine this failure probability is provided by the reliability 

theory that will be reviewed in the next section. This theory provides a formula to calculate the 

failure probability of a system. It can thus serve as a basis to determine the risk level of a near-

miss event, based on the likelihood of a system failure due to that event. 

 

6.3 Overview of reliability theory and failure probability formula 

for IT systems 

Near-miss analysis is commonly performed to improve a system’s reliability. One common 

approach in this regard is to add redundancy. With the advance of cloud computing and 

virtualisation, redundancy is inherent in most enterprise systems. Therefore, while near misses 

can occur in any system, the proposed mathematical model only considers near misses in 

redundant systems. Redundancy is usually associated with hardware, but the argumentation is 

that its basic concepts and its corresponding reliability theory are transferable to software 

components. Examples of such components are memory slots, virtual servers, databases and 

data. The following is an overview of the concepts of redundancy and the failure probability 

formula as currently applied to hardware components.  

 

6.3.1 The reliability theory of redundant hardware components 

Redundant systems have a number of equivalent spare components that work in parallel. If one 

of the redundant components fails, it is removed from the system and another operational one 

takes over its functionality. This failover process allows the system to continue its operations 

(Highleyman, 2008). The recovery time, also known as the ‘mean time to recover’ (MTTR), is 

equal to the failover time for parallel components. It is the time it takes the system to detect 

and disable the failed node and transfer its operations to another node in working condition. If 

this failover time is short enough, users will not experience any interruption and will not even 

realise that a fault has occurred (Highleyman, 2008).  

 

Based on the concept of redundancy, the author argues that a redundant system is at a high risk 

of failing when no spare resources are available to take over the operations of the active units, 
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if need be. At this point, the failure of any one unit will bring the entire system down. In other 

words, the failure of one active unit can cause a system outage only if all spares are already 

down. Stated in formal terms, for a redundant system with n number of units of which there is 

s number of spares, it takes the failure of s+1 units to bring the system down. 

 

As an illustration, let us use the case of a redundant system constituted of five servers and two 

spares. Thus n is equal to 7 (the total number of servers) and s is equal to 2. The system requires 

five active servers at all time to be operational. If one server is lost, one of the spares takes 

over. The system keeps on running and is left with only one spare. If a second server is lost 

before recovering the failed one, the second spare takes over and the system is now left with 

five active servers and no spare. The system will keep on working as long as these five servers 

are working. If a third server is lost at this point, the system fails, since only four active servers 

are left. Thus, the entire system goes down when s+1 units (i.e. 3 units) fail. 

 

The above implies that the risk of a system failure increases as the number of available spares 

decreases. It can thus be argued that in the context of redundant systems, near misses can be 

caused by the likely exhaustion of critical redundant resources. The failure probability of a 

redundant system can therefore be determined based on the number of spares lost as will be 

described next. 

 

6.3.2 Failure probability formula for hardware components 

As mentioned earlier, when all units are up and running, the failure probability for a redundant 

system with s number of spares is the probability of losing s+1 units. The reliability theory 

(Holenstein, Highleyman & Holenstein, 2003) demonstrates that the formula to calculate this 

probability is: 

F = f(1-a)s+1 

This formula can be explained as follows: 

F is the probability that the system will be down. 

a is the probability that a unit will be up (its expected availability). 

(1-a) is the probability that a unit will be down. 

s is the sparing level (i.e. s+1 units must fail in order for the system to fail). 

f is the number of failure modes or the number of ways that s+1 unit failures will cause a system 

outage. 
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The formula assumes that the system can be restored to service as soon as a failed unit is 

repaired (parallel repair). The rationale is as follows: since there are s number of spares, it will 

take the failure of s+1 units to bring the system down. Since the probability of losing one unit 

is (1-a), the probability of losing s+1 units is (1-a)s+1. However, there are several ways in which 

s+1 units out of n units can fail. The number of failure modes f is equal to C(n, s+1) (read “n 

combination s+1” or “n choose s+1”). Therefore, the probability that the system will fail is f(1-

a)s+1. Thus: 

F = f(1-a)s+1 = C(n, s+1)×(1-a)s+1 = 
𝑛!

(𝑠+1)! (𝑛−𝑠−1)!
 (1-a)s+1 

This formula is designed for redundant hardware resources that are usually identical in terms 

of functionality, electronics and hardware design. Therefore they all have the same failure 

probability (probability that the unit will be down). In addition, they are designed to be 

independent of each other, so that the failure of one unit does not affect the functioning of the 

other units. The above situation is not always applicable to software units and the above 

formula needs to be revised accordingly as will be described next. 

 

6.3.3 Proposed failure probability formula for software components 

In cases where software reliability is critical, the redundant software units are often designed 

to be identical only in terms of functionality to avoid common sources of vulnerability and 

identical failure modes. Therefore they do not have the same software and hardware design. 

The concept of design diversity is used to refer to this approach of designing independent 

software with similar functionality (Pullum, 2001). 

 

Design diversity allows the independent creation of multiple versions of the software based on 

diverse but equivalent specifications (Pullum, 2001). The various versions of the software are 

written by independent programmers, with a different logic and possibly different languages 

and environments. Jain and Gupta (2011) conducted a survey of design diversity techniques 

for software redundancy.  

 

Due to design diversity, redundant software units are likely not to have the same failure 

probability. Therefore the researcher revised the above formula as follows: 

x = 1 to s+1 
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ax is the probability that unit x will be up (its expected availability). 

(1- ax) is the probability that unit x will be down. 

The probability of losing s+1 units is (1-a1). (1-a2). (1-a3)… (1-as) (1-as+1). This is equal to 

∏ (1 − 𝑎𝑥)𝑠+1
𝑥=1  

Thus: 

       F = f× ∏ (1 − 𝑎𝑥)𝑠+1
𝑥=1 = C(n, s+1)× ∏ (1 − 𝑎𝑥)𝑠+1

𝑥=1
  

    F = 
𝑛!

(𝑠+1)! (𝑛−𝑠−1)!
 ∏ (1 − 𝑎𝑥)𝑠+1

𝑥=1         (2) 

Equation (2) also caters for the case where all redundant units are identical with the same failure 

probability (e.g. with virtualisation and cloud computing). In that case the equation will turn 

out to equivalent to the original equation from the reliability theory of hardware components 

since ∏ (1 −  𝑎𝑥)𝑠+1
𝑥=1   will now be equal to (1-a)s+1. 

 

Equation (2) establishes the foundation for calculating the failure probability of a redundant 

system. However, it is limited in the sense that it caters only for the case when all spares are 

working. Hence it needs to be adapted to accommodate the case of a near miss, in other words 

the loss of a number of spares. The mathematical model for the near-miss failure probability is 

developed and discussed in the next section.  

 

6.4 Mathematical modelling for near-miss failure probability  

For the purpose of this research, and in the context of redundant systems, the failure probability 

of a near miss is the probability of a system failure, given the loss of any number of critical 

spare units. This is a conditional probability that can be expressed as P(F|D) (probability of F 

given D), where D is the event that d number of spare resources are down. Thus P(F|D1) is the 

probability of failure given that one (1) spare resource is down. Bayesian statistics (Devore & 

Berk, 2012) are generally used to calculate conditional probabilities using the following 

formula: 

)(

)()|(

)(

)(
)|(
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FPFDP

DP

DFP
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Since the elements of this formula are not all available, it is preferable to use a logical deduction 

to determine P(F|D). An appropriate starting point is the failure probability formula of the 

reliability theory presented in the previous section. As explained earlier, this formula enables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

120 

 

the calculation of the probability of failure of a redundant system when all the redundant units 

are up. Therefore, there is a need to determine how this formula is affected when one or more 

spare units are down. For simplicity’s sake, this process is explained incrementally, starting 

with the loss of one spare, then two, and finally generalised to any number of spares. 

 

6.4.1 Loss of one spare 

P(F|D0) is the probability of failure given that no (0) spare is down (i.e. when all s spares are 

up). The system fails when s+1 units are down. Thus, referring to Equation (2) in Section 7.3:  
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If one spare goes down, the system is left with n-1 units and s-1 spares. Following the same 

logic used to obtain the above equation, the system will fail if all spares plus 1 unit fail, thus if 

(s-1)+1 units fail. In other words, it now takes the failure of s units to bring the system down. 

Since the probability of losing any unit x is (1- ax), the probability of losing s units is (1-a1). 

(1-a2). (1-a3)… (1-as). This is equal to ∏ (1 − 𝑎𝑥)𝑠
𝑥=1 . The number of failure modes f1, which 

indicates the number of ways that s units can fail out of n-1 units, is equal to C(n-1, s). 

Therefore, the probability that the system will go down is f1×∏ (1 − 𝑎𝑥)𝑠
𝑥=1  or C(n-1, s) × 

∏ (1 − 𝑎𝑥)𝑠
𝑥=1 . Thus: 
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6.4.2 Loss of two spares 

Similarly, if two spares go down, the system is left with n-2 resources and s-2 spares. The 

system will fail if (s-2)+1 units fail, thus if s-1 units fail. The probability of losing s-1 units is 

∏ (1 − 𝑎𝑥) 𝑠−1
𝑥=1  and the number of failure modes f2 is equal to C(n-2, s-1). Thus: 
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6.4.3 Loss of any number of spares 

Using the same argumentation as above, the formula is generalised for any d number of spares 

that go down. If d number of spares is lost, there are n-d units and s-d spares left. It thus takes 

the failure of (s-d)+1 units to bring the system down. Since the probability of losing any one 

unit x is (1-ax), the probability of losing s-d+1 units is ∏ (1 − 𝑎𝑥)𝑠−𝑑+1
𝑥=1 . The number of failure 

modes fd is thus C(n-d, s-d+1). Hence: 
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Determining the failure probability of a system in production based on the number of spares 

lost, can thus provide a way to quantify the risk level of near misses. Such quantification can 

be used to prioritise the near misses for investigation. 

 

6.4.4 Illustration of the failure probability formula 

This section illustrates the application of the Equation (3) established above with the simple 

example of a system composed of several redundant servers. The near miss is the loss of spare 

servers. The formula is used to calculate the failure probability (F) and how it increases as 

spare servers go down. The results are then represented by means of a graph.  

 

The example of a system with five servers and two spares is reused. For the sake of simplicity, 

it is assumed that all servers have the same failure probability. Assuming the failure probability 

of one server at any given time is 0.033 (3.3%), the following applies: 

n = 5; s = 2; 1-a = 0.033 
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Equation (3) is used to calculate the system failure probability for various numbers of failed 

servers. Results are provided in Table 6.1 and graphically represented in Figure 6.2. 

Table 6.1: Failure probability values 

Number of failed servers Failure probability (%) 

0 0.035937 

1 0.6534 

2 9.9 

3 100 

 

 
Figure 6.2: Failure probability graph 

 

This graph enables a quick and easy visualisation of a near miss and can facilitate its 

prioritisation. For instance, the graph shows how the failure probability significantly increases 

when the second spare is lost, since no more spares are available. 

 

However, the prioritisation of near misses based on the formula in Equation (3) has some 

limitations as it does not take into consideration the concept of the SLA used in the proposed 

definition of a near miss. Indeed, this formula determines the risk of a system outage following 

the loss of some spare resources. Recalling from the discussion in Section 6.2 that a failure is 

a breach of the SLA, a system outage is only a failure (from a business perspective) when the 

duration of the downtime exceeds the allowance specified in the SLA. Otherwise it is an 

acceptable failure, as depicted in Figure 6.1. The prioritisation scheme consequently needs to 

be refined to take into account the duration of the system downtime. This prioritisation method 

is established in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

123 

 

6.5 Prioritisation of near misses 

This section presents the researcher’s near-miss prioritisation method based on the SLA 

concept and formally expressed in a mathematical formula.  

 

6.5.1 The near-miss prioritisation formula 

A near miss was previously defined as a potential failure, more specifically as an event that can 

lead to the violation of the SLA. The violation of the SLA was also defined in terms of the 

system downtime. According to the same logic that was used to measure the severity of a failure 

based on the downtime experienced, the severity of a potential failure or near miss can be 

assessed based on its expected downtime. In other words, determining for how long the system 

will be down in the eventuality of an outage caused by this near-miss event. 

 

To this effect, two parameters are needed: the failure probability of the near miss and the 

expected recovery time for the outage or MTTR (mean time to repair). The expected downtime 

is then calculated as the product of the failure probability and the MTTR. The failure 

probability is provided by Equation (3) established earlier and the MTTR can be obtained from 

the system vendor specifications or through historical observations. The system enters a 

“critical zone” when the expected downtime is greater than the SLA downtime allowance. This 

can be expressed as the following formula (Equation (4)): 

 

Dexpected is the expected downtime, thus the expected loss of productivity due to a 

failure. 

Dremaining is the SLA downtime limit remaining after previous downtimes in the current 

measurement period.  

P (F|Dd) is the probability of failure, given the current unsafe situation (loss of spares). 

MTTR is the expected recovery time following an outage. 

Dexpected = P (F|Dd) × MTTR 

If Dexpected  > Dremaining → critical zone                  (4)     
 

If a successful recovery is performed and the outage is prevented when the system is in the 

critical zone, then this event is classified as a near miss. Equation (4) can thus allow the 

proactive detection of a near miss, i.e. before it causes an outage. On the other hand, if the 

system recovery is not successful, the event is classified as a serious failure in the sense that 
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the SLA has been breached. Both cases need to be investigated to identify their root cause and 

prevent their reoccurrence.  

 

In the case of a near miss, the closeness between the expected downtime and the SLA downtime 

allowance can be used to assign a risk level to the event. The risk level will determine how 

important it is to conduct a thorough forensic analysis of this near miss and how much of the 

limited resources available can be allocated to this task. However, as explained in Section 7.2, 

different organisations have different risk tolerance levels and may prefer a larger margin of 

safety when detecting a near miss. Instead of using the whole SLA downtime allowance to 

define a near miss, they may specify a portion of that downtime as their near-miss threshold. 

Their system will thus enter a critical zone earlier, which will give them more time for remedial 

action. The near-miss threshold can be adjusted over time as more experience is acquired in 

detecting and handling near misses. When this threshold is included, Equation (4) is adjusted 

as follows: 

 

α is the near-miss threshold; α ≤ 1  

If Dexpected  ≥ α x Dremaining → critical zone         (5)  

 

6.5.2 Evidence collection for high-risk near misses 

Only events in the critical zone are passed on for analysis. These events are prioritised based on 

the value of their expected downtime as per Equation (5) above. As soon as the system is in the 

critical zone, the following two actions need to be initiated by the system administrator:  

 Automatic collection of data related to the event  

 Recovery of the lost spares to prevent the outage 

 

Event-related data will serve as digital evidence for the root-cause analysis of the near miss. 

When collecting the data, it is imperative to ensure that the process does not exhaust the 

remaining available resources, as this could harm the system and accelerate its crash. Ideally, 

event data should be collected before corrective actions are implemented so as to capture the 

unsafe state of the system and avoid any tampering with potential evidence. However, due to 

time constraints, this may not be possible. Some mitigating action can then be taken, such as 

logging all recovery steps to facilitate the reconstruction of the near-miss condition at a later 

stage. 
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The suggestion on how to automate the detection and classification process explained above is 

presented in Chapter 8 together with the design of an NMS that implements that process. 

6.6 Conclusion 

This chapter proposed a mathematical model specific to the software industry to detect and 

prioritise near misses at runtime so as to address the issue caused by their high volume and low 

visibility. Digital evidence of the near misses with the highest risk level was subsequently 

collected for root-cause analysis. The near-miss detection method was based on a mathematical 

formula created to define near misses using the SLA of the monitored system. The near-miss 

prioritisation process was based on a mathematical formula established to calculate the failure 

probability of a near miss. The proposed mathematical model was designed to be integrated 

with the Evidence Collection phase of the process designed for the forensic investigation of 

software failures in Chapter 5. The architecture of an NMS that combines this investigation 

process with the near-miss detection and prioritisation model is presented in Chapter 8. 
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  CHAPTER 7              

THE NMS  ARCHITECTURE 
 

7.1 Introduction 

Chapter 4 presented the post-mortem forensic process that was proposed to investigate software 

failures based on reliable digital evidence. Chapter 6 addressed the main limitation of this 

process by suggesting the proactive approach of near-miss analysis. A mathematical model was 

proposed to detect and prioritise near misses in order to proactively collect complete and 

relevant evidence about likely software failures. Chapter 7 now presents the NMS architecture 

that combines both the forensic investigation process and the near-miss detection and 

prioritisation model. This original NMS architecture is proposed to promote the usage of sound 

forensic evidence to conduct an accurate root-cause analysis of software failures. Designing 

such a model to address the lack of forensic principles and sound evidence in existing 

approaches towards failure analysis constitutes the main goal of this thesis. 

  

The NMS architecture is designed to satisfy the requirements for accurate failure investigation 

established in Chapter 2. These requirements ensure that software failures and near misses are 

dealt with in a forensically sound manner as they arise. The NMS architecture facilitates the 

collection and preservation of digital evidence about these events, to ensure that the subsequent 

root-cause analysis provides objective and reliable results. These results are then used to 

implement effective countermeasures so that the same failures do not reoccur in the future.  

 

Chapter 7 is structured as follows: Section 7.2 revisits the requirements identified in Chapter 2 

for the accurate investigation of software failures. It also reviews the proactive and reactive 

solutions proposed earlier to address the requirements as mentioned above. Section 7.3 presents 

the NMS architecture that combines both partial solutions.  
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7.2 Requirements and proposed solutions for the accurate 

investigation of software failures 

7.2.1 Requirements  

The following list of requirements established for an accurate evidence-based investigation of 

software failures was discussed in detail in Chapter 2: 

 Objectivity  

 Comprehensiveness 

 Reproducibility 

 Admissibility in court 

 

In addition, two additional requirements were established in Chapter 4 for the successful 

forensic investigation of software failures: 

 Quick system restoration to minimise downtime 

 Continuous system monitoring  

 

7.2.2 Proposed solutions  

Two processes were proposed to satisfy the requirements listed above. The first one is a 

forensic investigation process based on digital forensics. This process is an adaptation of the 

digital forensic process designed to accommodate challenges specific to failure analysis. The 

second process is a near-miss detection and prioritisation process for the analysis of near misses 

before a failure occurs. This process is tailor-made for software systems as no such process is 

as yet available in the software industry. For the sake of clarity, the two processes are 

reproduced in the sections below. 

 

7.2.2.1 The forensic investigation process for software failures  

A representation of this investigation process was provided in the flowchart in Figure 4.1. The 

process adheres to digital forensic principles. It also comprises some elements of 

troubleshooting. Digital forensics ensures that the process and its results are reliable and 

admissible in court, while troubleshooting facilitates the timely restoration of the failed system 

to limit its downtime.  
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7.2.2.2 The near-miss detection and prioritisation process 

The following process was proposed to effectively manage near misses and use them as tools 

to improve the accuracy of the root-cause identification of software failures: detection, 

prioritisation, data collection for high-risk near misses, failure prevention and root-cause 

analysis. In Chapter 6, mathematical formulas were developed to formally define a near miss, 

as well as enable its detection and prioritisation based on its risk level. This risk level was 

defined as the conditional probability that the system will fail, given that the near miss has 

occurred. Only near misses with a risk level above a predefined threshold were selected for 

evidence collection and root-cause analysis. 

 

This near-miss analysis process is designed to complement the failure investigation process 

that was presented in the previous section. It is achieved by enabling the safe collection of 

failure-related data before a failure occurs and increasing the pool of failure-like events that 

can point to weaknesses in the software system. This process is therefore integrated with the 

Evidence Collection phase of the forensic investigation process, more specifically for the 

collection of primary (i.e. digital) evidence. This process requires the continuous monitoring 

of the system to identify in real-time unsafe events and conditions that can be classified as near 

misses. The NMS architecture that integrates both of the above processes is described next. 

 

7.3 The NMS architecture 

This section presents the NMS architecture that was designed to satisfy all requirements for 

accurate software failure investigations listed previously. It combines both the post-mortem 

forensic investigation process and the pre-emptive near-miss analysis process described above. 

The section starts with an overview of the overall near-miss and failure investigation process. 

It is followed by a detailed description of the architecture designed to automate this process. 

 

7.3.1 The overall near-miss and failure investigation process 

To detect near misses, the system needs to be monitored with a view to recording and reviewing 

event logs. It is suggested that system events be logged in a central repository such as a Syslog 

server. Event logs that match the near-miss formula established in Equation (1) in the previous 

chapter are flagged as potential near misses and are then sent to another module for 
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prioritisation. This module calculates the system’s failure probability and expected downtime 

based on each potential near miss.  

 

Afterwards, events identified as being in the critical zone are passed on to another component 

for data collection. The Simple Network Management Protocol (SNMP) is proposed for this 

purpose. This Internet-standard protocol enables information exchange between a manager 

(central unit) and its agents (the other system units) (Presuhn, 2002). In this case, the SNMP 

manager is the data collection module and it requests additional information about the event 

from the relevant units through their SNMP agents. Corrective steps are subsequently taken to 

prevent a system failure, if possible. Finally the collected data is used for root-cause analysis 

of the event. This root-cause analysis follows the forensic investigation process specified 

earlier. Upon identification of the root cause of the event, recommendations are made to correct 

the system flaw. 

 

The architecture of an NMS that was designed to implement the above process is described in 

the next section. 

 

7.3.2 The NMS architecture 

The proposed NMS architecture is shown as a UML component diagram in Figure 7.1. The 

architecture consists of the five main components below, listed in their logical sequence:  

 The Near-Miss Monitor 

 The Near-Miss Classifier 

 The Near-Miss Data Collector 

 The Failure Prevention 

 The Event Investigation 

 

Some components are made up of several sub-components that all have a type: a document 

file, an executable file or a database table. Dashed arrows indicate a component’s dependency 

from the source component to the target component. For instance, the Near-Miss Classifier 

requires high-risk event logs from the Near-Miss Monitor. Some dependencies are subject to 

conditions, for example an expected downtime must occur in the critical zone to activate a data 

request from the Near-Miss Data Collector. 
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Each of the main components processes the event logs from the redundant units of the system 

that is being monitored. The five main components of the system are used to perform a multi-

stage filtering process that progressively discards “irrelevant” events and only retains near 

misses with the highest risk factor. The key component of the architecture is the module used 

to prioritise near misses. This module is named the Near-Miss Classifier. It uses Equation (5) 

that was established in the previous chapter to classify near misses based on their expected 

downtime. 

 

A detailed description of the main components of the architecture follows. 
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 Event Investigation

Failure Prevention

Near-Miss Data Collector

Near-Miss Classifier

Near-Miss Monitor

<<executable>> 

Event Logs Classifier

<<table>>

Event Logs

<<document>>

Near-Miss Formula

<<document>>

Near- Miss Risk Level Calculation

<<executable>>

Near-Miss Prioritisation

<<executable>>

Data Collector

<<executable>>

Corrective Steps Implementation

<<document>>

Corrective Steps Recording

<<executable>>

Event Classifier

<<executable>>

Event Root-Cause Analysis

<<table>>

Near Misses

<<table>>

Failures

Monitored 

System

Event logs

<<Precondition>>

{Potential near miss identified}

<<Precondition>>

{Events in “critical zone” identified}“Critical zone” events

Event source data

Corrective Steps

Digital evidence

Outcome of failure prevention

High risk logs

<<executable>>

Near-Miss Alert

<<executable>>

Near-Miss IndicatorsSystem 

Restoration

<<executable>>

Countermeasures

 

Figure 7.1: UML component diagram of NMS architecture 
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7.3.2.1 The Near-Miss Monitor 

The Near-Miss Monitor monitors the redundant units of the system to identify potential near 

misses based on the near-miss definition formula. Events from the monitored system are logged 

to provide information relevant for near-miss detection in line with the near-miss formula. The 

logged information must include, among others, the status of the unit (up or down) and the 

duration of the downtime, if applicable. The Near-Miss Monitor keeps track of previous 

downtime experienced by the system, as well as the remaining downtime allowed in the SLA. 

If the system goes down and a match is found between these parameters and the near-miss 

definition formula, the downtime experienced is classified as a potential near miss and sent to 

the Near-Miss Classifier for prioritisation.  

 

7.3.2.2 The Near-Miss Classifier 

The Near-Miss Classifier calculates the risk level of the potential near misses based on their 

failure probability and expected downtime. It uses and prioritises events accordingly. Logs of 

events identified as being in the “critical zone” are sent to the Near-Miss Data Collector and an 

alarm is raised to notify the system administrator. 

 

7.3.2.3 The Near-Miss Data Collector 

This module is implemented as an SNMP Manager. The SNMP Manager requests data from 

the units in the critical zone. Such data may include the source identifier (e.g. IP address), 

running processes, system settings and error messages. This data is then stored in the Event 

Data table and transferred to the Failure Prevention module. 

 

7.3.2.4 The Failure Prevention 

With this module, the system administrator uses the collected data to identify and implement 

appropriate corrective steps in an attempt to prevent – or at least mitigate the impact of – system 

failure. This might include ending some active but unused processes or deleting some stored 

but unnecessary data to free up memory. The administrator records the steps implemented in a 

log file for future reference. He then sends the outcome of the recovery attempt (successful or 

unsuccessful) to the Event Investigation module.  
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7.3.2.5 The Event Investigation 

Based on the outcome of the recovery process in the previous component, the Event 

Investigation module classifies events as either near misses or failures and stores the event 

details in the appropriate table for future reference. If the event is a failure, a system restoration 

is first conducted to limit the experienced downtime. The administrator then conducts a root-

cause analysis of the event based on the data stored. The root-cause analysis enables the 

identification of near-miss indicators that can be used to adjust the formula used in the Near-

Miss Monitor. 

 

Afterwards, recommendations for improvement are made and implemented either immediately 

or at a later scheduled time. The recommendations are stored along with the event details in the 

relevant table. These steps allow for the creation of an event history that can be looked up in 

the event of a similar event occurring in the future. 

 

This overall process is summarised in the UML activity diagram in Figure 7.3. 

 

This architecture meets the objectives for incorporating near-miss analysis in the digital 

forensic investigation of software failures as stated in Section 8.2. It enables the automatic 

detection of near misses based on objective performance measures specified in the organisation 

concerned. The detection process is flexible enough to accommodate changing performance 

requirements and to suit requirements specific to an organisation. The architecture also enables 

the automatic classification of potential near misses and the prioritisation of near misses to 

facilitate their investigation. Once near misses have been selected for investigation, the 

architecture enables the safe and proactive collection of data related to the potential failure for 

root-cause analysis. This evidence is likely to be more complete and have more integrity than 

the data collected following the failure. Additionally, the designed NMS enables the 

improvement of the software once the cause of the outage has been established and 

recommendations for improvement have been implemented. This prevents the recurrence of a 

similar failure in the future. An additional benefit of the architecture is that it enables the 

prevention of an impending failure if appropriate corrective actions are executed timely.  
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Collect events logs of monitored system

Collect evidence for potential near miss

Implement corrective steps to prevent failure

Classify event as failure Classify event as near miss

 Apply near-miss formula to collected logs

Calculate expected downtime

Restore system

Conduct forensic root-cause analysis

Identify near-miss indicators

Implement corrective steps

Discard event log

Match between log 
and formula?

No Yes

Flag event as potential near miss

Expected downtime 
in critical zone?

Discard event log

No Yes

Successful failure 
prevention?

No Yes

Send near-miss alert

Adjust near-miss formula based on indicators

Specify corrective steps

 

Figure 7.2: UML activity diagram of NMS  
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The NMS architecture is purposefully designed to be generic as it is on a conceptual level. 

However, in practice, its implementation will be dependent on the architecture of the target 

system.  

 

In the case of standard desktop systems and computing-based architectures, it is recommended 

to design the NMS as a stand-alone system that monitors the target system. This will prevent 

memory constraints on the target system. 

 

In the case of embedded systems, due to the potentially technical barriers to access data from 

the system, the recommendation would be to embed the code for the NMS in the design of the 

embedded system. An example of this design was provided in the prototype implementation 

where the code to collect and monitor attributes used for near-miss detection was inserted in 

the C++  program that implemented the file copying application used as the target system for 

near-miss analysis. 

 

7.4 Conclusion 

This chapter provided a high-level description of the original NMS architecture that has been 

proposed to overcome the limitations of existing approaches to software failure investigations. 

The proposed architecture has the potential to satisfy all the requirements established for 

accurate software failure investigations. Original features of the architecture include the 

provision of a scientific and legal foundation through its alignment with the digital forensic 

process, the addition of a system restoration step before the failure analysis and, most 

importantly, the detection, classification and investigation of near misses to obtain complete 

and relevant digital evidence of the failure for accurate root-cause analysis. A description of 

the prototype that was developed to test the viability of the NMS architecture is provided in the 

next chapter. 
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  CHAPTER 8      
PROTOTYPING THE NMS  –  THE DESIGN 

PHASE 
 

8.1 Introduction 

Chapter 7 presented the architecture of an NMS that was proposed to detect, prioritise and 

investigate near misses. The detection of near misses is based on a mathematical formula 

developed in Chapter 6 to define near misses formally. Near-miss analysis is proposed as a 

novel approach to optimise the collection of sound and relevant digital evidence of a failure for 

accurate root-cause analysis. By alerting system users of an upcoming failure, the detection 

and prioritisation of near misses provides an opportunity to maximise the collection of 

appropriate system logs at runtime and reduce the collection of irrelevant data. 

 

This chapter is the first of a three-part series describing the prototype implementation of the 

NMS architecture. The prototype was designed to demonstrate the viability of the architecture, 

more specifically the detection of near misses from the analysis of event logs. The chapter also 

documents the design phase of the prototype. The next two chapters respectively describe the 

creation of suitable event logs for the prototype implementation and the forensic analysis of 

these logs to detect near misses. The process to conduct such an analysis was presented in 

Chapter 4.  

 

The remainder of Chapter 8 is structured as follows. Section 8.2 presents the objectives of the 

prototype. An overview of the preliminary work that was performed to set up the lab 

environment is next described in Section 8.3. The prototype implementation plan is then 

presented in Section 8.4. 

 

8.2 The aims of the prototype 

This section starts with a brief review of the NMS architecture, which is the basis of the 

prototype implementation. The objectives of the prototype implementation are presented in 

relation to this original architecture. 
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8.2.1 The original NMS architecture 

The prototype aims to demonstrate a subset of the NMS architecture. A UML component 

diagram (OMG, 2007) of the NMS architecture was provided in Figure 7.2 in Chapter 7.  

 

The NMS architecture is made up of five components that work in sequence. A detailed 

description of each component was provided in Chapter 8. The following is a summary of the 

components’ respective main functions:  

1. Near-Miss Monitor: Monitor target system to identify logs of high-risk events that are 

potential near misses. Potential near misses are identified based on the near-miss 

formula defined in Chapter 6. 

2. Near-Miss Classifier: Classify the potential near misses based on their risk level and 

send an alert for the events with the highest risk level. A mathematical model to 

calculate this risk level was developed in Chapter 6. 

3. Near-Miss Data Collector: Collect digital evidence of the potential near misses for 

which an alert has been sent.  

4. Failure Prevention: Apply corrective measures in an attempt to prevent the upcoming 

failure.  

5. Event Investigation: Use the evidence collected to conduct a root-cause analysis of the 

events using the scientific method and digital forensic tools and techniques. These 

events are classified as near misses in case the failure does not unfold. The root-cause 

analysis enables the identification of appropriate countermeasures to be applied, should 

the unsafe events reoccur in the future. It also enables the identification of near-miss 

indicators that can be used to adjust the formula used in the Near-Miss Monitor. 

 

The prototype focuses on the following three components of the architecture: Near-Miss 

Monitor, Near-Miss Classifier, and Event Investigation. These components perform the key 

functions of the NMS and are sufficient to meet the objectives of the prototype implementation, 

as will be discussed in the next section. Some functionality of the Failure Prevention as well as 

of the Data Collector are present in the prototype but a full implementation of these components 

falls outside the scope of this research.  

 

8.2.2 Prototype goal and objectives 

The goal of the prototype implementation is twofold: 
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 Demonstrate the viability of the digital forensic process formulated in Chapter 4 to 

conduct a root-cause analysis of a software failure. In the absence of an SLA, 

identifying the root cause of a failure is necessary in order to identify near-miss 

indicators for that particular type of failure. Each indicator is a unique system condition 

and the combination of all indicators and their interdependencies provides a pattern in 

the system behaviour that indicates that the system might be heading towards a failure.  

 Demonstrate the viability of detecting near misses at runtime. This also demonstrates 

that a near miss is a viable and relevant concept for the software industry. 

 

The above-mentioned goal is accomplished by means of the following: 

 The use of collected digital evidence of the failure as the basis for the root-cause 

analysis. Digital evidence should be sufficient to identify the source of the failure and 

no prior experience with the system should be required.  

 The identification of near-miss indicators to define a near miss.  

 The development of a near-miss formula. This formula is a mathematical expression of 

all the indicators with their respective interdependencies. 

 The identification of potential near misses using a set of event logs.  

 The detection of near misses at runtime. 

 

Figure 8.1 shows the adapted diagram of the NMS architecture that was used to implement the 

prototype in accordance with the above objectives. 
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 Event Investigation

Near-Miss Classifier

Near-Miss Monitor

<<document>>

Event logs

<<document>>

Near-Miss Formula

<<executable>>

Failure Root-Cause Analysis

Monitored 

System

Event logs

Logs matching the formula

<<executable>>

Near-Miss Alert

<<document>>

Near-Miss Indicators

 

Figure 8.1: Adapted NMS component diagram for prototype implementation 

 

The components in Figure 8.1 are implemented as follows: 

 Analyse a software failure to identify its root cause. (Event Investigation) 

 Use the root cause to identify near-miss indicators. (Event Investigation) 

 Use the near-miss indicators to define a near-miss formula. The formula is used in the 

subsequent monitoring of the system. (Near-Miss Monitor) 

 Send an alert for potential near misses detected at runtime. (Near-Miss Classifier) 

 

The prioritisation of potential near misses is not part of the prototype implementation as it is 

not required for meeting the goal and objectives specified earlier. 
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8.3 Setting up the lab environment 

Conducting a root-cause analysis of a software failure was the basis for the prototype’s goal 

and objectives. Conducting such an analysis required three necessary elements: the logs of a 

software failure, a forensic investigation tool with suitable data analysis techniques and a test 

plan. These elements are discussed in Sections 8.3.1, 8.3.2 and 8.3.3 respectively. 

 

8.3.1 The logs of a software failure 

Obtaining logs of a past software failure that would be suitable for the prototype proved 

challenging. The researcher therefore opted to simulate a failure and generate logs of the event. 

Two types of logs were deemed relevant for the root-cause analysis: logs created by the 

researcher and logs generated by the computer system used for the failure simulation. The 

process that was followed to obtain each of the types of log is discussed in the next two sections. 

 

8.3.1.1 Logs created by the researcher 

A software failure was simulated by writing a program with some deliberate weaknesses that 

would result in a failure. While running, the program would write its output to a file along with 

some statistics of its running environment. This information would serve as logs of the failure. 

The output file would therefore be the log file created by the researcher. It is subsequently 

referred to as the crash file.  

 

The software failure to be investigated had to be caused by the exhaustion of resources, in line 

with the near-miss failure probability formula established in Chapter 6. The argumentation for 

this choice was as follows. Unlike many other unpredictable sources of failures, resource 

exhaustion could be predicted through monitoring. The pattern of an upcoming failure could 

therefore be observed and used to define a potential near miss. For the purpose of this prototype 

implementation, memory was selected as the resource to be exhausted. For this reason, the 

program had to fail due to a lack of available memory and the environment statistics to be 

recorded would be memory-related. 

 

The researcher decided for the program to exhaust the memory of an external drive. This allows 

more control over the drive’s available free space than is possible with a computer’s internal 

hard drive, as the latter is controlled by the operating system. The program was designed to run 
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as a loop that copies a video clip to a flash disk repetitively beyond the flash disk free space. 

The choice of a video clip was due to its usually larger file size than other file formats. This 

enabled the file operation (copy to flash disk and reading copy to check its integrity) to take 

enough time for some relevant parameters (e.g. duration) to be observed and recorded. A 

representation of the program’s structure is provided in a high-level flowchart in Figure 8.2. 
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Start

End of loop?

Start of loop

End

Yes

Create new file in flash 
disk

Copy video clip to new file 
in flash disk

Read new file to check file 
integrity

Calculate file operation 
statistics (duration, 

latency) -
Info A

Query system (machine) 
memory statistics – Info B

Write Info A, B 
and C in output 
file (crash file) 

No

Video clip

Query flash disk memory 
statistics – Info C

 

Figure 8.2: Flowchart of failure simulation program to create the crash file 

 

As shown in Figure 8.2, in every iteration of the loop, the program writes to the crash file three 

types of information: 
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 File operation statistics: e.g. duration (time to copy the video clip and read the copy) 

and latency (time delay between two consecutive file operations) 

 Memory statistics (e.g. free space and used space) from the computer system 

 Memory statistics from the flash disk 

 

In order to obtain the above memory statistics, the program was written in C++ as this language 

provides built-in functions to access information about any mounted file system. 

 

The aim of generating a crash file was to find some indicators of the upcoming failure that 

could be used as potential near-miss indicators. The above program was therefore purposefully 

designed to be simple so as to focus on the near-miss indicators instead of on the complexity 

of the computer system. The following assumptions were made regarding the identification of 

the indicators: 

 They would be found in the crash file in the last few entries before the failure. 

 They would reflect a pattern in the system’s behaviour that is significantly different 

from the expected behaviour of the system. 

 The crash file needed to be big enough for such a pattern to be visible. This required 

having a high number of output records.  

 

A spreadsheet format was used for the crash file as it is a format used by a number of forensic 

tools to display digital evidence (Fei et al., 2005). In a typical forensic investigation, each file 

in the forensic data set is represented as a record with various fields describing the file, such as 

file name, creation date and size. The same approach was followed when generating the crash 

file, using the creation of every new copy of the video file as a record. 

 

The researcher also assumed that the running of the above program on any operating system 

(OS) would be recorded in that OS’s own log files. Information in these log files could therefore 

be used to corroborate information in the crash file and could provide some additional near-

miss indicators. For this reason, the computer’s log files were also explored to find suitable 

ones for the above-mentioned purpose. This exercise is discussed in the next section. 
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8.3.1.2 System logs 

The crash file was generated on a machine running on a Linux operating system (OS). Various 

Linux log files and utilities were therefore explored to find relevant information that could be 

linked to the crash file. Since the failure simulating program was performing significant input 

(reading copy of video clip) and output (copying video clip to new file) operations, it was 

deemed most appropriate to use the iotop monitoring utility to show input and output (I/O) 

usage on the Linux disk. The iotop command continuously displays a table of I/O usage by 

processes and threads and refreshes the information every second (Linux.die.net, 2014). It 

provides various I/O statistics such as disk-reading bandwidth and disk-writing bandwidth. 

 

Using iotop was preferred to other similar commands like top and htop as these 

commands provide memory consumption information, which was already available from the 

crash file. The researcher planned on running the iotop command concurrently with the 

failure simulating program, so that I/O usage of this program would be displayed. The output 

of iotop would then be redirected to a file, and would serve as a system-generated log file. 

To find near-miss indicators, both the crash file and the iotop output file would be analysed 

using the tools and techniques described next. 

 

8.3.2 The forensic investigation tool and techniques 

8.3.2.1 The investigation tool 

Ideally, one should use a digital forensic tool to conduct a forensic (root-cause) analysis of the 

log files. Popular digital forensic tools were listed in Chapter 4. However, these tools are 

limited in their ability to handle and interpret large volumes of data, as well as in their 

visualisation capability (Nassif & Hruschka, 2011; Guarino, 2013). Since one of the goals for 

the prototype implementation was to observe a pattern in the system’s behaviour, a tool with 

powerful visualisation capability that could handle large data sets efficiently was required. For 

this reason, a tool with a Self-Organising Map (SOM) analysis capability (Engelbrecht, 2003) 

was selected. The SOM is a powerful data classification technique optimised for large data sets 

(Engelbrecht, 2003), as will be explained in the next section.  

 

To the best of the researcher’s knowledge, popular digital forensic tools are not equipped with 

a SOM capability. Therefore, a SOM tool was used instead of a digital forensic tool. A 
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commercial SOM tool called Viscovery SOMine (viscovery.net, 2014) was used. The trial 

version of this tool was used as it was freely available and it provided all the functionality 

needed for this prototype. An overview of the SOM is provided in the next section. 

 

8.3.2.2 The investigation techniques 

Two techniques were used to analyse the failure: the SOM analysis and statistical analysis. 

Both these techniques were used due to their scientific foundation (mathematics) and their 

ability to identify trends in the data set. They are discussed next. 

 

8.3.2.2.1 Overview of the SOM 

The SOM is a model of unsupervised neural networks used for the analysis and visualisation 

of multi-dimensional data (Engelbrecht, 2003). Like other unsupervised neural network 

algorithms, the SOM classifies input data based on the similarity of the input vectors (records 

in the data set). Similar vectors are grouped in the same cluster. However, the distinguishing 

feature of a SOM is that its neurons (or nodes) represent a topological system (usually a two-

dimensional rectangular or hexagonal map) and they are arranged in an ordered and structured 

way, based on their weights (Hollmén, 2000). Neurons with similar weight vectors are situated 

close to one another while neurons with very different weights are physically far apart 

(Kohonen, 1990). Like other neural network algorithms, the SOM has two successive operating 

modes (Kohonen & Honkela, 2007): 

 

1. The training process where the map is constructed through competitive learning, which 

means that the learning process is data driven (Fei, Eloff, Venter & Olivier, 2006). This 

phase requires a very large number of input vectors to accurately represent all or most 

of the patterns to be identified. 

2. The mapping process where a new input vector is quickly and automatically assigned a 

location on the map, based on its feature.  

 

Usually, a SOM can be graphically visualised by displaying a unified distance matrix (U-

matrix) that shows the different clusters identified in the input data. The U-matrix calculates 

the Euclidian distance between the map units and a colour is assigned to each unit based on 

this distance. Close units have similar colours (Hollmén, 2000). In case the identified clusters 

are labelled, their label can also be displayed on the associated map unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 

http://link.springer.com/search?facet-author=%22B.+Fei%22
http://link.springer.com/search?facet-author=%22J.+Eloff%22
http://link.springer.com/search?facet-author=%22H.+Venter%22


  

146 

 

 

The researcher aimed to use these clusters to identify a change in the system’s behaviour from 

expected to unexpected. Her previous experience with the SOM demonstrated the feasibility 

of this approach (Bihina Bella, Eloff & Olivier, 2009). Using a SOM can offer several benefits 

as the algorithm is very fast and highly visual. It quickly reduces the complexity of a large data 

set to a few patterns that are quickly identifiable (Hsu, 2006).  

 

It is worth mentioning that the SOM is not a forensic technique as such. However, it is based 

on science (mathematics), which is a primary requirement for forensic techniques. This 

scientific foundation enables the results of the SOM analysis to be objective and reliable. 

Furthermore, its suitability and efficiency for forensic investigations was demonstrated before 

by a number of earlier researchers (Fei et al., 2006; Palomo, North, Elizondo, Luque & Watson, 

2012).  

 

8.3.2.2.2 Statistical analysis 

In order to identify trends in the data set, a statistical measure called a weighted moving average 

(WMA) was used. Since A WMA gives more weight to the most recent data in a time series 

and less importance to older data, it is used for trend forecasting (Holt, 2004). This is 

particularly relevant for the research at hand, which aims to predict likely failures based on 

near misses. The WMA of the previous values of a parameter shows the trends in that parameter 

and can indicate a change in the system’s behaviour, which can potentially be used to detect an 

upcoming failure. 

 
The WMA of a parameter is calculated by multiplying each value (D) by its position (n) in the 

time series, and dividing the sum of these values by the total of the multipliers (positions). Its 

formula is as follows:  

WMA=
𝑛(𝐷𝑛)+(𝑛−1)(𝐷𝑛−1)+(𝑛−2)(𝐷𝑛−2)+⋯+2(𝐷2)+1(𝐷1)

𝑛+(𝑛−1)+(𝑛−2)+⋯+2+1
 

 

The normal average was also used and compared to the WMA to determine deviation from 

expected behaviour.  
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8.3.3 The test plan 

As discussed in Chapter 2, a forensic investigation needs to be reproducible and thus has to 

adhere to a pre-defined procedure. Therefore, the following high-level plan was established for 

the forensic analysis and near-miss detection: 

1. Run the C++ (failure simulation) program so that it creates a crash file in a spreadsheet 

format. 

2. Concurrently run the iotop utility to create a log file of the program I/O usage. 

3. Conduct a forensic root-cause analysis of both the crash file and the iotop output file. 

4. Use the root cause to identify indicators of the upcoming failure.  

5. Use the interdependencies between indicators to define potential near misses through a 

formula. 

6. Use the near-miss formula to detect potential near misses while the C++ program is 

running. 

 

A flowchart of the above process is shown in Figure 8.3. The six steps listed above are grouped 

into four main experiments as shown in the flowchart. Figure 8.3 also shows that the root-cause 

analysis follows the scientific method. As explained in Chapter 4, the scientific method has 

three main steps: formulating a hypothesis; predicting evidence for the hypothesis; and testing 

the hypothesis with an experiment. Both the SOM analysis and the statistical analysis are used 

to test the hypothesis. 

 

In the last step, the near-miss formula is inserted into the C++ program to detect potential near 

misses. When a potential near miss is detected, an alert is sent prompting for some corrective 

actions. Implementing these corrective actions falls outside the scope of this research and is 

consequently not included in the prototype implementation.  
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Figure 8.3: Prototype implementation plan 
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To ensure the forensic soundness of the results throughout the process of prototype 

implementation, attention was paid to adherence to best practice in digital forensics. This 

includes minimal handling of original data, keeping account of any change to the data (change 

was made only to the format of the data, not its value), and maintaining the chain of custody 

(data was not moved from its source system).  

 

The implementation of the above plan is documented in Chapters 9 and 10. 

 

8.3.4 Conclusion 

This chapter discussed the design phase of the prototype implementation of the NMS 

architecture, which was presented in Chapter 7. The chapter first presented a diagram of the 

subset of the NMS architecture implemented in the prototype. This subset focused on the root-

cause analysis of a software failure to identify near-miss indicators and detect potential near 

misses based on these indicators. Details of the prototype goal and objectives, as well as of the 

preparatory work to set up the lab were provided. The preparatory work included identifying 

the required data set, selecting the data analysis tool and techniques, and creating a test plan. 

The next chapter describes the implementation of the first experiment of the prototype, which 

involves the creation of a suitable data set. The other three experiments are described in Chapter 

10. 
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  CHAPTER 9      

PROTOTYPING THE NMS  –  THE DATA SET 
 

9.1 Introduction 

Chapter 8 described the design phase for the prototyping of the NMS architecture presented in 

Chapter 7. The prototype was designed to demonstrate the viability of the architecture. The 

design phase clearly specified the scope of the prototype as the runtime detection of near misses 

from event logs. The design phase also outlined the plan to implement the prototype.  

 

This chapter describes the first step of the implementation plan, which is the production of 

suitable event logs to detect near misses. Indeed, since suitable event logs were not readily 

available, they had to be created by simulating a software failure. Chapter 9 describes the 

experiment that was conducted to simulate a failure due to memory exhaustion and to generate 

logs suitable for the subsequent forensic analysis and near-miss detection. Due to their lengthy 

documentation, these subsequent phases are described in the next chapter. 

 

Chapter 9 is further structured as follows: Section 9.2 describes the technical platform used for 

developing the prototype, while the log creation experiment is described in Section 9.3. 

 

9.2 Technical platform used for developing the prototype 

9.2.1 The prototype implementation plan 

The prototype implementation plan was presented in detail in the previous chapter. This plan 

was implemented over a series of four experiments, each one building on the previous one to 

obtain more relevant information and more usable results. The four experiments are depicted 

in Figure 9.1. 

 

Chapter 9 focuses on the first experiment, which is the creation of a set of failure logs. In the 

previous chapter, this data set was designed to consist of two complementary types of event 

logs: logs from a failure simulation program created by the researcher and logs from the 
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program’s host machine produced by the operating system. The former, referred to as a crash 

file, was created from a C++ program that fails due to external memory exhaustion on a Linux 

machine. The latter was selected to be generated from the Linux iotop utility, which monitors 

the disk I/O usage. This process is shown in the highlighted areas in Figure 9.1.  
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Figure 9.1: Prototype implementation plan 
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9.2.2 Technical set-up for prototype implementation 

The prototype was implemented as a failure simulating program running on a Linux operating 

system (OS). As only one machine was available for conducting the experiment as well as 

documenting its results, the program was executed on a virtual machine to avoid any potential 

crash of the host machine. The host machine was running on a Windows 7 OS, while the virtual 

machine was running on a Linux Debian OS, both using a 64 bit architecture. The Linux 

machine was allocated 1 GB of virtual hard drive. Oracle VM VirtualBox was used as the 

virtualisation software product (virtualbox.org, 2014) as it is freely available online as open 

source software.  

 

A shared directory was created between the host and the guest OS so that files could be shared 

between them. This was necessary in order to process in Windows (i.e. make a forensic analysis 

of) the crash file generated in Linux. Figure 9.2 shows a screenshot of the user interface of 

VirtualBox, as well as the shared directory – named VirtualBoxShare – as displayed on the 

Windows host machine and on the Linux virtual machine. The screenshot shows that the 

content of the shared directory is the same on both machines.  

 

Figure 9.2: VirtualBox user interface and shared directory between Windows and Linux 

 

VirtualBox user interface Shared directory in Linux Shared directory in Windows 
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A diagram of the lab environment is provided in Figure 9.3. In addition to the guest and host 

machines and the shared directory between them, the lab environment includes the SOM 

analysis tool (Viscovery SOMine) and the iotop utility that was running in parallel to the 

C++ program. The C++ program was written to simulate a failure by repetitively copying a 

video clip to a flash disk until the flash disk’s free space was exhausted. 

Windows Host machine

VirtualBox

Linux Guest machine

VirtualBoxShare

Flash 
disk Copy of video clip

Crash fi le

Copies of crash file +
iotop output file

C++ program iotop uti lity

iotop output file

Viscovery SOMine 
(SOM tool)

Video 
clip

 

Figure 9.3: Diagram of the lab environment 

 

9.3 Experiment 1: Creating a suitable set of event logs 

The goal of this first step was to create a crash file and an output file of the iotop utility that 

would be suitable for the forensic analysis to be performed next. The suitability of the files was 

defined in terms of the following characteristics: 

 Providing relevant information about the failure 

 Containing a large number of output records, preferably several thousands of them  

 Having a spreadsheet format to facilitate their forensic analysis  
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The focus of step one was therefore on the NM Monitor of the NMS adapted architecture 

presented in the previous chapter. This component is shown in Figure 9.4, where the sub-

component relevant for this phase of the prototype implementation is highlighted.  

 

Near-Miss Monitor

<<document>>

Crash file & iotop output file

<<document>>

Near-Miss Formula

Monitored 

System 

(Linux 

Guest 

Machine)

Event logs

 

Figure 9.4: Focus of experiment 1 – Near-Miss Monitor of adapted NMS architecture  

 

9.3.1 The crash file 

9.3.1.1 Technical set-up for crash file 

The C++ program was designed to repeatedly copy a video clip to a flash disk. Every time a 

new copy of the video clip was made, various statistics about the C++ program, the Linux 

machine and the flash disk were displayed. As the failure was caused by memory exhaustion, 

these statistics were selected to be related to memory usage, in order to help identify relevant 

near-miss indicators. 

 

The literature indicates that software failures due to resource exhaustion often manifest through 

a performance slowdown, with unusually slow response time (Pertet & Narasimhan, 2005). 

Memory statistics that could indicate symptoms of the above were therefore recorded. 

 

Information logged about the C++ program 

In the case of the C++ program, a slow response time can be the result of either (or a 

combination) of the following conditions: 

 A longer time duration to complete a file operation (the latter refers to copying the video 

clip and reading the new copy to verify its integrity) 

 A longer time delay (latency) between two successive file operations  
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These two statistics are recorded while the program runs. In order to calculate the duration of 

a file operation, the start time and the end time are required. It is also necessary that the file 

status (successful or unsuccessful copy) be recorded to detect the failure. The list of attributes 

recorded from the C++ program therefore looks as follows: 

 File Nr: Number of the new copy of the video file. This corresponds with the number 

of the current iteration of the program’s loop and is also the record number. 

 Creation time: Time when the new file was created to copy the video clip. 

 File status: The program displays “OK” if the video file was copied successfully and 

“not_OK” otherwise.  

 End time: Time when the file operation completed. 

 Duration: Duration of file operation. This is the time difference between the “creation 

time” and the “end time”. For greater accuracy, it was expressed in milliseconds. Hence 

the creation time and end time were displayed with millisecond precision in the format 

hh:mm:ss.000. 

 Latency: Time delay between the end of one file operation and the beginning of the 

next one. 

 

Information logged about the Linux machine 

Regarding the C++ program’s host system, the literature indicates that a heavy load and 

memory usage on a Linux machine often manifest through random access memory (RAM) 

exhaustion and high swapping activity (Santosa, 2006; Bytemark, 2014). Since a large amount 

of input (reading new video copy; reading time of file operation), output (writing video clip to 

new file) and temporary storage of data (to convert time values to desired format; to store the 

machine’s memory statistics into variables) is performed on the C++ program, high activity on 

memory buffering and caching is also expected. These attributes are therefore recorded as 

follows: 

 Mem Used: Amount of RAM used 

 Mem Free: Amount of RAM available 

 Buffers: Amount of RAM buffered 

 Cached: Amount of RAM used for caching of data 

 Swap Used: Amount of swap space used 

 Swap Free: Amount of free swap space 
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The above memory statistics are provided in kB. The Linux free command was invoked from 

the C++ program to display these statistics. A typical output of the free command is displayed 

in Figure 9.5. The command name and its output are highlighted. The standard output had to 

be parsed to display only the above-selected statistics and to display them in the crash file 

format. 

  

Information logged about the flash disk 

Regarding the flash disk, it is expected that increasing memory consumption manifests through 

a decrease in the amount of free space. Therefore, the amount of free space is recorded as the 

program runs. The Linux built-in statvfs()function was used in the C++ program to display 

this statistic. This function provides a structure that contains various details about a mounted 

file system. The function was written to return only the USB free space, calculated as the 

number of free memory blocks multiplied by the size of a block, in kB. The corresponding 

code snippet is shown in Figure 9.6. 

 

Figure 9.6: Code snippet for function to obtain the amount of free space on the flash disk 

 

Figure 9.5:  Output of the free command in Linux 
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Program’s running conditions 

Since a large data set was required for the subsequent SOM analysis, the crash file was designed 

to maximise the number of records. This was achieved by running the program with the largest 

flash disk and the smallest video file at hand, which resulted in the following: 

 A flash disk with a capacity of 128 GB  

 A video clip of 3.91 MB 

 A maximum of 31 001 potential records in the crash file (128 GB/3.91 MB)  

 

In order to force a failure, the size of the program’s loop was deliberately set to be higher than 

the maximum number of potential records. It was set to 31 150. The resulting crash file is 

presented next. 

 

9.3.1.2 Results 

Screenshots of the crash file are provided in Figure 9.7 (beginning of file) and 10.8 (point of 

failure). The highlighted row in Figure 9.8 (file number 31 002) indicates the point of failure, 

after the last successful copy of the video clip was made to the flash disk. 

 

Figure 9.7: Crash file at beginning of program 

 

 

Figure 9.8: Crash file – point of failure 

 

The following observations were made from the crash file: 

 The 31 001 successful records were generated in 11h 28 min 21s 458 ms.  

 The average values for Duration and Latency were 1295 ms and 36 ms respectively.  
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 Contrary to what was expected, the C++ program neither generated an error message 

nor terminated once the flash disk’s free space was used up. 

 The program continued to run past the failure point until the loop was terminated. 

 For some unclear reason, the program stopped displaying values for the last four 

parameters (File Status, End time, Duration and Latency) only after record 31 042 (see 

Figure 9.9). 

 

 

Figure 9.9: Crash file at record 31 042 

 

The next section describes the process followed to generate a suitable output file from the 

iotop utility. 

 

9.3.2 The iotop output file 

9.3.2.1 Technical set-up for iotop output file 

As discussed previously, the iotop utility was used to show I/O usage on the Linux machine 

and potentially provide additional near-miss indicators. Iotop displayed the following 

information: 

 Time: Time information is displayed 

 TID: Process or thread ID 

 PRIO: Process I/O priority (class/level) 

 User: Username running the process or thread 

 Disk read: I/O bandwidth read by each process or thread 

 Disk write: I/O bandwidth written by each process or thread 

 Swapin: Percentage of time spent while swapping in  

 I/O: Percentage of time spent while waiting on I/O 

 Command: Name of process or thread 
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Iotop was executed with the following command: iotop –ktoqqq –d .5. The command had 

the following arguments to generate a suitable output file for the forensic analysis:  

 k: Display I/O bandwidth in kB. 

 t: Display time. Time is used to correlate entries in the iotop output file with records 

in the crash file. 

 o: Display only processes actually doing I/O, instead of showing all processes.   

 qqq: Remove all headers. Headers are displayed every time the information is 

refreshed. By default, this happens every second.  

 -d .5: Change refreshing time interval to 0.5 sec. This allows correlation with the crash 

file at a higher level of precision. 

 

The iotop command and the C++ program were executed concurrently in separate terminals. 

As it runs continuously, iotop was stopped manually after the termination of the C++ program. 

The output of iotop was redirected to a file stored in the shared directory between the host 

and the guest machine. This output file, which was also stored in a spreadsheet format, is 

discussed next. 

 

9.3.2.2 Results 

Figure 9.10 shows a screenshot of the first entries in the iotop output file.  

 

Figure 9.10: iotop output file 

 

The following observations were made based on the output of iotop: 

 As expected, the C++ program (called videoCrashTwoFolders-V2 in Figure 9.10) was 

the process performing the most I/O activity. It was the most recurring one. 

 A number of other processes were performing I/O activities on the Linux disk. The 

most recurring ones were the following: 
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o jbd2/sda1-8 – a journaling block device that records file system operations and 

runs continuously on the Linux machine (Sovani, 2013) 

o flush-8:16 – a process that is used for garbage collection (Rodrigues, 2009) 

o kswapd0 – a process that manages swap space (Rusling, 1999) 

 The value of Swapin was 0 throughout the entire file, which corresponds with the entire 

execution of the C++ program. No explanation was available for this pattern. 

 No particular sign of the failure was visible from the file. At the time of the failure, the 

values of the various attributes of iotop did not seem much different than throughout 

the rest of the file, as is clear from the highlighted area in the iotop output file in Figure 

9.11. The highlighted area corresponds with the time frame for the point of failure in 

the crash file. In the crash file in Figure 9.8, the point of failure corresponds with record 

31 002, which starts at 14:04:19.401 and ends at 14:04:19.793.  

 

Figure 9.11: iotop output file – point of failure of C++ program 

 

9.3.3 Summary of experiment and results 

Obtaining a suitable crash file and a corresponding iotop output file was the goal of the 

experiment described in this chapter. The acquisition of the data was conducted as follows: 

 It was done at runtime so it was a live forensic acquisition. As the program was running 

and writing data to the standard output, this data was automatically being copied to a 

file (crash file)   

 A copy of the original crash file was made and stored on the machine used for the 

forensic analysis. The original data was created on a Linux machine and copied to and 

analysed on a Windows machine.  

 Since the Linux machine was a virtual machine on the Windows machine, no transport 

of data was made and the image was transferred electronically from Linux to Windows. 

 The forensic soundness of the image cannot be ascertained since no hash value was 

calculated, since the focus of the experiment was on the detection of near misses and 
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not on the forensic soundness of the data acquisition. This lack of a sound forensic 

procedure was also motivated by the fact that the experiment was conducted in a closed 

controlled environment, with limited risk for unauthorized access and tampering of 

data. Nevertheless, throughout the investigation, we made sure that we did not modify 

the value of the copied fields in the data set. 

 Any changes to the data (layout and format) was carefully documented.  

 The same procedure was conducted for acquiring data from the iotop command  

 

The suitability of the crash file was defined as follows: 

 It must have a large number of records.  

 The records should be both successful and unsuccessful to identify the failure.  

 The records should contain various relevant memory-related statistics about the C++ 

program and its host machine. 

 The file had to be in a spreadsheet format. 

 

The suitability of the iotop output file was defined as follows: 

 It must provide relevant details about the I/O activity of the C++ program and of the 

Linux disk. 

 It should be possible to correlate its entries with the records in the crash file based on 

time. 

 The file had to be in a spreadsheet format. 

 

As both files met all the above requirements, it is safe to say that the goal of this first experiment 

was achieved. These characteristics were selected to facilitate the forensic analysis of the 

failure and to enable the identification of near-miss indicators. The subsequent experiments 

conducted for this purpose are described in Chapter 10. 

 

9.4 Conclusion 

This chapter described the first experiment of the prototype implementation, the design of 

which was presented in Chapter 9. This experiment was conducted to obtain a suitable set of 

event logs of a software failure caused by memory exhaustion. The experiment involved 

programmatically provoking a software failure from a lack of memory and recording relevant 
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memory-related statistics during the program’s execution. The statistics that were obtained 

were used as event logs.  

 

The researcher required the event logs to conduct a forensic analysis of the software failure 

that would allow her to identify near-miss indicators and detect potential near misses before 

the failure had the opportunity to reoccur. The log files resulting from the experiment satisfied 

all the requirements that had been specified to facilitate the previously mentioned objectives. 

They were therefore deemed appropriate for conducting the remaining three experiments of the 

prototype implementation, as will be described in the next chapter. 
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  CHAPTER 10    

PROTOTYPING THE NMS  –DETECTING NEAR 

MISSES AT RUNTIME 
 

10.1 Introduction 

Chapter 9 presented the four-phase plan of the NMS prototype implementation, and described 

the first phase of this plan. The first phase consisted of an experiment aimed at creating log 

files of a simulated software failure. Two large sets of supplementary logs were obtained from 

the experiment. Chapter 10 now describes the following three phases of the prototype 

implementation plan. The phases consist of a series of experiments aimed at identifying near-

miss indicators from the forensic analysis of the logs and detecting near misses at runtime, 

based on the indicators. 

 

The rest of the chapter is structured as follows: The prototype implementation plan is briefly 

reviewed in Section 10.2. The implementation of the last three phases of the plan is then 

documented in Section 10.3 through to Section 10.7. An evaluation of the final results is 

provided in Section 10.8. 

 

10.2 Prototype implementation plan 

The prototype was developed to test the viability of the adapted NMS architecture represented 

in Figure 8.2 in Chapter 8. The plan designed for this purpose was outlined in Figure 8.4, also 

in Chapter 8. For clarity, both these figures are reproduced in this chapter – in Figures 10.1 and 

10.2 respectively.  

 

Figure 10.2 shows the creation of a set of event logs in the first experiment as described in the 

previous chapter. This experiment corresponds with the sub-component named “Event Logs” 

of the Near-Miss Monitor in the architecture diagram in Figure 10.1. The three subsequent 

experiments that make use of these logs are described in this chapter. They focus on the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

165 

 

remaining components and sub-components of the NMS architecture diagram. Each 

experiment builds on the previous one to obtain more relevant information and ensure more 

usable results. These experiments involve the following actions: 

 Conduct a root-cause analysis of both the crash file and the iotop output file and 

identify near-miss indicators.  

 Define a near-miss formula. Although a generic near-miss formula was proposed in 

Chapter 7, this formula was based on a predefined performance level for the monitored 

system, also referred to as an SLA (Service Level Agreement). In the case of this 

prototype implementation, such an SLA was not available; hence the need to define a 

near-miss formula relevant for the software failure at hand. 

 Detect potential near misses at runtime using the created formula. 

 

The three experiments are described sequentially in the next three sections. 

 Event Investigation

Near-Miss Classifier

Near-Miss Monitor

<<document>>

Event logs

<<document>>

Near-Miss Formula

<<executable>>

Failure Root-Cause Analysis

Monitored 

System

Event logs

Logs matching the formula

<<executable>>

Near-Miss Alert

<<document>>

Near-Miss Indicators

Chapter 9

 

Figure 10.1: Adapted NMS component diagram for prototype implementation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

166 
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Figure 10.2: Prototype implementation plan 
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10.3 Experiment 2 – Part 1: Identifying near-miss indicators from 

the forensic analysis of the crash file 

10.3.1 Goal 

The goal of this step was to identify near-miss indicators that could be used to define and detect 

near misses from the crash file. Identifying near-miss indicators first requires the investigator 

to determine the root cause of the failure, and then to identify system conditions pointing to 

that root cause before the reoccurrence of the failure. Both the crash file and the iotop output 

file were analysed for this purpose. The focus of this phase was therefore on the Event 

Investigation of the adapted NMS architecture (see Figure 10.3). As the documentation of this 

pahse is lenghtly, it has been broken down into 3 parts. Part 1 (Section 10.3) describes the root-

cause analysis and the near-miss identification process of the crash file, while Part 2 (Section 

10.4) describes the same analysis conducted with the iotop output file. A summary of the 

overall near-miss indicators identified is provided in Part 3 (Section 10.5) 

 Event Investigation

<<executable>>

Failure Root-Cause Analysis

<<document>>

Near-Miss Indicators

 

Figure 10.3: Focus of Experiment 2 – Event Investigation of adapted NMS architecture  

 

Since the root-cause analysis was conducted with a view to identifying near-miss indicators, 

the whole experiment was oriented towards that purpose.  

 

Identifying near-miss indicators was based on the assumption that it was possible to see the 

failure coming by monitoring the relevant memory usage statistics provided in the crash file 

and the iotop output file. Indeed, it was expected that the C++ program would have a stable 

operating mode under normal conditions (when enough memory was available) and that this 

normal behaviour would be disrupted when memory became insufficient.  
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Therefore, for the purpose of this experiment, the root cause was expected to effect some 

unusual changes in the monitored statistics close to the point of failure. These changes could 

be expected to indicate an upcoming failure and would be used to define near-miss indicators. 

The scientific method was used to pinpoint the unusual changes as documented thereafter.  

 

Formulate hypothesis 

Ideally, one would conduct a root-cause analysis without any biased opinion regarding the 

source of the failure. However, due to the nature of the prototype design, the source of the 

failure was already known to be memory exhaustion. As discussed in the previous chapter, 

memory exhaustion usually manifests through a performance slowdown. The analysis of the 

crash file therefore aimed to find evidence of this trend.  

 

Predict evidence for the hypothesis  

Symptoms of a performance slowdown in the execution of the C++ program were expected 

from the crash file. In addition, as memory was depleting, it was expected that activity would 

be observed on the Linux disk, aimed at managing a shortage in memory. The following 

symptoms were therefore expected: 

 A longer time duration to complete a file operation 

 A longer latency between two successive file operations  

 An increased level of caching, buffering and swapping  

 

These changes were expected in the last records before the failure. Based on the average 

duration of 1.295s to create a record, it was assumed these changes would occur in the last 

couple of seconds before the failure. 

 

Test hypothesis with experiment 

It was assumed that the above trend in the memory statistics would be visible from a trend 

analysis of the behaviour of the system (Linux machine) as the program was running. The 

experiment was therefore aimed at outlining the trends in the system’s behaviour, both from a 

SOM analysis and a statistical analysis of the crash file.  
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10.3.2 SOM analysis of the crash file 

10.3.2.1 The map creation process 

The SOM analysis was performed with the commercial tool Viscovery SOMine. Little pre-

processing was required as the crash file was stored as an Excel spreadsheet, which is an input 

file format handled by Viscovery SOMine. Details about the pre-processing and the map 

training and creation process are provided in Appendix 1.  

 

Profiling the system’s behaviour was performed in three steps, namely the overall system’s 

behaviour before the failure was outlined, the shift in focus to the system’s behaviour close to 

the point of failure, and finally a comparison between these two profiles.  

 

10.3.2.2  Behaviour of the system before the failure 

Technical set-up 

In order to observe trends in the system’s behaviour, the researcher created SOM maps for 

several random sets of 1000 records throughout the crash file, among the records marked as 

“OK”. The argument for this strategy was that creating one single map of all the “OK” records 

would not provide a detailed view of the variations in the system’s behaviour. Four sets of 

records were selected: first 1000, 10 000 to 11 000, 20 000 to 21 000 and last 1000 before the 

failure. The resulting output maps are shown in Table 10.1. For increased visibility, the table 

is spread over three pages. 

 

In line with the expected evidence for memory exhaustion discussed earlier, the focus of the 

SOM analysis was on the following attributes: Creation Time, Buffers, Cached, Swap Used, 

Duration and Latency. Table 10.1 therefore only shows the component maps for the attributes 

mentioned. A brief explanation of how to read the maps is provided next. 

 

The component maps show the distribution of the values in the data set over time for each 

attribute. The scale of the values is displayed on a bar below each map. Values range from 

lowest on the left to highest on the right of the bar. Values on the map are differentiated by 

their colour on the scale. So, lowest values are in blue and highest values are in red.  

 

The map of the attribute Creation Time was used as the basis for understanding the 

distribution of values over time. On this map, the first records are in the top right corner of 
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the map, where the time is the earliest (lowest value, dark blue colour), and the last records 

are on the bottom left corner, where time is the highest (red colour). So, the values move 

from right to left. This topology is applicable to all component maps.  

 

Results 

A study of Table 10.1 shows the following trends: 

 Latency increases over time. The minimal value goes from 13 ms to 20 ms and finally 

to 33 ms. There are occasional big increases (outliers displayed in red), but the biggest 

increase occurs in the last data set, closer to the failure (3890 ms). 

 Duration remains around 1000 ms, close to the average of 1295 ms, with occasional 

big jumps throughout the various data sets. 

 Swap Used starts at 0, increases steadily up to 9400 kB in the first 1000 records and 

then remains close to that value throughout the program’s execution. This stair-stepping 

pattern of swap usage is typical of a system under high memory pressure (Splunk wiki, 

2012). 

 The value of Cached rapidly increases from 647 000 kB to 881 000 kB and remains 

fairly constant around this value throughout the program’s execution. 

 The value of Buffers start high at 51 416 kB, quickly decrease up to 1456 kB in the first 

1000 records and then remain between 2000 kB and 2600 kB throughout the program’s 

execution. The maps show that the values change frequently throughout each data set, 

although the range of values remains very small. 

 

Of all the above attributes, the one that shows a distinctive change throughout the program as 

well as close to the failure is Latency. Interestingly, the assumption that big changes would be 

observed in the other attributes was not confirmed. Besides, no correlation between Latency 

and the other attributes was observed. For instance, an increase in Latency does not correspond 

with an increase in Duration.   

 

In order to find more detailed and usable information about the observed pattern in Latency, 

the researcher conducted a SOM analysis and a statistical analysis of Latency. The analysis was 

performed with values close to the failure and is described in the next section. 
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                                           Table 10.1: SOM maps of selected program attributes over time 
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Records 1-1000 Records 10 000  to 11 000 Records 20 000 to 21 000 Last 1000 records before crash 
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Not applicable. Consistent 

value of 9280 kB throughout 

the data set 
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10.3.2.3 Behaviour of Latency close to the point of failure 

SOM analysis of Latency – Technical set-up 

Various component maps of Latency were created for various data sets in proximity of 

the point of failure, before and after the first “not OK” record. For this purpose, only the 

first 50 “not OK” records were retained in the crash file. The following data sets were 

selected: last 1000 (including “not OK”), last 100 before failure, last 100 (including “not 

OK”) and last 50 before failure. The file numbers were added as labels on the maps to 

understand the distribution of values over time. The resulting SOM maps are discussed 

next.  

 

SOM analysis of Latency – Result 

The SOM maps are shown in Table 10.2. The following observations were made: 

 The lack of homogeneity close to the point of failure. The number of clusters in 

the last data set is considerably higher than in the previous ones. This indicates 

that these records are erratic in terms of the other attributes used to train the maps.   

 The high value of Latency throughout the last 100 records before the failure. 

Latency remains mostly around 40 ms, which is much higher than the values of 

13 ms to 20 ms in the first 21 000 records.   

 

In order to model the increase in Latency as a potential near-miss indicator, this trend 

needed to be expressed in terms of some statistical parameters. A statistical analysis of 

Latency was therefore conducted next. 

 

Table 10.2: SOM maps of Latency for various data sets close to the point of failure 

Last 1000 records with 

failure records 

Last 100 records before 

failure 

Last 100 records with 

failure records 

Last 50 records before 

failure 
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10.3.3 Statistical analysis of Latency  

Technical set-up 

The statistical analysis was conducted as follows:  

 Calculation of overall average from all the “OK” records  

 Calculation of the WMA of Latency throughout the various data sets in Table 11.1 

(first 1000, 10 000 to 11 000, 20 000 to 21 000 and last 1000 before failure)  

 Comparison of overall average to WMA 

 

In each of the above data sets, the WMA was calculated for three subsets (last 150, last 

100 and last 50). This was done for this dual purpose: 

 Establish the trend (increasing or decreasing) in each data set 

 Establish the trend across the data sets 

 

Result 

Table 11.3 shows the results of the calculation of the WMA across the various data sets. 

The calculated value of the overall average was 36 ms. 

 

Table 10.3: WMA of Latency across various data sets 

 Records  

1-1000 

Records  

10 000-11 000 

Records  

20 000 - 21 000 

Last 1000 records 

before failure 

Last 150 records 17.39 35.85 26.23 96.31 

Last 100 records 17.5 31.79 26.63 96.15 

Last 50 records 17.7 23.03 27.58 113.589 

 

Table 10.3 shows that the last data set (last 1000 records before failure) differs 

significantly from the rest in the following two ways: 

 The values of WMA are more than twice the values in the other data sets. 

 The trend of values differs throughout the three subsets. In the first three data sets, 

the WMA moves in one direction throughout the subsets: up, down and up 

respectively. However, in the last data set, the WMA goes down from the first 

subset to the second and then up from the second subset to the third. This confirms 

that the records in that data set are erratic. 
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10.3.4 Conclusion based on forensic analysis of crash file 

The conclusion reached from the above analysis of the crash file and of Latency was that 

the system did indeed slow down towards the end of the C++ program’s execution. This 

slowdown was due to a significant increase in Latency. The near-miss indicator identified 

from this analysis was as follows: in the last 150 records before the failure, the WMA of 

Latency is more than twice its average. 

 

After establishing a near-miss indicator from the crash file, the researcher proceeded to 

do the same with the iotop output file. 

 

10.4 Experiment 2 – Part 2: Identifying near-miss indicators 

from the fororensic analysis of iotop output file 

The above analysis of the crash file confirmed the hypothesis of a system’s slowdown 

before the failure, as well as the expectation of unusual changes in some of the recorded 

statistics in line with the slowdown. For this reason, some unusual I/O usage pattern was 

also expected from the output of iotop. The expected evidence for this trend was an 

increase in garbage collection, the termination of some processes and a drop in the C++ 

program’s writing bandwidth (Santosa, 2006; Bytemark, 2014). This was based on the 

assumption that the program would take up most of the I/O bandwidth and that other 

running processes would compete for this resource. 

 

The forensic analysis of the iotop output file followed the same process as with the 

crash file. Firstly, some SOM maps were created for the four data sets of 1000 records 

presented previously. This was followed by a statistical analysis of attributes that showed 

some behavioural change close to the failure. 

 

10.4.1 SOM analysis of iotop output file 

Technical set-up 

Based on the expected evidence, SOM maps were generated for the following attributes 

in the iotop output file: Time, Disk read, Disk write, I/O and Command (process name). 

As indicated in the previous chapter, no map was generated for Swapin as it had a constant 

value of 0 throughout the entire file. Records for each data set were selected based on 
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their corresponding start time in the crash file. In order to show the distribution of the 

various processes and threads in the file, a map was first generated with the Command 

attribute and process names were added as labels in each cluster. Then, the file was 

filtered to only retain records of the C++ program and a component map for each of the 

other attributes was generated. The result is discussed next. 

 

Result 

Table 10.4 shows the SOM maps of iotop for the various data sets. The table is spread 

over two pages.  

Table 10.4: SOM maps of iotop output for various data sets 

Records 1-1000 Records 10 000 – 11 000 Records 20 000 – 21 000 Last 1000 records before 

crash 

Time Time Time Time 

   
 

I/O (%) I/O (%) I/O (%) I/O (%) 

    

Disk read (kB/s) Disk read (kB/s) Disk read (kB/s) Disk read (kB/s) 

 
  

 

Disk write (kB/s) Disk write (kB/s) Disk write (kB/s) Disk write (kB/s) 
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The following clear changes close to the point of failure are observed in all attributes, 

except for I/O: 

 The number of processes fluctuates throughout the program’s execution. 

 Although Disk read is very homogeneous and very low throughout the program’s 

execution, a sharp increase appears towards the end. 

 Disk write is quite high throughout the program’s execution, but a large decrease 

appears close to the end. 

 There seems to be a correlation between the changes in Disk read and Disk write 

as they appear on the same area on both maps (this area is circled on both maps). 

 

As she did with the crash file, the researcher decided to zoom in on the last 100 records 

before the failure to get a clearer picture of the changes observed above. The Disk read 

(DR) and Disk write (DW) maps were labelled with their average value in each cluster. 

The resulting maps are shown in Table 11.5. The following observations were made: 

 The number of processes actually decreases in the last 50 records before the point 

of failure. 

 Disk read, which is mostly around 0.5, increases sharply to 21 and 79 in the last 

100 records before the failure. 

 Disk write, which is mostly around 3000, decreases sharply to 0 in the last 100 

records before the failure. A decrease in Disk write can explain an increase in 
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© University of Pretoria 



  

180 

 

Latency observed in the crash file. As the disk-writing bandwidth drops, it takes 

longer for the system to create a new file for the next file operation. 

 The number of clusters in Disk read and Disk write increases significantly in the 

last 50 records before the failure, showing how erratic those records are compared 

to the previous ones in the file. 

A statistical analysis was subsequently performed to model the above behaviour formally. 

 

Table 10.5: SOM maps of running processes, Disk read, and Disk write close to the point of 

failure 

Last 100 records before the crash Last 50 records before the crash 
Processes Processes 

  
Disk read (kB/s) Disk read (kB/s) 

  
Disk write (kB/s) Disk write (kB/s) 
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10.4.2 Statistical analysis of iotop output 

Technical set-up 

Statistical analysis was first performed on the Command attribute. A simple filtering on 

the corresponding column in Excel provided a list of the processes per data set. Then 

statistical analysis was performed on the other attributes (Disk read and Disk write) by 

calculating their average and WMA, as was done previously with the crash file. The 

results are discussed next. 

 

Result 

Table 11.6 shows the list of processes per data set. The table clearly shows the fluctuations 

in the number of processes throughout the execution of the program. As was expected, 

some processes terminate close to the failure. An example is VBoxService, a non-system 

process that launches at start up from the VBox application (virtualisation software). It is 

terminated in the last 50 records before the failure. 

 

Table 10.6: List of running I/O processes throughout the program’s execution before the 

point of failure 

Records  1-1000 10 000 – 11 000 20 000 -21 000 Last 1000 before failure Last 100 before 

failure 

Last 50 before 

failure 

Processes 

 

 

 

 

 
 

Number of 

processes 
11 15 8 13 7 6 

  

Table 10.7 shows the WMA for Disk write across various data sets. The overall average 

for Disk write was 3044.89 kB/s. The following observations were made from the table: 

 

 The WMA does not decrease significantly close to the point of failure. This is 

contrary to the observed drop in values in the SOM maps, which indicates that the 
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values of 0 observed from the maps are not continuous throughout the last 1000 

records but are rather scattered at some instances in the data set.  

 Similarly to the observation made with Latency in the crash file, the last 1000 

records present a different pattern than the previous data sets. Contrary to the first 

three data sets whose values move in one direction across their subsets (up, down, 

then up), the values in the last data set first move up and then stay down. This 

indicates a clear change in behaviour close to the point of failure, where values 

frequently go up and down, reaching 0 in some instances.  

 In the last data set, the WMA is slightly lower than the overall average for Disk 

write (3044.89), but this trend is also applicable to the second data set (records 

10 000 to 11 000), so it is not considered a reliable near-miss indicator. 

 

Table 10.7: WMA of Disk write across various data sets 

 Records  

1 - 1000 

Records  

10 000 – 11 000 

Records  

20 000 – 21 000 

Last 1000 records 

before failure 

Last 150 records 3470.30 2970.77 3034.89 3007.70 

Last 100 records 3491.87 2928.20 3047.62 3038.33 

Last 50 records 3574.70 2876.71 3051.77 3020.36 

 

Table 11.8 next shows the WMA for Disk read across various data sets. The overall 

average for Disk read was 1.519 kB/s. The following observations were made from the 

table: 

 

 The values in the last data set are considerably higher than in the previous ones, 

indicating that the values of Disk read are increasing significantly in that data set, 

in line with the observations from the SOM maps.  

 In the last data set, the WMA is higher than the overall average (1.519). However, 

as the difference between the average and the WMA is relatively small, using the 

difference between the average and the values of Disk read close to the failure (21 

to 79) is a preferred potential near-miss indicator. 
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Table 10.8: WMA of Disk read across various data sets 

 

 

 

 

 

10.4.3 Conclusion based on analysis of iotop output file 

From the above forensic analysis of the iotop output file, the following near-miss 

indicators were identified: 

 The number of running processes declines towards the point of failure. 

 The values of Disk read are much higher than (i.e. more than double) the overall 

average.  

 In the last records before the failure, the value of Disk write drops to 0 at various 

instances. 

 

10.5 Summary of Experiment 2 – Overall near-miss indicators  

The current section has presented the lengthy forensic analysis conducted to identify near-

miss indicators for the provoked software failure. The forensic analysis, which comprised 

a SOM analysis and a statistical analysis of the failure’s logs, indicated a slowdown in 

the execution of the program close to the point of failure. As a summary, the near-miss 

indicators pointing to that reduced performance were identified as follows:  

 The WMA of Latency is greater than the overall average of Latency. 

 The number of processes running at the beginning of the program declines close 

to the point of failure. 

 The disk-reading bandwidth is more than twice the overall average.  

 The disk-writing bandwidth drops to 0 at various instances. This pattern is not 

continuous until the failure, so it is only expected to appear for a few records close 

to the failure, but not up to the failure. 

 

Due to the nature of the statistical analysis performed, the above near-miss indicators 

were mostly observed in the last 100 records before the failure. They may however have 

 Records  

1 - 1000 

Records  

10 000 – 11 000 

Records  

20 000 – 21 000 

Last 1000 records 

before failure 

Last 150 records 0.421588 0.633928 0.392432 1.641302 

Last 100 records 0.421847 0.543243 0.3867 1.95798 

Last 50 records 0.424449 0.367411 0.380561 2.89212 
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emerged a few records earlier. It is important to note the following regarding these 

indicators: 

 They are specific to the software failure at hand, the conditions of its occurrence 

(lab experiment) and forensic analysis (iotop used for correlation to program’s 

logs). Therefore, they cannot be generalised to other types of software failure or 

to other failures due to memory exhaustion. 

 The near-miss indicators cannot be used in isolation as some of the above patterns 

also occur during the normal functioning of the C++ program. These indicators 

can only point to an upcoming failure when they all occur simultaneously. This 

interdependency between the indicators is necessary to define a near-miss 

formula, which is the purpose of the next experiment. 

  

10.6 Experiment 3: Defining a near-miss formula  

10.6.1 Goal 

The goal of this experiment was to define a near-miss formula based on the 

interdependencies among the near-miss indicators identified in the previous experiment. 

The near-miss formula was subsequently required to detect near misses from event logs 

during the execution of the C++ failure simulation program. The focus of the present 

phase of the prototype implementation was therefore on the Near-Miss Formula, a sub-

component in the Near-Miss Monitor of the adapted NMS architecture. It is shown in 

Figure 10.4. 

Near-Miss Monitor

<<document>>

Event logs

<<document>>

Near-Miss Formula

 

Figure 10.4: Focus of Experiment 3 – Near-Miss Formula in adapted NMS architecture  

 

In order to provide reliable results, the near-miss formula had to be not only accurate but 

also relevant when executing the program with different variables. These variables were 
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the size of the video clip to be copied, the amount of free space on the flash disk, and the 

number of processes running in parallel to the C++ program.  

Indeed, in the first experiment conducted to generate suitable event logs, the values for 

these variables had been carefully selected for the purpose of generating a maximum 

number of logs. This was performed to facilitate their subsequent forensic analysis. The 

near-miss indicators identified in the previous experiment were therefore closely tied to 

these values. Consequently, their accuracy and predictability had to be tested by running 

the program with different values for the above variables. To this end, the near-miss 

formula was created through a series of tests that included the following tasks:  

 Modify the program to add the near-miss indicators (number of running processes, 

average and WMA of Latency) as attributes in the crash file.  

 Run the program a number of times with various values for the above-mentioned 

variables (size of video clip, flash disk free space and number of concurrent 

processes).  

 In every new execution of the program, verify the validity of the previously 

identified near-miss indicators. 

 

A description of the above tests is provided next. 

 

10.6.2 Adapting C++ program to calculate near-miss indicators 

For the identified near-miss indicators to be observed (excluding those from iotop), 

they had to be displayed as attributes in the crash file. To this end, the C++ program was 

adapted to calculate them.  

 

10.6.2.1 Adding the number of running processes 

The first added attribute was the number of running processes. To confirm that this 

number was fluctuating as the program was running, it was first displayed at the beginning 

of the program before the loop. It was then queried and displayed in the loop for every 

record. The Linux command ps –eLf | wc –l was used to obtain the total number 

of processes and threads running on the system. Details about this command are provided 

in Appendix 1. 
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10.6.2.2 Adding the average and WMA of latency 

In order to observe the trends in the values of Latency, the WMA of the last 200 records 

was displayed continuously. This was based on the results of the previous statistical 

analysis. For the first 200 records of the program, the “standard” WMA was calculated 

using all the previous values of Latency. Then, from record number 201, only the previous 

200 records were retained to calculate the WMA.  

 

Regarding the average of Latency, the overall average was calculated for every new 

record, using all the previous values. The motivation for this process was the fact that the 

average of Latency was not known beforehand every time the program was run. So, it 

was calculated as the program was running with the assumption that closer to the end of 

the program’s execution (before the failure), the average would stabilise to its overall 

final value. A potential near-miss indicator (‘WMA is higher than average’) that was 

observed when the final average had been reached would be less likely to be a false alarm, 

as the other near-miss indicators would also be applicable.  

 

10.6.2.3 Results 

Figure 10.5 shows the resulting crash file with the above additional attributes. 

 

Figure 10.5: Adapted crash file for near-miss detection 

 

To increase visibility, the researcher hid the columns showing the memory statistics as 

they proved irrelevant for detecting near misses. The initial number of running processes 

is displayed in the top left corner of the file, before the new records get generated. 

 

Once the attributes for the near-miss indicators had been added to the crash file, the 

program was executed under different conditions (variables) to verify whether the near-

miss indicators would still apply. 
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10.6.3 Changing running conditions of C++ program 

Firstly, the size of the video clip was changed. As the original video clip was the smallest 

at hand (3.91 MB), a slightly bigger one was used next (5.97 MB). Then, the size of the 

flash disk was changed. Since the initial flash disk was the biggest available (128 GB), a 

smaller one (8 GB) was used. The flash disk was therefore capable of holding a maximum 

of 1371 (8GB/5.97MB) copies of the video clip. The C++ program was executed with a 

loop size of 1800, to cause a deliberate failure.  

 

In order to verify the validity of the near-miss indicators in terms of the disk-reading and 

-writing bandwidth, the iotop command was executed in parallel to the C++ program. 

(As a reminder, these indicators are as follows: the values of Disk read are more than 

twice the average and Disk write is equal to 0.) The results are discussed next. 

 

10.6.3.1 Results from the crash file 

The failure point of the resulting crash file is displayed in Figure 11.6, in the area 

highlighted in red at the bottom of the screen. The failure occurred at record 1110. Figure 

11.6 also shows that in the last 33 records before the failure (from record 1077, 

highlighted in yellow at the top of the screen), the WMA of Latency is indeed greater than 

the average. Another observation is the fact that the average has stabilised to its overall 

final value (40), as expected.  
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Figure 10.6: Crash file with bigger video and smaller flash disk 

 

Performing a filter on the Processes column indicates that the number of processes indeed 

fluctuated throughout the program’s execution. This is shown in Figure 10.7. However, 

Figure 11.6 above also shows that the number of processes close to the failure is the same 

as the initial number (272). The final number of running processes is not lower, contrary 

to the observation in the forensic analysis. Records whose number of processes was lower 

did not match the near-miss indicator for Latency and were discarded. No explanation 

could be provided for this observed pattern. 

 

Figure 10.7: Filtering of Processes field to confirm fluctuation in the number of processes 
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10.6.3.2 Results from the iotop output file 

The calculated overall average of Disk read was 0.91. Figure 11.8 shows the records in 

the iotop output file that match both near-miss indicators in terms of Disk read and 

Disk write. Only eight records matched the indicators. 

   

Figure 10.8: iotop output file – records matching near-miss indicators in terms of Disk 

read and Disk write 

 

Using the time of the entries in the iotop output file, the above records were manually 

correlated to the records in the crash file matching the near-miss indicator for Latency. 

The result of this correlation is shown in Figure 11.9. Only three records actually matched 

the three near-miss indicators. For these records the number of running processes is the 

same as the initial number. Out of these three records, only the last one – record 1078 – 

is close to the point of failure (32 records or 1min 7s 625 ms before the failure). Although 

this makes the other two records false alarms, this low number of false alarms is 

satisfactory and proves the validity of the near-miss indicators. 

 

Figure 10.9: Records in crash file that match three near-miss indicators 

 

The above test was conducted several more times, each time changing the size of the 

video clip or the amount of free space on the flash disk. The test was also conducted 

without running the iotop command, to see whether this would affect the fluctuations 

in the number of processes running. Results similar to the one described above were 

obtained. The near-miss indicators for Latency, Disk read and Disk write would match a 

few records close to the failure but the number of processes would either be smaller than 

or equal to the initial number. The conclusion was that this pattern was indeed the proper 

near-miss indicator for that attribute.  
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Consequently, the final near-miss indicators used to define the near-miss formula were as 

follows: 

 The WMA of Latency is greater than the average of Latency. 

 The number of running processes before the failure is less than or equal to the 

initial number at the beginning of the program’s execution. 

 The disk-reading bandwidth is more than twice its overall average.  

 The disk-writing bandwidth drops to 0 at various instances.  

 

A fuzzy cognitive map (FCM) of the above near-miss indicators is provided in Figure 

10.10. FCMs are fuzzy graph structures that depict perceived relationships between 

attributes of a complex system (Coetzee & Eloff, 2006). Knowledge about the 

relationships is based on human common sense and intuition (Smith & Eloff, 2002). An 

FCM consists of nodes connected by annotated arrows (Heydebreck, Klofsten & Krüger, 

2011).  

 

Figure 10.10 shows the causal relationship between memory availability and the four 

factors mentioned above that affect the system’s performance and are used to define near-

miss indicators: latency, number of running processes, disk-reading bandwidth (DR), and 

disk-writing bandwidth (DW). The type of relationship is indicated by a sign on the arrow 

as follows: 

 A plus (+) sign indicates a positive relationship, where a higher value in one factor 

prompts a higher value in the connected factor (or a lower value in A prompts a 

lower value in B). Example: the higher the free memory, the higher the number 

of processes that can run simultaneously; or the lower the free memory, the lower 

the disk-writing bandwidth. 

 A minus (-) sign indicates a negative relationship, as opposed to a positive 

relationship. Example: the lower the disk-writing bandwidth, the higher the 

latency; or the lower the number of processes, the higher the disk-reading 

bandwidth.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



  

191 

 

Memory DW

Latency

Number of 
Processes

DR
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-

-

+
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Figure 10.10: FCM of factors in near-miss indicators 

 

Based on the above tests, the formula to detect potential near misses was defined as 

follows: 

 

 

 

 

 

 

The above formula was used in the next and last experiment of the prototype 

implementation to detect near misses during the program’s execution. This process is 

documented in the next section. 

 

10.7 Step 4: Detecting near misses at runtime 

10.7.1 Goal 

The goal of this experiment was to verify whether near misses could be detected during 

the execution of the program by using the formula developed in the previous experiment. 

Once potential near misses had been detected, an alert would be sent. The focus of this 

phase was therefore on the Near-Miss Classifier of the adapted NMS architecture, as is 

shown in Figure 10.12. 

Near-Miss Classifier

<<executable>>

Near-Miss Alert

 

Figure 10.12: Focus of Experiment 4 - Near-Miss Classifier in adapted NMS architecture 

 

If Nr-Processes <= Initial-Nr-Processes AND 

WMA-latency > Avg-latency AND 

DR > (Avg-DR x 2) AND 

DW == 0 

 Near Miss 

Figure 10.11: Near-miss formula 
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10.7.2 Technical set-up 

The near-miss formula was inserted in the program’s loop after the calculations of all the 

necessary attributes. So, in every iteration of the loop, the program checked whether the 

values of these attributes matched the formula. If a match was found, the program 

displayed a notification message with some suggestion to prevent the failure. As 

discussed in Chapter 8, preventing the failure was outside the scope of this research, 

which means that no attempt was made to implement the suggested countermeasures. 

 

Implementing the complete formula proved challenging as the attributes Disk read and 

Disk write were obtained from a source external to the program, namely the iotop 

command. Due to technical constraints in the output of iotop, the researcher was not 

able to introduce these two parameters in the formula into the program. The near-miss 

formula was therefore implemented in the program without the iotop attributes, with 

the researcher being fully aware that this would affect the output of this formula. The 

program’s code is shown in Figure 10.13. 

 

Figure 10.13: Program code for near-miss formula 

 

This formula uses the following variable names: 

 WMA: WMA of Latency 

 avg: average of Latency 

 pCountLoop: count (number) of running processes for the current record 

 pCountInitial: count of processes at the beginning of the program  

 

10.7.3 Results 

The crash file was generated with 21 829 “OK” records, a loop size of 22 000, and the 

original video clip. As expected, this reduced formula matched a number of records 

(10 660) at various instances in the crash file, not all close to the failure, as the Disk read 

and Disk write attributes were not included in the formula. However, a manual correlation 

with the near-miss indicators in the iotop output file reduced the number of near-miss 
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alerts to 162. If the complete formula had been applied, near-miss alerts would have been 

generated only for those 162 records. 

 

The first of these alerts starts at record 5 742, indicating that the near-miss formula does 

not apply to the early records in the file, as was expected (see Figure 10.14). Only 9% of 

the near-miss alerts (13) appear in the first half of the program’s execution and are 

highlighted in Figure 10.14. The remaining 91% of the near-miss alerts are generated in 

the second half of the program’s execution before the failure. This again confirms that 

the near-miss indicators mostly emerge close to the failure. Figure 10.15 shows the last 

alerts in the crash file and indicates that the last alert (highlighted in red) was generated 

6s 872 ms before the failure. This confirms the validity of the formula and demonstrates 

the feasibility of detecting near misses at runtime. 

 

Figure 10.14: First near-miss alerts in the crash file 

 

 

Figure 10.15: Last near-miss alerts in the crash file 

 

10.8 Evaluation of prototype implementation  

10.8.1 Benefits 

The prototype implementation was successful in the sense that it achieved the goals 

specified in its design in Chapter 8: 

 Demonstrate the viability of the digital forensic process formulated in Chapter 4 

to conduct a root-cause analysis of a software failure. 

 Demonstrate the viability of detecting near misses at runtime.  
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In addition, it also showed the following: 

 Near-miss detection indeed reduces the amount of relevant digital evidence that 

needs to be collected for root-cause analysis. This was one of the main statements 

of this thesis. Out of the 13 initial attributes in the crash file and the 9 attributes in 

the iotop output file, only four (Latency, processes, disk-reading bandwidth and 

disk-writing bandwidth) proved relevant for near-miss detection. This makes a 

significant data reduction possible. Since the four attributes are the most relevant 

for the root-cause analysis of the failure at hand, the collection effort could be 

limited to these attributes after a near-miss alert. 

 In order to detect near misses, indicators of an upcoming failure need to be 

identified. A forensic analysis of the failure logs is a promising approach. The 

forensic analysis can provide both the root cause of the failure and its near-miss 

indicators.  

 

Furthermore, the prototype implementation also provided an objective and effective 

method for conducting a forensic analysis of the logs of a software failure. Although the 

prototype was designed to demonstrate near-miss detection for failures due to resource 

exhaustion, the forensic analysis approach used is applicable to any type of software 

failure as long as logs providing relevant information about the system’s operations are 

available. Although the techniques used were applied in a controlled lab environment, 

they are applicable to a real-world scenario with no prior knowledge of the root cause of 

the failure. The validity of the resulting near-miss formula demonstrates the reliability of 

the techniques, in other words the SOM analysis followed by a statistical analysis of the 

observed pattern. Since the SOM algorithm is optimised for large data sets, it is expected 

that this process can scale to a real-life failure with a higher number of logs than was used 

in the prototype. The detailed process is shown in Figure 10.16. 
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Overall trend analysis

Component map for 
every attribute

Random data sets 
throughout the 

program’s execution

Unusual pattern(s) close 
to the failure for some 

attribute(s)

Failure trend analysis

Refined map of 
suspicious attribute(s)

Data sets  close to the 
failure

Confirmation of unusual 
pattern

STATISTICAL ANALYSIS

WMA + Average of 
suspicious attributes

Data sets close to the 
failure

SOM ANALYSIS

MATHEMATICAL MODELLING

Mathematical expression 
of unusual patterns

FCM of suspicious 
attributes

Near-miss indicators Near-miss formula

 

Figure 10.16: Proposed method for forensic analysis and identification of near-miss 

indicators 
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10.8.2 Limitations 

Despite its benefits, the prototype implementation also had a number of limitations: 

 Some limitation was encountered in the implementation of the complete formula 

as not all near-miss indicators could be detected simultaneously, due to their 

diverse sources. This resulted in a high number of false alarms. However, this 

problem was mitigated by a manual correlation between the two log files used to 

define the interdependencies between the near-miss indicators.  

 Even after a manual correlation between all the near-miss indicators, a number of 

false alarms still remained. This could potentially be addressed by a prioritisation 

mechanism as proposed in Chapter 6.  

 Although the created near-miss formula proved effective, it is not a direct 

application of the general formula presented in Chapter 6. As discussed in Section 

10.2, the general formula was based on the concept of an SLA for the monitored 

system and such an SLA was not available for this prototype. However, a parallel 

between the two formulas can be drawn as follows.  

o Generally, failures cause downtime; hence downtime was used to detect 

near misses in the general formula. In the case of the current prototype, 

the failure does not result in downtime but in a performance slowdown. 

Indicators for this slowdown were therefore used to detect near misses.  

o Just like in the general formula, a threshold could have been set differently 

to specify the desired closeness of a near miss to the failure. In the 

prototype implementation, the threshold was implicitly set as the last 200 

records before the failure in the calculation of the WMA for Latency. This 

threshold could have been higher (e.g. last 500 records) or lower (e.g. last 

50 records), which would have resulted in an earlier or later generation of 

near-miss alerts.  

 

10.9 Conclusion 

This chapter was the last of a three-part series describing the prototype implementation 

of the NMS architecture. It followed on the previous two chapters that described the 

design phase and the data set (log files of a provoked software failure) used for 

prototyping the NMS architecture. The prototype was implemented to demonstrate the 
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viability of the NMS architecture, more specifically the detection of near misses at 

runtime.  

 

Chapter 10 described the experiments that were conducted to analyse the data set obtained 

in the previous chapter and detect near misses based on this analysis. These three 

experiments included the following: (1) the forensic analysis of the data set to identify 

near-miss indicators; (2) the creation of a near-miss formula based on the indicators; and 

(3) the detection of near misses based on the formula.  

 

The prototype implementation demonstrated the viability of the proposed NMS 

architecture through the successful detection of near misses from event logs before the 

occurrence of a failure. Although a number of false alarms were generated, their low 

number did not affect the validity of the results. However, certain limitations were 

encountered in the simultaneous detection of all the near-miss indicators, due to their 

diverse sources.  

 

The prototype also demonstrated the suitability of the forensic process for conducting a 

root-cause analysis of software failure and the effectiveness of this process in identifying 

near-miss indicators. More importantly, the prototype showed how effectively near-miss 

detection could be used to help select the most complete and relevant digital evidence of 

a software failure for purposes of accurate root-cause analysis. Thus, the main claim of 

the current research was fully validated.  
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  CHAPTER 11    

CONCLUSION 
 

11.1 Introduction 

This study discussed the limitations of current approaches to failure analysis and proposed 

an original architecture of a near-miss management system (NMS) to address these 

shortcomings. The key aspect of the proposed architecture is a mathematical model 

developed to define, detect and prioritise near misses from a software system perspective. 

In the previous chapter, a prototype of the architecture, which focused on the detection of 

near misses, was implemented to test its viability. This last chapter now revisits the 

research question, and evaluates whether and how the goal of the research has been 

achieved. Finally, the main contributions of the research and recommendations for future 

work are discussed. 

 

11.2 Revisiting the problem statement 

The main focus of this research was to address the lack of accuracy of current failure 

analysis practices in identifying the root cause of a major software failure. The solution 

that was proposed required that sound digital evidence of the failure be used as the basis 

for the root-cause analysis. To this end, digital forensics was suggested as a reliable and 

scientific method to accurately analyse such digital evidence. Additionally, near-miss 

analysis was presented as a novel approach to enable the collection of relevant and 

complete digital evidence and hence limit the collection of irrelevant or incomplete data.  

 

Since the reactive approach of digital forensics only allows for data collection after a 

failure, there is always the potential risk that the data will be lost or damaged due to the 

crash and will therefore be incomplete. In addition, the common practice to log all system 

activity, irrespective of its relevance for failure analysis, leads to a situation where lots of 

irrelevant data is collected. 

The main claim of this research was therefore formulated as follows:  
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Near-miss analysis can help identify and collect more relevant and complete digital 

evidence of a software failure. This has the potential to improve the accuracy of the 

ensuing forensic analysis of the failure. 

 

11.2.1 Answering the main and secondary research questions 

As near-miss analysis is usually conducted through NMS’s, the goal of the research was 

to design an NMS by answering the following main research question: 

What should the architecture for a near-miss management system look like such that it 

can improve the completeness and relevance of digital evidence of a software failure, 

thereby improving the accuracy of its forensic analysis? 

 

The above question was answered through two sub-questions. The following is a 

discussion on how each sub-question was addressed in the study. 

 

 How can the methodology of digital forensics be applied to the investigation of 

software failures? 

The main differences between digital forensics and less formal investigation methods 

involve the use of scientific methods and techniques and the adherence to legal principles. 

 

The scientific methodology of digital forensics was reviewed in Chapter 3 and addressed 

primarily the scientific method and mathematical analysis. Detailed examples of how 

these can be applied to the investigation of software failures were provided with real-life 

cases of software failures (as discussed in Chapter 2).  

 

The scientific method was applied to a real-life software failure case to illustrate how it 

can be applied to the investigation of software failures. The scientific method was 

contrasted to the troubleshooting approach, as the literature review on recent cases of 

software failures points to troubleshooting as the most common immediate response to 

software failures. One significant difference between the scientific method and 

troubleshooting was found to be the process of falsification used in the scientific method. 

Falsification ensures that, besides the initial hypothesis regarding the root cause of the 

failure, alternative hypotheses are explored before concluding the investigation. This 

strategy promotes the comprehensiveness of the investigation, which is in sharp contrast 
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to troubleshooting, as the latter stops the investigation as soon as a plausible hypothesis 

(usually the most obvious or trivial one) has been confirmed, without considering any 

other possibility. As demonstrated with the reviewed cases of software failures, this often 

results in erroneous root-cause identification. The process of falsification was therefore 

identified as a valuable addition to failure analysis. 

 

Mathematical analysis was also found to be an important element of a digital forensic 

investigation as it is used to authenticate the evidence and verify its integrity. It is 

primarily used through hash values of the collected files that are used as digital evidence 

of the event being investigated. Mathematical analysis can also be applied to the evidence 

of a software failure and is particularly valuable if the failure leads to legal proceedings.  

 

The prototype implementation furthermore demonstrated the use of other scientific 

techniques for the analysis of the evidence of a failure, namely self-organising maps 

(SOM) and statistical analysis. 

 

The legal principles adhered to by digital forensics are applied through best practice in 

handling the digital evidence, such as maintaining the chain of custody and ensuring the 

transparency of the investigation through an audit trail of the process followed. This 

differs significantly from the current practice in failure analysis where the investigation 

process is rarely made public – potentially giving rise to the assumption that it was not 

carefully documented. Best practice in digital forensics can also be applied to the 

investigation of software failures and allows for the investigation to be reproduced and 

verified independently. 

 

Besides adhering to scientific methodology and legal principles, digital forensics also 

follows a distinctive standard investigation process. Since this process needs to be 

adjusted to the specific requirements of failure analysis, an adapted forensic investigation 

process was proposed for software failures. This process added a system restoration phase 

to the standard digital forensic process, which occurred after the data collection and 

before the data analysis in order to minimise system downtime. As downtime is very 

costly in the case of a major software failure, it is imperative to ensure that the forensic 

investigation does not unnecessarily prolong the downtime duration. 
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 How can near-miss analysis be applied to the software industry effectively? 

The two main challenges to near-miss analysis are the detection and prioritisation of near 

misses. In the context of software systems, detecting near misses is particularly 

challenging as they do not cause any visible physical event. Regarding the prioritisation 

of near misses, a review of previous literature on the topic was conducted to identify 

solutions that are suitable for the software industry. However, a review of the existing 

prioritisation techniques indicated that they are generally specific to the industry 

concerned and often require prior knowledge about near misses from historical data. The 

latter is not available in the software industry, where the concept of a near miss, as used 

in other industries, is still largely unexplored. 

 

In order to detect near misses, a suitable definition of a near miss for the software industry 

was required in order to recognise them. To this end, an objective measure to define a 

near miss was proposed in the form of a Service Level Agreement (SLA) that predefines 

the performance level of a system. The SLA is used to measure the severity of an event 

based on its downtime duration, in comparison with the downtime allowance specified in 

the SLA. A near miss is defined as an event that causes a downtime close to exceeding 

the downtime allowance specified in the SLA. In the current study an adjustable threshold 

was used to define the desired closeness to the downtime allowance for an event to be 

considered a near miss. This general definition of a near miss was formally expressed in 

a mathematical formula. 

 

It is worth noting that downtime was used as the most common metric of an SLA, but 

depending on the type of system and failure at hand, other metrics (e.g. throughput, 

response time) could be used and may be more relevant. It is also worth noting that in the 

absence of an SLA, a near miss can still be defined by near-miss indicators identified 

from the root-cause analysis of a failure, as conducted in the prototype implementation. 

 

The high volume of near misses was addressed with a prioritisation mechanism to ensure 

that only the events most likely to result in a failure were passed on for analysis. A 

mathematical near-miss detection and prioritisation model was subsequently developed 

to calculate the failure probability of a near miss and prioritise near misses based on this 
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probability. The calculation of such failure probability was based on a corresponding 

formula from the reliability theory of IT systems, which was extended to accommodate 

cases of near misses. The complete mathematical model, comprising the formulae for 

near-miss definition and failure probability, was presented in Chapter 6. 

 

11.2.2 Achieving the goal of the research  

The architecture of the proposed NMS includes all the partial solutions provided as 

answers to the above questions, and involves a thorough multi-stage filtering process that 

analyses and prioritises system logs for indicators of an upcoming failure. An alert is 

raised for potential near misses with the highest risk level (failure probability). The 

forensic investigation process is used throughout the architecture to collect and analyse 

data about the detected near misses. The NMS architecture helps improve the 

completeness and relevance of the digital evidence of the failure, as well as the accuracy 

of its forensic analysis as discussed below. 

 

As soon as a potential high-risk near miss has been detected, a request is automatically 

made to collect all the data about the event and to store in a table for forensic analysis at 

a later stage. This automatic data collection ensures that the digital evidence is not 

affected by the ensuing failure, thereby ensuring that no evidence is lost or tampered with. 

As data is only collected for potential near misses with the highest risk level, i.e. events 

closest to a potential failure, the collected data is a fairly complete representation of the 

likely failure.  

 

The above process (automatic data collection of potential near miss with highest risk 

level) is likely to result in digital evidence that is more complete than the evidence 

collected after a software failure. It also ensures that the collected evidence is relevant for 

the root-cause analysis as it only points to the system’s behaviour close to the point of 

failure. Evidence about the normal system behaviour, which might be irrelevant to 

identify the root cause of the failure, is therefore not used for the forensic analysis. 

Using limited but relevant and complete digital evidence is likely to facilitate the accurate 

identification of the root cause of the failure. Accurate root-cause analysis is further 

facilitated by the use of the forensic approach throughout the NMS architecture, ensuring 

that scientific methods and techniques are used to analyse the evidence. The forensic 
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process also ensures that all the requirements established for an accurate failure 

investigation are satisfied, namely objectivity, comprehensiveness, reproducibility and 

admissibility in court. 

 

Results of the prototype implementation of the NMS architecture demonstrated the above 

as follows. The data collected following the detection of a near miss at runtime provided 

all the details pertaining to the potential failure and was therefore complete and suitable 

for the forensic analysis. The near-miss analysis also caused a significant reduction of 

irrelevant data. Indeed, the monitored software application had 22 attributes that were 

logged for an eventual root-cause analysis. However, through the process of identifying 

near-miss indicators and defining near misses for that application, only four of these 

attributes proved relevant to identify the root cause of the failure. Furthermore, the 

analysis of these four attributes accurately pointed to the root cause of the ensuing failure. 

The goal of the research was therefore achieved. 

 

11.3 Main contributions 

11.3.1 Advancing the state of the art 

The first contribution of the research is the fact that it demonstrated that digital forensics 

can serve as an effective alternative for investigating major software failures. This is a 

new application of digital forensics, which is currently limited to the investigation of 

computer crimes, security incidents and civil matters. Digital forensics can help provide 

sound evidence of the root cause of a software failure. Applying digital forensics to failure 

analysis is not a new idea. It was referred to as Operational Forensics by Michael Corby 

in 2000 (Corby, 2000a). However, it has remained at a conceptual level with no end-to-

end process. This research is the first attempt at proposing a complete “operational 

forensic” process and demonstrating its effectiveness through the implementation of a 

prototype. 

 

The second contribution made by the current research is the fact that it introduced the 

concept of near miss in digital forensics. Near-miss analysis is an established field in 

many engineering disciplines but it is new to digital forensics. The research demonstrated 
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how near-miss analysis can benefit digital forensics for the purpose of investigating 

software failures. 

 

The third and most important contribution of the research is the architecture of an NMS. 

Although some features of the architecture are based on the existing digital forensic 

process (e.g. collection of digital evidence of the failure, root-cause analysis of the failure 

based on the collected evidence), the overall architecture design is completely original as 

it includes a near-miss analysis process used to improve the validity of the evidence. The 

main novelty of the architecture is the mathematical model developed to define, detect 

and prioritise near misses. The prioritisation of near misses ensures that only near misses 

closest to the potential point of failure are passed on for root-cause analysis, thereby 

reducing the number of false alarms (i.e. raising an alert for an unsafe event that is not 

likely to result in a failure and which does not contain data pertaining to the potential 

failure). 

 

The final contribution of the research is its proposal of an original process followed in the 

prototype implementation for identifying near-miss indicators from the forensic analysis 

of logs of a software failure. The forensic analysis used SOM analysis and statistical 

analysis to analyse the trends in the execution of a failing program and identify significant 

changes close to the point of failure. The SOM analysis provided a simple but accurate 

visual representation of the trends in the logged data, thereby facilitating the quick and 

accurate identification of the root cause of the failure. A diagram of the above process 

was provided in Figure 10.16 in the previous chapter. The process that was followed 

proved reliable due to the validity of the resulting near-miss formula and the low number 

of false alarms raised. 

 

11.3.2 Publications produced 

Throughout this study, results of the research have been published in the following 

conference and journal papers. 

 Bihina Bella, M.A., Olivier, M.S. and Eloff, J.H.P. Proposing a Digital 

Operational Forensic Investigation Process. In Proceedings of the 6th 

International Workshop on Digital Forensics and Incident Analysis (WDFIA 

2011), 7-8 July 2011, London, UK.  
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This paper presented the adapted digital forensic process proposed for the 

investigation of software failures. To demonstrate its viability, the process was 

applied to the case study of a real-life fatal software failure, namely the Therac-

25 disaster, which is described in detail in Chapter 3. The case study demonstrated 

the advantages of using digital forensics rather than the troubleshooting approach 

that had actually been used in the case of the Therac-25 disaster. 

 Bihina Bella, M.A., Eloff, J.H.P and Olivier, M.S. Improving System Availability 

with Near Miss Analysis. Network Security, October 2012, pp. 18-20. 

This positioning paper introduced the concept of a near miss for software systems 

with examples of real-life near misses that preceded some severe software 

failures. The paper motivated the use of near-miss analysis as a novel approach to 

improve the availability of IT systems by preventing disruptive software failures. 

 Bihina Bella, M.A., Olivier, M.S. and Eloff, J.H.P. Near Miss Detection for 

Software Failure Prevention. In Proceedings of the 2012 Southern Africa 

Telecommunications Network and Applications Conference (SATNAC 2012), 2-

5 September 2012, George, South Africa. 

This paper provided an overview of near-miss analysis and its potential 

application to the prevention of impending software failures. It presented the 

proposed definition of a near miss in the context of software systems and the initial 

high-level process for detecting and prioritising near misses. The application of 

the near-miss definition was illustrated with the example of a real-life mobile 

procurement system. 

 Bihina Bella, M.A., Eloff, J.H.P and Olivier, M.S. A Near-miss Management 

System to Facilitate the Forensic Investigation of Software Failures. In 

Proceedings of the 13th European Conference on Cyber Warfare and Security 

(ECCWS 2014), 3-4 July 2014, Piraeus, Greece.  

This paper presented the architecture of the NMS proposed in this research. The 

paper first reviewed challenges to near-miss analysis specific to the software 

industry and presented proposed solutions to these challenges. The paper also 
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presented the refined definition of near misses for software systems, as the basis 

for the design of the NMS architecture. 

 Bihina Bella, M.A. and Eloff, J.H.P. Forensic investigation of software failures. 

Computer Fraud & Security, December 2014, submitted for publication.  

At the time of press, this article was under review. The article motivated the 

combined use of digital forensics and near-miss analysis to improve the root-cause 

analysis of software failures. It discussed the advantages of this approach using 

the case of the RBS software failure discussed in Chapter 1. 

11.4 Future research  

This research is the first attempt at applying near-miss analysis to digital forensics with a 

view to improving the accuracy of the investigation of software failures. The proposed 

NMS architecture achieved the goal of the research to the extent described above, as 

demonstrated through the prototype implementation. However, the prototype still suffers 

some limitations that should be addressed by future research:  

 The prototype only implemented a subset of the NMS architecture, namely the 

near-miss detection process and the forensic analysis of a software failure. The 

implementation of a complete prototype to test the viability of the entire NMS 

architecture is recommended. 

 The failure investigated for the prototype implementation was caused by a simple 

program and had little impact. Simulating a major failure with significant impact 

would have been costly and risky, hence the choice of a simplistic example. 

However, it is advisable that the practicality of the NMS architecture be tested in 

future with the case of a major complex software failure. 

 

An additional avenue for future research is the generalisation of the proposed near-miss 

detection process to accommodate various types of failures, since the current research 

was limited to demonstrating potential solutions by focusing on failures due to resource 

exhaustion. A general methodology to pinpoint near-miss indicators emerged from the 

forensic analysis in the prototype implementation and provides a starting point. 
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Furthermore, future research may consider extending the application of near-miss 

analysis to the field of software reliability. The detection of near misses at runtime can be 

followed by an automatic response to apply appropriate countermeasures and prevent the 

impending failure from unfolding. Although the proposed NMS architecture has a Failure 

Prevention component that can be used for this purpose, it was not implemented in this 

research as it fell outside the scope of this study.  

 

As a final note, despite its limitations, this research formally introduced the technique of 

near-miss analysis to the software industry. Near-miss analysis has proved beneficial in 

a number of safety-critical industries and it is continuously applied to a growing number 

of disciplines. Although the software industry is not particularly safety conscious, this 

research has shown that major software failures can and do affect safety. Near-miss 

analysis is therefore a technique worth exploring more formally and in more-depth in 

software applications as it can be beneficial to various areas of software improvement 

including failure analysis and system reliability.   
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APPENDIX 1        

TECHNICAL DETAILS ON THE SOM  

ANALYSIS 
 

SOM map creation process 

The pre-processing steps that were taken for the SOM map creation involved the 

following: 

 The parameter File Status was used as a nominal attribute to distinguish between 

the records marked as “OK” (video copied successfully) and those marked as “not 

OK” (video not copied).  

 Viscovery SOMine automatically converted the time values to numerical values.  

 

The creation of maps in Viscovery SOMine follows a simple manual step-by-step process 

from importing the input file, selecting attributes to be processed, defining nominal 

attributes, and specifying the parameters to train the map. Training parameters include 

map size (number of nodes) and training schedule (processing speed from fast to normal). 

The default training parameters were kept. The resulting map is automatically created and 

displayed after this process and information about each cluster is provided. 

 

How to read Viscovery SOMine output maps: Example of first 

1000 records 

Figure 12.1 shows the maps of the first 1000 records. Two types of maps are displayed: 

in the bottom frame, the overall map from all attributes, and in the top frame, the 

component maps for each attribute.  

 

The overall map has four clusters, each one displayed in a different colour. Details about 

each cluster are provided in the panel on the right side of the map and include the average 

values for each of the attributes in the cluster. The frequency or distribution of each cluster 
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in the main map is also shown. So, the biggest cluster, which is represented in light blue 

on the map, has a frequency of 46.7%, which means that 46.7% of the records in the data 

set (records 1 to 1000) belong to this cluster. In other words, the values of their attributes 

are close to the values of the attributes in this cluster.  

 

The component maps show the distribution of the values in the data set over time for each 

attribute. The scale of the values in the data set is displayed on a bar below each map. 

Values range from lowest on the left to highest on the right of the bar. Values on the map 

are differentiated by their colour on the scale. This means that lowest values are in blue 

and highest values are in red, with various shades of blue, green and yellow in between. 

 

Figure 0.1: SOM output maps for first 1000 records 

 

All component maps have the same topology, so any node (record) on one map has the 

exact same position on another map. For example, the first record, which has the highest 

value for Duration (5850 ms, refer to Figure 12.2) appears as an outlier in red in the top 

right corner of the Duration map below (it is circled in black). This record also has the 

lowest value for memory used (dark blue in the top right corner of the Mem Used map) 

and the highest value for free memory (red in the top right corner of the Mem free map). 

Similar observations can be made on the Cached map and the Avail Pages map. This is 
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understandable and to be expected, since at that point (record number 1), the program has 

just started running and little memory has been used. 

 

Figure 0.2: Some component maps of first 1000 records – first record appears as an outlier 

 

Adding the number of running processes to the C++ program 

The Linux command ps –eLf | wc –l was used to obtain the total number of 

processes and threads running on the system and then to display them on the screen. The 

ps command displays information about active processes. The eLf option was used to 

display all active threads and processes, followed by the wc command to get a count of 

the listed processes, counting each line (-l option) of the output. The researcher decided 

to get a count of all processes and threads as the ps command did not provide the option 

to display only those processes and threads doing I/O activity, which is what the iotop 

command provided. 
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APPENDIX 2        

GLOSSARY OF TERMS  

 

 
Accident: An undesirable event resulting in injury or damage (Jones et al., 1999).  

 

Analysis: process of evaluating potential digital evidence in order to assess its relevance 

to the investigation (ISO/IEC 27042, 2015). 

 

Accident sequence: Sequence of events that result in an accident. The accident sequence 

starts with an initiating event such as a human error, and ends when the accident unfolds, 

also known as the accident end-state (Saleh et al., 2013). 

 

Accident sequence precursor (or accident precursor): conditions, events and 

sequences that precede and lead up to accidents” (Phimister et al., 2004). They are also 

defined as ‘‘events that must occur for an accident to happen in a given scenario’’ 

(Carroll, 2004). 

 

Cause: A condition or an event that results in or participates in the occurrence of an effect. 

Causes can be classified as:  

 Direct Cause: A cause that resulted in the occurrence.  

 Contributing Cause: A cause that contributed to an occurrence but would not 

have caused it by itself.  

 Root Cause: The cause that, if corrected, would prevent recurrence of this and 

similar occurrences. The root cause usually has generic implications to a broad 

group of possible occurrences, and it is the most fundamental aspect of the cause 

that can logically be identified and corrected.  

 

Causal analysis: the analysis of the cause of an event. In this research, this term is used 

interchangeably with root-cause analysis. 
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Condition: Any system state, whether precursor or resulting from an event, that may have 

adverse implications for the normal system’s functionality (Jucan, 2005). 

  

Data reduction: the process of identifying and discarding data that is irrelevant for the 

forensic analysis (Walker, 2011). Similarly, it can also be defined as the process of 

identifying and extracting data relevant for the forensic analysis. Data reduction is 

conducted to reduce the amount of data that an investigator needs to analyse in order to 

reconstruct an event and find its root cause.  

 

Digital evidence: after-the-fact digital information derived from digital sources for the 

purpose of facilitating or furthering the reconstruction of the events (Willasen & Mjølsnes, 

2005). Information or data, stored or transmitted in binary form, that may be relied on as 

evidence. 

 

Digital forensic process: structured procedure followed during a digital forensic 

investigation to ensure forensic soundness of the evidence, in other words to ensure that 

the data is complete and has not been tampered with throughout the investigation. 

 

Digital forensics: the use of scientifically derived and proven methods towards the 

preservation, collection, validation, identification, analysis, interpretation and 

presentation of digital evidence derived from digital sources for the purposes of 

facilitating or furthering the reconstruction of events found to be criminal, or for 

anticipating the unauthorised actions shown to be disruptive to planned operations 

(Palmer, 2001). 

 

Downtime: the period of time during which a system or component is not operational or 

has been taken out of service” (IEEE, 1990). It is also referred to as ‘outage’. 

 

Event: A real-time factual occurrence that could seriously impact the system operation 

(Jucan, 2005).  
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Failure: the inability of a system or component to perform its required functions within 

specified performance requirements (IEEE, 1999). 

 

Forensic investigation: an investigation where the scientific procedures and techniques 

used will allow the results (digital evidence) to be admissible in a court of law. It is also 

known as forensic examination, digital forensic investigation, or digital investigation 

(Köhn, 2012). ISO 27943 (2015) provides a comprehensive definition for a digital 

investigation as the use of scientifically derived and proven methods towards the 

identification, collection, transportation, storage, analysis, interpretation, presentation, 

distribution, return, and/or destruction of digital evidence derived from digital sources, 

while obtaining proper authorizations for all activities, properly documenting all 

activities, interacting with the physical investigation, preserving digital evidence, and 

maintaining the chain of custody, for the purpose of facilitating or furthering the 

reconstruction of events found to be incidents requiring a digital investigation, whether 

of criminal nature or not. 

 

Incident: Any undesirable event, including accidents and near misses (Jones et al., 1999). 

 

Investigation: application of examinations, analysis, and interpretation to aid 

understanding of an incident (ISO/IEC 27042, 2015). 

 

Forensic soundness: the preservation of the integrity and completeness of the data 

throughout the investigation (McKemmish, 2008). Digital evidence is deemed 

forensically sound when it has not been tampered with and has remained complete 

throughout the investigation. 

 

Near miss: In the general sense, a near miss is a hazardous situation, event or unsafe act 

where the sequence of events could have caused an accident if it had not been interrupted 

(Jones et al., 1999). In the context of software failures and for the purposes of this study, 

the author defines a near miss as an unplanned high-risk event or system condition that 

could have caused a major software failure if it had not been interrupted either by chance 

or timely intervention. 
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Near-miss analysis: the process of identifying near misses and determining their root 

cause with a view to preventing and predicting accidents (Phimister et al., 2004).  

 

Near-miss management system (NMS): software tool used to report, analyse and track 

near misses (Oktem, 2002). Also known as a near-miss system or a near-miss reporting 

system. 

 

Operational failure: software failure that occurs when a system is in production, after 

the design, development and testing phases. 

 

Outage: Period of time when a system is down. It is used as a synonym for downtime. 

  

Post-mortem: analysis of an event held soon after it has occurred, to determine why it was 

a failure (Oxford Dictionary of English, 2010). In the context of this research, a post-

mortem investigation is conducted soon after a software failure to determine its cause. 

 

Potential digital evidence: information or data, stored or transmitted in binary form, which 

has not yet been determined, through the process of examination and analysis, to be relevant 

to the investigation (ISO/IEC 27042, 2015). 

 

Root-cause analysis: logical sequence of steps that leads the investigator through the 

process of isolating the facts surrounding an event or failure. Once the problem has been 

fully defined, the analysis systematically determines the best course of action that will 

resolve the event and assure that it is not repeated (Mobley, 1999).  Root cause analysis 

uncovers the fundamental issues (root causes) that generate a problem, as opposed to 

troubleshooting that seeks immediate solutions to resolve the user visible symptoms (Jucan, 

2005). 

 

Runtime: the period during which a computer program is executing. 

 

Scientific method: process used by scientists to conduct an objective investigation of an 

event. Its aim is to minimise bias or prejudice from the experimenter and ensure the 

accuracy of the results (Bernstein, 2009).  
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Self-organising map (SOM): a model of unsupervised neural networks used for the 

analysis and visualisation of multi-dimensional data (Engelbrecht, 2003). It is a data 

analysis technique that identifies and displays clusters of similar records in the data set. 

 

Service Level Agreement (SLA): The SLA is the entire contract that specifies what 

service the customer can expect from the provider, and the responsibilities of both parties 

(Sevcik, 2008). It defines the expected performance level of a system. 

 

Software failure analysis: logical sequence of steps that leads the investigator through the 

process of isolating the facts surrounding a software failure 

 

Software failure: an unplanned cessation of a software system or component to function 

as specified  

 

System restoration: Putting a system back into its normal mode of operation after a 

failure 

 

Troubleshooting: discovering why something does not work effectively and 

making suggestions about how to improve it (Cambridge English dictionary). It is the 

process of diagnosing the source of a system failure by recreating the problem to identify 

its cause. It can be subjective as it is not a scientific process but it is the most common 

first response to a failure. 

 

Volatile data: It commonly refers to data that is likely to be lost when a machine is 

rebooted or overwritten during the course of the machine’s normal use (Amari, 2009). 

This data is especially prone to change and can be easily modified.  Change can be 

switching off the power or passing through a magnetic field. Volatile data also includes 

data that changes as the system state changes (SO/IEC 27037, 2012).  This data is stored 

in volatile memory, such as RAM (random access memory), which is computer storage 

that retains its data only when the machine is switched on, by opposition to persistent 

storage on the hard disk. Examples of volatile data include information about running 
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processes, open files, network connections, passwords and cryptographic keys, hidden 

data, and malicious code (Amari, 2009).  
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