

A NEAR-MISS ANALYSIS MODEL FOR IMPROVING

THE FORENSIC INVESTIGATION OF SOFTWARE

FAILURES

by

MADELEINE ADRIENNE BIHINA BELLA

submitted in fulfilment of the requirements for the degree

Doctor of Philosophy (COMPUTER SCIENCE)

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND

INFORMATION TECHNOLOGY

at the

UNIVERSITY OF PRETORIA

PRETORIA, SOUTH AFRICA

SUPERVISOR: Prof. J.H.P. Eloff

Date of submission
22-12-2014

© University of Pretoria

i

Abstract

The increasing complexity of software applications can lead to operational failures that have

disastrous consequences. In order to prevent the recurrence of such failures, a thorough post-

mortem investigation is required to identify the root causes involved. This root-cause analysis

must be based on reliable digital evidence to ensure its objectivity and accuracy. However,

current approaches to software failure analysis do not promote the collection of digital evidence

for causal analysis. This leaves the system vulnerable to the reoccurrence of a similar failure.

A promising alternative is offered by the field of digital forensics. Digital forensics uses proven

scientific methods and principles of law to determine the cause of an event based on

forensically sound evidence. However, being a reactive process, digital forensics can only be

applied after the occurrence of costly failures. This limits its effectiveness as volatile data that

could serve as potential evidence may be destroyed or corrupted after a system crash.

In order to address this limitation of digital forensics, it is suggested that the evidence collection

be started at an earlier stage, before the software failure actually unfolds, so as to detect the high-

risk conditions that can lead to a major failure. These forerunners to failures are known as near

misses. By alerting system users of an upcoming failure, the detection of near misses provides

an opportunity to collect at runtime failure-related data that is complete and relevant.

The detection of near misses is usually performed through electronic near-miss management

systems (NMS). An NMS that combines near-miss analysis and digital forensics can contribute

significantly to the improvement of the accuracy of the failure analysis. However, such a system

is not available yet and its design still presents several challenges due to the fact that neither

digital forensics nor near-miss analysis is currently used to investigate software failures and their

existing methodologies and processes are not directly applicable to failure analysis.

This research therefore presents the architecture of an NMS specifically designed to address the

above challenges in order to facilitate the accurate forensic investigation of software failures. The

NMS focuses on the detection of near misses at runtime with a view to maximising the collection

of appropriate digital evidence of the failure. The detection process is based on a mathematical

model that was developed to formally define a near miss and calculate its risk level. A prototype

of the NMS has been implemented and is discussed in the thesis.

© University of Pretoria

ii

Summary

Title: A near-miss analysis model for improving the forensic investigation of software failures

Candidate: Madeleine Adrienne Bihina Bella

Supervisor: Prof J.H.P. Eloff

Department: Computer Science Department, Faculty of Engineering, Built Environment and

Information Technology, University of Pretoria

Degree: Doctor of Philosophy in Computer Science

Keywords: software failure, failure analysis, digital forensics, near miss, near-miss analysis,

forensic investigation, root-cause analysis

© University of Pretoria

iii

Acknowledgements

I would like to thank the following people for their contribution to the success of this work.

 Prof J.H.P Eloff, for his continuous guidance, support and thorough supervision

throughout this study. He made the completion of this thesis possible and provided

tremendous assistance and mentorship to enrich its content and to enrich my personal

experience and exposure as a research student. He was a great mentor and an endless

source of inspiration.

 SAP Innovation Center, which provided the infastructure, the facilities and the research

environment for this PhD work. They offered me financial support throughout the

duration of this study, invaluable study time as well as exposure to world-class research

and innovation to help me raise the level of my study to high international standards. I

particularly would like to thank Danie Kok, the founder of the Innovation Center, and

Dr E. Ngassam, Principal Researcher, for their support, encouragement and guidance

throughout the various challenges I faced during my time as a PhD student in the center.

 The various institutions which offered me financial support through research awards

and believed in the quality and value of my research. They also provided me with media

coverage for my research work to raise my profile as a researcher. Their

acknowledgements helped me build my confidence in my research abilities. These

institutions and organisations are as follows: l’Oréal, the giant international cosmetics

company, UNESCO (United Nations Educational, Scientific and Cultural

Organisation), Google, provider of the well-known web-saved search engine, and the

Department of Science of Technology (DST).

 Last but not least, I would like to express my special gratitude to my parents for their

constant support and encouragement.

© University of Pretoria

iv

Table of Contents
CHAPTER 1 INTRODUCTION . 1

1.1 Introduction .. 1

1.2 Thesis statement ... 5

1.3 Problem statement .. 5

1.4 Research Questions .. 5

1.5 Scope and context of the study ... 6

1.6 Research methodology ... 7

1.7 Terminology used in the thesis .. 8

1.8 Defining the near-miss concept .. 10

1.8.1 Current definitions of near miss .. 10

1.8.2 Proposed definition of a near miss for software systems 14

1.9 Layout of thesis .. 15

CHAPTER 2 SOFTWARE FAILURES : OVERVIEW OF RECENT CASES 18

2.1 Introduction .. 18

2.2 Background on software failures ... 19

2.2.1 Definition of a software failure ... 19

2.2.2 Common causes of software failures .. 20

2.2.3 Manifestations of software failures ... 20

2.2.4 Consequences of software failures .. 21

2.3 Overview of recent major software failures ... 22

2.3.1 Lists of cases of major software failure available online 22

2.3.2 Overview of prominent cases of recent software failure 26

2.3.3 Software failures according to industry or sector 31

2.3.4 Lessons learnt .. 34

2.4 Case study of software-induced radiation overdoses: AECL Therac-25, Multidata RTP/2

and Varian IMRT ... 35

2.4.1 Accident description ... 39

2.4.2 How was the overdose detected? .. 40

2.4.3 How was the root cause identified? .. 41

2.4.4 Factors that facilitated the overdose .. 42

2.4.5 Factors that contributed to the negative impact of the accidents 43

2.4.6 Lessons learnt .. 43

© University of Pretoria

v

2.5 Requirements for accurate failure investigation... 43

2.5.1 Limitations in the investigation of software failures 44

2.5.2 Requirements for accurate software failure investigation 45

2.6 Conclusion .. 47

CHAPTER 3 USING D IGITAL FORENSICS FOR ACCURATE INVESTIGATION OF

SOFTWARE FAILURES . 49

3.1 Introduction .. 49

3.2 Overview of digital forensics ... 50

3.2.1 Introduction to digital forensics .. 50

3.2.2 Digital forensic applications ... 51

3.3 Motivation for using digital forensics for software failure investigations 52

3.3.1 Supporting literature ... 52

3.3.2 Definition of digital forensics ... 54

3.3.3 Lessons learnt from other forensic disciplines .. 57

3.4 The scientific foundation of digital forensics ... 60

3.4.1 The scientific method .. 60

3.4.2 Mathematical analysis ... 63

3.5 Best practices in digital forensics ... 66

3.5.1 Overview of best practices in digital forensics ... 66

3.5.2 How can digital forensic best practices help improve the accuracy of software

failure investigations? ... 67

3.6 The digital forensic process ... 68

3.6.1 Overview of the digital forensic process... 69

3.6.2 Standardising of the forensic investigation process 70

3.6.3 How can the digital forensic process help improve the accuracy of software failure

investigations? ... 71

3.6.4 Suitability of digital forensics for accurate failure investigations 72

3.7 Conclusion .. 74

CHAPTER 4 THE ADAPTED D IGITAL FORENSIC PROCESS FOR FAILURE

INVESTIGATIONS . 75

4.1 Introduction .. 75

4.2 Challenges to the forensic investigation of software failures 76

4.2.1 The volatility of digital evidence .. 77

© University of Pretoria

vi

4.2.2 The lack of forensic tools and techniques for the root-cause analysis of software

failures ... 77

4.2.3 The need to minimise downtime following a failure 78

4.2.4 The need for continuous system monitoring ... 78

4.3 Previous work on the forensic investigation of software failures 79

4.3.1 Previous work on operational forensics .. 80

4.3.2 Review of previous work on forensic software engineering 82

4.3.3 Critical assessment of previous work on the forensic investigation of software

failures ... 83

4.4 The forensic failure investigation process .. 84

4.4.1 Phase 1: Evidence collection ... 84

4.4.2 Phase 2: System restoration .. 85

4.4.3 Phase 3: Root-cause analysis .. 85

4.4.4 Phase 4: Countermeasures specifications ... 86

4.5 Application of the forensic failure investigation process – Case study of Therac-25

accidents ... 87

4.5.1 Investigation of first Therac-25 accident .. 88

4.5.2 Investigation of second Therac-25 accident .. 88

4.6 Critical assessment of the failure investigation process 91

4.6.1 Advantages of the forensic failure investigation process 91

4.6.2 Limitations of the failure investigation process .. 92

4.7 Conclusion .. 92

CHAPTER 5 NEAR-M ISS ANALYSIS : AN OVERVIEW . 94

5.1 Introduction .. 94

5.2 Background on near-miss analysis ... 95

5.2.1 Overview of near-miss analysis .. 95

5.2.2 Tools and techniques used in near-miss analysis .. 96

5.2.3 History of near-miss analysis .. 102

5.3 Motivation for using near-miss analysis in failure investigation 104

5.3.1 Benefits of near miss-analysis over failure analysis 104

5.3.2 Benefits of analysing near misses instead of earlier precursors 105

5.3.3 Near-miss analysis success stories .. 106

5.4 Challenges to near-miss analysis in the software industry 106

© University of Pretoria

vii

5.4.1 Detection of near misses ... 107

5.4.2 High volume of near misses .. 107

5.4.3 Root-cause analysis of near misses ... 108

5.5 Conclusion .. 108

CHAPTER 6 THE NEAR-M ISS DETECTION AND PRIORITISATION MODEL . . . 110

6.1 Introduction .. 110

6.2 Formal definition of a Near Miss for software systems 111

6.3 Overview of reliability theory and failure probability formula for IT systems . 116

6.3.1 The reliability theory of redundant hardware components 116

6.3.2 Failure probability formula for hardware components 117

6.3.3 Proposed failure probability formula for software components 118

6.4 Mathematical modelling for near-miss failure probability 119

6.4.1 Loss of one spare... 120

6.4.2 Loss of two spares ... 120

6.4.3 Loss of any number of spares ... 121

6.4.4 Illustration of the failure probability formula ... 121

6.5 Prioritisation of near misses ... 123

6.5.1 The near-miss prioritisation formula... 123

6.5.2 Evidence collection for high-risk near misses .. 124

6.6 Conclusion .. 125

CHAPTER 7 THE NMS ARCHITECTURE . 126

7.1 Introduction .. 126

7.2 Requirements and proposed solutions for the accurate investigation of software failures

 .. 127

7.2.1 Requirements .. 127

7.2.2 Proposed solutions .. 127

7.3 The NMS architecture .. 128

7.3.1 The overall near-miss and failure investigation process 128

7.3.2 The NMS architecture ... 129

7.4 Conclusion .. 135

CHAPTER 8 PROTOTYPING THE NMS – THE DESIGN PHASE . 136

8.1 Introduction .. 136

8.2 The aims of the prototype .. 136

© University of Pretoria

viii

8.2.1 The original NMS architecture ... 137

8.2.2 Prototype goal and objectives ... 137

8.3 Setting up the lab environment .. 140

8.3.1 The logs of a software failure ... 140

8.3.2 The forensic investigation tool and techniques ... 144

8.3.3 The test plan .. 147

8.3.4 Conclusion .. 149

CHAPTER 9 PROTOTYPING THE NMS – THE DATA SET . 150

9.1 Introduction .. 150

9.2 Technical platform used for developing the prototype 150

9.2.1 The prototype implementation plan .. 150

9.2.2 Technical set-up for prototype implementation .. 153

9.3 Experiment 1: Creating a suitable set of event logs ... 154

9.3.1 The crash file ... 155

9.3.2 The iotop output file .. 159

9.3.3 Summary of experiment and results .. 161

9.4 Conclusion .. 162

CHAPTER 10 PROTOTYPING THE NMS –DETECTING NEAR M ISSES AT RUNTIME

 . 164

10.1 Introduction .. 164

10.2 Prototype implementation plan .. 164

10.3 Experiment 2 – Part 1: Identifying near-miss indicators from the forensic analysis of

the crash file ... 167

10.3.1 Goal ... 167

10.3.2 SOM analysis of the crash file .. 169

10.3.3 Statistical analysis of Latency ... 176

10.3.4 Conclusion based on forensic analysis of crash file 177

10.4 Experiment 2 – Part 2: Identifying near-miss indicators from the fororensic analysis of

iotop output file ... 177

10.4.1 SOM analysis of iotop output file ... 177

10.4.2 Statistical analysis of iotop output .. 181

10.4.3 Conclusion based on analysis of iotop output file............................... 183

10.5 Summary of Experiment 2 – Overall near-miss indicators 183

© University of Pretoria

ix

10.6 Experiment 3: Defining a near-miss formula ... 184

10.6.1 Goal ... 184

10.6.2 Adapting C++ program to calculate near-miss indicators 185

10.6.3 Changing running conditions of C++ program 187

10.7 Step 4: Detecting near misses at runtime ... 191

10.7.1 Goal ... 191

10.7.2 Technical set-up .. 192

10.7.3 Results ... 192

10.8 Evaluation of prototype implementation .. 193

10.8.1 Benefits ... 193

10.8.2 Limitations .. 196

10.9 Conclusion .. 196

CHAPTER 11 CONCLUSION . 198

11.1 Introduction .. 198

11.2 Revisiting the problem statement ... 198

11.2.1 Answering the main and secondary research questions 199

11.2.2 Achieving the goal of the research .. 202

11.3 Main contributions ... 203

11.3.1 Advancing the state of the art ... 203

11.3.2 Publications produced ... 204

11.4 Future research ... 206

APPENDIX 1 TECHNICAL DETAILS ON THE SOM ANALYSIS 208

SOM map creation process .. 208

How to read Viscovery SOMine output maps: Example of first 1000 records 208

Adding the number of running processes to the C++ program 210

APPENDIX 2 GLOSSARY OF TERMS . 211

B IBLIOGRAPHY . 217

© University of Pretoria

x

List of figures

Figure 1.1: The proposed NMS in relation to the fields of failure analysis, digital forensics and

near-miss analysis .. 5

Figure 1.2: Relation between a near miss, its preceding ASPs and the subsequent accident in

the accident sequence ... 11

Figure 1.3: Relation between near-miss and failure in terms of risk level of event and loss

incurred .. 15

Figure 1.4: Graphical depiction of layout of thesis.. 17

Figure 3.1: The various classes of digital investigation processes .. 70

Figure 4.1: The digital forensic process ... 76

Figure 4.2: Relationship between prosecutorial forensics and operational forensics 80

Figure 4.3: The adapted digital forensic process for software failures 86

Figure 5.1: The Safety Pyramid, adapted from Bird and Germain (1996) 96

Figure 5.2: Near-miss management process (Phimister et al., 2000) 97

Figure 5.3: Bird’s accident ratio triangle, adapted from Nichol (2012) 107

Figure 6.1: Classification of unsafe events based on their downtime duration 114

Figure 6.2: Failure probability graph ... 122

Figure 7.1: UML component diagram of NMS architecture ... 131

Figure 7.2: UML activity diagram of NMS ... 134

Figure 8.1: Adapted NMS component diagram for prototype implementation 139

Figure 8.2: Flowchart of failure simulation program to create the crash file 142

Figure 8.3: Prototype implementation plan ... 148

Figure 9.1: Prototype implementation plan ... 152

Figure 9.2: VirtualBox user interface and shared directory between Windows and Linux ... 153

Figure 9.3: Diagram of the lab environment .. 154

Figure 9.4: Focus of experiment 1 – Near-Miss Monitor of adapted NMS architecture 155

Figure 9.5: Output of the free command in Linux .. 157

Figure 9.6: Code snippet for function to obtain the amount of free space on the flash disk . 157

Figure 9.7: Crash file at beginning of program.. 158

Figure 9.8: Crash file – point of failure ... 158

Figure 9.9: Crash file at record 31 042 .. 159

Figure 9.10: iotop output file ... 160

© University of Pretoria

file:///D:/Users%20Documents/madelain1/My%20Documents/Thesis%20correction/Thesis-updated-final-printed.docx%23_Toc423810219

xi

Figure 9.11: iotop output file – point of failure of C++ program .. 161

Figure 10.1: Adapted NMS component diagram for prototype implementation 165

Figure 10.2: Prototype implementation plan ... 166

Figure 10.3: Focus of Experiment 2 – Event Investigation of adapted NMS architecture 167

Figure 10.4: Focus of Experiment 3 – Near-Miss Formula in adapted NMS architecture 184

Figure 10.5: Adapted crash file for near-miss detection .. 186

Figure 10.6: Crash file with bigger video and smaller flash disk .. 188

Figure 10.7: Filtering of Processes field to confirm fluctuation in the number of processes 188

Figure 10.8: iotop output file – records matching near-miss indicators in terms of Disk read

and Disk write .. 189

Figure 10.9: Records in crash file that match three near-miss indicators 189

Figure 10.10: FCM of factors in near-miss indicators ... 191

Figure 10.11: Near-miss formula ... 191

Figure 10.12: Focus of Experiment 4 - Near-Miss Classifier in adapted NMS architecture . 191

Figure 10.13: Program code for near-miss formula ... 192

Figure 10.14: First near-miss alerts in the crash file .. 193

Figure 10.15: Last near-miss alerts in the crash file .. 193

Figure 10.16: Proposed method for forensic analysis and identification of near-miss indicators

.. 195

Figure 12.1: SOM output maps for first 1000 records ... 209

Figure 12.2: Some component maps of first 1000 records – first record appears as an outlier

.. 210

© University of Pretoria

file:///D:/Users%20Documents/madelain1/My%20Documents/Thesis%20correction/Thesis-updated-final-printed.docx%23_Toc423810236

xii

List of tables

Table 2.1: Lists of real-life cases of major software failure collected by the researcher online

over a period of time .. 24

Table 2.2: Prominent cases of recent software failures collected by the researcher 27

Table 2.3: Researcher’s summary of 3 cases of radiation overdose due to software errors ... 37

Table 3.1: Differences between digital forensics and troubleshooting 72

Table 3.2: Suitability of digital forensics for the requirements of an accurate software failure

investigation ... 73

Table 4.1: Challenges to the forensic investigation of software failures 78

Table 6.1: Failure probability values ... 122

Table 10.1: SOM maps of selected program attributes over time ... 171

Table 10.2: SOM maps of Latency for various data sets close to the point of failure 175

Table 10.3: WMA of Latency across various data sets .. 176

Table 10.4: SOM maps of iotop output for various data sets... 178

Table 10.5: SOM maps of running processes, Disk read, and Disk write close to the point of

failure ... 180

Table 10.6: List of running I/O processes throughout the program’s execution before the point

of failure ... 181

Table 10.7: WMA of Disk write across various data sets .. 182

Table 10.8: WMA of Disk read across various data sets ... 183

© University of Pretoria

1

 CHAPTER 1

INTRODUCTION

1.1 Introduction

IT systems are ubiquitous in today’s interconnected society and play a vital role in a number

of industries such as banking, telecommunications and aviation. Software, in particular, is

embedded in most technical and electronic products, ranging from massive machines such as

airplanes to lightweight devices such as mobile phones. Software applications are essential to

the proper functioning of these products and their associated service offerings. Due to the

reliance of modern living on these products and services, software failures that result in their

unavailability or malfunctioning can cause disasters and may even be fatal. Unfortunately, such

software failures have occurred since the beginning of the computer age, as is evidenced by the

number of highly publicised IT accidents reported in the media.

One example of a crisis caused by a software failure is the system outage that occurred at the

Royal Bank of Scotland (RBS), a major bank in the UK, in December 2013. Due to an

unspecified technical glitch, the bank’s various electronic channels were unavailable for a day

and customers were unable to make payments or withdraw cash with their debit cards

(Finnegan, 2013). This failure was not the first experienced by RBS. In June 2012, another

major outage occurred and left millions of customers unable to access their bank accounts for

four days, due to a failure in a piece of batch-scheduling software. As a result, deposits were

not reflected in bank accounts, payrolls were delayed, credit ratings were downgraded and

utility bills were not paid (Worstall, 2012). Recently, in November 2014, RBS was fined 56

million pounds by British regulators for the software failure that occurred in 2012 (BBC News,

2014).

Preventing the recurrence of catastrophes such as the examples quoted above is crucial and

requires a thorough post-mortem investigation to determine and rectify the root cause. To

ensure the validity of its results, such an investigation must be based on reliable digital evidence

such as log files, database dumps and reports from system-monitoring tools. Sound evidence

© University of Pretoria

2

of the software failure promotes the objectivity and comprehensiveness of the investigation,

which implies greater accuracy of the results. Furthermore, reliable evidence is valuable in the

event that the software failure leads to a product liability lawsuit.

However, current informal approaches to failure analysis do not promote the collection and

preservation of digital evidence. Rather than depending on objective evidence analysis, failure

analysis methods often rely on the investigator’s experience with the system to identify the

cause of the problem. Troubleshooting in particular, which is usually the first response to a

system failure, focuses on restoring the system to its operational state as quickly as possible.

This allows little time and resources to collect evidence of the failure. Besides, system

restoration often requires rebooting, which destroys or tampers with valuable information that

could pinpoint the root cause of the problem (Trigg & Doulis, 2008). Both these ‘solutions’

leave the system vulnerable to the recurrence of a similar failure.

In order to ensure that the failure analysis is based on reliable evidence, the investigation must

follow a process that favours the collection and analysis of such evidence. The investigation

must also follow a standard process that can be reproduced by independent investigators to

ensure the objectivity and reliability of the results. The literature indicates that the scientific

method is well suited for this purpose as it requires evidence to confirm a hypothesis made

about the root cause of an investigated event (Young, 2007). It also requires independent

verification to confirm the results of the investigation (Young, 2007). Indeed, the scientific

method is a standard procedure used by scientists to investigate a problem, with the aim to

reduce potential bias from the investigator and ensure repeatability of the results (Bernstein,

2009).

Using an investigation approach that applies the scientific method therefore seems a logical

step to improve the accuracy of current approaches to failure analysis. A brief literature

investigation points to the forensic approach, as forensic science applies the scientific method

to reconstruct past events based on objective evidence (Vacca & Rudolph, 2010). The field of

digital forensics, as the application of forensic science to digital systems, certainly appears to

be a promising solution.

© University of Pretoria

3

Digital forensics follows established procedures meticulously to ensure the accuracy and

completeness of digital evidence and to interpret it objectively based on scientific analysis

(Vacca & Rudolph, 2010). Despite the fact that it is currently limited to criminal and security

events, digital forensics can very well provide an effective alternative for investigating major

software failures. However, as it adopts a reactive approach, digital forensics can only be

applied after the occurrence of a failure. This limits the effectiveness of the investigation, since

volatile data that could serve as potential evidence may be lost or corrupted after a system

crash.

In order to address this limitation of digital forensics, it is suggested that the forensic

investigation be started at an earlier stage, before the software failure actually unfolds, so as to

detect the high-risk conditions that can lead to a major failure. These forerunners to failures are

known in the risk analysis literature as near misses (Jones, Kirchsteiger & Bjerke, 1999). By

definition, a near miss is a hazardous situation where the sequence of events could have caused

an accident had it not been interrupted (Jones et al., 1999). This interruption can be caused by

chance or by human intervention. A simple example of a near miss in everyday life is the case

of a driver crossing a red traffic light at a busy intersection at high speed without causing a

collision.

As a near miss is very close to an entire accident sequence, it provides a fairly complete set of

data about the potentially ensuing accident. Such data can be used as evidence to reconstruct

the impending accident and to identify its root cause. In the case of software applications, the

term ‘accident’ refers to a major failure. By alerting system users of an upcoming failure, the

detection of near misses provides an opportunity to collect at runtime failure-related data that

is complete and relevant. It eliminates the need to log all system activity, which can result in

vast amounts of data presenting challenges for storage and analysis. Since current digital

forensic tools are limited in their ability to handle and interpret large volumes of data (Nassif

& Hruschka, 2011; Guarino, 2013) the detection and analysis of near misses can serve as an

effective data reduction mechanism.

Near-miss analysis is usually performed through so-called near-miss management systems

(NMS), which are software tools used to report, analyse and track near misses (Oktem, 2002).

In many industries that are prone to high-risk accidents, these systems have been implemented

© University of Pretoria

4

for decades with a view to improving safety. Examples of such industries include the aviation,

the nuclear, the chemical, and the healthcare industries (Phimister, Vicki, Bier & Kunreuther,

2004). NMSs have a successful track record in organisations where they have been designed

effectively, as they provide valuable additional information on accidents and their root cause.

For instance, evidence shows that the use of such systems has contributed to the improvement

of safety in the aviation industry (Phimister et al., 2004). It is therefore expected that an NMS

can also be a valuable learning tool with regard to software failures.

An NMS that combines near-miss analysis (obtaining appropriate digital evidence of a failure)

and digital forensics (performing an objective analysis of the evidence) can contribute

significantly to the improvement of the accuracy of the failure analysis. However, such a

system is not available yet and its design still presents several challenges due to the fact that

neither digital forensics nor near-miss analysis is currently used to investigate software failures.

Its existing processes and methodologies are not directly applicable to the specificity of the

software industry (for near-miss analysis) or of software failures (for digital forensics).

For example, digital forensics, which is used to identify and prosecute the perpetrator of a

computer crime, does not provide for quickly restoring a failed system to minimise downtime

before starting the investigation. Regarding near-miss analysis – in many industries, near

misses are obtained from observed physical events and conditions. However, in the software

industry such an exercise is particularly challenging – in the case of software applications,

some near misses might not be visible at all, as no system failure actually occurred.

The aim of this research is to design an NMS that can address the above challenges to facilitate

the forensic investigation of software failures. As illustrated in Figure 1.1, the proposed NMS

lies at the intersection of failure analysis, digital forensics and near-miss analysis. It will focus

on the detection and prioritisation of near misses at runtime with a view to maximising the

collection of appropriate digital evidence of the failure.

© University of Pretoria

5

Digital forensics

Proactive
accident

investigation

Event
reconstruction

through scientific
analysis of digital

evidence

Near-miss analysis

Failure analysis

Causal analysis of
software failures

NMS

Figure 1.1: The proposed NMS in relation to the fields of failure analysis, digital forensics and

near-miss analysis

1.2 Thesis statement

Against the background of the above discussion, the main claim of this research can be

formulated as follows: Near-miss analysis can help identify and collect more relevant and

complete digital evidence of a software failure. This has the potential to improve the accuracy

of the ensuing forensic analysis of the failure.

Proving the above claim through the design of an appropriate NMS is the goal of this research.

1.3 Problem statement

The problem addressed by the current research can be formulated as follows: Current failure

analysis methods are informal and lack accuracy and objectivity, which can lead to the

recurrence of disastrous software failures. The combination of the scientific approach of

digital forensics and the sound evidence of the failure obtained through near-miss analysis has

the potential to address this issue but is not available yet. The design of an NMS to fill this gap

faces a number of challenges due to the specificities of software failure investigations that are

not catered for by existing processes and methodologies of either digital forensics or near-miss

analysis.

1.4 Research Questions

This research will address the above problem by answering the following main research

question: What should the architecture for a near-miss management system look like such that

© University of Pretoria

6

it can improve the completeness and relevance of digital evidence of a software failure, thereby

improving the accuracy of its forensic analysis?

In order to design such an architecture, research will need to be conducted to answer the

following fundamental questions that arise as sub-problems:

 How can the methodology of digital forensics be applied to the investigation of software

failures?

This requires reviewing techniques and procedures used in digital forensics and identifying the

ones suitable for investigating software failures. It also entails adapting relevant but currently

unsuitable procedures in order for them to satisfy the specificity of software failure

investigations.

 How can near-miss analysis be applied to the software industry effectively?

This entails reviewing challenges to near-miss analysis across industries and identifying issues

specific to the software industry. Assessing challenges to near-miss analysis requires a solid

understanding of this discipline and its state-of-the-art. The literature on the topic indicates

that, across industries, the two main challenges to near-miss analysis are the detection and

prioritisation of near misses. These two challenges must therefore be reviewed from a software

application perspective.

Addressing these challenges effectively entails reviewing previous work in near-miss analysis

and identifying solutions, if any, applicable to the software industry. If necessary, these

solutions can be modified according to the specific requirements of the software industry.

Otherwise, new and suitable solutions must be provided.

1.5 Scope and context of the study

This research is limited to operational failures, in other words software failures that occur after

the design, development and testing phases when a system is in production. Contrary to a pre-

production system, an operational system is a finished product, which has been tested and is

expected to work as intended. The margin for failures is therefore low due to the potentially

severe impact of such occurrences..

© University of Pretoria

7

Operational failures are the focus of this thesis as the reliability and performance level of a

system can only be truly assessed when in production. Contrary to software failures

experienced during software development and testing, operational failures occur in real-life

affecting “real” users. They are harder to contain and predict than failures and defects that

occur during system development, where the system is operating in a controlled and safe

environment and potential recurrences of the failure are not detrimental to the intended end

users. The cost of operational failures is therefore significantly higher compared to pre-

production failures. The associated cost of a forensic investigation is therefore more valuable

for an operational system.

1.6 Research methodology

The following steps will be taken to solve the problem stated in Section 1.3.

The first step is to conduct a literature study on failure analysis to understand current practices

in this field. This is achieved through reviewing the literature on major software failures that

occurred within the last five years. The cause and impact of the failures are first reviewed to

assess the significance of the problem. Then follows an extensive study of the literature

available on the investigation of such failures.

The second step is to critically assess the effectiveness of the documented failure investigation

process and identify its limitations in terms of the accuracy and objectivity of the results.

Requirements for improvement are subsequently formulated, which constitute the foundation

for the design of the NMS proposed in this research.

The third step is to design a solution for the above requirements, in the form of a suitable NMS

architecture. The first aspect of the architecture is the investigation process, which is based on

digital forensics and therefore requires a review of the digital forensics process from a software

failure perspective. The review aims to determine how digital forensic methodology can be

applied to software failure investigations and what changes need to be made. An adapted digital

forensic investigation process that meets the specified requirements is then designed and tested

against the case study of a real-life software failure. The second aspect of the NMS architecture

involves the near-miss analysis and therefore requires its review and critical examination from

a software failure perspective. Challenges to near-miss analysis for investigating software

© University of Pretoria

8

failures are examined. Solutions to the challenges are then proposed, in the form of a definition

of near misses for software systems and a mathematical model to enable the detection of near

misses based on this definition.

Afterwards an NMS architecture that integrates all the above partial solutions is designed. The

NMS includes all the necessary phases of a digital forensic investigation, as well as the created

mathematical model to detect near misses and enable the collection of evidence of the failure

before the root-cause analysis is conducted.

The fourth and final step is to test the viability of the NMS architecture through the

implementation of a prototype. Several experiments are conducted to demonstrate the detection

of near misses and the forensic investigation of a failure based on the evidence collected from

the near-miss detection.

1.7 Terminology used in the thesis

In order to avoid any misunderstanding, it is important to correctly interpret the terminology

used in this thesis. Therefore, the researcher provides a brief definition of what is meant by the

relevant terms used around the concepts of an accident, a failure and a near miss.

Event: a real-time factual occurrence that could seriously impact an operation (Jucan, 2005)

Condition: Any system state, whether precursor or resulting from an event, that may have

adverse implications for the normal system’s functionality (Jucan, 2005).

Accident: An undesirable event resulting in injury or damage (Jones et al., 1999).

Accident sequence: Sequence of events that result in an accident. The accident sequence starts

with an initiating event such as a human error, and ends when the accident unfolds, also known

as the accident end-state (Saleh et al., 2013).

Incident: Any undesirable event, including accidents and near misses (Jones et al., 1999).

© University of Pretoria

9

Cause: A condition or an event that results in or participates in the occurrence of an effect.

Causes can be classified as:

 Direct Cause: A cause that resulted in the occurrence.

 Contributing Cause (also Contributing Factor): A cause that contributed to an

occurrence but would not have caused it by itself.

 Root Cause: The cause that, if corrected, would prevent recurrence of this and similar

occurrences (Jucan, 2005).

Failure: the inability of a system or component to perform its required functions within

specified performance requirements (IEEE, 1999). This definition applies to both hardware and

software system failures.

Digital forensics: the use of scientifically derived and proven methods towards the

preservation, collection, validation, identification, analysis, interpretation and presentation of

digital evidence derived from digital sources for the purposes of facilitating or furthering the

reconstruction of events found to be criminal, or for anticipating the unauthorised actions

shown to be disruptive to planned operations (Palmer, 2001).

Near miss: a hazardous situation, event or unsafe act where the sequence of events could have

caused an accident if it had not been interrupted (Jones et al., 1999).

Near-miss management system: software system used to report, analyse and track near misses

(Oktem, 2002).

Since the concept of a near miss is pivotal to this study, it requires a more specific definition

as the generic one presented above. As it is not formally used in the software industry and has

not yet been applied to digital forensics, there is no literature available on near misses with

regard to software systems. The next section therefore provides an explanation of this concept

as used in other industries and then formulates a definition of a near miss relevant for the

purpose of this research.

© University of Pretoria

10

1.8 Defining the near-miss concept

1.8.1 Current definitions of near miss

The concept of a near miss is primarily used in the domain of risk analysis and safety with

regard to accident investigation and prevention (Saleh, Saltmarsh, Favarò, & Brevault, 2013).

In the same way that what constitutes an accident differs from one industry to the next, what is

considered a near miss also varies between industries. Even within an industry, a near miss

may be defined differently from one organisation or field of practice to the next.

In order to fully comprehend the concept, this section presents an explanation of a near miss

from three perspectives. Firstly, a general discussion of a near miss in everyday life is provided.

Secondly, near misses are defined more formally from a risk analysis and safety perspective.

Finally, industry-specific definitions of near misses are provided to illustrate how the formal

concept is applied in practice.

1.8.1.1 General definition of a near miss

The expression ‘near miss’ can be interpreted incorrectly as ‘almost missing a set target’. The

expression is better understood through its synonyms which are a ‘near accident’, ‘close call’,

and ‘near hit’. A general and broad explanation of the expression ‘near miss’ is provided as

follows:

A near miss is an unplanned event that did not result in injury, illness, or damage – but

had the potential to do so. Only a fortunate break in the chain of events prevented an

injury, fatality or damage; in other words, a miss that was nonetheless very near (MIC,

2014).

According to the American Heritage Dictionary of Idioms (Ammer, 2013), the expression ‘near

miss’ originated during World War II, to refer to a bomb exploding in the water close enough

to a ship to damage its hull. Soon afterward it acquired its present meanings.

1.8.1.2 Definition of near miss from a risk analysis and safety perspective

In the risk analysis and safety literature, a near miss is defined based on its relation to an

accident or an accident sequence.

© University of Pretoria

11

The concept near miss is used to identify high-risk conditions that can lead up to an accident.

Such forerunners to failures are formally known as accident sequence precursors (ASP) or more

simply as accident precursors (Saleh et al., 2013). ASPs are defined as “conditions, events and

sequences that precede and lead up to accidents” (Phimister et al., 2004). They are also defined

as ‘‘events that must occur for an accident to happen in a given scenario’’ (Carroll, 2004).

A near miss is a special type of ASP. It is a precursor whose elements differ only slightly from

the potential accident or whose mitigating factors are unlikely or not robust (Phimister et al.,

2004). In contrast to other ‘early’ precursors in the accident sequence, a near miss is the closest

to the accident end-state (Saleh et al., 2013). It is very similar to the complete accident

sequence, with only a few elements missing, either by chance or due to some human

intervention. In simpler terms, a near miss is one step away from the accident. The researcher

illustrates in Figure 1.2 this relation between a near miss, the preceding ASPs and the associated

accident. In Figure 1.2, the accident is preceded by four ASPs. The fourth and last ASP is a

near-miss event in case the accident does not unfold.

Initiating
event

Accident

Near miss

Accident sequence

Near-miss sequence
No Accident

Interruption?ASP1 ASP2 ASP3 ASP4

No

Yes

Figure 1.2: Relation between a near miss, its preceding ASPs and the subsequent accident in the

accident sequence

Based on the above discussion, a near miss can be defined generally as “a hazardous condition

where the accident sequence was interrupted” (Andriulo & Gnoni, 2014). This definition is

discussed as follows based on the near-miss example mentioned in Chapter 1.

A simple fictitious example of a near miss in everyday life is a driver crossing a red traffic light

at a busy intersection at high speed without causing a collision. In this example, there are two

risky situations or ASPs: (1) crossing a red light, and (2) driving at high speed. Crossing a busy

© University of Pretoria

12

intersection is a contributing factor to the likelihood of an accident but not an ASP, as it cannot

by itself lead to an accident. The combination of the two ASPs and the contributing factor

makes this event a high-risk situation conducive to an accident. The fact that no collision

occurred makes this event a near miss. Various scenarios are possible to explain the lack of a

collision:

 The driver’s driving ability to avoid incoming cars

 The carefulness of the drivers of the incoming cars

 The speeding driver and the driver of an incoming car managed to stop right before

crashing into each other

 Luck

The concept of near miss can be applied to almost any process in any industry. It is currently

used in a number of industries including the chemical, aviation, nuclear, military and healthcare

industries to learn about accident causes and prevent their occurrence and/or recurrence

(Phimister, Oktem, Kleindorfer, & Kunreuther, 2003). Some interest has also been shown in

its application in the construction industry (Wu, Yang, Chew, Yang, Gibb, & Li, 2010), oil and

gas industry (Cooke, Ross, & Stern, 2011), financial industry (Mürmann & Oktem, 2002;

Oktem, Wong, & Oktem, 2010), manufacturing industry (Gnoni, Andriulo, Nardone &

Maggio, 2013) and outdoor activity sector (Goode, Salmon, Lenne & Finch, 2014). Various

examples of near misses in some of these industries are provided in Kleindorfer, Oktem,

Pariyani and Seider (2012). Examples of how near misses are defined in some of these

industries are provided next in an attempt to determine how suitable these definitions are for

the software industry.

1.8.1.3 Industry-specific definitions of near misses

This section presents definitions of near misses from three different industries: the aviation

industry, which was the pioneer in the formal investigation of near misses (NASA, 2006); the

medical field, which has a considerable amount of literature on the topic; and the occupational

health and safety sector, which touches a number of industries. Examples are provided to

illustrate the definitions, after which a critical assessment of the suitability of these definitions

with regard to software systems is conducted.

© University of Pretoria

13

In the aviation industry, more specifically in air-traffic control, a near miss is defined as “any

circumstance in flight where the degree of separation between two aircraft is considered by

either pilot to have constituted a hazardous situation involving potential risk of collision” (US

Department of Defense, 2005). This definition limits near misses to the specific scenario

whereby two aircraft passed one another too closely without causing a collision.

In the medical field, a near miss is defined as “an event that could have resulted in unwanted

consequences, but did not because either by chance or through timely intervention the event

did not reach the patient” (ISMP-Canada, 2014). For example, a hospital doctor mistakenly

prescribes penicillin to a patient who is allergic to the drug. The error goes unnoticed by both

the pharmacist and the nurse, but the patient mentions his allergic condition just before

swallowing the tablets and the nurse stops him just in time (Nashef, 2003).

In the occupational health and safety domain, near misses are defined as “incidents where no

property was damaged and no personal injury sustained, but where, given a slight shift in time

or position, damage and/or injury easily could have occurred” (US Department of Labour,

2010). For example, a construction worker is walking on a designated path on a construction

site and a wrench falls from scaffolding above, nearly hitting him (Pettinger, 2013).

Although near-miss definitions were provided for only three industries, they illustrate various

points about an industry’s view on the near-miss concept.

Firstly, the above definitions all define near misses as observed physical events. Two factors

are considered:

 The actual impact of the event (no collision in air-traffic control, patient not affected in

medical field, or no injury or property damage in occupational health and safety)

 The potential impact of the event if the accident sequence had not been interrupted

(aircraft collision, affected patient, property damage or injury)

Secondly, the definitions are narrow in the sense that they point to a specific type of event or

situation, sometimes only applicable in the industry at hand (e.g. aircraft collision only

applicable to aviation, affected patient only applicable to medicine). Therefore none of these

definitions can be applied to the software industry for the following reasons:

© University of Pretoria

14

 In the case of software applications, no physical near-miss event might be observed

since no ‘accident’ occurred (the term ‘accident’ referring to a failure).

 The exact impact of a software ‘accident’ is not known beforehand. As illustrated

earlier with the example of the RBS software failure, the consequences of software

failures vary, based on the system involved. Since consequences can range from

financial loss to loss of life, they cannot all be grouped under the expression ‘injury or

property damage’ as is the case in occupational safety.

A broader and more relevant definition of a near miss with regard to software systems is

therefore required. This is formulated in the next section.

1.8.2 Proposed definition of a near miss for software systems

The starting point for defining near misses in software systems is the following definition from

Jones et al. (1999): a near miss is “a hazardous situation, event or unsafe act where the sequence

of events could have caused an accident if it had not been interrupted”.

In terms of software systems, the term ‘accident’ may be substituted by the term ‘major failure’.

Indeed, the software literature does not refer to adverse events as accidents but as failures.

According to the definition provided earlier, accidents result in significant loss. Since a

software failure may or may not result in loss, it can be argued that significant loss is incurred

only when the failure is severe. Therefore the following definition roughly based on that of

Jones et al. (1999) above is proposed for a near miss with regard to software systems:

A near miss is an unplanned high-risk event or system condition that could have caused a major

software failure if it had not been interrupted either by chance or timely intervention.

The researcher illustrates the relation between a near miss and the associated software failure

in terms of risk and loss in Figure 1.3. The early precursors in the accident sequence are also

indicated in Figure 1.3.

The above definition is the general definition for near misses used throughout the rest of this

thesis. In Chapter 6, a formal definition for near misses is provided to enable their automated

detection by the proposed NMS.

© University of Pretoria

15

near miss

Failure

Minor failure

Major failure

Time

Loss

ASP1 ASP2 ASP3

Risk

Figure 1.3: Relation between near-miss and failure in terms of risk level of event and loss

incurred

Based on the above definition, examples of near misses in software systems can now be

recognised. The researcher experienced a practical example of a near miss with a mobile

procurement application developed in her research centre (Cashmore, 2012). Due to ineffective

memory management caused by a programming error, one user unwittingly exceeded the

specified limit of items in the product catalogue stored on his phone, and continuously added

new items to the catalogue. Contrary to what would normally have been expected, this did not

cause the application to crash. Investigations of this near miss revealed that the programming

error overruled the code written to enforce the limit on the number of catalogue items.

1.9 Layout of thesis

This thesis consists of 11 chapters as depicted in Figure 1.4.

Chapter 1 provides an introduction to the thesis and indicates how the research is structured.

It also provides a brief introduction to the concept of near miss, how it is defined across

industries and its proposed definition for the software industry as used throughout the thesis.

Since near-miss analysis is the central point of this research, a clear understanding of the

concept of a near miss (new to digital forensics) is essential.

Chapter 2 is an overview of past software failures of significant magnitude, followed by a case

study of their ineffective investigation. It provides a motivation for the significance of this

study and a background for further explanations of the proposed NMS. Requirements to

improve the investigation of software failures are provided.

© University of Pretoria

16

Chapter 3 provides background information on digital forensics and motivates its potential

application in the investigation of software failures, based on the requirements specified in

Chapter 3.

Chapter 4 examines challenges to the application of digital forensics to software failure

analysis and reviews previous work conducted on this topic. It then presents an adapted forensic

investigation process suitable for software failures. This investigation process is based on

solutions identified from the literature review of previous work and on the requirements

specified in Chapter 2. The proposed process is validated with a case study of the real-life

example of a major software failure. Limitations of the process are discussed, following the

evaluation of the results of the case study.

Chapter 5 proposes near-miss analysis as a solution to the limitations of the forensic process

described in the previous chapter. An overview of the field of near-miss analysis is provided.

Challenges to near-miss analysis are then presented from a software perspective.

Chapter 6 presents proposed solutions to the challenges regarding near-miss analysis

identified in the previous chapter. The solutions are presented as a mathematical model for

defining, detecting and prioritising near misses.

Chapter 7 presents the NMS architecture. The architecture combines the mathematical model

designed in Chapter 6 with the adapted forensic investigation process presented in Chapter 4.

Chapter 8 is the first chapter of a three-part series that describes the implementation of a

prototype for the NMS architecture proposed in the preceding chapter. The prototype focuses

on the detection of near misses. This chapter presents the design phase of the prototype

implementation.

Chapter 9 describes the first experiment of the prototype implementation. The goal of this

experiment is to obtain a data set suitable for the subsequent forensic analysis and near-miss

detection.

© University of Pretoria

17

Chapter 10 is the last of the three chapters describing the prototype implementation. It portrays

the last experiments that were conducted to enable the detection of near misses at runtime.

Chapter 11 concludes the thesis.

Chapter 1:
Introduction

Chapter 2:
Software failures: overview

of recent cases

Chapter 3:
Using digital forensics for
accurate investigation of

software failures

Chapter 4:
The adapted digital forensic

process for failure
investigations

Chapter 5:
Near-miss analysis: an

overview

Chapter 7:
The NMS architecture

Chapter 9:
Prototyping the NMS – The

data set

Chapter 10:
Prototyping the NMS –

Detecting near misses at run
time

Chapter 11:
Conclusion

Prototyping
the NMS

Chapter 8
Prototyping the NMS – The

design phase

Chapter 6:
The near-miss detection and

prioritisation model

Figure 1.4: Graphical depiction of layout of thesis

© University of Pretoria

18

 CHAPTER 2

SOFTWARE FAILURES: OVERVIEW OF RECENT

CASES

2.1 Introduction

Since major software failures often result in disasters ranging from financial loss to loss of

lives, preventing their recurrence is absolutely necessary. As indicated in Chapter 1, a post-

mortem investigation is required to identify their root cause and implement appropriate

countermeasures. However, history shows that such an investigation is often conducted

inefficiently and inaccurately, with no proper supporting evidence, which allows for the

recurrence of severe accidents.

This chapter reviews the problem of major software failures with the aim of determining how

to improve the accuracy of their root-cause analysis so that major accidents do not reoccur.

This is achieved through the following two steps. Firstly, a review of recent cases of major

software failures is conducted to demonstrate the reality and seriousness of this issue. Secondly,

an analysis of the investigation of those failures is performed to identify limitations and

establish requirements for improvement. These requirements form the basis for the design of

the NMS proposed in this thesis.

In order to demonstrate the diversity of software failures, the presented cases of failures cover

a number of different industries. Although their public reports are obtained mainly from the

software literature, some were encountered in the medical literature. Indeed, reports on recent

cases of software failures in the healthcare industry are scarce in the computer science field,

especially in the software literature. Therefore, it was deemed necessary to also review relevant

literature from the medical domain to broaden the pool of software failure cases.

Medical software failures are particularly relevant for the purposes of this research for two

reasons: they can be fatal and legislation requires an in-depth investigation of these accidents.

© University of Pretoria

19

Hence, comprehensive reports on their investigation are sometimes available, in contrast to the

lack of proper reporting on software glitches with lesser consequences in other industries.

This chapter is structured as follows. Section 2.2 provides background information on software

failures by presenting a definition of a software failure and explaining the main causes and

consequences of these events. Section 2.3 reviews recent cases of severe software failure.

Section 2.4 examines the typical approach for investigating software failures through a case

study of three fatal medical software failures and the investigations conducted subsequently.

Finally, Section 2.5 presents the lessons learnt from the literature review of these software

failures and develops requirements for improving their investigation.

2.2 Background on software failures

This section presents some general background information on the problem of software

failures. The section first establishes a definition of a software failure as is relevant for this

research. This is followed by a review of the causes, manifestations and consequences of

software failures.

2.2.1 Definition of a software failure

According to Laprie (1992) “a system failure occurs when the delivered service no longer

complies with the specifications, the latter being an agreed description of the system's expected

function and/or service”. This applies to both hardware and software failures.

Similarly, the IEEE computer dictionary defines a failure as “the inability of a system or

component to perform its required functions within specified performance requirements”

(IEEE, 1990). This definition also applies to both hardware and software systems.

More commonly, the universal dictionary of the English language defines a failure as “non

performance of action which was necessary, expected” (Wyld, 1961).

All three definitions above present the term failure in relation to some predefined

specification(s). These specifications set the expected level of performance of a system, in other

words what is considered ‘normal’ functioning.

© University of Pretoria

20

Therefore, for the purposes of the research in hand, the definition of a software failure is an

unplanned cessation of a software system or component to function as specified.

Software systems can fail for various reasons as will be discussed next.

2.2.2 Common causes of software failures

Common causes of software failures include resource exhaustion (e.g. memory leaks), system

overload (e.g. network congestion), logic errors (e.g. incorrect formula that leads to

miscalculations), misconfigurations (e.g. inappropriate settings due to changes) and security

breaches (e.g. malicious software such as viruses and worms) (Pertet & Narasimhan, 2005).

Besides the above causes, human errors such as entering incorrect data, and glitches in routine

maintenance operations, for instance failed software upgrade, also account for a significant

number of failures. Industry research (Vision Solutions, 2004) shows that the latter accounts

for about 15% of all software failures. Environmental problems (e.g. a power failure) can also

cause a software system to stop functioning properly.

Failures can originate from the software programs of the server, the client or the network

system (Marcus & Stern, 2003). In each case, they can manifest in either of several ways

presented below.

2.2.3 Manifestations of software failures

Generally speaking, software failures result in downtime and poor system performance. The

standard definition of downtime is “the period of time during which a system or component is

not operational or has been taken out of service” (IEEE, 1990). The term ‘outage’ is also often

used as a synonym of downtime. It is worth noting that a failure results in unplanned downtime,

in contrast to planned downtime, which is the result of scheduled maintenance operations such

as backups and upgrades (Pertet & Narasimhan, 2005).

Downtime and poor system performance can manifest in any one of the following ways as

indicated by Pertet and Narasimhan (2005):

© University of Pretoria

21

 Partial or entire system unavailability: Either the entire system or parts of it are

down. The user may receive error messages such as “file not found” or “system

unavailable” or his request may time out.

 System exceptions and access violations: The executing process may terminate

abruptly, causing the application to hang or crash, with or without a warning message.

 Incorrect results: The system is operational but delivers wrong results such as some

miscalculations or incorrect items (e.g. the wrong dosage of a requested medication).

 Data loss or corruption: The user is unable to access previously available data (e.g. a

previously saved file) due to some accidental erasure or corruption.

 Performance slowdown: The system is unusually slow to respond to a user query.

In many cases, awareness of a software failure only occurs when the failure becomes visible to

the end-users in one of the ways mentioned above. In most cases the above signs of software

failure result in mere inconvenience, but they can in some instances have tragic consequences

and cause a negative impact on both the service provider and the end-users. Consequences of

software failures are reviewed next.

2.2.4 Consequences of software failures

A major software failure affects both the service provider and the service consumer, and it may

have a negative impact on both company revenue and end-user well-being.

The service provider mainly suffers from a substantial loss of revenue. This can be due to a

loss of productivity, repair costs (repairing and replacing damaged equipment, hiring external

consultants to resolve the problem), product liability litigations or compensation paid to

frustrated customers (Ponemon Institute, 2011). In addition, the service provider also suffers

from a tarnished reputation, which can cause a fall in its stock price, affect staff morale and in

turn result in increased customer churn (Mappic, 2013). Study reports indicate that unplanned

downtime costs businesses across North America and Europe a total of 26.5 billion USD in

lost revenue each year (Harris, 2011) and an average of 5 600 USD per minute (Ponemon

Institute, 2011).

© University of Pretoria

22

Furthermore, a system crash can open the door for unauthorised access to confidential

information by weakening security barriers such as firewalls and intrusion detection systems

(Bihina Bella, Eloff & Olivier, 2012). This can lead to a breach of privacy of the customers’

records or of the company’s trade secrets.

The service consumer can suffer from frustration because the service is unavailable, slow or

delivers incorrect results. As software is embedded in a range of devices in a number of

industries, a failed software application can affect any area of a consumer’s day-to-day life,

including the financial, transport, telecommunications, legal and healthcare areas. Some

examples of the consequences of failed software in the above industries include the following:

overcharged bills, cancellation of scheduled flights, unavailability of mobile communication

services, wrongful arrests, and wrong medical procedures. Based on how widely the software

system is used, these consequences can span entire countries and even cross continents. This

is illustrated in the next section where real-life examples are offered of major software failures

in the industries mentioned above.

2.3 Overview of recent major software failures

This section reviews cases of major software failure that occurred within the last six years to

illustrate the prevalence of such events and their catastrophic impact. The review starts with a

list of online sources of software failure cases in Section 3.3.1 and then discusses in more detail

interesting cases selected from these sources in Section 3.3.2.

2.3.1 Lists of cases of major software failure available online

For the sake of protecting their public image, affected companies often underreport

catastrophes that result from software malfunctions (Sommer, 2010), even more so when

human lives were at risk (Bogdanich, 2010). However, various lists of worldwide software

failures are publicly available on the web in an attempt to shed light on the extent of the problem

and help avoid the recurrence of similar problems. Section 2.3.1.1 presents lists collected from

the computer science literature by the author of this thesis, while Section 2.3.1.2 reviews lists

collected by the author from the medical field. As mentioned in the Introduction (2.1), medical

accidents are of particular interest to this research as detailed reports on their investigations are

usually available. This is in contrast to the other failures listed in this section, where only

© University of Pretoria

23

limited information about their investigation and technical details of the failures are provided.

The discussion of these cases of software failures is therefore on a high level for the purpose

of illustrating the variety and severe impact of major software failures.

2.3.1.1 Lists from the computer science field

Table 2.1 gives a summary of ten lists of software failure cases maintained by IT professionals.

These lists were used to find the real-life examples of software failures that are discussed later

in this chapter. Most of the lists provide a brief summary of the reported failures and focus on

their impact, with little or no details on what caused the problem or how it was resolved.

Additional research work is therefore required to find this information. For this reason, Table

2.1 has seven columns that help assess how detailed and complete the list is, since detailed lists

require less additional research work. The seven columns are as follows:

 Name or source of list: The title of the list, if available, or its website

 Author: Name and affiliation of the main author of the list

 Date of earliest failure: Year and month (if available) of earliest failure recorded in

the list

 Date of latest failure: Year and month (if available) of latest failure recorded in the list

 Failure count: Number of entries in the list

 Source of reference material provided? The entry is either a yes or a no, depending

on whether the list provides references to documentation about the failure

 Technical details provided? The entry is either a yes or a no, depending on whether

the list provides details about the cause of the failure and how it was investigated

In addition, Table 2.1 has an extra field called “Selected cases” that lists the failures that were

selected from each online source for further discussion. These examples were selected by the

author according to the following criteria: their severity, diversity, learning opportunity in

terms of root-cause identification and failure resolution, as well as how much additional

technical information could be found. The latter was limited for many of the examples.

The author of this thesis classified the lists as either dynamic or static, based on when last they

were updated. Dynamic lists are updated as new events occur, while static lists are no longer

updated. Several static lists rank events based on their severity.

© University of Pretoria

24

The lists in Table 2.1 are sorted in descending order based on the date of the latest failure in

each list. Table 2.1 shows that major software failures have been a source of concern for

decades in various parts of the world, with cases having occurred as early as 1962. The table

also shows that information on how the failure was investigated and resolved is rarely available,

which may suggest that the investigation process was not documented or was kept confidential.

Another observation from the table is the fact that some failures are reported in several lists,

confirming their significance. In particular, the Therac-25 disaster is reported in every list

whose earliest failure occurred before 1985. This disaster is therefore worth some attention and

is discussed in detail in Section 2.4.

Table 2.1: Lists of real-life cases of major software failure collected by the researcher online

over a period of time

Name or source

of list

Author Date of

earliest

failure

Date of

latest

failure

Failure

count

Source of

reference

material

provided?

Technical

details

provided?

Selected cases

Dynamic lists

The Risks Digest,

online newsletter

Peter Neumann,

Computer Science

Lab, SRI

International,

USA

Aug.

1985

Nov.

2014

Events

reported

every week

since 1986

Yes Yes (details

on cause but

not on

investigation

into failure)

Rent troubles at New

York City public

housing agency in

2009 (Fernandez,

2009); Blackberry

outage in 2011

(Whittaker, 2011).

SoftwareQATest.

com

Rick Hower,

software testing

consultant

1983 Apr.

2014

80 No No RBS failure in 2012

(Finnegan, 2013);

Axa Rosenburg

trading error in 2011

(Greene, 2011).

“Collection of

Software Bugs”

Thomas Huckle,

Institut für

Informatik in

Munich, Germany

1962 Apr.

2014

Over 50

cases in

different

industries

Yes No (details in

reference

material only)

Therac-25 disaster in

1985-1987 (Leveson

& Turner, 1993).

SQS.com,

software quality

testing company

SQS consultants 2010 Dec.

2013

10 per year

(most are

high

profile)

No No United Airlines

failure in 2012

(Karp, 2012); UK

organ donor register

error in 2010

(Roberts, 2010)

Static lists

© University of Pretoria

25

Name or source

of list

Author Date of

earliest

failure

Date

of

latest

failure

Failure

count

Source of

reference

material

provided?

Technical

details

provided?

Interesting cases

ACM blog Bertrand Meyer,

Chair of Software

Engineering, ETH

Zurich,

Switzerland

1985

(referenc

e to The

Risks

Digest)

2011 Not

available,

cases

spread out

on various

articles

Yes No (details in

reference

material)

French National

pension fund error

in 2009 (Durand-

Parenti, 2009)

“10 Seriously

Epic Computer

Software Bugs”,

from

listverse.com, a

website that

provides top 10

lists on various

topics

Andrew Jones, no

affiliation

provided

1982 2005 10 No Yes (details

on cause but

not on

investigation

into failure)

Therac-25 disaster

in 1985-1987

(Leveson & Turner,

1993)

“20 Famous

Software

Disasters”, from

DecTopics.com, a

website on

software

development

topics

Unspecified 1962 2005 20 Yes (many

links are

outdated)

Yes (details

on cause but

not on

investigation

into failure)

Multidata radiation

accidents in 2001

(McCormick, 2004).

Software Horror

Stories

Nachum

Dershowitz,

School of

Computer

Science, Tel Aviv

University, Israel

1968 2004 107 Yes Yes (details

on cause but

not on

investigation

into failure)

Therac-25 disaster

in 1985-1987

(Leveson & Turner,

1993)

“History’s Worst

Software Bugs”,

from Wired

News.com,

technology news

website

Simon Garfinkel,

no affiliation

provided

1962 2000 10 Yes Yes (details

on cause but

not on

investigation

into failure)

Multidata radiation

accidents in 2001

(McCormick, 2004);

Therac-25 disaster

in mid-1980s

(Leveson & Turner,

1993)

“10 historical

software bugs

with extreme

consequences”,

from

Pingdom.com, a

website-

monitoring

company

Unspecified 1980 2000 10 Yes No Therac-25 disaster

in mid-1980s

(Leveson & Turner,

1993); Multidata

radiation accidents

in 2001

(McCormick, 2004);

© University of Pretoria

26

It is worth noting that although the above lists present software failures in a wide range of

industries, they do not provide recent examples of software failures in the medical field. Recent

examples of such failures are therefore presented in the next section.

2.3.1.2 Online sources of software failures from the medical field

As software is embedded in a number of medical devices, a good place to start looking for

medical software failures is the portal of the FDA, the U.S. Food and Drug Administration,

where adverse events due to faulty medical devices have been reported since 1991 (FDA,

2013). A prominent case from the FDA portal is a fatal oxygen system failure in Minnesota,

USA, in 2010 (Charette, 2010).

Another valuable source of information on medical software failures is the website of the IAEA

(International Atomic Energy Agency) (IAEA, 2013a), which provides detailed reports on past

radiation therapy accidents and related course material with a view to preventing their

recurrence. Radiation accidents due to software errors gained prominence with the Therac-25

disaster mentioned earlier (Leveson, 2000) while the IAEA presents more recent cases. The

New York Times newspaper (Bogdanich, 2011) also published a series of comprehensive

articles on the topic in 2010, such as the fatal case that occurred in a New York City hospital

in 2005 (discussed in detail in Section 2.4).

The next section reviews the cases of software failure selected from the above sources.

2.3.2 Overview of prominent cases of recent software failure

History shows ample examples of the devastating effect of major software failures. Table 2.2

presents a summary made by the author of this thesis of ten of the cases listed earlier in Table

2.1 and the examples mentioned in Section 2.3.1.2. The table only lists failures that occurred

from 2009 onwards. Selected failures that occurred earlier are discussed in Section 2.4 under

radiation therapy accidents.

Table 2.2 has nine columns that capture the essence of each failure, and the last three indicate

how its root cause was identified, for how long the bug was present before its discovery and

how it was fixed. The researcher specifically introduced these three fields to highlight the

© University of Pretoria

27

inefficiency of the investigation process and its adverse effect on the improvement of the

system. Besides their severity and diversity, the examples were selected based on the

availability of information on the approach that was used to solve the failure. The examples are

grouped according to the industry or sector affected. Five industries and sectors are

represented: finance, airlines, mobile telecommunications, public services (government and

law enforcement) and healthcare. Software failures in these industries have a direct effect on

the daily life of service consumers. A brief description of each of the nine columns in Table

2.2 follows next:

 Industry/sector: The industry or sector affected

 Company/institution: The company or institution that experienced the failure

 Failure description: A brief description of the failure

 Date: Year of the failure (when available, the month is also specified)

 Cause of failure: The reported root cause of the failure, if available

 Impact: Consequences of the failure

 How was the root cause identified? Approach used to identify the source of the failure

(usually it is done either by troubleshooting or through a comprehensive investigation)

 How long was the error present before its discovery? Time duration between the

introduction of the error in the software and its discovery, if available

 How was the error fixed? Approach used to correct the faulty software, if available

Table 2.2: Prominent cases of recent software failures collected by the researcher

Industry /

Sector

Company /

Institution

Failure description Date Cause of

failure

Impact How was the

root cause

identified?

How long

was the error

present

before its

discovery?

How was the

error fixed?

Finance

RBS (Royal

Bank of

Scotland)

Total outage: online

and offline banking

services unavailable

for four days in 2012

and for one day in

2013 (Finnegan,

2013)

Dec. 2013

and Jun.

2012

Botched

upgrade to

batch-

processing

software

13 million

affected users

throughout

the UK +

GBP125

million in

compensation

and system

recovery

Independent

review

conducted at the

request of

government

(Financial

Services

Authority)

Error

introduced

during

upgrade, date

unspecified

Troubleshooting

(patch from

manufacturer)

but problem not

entirely fixed

© University of Pretoria

28

Industry /

Sector

Company /

Institution

Failure description Date Cause of

failure

Impact How was the

root cause

identified?

How long

was the error

present

before its

discovery?

How was the

error fixed?

AXA

Rosenburg

group

Incorrect modelling

of trading strategy in

investment portfolio

for two years

(Greene, 2011)

Jun. 2009

(discovery

of error)

Apr. 2010

(disclosure

of coding

error)

Coding error

in

quantitative

investment

model,

which

minimised

an important

risk factor

Fraud charges

+ USD25

million fine +

requirement

to pay back

investors who

lost USD 217

million +

customer

churn

Root-cause

analysis process

unspecified,

probably

software review

after investors

lost money

Programming

error was

made two

years before

its discovery,

and kept

secret for 10

months after

its discovery

New software

release with

coding error

fixed 3 to 5

months after its

discovery

National

Pension Fund,

France

Overestimation of

the pensions of one

million people for 25

years (Durand-

Parenti, 2009)

2009 Logic error

in pension

calculation

algorithm

Cost of

EUR300

million to tax-

payers in

pension

overpayment

Root-cause

analysis process

unspecified

25-years-old

bug,

introduced at

system’s

inception

Logic error was

rectified

Airlines United

Airlines

Two-hour outage

that disrupted flight

scheduling

worldwide (Karp,

2012)

Nov. 2012 Glitch in

dispatch

system

software

636 flights

were delayed

and 10

cancelled

Root cause

unknown

Origin of

software

problem

unknown

Troubleshooting

but problem not

entirely fixed

Mobile

telecoms

Blackberry Communication

services (call, text

message, e-mail)

unavailable for four

days worldwide

(Whittaker, 2011)

Oct. 2011 Core switch

failure,

faulty

backup

system, and

server

overload

Over ¾ of the

70 million

users

worldwide

were affected

Troubleshooting Unspecified,

problem

generated

during

operation

Troubleshooting

but problem not

entirely fixed

Orange

(France)

Services unavailable

nationwide for 12

hours (Renault,

2012)

Jul. 2012 Bug in core

network

device

26 million

subscribers

affected

nationwide

Detailed audit

requested by

government

Unspecified Troubleshooting

+ new device-

monitoring

measures

Public

services

Dallas county

police force

About 2 dozens of

prisoners were

incorrectly released

out of jail due to bug

in the new record-

keeping system

(Hallman, 2014)

Jun. 2014 Software

defects,

Criminals

incorrectly

freed from jail

and still on

the loose

Root-cause

analysis process

unspecified

1 week Unspecified.

Defects partially

corrected

© University of Pretoria

29

Industry /

Sector

Company /

Institution

Failure description Date Cause of

failure

Impact How was the

root cause

identified?

How long

was the error

present

before its

discovery?

How was the

error fixed?

New York

City public

housing

agency

Millions of welfare

families were

overcharged for the

rent of their public

housing

accommodation and

taken to court for

non-payment

(Fernandez, 2009)

2009 Logic error,

incorrect

formula

used to

calculate

rent

Families

living in

constant fear

of eviction;

contracted

debt to pay

extra rent

amount

Root-cause

analysis process

unspecified,

probably

software review

after complaints

from tenants

8-month-old

bug

Logic error

rectified

Healthcare

UK organ

donor register

Wrong organs

removed from 25

donors’ bodies

(Roberts, 2010)

Feb. 2010 Errors in the

data

conversion

software

used during

system

upgrade

Donors’

families

deeply

affected

Independent

review

requested by

government

following

complaints from

new donors

10-year-old

bug,

introduced at

the inception

of the system

Ordered a new

improved

system (based

on availability

of funds)

Red Wing

Ambulance,

Minnesota,

USA

Woman died in

ambulance due to

spontaneous shut off

of oxygen delivery

system (Charette,

2010)

Apr. 2010 Software

glitch in

oxygen

system

Patient died +

ambulance

was placed

under scrutiny

Independent

investigations

by both

manufacturer

and ambulance

staff, but root

cause was not

found

Unknown New improved

oxygen system

but the problem

reoccurred.

Ambulance now

carries portable

oxygen system

The above table shows the following facts about the failure cases that are presented in terms of

the cause of the failure, as well as the approach used to fix it and to identify the failure’s root

cause.

2.3.2.1 Cause of the software failure

 Failed upgrade: two cases (RBS and UK organ donor register)

 Logic error in software code: three cases (Axa Rosenburg, France’s national pension

fund, New York City public housing agency)

 Bug in core network device: two cases (Blackberry and Orange)

 Resource exhaustion: 1 case (Blackberry)

 Human error (incorrect configuration) : one case (Dallas County police force)

© University of Pretoria

30

The above causes are in line with the common causes of software failures presented in Section

3.2.2. However, two of the failure cases (United Airlines and Red Wing Ambulance) have an

unidentified root cause, despite the investigations conducted. This is alarming as it implies

that the problem cannot be solved and is likely to reoccur – which is exactly what happened in

both cases.

2.3.2.2 Approach used to fix the failure

 Troubleshooting: RBS, United Airlines, Blackberry, and Orange. In each of these

cases, troubleshooting was inadequate to solve the problem entirely and additional

countermeasures had to be applied. This included conducting an in-depth independent

investigation to accurately find the root cause or using a risk-mitigating solution

(system-monitoring measures in the case of Orange).

 New improved system: AXA Rosenburg, UK organ donor register, and Red Wing

Ambulance. In the latter case, the problem reoccurred with the new system as its root

cause had not been identified. A risk-mitigating solution was then applied in the form

of carrying portable oxygen systems.

 Correction of coding errors and defects: France’s national pension fund, Dallas

County police force, and New York City public housing agency.

2.3.2.3 Approach used to identify the root cause of the failure

 Unspecified: In many cases (AXA Rosenburg, France’s national pension fund, Dallas

County police force, and New York City public housing agency), information on the

approach that had been followed to identify the root cause of the failure was not

available. It can be assumed that the approach followed involved a software review

after the wrong system output had been identified.

 Comprehensive investigation: This applies to the failures at RBS, Orange, the UK

organ donor register and the Red Wing Ambulance. An investigation was only

performed following a request from a higher authority, but this approach was more

effective than troubleshooting.

© University of Pretoria

31

A brief discussion of the above software failures follows next. The discussion is organised in

five sections, one for each industry or sector affected.

2.3.3 Software failures according to industry or sector

2.3.3.1 Software failures in the financial industry

The 2012 SQS list of worst software failures indicates that the financial and banking sectors

are the top industries affected by these problems. This is mostly due to their legacy systems not

being upgraded due to economic constraints. The banking sector is the most error-prone as a

result of new trends such as mobile banking, online retail shopping and cloud computing, since

these new technologies are not always compatible with existing IT infrastructure (SQS.com,

2013).

One case in point is the system failure at RBS (Royal Bank of Scotland), a major bank in the

UK, in December 2013. As indicated in Chapter 1, an unspecified technical glitch caused the

bank’s various electronic channels to be unavailable for several hours, leaving customers

unable to make payments or withdraw cash (Finnegan, 2013). This failure occurred after

another major outage in 2012, which left 13 million customers unable to access their bank

accounts for four days due to a failure in a piece of batch-scheduling software (Worstall, 2012).

AXA Rosenburg Group, a global investment company, is another example of a financial

company that was seriously affected by its legacy system. The equity investment firm was

charged with fraud and fined USD 25 million in February 2011 for hiding a coding error in

their quantitative investment model (Greene, 2011). The faulty program affected the Group’s

trading strategy and investment returns and caused investors a loss of USD 217 million.

Another costly error due to a legacy system was found in the French national pension fund

system. A software design error caused the overestimation of the pensions of about a million

people, which amounted to a cost of over EUR300 million to tax payers. Although it was only

discovered in 2009, the error had been present since the inception of the IT system in 1984

(Durand-Parenti, 2009).

© University of Pretoria

32

Other industries that often make the headlines for their software glitches are the airline industry

and the mobile telecommunications industry, because of their high reliance on IT systems.

Given the high usage of their services as part of our daily lives, these failures have an emotional

impact on many people across geographical borders, as will be shown next.

2.3.3.2 Software failures in the airline industry

In November 2012, for the third time in that year, a glitch in the dispatch system software of

United Airlines, the world’s largest airline, caused havoc on a number of flight schedules at

airports in the USA and around the world. Altogether 636 flights were delayed and ten

cancelled due to the two-hour outage, leaving passengers stranded in airport lobbies (Karp,

2012).

2.3.3.3 Software failures in the mobile telecommunications industry

A well-known example of a mobile telecommunications failure is the Blackberry outage that

occurred in October 2011. A core switch failure combined with a faulty backup system cut off

over three quarters of the 70 million Blackberry smartphone users worldwide for almost four

days (Whittaker, 2011). The outage started in Europe and the Middle East and spread to Africa,

Latin America, the USA and Canada (Feldman, 2011). It is worth noting that shorter outages

had already occurred in 2007 and 2008 for similar reasons (Horton, 2008). This implies that

the root cause of the failure had not been properly addressed, hence the recurrence of the

problem.

More recently, in July 2012, a software bug in a core network device of Orange, a major mobile

operator in France, caused a 12-hour outage that affected 26 million subscribers nationwide.

The magnitude of the event turned this national crisis literally into an affair of state and the

government ordered an independent root-cause analysis (Renault, 2012).

Although it is not often reported, software errors also affect law enforcement and government

agencies, which can result in wrongful criminal charges brought against citizens. Two failure

examples from these public services resulted in civil court cases and are presented next.

© University of Pretoria

33

2.3.3.4 Software failures in public services

In June 201, more than 20 prisoners in Dallas County were incorrectly released out of jail due

to a software glitch in the new record-tracking system. Due to heavy workload and some

incorrect system configuration, some cases were not filed into the system within the prescribed

timeframe. As a result, some criminals were mistakenly released and at the time of press, they

were still on the loose although the police were looking for them. Police plan to find them and

send back to jail and they have made changes to the record-tracking system to fix some of the

defects and prevent further problems (Hallman, 2014).

Another case of wrongful incrimination happened in New York City in 2009, where hundreds

of welfare families were overcharged in rent due to an error in the rent calculation system of

the city’s Housing Authority (Fernandez, 2009). Many families were taken to court and

threatened with eviction for failing to pay the extra amount (up to USD 200). This computer

error ran for nine months and left many tenants in a constant fear of being thrown out in the

street, while it pushed some people to resort to debt to pay for the overcharge (Fernandez,

2009).

Extreme cases of software failures are a real threat to human well-being and can actually result

in injury and loss of life. Examples from the healthcare industry where this is often the case are

discussed next.

2.3.3.5 Software failures in the healthcare industry

Although they are chronically underreported (Bogdanich, 2010), software failures abound in

medical devices. To support this argument, Roberts (2012) states that in 2011 software failures

were responsible for 24% of all medical device recalls by the FDA. The review of the medical

literature conducted on this topic highlights three principal areas of concern: radiation therapy

machines, external infusion pumps and implantable medical devices such as pace makers.

Software design flaws in these machines cause problems such as incorrect dosages of

medication, administration of incorrect treatment or abrupt system shutdown, which are often

the result of operators’ errors. Medical reports point to the following recurring causes for these

faults: poor user interface design, unclear error messages and inadequate input validation.

© University of Pretoria

34

Fatalities due to faulty software in these machines are often kept confidential but some are

reported on the FDA and the IAEA portals. The cases discussed next represent some examples

of such errors. The first two are not as recent as the examples listed in Table 3.2, but they were

the latest that could be found to illustrate the above point.

In 2004 a patient with an implantable drug pump died from an overdose because the operator

set the bolus interval to 20 minutes instead of 20 hours, thus at 60 times the prescribed rate.

The operator’s error was due to the poor user interface where the hour and minute fields for a

bolus rate were ambiguously labelled on the computer screen (FDA, 2004a). One other death

and seven serious injuries have been attributed to this data entry error (FDA, 2004b).

In 2007 a programming error unexpectedly shut down a patient’s implantable infusion pump

during use. The issue was caused by an overflow in the memory buffer that feeds the main

processor. The underdosed patient’s blood pressure dropped and he experienced increased

intracranial pressure, followed by brain death (FDA, 2007). Interestingly, brain death is listed

as the cause of the death (FDA, 2007), instead of the software failure.

More recently, in April 2010, a woman was killed by an oxygen software failure in an

ambulance in Minnesota, USA. Unknown to the paramedic and for some unidentified reason,

the oxygen delivery system spontaneously shut off for eight minutes (Charette, 2010).

A more morbid example is provided by the faulty software of the UK organ donor register. The

wrong organs were taken from the bodies of 25 donors due to the software misreading their

donor forms. Although the software error was introduced in 1999, the problem was only

discovered in 2010 after new donors complained that their information was incorrect following

a thank-you note from the organ donor agency (Roberts, 2010).

2.3.4 Lessons learnt

The overview of software failures presented earlier in the chapter proves that these events are

an unfortunate reality. Although technical details on the investigations were not available,

several issues emerged from this review:

© University of Pretoria

35

 Many software errors are discovered accidentally rather than through a routine check

or through system monitoring. For this reason, they can remain hidden for a long time

and cause significant problems in the long run.

 Software failures are usually resolved through troubleshooting only, unless an in-depth

investigation is ordered by a regulation authority.

 Troubleshooting alone is inadequate and cannot prevent the recurrence of failures. This

suggests that troubleshooting may not identify the real source of the problem.

 A comprehensive investigation is often necessary to accurately identify the root cause

of the failure.

The next section delves into the above issues in more detail by presenting a case study of three

fatal software failures. These are cases of radiation overdoses whose technical reports are

publicly available. Although these cases are not as recent as the examples described earlier,

they indicate a recurring pattern in the way software failures are handled. This trend is not

apparent from the above examples, due to the limited information available on their

investigation.

2.4 Case study of software-induced radiation overdoses: AECL

Therac-25, Multidata RTP/2 and Varian IMRT

This section presents the researcher’s case study of three series of radiation overdose due to

software malfunctions so as to demonstrate their similarities and infer valuable lessons in terms

of failure investigation. Unlike other software failures whose technical details have been

shielded from public view, comprehensive reports on these disasters are publicly available

online, hence their selection. Although the three accidents occurred over a period of two

decades and involved three different radiation therapy systems, they show striking similarities

that suggest that history repeats itself. The same mistakes are still being made, which shows

that software developers, manufacturers and operators do not learn from past failures. All three

cases resulted in death and subsequent lawsuits and they clearly illustrate the devastating effect

of software failures and of an inadequate post-mortem investigation.

The three cases in question are the Therac-25 disaster in the USA and Canada between 1985

and 1987, the radiation accidents at the Panama National Cancer Institute in 2001 and the

© University of Pretoria

36

radiation overexposure at the St. Vincent Hospital in New York City in 2005. More recent

cases of radiation overdose due to software glitches have been reported in 2007 (Bogdanich,

2010b), 2008 (Bogdanich, 2010b) and 2009 (Bogdanich & Rebelo, 2010). However, they could

not be used as case studies due to the limited information published.

The first and third cases studied in this section involved the software component of a linear

accelerator, which is a machine that generates beams of high-energy radiation to treat cancer

patients (Bogdanich, 2010). The second case involved a treatment planning software, which is

a component of a decision support system used to calculate recommended patients’ treatment

time and radiation dose (IAEA, 2013b). Table 3.3 presents a summary of each of the three

cases.

Table 2.3 has twelve fields that provide specific information on each case. Each case is

described in a separate column and each field is a row entry in that column. Although Table

2.3 contains the same fields as Table 2.2, it also displays the following differences:

 No field is provided for “Industry/Sector” as all cases are medical accidents.

 No field is provided for “For how long was the error present before its discovery?” as

the software bugs responsible for each accident were all introduced during system

development.

Table 2.3 contains the following five additional fields:

 Impact on other parties. Besides the patients who were directly involved, the software

manufacturer, the hospital and the machine operators were all severely affected by the

accidents and sometimes held accountable for it.

 Factors that facilitated the overdose: Various prior events and conditions contributed

significantly to each overdose. If these had been addressed effectively early on, the

administration of the overdose could have been prevented.

 Factors that contributed to the negative impact of the accident: A number of factors

allowed the overdose and its negative health impact to persist for an unnecessary long

period of time. If these had been addressed sooner, this could have limited the impact

of the accident and may even have saved the patients’ lives.

 How was the overdose detected? Unlike failures described in Section 2.3.2, which

have symptoms that are immediately visible (e.g. system outage and incorrect

© University of Pretoria

37

calculation), the radiation overdose was not visible immediately after the treatment had

been administered.

 Initial reaction from manufacturer: This indicates how the system manufacturer

reacted when hospital staff suspected and alleged that the software was the cause of the

radiation overdose. This initial reaction played an important role in the subsequent

investigation.

The above five fields were used to highlight the similarity between the accidents and the factors

that had a negative impact on the investigation and subsequent system improvement.

Table 2.3: Researcher’s summary of 3 cases of radiation overdose due to software errors

Machine/Product Therac-25 linear accelerator Radiation treatment planning

software RTP/2

Linear accelerator for IMRT

(Intensity Modulated Radiation

Therapy)

Software

manufacturer

AECL (Atomic Energy of Canada

Limited)

Multidata Systems International (US

firm)

Varian Medical Systems (US firm)

Year of accident 1985-1987 2001 2005

Location 11 hospitals throughout the USA and

Canada

Panama National Cancer Institute in

Panama City

St. Vincent Hospital in New York

City

Accident

description

A series of six machine malfunctions

occurred in various hospitals either due

to operators entering incorrect data or

the system crashing unexpectedly.

Each time, the machine tripped and

generated misleading error messages,

but also delivered an extremely higher

dose of radiation.

The software allowed the operators to

enter input data in an incorrect format,

which led to the miscalculation of

patients’ treatment time and an

overexposure to radiation for several

months.

The computer crashed while the

physician was trying to save the

revised treatment plan. The

instructions for the machine

calibrations were mistakenly

deleted and the machine delivered

a higher level of radiation for three

consecutive days of treatment.

Root cause of

software failure

Race condition (programming error) No validation of input data (logic

error)

Non fail-safe termination (data

corruption)

How was the

overdose

detected?

Continued symptoms of radiation

overdose for several weeks

Continued unusual reactions in some

patients for several months

Patient’s unusual reaction to

treatment observed by his family

Initial reaction

from

manufacturer

Overconfident about software quality;

rejected possibility that software was

faulty; blamed patient’s symptoms on

hardware faults or operator’s incorrect

use of machine

Overconfident about software quality;

rejected possibility that software was

faulty; blamed patient’s symptoms on

operator’s incorrect use of machine

Blamed accident on operator’s

negligence

© University of Pretoria

38

Machine/Product Therac-25 linear accelerator Radiation treatment planning

software RTP/2

Linear accelerator for IMRT

(Intensity Modulated Radiation

Therapy)

How was the root

cause identified?

Manufacturer investigation at the

request of FDA after an informal

troubleshooting approach

 Troubleshooting by independent

experts

 independent investigation from

IAEA requested by Panama

Government

 FDA investigation of

manufacturer’s operations

Manufacturer investigation

submitted to the FDA. Details on

the investigation were not found

How was the

software bug

corrected?

Manufacturer corrected bugs at the

request of FDA.

The manufacturer conducted a recall

and in-field correction of the software

and provided a detailed description of

the cause and circumstances of the

incorrect data entry.

Manufacturer corrected bug and

distributed an improved software

with a fail-safe provision to its

customers worldwide.

Factors that

facilitated the

overdose

 Unclear user manual

 Poor system feedback

 No investigation of prior harmless

software malfunctions

 No reporting of initial accidents to

other users

 Familiarity with similar and

harmless malfunctions

 Lack of a routine check

 Unclear user manual

 Poor system feedback

 No investigation of prior harmless

software malfunctions

 No reporting of previous software

malfunctions to other users

 Lack of a routine check

 Poor system feedback

 No investigation of prior

harmless software malfunctions

 Familiarity with similar and

harmless malfunctions

 Lack of a routine check

Factors that

contributed to

negative impact

of accident

 Late detection of overdose

 Delayed root-cause analysis

 Delayed software correction

 Informal troubleshooting approach

 Late detection of overdose

 Delayed root-cause analysis

 Delayed software correction

 Late detection of overdose

 Delayed root-cause analysis

 Delayed software correction

Impact on

cancer patients

Six patients were overdosed: three

patients died and three were severely

burnt.

28 patients were overdosed: 18 died,

and the others developed serious

health complications.

After two years of declining

health, the patient died of his

radiation injuries.

Impact on other

parties

 The machine was recalled by the

FDA in 1987.

 FDA requested a corrective action

plan (CAP) from AECL.

 The AECL and hospital received

lawsuits from affected patients

and their families.

 The three responsible physicians

were trialled for murder. Two

were sentenced to four years’

imprisonment and banned from

practising their profession for

seven years.

 The FDA banned the

manufacturer from operating in

the USA.

 The FDA blamed the hospital

for negligence and the

manufacturer for the faulty

system.

 The city fined the hospital for

USD1000.

 Hospital paid financial

settlement to victim’s family.

Table 2.3 shows that the three medical accidents are very similar in terms of the following

aspects that confirm the observations made in Section 2.3.4.

 How was the overdose detected? Patient’s unusual reaction to treatment (and not

planned software output verification)

© University of Pretoria

39

 How was the root cause identified? Through troubleshooting, followed by thorough

investigation (software review)

 Factors that facilitated the overdose: Lack of a routine check of the software

operations

 Factors that contributed to the negative impact of the accidents: Late detection of

the overdose

Table 2.3 also reveals the following aspects of the accidents that did not emerge from the

software failures presented in Section 2.3.

 Factors that facilitated the overdose: No reporting of previous software failures and

no investigation of prior harmless malfunctions

 Factors that contributed to the negative impact of the accidents: Delayed root-cause

analysis, delayed software correction

Before discussing the above issues further, a brief chronological description of the accidents is

presented next.

2.4.1 Accident description

2.4.1.1 Therac-25

Several bugs in this linear accelerator caused a series of six malfunctions in different hospitals

between 1985 and 1987. In every accident, the machine was either unable to process

instructions as they were given or it displayed misleading and unclear error messages. This led

the operators into unknowingly administering a massive overdose of radiation that exceeded

the prescribed dose by a hundred times (Leveson & Turner, 1993). Besides the fact that the

accident caused the death of three patients and serious injury to three others, affected patients

or their families filed several lawsuits against the various hospitals and the AECL. All lawsuits

were settled out of court and the machine was recalled by the FDA in 1987 (McCormick, 2004).

2.4.1.2 Multidata RTP/2 Treatment Planning Software

The Multidata treatment planning software (TPS) enabled therapists to draw on a computer

screen the placement of metal shields (called blocks) designed to protect healthy tissue from

© University of Pretoria

40

radiation (McCormick, 2004). The TPS’s normal operation only allowed up to four blocks, but

one oncologist requested a fifth block to further protect the more sensitive tissue. The

physicians tried a new data entry method to bypass the software constraint by drawing the five

blocks as a single large block with a hole in the middle. The TPS accepted the invalid input

data without giving a warning but, unknown to the physicians, calculated an incorrect treatment

time that caused double the normal dose of radiation (IAEA, 2013b).

The impact of this failure was monumental. The modified treatment plan was administered to

28 patients treated for cancer of the prostate or the cervix (IAEA, 2001). Of them, 18 died,

while the others developed serious health complications (Borras, 2006). The FDA issued an

injunction against Multidata to prohibit the firm from operating in the USA until they fixed the

bug and became fully compliant with the FDA safety standards (McCormick, 2004). In

addition, the three physicians who inadvertently administered the radiation overdose were

trialled for murder because they were legally required to verify the software calculation by

hand (Garfinkel, 2005). One was acquitted, while the other two were sentenced to four years

in prison and banned from practising their profession for seven years (Diaz, 2004).

2.4.1.3 Varian IMRT linear accelerator

In March 2005 a patient who was being treated for a tongue cancer was mistakenly

administered the wrong treatment with a radiation seven times his prescribed dose. The

problem occurred during the fifth radiation session, after the patient’s reformulated treatment

plan was accidentally deleted due to a system crash. The patient died from ensuing health

complications two years later. The government investigators who conducted an enquiry found

that both the hospital and the manufacturer were to blame for the accident. The city of New

York levied a USD1000 fine against the hospital and ordered the hospital to pay a financial

settlement to the victim’s family.

2.4.2 How was the overdose detected?

In each of the above three radiation overdose cases, the patients developed obvious radiation

burn symptoms shortly after the treatment. These were reddened and swollen skin in the case

of the Therac-25, diarrhoea with the Multidata TPS, and swollen head and neck with the Varian

© University of Pretoria

41

linear accelerator. However, because the symptoms were initially attributed to the disease, they

were not followed up. The overdose was only discovered later in an unplanned way.

In the first case, the overdose was confirmed after the fourth and fifth accidents when the

hospital technician managed to reproduce the conditions surrounding the accidents and

measured the resulting dose. A day later, AECL followed the same procedure and confirmed

the overdose. In the second case, a physician accidentally discovered the computer

miscalculations many months after the overdose had been administered. When calculating the

dosages for two patients with the same treatment, she suddenly noticed a mismatch between

her results and the software’s calculations (McCormick, 2004). The overdose was then

confirmed through treatment simulation and the treatment was suspended (IAEA, 2013b). In

the third case, the physician only conducted a verification test on the treatment plan after the

third session and discovered the incorrect machine settings.

2.4.3 How was the root cause identified?

The root cause of the radiation accidents was only discovered through thorough software

inspection, often after a number of unsuccessful troubleshooting attempts. Indeed, the

investigators initially “diagnosed” the system failures based on their experience with the

system and without supporting evidence, which is typical of troubleshooting. The basic

investigation method was to try to reproduce the malfunction in order to find its origin.

This strategy is evident from the case of the Therac-25 where the AECL engineers initially

suspected a hardware fault. They hardwired the conditions for this fault to occur and applied

certain countermeasures, claiming afterwards that the problem had been solved. Their claim

was proved incorrect as similar failures reoccurred after the suspected hardware problem had

been fixed.

The same subjective diagnosis approach is also apparent in the case of the Panama accident.

Some independent experts discovered the flaw in the software algorithm responsible for the

overdose, based on their experience with a similar failure. Indeed, one of the radiotherapist

experts said that the calculation error was a problem that had occurred in older similar treatment

software. He remembered seeing a physician in the USA make this error ten years earlier and

he consequently looked for it during the investigation. Fortunately in this case, independent

© University of Pretoria

42

reviews from the IAEA and FDA confirmed his suspicion through testing of the software by

using different data entry approaches (IAEA, 2001).

2.4.4 Factors that facilitated the overdose

In the case of all three accidents, no verification test was conducted right away to validate the

output of the medical software. No routine check or system monitoring was in place to verify

the proper functioning of the machine. This allowed the incorrect dose to be unwittingly

administered several times to different patients. Two other factors that are recurrent in the three

accidents also facilitated the overdose: the underreporting of system failures and the

disregarding of harmless malfunctions.

As a matter of fact, the first and third malfunctions of the Therac-25 were not reported to other

users of the machine until later accidents also occurred (Leveson, 1993). This gave users a false

sense of confidence in the proper functioning of the machine. Besides, the previous numerous

malfunctions of the machine were never investigated as they had been harmless. Indeed, since

the installation of the machine (two years before the accidents), the operators had become

accustomed to its frequent malfunctions – up to 40 per day – which had never affected any

patient prior to the deadly accidents. In such cases, the operator would simply call a hospital

technician to reset the machine and restore it to service (Leveson, 1993).

In the case of the Varian software, malfunctions of the software were equally common.

Operators were used to its frequent but harmless crashes which they regularly reported to the

manufacturer but which were never investigated (Bogdanich, 2010). Likewise, in the case of

the Panama accident, the manufacturer neither reported nor investigated the miscalculations

reported by previous customers close to a decade earlier.

Nevertheless, reports show that in all three cases these minor problems followed similar

patterns as the deadly failures (e.g. machine abruptly stops and restarts, same unclear error

messages or miscalculations). Against the background of the discussion on the near-miss

concept in the previous chapter, these minor problems were clearly cases of near misses. They

were, in hindsight, clearly worth some attention and could well have provided distinct clues

about the design flaw that caused the accidents.

© University of Pretoria

43

2.4.5 Factors that contributed to the negative impact of the accidents

In each of the three accidents, the overdose was only detected long after it had been

administered, which implies that it was significantly harming the patients over a period of time.

The benefit of early failure detection is demonstrated with another case of the Varian software

failure. Indeed, a similar problem with the Varian software occurred in a different hospital

several months after the notorious accident mentioned above. Fortunately, the overdose was

detected soon after the treatment and the patient was not injured (Bogdanisch, 2010). It is safe

to say that the early detection of this software error saved the patient’s life.

2.4.6 Lessons learnt

The three cases examined above clearly demonstrate that, in general, software failures are not

handled efficiently. They reveal some clear limitations in the investigation of software failures

and the resulting catastrophic consequences. More specifically, they confirm the observations

made previously about the unplanned and inadvertent detection of software errors by using

troubleshooting as an ineffective first reaction to a failure, as well as the problem posed by not

reporting software failures and not investigating recurring near misses. Even more recent cases

of radiation overdose caused by software failures (Bogdanich, 2010b) show similar patterns.

This motivates the need for a more efficient and accurate failure investigation process that

caters for these shortcomings. Designing a system to implement such an investigation process

is the goal of this study. The shortcomings that have been identified are used as the basis for

developing the key requirements that a near-miss management system should comply with.

These requirements are established in the following section.

2.5 Requirements for accurate failure investigation

This section presents the key requirements for the proposed NMS inferred from the lessons

learnt in the previous section. A brief review is given of the limitations identified in the existing

approach towards failure investigation and then the requirements are established to address

these limitations.

© University of Pretoria

44

2.5.1 Limitations in the investigation of software failures

This section examines the limitations in the investigation process observed by the author of

this thesis from all software failures reviewed in Sections 2.3 and 2.4. The limitations that are

presented are those that the author found recurring in a number of cases and that directly affect

the quality of the ensuing investigation.

2.5.1.1 Troubleshooting as the first response to a major software failure

Companies affected by failures are often reluctant to conduct a thorough investigation, as it is

costly and time-consuming. They rather focus on quickly putting back the system into

operation through troubleshooting. However, troubleshooting lacks objectivity and accuracy.

It is a short-term solution and in-depth investigations are needed to find a long-term solution.

Besides, by restoring and rebooting the system, troubleshooting tampers with digital evidence

of the failure, which can have a negative effect on the subsequent investigation.

2.5.1.2 Lack of a standard investigation process

The above review of various failure cases indicates that each failure is handled differently.

There is no common procedure to investigate failures to identify the root cause. This leads to

some subjectivity in the procedure used and in the results obtained. Moreover, in many cases,

details of the investigation process are not available, making it hard to assess its effectiveness

or to reproduce the investigation to confirm its results.

2.5.1.3 No investigation of near misses

Near misses are not given any attention as they cause no harm. However, they clearly show

similar patterns as the serious failures and can therefore provide valuable insight into software

weaknesses and bigger threats.

Examples of near misses in software systems were provided by the reports of the three deadly

medical accidents involving radiation therapy machines. Another example is the three-day

Blackberry outage that occurred in 2011.

With regard to the Blackberry case, the outage was intermittent and comprised a succession of

smaller failures, which indicates that different things went wrong at different times. Press

© University of Pretoria

45

reports indicate that firstly, a central server went down, then the backup system failed; e-mail

traffic was then rerouted to another main server, which soon became overloaded (Mashable,

2011). Each of these unsafe events was a precursor to the subsequent outage. This catastrophic

event could have been a mere near miss if the faulty backup server had been replaced or

repaired before the second main server became overloaded.

Regarding the radiation therapy accidents, all three cases were preceded by a number of

harmless malfunctions following similar patterns as the deadly accidents. The correct handling

of these near misses could have helped prevent the accidental death of a number of cancer

patients.

2.5.1.4 No real-time detection of failures

Some software failures are only detected long after they occurred, due to the lack of a

continuous monitoring of the system’s operations. As a result, the impact of the failure can be

significant and data that could help in the investigation may get lost as it gets overwritten by

subsequent operations.

2.5.2 Requirements for accurate software failure investigation

From the previous discussion on the limitations in the failure investigation process, it is clear

that a detailed investigation, rather than a quick fix, is required to prevent the recurrence of a

similar failure. The investigation must have the following qualities:

 Objectivity: In order to provide reliable results, the investigation must be objectively

based on an analysis of data about the failure. The results should be independently

verifiable and not subject to the investigator’s familiarity with the system.

 Comprehensiveness: The investigation must be comprehensive to cater for all possible

causes of the failure, which must all be tested.

 Reproducibility: A different investigator should obtain the same results by following

the same procedure as the initial investigators. This is best achieved through a standard

investigation process, which eliminates the risk of subjectivity.

 Admissibility in court: Although it cannot be inferred from the limitations discussed

earlier, it is important to realise that a number of the reviewed failures resulted in

© University of Pretoria

46

lawsuits. It is therefore imperative that the investigation process and the results obtained

be admissible in a court of law, in the event of litigations.

The failure investigation approach must also ensure the following:

 Continuous system monitoring: Monitoring of a system’s operations and behaviour

is required to avoid accidental or fortuitous discovery of failures, and to allow for the

real-time detection of errors and risky conditions that are conducive to failures.

 Investigation of near misses: Identifying and addressing the root cause of near misses,

even though they are harmless, can help prevent a more serious accident from

developing and can also provide valuable information for conducting the root-cause

analysis of the subsequent failure.

Several root-cause analysis methods have been proposed to address the above requirements

and are commonly available today. Examples include application performance management

(APM), business transaction management (BTM), change and configuration management

(CCM) and the war room approach (Neebula.com, 2012). Except for the war room approach,

these methods focus on maintaining and improving application performance through the

continuous analysis of the end-user experience (APM), tracking the flow of transactions along

a business transaction path (BTM) or detecting inappropriate changes and configurations

(CCM) to prevent significant performance drop and related failures. The war room approach

brings experts from different disciplines (e.g. server, network, application) into the same room

so that they can analyse the problem together to quickly find its root cause (Neebula.com,

2012).

Despite its value, the war room is still vulnerable to the subjectivity of the participants and

dependent on their knowledge of their specific discipline. The other methods, although

valuable, focus on performance improvement and not on preventing the recurrence of failures;

hence some manual guessing about the root cause of the failure is required (Neebula.com,

2012). Furthermore, none of the above methods simultaneously covers all the requirements

identified above and none of them caters for the eventuality of a product liability lawsuit.

The solution to this problem suggested in this study is to use digital evidence of the failure as

the basis of the investigation. Such a strategy has the potential to satisfy all the requirements

© University of Pretoria

47

established previously. Indeed, rather than relying on the investigator’s experience with the

system, the investigation must follow a predefined process that collects and analyses evidence

of the failure to find its origin. This will ensure the objectivity and reproducibility of the

investigation. Besides, digital evidence is required for formal court proceedings. Compliance

with the last two requirements (continuous system monitoring and investigation of near misses)

can greatly assist with the process of obtaining reliable digital evidence. Continuous system

monitoring can indeed detect failures as they occur and can therefore facilitate the collection

of evidence before it gets overwritten by subsequent operations. Furthermore, the investigation

of near misses provides an additional source of evidence about system malfunctions that can

supplement the failure investigation.

Although digital evidence is primarily in the form of log files, it may also include any other

data about the failure. Preserving the integrity of this evidence is necessary to ensure the

reliability of the root-cause analysis. The informal troubleshooting approaches that are often

adopted to conduct root-cause analysis do not promote the collection and preservation of digital

evidence. In fact, in order to restore the system to its normal operational state, rebooting is

often required, which completely destroys or at least tampers with potential evidence (Trigg &

Doulis, 2008).

Before looking for alternative solutions, a logical step is to turn to the field of digital forensics,

which uses objective evidence to provide clarity on the cause and circumstances of an event

while adhering to principles of law (Vacca & Rudolph, 2011). It can therefore serve as an

effective alternative to investigate software failures, although it is currently limited to the

investigation of criminal events and security incidents. Digital forensics will be reviewed in

the next chapter to determine its suitability with regard to the established requirements for a

more accurate software failure investigation.

2.6 Conclusion

This chapter presented a number of recent severe software failures and the detailed case study

of three fatal medical accidents caused by faulty software. The aim was to highlight the

negative impact of software failures and to identify the limitations in current failure

investigation practices. The literature review established that, despite their catastrophic

consequences, major software failures are not given the timely and full attention they require.

© University of Pretoria

48

They are often handled inefficiently and irresponsibly through informal troubleshooting, which

enables their recurrence.

The limitations in current failure investigation practices create the need for a more accurate

investigation approach. Requirements for such an approach have been established in this

chapter, based on the identified shortcomings in failure investigations. Using digital evidence

as the basis of the investigation was found necessary to meet these requirements, and digital

forensics was identified as a promising solution to facilitate the collection and analysis of

digital evidence. A review of the digital forensics process and its prospects as a solution to the

lack of accuracy in software failure investigations are presented in the next chapter.

© University of Pretoria

49

 CHAPTER 3

USING DIGITAL FORENSICS FOR ACCURATE

INVESTIGATION OF SOFTWARE FAILURES

3.1 Introduction

This chapter presents digital forensics as a promising solution to the limited accuracy of

software failure investigations. As demonstrated in the previous chapter, inaccurate

identification of the cause of the failure leads to the implementation of inappropriate

countermeasures that are not suitable to prevent the failure from reoccurring. Although it is not

currently used for failure analysis, the formal process of digital forensics has the potential to

provide sound evidence of the root cause of the failure by making a scientific analysis of the

digital evidence in this regard.

To ensure the reliability of the results of a digital forensic investigation, various steps are

performed to enable the collection of the digital evidence and to preserve its integrity

throughout the investigation. This process for collecting, preserving and analysing digital

evidence was identified as favourable to satisfy the requirements established in the previous

chapter for a more accurate failure investigation, namely objectivity, comprehensiveness,

reproducibility, and admissibility in court. Supporting activities to foster these desired qualities

of the investigation included the continuous monitoring of the system to detect failures early,

and the investigation of near misses as an additional source of evidence of the failure.

Chapter 3 demonstrates the suitability of digital forensics to meet the above requirements. It

first motivates the selection of digital forensics as a viable alternative for investigating software

failures. It then discusses how digital forensics can be used to satisfy the requirements for more

accurate failure analyses.

The chapter is structured as follows: Section 3.2 provides an overview of digital forensics and

its current applications. Section 3.3 presents several arguments to support the suggestion to use

© University of Pretoria

50

digital forensics to investigate software failures. Section 3.4 reviews the building blocks of

digital forensics and their potential application in failure investigations to meet the above

requirements. Finally, Section 3.5 uses these building blocks to determine how suitable digital

forensics is to improve the accuracy of failure investigations.

3.2 Overview of digital forensics

This section starts with a brief introduction to the field of digital forensics and then presents an

overview of its current applications.

3.2.1 Introduction to digital forensics

Initially called computer forensics (Vacca & Rudolph, 2010), digital forensics is also known

under a number of different names, including computer forensic science (Noblett, Pollitt, &

Presley, 2000), forensic computer science (IJoFCS, 2012), forensic computing (McKemmish,

2008), system forensics, as well as electronic or digital discovery (Vacca & Rudolph, 2010). It

is a relatively new discipline in the established field of forensic science. Digital forensics was

recognised as a forensic science by the American Academy of Forensic Sciences in 2008

(Kessler, 2009).

The term “forensic” means “suitable in a court of law” (Merriam-Webster, 2014). Forensic

investigations are therefore conducted with a view to achieving that potential outcome.

Forensic science, often shortened as forensics, is defined as the “application of scientific

knowledge and methodology to legal problems and criminal investigations” (Free Online Law

Dictionary, 2013). It deals with the scientific identification, analysis and evaluation of physical

evidence (Free Online Law Dictionary, 2013). Digital forensics, as the application of forensics

to computer science, also deals with the scientific handling of evidence, but such evidence is

in an electronic form and resides on a digital device.

Digital forensics brings scientific rigor, combined with a solid legal foundation, to an

investigation. This combination makes it an efficient approach to investigations, as it produces

results that are reliable and legally acceptable in the eventuality of a lawsuit. For this reason,

digital forensics is used for various legal and regulatory purposes as will be discussed next.

© University of Pretoria

51

3.2.2 Digital forensic applications

Digital forensics is primarily used for the investigation of computer-related crimes. This

includes crime cases where the computer is the target of the crime (e.g. hacking), the instrument

of the crime (e.g. phishing) or a storage facility for evidence about the crime (e.g. money

laundering) (Vacca & Rudolph, 2010). Note that computer in this context is a broad term that

refers to any computing device on which information is stored in a binary form (Kessler, 2009).

This includes laptops, desktops, servers, network devices such as routers and switches, as well

as mobile devices such as mobile phones, tablets and digital cameras.

Digital forensics is a fast-growing field due to the increased occurrence of cybercrime and

breaches of information security policies, which affect people’s safety and companies’ trade

secrets. Digital forensics is used to identify the perpetrators of such malicious acts in order to

prosecute or take disciplinary action against them. It also has non-prosecutorial applications in

a number of professions. The following are some examples identified by Vacca and Rudolph

(2010):

 The military uses digital forensics to obtain intelligence information from computers

seized during military actions.

 Law firms use digital forensic professionals to find digital evidence in support of civil

cases such as divorce and unfair labour practice.

 Insurance companies use digital evidence to investigate potential fraud based on, for

instance, arson or workers’ compensation claims.

 Data recovery firms use digital forensic techniques to recover data lost due to an

accident or a hardware or software failure. Note that digital forensics is not used to

identify the cause of the failure.

As these examples show, even when not used for prosecution, digital forensics is mostly limited

to cases related to law, regulations or policies. This is understandable as the primary objective

of a digital forensic investigation is to ensure that the findings can serve as valid evidence in a

court of law. As in other branches of forensic science, its focus is on the integrity of the

evidence that must have been collected and handled according to rigorous guidelines and in

conformity with all applicable laws (Vacca & Rudolph, 2010).

© University of Pretoria

52

It is precisely this emphasis on scientific rigor and standard procedures that distinguishes digital

forensics from current failure analysis methods. Examples of such methods were discussed in

the previous chapter and include troubleshooting, application performance management,

business transaction management, change and configuration management, and the war room

approach (Neebula.com, 2012). Scientific rigor is also the reason why digital forensics is

deemed a promising candidate to address the limited accuracy in current practices of software

failure analysis.

This argument is elaborated on in more detail in the next section. Various factors are discussed

that indicate that digital forensics can be successfully used in non-criminal failure

investigations while retaining its legal foundation.

3.3 Motivation for using digital forensics for software failure

investigations

This section presents arguments to support the suggestion that digital forensics be used to

improve the accuracy of software failure investigations. The argumentation is based on the

following three pillars that are deemed sufficient and appropriate to prove the above point:

 Supporting software literature that recommends the forensic investigation of system

failures

 Formal definition of digital forensics that allows for non-criminal investigations

 Analogy to other disciplines in forensic science that are also used to investigate non-

criminal adverse events in their respective fields

These arguments are developed in Sections 3.3.1, 3.3.2 and 3.3.3 respectively.

3.3.1 Supporting literature

A review of the literature on software failure investigations indicates that a number of authors

share the view expressed, namely that digital forensics has clear benefits over current failure

analysis methods. Indeed, for over a decade, several authors (Grady, 1996; Corby, 2000;

Johnson, 2002; Hatton, 2004; Stephenson, 2003; Jucan, 2010; Hodd, 2010; Meyer, 2011) have

been advocating an in-depth root-cause analysis of software failures so as to prevent their

reoccurrence and ultimately improve the faulty software. A number of them (Corby, 2000;

Stephenson, 2003; Kent, Grance, Chevalier, & Dang, 2006; Turner, 2007; Meyer, 2011)

© University of Pretoria

53

specifically recommended digital forensics to assist in this process. Although many of their

publications focus on incident response cases (i.e. failures due to security incidents) (Kent et

al., 2006; Turner, 2007), they indicate that the concept can be applied to other situations as

well.

One of the first authors to suggest the use of digital forensics in computer failure investigations

is Michael Corby. Already in 2000, Corby observed that the increased complexity of IT

systems, combined with a focus on immediate system recovery, makes it challenging to

establish the source of a failure and to ascertain whether it was intentional or accidental. As a

solution, he proposed that digital forensic methodology be introduced to collect failure-related

data before returning the system to operation, so as to prevent the loss of potential evidence in

a post-mortem analysis. Corby (2007) argued that the proper collection of evidence

significantly reduces the time needed for and complexity of the digital post-mortem.

Stephenson (2003) also suggested the use of digital forensics for failure investigations but

focused on security incidents. He argues that investigations of adverse events in the IT industry

lack structure and formal modelling, which can cast doubt on the credibility of the outcome.

Digital forensics, due to its mathematical foundation, can add structure and rigor to an

investigation, thereby providing confidence in the accuracy of the results. He consequently

proposed an approach to digital post-mortems with a formal modelling of the investigation

process and possible outcomes using colored Petri Nets (Girualt & Valk, 2003). Although this

methodology was designed specifically for security incidents, it demonstrates the benefits of

applying forensic techniques to the investigation of adverse events such as software failures.

In 2006, the American National Institute of Standards and Technology (NIST) published a

guide on how to integrate digital forensic techniques with incident response (Kent et al., 2006).

The guide clearly indicates that digital forensics can be used for a number of purposes,

including troubleshooting operational problems and recovering from accidental system

damage. Thus, NIST urged every organisation to acquire forensic capability to assist in the

reconstruction of systems and network events. The guide explains how to establish such a

forensic capability, as well as how to develop appropriate policies and procedures.

© University of Pretoria

54

A year later, Turner (2007) also highlighted the value of combining the forensic approach with

the procedure used for incident response, network investigation or system administration. He

indicated that digital forensic tools and techniques can be used to address limitations of system

administration procedures following an incident. Examples of such limitations are the loss of

or tampering with potential evidence and the lack of recording of both the timestamp and the

actions performed. He therefore recommended incorporating digital forensics as an integral

part of the post-incident system administration process and proposed a “Digital Evidence Bag”

to preserve digital evidence used in the investigation as a way to achieve this goal.

More recently, Meyer (2011) promoted the technical analysis of software failures for

improving software quality and reliability. He even suggested the adoption of a law that

systematically requests such an investigation for every large-scale software failure. Although

Meyer (2011) does not specifically refer to the use of digital forensics in the investigation, he

uses the analogy of airplanes crashes, which are legally required to be investigated thoroughly

and thus have black boxes to record potential evidence. He believes that this formal detailed

evidence-based analysis has significantly contributed to the increase in airline safety and argues

that the IT industry should follow this approach to improve software quality.

In conclusion, the authors mentioned above are of the view that software failures – whether

accidental or criminal – are not investigated efficiently. This does not only hamper the

prevention of their recurrence, but also thwarts the correction of faulty software and obstructs

the improvement of its quality and reliability. It also confirms the findings from the case studies

of software failures in the previous chapter. As a solution, the authors referred to above

recommend a formal evidence-based post-mortem analysis through the integration of digital

forensics. As a matter of fact, using digital forensics for exactly such a purpose is catered for

in its definition – as will be discussed next.

3.3.2 Definition of digital forensics

Various definitions of digital forensics are available in the literature, depending on the

perspective used. It is usually defined from either a legal, a criminal, or a process perspective.

This section examines some of these definitions to support the argument that digital forensics

is suitable for failure investigations. It then presents a general definition suitable for the purpose

of this study.

© University of Pretoria

55

3.3.2.1 Existing definitions of digital forensics

The Digital Forensic Research Workshop (DFRWS) established one of the first formal

definitions of digital forensics during their first meeting in 2001 (Palmer, 2001:22). It reads as

follows:

Digital forensics is the use of scientifically derived and proven methods towards the

preservation, collection, validation, identification, analysis, interpretation and

presentation of digital evidence derived from digital sources for the purposes of

facilitating or furthering the reconstruction of events found to be criminal, or helping

to anticipate the unauthorised actions shown to be disruptive to planned operations.

This definition focuses on the procedure followed in a digital forensic investigation as it lists

the sequence of steps involved. It also specifies the domains of application of this process –

reconstruction of criminal events and prevention of unauthorised actions – the latter referring

to the breaching of policies. This definition reflects the standard application of digital forensics,

as explained earlier. However, it clearly mentions event reconstruction as a goal, which is also

the goal of a failure investigation.

Indeed, event reconstruction is the process of determining the underlying conditions and the

chain of events that have led to an incident (Carrier & Spafford, 2004). It involves examining

the evidence and proposing hypotheses about the events that occurred in the system and caused

the incident (Jeyaraman & Atallah, 2006). The purpose of a failure investigation is also to

identify the root cause of the failure, which is determined by the events and conditions that led

to the failure.

In 2005 the above definition of digital forensics was revised by Willasen and Mjølsnes (2005:

page 1) to read as follows:

Digital forensics is the practice of scientifically derived and proven technical methods

and tools towards the preservation, collection, validation, identification, analysis,

interpretation, documentation and presentation of after-the-fact digital information

derived from digital sources for the purpose of facilitating or furthering the

reconstruction of the events as forensic evidence.

© University of Pretoria

56

This definition is very similar to the previous one. However, one important difference is that it

does not qualify the events analysed as criminal and therefore broadens the scope of digital

forensics to the reconstruction of non-criminal events as well. This provides room for software

failures as one type of non-criminal event that can be investigated with the digital forensic

process.

A more recent and shorter definition of digital forensics is suggested by Vacca and Rudolph

(2010:3):

Digital forensics is the process of methodically examining computer media as well as

network components, software and memory for evidence.

This definition does not specify the type of events investigated but focuses on the source of the

evidence, which can be any component of an IT system, either internal (software and memory)

or external to the system (network component and storage media). Investigating a software

failure may also require the examination of these different components of the system. Vacca

and Rudolph’s definition also refers to following a strict procedure for the investigation by

qualifying the examination as methodical.

Next follows an analysis of the main aspects of the previous definitions that are relevant for

the requirements for accurate software failure investigations.

3.3.2.2 How can the definitions of digital forensics satisfy the requirements for accurate

failure investigation?

Based on the above review of digital forensic definitions, the following is a presentation of the

aspects of digital forensics deemed suitable for the requirements established to improve the

accuracy of software failure investigations. In every relevant aspect presented, the requirement

that is satisfied is displayed in italics.

 The techniques and tools used are based on science, which implies the objectivity of the

investigation.

 These techniques are applied to digital information obtained from digital sources. They

accommodate any electronic device as a source of digital information, which allows the

examination of all relevant components of the failed system and thus contributes to the

comprehensiveness of the investigation.

© University of Pretoria

57

 The investigation follows a standard predefined procedure, which contributes to its

objectivity and reproducibility.

 Forensic evidence is the output of the investigation, in other words legal principles are

followed so that the results are admissible in court. This also implies the objectivity of

the findings as they are based on analysed evidence.

In summary, the above analysis demonstrates that digital forensics, by its mere definition, can

be applied to the investigation of software failures and provide accurate results. The definition

of digital forensics used in this thesis for this purpose is presented next.

3.3.2.3 Working definition of digital forensics

Köhn (2012:24) proposed the following definition of digital forensics, which encompasses all

the aspects discussed above and is therefore adopted in this thesis:

Digital Forensics is a specific, predefined and accepted process applied to digitally

stored data or digital media using scientific proven and derived methods, based on

a solid legal foundation, to extract after-the-fact digital evidence with the goal of

deriving the set of events or actions indicating a possible root cause, where

reconstruction of possible events can be used to validate the scientifically derived

conclusions.

The definition of digital forensics served as the second argument to motivate its suitability for

software failure investigations. The third and last argument is derived from a review of other

forensic disciplines that are also commonly used for the investigation of non-criminal failures

and adverse events. They are reviewed in the next section.

3.3.3 Lessons learnt from other forensic disciplines

Although forensic science is not currently used for failure analysis in the software industry,

this is not a new concept in other industries. Two industries that systematically make use of

forensic science for such a purpose are the engineering and the healthcare industries. In the

engineering industry, this field of practice is called forensic engineering (Noon, 2001), while

it is known as forensic pathology in the healthcare industry (Dolinak, Matshes & Lew, 2005).

In each of these disciplines, the goal of the investigation is to improve the quality and reliability

© University of Pretoria

58

of the systems, products and procedures, and to prevent the recurrence of failures and adverse

events. This is also the aim of the suggested forensic analysis of software failures. Forensic

engineering and forensic pathology are briefly discussed in Sections 3.3.3.1 and 3.3.3.2

respectively.

3.3.3.1 Overview of forensic engineering

Forensic engineering applies various scientific examination tools and techniques, simulations

and event reconstruction methods to identify the source of disastrous failures in engineering

products (McDanels, 2006). The emergence of formal failure investigations as currently

conducted in forensic engineering can be traced to the Industrial Revolution, during which

many complex machines were introduced. The added complexity led to many accidents that

required expert analysis to understand their causes and prevent their reoccurrence. The types

of accidents evolved as engineering products developed from steamboats, railway trains and

steel bridges in the 1800s to automobiles, home appliances and airplanes in the 1900s (Brown,

Obenski & Osborn, 2003).

Forensic engineering has evolved from its initial focus on legal investigations in product

liability cases to its current focus on failure analysis for product and system quality

improvement purposes. Presently, most forensic engineering investigations never reach the

courtroom and are conducted mainly with a view to preventing similar accidents in future

(Carper, 2000).

One such example is the forensic investigation conducted into the collapse of the World Trade

Center on 11 September 2001, which was undertaken to understand the impact of the fire on

the collapse of the twin towers – despite the fact that the responsible parties were already known

(Usmani, Chung & Torero, 2003). Various elements such as the construction design, fire

properties of materials used, and their thermal expansion were examined through simulations

and computer-based structural analysis. Based on this analysis it was determined that using

reinforced concrete instead of lightweight steel, as well as providing an energy-absorbing

structure could prevent the collapse of such tall buildings in the future (Zhou, 2004).

© University of Pretoria

59

3.3.3.2 Overview of forensic pathology

Forensic pathology is a branch of medicine “that applies the principles and knowledge of the

medical sciences to problems in the field of law” (Dimaio & Dimaio, 2001). It has been an

integral part of medicine since the 19th century and was formally recognised in the United

States in 1959 by the American Board of Pathology (ItsGov.com, 2011). Forensic pathology is

primarily used to investigate the cause of death upon a legal request (Dimaio & Dimaio, 2001).

However, it also has applications in public health and safety to prevent and control diseases

and to prevent drivers’ injuries.

In public health, forensic pathologists track trends for a potential disease outbreak, the

emergence of a new infectious disease, or a bioterrorism attack (Springboard, 2014). For

instance, a forensic autopsy may uncover a previously undetected contagious disease, and this

knowledge can be used to prevent an outbreak. It may also help identify a hereditary condition

that will enable family members to proactively seek treatment or limit the effect on new-born

babies and future offspring (Dolinak et al., 2005).

In public safety, forensic pathology is used particularly to promote driver safety (Springboard,

2014). As a matter of fact, the investigation of deaths and injuries in road accidents has led to

policy changes in several countries. For instance, in the United States, such investigations led

to the introduction of optional fitting and wearing of seat belts in cars in 1955. This legislation

was later made mandatory in many countries, following its positive effect on road safety and

reductions in fatalities (Onyiaorah IV, 2013).

The reviews of the above two disciplines show that, through the integration of scientific

methods and legal principles, the forensic approach has ensured rigorous and comprehensive

investigations and has created opportunities for improvement and for preventing the recurrence

of failures and accidents. This effect has been demonstrated for over a century in the

engineering and medical fields. In view of the above benefits in other fields of forensic science,

similar benefits are expected in the software industry, based on the application of digital

forensics to failure investigations. As was the case with forensic engineering, the increased

complexity of software systems requires more formal and in-depth investigations than are

currently available through using troubleshooting and other failure analysis methods.

© University of Pretoria

60

Section 3.3 motivated the use of digital forensics for software failure analysis. It showed that

digital forensics can be applied to non-criminal or legal cases and can be beneficial to failure

analysis. The next step is to find out how digital forensics can improve its accuracy. This

requires an understanding of the distinctive characteristics of a digital forensic investigation.

These characteristics are its use of scientific methods and techniques and its adherence to legal

principles. These elements are reviewed in Sections 3.4 and 3.5 respectively. The investigation

process is a product of these elements to ensure the legal acceptance of the results (discussed

in Section 3.6). Examples are provided of how each of these characteristics of digital forensics

can assist in the accurate investigation of software failures. The examples involve the three

deadly radiation therapy accidents reviewed in the previous chapter

3.4 The scientific foundation of digital forensics

As a recognised science, digital forensics must adhere to accepted scientific methodologies.

Two fundamental ones commonly used in digital forensics are the scientific method and

mathematical analysis. The scientific method is discussed in Section 3.4.1 and mathematical

analysis is reviewed in Section 3.4.2.

3.4.1 The scientific method

This section starts with a general overview of the scientific method. It then examines how the

scientific method can help improve the accuracy of software failure investigations.

3.4.1.1 Overview of the scientific method

The scientific method is a process used by scientists to conduct an objective investigation of

an event. Its aim is to minimise bias or prejudice from the experimenter and ensure the accuracy

of the results (Bernstein, 2009). It generally consists of the following four steps (Young, 2007):

1. Observation of an event or problem related to the event

2. Formulation of a hypothesis (or hypotheses) to explain the event

3. Prediction of evidence for each hypothesis

4. Testing of hypothesis and predictions through controlled experimentations by several

independent experimenters

© University of Pretoria

61

This method is iterative as the steps are repeated until a conclusion can be reached. Findings

are then reported.

One crucial element of the scientific method is falsification. The scientist must actively seek to

disprove or falsify the hypothesis (Young, 2007). If experiments and observations discredit the

initial hypothesis, this hypothesis can be discarded and a more valid one must be created and

tested. Even if experiments confirm the hypothesis, alternative findings to disprove the

hypothesis must be explored – this can be done by other scientists (Casey, 2010). In addition,

new information can emerge during an investigation, and it must be reviewed and evaluated to

ensure that the hypothesis still stands (Casey, 2010). Furthermore, results are peer reviewed

before finalisation (Gogolin, 2013). Falsification promotes the objectivity and reproducibility

of the results and is a key differentiator between a formal scientific investigation such as digital

forensics and a non-scientific one such as troubleshooting.

3.4.1.2 How can the scientific method help improve the accuracy of software failure

investigations?

The scientific method promotes the objectivity of the investigation

If applied to software failures, a digital forensic investigation based on the scientific method

differs greatly from the troubleshooting approach. Throughout this chapter, troubleshooting is

used as a reference to existing failure analysis methods as the review of software failure

investigations in the previous chapter indicates that it is the most common first response to a

failure. Details on the application and usage of other failure analysis methods were not found

in the literature review on software failures.

A typical troubleshooting process consists of the following steps (Trigg & Doulis, 20018):

5. Recreate the problem. This means reproducing the actions that led to the failure.

6. Isolate the cause of the problem. This is a process of eliminating components that are

not at fault.

7. Fix the problem.

8. Test the solution to see if it solves the problem.

9. If the problem is not solved, repeat the process, otherwise document the work that was

performed.

© University of Pretoria

62

It is evident from the above process description that troubleshooting neither uses digital

evidence to identify the cause of the failure, nor provides digital evidence of the identified

cause to ensure its reliability. In addition, no peer review of the results is required, so the

investigator does not have to justify the selected solution to independent parties. The scientific

method of digital forensics forces the investigator to take these steps to ensure that the results

are objective and reliable.

The scientific method promotes the reproducibility of the investigation

The outcome of a troubleshooting process relies on the important first step, which is the

recreation of the problem. No standard or controlled procedure is followed to perform this step,

leading to potential bias from the investigator based on his experience. In addition, depending

on the severity of the failure and the complexity of the system, recreating the problem is not

always feasible or advisable, which can bring the investigation to a halt with no identified cause

for the problem. Examples of such situations were provided in Chapter 2. A case in point is the

death of a woman in an ambulance due to the spontaneous shut off of the oxygen delivery

system (Charette, 2010). The investigators were unable to recreate the shut off and could not

determine the reason for it. The ambulance now carries portable oxygen systems as a risk-

mitigating solution.

The scientific method promotes the comprehensiveness of the investigation

As the above process shows, troubleshooting does not use falsification. As soon as a hypothesis

(i.e. a potential cause of the failure) is confirmed, the hypothesis is deemed true and the system

is restored to normal operations. As a result, the root cause may not be addressed and the

problem may well reoccur at a later stage.

The case of the Therac-25 disaster presented in the previous chapter (Leveson & Turner, 2002)

illustrates this situation. The engineers from AECL, the software vendor, were set on attributing

the second radiation accident to a hardware fault and closed their mind to any other explanation

for the failure. They hardwired the suspected fault, found some design errors that confirmed

their hypothesis and stopped the investigation right after. As it turned out, this theory was soon

proved wrong as other accidents occurred after they had fixed the hardware flaw.

© University of Pretoria

63

Situations like these can be avoided by using falsification. Since other failure analysis methods

do not follow the scientific method (Neebula.com, 2012), it is safe to infer that they too do not

use falsification. However, unlike troubleshooting, details on their application and usage were

not found in the literature review on software failures.

3.4.2 Mathematical analysis

In addition to applying the scientific method, digital forensics also uses other scientific

methodologies to ensure the credibility of the results. These methodologies are based on

rigorous mathematical techniques tested and accepted in the computer science community.

Two main ones are discussed below: the use of a hash algorithm and neural networks.

3.4.2.1 Hash algorithms

One of the techniques commonly used is a hash algorithm. A hash algorithm generates a unique

mathematical representation of a data set, drive or file, called a hash value, which can then

serve as its fingerprint (Noblett et al., 2000). Popular hash functions are MD5, SHA-1 and

SHA-256 and SHA-3 (Roussev, 2009; Breitinger, Stivaktakis & Baier, 2013). Hash values

have a number of applications in digital forensic analysis. Some examples follow.

Validation of data authenticity and integrity

As in other forensic sciences, the evidence collected during an investigation must remain

unchanged. When acquiring data from a suspect computer, the copied or imaged data must be

an exact replica of the original data. A hash algorithm is applied to both the original data and

its image. The resulting hash values of both data sets are then compared to ensure that the

image has not been altered during acquisition. The hash value of the image is maintained in the

case file and can be used at any moment during the investigation to verify that the integrity of

the data has not been compromised (Mabuto & Venter, 2011).

File identification

Hash values are also used to remove irrelevant files or identify known files of interest to save

time when searching for pieces of information through the collected data. Examples of

irrelevant files are known and trusted files such as operating system files and application

installation files. Examples of files of interest are illegal files such as pirated media or hacking

scripts (Roussev, 2009). The list of hash values from the collected files is compared to a pre-

© University of Pretoria

64

compiled hash set of known files such as the NIST National Software Reference Library (NIST,

2013), which has a collection of hash values of most common software applications.

Additional applications of hash values include discovering deleted files, processing corrupted

or formatted computer media, identifying different versions of a file (e.g. a file that is saved as

an HTML document and also as a text file or a new version of an executable file), and finding

traces of a file across various data sources (e.g. a file system image and a memory dump)

(Roussev, 2009). Roussev (2009) provides a detailed explanation of the techniques used for

these various applications of hash values.

A number of forensic software tools are available to perform data analysis using hashing

algorithms. Popular ones are FTK from AccessData (AccessData, 2013), Encase from

Guidance Software (Guidance Software, 2013) and the open source Sleuth Kit maintained by

Brian Carrier (sleuthkit.org, 2013). Mabuto and Venter (2011) provide a comprehensive list of

digital forensic techniques and tools that are used in the industry.

3.4.2.2 Neural networks

One mathematical analysis technique used for data classification that has applications in digital

forensics is neural networks. Indeed, one of the challenges in forensic investigations is the

increasingly large volume of data to be analysed to produce reliable digital evidence (Quick &

Choo, 2014). Digital forensic tools and techniques mentioned earlier are limited in their ability

to analyse large data sets. Therefore more powerful mathematical techniques are used when

appropriate. A particularly suitable technique adopted in the computer science community is

neural networks.

Neural networks are formally defined as: a computing system made up of a number of simple,

highly interconnected processing elements, which process information by their dynamic state

response to external inputs (Caudill, 1989). Neural networks are modelled on biological neural

networks to identify patterns in data sets (Engelbrecht, 2003). For instance, supervised neural

networks can be used for complex pattern recognition in network forensics. In Khan, Chatwin

& Young (2007), the network is trained with consecutive snapshots of the file system to

recognise the normal behaviour of a program. The trained network can then be used to

automatically build an execution timeline on a forensic image of a file system to help identify

© University of Pretoria

65

available evidence. Self-organizing maps (SOM’s) have also been proposed for pattern

classification in digital forensic investigations. A SOM is a model of unsupervised neural

networks used for the analysis and visualisation of multi-dimensional data (Engelbrecht, 2003).

SOM’s can display a colored map showing identified clusters in the data set, thereby enabling

the quick identification of outliers. A case study of the application of SOM’s to digital forensic

investigations was provided in Fei, Eloff, Venter & Olivier (2005).

3.4.2.3 How can mathematical analysis help improve the accuracy of software failure

investigations?

Mathematical analysis promotes the legal acceptance of the results

Current failure analysis methods do not rely on mathematical analysis. Using mathematical

analysis to authenticate evidence can therefore prove valuable in software failure investigations

that result in court proceedings, more specifically in product liability litigations. It also helps

provide sound evidence of the findings. An example is the case discussed in the previous

chapter, namely of the radiation accident caused by Varian software in the St Vincent Hospital

(Bogdanich, 2010).

The Varian software wrongfully indicated that the instructions for positioning the radiation

beam were in place while the corresponding files were actually corrupted and inaccessible. A

hash value of the image of the system’s hard drive would confirm that this was indeed the case

at the moment of the accident, and that the files did not get corrupted during the imaging

process.

The Varian software wrongfully indicated that the instructions for positioning the radiation

beam were in place while the corresponding files were actually corrupted and inaccessible. A

hash value of the image of the system’s hard drive would confirm that this was indeed the case

at the moment of the accident, and that the files did not get corrupted during the imaging

process. Processing the corrupted files would also show that the correct positioning of the

radiation beam had been set prior to administering the treatment. This would help prove that

the machine operator did not enter incorrect settings and that the faulty software was

responsible for the radiation of the incorrect cells.

© University of Pretoria

http://link.springer.com/search?facet-author=%22B.+Fei%22
http://link.springer.com/search?facet-author=%22J.+Eloff%22
http://link.springer.com/search?facet-author=%22H.+Venter%22

66

The Varian software indicated that the treatment plan was saved, while the file was in fact

missing. Using data recovery techniques could also help recover the missing file and serve as

further evidence that the correct treatment plan had been set prior to delivering the radiation

dosage. This would prove that the poorly designed software that displayed a misleading

“saved” message was to blame for the resulting overdose of radiation.

 The above discussion is obviously a simplification of this complex failure as a more thorough

analysis would be required to determine the source of the problem. However, it illustrates the

potential application of a hash value for such a purpose.

Besides its scientific foundation, digital forensics relies on legal principles applicable to the

handling of the digital evidence. A set of best practices has been developed to ensure adherence

to these legal requirements and is reviewed in the next section.

3.5 Best practices in digital forensics

Results of a digital forensic investigation must be forensically sound to be admissible in court.

Forensic soundness refers to the preservation of the integrity and completeness of the data

throughout the investigation (McKemmish, 2008). Section 3.4.2 above presented analysis

techniques used to verify the integrity and completeness of the evidence. These techniques,

which support best practice developed to ensure forensic soundness of the digital evidence, are

presented in Section 3.5.1 and their application to software failure investigations is discussed

in Section 3.5.2.

3.5.1 Overview of best practices in digital forensics

Minimal handling of original data

The investigator should minimise manipulation of the original data to prevent its spoliation.

He/She should rather make a copy of the relevant original data and work with that copy. Data

duplication must not alter the original data and should provide a complete copy of the drive or

device being copied (Vacca & Rudolph, 2010).

Keeping account of any change to the data

© University of Pretoria

67

Whenever data is altered during the investigation, the investigator must record details of the

change and be able to explain its impact on the investigation (Köhn, 2012).

Maintaining the chain of custody

The chain of custody is a legal term that refers to “the movement and location of evidence from

the time it is obtained until the time it is presented in court” (Free Online Law Dictionary,

2013). It is a chronological documentation of the different persons having custody of the

evidence and being responsible for its integrity as well as the different places where the

evidence was stored (Free Online Law Dictionary, 2013). This requires recording the handling

of the collected data. Collected data should therefore be kept by an independent neutral party

in a secure storage protected from potential tampering (Corby, 2000).

Ensuring transparency of the investigation process

An audit trail of the process followed should be maintained and should be verifiable by an

independent party. Reproducing the process should provide the same results. This requires the

documentation of all the steps taken, tools and techniques used, and any problem or error

encountered (McKemmish, 2008).

3.5.2 How can digital forensic best practices help improve the accuracy of

software failure investigations?

Best practices promote the reproducibility of the investigation

A detailed documentation of the investigation makes it possible for independent parties to

reproduce the results without unnecessary time delay. Transparency also provides a learning

tool that can be used in the event of a similar problem. An example that illustrates this point is

the case of the Therac-25 series of accidents (Leveson & Turner, 1993), which were

unsuccessfully handled through troubleshooting.

The Therac-25 overdose of radiation was only acknowledged and confirmed by AECL, the

software manufacturer, when they recreated the failure after the sixth accident. Indeed, the

hospital physicist managed through numerous simulations to reproduce the condition that

elicited the displayed error message and measured the resulting dose. AECL engineers had

been unsuccessfully trying to reproduce the malfunction for a whole day following the accident

© University of Pretoria

68

and wrongfully assumed that the machine was not at fault. After receiving instructions from

the physicist, they followed the same procedure as him and finally obtained the same results.

Best practices promote the comprehensiveness of the investigation

Working on a copy of the data allows the investigator to carry on with the root-cause analysis

after system restoration, thus minimising disruption to business operations. This gives him/her

the necessary time to conduct a comprehensive investigation. In troubleshooting, once the

system is restored, no further investigation is usually conducted. In rare cases where there is a

subsequent root-cause analysis, causal data may already have been lost during system

restoration activities, which can jeopardise the investigation.

Best practices promote the objectivity of the investigation

Following the above principles enables the investigation to be peer-reviewed more easily and

quickly, as well as conclusions to be verified independently, which is not the case with existing

failure analysis methods.

Best practices promote the legal acceptance of the results of the investigation

By observing legal principles to handle the collected data, the forensic soundness of the

evidence is preserved throughout the investigation.

Applying the scientific method and adhering to applicable principles of law are the foundations

of a digital forensic investigation. The investigation process is a by-product of these concepts

and it is reviewed in the next section.

3.6 The digital forensic process

A digital forensic investigation must follow a structured procedure to ensure forensic

soundness of the evidence. This structured procedure is referred to as the digital forensic

process (Mabuto & Venter, 2011). A description of this process is provided in Section 4.4.3.1

and its potential application in software failure investigations is discussed in Section 4.4.3.2.

© University of Pretoria

69

3.6.1 Overview of the digital forensic process

The digital forensic process is defined as a number of steps to be performed from the incident

alert through to the reporting of findings (Casey, 2004). At its most basic level, this process

has the following three steps: acquisition, analysis and reporting (Carrier, 2004). A description

of the three phases follows.

3.6.1.1 Acquisition

The primary objective of this phase is to identify and collect all potential evidence for later

analysis by using sound forensic procedures that include the following steps:

 Securing the electronic crime scene. The suspect computer and its surroundings are

secured to avoid damage to or contamination of potential evidence.

 Documenting the crime scene. This includes taking handwritten notes of observations

made and details of the suspect machine. Examples are its make, model, serial number,

state (on or off) and peripherals such as external hard drives, speakers, webcams and

cable modem. Documentation of the crime scene also includes taking photographs and

video tapes of the room, the computer and the computer screen, and conducting

preliminary interviews with witnesses and victims (Craiger, 2006).

 Collecting and preserving the evidence. A typical digital forensic investigation makes

use of both physical and digital evidence (Carrier, 2004). Collecting physical evidence

involves seizing any suspect or relevant computer medium and computing device.

Collecting digital evidence requires imaging the hard drive of the suspect device to a

trusted device using software imaging tools. These tools use a write blocker to prevent

any writing to the original drive (TechMediaNetwork, 2013). Preserving the evidence

involves isolating it to avoid its contamination (Mukasey, Sedgwick, & Hagy, 2008).

 Packaging the evidence. Collected evidence should then be bagged and tagged.

3.6.1.2 Analysis

This phase examines the acquired data to find evidence that either validates or contradicts a

hypothesis about the case or that shows that the system was tampered with to hide data. The

scientific method is applied in this phase to reach conclusions based on the evidence found

(Carrier, 2004). Mathematical analysis and other digital forensic techniques (e.g. string

searching, production of time stamps, reconstruction of e-mail and web-browsing activity)

© University of Pretoria

70

(Mabuto & Venter, 2011) are used to analyse the data and reconstruct the crime or incident that

took place. This phase is typically performed in a digital forensic laboratory.

3.6.1.3 Reporting

Once the analysis is complete, the conclusions are drawn and the corresponding evidence is

presented to the relevant party/parties. In a criminal case, this is typically a judge or jury, while

in a corporate setting it is usually the executives and human resources of the employing

company (Carrier, 2004). Presentation is usually in the form of a written report along with the

electronic evidence on a computer medium, but it can also include expert testimony in a court

of law (Casey, 2004).

3.6.2 Standardising of the forensic investigation process

The forensic investigation process was recently standardised by ISO/IEC 27043 (2015). This

standard process is a harmonisation of the various idealised models for common incident

investigation processes across a number of investigation scenarios where digital evidence is

involved. The standard forensic investigation process is comprehensive in the sense that it

includes the complete end-to-end processes from pre-incident preparation through to

investigation closure as associated concurrent processes. This long list of investigation

processes and sub-processes are classified into several high-level classes as shown in Figure

3.1, which encompass the three major phases described earlier.

.

Figure 3.1: The various classes of digital investigation processes

© University of Pretoria

71

ISO/IEC 27043 (2015) clearly requires that the first response to an incident does not negatively

impact the possibility to perform a digital investigation, e.g. to avoid powering off the

equipment, opening or changing files on a live system etc. This supports the argument made in

the previous chapter that troubleshooting is an inadequate first response to a failure as it can

tamper with potential digital evidence that may be required in the subsequent root-cause

analysis. However, no detailed description of the first response sub-processes is provided in

the Standard, which leaves the identification of an appropriate solution unclear.

Additionally, the Standard stipulates that “identifying potential digital evidence at the incident

scene is of crucial importance for the remainder of the process, because if potential digital

evidence is not identified at this point, it might not even exist at a later point during the

process”. This further supports the argumentation made in this thesis of collecting volatile

digital evidence at runtime to prevent the potential loss of the evidence after the failure.

Furthermore, the Standard indicates that incident detection procedures should be in place prior

to the beginning of this process. This is in line with the suggestion to detect near misses at run-

time to alert users of an upcoming failure so that appropriate actions might be taken prior the

unfolding of the failure.

3.6.3 How can the digital forensic process help improve the accuracy of

software failure investigations?

The digital forensic process promotes the reproducibility of the investigation

A standard process ensures reproducibility of the investigation and promotes its objectivity.

The case of the Therac-25 disaster is a clear example of how following different procedures

for root cause analysis can be detrimental. Each of the six incidents was handled differently,

based on the given engineer’s experience with the system, and consequently produced different

results each time. The failures were every time attributed to various elements, including the

hardware, the electric circuit and the operator’s errors. The only common conclusion – which

eventually proved to be erroneous – was that the software was not at fault.

The digital forensic process promotes the comprehensiveness of the investigation

The forensic process requires all potential evidence to be collected and analysed, as this

promotes the comprehensiveness of the investigation. Following the same procedure for the

© University of Pretoria

72

crime scene inspection would be equally valuable. Protecting, isolating and capturing the state

of the scene of the failure could include taking snapshots of the error message and screenshots

from the computing device, as well as capturing potential physical evidence such as the

conditions of the treatment room and the patient’s reaction to treatment (e.g. skin redness) in

the case of a medical device failure. This would help to reconstruct the chain of events that led

to the failure and to understand the factors that contributed to the accidents (e.g. misleading

“Saved” message in the case of the Varian software radiation accident; output diagram

seemingly correct in the Panama case).

Section 3.6 reviewed the main attributes of digital forensics, their potential application in

failure investigations and their benefits over current failure analysis in terms of improved

accuracy. The discussion showed that digital forensics has the potential to provide results that

are more accurate than current failure analysis methods. The next section provides a summary

of this discussion to determine how well digital forensics is suited for this purpose.

3.6.4 Suitability of digital forensics for accurate failure investigations

Table 3.1 summarises the main differences in the investigation process between digital

forensics and troubleshooting, based on the reviewed characteristics of digital forensics.

Troubleshooting is used as the most common response mechanism to software failures.

Table 3.1: Differences between digital forensics and troubleshooting

Digital Forensics Troubleshooting

Investigation based on standard reproducible process Informal investigation process, not followed

rigorously, not reproducible

Scientific analysis Intuitive analysis, relies on experience with the system

Analysis based on obtained evidence No evidence required

Review of all possible solutions to problem and

selection of most convincing one

Find only the first satisfactory solution to problem

Falsification inherent to analysis process No falsification

Peer review of findings No peer review of findings

Documentation of actions taken and results obtained

before, during and after investigation

Documentation only after investigation is complete

Adherence to applicable legal principles Legal principles are not relevant for the investigation

© University of Pretoria

73

Based on its main characteristics listed in the above table, digital forensics has the ability to

satisfy the requirements for improved accuracy of failure investigations. Table 3.2 presents a

summary of how this is achieved. The researcher organised the table in two columns: the first

column lists each requirement, while the second column indicates the specific aspect of digital

forensics that makes it suitable for the given requirement.

Table 3.2: Suitability of digital forensics for the requirements of an accurate software failure

investigation

Requirement Relevant digital forensic characteristic

Objectivity Scientific method

 Mathematical analysis

 Best practice for transparency – keeping an audit trail of process

 Peer review

Reproducibility Standard digital forensic process

 Best practice requiring documentation of process

 Scientific method with peer review

Comprehensiveness Scientific method with falsification

 Peer review

 Digital forensic process requiring collection and analysis of all potential

evidence

 Best practice requiring to work on a copy of the evidence

Admissibility in court Analysis based on obtained evidence

 Best practices for forensic soundness of evidence

 Mathematical analysis to authenticate evidence

As Table 3.2 shows, digital forensics can satisfy all four requirements. Examples on how this

could be achieved were provided throughout the chapter. However, despite these expected

benefits, digital forensics is currently not used in failure investigations. Various challenges

related to the nature of software failures have been cited to explain this gap. One of them is the

volatility of the digital evidence, indicating that the evidence can be compromised following a

failure. Another challenge is to limit downtime following a failure, which requires the forensic

analysis to be conducted only after an initial system restoration. Applying digital forensics to

the investigation of software failures needs to make provision for meeting these challenges.

The digital forensic process might therefore need to be adapted to the above specific

© University of Pretoria

74

requirements of software failures. The proposed solution to this issue is presented in the next

chapter, following a review of previous work conducted on this subject.

3.7 Conclusion

Chapter 3 presented digital forensics as a potentially significant contribution to improving the

accuracy of software failure investigations, and provided several motivating arguments for

using digital forensics for such a purpose. The chapter also reviewed the main concepts of

digital forensics and provided examples on how they can be applied to and benefit failure

investigations, based on the requirements for accurate failure analysis that were established in

the previous chapter. Despite being supported by a number of authors and having clear

advantages over current failure analysis methods, digital forensics is not yet applied to failure

investigations at this point in time. The next chapter therefore attempts to determine potential

hindrances in the application of digital forensics to failure analysis and proposes an adapted

digital forensic process to address such obstacles.

© University of Pretoria

75

 CHAPTER 4

THE ADAPTED DIGITAL FORENSIC PROCESS

FOR FAILURE INVESTIGATIONS

4.1 Introduction

Chapter 3 presented the argument for using digital forensics to investigate software failures

with greater accuracy. It discussed the supporting view of a number of authors on this topic

and presented examples of various characteristics of a digital forensic investigation that could

be applied to failure investigations and promote the requirements established for increased

accuracy. However, despite this argumentation and although forensic science has been applied

to failure analysis in some industries for over a century, the fact remains that digital forensics

is currently not used in the software industry to investigate failures. This was clearly noticeable

from the review of the investigation of recent cases of major software failures that was

conducted in Chapter 2.

Chapter 4 therefore attempts to shed light on the factors that hamper the adoption of digital

forensics in failure analysis and proposes a solution to these challenges. This solution is

presented as an adapted digital forensic process that will be deemed more suitable for the

specificities of software failures than the currently available process designed primarily for

criminal cases. Some elements of this process have been inspired by the results of earlier

research on the use of digital forensics for failure analysis, which are reviewed in the current

chapter. The viability of this process is evaluated through the case study of a real-life software

failure, more specifically the Therac-25 disaster presented in Chapter 2. The current chapter

again presents this case study.

The chapter is structured as follows. Section 4.2 discusses specificities of software failure

analysis that are not addressed by the current digital forensic process. Section 4.3 reviews

previous work conducted on this subject to identify results that can help in the design of the

proposed process for the forensic investigation of software failures. In Section 4.4 the proposed

© University of Pretoria

76

process is described in detail, while in Section 4.5 it is applied to the Therac-25 accidents to

examine its viability.

4.2 Challenges to the forensic investigation of software failures

The previous chapter demonstrated that the digital forensic approach can be applied to the

investigation of software failures and can promote the accuracy of the investigation. This

forensic approach involves three main phases (acquisition, analysis and reporting) associated

with various activities that can be summarised as follows:

 Identify potential digital evidence of the event investigated

 Collect the digital evidence with a software imaging tool

 Store the imaged evidence to a trusted device

 Verify and maintain the authenticity and completeness of the stored evidence through

mathematical analysis and best practices

 Analyse the stored evidence with the scientific method and forensic tools and

techniques

 Draw conclusions about the event (e.g. author of crime and modus operandi) based on

the scientific analysis of the evidence

 Report the conclusions with supporting evidence

The above process is illustrated in Figure 4.1.

The above process was designed for the investigation of computer crimes. A review of this

process and the literature on forensic failure analysis indicates that the approach presents

various challenges with regard to the investigation of software failures. These challenges are

discussed next.

Identify evidence Collect evidence

Software imaging
tool

Store evidence

Trusted device

Verify soundness
of evidence

Mathematical
analysis

Maintain
soundness of

evidence

Best practices

Analyse evidence

Scientific method +
forensic tools and

techniques

Report conclusions

Tool or
technique

Acquisition Analysis Reporting

Figure 4.1: The digital forensic process

© University of Pretoria

77

4.2.1 The volatility of digital evidence

As discussed in the first chapter, operational data pertaining to the failure that can be used as

digital evidence may be lost or corrupted after a system crash. In addition, troubleshooting

activities such as system rebooting can also tamper with available digital evidence (Trigg &

Doulis, 2008). Collecting appropriate and reliable evidence may therefore be challenging. This

is even more so in the case of embedded systems, as is the case for many of the systems

mentioned in the real-life cases of failures in Chapter 2.

Embedded systems usually have no hard disc and the data is stored in memory chips, built

internally in the embedded system (Breeuwsma, 2006). Imaging this memory is usually

particularly challenging for a number of reasons. Firstly, imaging tools may not be authorised

to run on these systems due to restrictions from the manufacturers. Secondly, the operating

systems of embedded devices may not include features available on standard desktop operating

systems for software-based memory imaging. Thirdly, the lack of standardised interfaces in

embedded systems does not allow for an easy attachment of hardware memory imaging tools

(Rabaiotti & Hargreaves, 2010). Some specialised tools and techniques for memory imaging

in embedded systems, although limited, are available. Some examples, such as loading a small

Linux operating system onto the device or using a test access port to directly access the memory

chips, are discussed in Breeuwsma (2006) and Rabaiotti & Hargreaves (2010).

As evidence collection is one of the first steps in the forensic approach, it has repercussions for

the entire forensic process. For this reason, the volatility of the evidence is considered to be the

biggest challenge posed to a successful forensic investigation of software failures. This is even

more so seeing that digital forensics relies on the completeness of the evidence to ensure the

accuracy of the results. The researcher’s proposed solution to this issue is the collection and

analysis of data from near-miss events, which is not currently catered for in digital forensics.

Near-miss analysis will be reviewed in detail in Chapter 5.

4.2.2 The lack of forensic tools and techniques for the root-cause analysis of

software failures

Various forensic tools and techniques are available for the investigation of computer crimes.

Although some of these techniques can be applied to failure analysis, they are either used to

© University of Pretoria

78

authenticate evidence (e.g. mathematical analysis) or to find evidence of a known crime (e.g.

string searching or reconstruction of web-browsing activity). They are not designed to find the

(unknown) root cause of a failure. There is also no logical method available to pinpoint the root

cause of a failure by using the scientific techniques that are currently available for data analysis

(e.g. statistical analysis). Consequently, an accurate failure analysis method with suitable

scientific techniques needs to be identified. Although the goal of this study is not to identify or

provide forensic tools and techniques for failure analysis, the design of the prototype in Chapter

8 highlights some possible solutions.

4.2.3 The need to minimise downtime following a failure

System downtime can be very costly and minimising its duration is critical. This requires

restoring the system to its normal functioning before a proper root-cause analysis can be

performed or completed. It also requires the quick restoration of the system without losing

potential evidence. Since restoration can disturb potential evidence, the evidence needs to be

collected before restoring the system (Corby, 2000). This method differs from digital forensics,

where the analysis can be started as soon as the evidence has been collected, regardless of the

state (on or off) of the suspect machine. The digital forensic process clearly does not make

provision for a two-phased approach to evidence collection (firstly collection of evidence and

secondly system recovery). It is however valuable for the forensic investigation of a software

failure.

4.2.4 The need for continuous system monitoring

Ensuring that operational data is captured and preserved after a failure requires continuous

system monitoring and logging to ensure the availability of the data when needed (Corby,

2000). Continuous system monitoring also facilitates the early detection of failures, which can

then be addressed timely. However, system monitoring is not a task performed in digital

forensics and it is not provided for in its investigation process.

The above challenges are summarised in Table 4.1.

Table 4.1: Challenges to the forensic investigation of software failures

Challenge Description

© University of Pretoria

79

The volatility of digital evidence Potential digital evidence may be destroyed during

and after a failure

The lack of forensic tools and techniques for the root-

cause analysis of software failures

Available forensic tools and techniques are not

designed to find the root cause of a failure

The need to minimise downtime following a failure In order to minimise downtime, the system must be

restored before starting the digital forensic

investigation. This process is not catered for in digital

forensics.

The need for continuous system monitoring Ensuring the availability of digital evidence requires

continuous system monitoring but this task is not

provided for in digital forensics

Proposed solutions for the first two challenges above are described in subsequent chapters, as

they are novel techniques and methods. The proposed process focuses on the last two

challenges, which can be addressed through adapting the digital forensic process and

supplementing it with currently available methods. Despite the number of authors that

recommend the forensic investigation of software failures, none of them has so far proposed a

complete process that addresses the above challenges. Before proposing a potential solution to

fill this gap, earlier work conducted on the forensic investigation of software failures is

reviewed next.

4.3 Previous work on the forensic investigation of software failures

This section reviews publications on the forensic investigation of software failures. A review

of these solutions lays the foundation for future development of a suitable forensic process for

this purpose. Knowledge about previous work allows the researcher to incorporate and possibly

improve the solutions suggested by previous researchers. It also facilitates the identification of

the areas of this process design that have been overlooked and therefore need further

investigation.

The literature review on the forensic investigation of software failures indicates that research

on this topic has been conducted under two main disciplines: operational forensics and forensic

software engineering. These disciplines are reviewed in Section 4.3.1 and 4.3.2 respectively.

© University of Pretoria

80

4.3.1 Previous work on operational forensics

The term operational forensics was coined by Michael Corby in 2000 (Corby, 2000a). Corby

defines operational forensics as “the application of computer forensic techniques to identify

occurrences and underlying causes of observed computer based events”. Besides Corby, only

one other author, Barry Hood (2010), conducted research on operational forensics. Previous

work from Corby and from Hood is presented in Sections 4.3.1.1 and 4.3.1.2 respectively.

4.3.1.1 Previous work from Corby

As its definition suggests, operational forensics uses digital forensic techniques to analyse the

cause of an event. According to Corby (2000b), digital forensics can be categorised into two

branches based on the goal of the investigation: operational forensics and prosecutorial

forensics. Traditionally, digital forensics has been prosecutorial by nature with the objective of

collecting evidence for prosecution or disciplinary action. By contrast, the main goal of

operational forensics is to gather evidence for system correction and improvement (Hodd,

2010). Unlike prosecutorial forensics, which only deals with computer crimes and security

incidents, operational forensics handles any kind of computer event. It can be argued that in

prosecutorial forensics, the stress is placed on the legal aspect of the investigation, while in

operational forensics the emphasis is on the scientific approach of the analysis. The author of

this thesis has summarised the distinctions between the two branches of digital forensics in

Figure 4.2.

Figure 4.2: Relationship between prosecutorial forensics and operational forensics

Figure 4.2 shows the differences between the two branches and highlights their commonality,

which is the collection and examination of digital evidence using forensic procedures.

Prosecutorial

Forensics

Operational

ForensicsMethod:
 Digital

evidence
collection and
examination

using forensic
procedures

Goal:
prosecution or

disciplinary
action

Goal:
System

correction and
improvement

Target:
 computer
crimes and

security
incident

Target:
any system
failure and

incident

Digital Forensics

© University of Pretoria

81

The first publication on the forensic investigation of software failures is from Corby in 2000

(Corby, 2000a) under the term operational forensics. Corby’s first paper defines the purpose

and scope of this new discipline. It specifies that operational forensics is used to prevent future

adverse system events, to define system performance benchmarks and to improve quality of

service. It also makes suggestions on how to configure systems in a LAN environment to

facilite the collection of digital evidence following an incident. To this effect, Corby proposes

a checklist of parameters and methods to maximise evidence collection (e.g. restricting network

access points to active computers only, and preventing users from changing prescribed desktop

settings).

Following this initial paper, Corby published three book chapters on operational forensics in

2000, 2007 and 2011 (Corby, 2000b; Corby, 2007; Corby, 2011) respectively. All three

chapters focus on the specification of guidelines and procedures to build a pre-incident

operational forensic program. This program ensures that potential evidence is collected,

preserved and admissible in court and that the collection process is quick and effective.

The operational forensic pre-incident program (also known as forensic readiness) is built

around four elements: a policy that specifies evidence retention as the first priority following

an incident; guidelines on how to respond to an incident to preserve potential evidence (e.g.

taking a photograph of the screen before rebooting the system); log procedures (e.g. activating

system logs and keeping them safe on a protected device); and configuration planning (e.g.

enabling disk mirroring for quick system recovery).

As can be seen from the above review, although operational forensics covers a complete

forensic investigation, Corby’s published work is mostly limited to how to prepare for potential

evidence collection before a software failure occurs. Little information is provided on how to

actually collect this evidence once a failure has occurred. It is worth noting that the second and

third book chapters are mere updates on the first chapter with only a few changes. This attests

to the limited progress that was made over the next decade.

4.3.1.2 Previous work from Hood

Hood, who references Corby’s seminal work (Corby, 2000a), published two articles on

operational forensics – both in 2010 (Hood, 2010a; Hood, 2010b). In both papers, he extends

© University of Pretoria

82

the scope of operational forensics to include other forensic techniques deemed relevant for

system improvement. Hence, the scope of the investigation is extended to physical, procedural,

personnel and organisational areas. He subsequently investigates the use of modelling tools

such as Petri Nets (Girault & Valk, 2003), which provide flexibility to cover all the above areas

during an operational investigation. While Hood’s papers focus on the formal modelling of a

failure, they do not indicate the investigation process.

In addition to the limited work performed specifically on operational forensics, some other

research has been conducted on the forensic investigation of software failures albeit under

different names. Forensic software engineering is one such research area. It is reviewed in the

next section (Johnson, 2002).

4.3.2 Review of previous work on forensic software engineering

The aim of forensic software engineering is to identify the systemic causes of a major software

failure, including human issues (e.g. developer’s fatigue or inadequate training), organisational

issues (e.g. poor management leadership) and system engineering issues (e.g. poor

communication between development teams) (Johnson, 2002). Therefore, it can be argued that

while operational forensics focuses on the technical causes of the failure, forensic software

engineering searches the “software engineering” causes of the failure, in other words the factors

in the software development process that led or contributed to the malfunction (Hatton, 2004).

This may include the development process or environment.

Like in the case of operational forensics, publications on forensic software engineering are few

and remain on a conceptual level. Only two authors have so far published work specifically on

this topic: Chris Johnson (Johnson, 2002) and Les Hatton (Hatton, 2004; Hatton, 2012). The

Dependability Research Group at the University of Virginia, US, also did some research on

this topic, which they refer to as software forensics (Dependability Research Group, 2007).

The two previous researchers in this field (Johnson, 2002; Hatton, 2004) focus on the

challenges that must be addressed by forensic software engineering, but they do not provide

solutions. For instance, they focus on the difficulty in simulating conditions that have led to a

failure (with a view to failure reconstruction), as well as on the lack of objective measures of

software quality (with a view to identifying faulty software). They also do not consider the

value of reliable evidence and how to obtain it.

© University of Pretoria

83

4.3.3 Critical assessment of previous work on the forensic investigation of

software failures

The above literature review clearly shows that limited work has been performed on the forensic

investigation of software failures. No investigation process has been established and no

forensic failure analysis method has been proposed. The field is essentially still at a conceptual

level with no application in the industry. It is therefore the objective of this research to build

on the limited work performed by previous researchers to further develop the field through the

design of a forensic investigation model that can fill this gap. This model is aimed at addressing

all the challenges discussed in Section 4.2. The first component of this model is a suitable end-

to-end forensic investigation process that takes into consideration the specificities of failure

analysis discussed previously.

To this effect, two significant contributions from previous research are used in the current

thesis. They are the pre-incident operational forensic program and the two-phase approach of

evidence collection, both proposed by Corby (2007) due to their relevance for this research. A

pre-incident program is a pre-requisite for a successful forensic investigation as it ensures that

when a problem occurs, information that can be used as evidence during the investigation is

readily available and the responsible parties know how to collect it in a forensically sound

manner. A forensic capability therefore needs to be created in the organisation before a forensic

investigation can be conducted.

The organisation must be “forensic ready” by taking the following actions: (a) equip personnel

with necessary forensic skills; (b) identify, acquire and maintain potential evidence such as log

files and system-monitoring reports, and (c) develop supportive policies and procedures

(Corby, 2000a; Kent et al., 2006). The organisation must also ensure that all system

documentation is available and up to date. This includes system specifications, user manuals,

licensing information, test plans, and a history of changes and reported incidents (Trigg &

Doulis, 2008).

Once such forensic capability has been established, a forensic investigation can be conducted

following a major software failure. The next section presents the investigation process

proposed for this purpose.

© University of Pretoria

84

4.4 The forensic failure investigation process

This section presents the forensic process proposed to investigate a software failure. The

proposed investigative process consists of four basic stages. The first two occur immediately

after the failure has been detected: firstly, collect evidence and secondly, restore the system.

The third and fourth phases are the evidence analysis and the countermeasures specifications.

They are conducted once the system has been restored. Phases 1, 3 and 4 are part of a standard

digital forensic investigation, while Phase 2 is a troubleshooting task. These phases are

described in Section 4.4.1 up to Section 4.4.4 respectively.

4.4.1 Phase 1: Evidence collection

This phase corresponds with the acquisition phase of a digital forensic investigation, as was

described in Chapter 3. Shortly after a failure has been detected, all information that can assist

in the investigation needs to be collected in a forensically sound manner by maintaining the

chain of custody and preserving its integrity. The steps of the acquisition process that are

applicable to this phase include securing and documenting the scene of the failure, followed by

collecting, preserving and packaging the evidence.

Since the data may be acquired on a running system, the acquisition process is typical of a live

forensic acquisition procedure (Grobler & von Solms, 2009). Therefore, in order to follow

forensic best practice, two copies of the original data are made as the original data is released

to be made operational again. So, the original data is imaged to a forensically sound storage

device, and another copy of this image is made to another trusted device to be later used for

analysis. The first image becomes the original data that is used to verify the integrity of the

second image. A hash value of the original data should be made before it is released back into

operation. Then a hash value of the first image and of the second image is made to be compared

against the hash value of the original data throughout the investigation.

For the purpose of failure investigation, the evidence to be collected is classified as either

primary or secondary. The primary evidence is the electronic data about recent system activity

(e.g. event logs, network and system-monitoring reports). It is acquired while the system is still

running, unless of course the failure caused it to shut down. It can also be collected from an

external logging location, such as a syslog server. The secondary evidence corresponds with

© University of Pretoria

85

the data obtained from documenting the scene of the failure (e.g. screenshot of the error

message, interviews with the system administrator and the users who reported the failure), as

well as system documentation as specified earlier in the pre-incident program. This

documentation helps the investigator to understand the system’s normal functioning and the

circumstances of the failure.

It is important to note that, contrary to a digital forensic investigation, the failed computing

device is not seized as physical evidence for analysis in a forensic laboratory. Instead, it is left

on the scene to be fixed as quickly as possible during the restoration phase, which is described

next.

4.4.2 Phase 2: System restoration

Once all the evidence has been acquired, the failure is fixed and the system is restored to its

operational state as quickly as possible. Restoring the system does not intent to properly fix the

problem but to quickly find some temporary solution using the troubleshooting approach. A

restoration might be as simple as rebooting the system or it might necessitate some preliminary

diagnostic of the failure to fix it. This will follow a typical troubleshooting process, which

requires a recreation of the problem to isolate its cause (Trigg & Doulis, 2008). This system

restoration is a temporary solution with temporary countermeasures (e.g. applying a software

patch) until the root cause of the failure is identified in the subsequent analysis phase.

4.4.3 Phase 3: Root-cause analysis

Phase 3 corresponds with the analysis phase of a digital forensic investigation. The primary

evidence collected in the first phase of the forensic failure investigation process is examined in

a digital forensic laboratory in conjunction with the secondary evidence to identify the root

cause of failure. Digital forensic and other scientific techniques are used to analyse the digital

evidence. The investigation follows the scientific method. In the case of the responsibility for

the software failure being attributed to a criminal or malicious intent, the investigation becomes

a standard digital forensic case to identify and prosecute the perpetrator.

© University of Pretoria

86

4.4.4 Phase 4: Countermeasures specifications

This is the reporting phase of a digital forensic investigation. It is a crucial segment of the

forensic investigation of a software failure as it determines how to ensure that the failure does

not reoccur. The conclusions reached in the previous phase on the basis of the examined

evidence are documented and presented to the relevant parties along with recommendations for

improvements. The timeframe for implementing the recommended changes should also be

provided.

Ideally, required changes should be implemented immediately, but this is not always possible

due to financial constraints. In this case, the suitability and durability of the temporary solution

provided in Phase 2 should be determined. The system operations should be discontinued as

soon as the temporary solution is no longer sufficient and until the specified corrections have

been implemented to prevent a similar failure.

The complete investigation process is represented in the flowchart in Figure 4.2.

 Phase 4: Countermeasures Specifications

Phase 3: Root-cause Analysis

Phase 2: System Restoration

 Phase 1: Evidence Collection

Collect primary
evidence

Start

Collect secondary
evidence

Fix problem Restore system

Laboratory
examination

Formulate failure
hypotheses

Predict evidence
for hypotheses

Test hypotheses
Reconstruct

failure

Determine
responsibilities for

failures

Criminal
intent?

Crime attribution
Criminal

prosecution

Recommend
improvements

Write report

Exit

No

Yes

Implement
recommended
improvements

Monitored
system

Figure 4.3: The adapted digital forensic process for software failures

© University of Pretoria

87

The above process is generic as it does not indicate specific techniques to examine the collected

evidence but rather steps that can lead to a thorough investigation of all possible causes of the

failure and how to choose the most plausible one. The selection of the data analysis techniques

will be based on the characteristics of the evidence collected (e.g. volume and format).

The main originality of this process is the inclusion of a System Restoration phase between the

Evidence Collection and the Root-cause Analysis phases, which is not the case with a standard

digital forensic investigation. Another key novelty is the Countermeasures Specifications

phase, which forces the adoption of a more permanent solution than the one usually provided

in the restoration phase. Other novel elements of this process include the systematic collection

of secondary evidence in addition to the primary evidence, as well as the continuous system

monitoring. As knowledge is gained about the software failures, information to be monitored

is adjusted to be more relevant for the evidence analysis.

The benefits of using the digital forensic methodology for software failure investigations were

discussed in Chapter 3. The advantages of adhering to the proposed process are demonstrated

in the next section, based on the example of the Therac-25 disaster.

4.5 Application of the forensic failure investigation process – Case

study of Therac-25 accidents

This section illustrates the application of the proposed investigative process in a real-life

scenario. The example used is the infamous disaster of the Therac-25 radiation therapy

machine, which was studied in detail in Chapter 2. Poorly designed software that was used to

administer radiation treatment to cancer patients in the 1980s caused a series of six overdoses

of radiation, which caused the death of three patients and serious injury to the remaining three

(Leveson & Turner, 2002). Unlike some more recent software failures, a comprehensive report

was compiled on the various accidents and investigations resulting from this disaster – hence,

its selection as case study for the research in hand.

Section 4.5 demonstrates how the proposed process could have been used for the investigation

using the first two radiation accidents as examples. For each accident, a description of the event

and how it was handled by means of troubleshooting is provided first. The section then explains

© University of Pretoria

88

how it could have been investigated with the forensic procedures of the proposed process. The

first accident is presented and discussed in Section 4.5.1 and the second in Section 4.5.2.

4.5.1 Investigation of first Therac-25 accident

The first Therac-25 accident occurred at the Kennestone Oncology Center in the USA on 3

June 1985. The machine did not show any sign of unusual activity and did not generate an error

message. However, the patient felt a high heat sensation after receiving treatment and accused

the machine’s operator of having burnt her. Shortly after returning home, the patient’s skin

reddened and swelled and she was in great pain. This was initially attributed to her disease.

Weeks later, the patient’s breast was removed, and her shoulder and arm were paralysed due

to obvious radiation burn, but the doctors could not explain its cause. It was later estimated that

15 000 to 20 000 rads had been administered instead of the set 200 rads.

4.5.1.1 What was done in respect of troubleshooting?

No investigation was conducted for this accident as there was no information to indicate the

machine had been responsible for the patient’s condition.

4.5.1.2 What steps could have been taken with the proposed forensic investigation

process?

The proposed failure investigation process would not have yielded any result either, as no

primary or secondary evidence was available. Indeed, the system was not forensic ready as the

logs were not activated due to memory constraints. There was no system documentation

available and no previous case had been reported. What could have been done (but was not

done), however, was to interview the patient and the machine operator and to file a report on

the incident for future reference.

4.5.2 Investigation of second Therac-25 accident

The second Therac-25 accident occurred at the Ontario Cancer Foundation in Canada on 26

July 1985. The machine paused after five seconds of activation and displayed the following

messages: HTILT, NO DOSE and TREATMENT PAUSE. As the machine indicated that no

radiation had been administered, the operator retried four (4) times until the machine stopped.

The patient complained of a burning electric sensation after the treatment. On 30 July, she was

hospitalised as her skin was swollen and burnt and the machine was put out of service. She

© University of Pretoria

89

died on 3 November 1985 from cancer but the autopsy revealed that the radiation burn would

have necessitated a complete hip replacement had she survived. It was later estimated that she

had received 13 000 to 17 000 rads.

4.5.2.1 What was done in respect of troubleshooting?

No information was collected. The machine was reset by the hospital’s technician who did not

find anything wrong. However, operation of the machine was discontinued five (5) days later,

after the patient had been hospitalised.

In order to identify the cause of the problem, AECL first tried to recreate it with no success.

They suspected a mechanical failure and hardwired its error conditions. They found some

hardware design flaws and fixed them. They also modified the software to better control the

positioning of the radiation beam. Based on these changes, AECL claimed a significant

improvement of the machine, although they concluded that they could not ascertain the exact

cause of the accident. The machine was put back into operation despite this uncertainty.

4.5.2.2 What steps could have been taken with the forensic investigation process?

4.5.2.2.1 Phase 1: Evidence Collection

 Collect primary evidence: No log files, but record error messages.

 Collect secondary evidence: No system specification and test plans, but obtain user

manual and case history. Also interview the machine’s operator and the patient.

4.5.2.2.2 Phase 2: System Restoration

 First reset the machine so that it can resume working.

 Discontinue usage of the machine as soon as the patient starts developing skin

reddening and swelling after the treatment.

 Only put the machine back into service once the investigation has been completed and

the implemented improvements have been tested.

4.5.2.2.3 Phase 3: Root-cause Analysis

Laboratory examination of collected data

 User manual: The user manual’s description of many error messages was cryptic. The

meaning of HTILT was unclear. NO DOSE indicates that no dose of radiation has been

delivered.

© University of Pretoria

90

 Report of first accident: Based on the two patients’ testimony and symptoms, a

correlation could have been established between the two events.

Formulation of hypotheses: three possible scenarios

 Electrical problem since patients experienced electrical shock.

 Hardware failure.

 Software error since the software controlled the machine.

Prediction and production of evidence to support hypotheses

 Some faulty wire, plug or internal electrical circuit, was expected in the case of the

electrical problem. The electrical shock theory was ruled out after a thorough inspection

by an independent engineering company that did not find any electrical problem in the

machine.

 In terms of the hardware failure, some design flaw was expected or an incorrect

positioning of the beam. AECL’s test identified some hardware design flaws, which

supported the hardware failure theory.

 Some logic errors in the code were expected to point to a software failure. AECL

identified some weaknesses in the software, supportive of the software error theory.

Testing of the hypotheses

 Thorough testing of the improved machine after correction of the mechanical flaws

would unfortunately not have prevented another overdose, as other accidents followed

the second one despite this improvement. However, timeous testing of this hypothesis

would have ruled out the mechanical failure theory and alerted the investigator to look

for possible other causes.

 The only theory that remained involved a software error. Further examination of the

software would be necessary to identify the bugs responsible for the failure.

The remaining steps of the Root-Cause Analysis phase (failure reconstruction and

responsibility for failures) depend on the results of the thorough examination of the software

to identify the bugs. The outcome of Phase 4 also depends on these results. As these results

were obtained following the sixth and last Therac-25 accident and were explained in detail in

Chapter 2, they are not covered in this case study.

© University of Pretoria

91

The review of the above two accidents of the Therac-25 highlights the value of both a forensic

readiness program and the failure investigation process. A well-established forensic readiness

program would have ensured that appropriate steps were in place to collect evidence of the

accidents. The failure investigation process would have ensured that the evidence was analysed

effectively to identify the real source of the accidents. The next section examines in detail the

benefits and limits of this process.

4.6 Critical assessment of the failure investigation process

This section provides a critical assessment of the proposed failure investigation process to

identify areas that require improvement. The advantages of the process are presented in Section

4.6.1 and its limits in Section 4.6.2.

4.6.1 Advantages of the forensic failure investigation process

As the above case study demonstrates, the forensic failure investigation process offers many

advantages over the troubleshooting method used in the case of the Therac-25. It could have

located the source of the problem as a software error and not a hardware failure as suspected

by AECL. More importantly, the proposed process demonstrates the need to minimise system

downtime and to continuously monitor the system.

In essence, a forensic investigation based on this process would have provided more accurate

results due to the following advantages of the process:

 Firstly, it would have ensured that the results of the investigation were reliable as they

were based on objective scientific analysis.

 Secondly, it would have ensured that the root cause rather than a proximate cause for

the failure was identified. Appropriate countermeasures could then have been

implemented before the machine was restored to operation. This would have prevented

further accidents.

 Thirdly, the failure process would have helped to improve the quality of the machine

and AECL’s procedures for failure analysis. AECL had no forensic capability and no

standard mechanism to follow up on reported incidents, and valuable system

documentation was missing, including software design specifications and a test plan.

© University of Pretoria

92

It is quite easy to appreciate the value of a forensic pre-incident program in this case as it would

have ensured that all relevant system documentation and logs were available. However, despite

all the benefits indicated above, the proposed process also has some limitations that need to be

addressed to make it viable. These limitations are presented next.

4.6.2 Limitations of the failure investigation process

As beneficial as this process is, it has the following limitations:

 It does not address the problem caused by the volatility of the data.

 The process is reactive as it awaits the occurrence of a failure. Learning from major

operational failures implies that the high losses associated with these catastrophes

should occur first. Preventing such events from happening altogether is therefore more

desirable.

Addressing these limitations requires continuous system monitoring, and looking for

“operational markers” that indicate a potential failure. As explained in Chapter 1, such events

are commonly known as near misses. Identifying near misses offers two main benefits: it can

help prevent the failure from occurring, and it provides an opportunity to collect digital

evidence of the potential failure before it is destroyed as part of the process of system

restoration.

Indeed, it is generally agreed that near misses and related failures have common causes

(Andriulo & Gnoni, 2014). Conducting a root-cause analysis of a near miss is therefore a valid

method to identify the root cause of an impending failure. Detecting and investigating near

misses is a well-established field that is successfully used to improve product reliability in a

number of industries. It is however not yet in use in digital forensics. The detection of near

misses is therefore included in the failure investigation process in order to obtain complete and

relevant digital evidence of the failure. Near-miss analysis is a technique proposed for the

evidence collection phase of this process and it is reviewed in the next chapter.

4.7 Conclusion

This chapter examined the challenges experienced in the successful application of digital

forensics to the investigation of software failures. It reviewed previous work on this subject

and proposed an adapted digital forensic process that is more suitable for addressing the

© University of Pretoria

93

specified challenges. The process was applied to the case study of the Therac-25 accidents to

demonstrate its benefits and its application in real life. However, it was found that this forensic

failure investigation process did not meet all the challenges posed by the forensic investigation

of software failures – more specifically, it did not deal successfully with the volatility of the

digital evidence. If the digital evidence were to be lost after a major failure, it would seriously

limit the accuracy of the forensic investigation.

The detection and analysis of near misses as precursors to major failures was therefore

identified as a promising solution to this challenge. However, although it is well established in

many engineering disciplines, near-miss analysis is new to digital forensics. For this reason,

near-miss analysis, as it exists in the engineering disciplines, is presented in Chapter 5. The

researcher’s suggestion on how to apply near-miss analysis to digital forensics is discussed in

Chapter 6.

© University of Pretoria

94

 CHAPTER 5

NEAR-MISS ANALYSIS: AN OVERVIEW

5.1 Introduction

The previous chapter presented the main challenges to using digital forensics for accurate

failure analysis. It then proposed an adapted digital forensic investigation process that was

designed to address these challenges. This forensic process for the investigation of software

failures was limited to solving only two of the four challenges identified, namely the need to

minimise system downtime following a failure and the need for continuous system monitoring.

Chapter 5 now presents the proposed solution for the third challenge, while solutions for the

remaining challenge are described in Chapter 10, as a result of the prototype implementation.

The challenge addressed in this chapter, which is considered the biggest obstacle to the accurate

forensic investigation of software failures, is the volatility of the digital evidence. The solution

that is proposed to address this issue involves the use of near-miss analysis in the evidence

collection phase of the failure investigation process.

Near misses, as immediate precursors to major failures, can address the above issue by

providing complete and relevant evidence of the failure before it unfolds. The near-miss

concept was defined in Chapter 1 and various examples of near misses in several industries

were provided. Chapter 1 also indicated that near-miss analysis, which is an accident

investigation technique used in a number of high-risk industries, is not yet formally in use in

the software industry and not yet applied to digital forensics. This chapter therefore provides

an overview of near-miss analysis and examines challenges to its application in investigating

software failures. Proposed solutions to these challenges are developed in the next chapter.

The chapter is structured as follows: Section 5.2 provides some background information on

near-miss analysis. Section 5.3 presents several arguments to motivate the suggestion to use

near-miss analysis for the forensic investigation of software failures. Section 5.4 discusses

© University of Pretoria

95

challenges to near-miss analysis, while Section 5.5 reviews previous work aimed at addressing

such challenges and assesses the suitability of this previous work for software systems.

5.2 Background on near-miss analysis

This section provides background information on near-miss analysis. It starts with a description

and a brief history of the field of near-miss analysis. It then presents the current applications,

tools and techniques for near-miss analysis.

5.2.1 Overview of near-miss analysis

5.2.1.1 What is near-miss analysis?

As near misses are a special type of accident precursor, near-miss analysis is a specialised area

of the broader field of accident precursor analysis. The American National Aeronautics and

Space Administration (NASA), which was the first institution to formally investigate accident

sequence precursors, defines Accident Precursor Analysis as “the process by which an

organization evaluates observed anomalies and determines if the mechanism at the origin of

that anomaly could recur with more severe results” (NASA, 2006). This definition refers to

accident precursors as “observed anomalies”, which is not suitable for the software industry,

since, as discussed in Chapter 1, accident precursors and near misses in software systems may

not be visible at all in the absence of a failure.

No standard definition for near-miss analysis, which is also referred to as near-miss

management, is available in the literature. Authors on this topic usually focus on defining the

near-miss concept for the specific purpose of their research and in line with their particular

industry, but they do not provide a definition for near-miss analysis. Near-miss analysis often

refers to the process of identifying near misses and determining their root cause with a view to

preventing and predicting accidents (Phimister et al., 2004).

Indeed, various accident investigations have revealed that almost all major accidents were

preceded by a number of minor accidents and an even higher number of near misses as

precursors (Mürmann & Oktem, 2002; Oktem, 2013). This is shown in Figure 5.1 in the popular

safety pyramid (Bird & Germain, 1996). Recognising and handling these signals before an

accident occurs has the potential to prevent an accident sequence from unfolding (Saleh et al.,

© University of Pretoria

96

2013) and to improve safety by providing valuable information about potential accidents

(Phimister et al., 2004).

Major Accidents

Minor Accidents

Incidents and

Observations

(Near Misses)

Figure 5.1: The Safety Pyramid, adapted from Bird and Germain (1996)

Based on a review of the literature, the researcher proposes the following definition of near-

miss analysis with regard to software systems: the root-cause analysis of near misses to prevent

major software failures and understand their underlying causes.

5.2.1.2 Why near-miss analysis?

Near-miss analysis is based on the observation that near misses and accidents have common

causes but different outcomes (Andriulo & Gnoni, 2014). This is due to the fact that a near

miss is an immediate precursor to the impending accident. It is literally one step away from an

accident. Therefore, an accident and a related near miss have the same sequence of leading

events – the only difference is that in the case of a near miss, the sequence was interrupted just

before the accident occurred.

Due to the interruption in the accident sequence, near misses either result in no loss or the loss

incurred is minimal, contrary to what happens in the case of accidents. Identifying the cause of

a near miss is therefore a valid method of identifying the cause of the ensuing accident. It has

the additional benefit that learning about the accident is conducted without first incurring the

loss caused by an accident. Besides, if properly recorded, the data pertaining to the accident

sequence is available and complete since it has not yet been affected by the potential accident.

5.2.2 Tools and techniques used in near-miss analysis

As a safety enhancement tool, near-miss analysis is often a component of a near-miss

management program that is integrated with other safety management systems in an

© University of Pretoria

97

organisation. Besides the identification and analysis of near misses, a near-miss management

program also includes activities for disseminating information about near misses to decision

makers and for implementing countermeasures (Phimister et al., 2000). This process varies

from one industry or organisation to the next. It is often done manually but can be automated

through an electronic system commonly referred to as a near-miss management system (NMS).

Section 5.2.3.1 gives a brief overview of a typical NMS, while Section 5.2.3.2 to 5.2.3.4

reviews techniques used in NMSs to perform near-miss analysis.

5.2.2.1 Overview of near-miss management systems

Near-miss management system is an umbrella term used to refer to software systems used to

record, analyse and track near misses (Oktem, 2002). They are sometimes referred to as near-

miss systems. An effective NMS aims to quickly recognize near misses from the business

operations in order to apply prevention measures (Gnoni et al., 2013).

In order to be effective, an ideal NMS is required to perform all activities of a near-miss

management program. These activities are summarised in the following seven phases

(Mürmann & Oktem, 2002; Phimister et al., 2004):

1. Identification (recognition) of a near miss

2. Disclosure (reporting) of the identified near miss to the relevant people

3. Distribution of the information to decision makers

4. Root-cause analysis (RCA) of the near miss

5. Solution identification (remedial actions)

6. Dissemination of actions to the implementers

7. Resolution of all open actions and completion of reports

The above seven-stage process is illustrated in Figure 5.2.

Figure 5.2: Near-miss management process (Phimister et al., 2000)

© University of Pretoria

98

There are essentially two types of NMSs: single or dual. A single NMS only handles near

misses, while a dual NMS handles both near misses and accidents (Phimister et al., 2000). A

review of the literature on the design of industry-specific NMSs indicates that most NMSs are

single. Significant research has been conducted on the design of effective single NMSs (Wu et

al., 2010; Gnoni et al., 2013; Andriulo & Gnoni, 2014; Goode et al., 2014), especially in the

healthcare industry for improved patient safety (Barach & Small, 2000; Callum, Kaplan,

Merkley, Pinkerton, Rabin-Fastman, Romans, Coovadia & Reis, 2001; Aspden, Corrigan,

Wolcott & Erickson, 2004; Fried, 2009).

Single NMSs usually place a strong emphasis on the identification and disclosure (reporting)

phases of the near-miss management process described above. As such, they are often called

near-miss reporting systems and are sometimes limited to that functionality of an NMS (Murff,

Byrne, Harris, France, Hedstrom & Dittus, 2005; Goode et al., 2014). Barach and Small (2000)

provide a comprehensive list of proprietary near-miss reporting systems in various industries,

which provide a user interface where users can enter various details about an observed near

miss. Near-miss reporting systems are sometimes called incident reporting systems (Macrae,

2007).

Apart from proprietary “private” near-miss reporting systems, some commercial NMSs are

publicly available on the market. Commercial NMSs are mostly industry-specific. Examples

include AlmostME, a near-miss reporting system (Napochi, 2013) for the medical field, and

Dynamic Risk Predictor Suite (Near-miss Management LLC, 2014), a comprehensive NMS

designed for manufacturing facilities.

Although an ideal NMS would perform the 7 steps decribed in Figure 5.2, most importantly,

an NMS focuses on and performs the following three tasks:

 Identification of near misses

 Selection and prioritisation of near misses for analysis

 Root-cause analysis of the selected near misses

Techniques used for these activities are described in the following sections.

© University of Pretoria

99

5.2.2.2 Techniques for near-miss identification

The identification of near misses is often done manually by means of observation. Recognising

an observed event or condition as a near miss requires a clear definition of what constitutes a

near miss with various supporting examples. Organisations therefore spend considerable effort

to formulate a simple and all-encompassing definition of near misses that is relevant for their

respective business operations (Ritwik, 2002; Phimister et al., 2003). This definition can differ

significantly from one industry to the next as was discussed in Chapter 1.

Some effort has also been made at the intelligent detection of near misses through the NMS by

defining metrics to characterise and quantify near misses.

Much of the industrial work on automated near-miss detection is based on study reports from

the US Nuclear Regulatory Commission (NRC) and involves the use of Bayesian statistics to

determine the risk of a severe accident based on operational data of observed unsafe events

(Belles et al., 2000). Examples of such events include the degradation of plant conditions and

failures of safety equipment (Belles et al., 2000).

Significant research has also been conducted in other industries to find generic metrics or signs

of an upcoming accident, such as equipment failure rates, or failures of system components

(Leveson, 2015). Probabilistic risk analysis (PRA), a recurring suggestion, also consists of

estimating the risk of failure of a complex system by breaking it down into its various

components and determining potential failure sequences (Phimister et al., 2004).

More recent research has proposed the use of location tracking information and sensors for

environment surveillance to detect near misses in dynamic and uncontrolled environments such

as on construction sites (Wu et al., 2010). In all the above work, near misses are usually

identified as those events that exceed a predefined level of severity.

5.2.2.3 Techniques for near-miss prioritisation

Various quantitative and qualitative approaches are used to prioritise near misses across

industries. Quantitative analysis is reviewed in Section 5.5.1.1 and qualitative analysis in

Section 5.5.1.2.

© University of Pretoria

100

5.2.2.4 Quantitative analysis

On the quantitative side, the two main approaches used to prioritise near misses are risk-based

classification and statistical analysis.

Risk-based classification of near misses

Risk-based classification ranks near misses based on the severity level of their potential

consequences or their frequency.

Ritwik (2002) determined the severity of potential consequences with a risk decision matrix

that assigns a weight to the near-miss “relevancy” or “learning” impact on determining the

potential worst-case scenario. According to Kleindorfer et al (2012), the risk level of a near

miss is proportional to the amount of time that the event caused the system to cross predefined

safety and quality limits, in other words, the amount of time that the system was in an unsafe

or low-performing state. This time measurement is used to determine the risk of profit losses

by calculating the actual loss that would be incurred for that unsafe period of time.

Probabilistic risk analysis (PRA) can also be used to determine the risk level of a near miss.

PRA involves estimating the risk of failure of a complex system by breaking it down into its

various components and determining potential failure sequences (Vesely, 2011). Using near-

miss data, PRA allows for the severity of potential accidents to be determined (Phimister et al.,

2004).

The frequency of a near miss can be obtained from historical data on reported near misses and

be used to determine trends in the occurrence of certain events (Phimister et al., 2004). For

instance, in Greenwell, Knight & Strunk (2003), the increase in the number of reported near

misses is used to indicate that the process is heading towards a shutdown or an accident.

Statistical analysis to prioritise near misses

Statistical analysis has also been used to study the significance of near misses. In Bier and

Mosleh (1990) and in Johnson and Rasmuson (1996), Bayes statistics is proposed to estimate

the frequency of severe accidents based on the frequency of observed near misses. Bier (1993),

on the other hand, provides a critical review of previous statistical methods developed for this

purpose in the nuclear industry. Cooke and Goossens (1990) propose changes to the

© University of Pretoria

101

methodology developed for nuclear power plants to make it suitable for the chemical process

industry. Various factors such as the existence of initiating events and the probability of

successful recovery are examined to classify near misses. In the finance industry, regression

analysis is used to estimate the loss distribution of a near miss – hence the likelihood of a failure

and its losses within a specific timeframe –so as to assess its level of severity (Mürmann &

Oktem, 2002).

5.2.2.5 Qualitative analysis

Qualitative methods are also used to classify near misses based on their closeness to a potential

accident. Some of these methods include the simulation of potential accidents and modelling

of new accident scenarios to identify factors and system elements that are most likely to

contribute to the occurrence or avoidance of an actual accident (March, Sproull & Tamuz,

2011). Case studies of how this is implemented in the process and transportation industries are

provided in Van der Schaaf (1991). Another qualitative approach to understand the significance

of a near miss is the Delphi method. This method is a group decision-making tool by means of

which information on the probability of an accident can be gained from a panel of experts

(Linstone & Turoff, 2002).

5.2.2.6 Techniques for near-miss root-cause analysis

Causal analysis of near misses can be performed with investigation techniques taken from

engineering disciplines, such as fishbone diagrams, event and causal factor diagrams, event

tree analysis, fault tree analysis, failure mode and effects analysis (Phimister et al., 2003; Jucan,

2005; Hecht, 2007; RealityCharting, 2013). The investigation consists of answering a series of

questions that give insight into the factors that led to the near miss, the possible adverse

consequences of the near-miss, and the factors that prevented or limited those consequences.

The investigation can be assisted by various tools such as a comparative timeline to organise

data and various matrices such as the missed-opportunity matrix and the barrier-analysis matrix

(Corcoran, 2004).

Statistical analysis has also been proposed for learning from near misses. Some examples are

using estimation techniques, simulations and regression analysis (Mürmann & Oktem, 2002).

Historical near-miss data can be used to estimate the loss distribution, i.e. the likelihood of a

failure and its losses within a specific timeframe. Regression analysis can help determine

© University of Pretoria

102

exacerbating factors such as the frequency of certain operations. This information can then be

used for simulating possible accident scenarios (Mürmann & Oktem, 2002).

As valuable as the above root-cause analysis techniques are, they do not adhere to forensic

principles. Thus they are not suitable for the forensic investigation of software failures. To this

end, it is suggested that the methods and techniques of digital forensics be used as specified in

the failure investigation process to analyse near misses – the same way as software failures will

be analysed.

Although new to digital forensics, the value of analysing near misses has been recognised in

various engineering disciplines, and near-miss analysis has been conducted for over three

decades. This is shown in the next section, which provides a brief overview of the history of

near-miss analysis.

5.2.3 History of near-miss analysis

Although the learning opportunity offered by the analysis of near misses is not used in the IT

industry, its application to the investigation of accidents in other industries is not a new concept

at all. The emergence of formal near-miss analysis as currently conducted in a number of

scientific disciplines can be traced back to the mid-1970s in the United States. This section

reviews the origin and evolution of near-miss analysis. As a near miss is a type of ASP, the

history of near-miss analysis is intertwined with the history of ASP analysis.

The analysis of ASPs emerged from the need to improve safety in industries that are prone to

catastrophic industrial accidents. As is the case with many safety improvement initiatives, ASP

analysis was initiated formally following tragic events – in particular two accidents that

occurred in the United States in the 1970s (NASA, 2006). In both cases, the investigation that

followed found some leading events and conditions that could have prevented the disasters had

they been identified timely and handled appropriately (Phimister et al., 2004). Hence

organisational programs, systems and methodologies were created to detect these precursors

and learn from them. The events in question are the following:

 The crash of the American TWA Flight 514 that killed all 85 passengers and seven crew

members in 1974 (NASA, 2006). Following the investigation of this accident, NASA

© University of Pretoria

103

established the Aviation Safety Reporting System in 1976 to report and analyse

observed ASPs in the aerospace industry (NASA, 2006).

 The nuclear accident at Three Mile Island that caused the release of toxic gas into the

environment in March 1979 (Minarick, 1982). Shortly after that accident, the Nuclear

Regulatory Commission (NRC) initiated an ASP program to identify, analyse and

document ASPs (including near misses) (Phimister et al., 2004).

NASA and the NRC established quantitative and qualitative analysis techniques to determine

the risk of a severe accident, based on operational data of observed unsafe events (Belles,

Cletcher, Copinger, Dolan, Minarick, Muhlheim, O'Reilly, Weerakkody, & Hamzehee, 2000;

Kirwan, Gibson & Hickling, 2007; NASA, 2011). Examples of such events included the

degradation of plant conditions and failures of safety equipment (Belles et al., 2000).

The ASP methodology was subsequently adapted for use with other types of industrial

accidents and adopted by the respective industries. The latter included the chemical industry

(Ritwik, 2002; Phimister et al., 2003), the oil and gas industry (Cooke et al., 2011; Vinnem,

Hestad, Kvaløy & Skogdalen, 2010; Skogdalen & Vinnem, 2011), the healthcare industry

(Barach & Small, 2000; Sujan, 2012) and the finance industry (Mürmann & Oktem, 2002). To

provide a complete history of ASP analysis falls beyond the scope of this research. However,

a fairly comprehensive summary was written by Jones et al. (1999).

Nowadays, the analysis of ASPs and near misses has spread to a wide range of subjects. Saleh

et al. (2013) indicate that over 58 000 articles listed in the Web of Science database have the

term “precursor” in their title and this concept is used by around hundred different fields of

science. A number of these articles also have the term “near miss” in the title or as a keyword.

A keyword search for the term “near miss” in the Science Direct database results in over 83 000

articles.

In addition, two major research projects on near-miss analysis provide a significant number of

papers on the topic. The first one is the Near Miss Project at the Risk Management and Decision

Processes Center at the Wharton School, University of Pennsylvania, which has been ongoing

since 2000 (Phimister et al., 2000). The researchers conducted more than 100 interviews in

several plants in five Fortune 500 companies to assess the near-miss programs managed by

© University of Pretoria

104

their Environmental, Health and Safety departments. The second project is the Accident

Precursor Project which was conducted in 2003 by the US National Academy of Engineering.

The report of the resulting workshop that extensively reviewed near-miss analysis across

industries to promote cross-industry knowledge sharing is available in an online book

(Phimister et al., 2004).

Additionally, several study reports have been produced by the ASP program of the NRC (Belles

et al., 2000). NASA also published a handbook on precursor analysis in 2011 (NASA, 2011).

Other research work has been published in workshop proceedings (Bier, 1998; Van der Schaaf,

1991).

Clearly, near-miss analysis is worth some attention in a variety of disciplines. The next section

motivates the selection of near-miss analyses for the forensic investigation of failures in the

software industry, more specifically in the adapted digital forensic process that was presented

in Chapter 4.

5.3 Motivation for using near-miss analysis in failure investigation

This section presents arguments to support the suggestion to use near-miss analysis for the

forensic investigation of software failures. Section 5.3.1 presents benefits of proactively

investigating near misses compared to reactively investigating failures. Section 5.3.2 presents

benefits of analysing near misses in comparison to earlier precursors. Section 5.3.3 presents

cases of the successful application of a near-miss analysis in various industries.

5.3.1 Benefits of near miss-analysis over failure analysis

The two main reasons for suggesting the use of near-miss analysis to complement the failure

investigation process are discussed below. The first reason was mentioned in Chapter 1 and the

second reason was inferred from the review of major software failures in Chapter 2.

 Near-miss analysis provides an opportunity to proactively collect evidence of the failure

before it actually unfolds. This limits the risk of having evidence destroyed due to the

failure.

© University of Pretoria

105

 In contrast to severe failures which can be scarce, near misses can be numerous, thus

they offer ample opportunity to learn more from their richer data sets. More cases of

near misses also provide more evidence of a particular weakness in a system.

Moreover, it is generally agreed that in many cases accident precursors can be analysed more

effectively than can accidents – for the following reasons (Oktem et al., 2010; Ritwik, 2002):

 Investigation of a severe failure is costly and time consuming. Hence, financial

constraints and resource limitations can severely limit the depth of the investigation.

Near misses are also smaller in size and easier to deal with than serious accidents.

 Legal concerns may affect the investigation adversely. For instance, in product liability

litigations, organisations may well withhold information that could penalise them.

Reporting near misses has also been a legislative recommendation in the European Union since

1997 under the Seveso II Directive (Seveso II, 1997). These events are to be reported in MARS

(Major Accident Reporting System), the mandatory reporting system for major industrial

accidents within the European Union (Jones et al., 1999). In its Annex VI, the Seveso II

Directive (Seveso II, 1997:33) makes the following recommendation:

Accidents or “near misses” which Member States regard as being of particular

technical interest for preventing major accidents and limiting their consequences

(...) should be notified to the Commission.

5.3.2 Benefits of analysing near misses instead of earlier precursors

For the purpose of this research it is argued that investigating near misses is more valuable than

investigating other early accident precursors for the following reasons:

 Various studies show that the number of precursors to an accident can be considerable

(Borg, 2002; Bird & Germain, 2006). Selecting only the near misses reduces the

number of precursors to be investigated, which can save resources required for the

investigation.

 As a near miss is closer to the complete accident sequence, investigating a near miss

provides the most complete pre-emptive evidence about the associated accident. It can

therefore be used to identify the most accurate root cause of that accident.

 Early precursors can result in a number of false alarms, as they are further away from

the unfolding of the accident. As they are closer to the accident, near misses provide

© University of Pretoria

106

the highest level of confidence about the imminence of an accident, which can lead to

the implementation of the most relevant countermeasures.

 Early precursors are generally events and conditions that have been observed in the past

and are easily identifiable. Near misses, on the other hand, are not predefined as they

can vary from one accident scenario to the other. They are therefore best suited to

identify new failure modes and possibly prevent them.

5.3.3 Near-miss analysis success stories

Near-miss analysis is used to help improve the reliability of a system, product or process by

reducing its risk exposure to a potential disaster. It has a successful track record in organisations

where it has been effectively implemented. For instance, evidence shows that near-miss

analysis contributed significantly to the improvement of safety in the aviation industry

(Phimister et al., 2004). Other examples with measurable benefits are discussed below.

 Studies from Norsk Hydro, a Norwegian aluminium company, show that when near-

miss analysis was introduced in the organisation in 1985, the number of near misses

reported went from 0 to 1800 within 13 years. This resulted in a reduction of lost-time

injuries by around 75% (Jones et al., 1999).

 In Canada, a petroleum company reduced injury by 80% over a year and by 100% over

four years after implementing a near-miss reporting program in 1986 (Borg, 2002).

 In Malaysia, an oil company experienced a reduction in the monthly average cost of

equipment-related accidents from $675 000 to $80 000 within a year after a near-miss

reporting program was introduced in 1994 (Borg, 2002).

As beneficial as it is, near-miss analysis also has challenges that need to be addressed before

its expected benefits can be reaped in the software industry. These challenges are discussed in

the next section.

5.4 Challenges to near-miss analysis in the software industry

Across industries, the successful application of near-miss analysis faces three main challenges:

(1) the detection of events and conditions that can be classified as near misses, (2) the high

volume of near misses and (3) the root-cause analysis of near misses. A discussion of these

challenges follows next.

© University of Pretoria

107

5.4.1 Detection of near misses

Identifying near misses through observed physical events and conditions, as is done in many

industries, is especially challenging in the software industry. Indeed, in the case of software

applications, near misses might not even be visible as no system failure occurs and the events

are virtual rather than physical. A near-miss might occur in the backend of the system (e.g. near

exhaustion of memory) with no visible sign on the user interface. In the absence of specific

near misses to refer to, providing a definition that clearly describes near misses in software

systems is also a challenge.

An automated intelligent near-miss detection process is therefore required. However, although

existing techniques can provide useful results, they are generally specific to the industry

concerned and often require prior knowledge about near misses from historical data.

Regrettably such data is not yet available in the software industry, where the concept of near

miss is still largely unexplored.

5.4.2 High volume of near misses

Near misses can be frequent. In actual fact, they can be as much as 7-100 times more frequent

than accidents (Aspden et al., 2004). In the hydrocarbon process industry, the accepted ratio of

severe injury to near miss is between 15 and 25 (Ritwik, 2002). More impressively, an

extensive study of industrial accidents conducted in 1969 indicates that a severe injury can

have up to 600 near misses as precursors (Nichol, 2012). This is shown in the popular accident

ratio triangle in Figure 5.3. A more recent study in 2003 suggests that this number could be

even higher (Nichol, 2012).

Figure 5.3: Bird’s accident ratio triangle, adapted from Nichol (2012)

A high volume of near misses is also expected in the software industry, as shown by reports of

various major software failures. An example is the case of the Therac-25 disaster that was

600

30

10

1

Near miss

Equipment damage

Minor injury

Major injury

© University of Pretoria

108

discussed earlier, where up to forty near misses per day had been reported prior to the fatal

accidents. This high volume of near misses can become unmanageable due to limited

investigative resources. Therefore, it is necessary to select and prioritise near misses that are

passed on for root-cause analysis.

Although they all have some merit, both the quantitative and qualitative approaches that are

used to classify and prioritise near misses have disadvantages that limit their application to the

software industry. For instance, the validity of the quantitative analysis techniques depends

heavily on the risk threshold set for near misses. A high threshold may overlook significant

events that were not anticipated, especially in new or immature software systems, while a low

threshold will likely result in many false alarms (Phimister et al, 2004). Besides, generic

metrics of near misses might not be applicable to all types of systems and all types of failures.

As the above review shows, some work is still required to detect, classify and prioritise near

misses from a software system perspective. The researcher’s vision on how this can be done is

explained in the next chapter.

5.4.3 Root-cause analysis of near misses

As valuable as the available techniques for root-cause analysis of near misses are, they do not

follow sound forensic principles and do not rely on sound digital evidence. Thus they are not

suitable for the NMS proposed in this paper, which aims to apply the digital forensic

methodology to analyse near misses in the same way that digital forensics is proposed to

investigate software failures. The use of digital forensics to investigate near misses and

software failures also faces specific challenges which were discussed in the previous chapter.

5.5 Conclusion

Chapter 5 presented near-miss analysis as a promising technique for dealing with the volatility

of the digital evidence required to conduct a forensic investigation into software failures. As

near-miss analysis is not yet used in digital forensics, the chapter emphasised its application

and benefits in other industries to motivate its application in digital forensics. Challenges to

near-miss analysis for such a purpose (i.e. the high volume of near misses and their difficult

detection due to the fact that they are not easily observable in a software system) were also

© University of Pretoria

109

presented. Chapter 6 next presents the proposed solution to address these challenges. The

solution comprises a formal definition of a near miss suitable for the software industry, and a

mathematical model to detect and prioritise near misses. The architecture of an NMS to

automate this detection and prioritisation process is presented in Chapter 7.

© University of Pretoria

110

 CHAPTER 6

THE NEAR-MISS DETECTION AND

PRIORITISATION MODEL

6.1 Introduction

The previous chapter presented near-miss analysis as a promising technique for dealing with

the main challenge to the successful implementation of the failure investigation process

designed in Chapter 5. This challenge was the potential loss of digital evidence following a

system crash. As near miss-analysis is new to digital forensics, benefits of this field as used in

other industries were presented to motivate the selection of this approach.

Near-miss analysis was proposed to proactively collect complete and relevant digital evidence

of a potential failure before the failure occurs. However, challenges to reap the expected

benefits of near miss-analysis were also identified, specifically the high volume of near misses

(which can become unmanageable), and the limited visibility of near misses (which makes their

detection challenging).

Chapter 7 presents the proposed solution to these problems, namely a mathematical model

developed to detect and prioritise near misses as they occur on a running system. The design

of the mathematical model is based on the review of previous work on near-miss analysis that

was conducted in Chapter 6. This review identified two concepts used across industries that

were deemed applicable to the software industry: using near-miss analysis to improve the

reliability of a system and determining the risk level of a near miss based on its failure

probability, in other words the probability that it will cause the system to fail.

Therefore, although this research does not use near-miss analysis to improve software

reliability but rather to improve the accuracy of failure analysis, reliability concepts specific to

the IT industry were used to develop methods to define, detect and prioritise near misses in

software systems. These concepts are the following: the service level agreement (SLA), which

© University of Pretoria

111

defines the contractually agreed level of reliability of a system; and the reliability theory of IT

systems, which provides a formula to calculate the failure probability of a system.

The remainder of this chapter is organised as follows: Section 7.2 proposes a definition of the

concept ‘near miss’ based on the SLA concept, which is suitable for the software industry.

Section 7.2 subsequently provides a mathematical formula to express the definition in a formal

manner and to detect near misses. Section 7.3 presents the reliability theory of IT systems as a

suitable basis for prioritising near misses. The mathematical modelling for a near-miss failure

probability based on this theory is presented in Section 7.4. Finally, Section 7.5 defines a

prioritisation method for near misses according to the definition and failure probability formula

as proposed in this chapter.

6.2 Formal definition of a Near Miss for software systems

In Chapter 2, a generic definition of a near miss with regard to software systems was proposed

as follows:

A near miss is an unplanned high-risk event or system condition that could have caused a

major software failure if it had not been interrupted either by chance or timely

intervention.

It was decided that this generic definition needs to be fine-tuned and formalised to enable the

detection of near misses.

With regard to software systems, a failure is “the inability of a system or component to perform

its required functions within specified performance requirements” (IEEE, 1990). Since no

system is immune to a malfunction, no system vendor can guarantee that the system will work

perfectly and continuously at all time. In other words, some periods of unplanned downtime

are expected. As an illustration, even the public switched telephone network (PSTN), the

traditional telephone network that is considered to be the most reliable communications

network, has some margin for failure with a designed reliability of 99.999% which translates

to a margin of 5 min and 15 s of downtime in a year (Horton, 2008).

For the above reason, the performance requirements of a typical software system make

provision for a downtime “allowance”. This allowed downtime can be indicated informally in

© University of Pretoria

112

the system’s specifications document, but it is usually specified formally in a contract between

the service provider and the receiver of the service (customer). This contract is referred to as

the service level agreement (SLA) (Sevcik, 2008).

SLA’s are service management contracts that are processed by real-time monitoring and

measuring of the provided service levels at runtime. SLA’s specify mandatory service

provisioning terms such as Quality of Service (QoS) attributes and functional service

properties. They may also include several technical and business service level objectives

(SLOs) with their metrics used for evaluation of the service level. Thus, SLAs assist with the

calculation and measurement of service parameters, which in turn indicate the provider’s

adherence to the promised service levels (Stamou, Kantere, Morin, Longo & Bochicchio,

2013).

SLA’s typically include the responsibilities of both the customer and the service provider in

terms of the provision of the service. This includes customer’s requirements to be met by the

service provider, the fee paid if the requirements are met, the penalty incurred by the service

provider if they are not satisfied, and the period of time the agreement holds. A critical QoS

specified in the SLA is the customer’s service availability (Das, 2012).

For instance, the SLA for a website may specify that the site will be operational and available

to the customer at least 99.9% of the time in any calendar month. This indicates that the website

should not be down for more than 0.1% of the time in a month. For a 30-day month, this

corresponds to a downtime limit of 0.03 day or 43 min and 12 s. If the website is down for

more than this amount of time in a month, it does not meet the customer’s expectation in terms

of the SLA. Thus it violates the SLA and is considered to have failed.

Therefore, for the purposes of the research in hand an event is considered a failure if its

resulting downtime exceeds the downtime allowance specified in the SLA. Similarly, an event

is considered a near miss if it can lead to the exceeding of that allowance. The researcher

therefore proposes the following specific definition of a near-miss for the purpose of facilitating

its detection:

© University of Pretoria

http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Stamou%2C%20K..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Stamou%2C%20K..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Morin%2C%20J.H..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Morin%2C%20J.H..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bochicchio%2C%20M..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bochicchio%2C%20M..QT.&newsearch=true

113

A near miss is an unsafe event or condition that causes a downtime whose duration is close

to exceeding the downtime allowance specified in the SLA.

Note that the SLA concept used in the above definition does not necessarily refer to a formal

contract between the service provider and the customer. It is rather a concept that refers to any

objective predefined performance level specified for a given system.

This definition of a near miss is illustrated by the earlier example of the SLA of the website

that specifies a downtime allowance of 43 min and 12 s per month. This allowed downtime

provides a means to classify an event as one of three possibilities:

 A failure: SLA violation; monthly downtime exceeds 43 min and 12 s.

 An acceptable failure: Not close to SLA violation; monthly downtime is significantly

less than 43 min and 12 s. This downtime is part of the expected system behaviour.

 A near miss: Close to SLA violation; monthly downtime is close to or equals 43 min

and 12 s, but not more than that.

Using the SLA as a measurable characteristic in the definition of a near miss provides a way

of quantifying the severity of an unsafe condition and prioritising near misses. The SLA

performance metric used for that purpose is the downtime (as opposed to expected availability),

as it has a direct effect on a system’s reliability. Indeed, reliability is often expressed in terms

of the Mean Time Between Failures (MTBF), which is “the average operating time (uptime)

between failures of a system” (MTL Instruments, 2010). As system failures result in downtime,

the MTBF is the average operating time between periods of downtime.

The above concept is proposed as the basis to formally define a near miss. This requires

determining how close the experienced downtime should be from exceeding the allowed

downtime to be considered a near miss. Specifying a near-miss threshold is suggested for this

purpose. This threshold will vary from one organisation to the next, depending on its risk

tolerance. For instance, Organisation A might be comfortable with a 95% threshold (95% of

the downtime allowed), while Organisation B will limit its risk tolerance level to 75%. This

would correspond to a total monthly downtime of 41 min and 2 s for Organisation A and 32

min and 24 s for Organisation B. This threshold-based definition of a near miss can be

mathematically expressed as follows:

Dexperienced is the experienced downtime

© University of Pretoria

114

Dallowed is the SLA downtime allowance

α is the near-miss threshold in percentage; α < 1

α × Dallowed is the near-miss threshold in time value

If α × Dallowed ≤ Dexperienced ≤ Dallowed then Dexperienced is a near miss

Figure 7.1 illustrates the downtime-based classification of events explained above.

Downtime duration

SLA downtime

allowance

Near miss

threshold

Dallowed0

Failure

 α×Dallowed

Near missAcceptable failure

Figure 6.1: Classification of unsafe events based on their downtime duration

As an illustration: with reference to the earlier example of Organisation A, a near miss is any

monthly downtime of between 41 min and 2 s (the 95% threshold) and 43 min and 12 s (the

SLA downtime allowance). Thus:

α = 0.95

Dallowed = 43 min and 12 s

α × Dallowed = 41 min and 2 s

If 41 min and 2 s ≤ Dexperienced ≤ 43 min and 12 s

then Dexperienced is a near miss.

Note that the downtime allowed is not a static but rather a dynamic value as it diminishes with

every downtime experienced previously in the same SLA measurement period. Dallowed is thus

the limit left after experiencing previous downtimes, if any. This needs to be accounted for and

changes the above formula as explained below.

For the purposes of the research in hand, the formal definition for a near miss is as follows:

Let T be the current measurement period, usually the current calendar month or the current year.

Let d be the current day, such as day number 10 of the current month or year.

T spans the period from the first day of the month or year until the current day. Thus:

T = [1; d]

Let n be the number of previous acceptable downtimes in T.

n ≥ 0

Dprevious is the total downtime experienced previously in T.

Dk is the duration of the downtime number k in T. Thus D1 is the duration of the first downtime

experienced and Dn is the duration of the latest downtime. D0 indicates that no downtime occurred

© University of Pretoria

115

previously.

Dprevious = ∑ Dk
𝑛
𝑘=0

Dnow is the downtime experienced currently.

Dremaining is the SLA downtime limit left after experiencing previous downtimes in T.

Dremaining = Dallowed – Dprevious

If α × Dremaining ≤ Dnow ≤ Dremaining → near miss (1)

Since the downtime allowed is decreasing over time with every new downtime experienced in

T, the value of Dnow should also reflect the impact of the previous downtimes experienced in

T. This is achieved by using a weighted moving average (WMA) of all the previous downtimes

in T to calculate Dnow. A WMA gives more weight to the most recent data in a time series and

attaches less importance to older data. It is therefore used for trend forecasting (Holt, 2004).

This is particularly relevant for the research in hand, which aims to predict likely failures based

on near misses. The WMA of the previous downtimes shows the trends in the system

downtimes and can indicate whether the system is heading towards a large downtime (for

instance, through a series of short downtimes).

The WMA of the downtimes is calculated by multiplying each downtime by its position in T

and dividing the sum of these values by the total of the multipliers. Using the previously defined

parameters of n (the number of previous acceptable downtimes in T) and Dk (the duration of

the downtime at position k in T), the WMA for Dnow is formally expressed as follows:

Dnow=
𝑛(𝐷𝑛)+(𝑛−1)(𝐷𝑛−1)+(𝑛−2)(𝐷𝑛−2)+⋯+2(𝐷2)+1(𝐷1)

𝑛+(𝑛−1)+(𝑛−2)+⋯+2+1

Equation (1) above enables the identification of near misses among periods of downtime. This

identification is reactive, i.e. it is performed after the near miss caused a downtime. The

identified near misses can then be logged so that they can be investigated at a later stage. This

reactive detection still provides a valuable opportunity to learn about the system weakness that

has been responsible for the downtime. However, ideally, near misses should be identified

before they result in downtime so that a system outage may be prevented. A method for

detecting near misses proactively is provided in Section 7.5.

Once near misses have been defined and recognised, they need to be prioritised for possible

further investigation. The latter can be accomplished by employing methods from prioritisation

schemes that have been developed for other industries. They were reviewed in the previous

© University of Pretoria

116

chapter to evaluate their suitability for software systems. This review indicated that previous

work in near-miss prioritisation is industry-specific and not much of it is applicable to the

software industry, except for the concept of prioritising near misses based on their failure

probability. An approach to determine this failure probability is provided by the reliability

theory that will be reviewed in the next section. This theory provides a formula to calculate the

failure probability of a system. It can thus serve as a basis to determine the risk level of a near-

miss event, based on the likelihood of a system failure due to that event.

6.3 Overview of reliability theory and failure probability formula

for IT systems

Near-miss analysis is commonly performed to improve a system’s reliability. One common

approach in this regard is to add redundancy. With the advance of cloud computing and

virtualisation, redundancy is inherent in most enterprise systems. Therefore, while near misses

can occur in any system, the proposed mathematical model only considers near misses in

redundant systems. Redundancy is usually associated with hardware, but the argumentation is

that its basic concepts and its corresponding reliability theory are transferable to software

components. Examples of such components are memory slots, virtual servers, databases and

data. The following is an overview of the concepts of redundancy and the failure probability

formula as currently applied to hardware components.

6.3.1 The reliability theory of redundant hardware components

Redundant systems have a number of equivalent spare components that work in parallel. If one

of the redundant components fails, it is removed from the system and another operational one

takes over its functionality. This failover process allows the system to continue its operations

(Highleyman, 2008). The recovery time, also known as the ‘mean time to recover’ (MTTR), is

equal to the failover time for parallel components. It is the time it takes the system to detect

and disable the failed node and transfer its operations to another node in working condition. If

this failover time is short enough, users will not experience any interruption and will not even

realise that a fault has occurred (Highleyman, 2008).

Based on the concept of redundancy, the author argues that a redundant system is at a high risk

of failing when no spare resources are available to take over the operations of the active units,

© University of Pretoria

117

if need be. At this point, the failure of any one unit will bring the entire system down. In other

words, the failure of one active unit can cause a system outage only if all spares are already

down. Stated in formal terms, for a redundant system with n number of units of which there is

s number of spares, it takes the failure of s+1 units to bring the system down.

As an illustration, let us use the case of a redundant system constituted of five servers and two

spares. Thus n is equal to 7 (the total number of servers) and s is equal to 2. The system requires

five active servers at all time to be operational. If one server is lost, one of the spares takes

over. The system keeps on running and is left with only one spare. If a second server is lost

before recovering the failed one, the second spare takes over and the system is now left with

five active servers and no spare. The system will keep on working as long as these five servers

are working. If a third server is lost at this point, the system fails, since only four active servers

are left. Thus, the entire system goes down when s+1 units (i.e. 3 units) fail.

The above implies that the risk of a system failure increases as the number of available spares

decreases. It can thus be argued that in the context of redundant systems, near misses can be

caused by the likely exhaustion of critical redundant resources. The failure probability of a

redundant system can therefore be determined based on the number of spares lost as will be

described next.

6.3.2 Failure probability formula for hardware components

As mentioned earlier, when all units are up and running, the failure probability for a redundant

system with s number of spares is the probability of losing s+1 units. The reliability theory

(Holenstein, Highleyman & Holenstein, 2003) demonstrates that the formula to calculate this

probability is:

F = f(1-a)s+1

This formula can be explained as follows:

F is the probability that the system will be down.

a is the probability that a unit will be up (its expected availability).

(1-a) is the probability that a unit will be down.

s is the sparing level (i.e. s+1 units must fail in order for the system to fail).

f is the number of failure modes or the number of ways that s+1 unit failures will cause a system

outage.

© University of Pretoria

118

The formula assumes that the system can be restored to service as soon as a failed unit is

repaired (parallel repair). The rationale is as follows: since there are s number of spares, it will

take the failure of s+1 units to bring the system down. Since the probability of losing one unit

is (1-a), the probability of losing s+1 units is (1-a)s+1. However, there are several ways in which

s+1 units out of n units can fail. The number of failure modes f is equal to C(n, s+1) (read “n

combination s+1” or “n choose s+1”). Therefore, the probability that the system will fail is f(1-

a)s+1. Thus:

F = f(1-a)s+1 = C(n, s+1)×(1-a)s+1 =
𝑛!

(𝑠+1)! (𝑛−𝑠−1)!
 (1-a)s+1

This formula is designed for redundant hardware resources that are usually identical in terms

of functionality, electronics and hardware design. Therefore they all have the same failure

probability (probability that the unit will be down). In addition, they are designed to be

independent of each other, so that the failure of one unit does not affect the functioning of the

other units. The above situation is not always applicable to software units and the above

formula needs to be revised accordingly as will be described next.

6.3.3 Proposed failure probability formula for software components

In cases where software reliability is critical, the redundant software units are often designed

to be identical only in terms of functionality to avoid common sources of vulnerability and

identical failure modes. Therefore they do not have the same software and hardware design.

The concept of design diversity is used to refer to this approach of designing independent

software with similar functionality (Pullum, 2001).

Design diversity allows the independent creation of multiple versions of the software based on

diverse but equivalent specifications (Pullum, 2001). The various versions of the software are

written by independent programmers, with a different logic and possibly different languages

and environments. Jain and Gupta (2011) conducted a survey of design diversity techniques

for software redundancy.

Due to design diversity, redundant software units are likely not to have the same failure

probability. Therefore the researcher revised the above formula as follows:

x = 1 to s+1

© University of Pretoria

119

ax is the probability that unit x will be up (its expected availability).

(1- ax) is the probability that unit x will be down.

The probability of losing s+1 units is (1-a1). (1-a2). (1-a3)… (1-as) (1-as+1). This is equal to

∏ (1 − 𝑎𝑥)𝑠+1
𝑥=1

Thus:

 F = f× ∏ (1 − 𝑎𝑥)𝑠+1
𝑥=1 = C(n, s+1)× ∏ (1 − 𝑎𝑥)𝑠+1

𝑥=1

 F =
𝑛!

(𝑠+1)! (𝑛−𝑠−1)!
 ∏ (1 − 𝑎𝑥)𝑠+1

𝑥=1 (2)

Equation (2) also caters for the case where all redundant units are identical with the same failure

probability (e.g. with virtualisation and cloud computing). In that case the equation will turn

out to equivalent to the original equation from the reliability theory of hardware components

since ∏ (1 − 𝑎𝑥)𝑠+1
𝑥=1 will now be equal to (1-a)s+1.

Equation (2) establishes the foundation for calculating the failure probability of a redundant

system. However, it is limited in the sense that it caters only for the case when all spares are

working. Hence it needs to be adapted to accommodate the case of a near miss, in other words

the loss of a number of spares. The mathematical model for the near-miss failure probability is

developed and discussed in the next section.

6.4 Mathematical modelling for near-miss failure probability

For the purpose of this research, and in the context of redundant systems, the failure probability

of a near miss is the probability of a system failure, given the loss of any number of critical

spare units. This is a conditional probability that can be expressed as P(F|D) (probability of F

given D), where D is the event that d number of spare resources are down. Thus P(F|D1) is the

probability of failure given that one (1) spare resource is down. Bayesian statistics (Devore &

Berk, 2012) are generally used to calculate conditional probabilities using the following

formula:

)(

)()|(

)(

)(
)|(

DP

FPFDP

DP

DFP
DFP

Since the elements of this formula are not all available, it is preferable to use a logical deduction

to determine P(F|D). An appropriate starting point is the failure probability formula of the

reliability theory presented in the previous section. As explained earlier, this formula enables

© University of Pretoria

120

the calculation of the probability of failure of a redundant system when all the redundant units

are up. Therefore, there is a need to determine how this formula is affected when one or more

spare units are down. For simplicity’s sake, this process is explained incrementally, starting

with the loss of one spare, then two, and finally generalised to any number of spares.

6.4.1 Loss of one spare

P(F|D0) is the probability of failure given that no (0) spare is down (i.e. when all s spares are

up). The system fails when s+1 units are down. Thus, referring to Equation (2) in Section 7.3:

1

1

1

1

)1()1,(

)1()0|(

s

x

x

s

x

x

asnC

afFDFP

1

1

)1(
)!1()!1(

!
)0|(

s

x

xa
sns

n
DFP

If one spare goes down, the system is left with n-1 units and s-1 spares. Following the same

logic used to obtain the above equation, the system will fail if all spares plus 1 unit fail, thus if

(s-1)+1 units fail. In other words, it now takes the failure of s units to bring the system down.

Since the probability of losing any unit x is (1- ax), the probability of losing s units is (1-a1).

(1-a2). (1-a3)… (1-as). This is equal to ∏ (1 − 𝑎𝑥)𝑠
𝑥=1 . The number of failure modes f1, which

indicates the number of ways that s units can fail out of n-1 units, is equal to C(n-1, s).

Therefore, the probability that the system will go down is f1×∏ (1 − 𝑎𝑥)𝑠
𝑥=1 or C(n-1, s) ×

∏ (1 − 𝑎𝑥)𝑠
𝑥=1 . Thus:

s

x

x

s

x

x asnCafDFP
11

1)1(),1()1()1|(

)!1(!

)!1(
)1|(

sns

n
DFP

s

x

xa
1

)1(

6.4.2 Loss of two spares

Similarly, if two spares go down, the system is left with n-2 resources and s-2 spares. The

system will fail if (s-2)+1 units fail, thus if s-1 units fail. The probability of losing s-1 units is

∏ (1 − 𝑎𝑥) 𝑠−1
𝑥=1 and the number of failure modes f2 is equal to C(n-2, s-1). Thus:

1

1

1

1

2)1()1,2()1()2|(
s

x

x

s

x

x asnCafDFP

)2|(DFP

1

1

)1(
))!1(2()!1(

)!2(s

x

xa
sns

n

© University of Pretoria

121

)!1()!1(

)!2(
)2|(

sns

n
DFP

1

1

)1(
s

x

xa

6.4.3 Loss of any number of spares

Using the same argumentation as above, the formula is generalised for any d number of spares

that go down. If d number of spares is lost, there are n-d units and s-d spares left. It thus takes

the failure of (s-d)+1 units to bring the system down. Since the probability of losing any one

unit x is (1-ax), the probability of losing s-d+1 units is ∏ (1 − 𝑎𝑥)𝑠−𝑑+1
𝑥=1 . The number of failure

modes fd is thus C(n-d, s-d+1). Hence:

1

1

1

1

1

1

1

1

)1(
)!1()!1(

)!(
)|(

)1(
)!1()!1(

)!(

)1(
))!1(()!1(

)!(

)1()1,()|(

ds

x

x

ds

x

x

ds

x

x

ds

x

x

a
snds

dn
DdFP

a
snds

dn

a
dsdnds

dn

adsdnDdFP

1

1

)1(
)!1()!1(

)!(
)|(

ds

x

xa
snds

dn
DdFP (3)

Determining the failure probability of a system in production based on the number of spares

lost, can thus provide a way to quantify the risk level of near misses. Such quantification can

be used to prioritise the near misses for investigation.

6.4.4 Illustration of the failure probability formula

This section illustrates the application of the Equation (3) established above with the simple

example of a system composed of several redundant servers. The near miss is the loss of spare

servers. The formula is used to calculate the failure probability (F) and how it increases as

spare servers go down. The results are then represented by means of a graph.

The example of a system with five servers and two spares is reused. For the sake of simplicity,

it is assumed that all servers have the same failure probability. Assuming the failure probability

of one server at any given time is 0.033 (3.3%), the following applies:

n = 5; s = 2; 1-a = 0.033

© University of Pretoria

122

Equation (3) is used to calculate the system failure probability for various numbers of failed

servers. Results are provided in Table 6.1 and graphically represented in Figure 6.2.

Table 6.1: Failure probability values

Number of failed servers Failure probability (%)

0 0.035937

1 0.6534

2 9.9

3 100

Figure 6.2: Failure probability graph

This graph enables a quick and easy visualisation of a near miss and can facilitate its

prioritisation. For instance, the graph shows how the failure probability significantly increases

when the second spare is lost, since no more spares are available.

However, the prioritisation of near misses based on the formula in Equation (3) has some

limitations as it does not take into consideration the concept of the SLA used in the proposed

definition of a near miss. Indeed, this formula determines the risk of a system outage following

the loss of some spare resources. Recalling from the discussion in Section 6.2 that a failure is

a breach of the SLA, a system outage is only a failure (from a business perspective) when the

duration of the downtime exceeds the allowance specified in the SLA. Otherwise it is an

acceptable failure, as depicted in Figure 6.1. The prioritisation scheme consequently needs to

be refined to take into account the duration of the system downtime. This prioritisation method

is established in the next section.

© University of Pretoria

123

6.5 Prioritisation of near misses

This section presents the researcher’s near-miss prioritisation method based on the SLA

concept and formally expressed in a mathematical formula.

6.5.1 The near-miss prioritisation formula

A near miss was previously defined as a potential failure, more specifically as an event that can

lead to the violation of the SLA. The violation of the SLA was also defined in terms of the

system downtime. According to the same logic that was used to measure the severity of a failure

based on the downtime experienced, the severity of a potential failure or near miss can be

assessed based on its expected downtime. In other words, determining for how long the system

will be down in the eventuality of an outage caused by this near-miss event.

To this effect, two parameters are needed: the failure probability of the near miss and the

expected recovery time for the outage or MTTR (mean time to repair). The expected downtime

is then calculated as the product of the failure probability and the MTTR. The failure

probability is provided by Equation (3) established earlier and the MTTR can be obtained from

the system vendor specifications or through historical observations. The system enters a

“critical zone” when the expected downtime is greater than the SLA downtime allowance. This

can be expressed as the following formula (Equation (4)):

Dexpected is the expected downtime, thus the expected loss of productivity due to a

failure.

Dremaining is the SLA downtime limit remaining after previous downtimes in the current

measurement period.

P (F|Dd) is the probability of failure, given the current unsafe situation (loss of spares).

MTTR is the expected recovery time following an outage.

Dexpected = P (F|Dd) × MTTR

If Dexpected > Dremaining → critical zone (4)

If a successful recovery is performed and the outage is prevented when the system is in the

critical zone, then this event is classified as a near miss. Equation (4) can thus allow the

proactive detection of a near miss, i.e. before it causes an outage. On the other hand, if the

system recovery is not successful, the event is classified as a serious failure in the sense that

© University of Pretoria

124

the SLA has been breached. Both cases need to be investigated to identify their root cause and

prevent their reoccurrence.

In the case of a near miss, the closeness between the expected downtime and the SLA downtime

allowance can be used to assign a risk level to the event. The risk level will determine how

important it is to conduct a thorough forensic analysis of this near miss and how much of the

limited resources available can be allocated to this task. However, as explained in Section 7.2,

different organisations have different risk tolerance levels and may prefer a larger margin of

safety when detecting a near miss. Instead of using the whole SLA downtime allowance to

define a near miss, they may specify a portion of that downtime as their near-miss threshold.

Their system will thus enter a critical zone earlier, which will give them more time for remedial

action. The near-miss threshold can be adjusted over time as more experience is acquired in

detecting and handling near misses. When this threshold is included, Equation (4) is adjusted

as follows:

α is the near-miss threshold; α ≤ 1

If Dexpected ≥ α x Dremaining → critical zone (5)

6.5.2 Evidence collection for high-risk near misses

Only events in the critical zone are passed on for analysis. These events are prioritised based on

the value of their expected downtime as per Equation (5) above. As soon as the system is in the

critical zone, the following two actions need to be initiated by the system administrator:

 Automatic collection of data related to the event

 Recovery of the lost spares to prevent the outage

Event-related data will serve as digital evidence for the root-cause analysis of the near miss.

When collecting the data, it is imperative to ensure that the process does not exhaust the

remaining available resources, as this could harm the system and accelerate its crash. Ideally,

event data should be collected before corrective actions are implemented so as to capture the

unsafe state of the system and avoid any tampering with potential evidence. However, due to

time constraints, this may not be possible. Some mitigating action can then be taken, such as

logging all recovery steps to facilitate the reconstruction of the near-miss condition at a later

stage.

© University of Pretoria

125

The suggestion on how to automate the detection and classification process explained above is

presented in Chapter 8 together with the design of an NMS that implements that process.

6.6 Conclusion

This chapter proposed a mathematical model specific to the software industry to detect and

prioritise near misses at runtime so as to address the issue caused by their high volume and low

visibility. Digital evidence of the near misses with the highest risk level was subsequently

collected for root-cause analysis. The near-miss detection method was based on a mathematical

formula created to define near misses using the SLA of the monitored system. The near-miss

prioritisation process was based on a mathematical formula established to calculate the failure

probability of a near miss. The proposed mathematical model was designed to be integrated

with the Evidence Collection phase of the process designed for the forensic investigation of

software failures in Chapter 5. The architecture of an NMS that combines this investigation

process with the near-miss detection and prioritisation model is presented in Chapter 8.

© University of Pretoria

126

 CHAPTER 7

THE NMS ARCHITECTURE

7.1 Introduction

Chapter 4 presented the post-mortem forensic process that was proposed to investigate software

failures based on reliable digital evidence. Chapter 6 addressed the main limitation of this

process by suggesting the proactive approach of near-miss analysis. A mathematical model was

proposed to detect and prioritise near misses in order to proactively collect complete and

relevant evidence about likely software failures. Chapter 7 now presents the NMS architecture

that combines both the forensic investigation process and the near-miss detection and

prioritisation model. This original NMS architecture is proposed to promote the usage of sound

forensic evidence to conduct an accurate root-cause analysis of software failures. Designing

such a model to address the lack of forensic principles and sound evidence in existing

approaches towards failure analysis constitutes the main goal of this thesis.

The NMS architecture is designed to satisfy the requirements for accurate failure investigation

established in Chapter 2. These requirements ensure that software failures and near misses are

dealt with in a forensically sound manner as they arise. The NMS architecture facilitates the

collection and preservation of digital evidence about these events, to ensure that the subsequent

root-cause analysis provides objective and reliable results. These results are then used to

implement effective countermeasures so that the same failures do not reoccur in the future.

Chapter 7 is structured as follows: Section 7.2 revisits the requirements identified in Chapter 2

for the accurate investigation of software failures. It also reviews the proactive and reactive

solutions proposed earlier to address the requirements as mentioned above. Section 7.3 presents

the NMS architecture that combines both partial solutions.

© University of Pretoria

127

7.2 Requirements and proposed solutions for the accurate

investigation of software failures

7.2.1 Requirements

The following list of requirements established for an accurate evidence-based investigation of

software failures was discussed in detail in Chapter 2:

 Objectivity

 Comprehensiveness

 Reproducibility

 Admissibility in court

In addition, two additional requirements were established in Chapter 4 for the successful

forensic investigation of software failures:

 Quick system restoration to minimise downtime

 Continuous system monitoring

7.2.2 Proposed solutions

Two processes were proposed to satisfy the requirements listed above. The first one is a

forensic investigation process based on digital forensics. This process is an adaptation of the

digital forensic process designed to accommodate challenges specific to failure analysis. The

second process is a near-miss detection and prioritisation process for the analysis of near misses

before a failure occurs. This process is tailor-made for software systems as no such process is

as yet available in the software industry. For the sake of clarity, the two processes are

reproduced in the sections below.

7.2.2.1 The forensic investigation process for software failures

A representation of this investigation process was provided in the flowchart in Figure 4.1. The

process adheres to digital forensic principles. It also comprises some elements of

troubleshooting. Digital forensics ensures that the process and its results are reliable and

admissible in court, while troubleshooting facilitates the timely restoration of the failed system

to limit its downtime.

© University of Pretoria

128

7.2.2.2 The near-miss detection and prioritisation process

The following process was proposed to effectively manage near misses and use them as tools

to improve the accuracy of the root-cause identification of software failures: detection,

prioritisation, data collection for high-risk near misses, failure prevention and root-cause

analysis. In Chapter 6, mathematical formulas were developed to formally define a near miss,

as well as enable its detection and prioritisation based on its risk level. This risk level was

defined as the conditional probability that the system will fail, given that the near miss has

occurred. Only near misses with a risk level above a predefined threshold were selected for

evidence collection and root-cause analysis.

This near-miss analysis process is designed to complement the failure investigation process

that was presented in the previous section. It is achieved by enabling the safe collection of

failure-related data before a failure occurs and increasing the pool of failure-like events that

can point to weaknesses in the software system. This process is therefore integrated with the

Evidence Collection phase of the forensic investigation process, more specifically for the

collection of primary (i.e. digital) evidence. This process requires the continuous monitoring

of the system to identify in real-time unsafe events and conditions that can be classified as near

misses. The NMS architecture that integrates both of the above processes is described next.

7.3 The NMS architecture

This section presents the NMS architecture that was designed to satisfy all requirements for

accurate software failure investigations listed previously. It combines both the post-mortem

forensic investigation process and the pre-emptive near-miss analysis process described above.

The section starts with an overview of the overall near-miss and failure investigation process.

It is followed by a detailed description of the architecture designed to automate this process.

7.3.1 The overall near-miss and failure investigation process

To detect near misses, the system needs to be monitored with a view to recording and reviewing

event logs. It is suggested that system events be logged in a central repository such as a Syslog

server. Event logs that match the near-miss formula established in Equation (1) in the previous

chapter are flagged as potential near misses and are then sent to another module for

© University of Pretoria

129

prioritisation. This module calculates the system’s failure probability and expected downtime

based on each potential near miss.

Afterwards, events identified as being in the critical zone are passed on to another component

for data collection. The Simple Network Management Protocol (SNMP) is proposed for this

purpose. This Internet-standard protocol enables information exchange between a manager

(central unit) and its agents (the other system units) (Presuhn, 2002). In this case, the SNMP

manager is the data collection module and it requests additional information about the event

from the relevant units through their SNMP agents. Corrective steps are subsequently taken to

prevent a system failure, if possible. Finally the collected data is used for root-cause analysis

of the event. This root-cause analysis follows the forensic investigation process specified

earlier. Upon identification of the root cause of the event, recommendations are made to correct

the system flaw.

The architecture of an NMS that was designed to implement the above process is described in

the next section.

7.3.2 The NMS architecture

The proposed NMS architecture is shown as a UML component diagram in Figure 7.1. The

architecture consists of the five main components below, listed in their logical sequence:

 The Near-Miss Monitor

 The Near-Miss Classifier

 The Near-Miss Data Collector

 The Failure Prevention

 The Event Investigation

Some components are made up of several sub-components that all have a type: a document

file, an executable file or a database table. Dashed arrows indicate a component’s dependency

from the source component to the target component. For instance, the Near-Miss Classifier

requires high-risk event logs from the Near-Miss Monitor. Some dependencies are subject to

conditions, for example an expected downtime must occur in the critical zone to activate a data

request from the Near-Miss Data Collector.

© University of Pretoria

130

Each of the main components processes the event logs from the redundant units of the system

that is being monitored. The five main components of the system are used to perform a multi-

stage filtering process that progressively discards “irrelevant” events and only retains near

misses with the highest risk factor. The key component of the architecture is the module used

to prioritise near misses. This module is named the Near-Miss Classifier. It uses Equation (5)

that was established in the previous chapter to classify near misses based on their expected

downtime.

A detailed description of the main components of the architecture follows.

© University of Pretoria

131

 Event Investigation

Failure Prevention

Near-Miss Data Collector

Near-Miss Classifier

Near-Miss Monitor

<<executable>>

Event Logs Classifier

<<table>>

Event Logs

<<document>>

Near-Miss Formula

<<document>>

Near- Miss Risk Level Calculation

<<executable>>

Near-Miss Prioritisation

<<executable>>

Data Collector

<<executable>>

Corrective Steps Implementation

<<document>>

Corrective Steps Recording

<<executable>>

Event Classifier

<<executable>>

Event Root-Cause Analysis

<<table>>

Near Misses

<<table>>

Failures

Monitored

System

Event logs

<<Precondition>>

{Potential near miss identified}

<<Precondition>>

{Events in “critical zone” identified}“Critical zone” events

Event source data

Corrective Steps

Digital evidence

Outcome of failure prevention

High risk logs

<<executable>>

Near-Miss Alert

<<executable>>

Near-Miss IndicatorsSystem

Restoration

<<executable>>

Countermeasures

Figure 7.1: UML component diagram of NMS architecture

© University of Pretoria

132

7.3.2.1 The Near-Miss Monitor

The Near-Miss Monitor monitors the redundant units of the system to identify potential near

misses based on the near-miss definition formula. Events from the monitored system are logged

to provide information relevant for near-miss detection in line with the near-miss formula. The

logged information must include, among others, the status of the unit (up or down) and the

duration of the downtime, if applicable. The Near-Miss Monitor keeps track of previous

downtime experienced by the system, as well as the remaining downtime allowed in the SLA.

If the system goes down and a match is found between these parameters and the near-miss

definition formula, the downtime experienced is classified as a potential near miss and sent to

the Near-Miss Classifier for prioritisation.

7.3.2.2 The Near-Miss Classifier

The Near-Miss Classifier calculates the risk level of the potential near misses based on their

failure probability and expected downtime. It uses and prioritises events accordingly. Logs of

events identified as being in the “critical zone” are sent to the Near-Miss Data Collector and an

alarm is raised to notify the system administrator.

7.3.2.3 The Near-Miss Data Collector

This module is implemented as an SNMP Manager. The SNMP Manager requests data from

the units in the critical zone. Such data may include the source identifier (e.g. IP address),

running processes, system settings and error messages. This data is then stored in the Event

Data table and transferred to the Failure Prevention module.

7.3.2.4 The Failure Prevention

With this module, the system administrator uses the collected data to identify and implement

appropriate corrective steps in an attempt to prevent – or at least mitigate the impact of – system

failure. This might include ending some active but unused processes or deleting some stored

but unnecessary data to free up memory. The administrator records the steps implemented in a

log file for future reference. He then sends the outcome of the recovery attempt (successful or

unsuccessful) to the Event Investigation module.

© University of Pretoria

133

7.3.2.5 The Event Investigation

Based on the outcome of the recovery process in the previous component, the Event

Investigation module classifies events as either near misses or failures and stores the event

details in the appropriate table for future reference. If the event is a failure, a system restoration

is first conducted to limit the experienced downtime. The administrator then conducts a root-

cause analysis of the event based on the data stored. The root-cause analysis enables the

identification of near-miss indicators that can be used to adjust the formula used in the Near-

Miss Monitor.

Afterwards, recommendations for improvement are made and implemented either immediately

or at a later scheduled time. The recommendations are stored along with the event details in the

relevant table. These steps allow for the creation of an event history that can be looked up in

the event of a similar event occurring in the future.

This overall process is summarised in the UML activity diagram in Figure 7.3.

This architecture meets the objectives for incorporating near-miss analysis in the digital

forensic investigation of software failures as stated in Section 8.2. It enables the automatic

detection of near misses based on objective performance measures specified in the organisation

concerned. The detection process is flexible enough to accommodate changing performance

requirements and to suit requirements specific to an organisation. The architecture also enables

the automatic classification of potential near misses and the prioritisation of near misses to

facilitate their investigation. Once near misses have been selected for investigation, the

architecture enables the safe and proactive collection of data related to the potential failure for

root-cause analysis. This evidence is likely to be more complete and have more integrity than

the data collected following the failure. Additionally, the designed NMS enables the

improvement of the software once the cause of the outage has been established and

recommendations for improvement have been implemented. This prevents the recurrence of a

similar failure in the future. An additional benefit of the architecture is that it enables the

prevention of an impending failure if appropriate corrective actions are executed timely.

© University of Pretoria

134

Collect events logs of monitored system

Collect evidence for potential near miss

Implement corrective steps to prevent failure

Classify event as failure Classify event as near miss

 Apply near-miss formula to collected logs

Calculate expected downtime

Restore system

Conduct forensic root-cause analysis

Identify near-miss indicators

Implement corrective steps

Discard event log

Match between log
and formula?

No Yes

Flag event as potential near miss

Expected downtime
in critical zone?

Discard event log

No Yes

Successful failure
prevention?

No Yes

Send near-miss alert

Adjust near-miss formula based on indicators

Specify corrective steps

Figure 7.2: UML activity diagram of NMS

© University of Pretoria

135

The NMS architecture is purposefully designed to be generic as it is on a conceptual level.

However, in practice, its implementation will be dependent on the architecture of the target

system.

In the case of standard desktop systems and computing-based architectures, it is recommended

to design the NMS as a stand-alone system that monitors the target system. This will prevent

memory constraints on the target system.

In the case of embedded systems, due to the potentially technical barriers to access data from

the system, the recommendation would be to embed the code for the NMS in the design of the

embedded system. An example of this design was provided in the prototype implementation

where the code to collect and monitor attributes used for near-miss detection was inserted in

the C++ program that implemented the file copying application used as the target system for

near-miss analysis.

7.4 Conclusion

This chapter provided a high-level description of the original NMS architecture that has been

proposed to overcome the limitations of existing approaches to software failure investigations.

The proposed architecture has the potential to satisfy all the requirements established for

accurate software failure investigations. Original features of the architecture include the

provision of a scientific and legal foundation through its alignment with the digital forensic

process, the addition of a system restoration step before the failure analysis and, most

importantly, the detection, classification and investigation of near misses to obtain complete

and relevant digital evidence of the failure for accurate root-cause analysis. A description of

the prototype that was developed to test the viability of the NMS architecture is provided in the

next chapter.

© University of Pretoria

136

 CHAPTER 8
PROTOTYPING THE NMS – THE DESIGN

PHASE

8.1 Introduction

Chapter 7 presented the architecture of an NMS that was proposed to detect, prioritise and

investigate near misses. The detection of near misses is based on a mathematical formula

developed in Chapter 6 to define near misses formally. Near-miss analysis is proposed as a

novel approach to optimise the collection of sound and relevant digital evidence of a failure for

accurate root-cause analysis. By alerting system users of an upcoming failure, the detection

and prioritisation of near misses provides an opportunity to maximise the collection of

appropriate system logs at runtime and reduce the collection of irrelevant data.

This chapter is the first of a three-part series describing the prototype implementation of the

NMS architecture. The prototype was designed to demonstrate the viability of the architecture,

more specifically the detection of near misses from the analysis of event logs. The chapter also

documents the design phase of the prototype. The next two chapters respectively describe the

creation of suitable event logs for the prototype implementation and the forensic analysis of

these logs to detect near misses. The process to conduct such an analysis was presented in

Chapter 4.

The remainder of Chapter 8 is structured as follows. Section 8.2 presents the objectives of the

prototype. An overview of the preliminary work that was performed to set up the lab

environment is next described in Section 8.3. The prototype implementation plan is then

presented in Section 8.4.

8.2 The aims of the prototype

This section starts with a brief review of the NMS architecture, which is the basis of the

prototype implementation. The objectives of the prototype implementation are presented in

relation to this original architecture.

© University of Pretoria

137

8.2.1 The original NMS architecture

The prototype aims to demonstrate a subset of the NMS architecture. A UML component

diagram (OMG, 2007) of the NMS architecture was provided in Figure 7.2 in Chapter 7.

The NMS architecture is made up of five components that work in sequence. A detailed

description of each component was provided in Chapter 8. The following is a summary of the

components’ respective main functions:

1. Near-Miss Monitor: Monitor target system to identify logs of high-risk events that are

potential near misses. Potential near misses are identified based on the near-miss

formula defined in Chapter 6.

2. Near-Miss Classifier: Classify the potential near misses based on their risk level and

send an alert for the events with the highest risk level. A mathematical model to

calculate this risk level was developed in Chapter 6.

3. Near-Miss Data Collector: Collect digital evidence of the potential near misses for

which an alert has been sent.

4. Failure Prevention: Apply corrective measures in an attempt to prevent the upcoming

failure.

5. Event Investigation: Use the evidence collected to conduct a root-cause analysis of the

events using the scientific method and digital forensic tools and techniques. These

events are classified as near misses in case the failure does not unfold. The root-cause

analysis enables the identification of appropriate countermeasures to be applied, should

the unsafe events reoccur in the future. It also enables the identification of near-miss

indicators that can be used to adjust the formula used in the Near-Miss Monitor.

The prototype focuses on the following three components of the architecture: Near-Miss

Monitor, Near-Miss Classifier, and Event Investigation. These components perform the key

functions of the NMS and are sufficient to meet the objectives of the prototype implementation,

as will be discussed in the next section. Some functionality of the Failure Prevention as well as

of the Data Collector are present in the prototype but a full implementation of these components

falls outside the scope of this research.

8.2.2 Prototype goal and objectives

The goal of the prototype implementation is twofold:

© University of Pretoria

138

 Demonstrate the viability of the digital forensic process formulated in Chapter 4 to

conduct a root-cause analysis of a software failure. In the absence of an SLA,

identifying the root cause of a failure is necessary in order to identify near-miss

indicators for that particular type of failure. Each indicator is a unique system condition

and the combination of all indicators and their interdependencies provides a pattern in

the system behaviour that indicates that the system might be heading towards a failure.

 Demonstrate the viability of detecting near misses at runtime. This also demonstrates

that a near miss is a viable and relevant concept for the software industry.

The above-mentioned goal is accomplished by means of the following:

 The use of collected digital evidence of the failure as the basis for the root-cause

analysis. Digital evidence should be sufficient to identify the source of the failure and

no prior experience with the system should be required.

 The identification of near-miss indicators to define a near miss.

 The development of a near-miss formula. This formula is a mathematical expression of

all the indicators with their respective interdependencies.

 The identification of potential near misses using a set of event logs.

 The detection of near misses at runtime.

Figure 8.1 shows the adapted diagram of the NMS architecture that was used to implement the

prototype in accordance with the above objectives.

© University of Pretoria

139

 Event Investigation

Near-Miss Classifier

Near-Miss Monitor

<<document>>

Event logs

<<document>>

Near-Miss Formula

<<executable>>

Failure Root-Cause Analysis

Monitored

System

Event logs

Logs matching the formula

<<executable>>

Near-Miss Alert

<<document>>

Near-Miss Indicators

Figure 8.1: Adapted NMS component diagram for prototype implementation

The components in Figure 8.1 are implemented as follows:

 Analyse a software failure to identify its root cause. (Event Investigation)

 Use the root cause to identify near-miss indicators. (Event Investigation)

 Use the near-miss indicators to define a near-miss formula. The formula is used in the

subsequent monitoring of the system. (Near-Miss Monitor)

 Send an alert for potential near misses detected at runtime. (Near-Miss Classifier)

The prioritisation of potential near misses is not part of the prototype implementation as it is

not required for meeting the goal and objectives specified earlier.

© University of Pretoria

140

8.3 Setting up the lab environment

Conducting a root-cause analysis of a software failure was the basis for the prototype’s goal

and objectives. Conducting such an analysis required three necessary elements: the logs of a

software failure, a forensic investigation tool with suitable data analysis techniques and a test

plan. These elements are discussed in Sections 8.3.1, 8.3.2 and 8.3.3 respectively.

8.3.1 The logs of a software failure

Obtaining logs of a past software failure that would be suitable for the prototype proved

challenging. The researcher therefore opted to simulate a failure and generate logs of the event.

Two types of logs were deemed relevant for the root-cause analysis: logs created by the

researcher and logs generated by the computer system used for the failure simulation. The

process that was followed to obtain each of the types of log is discussed in the next two sections.

8.3.1.1 Logs created by the researcher

A software failure was simulated by writing a program with some deliberate weaknesses that

would result in a failure. While running, the program would write its output to a file along with

some statistics of its running environment. This information would serve as logs of the failure.

The output file would therefore be the log file created by the researcher. It is subsequently

referred to as the crash file.

The software failure to be investigated had to be caused by the exhaustion of resources, in line

with the near-miss failure probability formula established in Chapter 6. The argumentation for

this choice was as follows. Unlike many other unpredictable sources of failures, resource

exhaustion could be predicted through monitoring. The pattern of an upcoming failure could

therefore be observed and used to define a potential near miss. For the purpose of this prototype

implementation, memory was selected as the resource to be exhausted. For this reason, the

program had to fail due to a lack of available memory and the environment statistics to be

recorded would be memory-related.

The researcher decided for the program to exhaust the memory of an external drive. This allows

more control over the drive’s available free space than is possible with a computer’s internal

hard drive, as the latter is controlled by the operating system. The program was designed to run

© University of Pretoria

141

as a loop that copies a video clip to a flash disk repetitively beyond the flash disk free space.

The choice of a video clip was due to its usually larger file size than other file formats. This

enabled the file operation (copy to flash disk and reading copy to check its integrity) to take

enough time for some relevant parameters (e.g. duration) to be observed and recorded. A

representation of the program’s structure is provided in a high-level flowchart in Figure 8.2.

© University of Pretoria

142

Start

End of loop?

Start of loop

End

Yes

Create new file in flash
disk

Copy video clip to new file
in flash disk

Read new file to check file
integrity

Calculate file operation
statistics (duration,

latency) -
Info A

Query system (machine)
memory statistics – Info B

Write Info A, B
and C in output
file (crash file)

No

Video clip

Query flash disk memory
statistics – Info C

Figure 8.2: Flowchart of failure simulation program to create the crash file

As shown in Figure 8.2, in every iteration of the loop, the program writes to the crash file three

types of information:

© University of Pretoria

143

 File operation statistics: e.g. duration (time to copy the video clip and read the copy)

and latency (time delay between two consecutive file operations)

 Memory statistics (e.g. free space and used space) from the computer system

 Memory statistics from the flash disk

In order to obtain the above memory statistics, the program was written in C++ as this language

provides built-in functions to access information about any mounted file system.

The aim of generating a crash file was to find some indicators of the upcoming failure that

could be used as potential near-miss indicators. The above program was therefore purposefully

designed to be simple so as to focus on the near-miss indicators instead of on the complexity

of the computer system. The following assumptions were made regarding the identification of

the indicators:

 They would be found in the crash file in the last few entries before the failure.

 They would reflect a pattern in the system’s behaviour that is significantly different

from the expected behaviour of the system.

 The crash file needed to be big enough for such a pattern to be visible. This required

having a high number of output records.

A spreadsheet format was used for the crash file as it is a format used by a number of forensic

tools to display digital evidence (Fei et al., 2005). In a typical forensic investigation, each file

in the forensic data set is represented as a record with various fields describing the file, such as

file name, creation date and size. The same approach was followed when generating the crash

file, using the creation of every new copy of the video file as a record.

The researcher also assumed that the running of the above program on any operating system

(OS) would be recorded in that OS’s own log files. Information in these log files could therefore

be used to corroborate information in the crash file and could provide some additional near-

miss indicators. For this reason, the computer’s log files were also explored to find suitable

ones for the above-mentioned purpose. This exercise is discussed in the next section.

© University of Pretoria

144

8.3.1.2 System logs

The crash file was generated on a machine running on a Linux operating system (OS). Various

Linux log files and utilities were therefore explored to find relevant information that could be

linked to the crash file. Since the failure simulating program was performing significant input

(reading copy of video clip) and output (copying video clip to new file) operations, it was

deemed most appropriate to use the iotop monitoring utility to show input and output (I/O)

usage on the Linux disk. The iotop command continuously displays a table of I/O usage by

processes and threads and refreshes the information every second (Linux.die.net, 2014). It

provides various I/O statistics such as disk-reading bandwidth and disk-writing bandwidth.

Using iotop was preferred to other similar commands like top and htop as these

commands provide memory consumption information, which was already available from the

crash file. The researcher planned on running the iotop command concurrently with the

failure simulating program, so that I/O usage of this program would be displayed. The output

of iotop would then be redirected to a file, and would serve as a system-generated log file.

To find near-miss indicators, both the crash file and the iotop output file would be analysed

using the tools and techniques described next.

8.3.2 The forensic investigation tool and techniques

8.3.2.1 The investigation tool

Ideally, one should use a digital forensic tool to conduct a forensic (root-cause) analysis of the

log files. Popular digital forensic tools were listed in Chapter 4. However, these tools are

limited in their ability to handle and interpret large volumes of data, as well as in their

visualisation capability (Nassif & Hruschka, 2011; Guarino, 2013). Since one of the goals for

the prototype implementation was to observe a pattern in the system’s behaviour, a tool with

powerful visualisation capability that could handle large data sets efficiently was required. For

this reason, a tool with a Self-Organising Map (SOM) analysis capability (Engelbrecht, 2003)

was selected. The SOM is a powerful data classification technique optimised for large data sets

(Engelbrecht, 2003), as will be explained in the next section.

To the best of the researcher’s knowledge, popular digital forensic tools are not equipped with

a SOM capability. Therefore, a SOM tool was used instead of a digital forensic tool. A

© University of Pretoria

145

commercial SOM tool called Viscovery SOMine (viscovery.net, 2014) was used. The trial

version of this tool was used as it was freely available and it provided all the functionality

needed for this prototype. An overview of the SOM is provided in the next section.

8.3.2.2 The investigation techniques

Two techniques were used to analyse the failure: the SOM analysis and statistical analysis.

Both these techniques were used due to their scientific foundation (mathematics) and their

ability to identify trends in the data set. They are discussed next.

8.3.2.2.1 Overview of the SOM

The SOM is a model of unsupervised neural networks used for the analysis and visualisation

of multi-dimensional data (Engelbrecht, 2003). Like other unsupervised neural network

algorithms, the SOM classifies input data based on the similarity of the input vectors (records

in the data set). Similar vectors are grouped in the same cluster. However, the distinguishing

feature of a SOM is that its neurons (or nodes) represent a topological system (usually a two-

dimensional rectangular or hexagonal map) and they are arranged in an ordered and structured

way, based on their weights (Hollmén, 2000). Neurons with similar weight vectors are situated

close to one another while neurons with very different weights are physically far apart

(Kohonen, 1990). Like other neural network algorithms, the SOM has two successive operating

modes (Kohonen & Honkela, 2007):

1. The training process where the map is constructed through competitive learning, which

means that the learning process is data driven (Fei, Eloff, Venter & Olivier, 2006). This

phase requires a very large number of input vectors to accurately represent all or most

of the patterns to be identified.

2. The mapping process where a new input vector is quickly and automatically assigned a

location on the map, based on its feature.

Usually, a SOM can be graphically visualised by displaying a unified distance matrix (U-

matrix) that shows the different clusters identified in the input data. The U-matrix calculates

the Euclidian distance between the map units and a colour is assigned to each unit based on

this distance. Close units have similar colours (Hollmén, 2000). In case the identified clusters

are labelled, their label can also be displayed on the associated map unit.

© University of Pretoria

http://link.springer.com/search?facet-author=%22B.+Fei%22
http://link.springer.com/search?facet-author=%22J.+Eloff%22
http://link.springer.com/search?facet-author=%22H.+Venter%22

146

The researcher aimed to use these clusters to identify a change in the system’s behaviour from

expected to unexpected. Her previous experience with the SOM demonstrated the feasibility

of this approach (Bihina Bella, Eloff & Olivier, 2009). Using a SOM can offer several benefits

as the algorithm is very fast and highly visual. It quickly reduces the complexity of a large data

set to a few patterns that are quickly identifiable (Hsu, 2006).

It is worth mentioning that the SOM is not a forensic technique as such. However, it is based

on science (mathematics), which is a primary requirement for forensic techniques. This

scientific foundation enables the results of the SOM analysis to be objective and reliable.

Furthermore, its suitability and efficiency for forensic investigations was demonstrated before

by a number of earlier researchers (Fei et al., 2006; Palomo, North, Elizondo, Luque & Watson,

2012).

8.3.2.2.2 Statistical analysis

In order to identify trends in the data set, a statistical measure called a weighted moving average

(WMA) was used. Since A WMA gives more weight to the most recent data in a time series

and less importance to older data, it is used for trend forecasting (Holt, 2004). This is

particularly relevant for the research at hand, which aims to predict likely failures based on

near misses. The WMA of the previous values of a parameter shows the trends in that parameter

and can indicate a change in the system’s behaviour, which can potentially be used to detect an

upcoming failure.

The WMA of a parameter is calculated by multiplying each value (D) by its position (n) in the

time series, and dividing the sum of these values by the total of the multipliers (positions). Its

formula is as follows:

WMA=
𝑛(𝐷𝑛)+(𝑛−1)(𝐷𝑛−1)+(𝑛−2)(𝐷𝑛−2)+⋯+2(𝐷2)+1(𝐷1)

𝑛+(𝑛−1)+(𝑛−2)+⋯+2+1

The normal average was also used and compared to the WMA to determine deviation from

expected behaviour.

© University of Pretoria

http://www.ncbi.nlm.nih.gov/pubmed?term=Palomo%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Palomo%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Elizondo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Elizondo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Watson%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Watson%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22402325

147

8.3.3 The test plan

As discussed in Chapter 2, a forensic investigation needs to be reproducible and thus has to

adhere to a pre-defined procedure. Therefore, the following high-level plan was established for

the forensic analysis and near-miss detection:

1. Run the C++ (failure simulation) program so that it creates a crash file in a spreadsheet

format.

2. Concurrently run the iotop utility to create a log file of the program I/O usage.

3. Conduct a forensic root-cause analysis of both the crash file and the iotop output file.

4. Use the root cause to identify indicators of the upcoming failure.

5. Use the interdependencies between indicators to define potential near misses through a

formula.

6. Use the near-miss formula to detect potential near misses while the C++ program is

running.

A flowchart of the above process is shown in Figure 8.3. The six steps listed above are grouped

into four main experiments as shown in the flowchart. Figure 8.3 also shows that the root-cause

analysis follows the scientific method. As explained in Chapter 4, the scientific method has

three main steps: formulating a hypothesis; predicting evidence for the hypothesis; and testing

the hypothesis with an experiment. Both the SOM analysis and the statistical analysis are used

to test the hypothesis.

In the last step, the near-miss formula is inserted into the C++ program to detect potential near

misses. When a potential near miss is detected, an alert is sent prompting for some corrective

actions. Implementing these corrective actions falls outside the scope of this research and is

consequently not included in the prototype implementation.

© University of Pretoria

148

C++ program
(failure

simulation)

iotop utility
(I/O usage
statistics)

Crash fi le
iotop output

file

Forensic Investigation: Root-Cause Analysis

SOM Analysis
(Data Visualisation +

Clustering)

Statistical analysis
(WMA + Average)

Near-Miss
Indicators

Near-Miss Formula
(interdepencies

between indicators)

Near-Miss
Detection

Alert

Formulate hypothesis

Predict evidence

Test hypothesis

Experiment 3
The Near-Miss Formula

Experiment 4
The Near-Miss Alert

Experiment 2
The Near-Miss Indicators

 Experiment 1
 The Data Set

Figure 8.3: Prototype implementation plan

© University of Pretoria

149

To ensure the forensic soundness of the results throughout the process of prototype

implementation, attention was paid to adherence to best practice in digital forensics. This

includes minimal handling of original data, keeping account of any change to the data (change

was made only to the format of the data, not its value), and maintaining the chain of custody

(data was not moved from its source system).

The implementation of the above plan is documented in Chapters 9 and 10.

8.3.4 Conclusion

This chapter discussed the design phase of the prototype implementation of the NMS

architecture, which was presented in Chapter 7. The chapter first presented a diagram of the

subset of the NMS architecture implemented in the prototype. This subset focused on the root-

cause analysis of a software failure to identify near-miss indicators and detect potential near

misses based on these indicators. Details of the prototype goal and objectives, as well as of the

preparatory work to set up the lab were provided. The preparatory work included identifying

the required data set, selecting the data analysis tool and techniques, and creating a test plan.

The next chapter describes the implementation of the first experiment of the prototype, which

involves the creation of a suitable data set. The other three experiments are described in Chapter

10.

© University of Pretoria

150

 CHAPTER 9

PROTOTYPING THE NMS – THE DATA SET

9.1 Introduction

Chapter 8 described the design phase for the prototyping of the NMS architecture presented in

Chapter 7. The prototype was designed to demonstrate the viability of the architecture. The

design phase clearly specified the scope of the prototype as the runtime detection of near misses

from event logs. The design phase also outlined the plan to implement the prototype.

This chapter describes the first step of the implementation plan, which is the production of

suitable event logs to detect near misses. Indeed, since suitable event logs were not readily

available, they had to be created by simulating a software failure. Chapter 9 describes the

experiment that was conducted to simulate a failure due to memory exhaustion and to generate

logs suitable for the subsequent forensic analysis and near-miss detection. Due to their lengthy

documentation, these subsequent phases are described in the next chapter.

Chapter 9 is further structured as follows: Section 9.2 describes the technical platform used for

developing the prototype, while the log creation experiment is described in Section 9.3.

9.2 Technical platform used for developing the prototype

9.2.1 The prototype implementation plan

The prototype implementation plan was presented in detail in the previous chapter. This plan

was implemented over a series of four experiments, each one building on the previous one to

obtain more relevant information and more usable results. The four experiments are depicted

in Figure 9.1.

Chapter 9 focuses on the first experiment, which is the creation of a set of failure logs. In the

previous chapter, this data set was designed to consist of two complementary types of event

logs: logs from a failure simulation program created by the researcher and logs from the

© University of Pretoria

151

program’s host machine produced by the operating system. The former, referred to as a crash

file, was created from a C++ program that fails due to external memory exhaustion on a Linux

machine. The latter was selected to be generated from the Linux iotop utility, which monitors

the disk I/O usage. This process is shown in the highlighted areas in Figure 9.1.

© University of Pretoria

152

C++ program
(failure

simulation)

iotop utility
(I/O usage
statistics)

Crash fi le
iotop output

file

Forensic Investigation: Root-Cause Analysis

SOM Analysis
(Data Visualisation +

Clustering)

Statistical analysis
(WMA + Average)

Near-Miss
Indicators

Near-Miss Formula
(interdepencies

between indicators)

Near-Miss
Detection

Alert

Formulate hypothesis

Predict evidence

Test hypothesis

Experiment 3
The Near-Miss Formula

(Chapter 10)

Experiment 4
The Near-Miss Alert

(Chapter 10)

Experiment 2
The Near-Miss Indicators

(Chapter 10)

 Experiment 1
 The Data Set
 (This chapter)

Figure 9.1: Prototype implementation plan

© University of Pretoria

153

9.2.2 Technical set-up for prototype implementation

The prototype was implemented as a failure simulating program running on a Linux operating

system (OS). As only one machine was available for conducting the experiment as well as

documenting its results, the program was executed on a virtual machine to avoid any potential

crash of the host machine. The host machine was running on a Windows 7 OS, while the virtual

machine was running on a Linux Debian OS, both using a 64 bit architecture. The Linux

machine was allocated 1 GB of virtual hard drive. Oracle VM VirtualBox was used as the

virtualisation software product (virtualbox.org, 2014) as it is freely available online as open

source software.

A shared directory was created between the host and the guest OS so that files could be shared

between them. This was necessary in order to process in Windows (i.e. make a forensic analysis

of) the crash file generated in Linux. Figure 9.2 shows a screenshot of the user interface of

VirtualBox, as well as the shared directory – named VirtualBoxShare – as displayed on the

Windows host machine and on the Linux virtual machine. The screenshot shows that the

content of the shared directory is the same on both machines.

Figure 9.2: VirtualBox user interface and shared directory between Windows and Linux

VirtualBox user interface Shared directory in Linux Shared directory in Windows

© University of Pretoria

154

A diagram of the lab environment is provided in Figure 9.3. In addition to the guest and host

machines and the shared directory between them, the lab environment includes the SOM

analysis tool (Viscovery SOMine) and the iotop utility that was running in parallel to the

C++ program. The C++ program was written to simulate a failure by repetitively copying a

video clip to a flash disk until the flash disk’s free space was exhausted.

Windows Host machine

VirtualBox

Linux Guest machine

VirtualBoxShare

Flash
disk Copy of video clip

Crash fi le

Copies of crash file +
iotop output file

C++ program iotop uti lity

iotop output file

Viscovery SOMine
(SOM tool)

Video
clip

Figure 9.3: Diagram of the lab environment

9.3 Experiment 1: Creating a suitable set of event logs

The goal of this first step was to create a crash file and an output file of the iotop utility that

would be suitable for the forensic analysis to be performed next. The suitability of the files was

defined in terms of the following characteristics:

 Providing relevant information about the failure

 Containing a large number of output records, preferably several thousands of them

 Having a spreadsheet format to facilitate their forensic analysis

© University of Pretoria

155

The focus of step one was therefore on the NM Monitor of the NMS adapted architecture

presented in the previous chapter. This component is shown in Figure 9.4, where the sub-

component relevant for this phase of the prototype implementation is highlighted.

Near-Miss Monitor

<<document>>

Crash file & iotop output file

<<document>>

Near-Miss Formula

Monitored

System

(Linux

Guest

Machine)

Event logs

Figure 9.4: Focus of experiment 1 – Near-Miss Monitor of adapted NMS architecture

9.3.1 The crash file

9.3.1.1 Technical set-up for crash file

The C++ program was designed to repeatedly copy a video clip to a flash disk. Every time a

new copy of the video clip was made, various statistics about the C++ program, the Linux

machine and the flash disk were displayed. As the failure was caused by memory exhaustion,

these statistics were selected to be related to memory usage, in order to help identify relevant

near-miss indicators.

The literature indicates that software failures due to resource exhaustion often manifest through

a performance slowdown, with unusually slow response time (Pertet & Narasimhan, 2005).

Memory statistics that could indicate symptoms of the above were therefore recorded.

Information logged about the C++ program

In the case of the C++ program, a slow response time can be the result of either (or a

combination) of the following conditions:

 A longer time duration to complete a file operation (the latter refers to copying the video

clip and reading the new copy to verify its integrity)

 A longer time delay (latency) between two successive file operations

© University of Pretoria

156

These two statistics are recorded while the program runs. In order to calculate the duration of

a file operation, the start time and the end time are required. It is also necessary that the file

status (successful or unsuccessful copy) be recorded to detect the failure. The list of attributes

recorded from the C++ program therefore looks as follows:

 File Nr: Number of the new copy of the video file. This corresponds with the number

of the current iteration of the program’s loop and is also the record number.

 Creation time: Time when the new file was created to copy the video clip.

 File status: The program displays “OK” if the video file was copied successfully and

“not_OK” otherwise.

 End time: Time when the file operation completed.

 Duration: Duration of file operation. This is the time difference between the “creation

time” and the “end time”. For greater accuracy, it was expressed in milliseconds. Hence

the creation time and end time were displayed with millisecond precision in the format

hh:mm:ss.000.

 Latency: Time delay between the end of one file operation and the beginning of the

next one.

Information logged about the Linux machine

Regarding the C++ program’s host system, the literature indicates that a heavy load and

memory usage on a Linux machine often manifest through random access memory (RAM)

exhaustion and high swapping activity (Santosa, 2006; Bytemark, 2014). Since a large amount

of input (reading new video copy; reading time of file operation), output (writing video clip to

new file) and temporary storage of data (to convert time values to desired format; to store the

machine’s memory statistics into variables) is performed on the C++ program, high activity on

memory buffering and caching is also expected. These attributes are therefore recorded as

follows:

 Mem Used: Amount of RAM used

 Mem Free: Amount of RAM available

 Buffers: Amount of RAM buffered

 Cached: Amount of RAM used for caching of data

 Swap Used: Amount of swap space used

 Swap Free: Amount of free swap space

© University of Pretoria

157

The above memory statistics are provided in kB. The Linux free command was invoked from

the C++ program to display these statistics. A typical output of the free command is displayed

in Figure 9.5. The command name and its output are highlighted. The standard output had to

be parsed to display only the above-selected statistics and to display them in the crash file

format.

Information logged about the flash disk

Regarding the flash disk, it is expected that increasing memory consumption manifests through

a decrease in the amount of free space. Therefore, the amount of free space is recorded as the

program runs. The Linux built-in statvfs()function was used in the C++ program to display

this statistic. This function provides a structure that contains various details about a mounted

file system. The function was written to return only the USB free space, calculated as the

number of free memory blocks multiplied by the size of a block, in kB. The corresponding

code snippet is shown in Figure 9.6.

Figure 9.6: Code snippet for function to obtain the amount of free space on the flash disk

Figure 9.5: Output of the free command in Linux

© University of Pretoria

158

Program’s running conditions

Since a large data set was required for the subsequent SOM analysis, the crash file was designed

to maximise the number of records. This was achieved by running the program with the largest

flash disk and the smallest video file at hand, which resulted in the following:

 A flash disk with a capacity of 128 GB

 A video clip of 3.91 MB

 A maximum of 31 001 potential records in the crash file (128 GB/3.91 MB)

In order to force a failure, the size of the program’s loop was deliberately set to be higher than

the maximum number of potential records. It was set to 31 150. The resulting crash file is

presented next.

9.3.1.2 Results

Screenshots of the crash file are provided in Figure 9.7 (beginning of file) and 10.8 (point of

failure). The highlighted row in Figure 9.8 (file number 31 002) indicates the point of failure,

after the last successful copy of the video clip was made to the flash disk.

Figure 9.7: Crash file at beginning of program

Figure 9.8: Crash file – point of failure

The following observations were made from the crash file:

 The 31 001 successful records were generated in 11h 28 min 21s 458 ms.

 The average values for Duration and Latency were 1295 ms and 36 ms respectively.

© University of Pretoria

159

 Contrary to what was expected, the C++ program neither generated an error message

nor terminated once the flash disk’s free space was used up.

 The program continued to run past the failure point until the loop was terminated.

 For some unclear reason, the program stopped displaying values for the last four

parameters (File Status, End time, Duration and Latency) only after record 31 042 (see

Figure 9.9).

Figure 9.9: Crash file at record 31 042

The next section describes the process followed to generate a suitable output file from the

iotop utility.

9.3.2 The iotop output file

9.3.2.1 Technical set-up for iotop output file

As discussed previously, the iotop utility was used to show I/O usage on the Linux machine

and potentially provide additional near-miss indicators. Iotop displayed the following

information:

 Time: Time information is displayed

 TID: Process or thread ID

 PRIO: Process I/O priority (class/level)

 User: Username running the process or thread

 Disk read: I/O bandwidth read by each process or thread

 Disk write: I/O bandwidth written by each process or thread

 Swapin: Percentage of time spent while swapping in

 I/O: Percentage of time spent while waiting on I/O

 Command: Name of process or thread

© University of Pretoria

160

Iotop was executed with the following command: iotop –ktoqqq –d .5. The command had

the following arguments to generate a suitable output file for the forensic analysis:

 k: Display I/O bandwidth in kB.

 t: Display time. Time is used to correlate entries in the iotop output file with records

in the crash file.

 o: Display only processes actually doing I/O, instead of showing all processes.

 qqq: Remove all headers. Headers are displayed every time the information is

refreshed. By default, this happens every second.

 -d .5: Change refreshing time interval to 0.5 sec. This allows correlation with the crash

file at a higher level of precision.

The iotop command and the C++ program were executed concurrently in separate terminals.

As it runs continuously, iotop was stopped manually after the termination of the C++ program.

The output of iotop was redirected to a file stored in the shared directory between the host

and the guest machine. This output file, which was also stored in a spreadsheet format, is

discussed next.

9.3.2.2 Results

Figure 9.10 shows a screenshot of the first entries in the iotop output file.

Figure 9.10: iotop output file

The following observations were made based on the output of iotop:

 As expected, the C++ program (called videoCrashTwoFolders-V2 in Figure 9.10) was

the process performing the most I/O activity. It was the most recurring one.

 A number of other processes were performing I/O activities on the Linux disk. The

most recurring ones were the following:

© University of Pretoria

161

o jbd2/sda1-8 – a journaling block device that records file system operations and

runs continuously on the Linux machine (Sovani, 2013)

o flush-8:16 – a process that is used for garbage collection (Rodrigues, 2009)

o kswapd0 – a process that manages swap space (Rusling, 1999)

 The value of Swapin was 0 throughout the entire file, which corresponds with the entire

execution of the C++ program. No explanation was available for this pattern.

 No particular sign of the failure was visible from the file. At the time of the failure, the

values of the various attributes of iotop did not seem much different than throughout

the rest of the file, as is clear from the highlighted area in the iotop output file in Figure

9.11. The highlighted area corresponds with the time frame for the point of failure in

the crash file. In the crash file in Figure 9.8, the point of failure corresponds with record

31 002, which starts at 14:04:19.401 and ends at 14:04:19.793.

Figure 9.11: iotop output file – point of failure of C++ program

9.3.3 Summary of experiment and results

Obtaining a suitable crash file and a corresponding iotop output file was the goal of the

experiment described in this chapter. The acquisition of the data was conducted as follows:

 It was done at runtime so it was a live forensic acquisition. As the program was running

and writing data to the standard output, this data was automatically being copied to a

file (crash file)

 A copy of the original crash file was made and stored on the machine used for the

forensic analysis. The original data was created on a Linux machine and copied to and

analysed on a Windows machine.

 Since the Linux machine was a virtual machine on the Windows machine, no transport

of data was made and the image was transferred electronically from Linux to Windows.

 The forensic soundness of the image cannot be ascertained since no hash value was

calculated, since the focus of the experiment was on the detection of near misses and

© University of Pretoria

162

not on the forensic soundness of the data acquisition. This lack of a sound forensic

procedure was also motivated by the fact that the experiment was conducted in a closed

controlled environment, with limited risk for unauthorized access and tampering of

data. Nevertheless, throughout the investigation, we made sure that we did not modify

the value of the copied fields in the data set.

 Any changes to the data (layout and format) was carefully documented.

 The same procedure was conducted for acquiring data from the iotop command

The suitability of the crash file was defined as follows:

 It must have a large number of records.

 The records should be both successful and unsuccessful to identify the failure.

 The records should contain various relevant memory-related statistics about the C++

program and its host machine.

 The file had to be in a spreadsheet format.

The suitability of the iotop output file was defined as follows:

 It must provide relevant details about the I/O activity of the C++ program and of the

Linux disk.

 It should be possible to correlate its entries with the records in the crash file based on

time.

 The file had to be in a spreadsheet format.

As both files met all the above requirements, it is safe to say that the goal of this first experiment

was achieved. These characteristics were selected to facilitate the forensic analysis of the

failure and to enable the identification of near-miss indicators. The subsequent experiments

conducted for this purpose are described in Chapter 10.

9.4 Conclusion

This chapter described the first experiment of the prototype implementation, the design of

which was presented in Chapter 9. This experiment was conducted to obtain a suitable set of

event logs of a software failure caused by memory exhaustion. The experiment involved

programmatically provoking a software failure from a lack of memory and recording relevant

© University of Pretoria

163

memory-related statistics during the program’s execution. The statistics that were obtained

were used as event logs.

The researcher required the event logs to conduct a forensic analysis of the software failure

that would allow her to identify near-miss indicators and detect potential near misses before

the failure had the opportunity to reoccur. The log files resulting from the experiment satisfied

all the requirements that had been specified to facilitate the previously mentioned objectives.

They were therefore deemed appropriate for conducting the remaining three experiments of the

prototype implementation, as will be described in the next chapter.

© University of Pretoria

164

 CHAPTER 10

PROTOTYPING THE NMS –DETECTING NEAR

MISSES AT RUNTIME

10.1 Introduction

Chapter 9 presented the four-phase plan of the NMS prototype implementation, and described

the first phase of this plan. The first phase consisted of an experiment aimed at creating log

files of a simulated software failure. Two large sets of supplementary logs were obtained from

the experiment. Chapter 10 now describes the following three phases of the prototype

implementation plan. The phases consist of a series of experiments aimed at identifying near-

miss indicators from the forensic analysis of the logs and detecting near misses at runtime,

based on the indicators.

The rest of the chapter is structured as follows: The prototype implementation plan is briefly

reviewed in Section 10.2. The implementation of the last three phases of the plan is then

documented in Section 10.3 through to Section 10.7. An evaluation of the final results is

provided in Section 10.8.

10.2 Prototype implementation plan

The prototype was developed to test the viability of the adapted NMS architecture represented

in Figure 8.2 in Chapter 8. The plan designed for this purpose was outlined in Figure 8.4, also

in Chapter 8. For clarity, both these figures are reproduced in this chapter – in Figures 10.1 and

10.2 respectively.

Figure 10.2 shows the creation of a set of event logs in the first experiment as described in the

previous chapter. This experiment corresponds with the sub-component named “Event Logs”

of the Near-Miss Monitor in the architecture diagram in Figure 10.1. The three subsequent

experiments that make use of these logs are described in this chapter. They focus on the

© University of Pretoria

165

remaining components and sub-components of the NMS architecture diagram. Each

experiment builds on the previous one to obtain more relevant information and ensure more

usable results. These experiments involve the following actions:

 Conduct a root-cause analysis of both the crash file and the iotop output file and

identify near-miss indicators.

 Define a near-miss formula. Although a generic near-miss formula was proposed in

Chapter 7, this formula was based on a predefined performance level for the monitored

system, also referred to as an SLA (Service Level Agreement). In the case of this

prototype implementation, such an SLA was not available; hence the need to define a

near-miss formula relevant for the software failure at hand.

 Detect potential near misses at runtime using the created formula.

The three experiments are described sequentially in the next three sections.

 Event Investigation

Near-Miss Classifier

Near-Miss Monitor

<<document>>

Event logs

<<document>>

Near-Miss Formula

<<executable>>

Failure Root-Cause Analysis

Monitored

System

Event logs

Logs matching the formula

<<executable>>

Near-Miss Alert

<<document>>

Near-Miss Indicators

Chapter 9

Figure 10.1: Adapted NMS component diagram for prototype implementation

© University of Pretoria

166

C++ program
(failure

simulation)

iotop utility
(I/O usage
statistics)

Crash fi le
iotop output

file

Forensic Investigation: Root-Cause Analysis

SOM Analysis
(Data Visualisation +

Clustering)

Statistical analysis
(WMA + Average)

Near-Miss
Indicators

Near-Miss Formula
(interdepencies

between indicators)

Near-Miss
Detection

Alert

Formulate hypothesis

Predict evidence

Test hypothesis

Experiment 3
The Near-Miss Formula

(This chapter)

Experiment 4
The Near-Miss Alert

(This chapter)

Experiment 2
The Near-Miss Indicators

(This chapter)

 Experiment 1
 The Data Set
 (Chapter 9)

Figure 10.2: Prototype implementation plan

© University of Pretoria

167

10.3 Experiment 2 – Part 1: Identifying near-miss indicators from

the forensic analysis of the crash file

10.3.1 Goal

The goal of this step was to identify near-miss indicators that could be used to define and detect

near misses from the crash file. Identifying near-miss indicators first requires the investigator

to determine the root cause of the failure, and then to identify system conditions pointing to

that root cause before the reoccurrence of the failure. Both the crash file and the iotop output

file were analysed for this purpose. The focus of this phase was therefore on the Event

Investigation of the adapted NMS architecture (see Figure 10.3). As the documentation of this

pahse is lenghtly, it has been broken down into 3 parts. Part 1 (Section 10.3) describes the root-

cause analysis and the near-miss identification process of the crash file, while Part 2 (Section

10.4) describes the same analysis conducted with the iotop output file. A summary of the

overall near-miss indicators identified is provided in Part 3 (Section 10.5)

 Event Investigation

<<executable>>

Failure Root-Cause Analysis

<<document>>

Near-Miss Indicators

Figure 10.3: Focus of Experiment 2 – Event Investigation of adapted NMS architecture

Since the root-cause analysis was conducted with a view to identifying near-miss indicators,

the whole experiment was oriented towards that purpose.

Identifying near-miss indicators was based on the assumption that it was possible to see the

failure coming by monitoring the relevant memory usage statistics provided in the crash file

and the iotop output file. Indeed, it was expected that the C++ program would have a stable

operating mode under normal conditions (when enough memory was available) and that this

normal behaviour would be disrupted when memory became insufficient.

© University of Pretoria

168

Therefore, for the purpose of this experiment, the root cause was expected to effect some

unusual changes in the monitored statistics close to the point of failure. These changes could

be expected to indicate an upcoming failure and would be used to define near-miss indicators.

The scientific method was used to pinpoint the unusual changes as documented thereafter.

Formulate hypothesis

Ideally, one would conduct a root-cause analysis without any biased opinion regarding the

source of the failure. However, due to the nature of the prototype design, the source of the

failure was already known to be memory exhaustion. As discussed in the previous chapter,

memory exhaustion usually manifests through a performance slowdown. The analysis of the

crash file therefore aimed to find evidence of this trend.

Predict evidence for the hypothesis

Symptoms of a performance slowdown in the execution of the C++ program were expected

from the crash file. In addition, as memory was depleting, it was expected that activity would

be observed on the Linux disk, aimed at managing a shortage in memory. The following

symptoms were therefore expected:

 A longer time duration to complete a file operation

 A longer latency between two successive file operations

 An increased level of caching, buffering and swapping

These changes were expected in the last records before the failure. Based on the average

duration of 1.295s to create a record, it was assumed these changes would occur in the last

couple of seconds before the failure.

Test hypothesis with experiment

It was assumed that the above trend in the memory statistics would be visible from a trend

analysis of the behaviour of the system (Linux machine) as the program was running. The

experiment was therefore aimed at outlining the trends in the system’s behaviour, both from a

SOM analysis and a statistical analysis of the crash file.

© University of Pretoria

169

10.3.2 SOM analysis of the crash file

10.3.2.1 The map creation process

The SOM analysis was performed with the commercial tool Viscovery SOMine. Little pre-

processing was required as the crash file was stored as an Excel spreadsheet, which is an input

file format handled by Viscovery SOMine. Details about the pre-processing and the map

training and creation process are provided in Appendix 1.

Profiling the system’s behaviour was performed in three steps, namely the overall system’s

behaviour before the failure was outlined, the shift in focus to the system’s behaviour close to

the point of failure, and finally a comparison between these two profiles.

10.3.2.2 Behaviour of the system before the failure

Technical set-up

In order to observe trends in the system’s behaviour, the researcher created SOM maps for

several random sets of 1000 records throughout the crash file, among the records marked as

“OK”. The argument for this strategy was that creating one single map of all the “OK” records

would not provide a detailed view of the variations in the system’s behaviour. Four sets of

records were selected: first 1000, 10 000 to 11 000, 20 000 to 21 000 and last 1000 before the

failure. The resulting output maps are shown in Table 10.1. For increased visibility, the table

is spread over three pages.

In line with the expected evidence for memory exhaustion discussed earlier, the focus of the

SOM analysis was on the following attributes: Creation Time, Buffers, Cached, Swap Used,

Duration and Latency. Table 10.1 therefore only shows the component maps for the attributes

mentioned. A brief explanation of how to read the maps is provided next.

The component maps show the distribution of the values in the data set over time for each

attribute. The scale of the values is displayed on a bar below each map. Values range from

lowest on the left to highest on the right of the bar. Values on the map are differentiated by

their colour on the scale. So, lowest values are in blue and highest values are in red.

The map of the attribute Creation Time was used as the basis for understanding the

distribution of values over time. On this map, the first records are in the top right corner of

© University of Pretoria

170

the map, where the time is the earliest (lowest value, dark blue colour), and the last records

are on the bottom left corner, where time is the highest (red colour). So, the values move

from right to left. This topology is applicable to all component maps.

Results

A study of Table 10.1 shows the following trends:

 Latency increases over time. The minimal value goes from 13 ms to 20 ms and finally

to 33 ms. There are occasional big increases (outliers displayed in red), but the biggest

increase occurs in the last data set, closer to the failure (3890 ms).

 Duration remains around 1000 ms, close to the average of 1295 ms, with occasional

big jumps throughout the various data sets.

 Swap Used starts at 0, increases steadily up to 9400 kB in the first 1000 records and

then remains close to that value throughout the program’s execution. This stair-stepping

pattern of swap usage is typical of a system under high memory pressure (Splunk wiki,

2012).

 The value of Cached rapidly increases from 647 000 kB to 881 000 kB and remains

fairly constant around this value throughout the program’s execution.

 The value of Buffers start high at 51 416 kB, quickly decrease up to 1456 kB in the first

1000 records and then remain between 2000 kB and 2600 kB throughout the program’s

execution. The maps show that the values change frequently throughout each data set,

although the range of values remains very small.

Of all the above attributes, the one that shows a distinctive change throughout the program as

well as close to the failure is Latency. Interestingly, the assumption that big changes would be

observed in the other attributes was not confirmed. Besides, no correlation between Latency

and the other attributes was observed. For instance, an increase in Latency does not correspond

with an increase in Duration.

In order to find more detailed and usable information about the observed pattern in Latency,

the researcher conducted a SOM analysis and a statistical analysis of Latency. The analysis was

performed with values close to the failure and is described in the next section.

© University of Pretoria

171

 Table 10.1: SOM maps of selected program attributes over time

© University of Pretoria

172

Records 1-1000 Records 10 000 to 11 000 Records 20 000 to 21 000 Last 1000 records before crash

© University of Pretoria

173

Not applicable. Consistent

value of 9280 kB throughout

the data set

© University of Pretoria

174

© University of Pretoria

175

10.3.2.3 Behaviour of Latency close to the point of failure

SOM analysis of Latency – Technical set-up

Various component maps of Latency were created for various data sets in proximity of

the point of failure, before and after the first “not OK” record. For this purpose, only the

first 50 “not OK” records were retained in the crash file. The following data sets were

selected: last 1000 (including “not OK”), last 100 before failure, last 100 (including “not

OK”) and last 50 before failure. The file numbers were added as labels on the maps to

understand the distribution of values over time. The resulting SOM maps are discussed

next.

SOM analysis of Latency – Result

The SOM maps are shown in Table 10.2. The following observations were made:

 The lack of homogeneity close to the point of failure. The number of clusters in

the last data set is considerably higher than in the previous ones. This indicates

that these records are erratic in terms of the other attributes used to train the maps.

 The high value of Latency throughout the last 100 records before the failure.

Latency remains mostly around 40 ms, which is much higher than the values of

13 ms to 20 ms in the first 21 000 records.

In order to model the increase in Latency as a potential near-miss indicator, this trend

needed to be expressed in terms of some statistical parameters. A statistical analysis of

Latency was therefore conducted next.

Table 10.2: SOM maps of Latency for various data sets close to the point of failure

Last 1000 records with

failure records

Last 100 records before

failure

Last 100 records with

failure records

Last 50 records before

failure

© University of Pretoria

176

10.3.3 Statistical analysis of Latency

Technical set-up

The statistical analysis was conducted as follows:

 Calculation of overall average from all the “OK” records

 Calculation of the WMA of Latency throughout the various data sets in Table 11.1

(first 1000, 10 000 to 11 000, 20 000 to 21 000 and last 1000 before failure)

 Comparison of overall average to WMA

In each of the above data sets, the WMA was calculated for three subsets (last 150, last

100 and last 50). This was done for this dual purpose:

 Establish the trend (increasing or decreasing) in each data set

 Establish the trend across the data sets

Result

Table 11.3 shows the results of the calculation of the WMA across the various data sets.

The calculated value of the overall average was 36 ms.

Table 10.3: WMA of Latency across various data sets

 Records

1-1000

Records

10 000-11 000

Records

20 000 - 21 000

Last 1000 records

before failure

Last 150 records 17.39 35.85 26.23 96.31

Last 100 records 17.5 31.79 26.63 96.15

Last 50 records 17.7 23.03 27.58 113.589

Table 10.3 shows that the last data set (last 1000 records before failure) differs

significantly from the rest in the following two ways:

 The values of WMA are more than twice the values in the other data sets.

 The trend of values differs throughout the three subsets. In the first three data sets,

the WMA moves in one direction throughout the subsets: up, down and up

respectively. However, in the last data set, the WMA goes down from the first

subset to the second and then up from the second subset to the third. This confirms

that the records in that data set are erratic.

© University of Pretoria

177

10.3.4 Conclusion based on forensic analysis of crash file

The conclusion reached from the above analysis of the crash file and of Latency was that

the system did indeed slow down towards the end of the C++ program’s execution. This

slowdown was due to a significant increase in Latency. The near-miss indicator identified

from this analysis was as follows: in the last 150 records before the failure, the WMA of

Latency is more than twice its average.

After establishing a near-miss indicator from the crash file, the researcher proceeded to

do the same with the iotop output file.

10.4 Experiment 2 – Part 2: Identifying near-miss indicators

from the fororensic analysis of iotop output file

The above analysis of the crash file confirmed the hypothesis of a system’s slowdown

before the failure, as well as the expectation of unusual changes in some of the recorded

statistics in line with the slowdown. For this reason, some unusual I/O usage pattern was

also expected from the output of iotop. The expected evidence for this trend was an

increase in garbage collection, the termination of some processes and a drop in the C++

program’s writing bandwidth (Santosa, 2006; Bytemark, 2014). This was based on the

assumption that the program would take up most of the I/O bandwidth and that other

running processes would compete for this resource.

The forensic analysis of the iotop output file followed the same process as with the

crash file. Firstly, some SOM maps were created for the four data sets of 1000 records

presented previously. This was followed by a statistical analysis of attributes that showed

some behavioural change close to the failure.

10.4.1 SOM analysis of iotop output file

Technical set-up

Based on the expected evidence, SOM maps were generated for the following attributes

in the iotop output file: Time, Disk read, Disk write, I/O and Command (process name).

As indicated in the previous chapter, no map was generated for Swapin as it had a constant

value of 0 throughout the entire file. Records for each data set were selected based on

© University of Pretoria

178

their corresponding start time in the crash file. In order to show the distribution of the

various processes and threads in the file, a map was first generated with the Command

attribute and process names were added as labels in each cluster. Then, the file was

filtered to only retain records of the C++ program and a component map for each of the

other attributes was generated. The result is discussed next.

Result

Table 10.4 shows the SOM maps of iotop for the various data sets. The table is spread

over two pages.

Table 10.4: SOM maps of iotop output for various data sets

Records 1-1000 Records 10 000 – 11 000 Records 20 000 – 21 000 Last 1000 records before

crash

Time Time Time Time

I/O (%) I/O (%) I/O (%) I/O (%)

Disk read (kB/s) Disk read (kB/s) Disk read (kB/s) Disk read (kB/s)

Disk write (kB/s) Disk write (kB/s) Disk write (kB/s) Disk write (kB/s)

© University of Pretoria

179

The following clear changes close to the point of failure are observed in all attributes,

except for I/O:

 The number of processes fluctuates throughout the program’s execution.

 Although Disk read is very homogeneous and very low throughout the program’s

execution, a sharp increase appears towards the end.

 Disk write is quite high throughout the program’s execution, but a large decrease

appears close to the end.

 There seems to be a correlation between the changes in Disk read and Disk write

as they appear on the same area on both maps (this area is circled on both maps).

As she did with the crash file, the researcher decided to zoom in on the last 100 records

before the failure to get a clearer picture of the changes observed above. The Disk read

(DR) and Disk write (DW) maps were labelled with their average value in each cluster.

The resulting maps are shown in Table 11.5. The following observations were made:

 The number of processes actually decreases in the last 50 records before the point

of failure.

 Disk read, which is mostly around 0.5, increases sharply to 21 and 79 in the last

100 records before the failure.

 Disk write, which is mostly around 3000, decreases sharply to 0 in the last 100

records before the failure. A decrease in Disk write can explain an increase in

Processes Processes Processes Processes

© University of Pretoria

180

Latency observed in the crash file. As the disk-writing bandwidth drops, it takes

longer for the system to create a new file for the next file operation.

 The number of clusters in Disk read and Disk write increases significantly in the

last 50 records before the failure, showing how erratic those records are compared

to the previous ones in the file.

A statistical analysis was subsequently performed to model the above behaviour formally.

Table 10.5: SOM maps of running processes, Disk read, and Disk write close to the point of

failure

Last 100 records before the crash Last 50 records before the crash
Processes Processes

Disk read (kB/s) Disk read (kB/s)

Disk write (kB/s) Disk write (kB/s)

© University of Pretoria

181

10.4.2 Statistical analysis of iotop output

Technical set-up

Statistical analysis was first performed on the Command attribute. A simple filtering on

the corresponding column in Excel provided a list of the processes per data set. Then

statistical analysis was performed on the other attributes (Disk read and Disk write) by

calculating their average and WMA, as was done previously with the crash file. The

results are discussed next.

Result

Table 11.6 shows the list of processes per data set. The table clearly shows the fluctuations

in the number of processes throughout the execution of the program. As was expected,

some processes terminate close to the failure. An example is VBoxService, a non-system

process that launches at start up from the VBox application (virtualisation software). It is

terminated in the last 50 records before the failure.

Table 10.6: List of running I/O processes throughout the program’s execution before the

point of failure

Records 1-1000 10 000 – 11 000 20 000 -21 000 Last 1000 before failure Last 100 before

failure

Last 50 before

failure

Processes

Number of

processes
11 15 8 13 7 6

Table 10.7 shows the WMA for Disk write across various data sets. The overall average

for Disk write was 3044.89 kB/s. The following observations were made from the table:

 The WMA does not decrease significantly close to the point of failure. This is

contrary to the observed drop in values in the SOM maps, which indicates that the

© University of Pretoria

182

values of 0 observed from the maps are not continuous throughout the last 1000

records but are rather scattered at some instances in the data set.

 Similarly to the observation made with Latency in the crash file, the last 1000

records present a different pattern than the previous data sets. Contrary to the first

three data sets whose values move in one direction across their subsets (up, down,

then up), the values in the last data set first move up and then stay down. This

indicates a clear change in behaviour close to the point of failure, where values

frequently go up and down, reaching 0 in some instances.

 In the last data set, the WMA is slightly lower than the overall average for Disk

write (3044.89), but this trend is also applicable to the second data set (records

10 000 to 11 000), so it is not considered a reliable near-miss indicator.

Table 10.7: WMA of Disk write across various data sets

 Records

1 - 1000

Records

10 000 – 11 000

Records

20 000 – 21 000

Last 1000 records

before failure

Last 150 records 3470.30 2970.77 3034.89 3007.70

Last 100 records 3491.87 2928.20 3047.62 3038.33

Last 50 records 3574.70 2876.71 3051.77 3020.36

Table 11.8 next shows the WMA for Disk read across various data sets. The overall

average for Disk read was 1.519 kB/s. The following observations were made from the

table:

 The values in the last data set are considerably higher than in the previous ones,

indicating that the values of Disk read are increasing significantly in that data set,

in line with the observations from the SOM maps.

 In the last data set, the WMA is higher than the overall average (1.519). However,

as the difference between the average and the WMA is relatively small, using the

difference between the average and the values of Disk read close to the failure (21

to 79) is a preferred potential near-miss indicator.

© University of Pretoria

183

Table 10.8: WMA of Disk read across various data sets

10.4.3 Conclusion based on analysis of iotop output file

From the above forensic analysis of the iotop output file, the following near-miss

indicators were identified:

 The number of running processes declines towards the point of failure.

 The values of Disk read are much higher than (i.e. more than double) the overall

average.

 In the last records before the failure, the value of Disk write drops to 0 at various

instances.

10.5 Summary of Experiment 2 – Overall near-miss indicators

The current section has presented the lengthy forensic analysis conducted to identify near-

miss indicators for the provoked software failure. The forensic analysis, which comprised

a SOM analysis and a statistical analysis of the failure’s logs, indicated a slowdown in

the execution of the program close to the point of failure. As a summary, the near-miss

indicators pointing to that reduced performance were identified as follows:

 The WMA of Latency is greater than the overall average of Latency.

 The number of processes running at the beginning of the program declines close

to the point of failure.

 The disk-reading bandwidth is more than twice the overall average.

 The disk-writing bandwidth drops to 0 at various instances. This pattern is not

continuous until the failure, so it is only expected to appear for a few records close

to the failure, but not up to the failure.

Due to the nature of the statistical analysis performed, the above near-miss indicators

were mostly observed in the last 100 records before the failure. They may however have

 Records

1 - 1000

Records

10 000 – 11 000

Records

20 000 – 21 000

Last 1000 records

before failure

Last 150 records 0.421588 0.633928 0.392432 1.641302

Last 100 records 0.421847 0.543243 0.3867 1.95798

Last 50 records 0.424449 0.367411 0.380561 2.89212

© University of Pretoria

184

emerged a few records earlier. It is important to note the following regarding these

indicators:

 They are specific to the software failure at hand, the conditions of its occurrence

(lab experiment) and forensic analysis (iotop used for correlation to program’s

logs). Therefore, they cannot be generalised to other types of software failure or

to other failures due to memory exhaustion.

 The near-miss indicators cannot be used in isolation as some of the above patterns

also occur during the normal functioning of the C++ program. These indicators

can only point to an upcoming failure when they all occur simultaneously. This

interdependency between the indicators is necessary to define a near-miss

formula, which is the purpose of the next experiment.

10.6 Experiment 3: Defining a near-miss formula

10.6.1 Goal

The goal of this experiment was to define a near-miss formula based on the

interdependencies among the near-miss indicators identified in the previous experiment.

The near-miss formula was subsequently required to detect near misses from event logs

during the execution of the C++ failure simulation program. The focus of the present

phase of the prototype implementation was therefore on the Near-Miss Formula, a sub-

component in the Near-Miss Monitor of the adapted NMS architecture. It is shown in

Figure 10.4.

Near-Miss Monitor

<<document>>

Event logs

<<document>>

Near-Miss Formula

Figure 10.4: Focus of Experiment 3 – Near-Miss Formula in adapted NMS architecture

In order to provide reliable results, the near-miss formula had to be not only accurate but

also relevant when executing the program with different variables. These variables were

© University of Pretoria

185

the size of the video clip to be copied, the amount of free space on the flash disk, and the

number of processes running in parallel to the C++ program.

Indeed, in the first experiment conducted to generate suitable event logs, the values for

these variables had been carefully selected for the purpose of generating a maximum

number of logs. This was performed to facilitate their subsequent forensic analysis. The

near-miss indicators identified in the previous experiment were therefore closely tied to

these values. Consequently, their accuracy and predictability had to be tested by running

the program with different values for the above variables. To this end, the near-miss

formula was created through a series of tests that included the following tasks:

 Modify the program to add the near-miss indicators (number of running processes,

average and WMA of Latency) as attributes in the crash file.

 Run the program a number of times with various values for the above-mentioned

variables (size of video clip, flash disk free space and number of concurrent

processes).

 In every new execution of the program, verify the validity of the previously

identified near-miss indicators.

A description of the above tests is provided next.

10.6.2 Adapting C++ program to calculate near-miss indicators

For the identified near-miss indicators to be observed (excluding those from iotop),

they had to be displayed as attributes in the crash file. To this end, the C++ program was

adapted to calculate them.

10.6.2.1 Adding the number of running processes

The first added attribute was the number of running processes. To confirm that this

number was fluctuating as the program was running, it was first displayed at the beginning

of the program before the loop. It was then queried and displayed in the loop for every

record. The Linux command ps –eLf | wc –l was used to obtain the total number

of processes and threads running on the system. Details about this command are provided

in Appendix 1.

© University of Pretoria

186

10.6.2.2 Adding the average and WMA of latency

In order to observe the trends in the values of Latency, the WMA of the last 200 records

was displayed continuously. This was based on the results of the previous statistical

analysis. For the first 200 records of the program, the “standard” WMA was calculated

using all the previous values of Latency. Then, from record number 201, only the previous

200 records were retained to calculate the WMA.

Regarding the average of Latency, the overall average was calculated for every new

record, using all the previous values. The motivation for this process was the fact that the

average of Latency was not known beforehand every time the program was run. So, it

was calculated as the program was running with the assumption that closer to the end of

the program’s execution (before the failure), the average would stabilise to its overall

final value. A potential near-miss indicator (‘WMA is higher than average’) that was

observed when the final average had been reached would be less likely to be a false alarm,

as the other near-miss indicators would also be applicable.

10.6.2.3 Results

Figure 10.5 shows the resulting crash file with the above additional attributes.

Figure 10.5: Adapted crash file for near-miss detection

To increase visibility, the researcher hid the columns showing the memory statistics as

they proved irrelevant for detecting near misses. The initial number of running processes

is displayed in the top left corner of the file, before the new records get generated.

Once the attributes for the near-miss indicators had been added to the crash file, the

program was executed under different conditions (variables) to verify whether the near-

miss indicators would still apply.

© University of Pretoria

187

10.6.3 Changing running conditions of C++ program

Firstly, the size of the video clip was changed. As the original video clip was the smallest

at hand (3.91 MB), a slightly bigger one was used next (5.97 MB). Then, the size of the

flash disk was changed. Since the initial flash disk was the biggest available (128 GB), a

smaller one (8 GB) was used. The flash disk was therefore capable of holding a maximum

of 1371 (8GB/5.97MB) copies of the video clip. The C++ program was executed with a

loop size of 1800, to cause a deliberate failure.

In order to verify the validity of the near-miss indicators in terms of the disk-reading and

-writing bandwidth, the iotop command was executed in parallel to the C++ program.

(As a reminder, these indicators are as follows: the values of Disk read are more than

twice the average and Disk write is equal to 0.) The results are discussed next.

10.6.3.1 Results from the crash file

The failure point of the resulting crash file is displayed in Figure 11.6, in the area

highlighted in red at the bottom of the screen. The failure occurred at record 1110. Figure

11.6 also shows that in the last 33 records before the failure (from record 1077,

highlighted in yellow at the top of the screen), the WMA of Latency is indeed greater than

the average. Another observation is the fact that the average has stabilised to its overall

final value (40), as expected.

© University of Pretoria

188

Figure 10.6: Crash file with bigger video and smaller flash disk

Performing a filter on the Processes column indicates that the number of processes indeed

fluctuated throughout the program’s execution. This is shown in Figure 10.7. However,

Figure 11.6 above also shows that the number of processes close to the failure is the same

as the initial number (272). The final number of running processes is not lower, contrary

to the observation in the forensic analysis. Records whose number of processes was lower

did not match the near-miss indicator for Latency and were discarded. No explanation

could be provided for this observed pattern.

Figure 10.7: Filtering of Processes field to confirm fluctuation in the number of processes

© University of Pretoria

189

10.6.3.2 Results from the iotop output file

The calculated overall average of Disk read was 0.91. Figure 11.8 shows the records in

the iotop output file that match both near-miss indicators in terms of Disk read and

Disk write. Only eight records matched the indicators.

Figure 10.8: iotop output file – records matching near-miss indicators in terms of Disk

read and Disk write

Using the time of the entries in the iotop output file, the above records were manually

correlated to the records in the crash file matching the near-miss indicator for Latency.

The result of this correlation is shown in Figure 11.9. Only three records actually matched

the three near-miss indicators. For these records the number of running processes is the

same as the initial number. Out of these three records, only the last one – record 1078 –

is close to the point of failure (32 records or 1min 7s 625 ms before the failure). Although

this makes the other two records false alarms, this low number of false alarms is

satisfactory and proves the validity of the near-miss indicators.

Figure 10.9: Records in crash file that match three near-miss indicators

The above test was conducted several more times, each time changing the size of the

video clip or the amount of free space on the flash disk. The test was also conducted

without running the iotop command, to see whether this would affect the fluctuations

in the number of processes running. Results similar to the one described above were

obtained. The near-miss indicators for Latency, Disk read and Disk write would match a

few records close to the failure but the number of processes would either be smaller than

or equal to the initial number. The conclusion was that this pattern was indeed the proper

near-miss indicator for that attribute.

© University of Pretoria

190

Consequently, the final near-miss indicators used to define the near-miss formula were as

follows:

 The WMA of Latency is greater than the average of Latency.

 The number of running processes before the failure is less than or equal to the

initial number at the beginning of the program’s execution.

 The disk-reading bandwidth is more than twice its overall average.

 The disk-writing bandwidth drops to 0 at various instances.

A fuzzy cognitive map (FCM) of the above near-miss indicators is provided in Figure

10.10. FCMs are fuzzy graph structures that depict perceived relationships between

attributes of a complex system (Coetzee & Eloff, 2006). Knowledge about the

relationships is based on human common sense and intuition (Smith & Eloff, 2002). An

FCM consists of nodes connected by annotated arrows (Heydebreck, Klofsten & Krüger,

2011).

Figure 10.10 shows the causal relationship between memory availability and the four

factors mentioned above that affect the system’s performance and are used to define near-

miss indicators: latency, number of running processes, disk-reading bandwidth (DR), and

disk-writing bandwidth (DW). The type of relationship is indicated by a sign on the arrow

as follows:

 A plus (+) sign indicates a positive relationship, where a higher value in one factor

prompts a higher value in the connected factor (or a lower value in A prompts a

lower value in B). Example: the higher the free memory, the higher the number

of processes that can run simultaneously; or the lower the free memory, the lower

the disk-writing bandwidth.

 A minus (-) sign indicates a negative relationship, as opposed to a positive

relationship. Example: the lower the disk-writing bandwidth, the higher the

latency; or the lower the number of processes, the higher the disk-reading

bandwidth.

© University of Pretoria

191

Memory DW

Latency

Number of
Processes

DR

+

-

-

+
-

-

Figure 10.10: FCM of factors in near-miss indicators

Based on the above tests, the formula to detect potential near misses was defined as

follows:

The above formula was used in the next and last experiment of the prototype

implementation to detect near misses during the program’s execution. This process is

documented in the next section.

10.7 Step 4: Detecting near misses at runtime

10.7.1 Goal

The goal of this experiment was to verify whether near misses could be detected during

the execution of the program by using the formula developed in the previous experiment.

Once potential near misses had been detected, an alert would be sent. The focus of this

phase was therefore on the Near-Miss Classifier of the adapted NMS architecture, as is

shown in Figure 10.12.

Near-Miss Classifier

<<executable>>

Near-Miss Alert

Figure 10.12: Focus of Experiment 4 - Near-Miss Classifier in adapted NMS architecture

If Nr-Processes <= Initial-Nr-Processes AND

WMA-latency > Avg-latency AND

DR > (Avg-DR x 2) AND

DW == 0

 Near Miss

Figure 10.11: Near-miss formula

© University of Pretoria

192

10.7.2 Technical set-up

The near-miss formula was inserted in the program’s loop after the calculations of all the

necessary attributes. So, in every iteration of the loop, the program checked whether the

values of these attributes matched the formula. If a match was found, the program

displayed a notification message with some suggestion to prevent the failure. As

discussed in Chapter 8, preventing the failure was outside the scope of this research,

which means that no attempt was made to implement the suggested countermeasures.

Implementing the complete formula proved challenging as the attributes Disk read and

Disk write were obtained from a source external to the program, namely the iotop

command. Due to technical constraints in the output of iotop, the researcher was not

able to introduce these two parameters in the formula into the program. The near-miss

formula was therefore implemented in the program without the iotop attributes, with

the researcher being fully aware that this would affect the output of this formula. The

program’s code is shown in Figure 10.13.

Figure 10.13: Program code for near-miss formula

This formula uses the following variable names:

 WMA: WMA of Latency

 avg: average of Latency

 pCountLoop: count (number) of running processes for the current record

 pCountInitial: count of processes at the beginning of the program

10.7.3 Results

The crash file was generated with 21 829 “OK” records, a loop size of 22 000, and the

original video clip. As expected, this reduced formula matched a number of records

(10 660) at various instances in the crash file, not all close to the failure, as the Disk read

and Disk write attributes were not included in the formula. However, a manual correlation

with the near-miss indicators in the iotop output file reduced the number of near-miss

© University of Pretoria

193

alerts to 162. If the complete formula had been applied, near-miss alerts would have been

generated only for those 162 records.

The first of these alerts starts at record 5 742, indicating that the near-miss formula does

not apply to the early records in the file, as was expected (see Figure 10.14). Only 9% of

the near-miss alerts (13) appear in the first half of the program’s execution and are

highlighted in Figure 10.14. The remaining 91% of the near-miss alerts are generated in

the second half of the program’s execution before the failure. This again confirms that

the near-miss indicators mostly emerge close to the failure. Figure 10.15 shows the last

alerts in the crash file and indicates that the last alert (highlighted in red) was generated

6s 872 ms before the failure. This confirms the validity of the formula and demonstrates

the feasibility of detecting near misses at runtime.

Figure 10.14: First near-miss alerts in the crash file

Figure 10.15: Last near-miss alerts in the crash file

10.8 Evaluation of prototype implementation

10.8.1 Benefits

The prototype implementation was successful in the sense that it achieved the goals

specified in its design in Chapter 8:

 Demonstrate the viability of the digital forensic process formulated in Chapter 4

to conduct a root-cause analysis of a software failure.

 Demonstrate the viability of detecting near misses at runtime.

© University of Pretoria

194

In addition, it also showed the following:

 Near-miss detection indeed reduces the amount of relevant digital evidence that

needs to be collected for root-cause analysis. This was one of the main statements

of this thesis. Out of the 13 initial attributes in the crash file and the 9 attributes in

the iotop output file, only four (Latency, processes, disk-reading bandwidth and

disk-writing bandwidth) proved relevant for near-miss detection. This makes a

significant data reduction possible. Since the four attributes are the most relevant

for the root-cause analysis of the failure at hand, the collection effort could be

limited to these attributes after a near-miss alert.

 In order to detect near misses, indicators of an upcoming failure need to be

identified. A forensic analysis of the failure logs is a promising approach. The

forensic analysis can provide both the root cause of the failure and its near-miss

indicators.

Furthermore, the prototype implementation also provided an objective and effective

method for conducting a forensic analysis of the logs of a software failure. Although the

prototype was designed to demonstrate near-miss detection for failures due to resource

exhaustion, the forensic analysis approach used is applicable to any type of software

failure as long as logs providing relevant information about the system’s operations are

available. Although the techniques used were applied in a controlled lab environment,

they are applicable to a real-world scenario with no prior knowledge of the root cause of

the failure. The validity of the resulting near-miss formula demonstrates the reliability of

the techniques, in other words the SOM analysis followed by a statistical analysis of the

observed pattern. Since the SOM algorithm is optimised for large data sets, it is expected

that this process can scale to a real-life failure with a higher number of logs than was used

in the prototype. The detailed process is shown in Figure 10.16.

© University of Pretoria

195

Overall trend analysis

Component map for
every attribute

Random data sets
throughout the

program’s execution

Unusual pattern(s) close
to the failure for some

attribute(s)

Failure trend analysis

Refined map of
suspicious attribute(s)

Data sets close to the
failure

Confirmation of unusual
pattern

STATISTICAL ANALYSIS

WMA + Average of
suspicious attributes

Data sets close to the
failure

SOM ANALYSIS

MATHEMATICAL MODELLING

Mathematical expression
of unusual patterns

FCM of suspicious
attributes

Near-miss indicators Near-miss formula

Figure 10.16: Proposed method for forensic analysis and identification of near-miss

indicators

© University of Pretoria

196

10.8.2 Limitations

Despite its benefits, the prototype implementation also had a number of limitations:

 Some limitation was encountered in the implementation of the complete formula

as not all near-miss indicators could be detected simultaneously, due to their

diverse sources. This resulted in a high number of false alarms. However, this

problem was mitigated by a manual correlation between the two log files used to

define the interdependencies between the near-miss indicators.

 Even after a manual correlation between all the near-miss indicators, a number of

false alarms still remained. This could potentially be addressed by a prioritisation

mechanism as proposed in Chapter 6.

 Although the created near-miss formula proved effective, it is not a direct

application of the general formula presented in Chapter 6. As discussed in Section

10.2, the general formula was based on the concept of an SLA for the monitored

system and such an SLA was not available for this prototype. However, a parallel

between the two formulas can be drawn as follows.

o Generally, failures cause downtime; hence downtime was used to detect

near misses in the general formula. In the case of the current prototype,

the failure does not result in downtime but in a performance slowdown.

Indicators for this slowdown were therefore used to detect near misses.

o Just like in the general formula, a threshold could have been set differently

to specify the desired closeness of a near miss to the failure. In the

prototype implementation, the threshold was implicitly set as the last 200

records before the failure in the calculation of the WMA for Latency. This

threshold could have been higher (e.g. last 500 records) or lower (e.g. last

50 records), which would have resulted in an earlier or later generation of

near-miss alerts.

10.9 Conclusion

This chapter was the last of a three-part series describing the prototype implementation

of the NMS architecture. It followed on the previous two chapters that described the

design phase and the data set (log files of a provoked software failure) used for

prototyping the NMS architecture. The prototype was implemented to demonstrate the

© University of Pretoria

197

viability of the NMS architecture, more specifically the detection of near misses at

runtime.

Chapter 10 described the experiments that were conducted to analyse the data set obtained

in the previous chapter and detect near misses based on this analysis. These three

experiments included the following: (1) the forensic analysis of the data set to identify

near-miss indicators; (2) the creation of a near-miss formula based on the indicators; and

(3) the detection of near misses based on the formula.

The prototype implementation demonstrated the viability of the proposed NMS

architecture through the successful detection of near misses from event logs before the

occurrence of a failure. Although a number of false alarms were generated, their low

number did not affect the validity of the results. However, certain limitations were

encountered in the simultaneous detection of all the near-miss indicators, due to their

diverse sources.

The prototype also demonstrated the suitability of the forensic process for conducting a

root-cause analysis of software failure and the effectiveness of this process in identifying

near-miss indicators. More importantly, the prototype showed how effectively near-miss

detection could be used to help select the most complete and relevant digital evidence of

a software failure for purposes of accurate root-cause analysis. Thus, the main claim of

the current research was fully validated.

© University of Pretoria

198

 CHAPTER 11

CONCLUSION

11.1 Introduction

This study discussed the limitations of current approaches to failure analysis and proposed

an original architecture of a near-miss management system (NMS) to address these

shortcomings. The key aspect of the proposed architecture is a mathematical model

developed to define, detect and prioritise near misses from a software system perspective.

In the previous chapter, a prototype of the architecture, which focused on the detection of

near misses, was implemented to test its viability. This last chapter now revisits the

research question, and evaluates whether and how the goal of the research has been

achieved. Finally, the main contributions of the research and recommendations for future

work are discussed.

11.2 Revisiting the problem statement

The main focus of this research was to address the lack of accuracy of current failure

analysis practices in identifying the root cause of a major software failure. The solution

that was proposed required that sound digital evidence of the failure be used as the basis

for the root-cause analysis. To this end, digital forensics was suggested as a reliable and

scientific method to accurately analyse such digital evidence. Additionally, near-miss

analysis was presented as a novel approach to enable the collection of relevant and

complete digital evidence and hence limit the collection of irrelevant or incomplete data.

Since the reactive approach of digital forensics only allows for data collection after a

failure, there is always the potential risk that the data will be lost or damaged due to the

crash and will therefore be incomplete. In addition, the common practice to log all system

activity, irrespective of its relevance for failure analysis, leads to a situation where lots of

irrelevant data is collected.

The main claim of this research was therefore formulated as follows:

© University of Pretoria

199

Near-miss analysis can help identify and collect more relevant and complete digital

evidence of a software failure. This has the potential to improve the accuracy of the

ensuing forensic analysis of the failure.

11.2.1 Answering the main and secondary research questions

As near-miss analysis is usually conducted through NMS’s, the goal of the research was

to design an NMS by answering the following main research question:

What should the architecture for a near-miss management system look like such that it

can improve the completeness and relevance of digital evidence of a software failure,

thereby improving the accuracy of its forensic analysis?

The above question was answered through two sub-questions. The following is a

discussion on how each sub-question was addressed in the study.

 How can the methodology of digital forensics be applied to the investigation of

software failures?

The main differences between digital forensics and less formal investigation methods

involve the use of scientific methods and techniques and the adherence to legal principles.

The scientific methodology of digital forensics was reviewed in Chapter 3 and addressed

primarily the scientific method and mathematical analysis. Detailed examples of how

these can be applied to the investigation of software failures were provided with real-life

cases of software failures (as discussed in Chapter 2).

The scientific method was applied to a real-life software failure case to illustrate how it

can be applied to the investigation of software failures. The scientific method was

contrasted to the troubleshooting approach, as the literature review on recent cases of

software failures points to troubleshooting as the most common immediate response to

software failures. One significant difference between the scientific method and

troubleshooting was found to be the process of falsification used in the scientific method.

Falsification ensures that, besides the initial hypothesis regarding the root cause of the

failure, alternative hypotheses are explored before concluding the investigation. This

strategy promotes the comprehensiveness of the investigation, which is in sharp contrast

© University of Pretoria

200

to troubleshooting, as the latter stops the investigation as soon as a plausible hypothesis

(usually the most obvious or trivial one) has been confirmed, without considering any

other possibility. As demonstrated with the reviewed cases of software failures, this often

results in erroneous root-cause identification. The process of falsification was therefore

identified as a valuable addition to failure analysis.

Mathematical analysis was also found to be an important element of a digital forensic

investigation as it is used to authenticate the evidence and verify its integrity. It is

primarily used through hash values of the collected files that are used as digital evidence

of the event being investigated. Mathematical analysis can also be applied to the evidence

of a software failure and is particularly valuable if the failure leads to legal proceedings.

The prototype implementation furthermore demonstrated the use of other scientific

techniques for the analysis of the evidence of a failure, namely self-organising maps

(SOM) and statistical analysis.

The legal principles adhered to by digital forensics are applied through best practice in

handling the digital evidence, such as maintaining the chain of custody and ensuring the

transparency of the investigation through an audit trail of the process followed. This

differs significantly from the current practice in failure analysis where the investigation

process is rarely made public – potentially giving rise to the assumption that it was not

carefully documented. Best practice in digital forensics can also be applied to the

investigation of software failures and allows for the investigation to be reproduced and

verified independently.

Besides adhering to scientific methodology and legal principles, digital forensics also

follows a distinctive standard investigation process. Since this process needs to be

adjusted to the specific requirements of failure analysis, an adapted forensic investigation

process was proposed for software failures. This process added a system restoration phase

to the standard digital forensic process, which occurred after the data collection and

before the data analysis in order to minimise system downtime. As downtime is very

costly in the case of a major software failure, it is imperative to ensure that the forensic

investigation does not unnecessarily prolong the downtime duration.

© University of Pretoria

201

 How can near-miss analysis be applied to the software industry effectively?

The two main challenges to near-miss analysis are the detection and prioritisation of near

misses. In the context of software systems, detecting near misses is particularly

challenging as they do not cause any visible physical event. Regarding the prioritisation

of near misses, a review of previous literature on the topic was conducted to identify

solutions that are suitable for the software industry. However, a review of the existing

prioritisation techniques indicated that they are generally specific to the industry

concerned and often require prior knowledge about near misses from historical data. The

latter is not available in the software industry, where the concept of a near miss, as used

in other industries, is still largely unexplored.

In order to detect near misses, a suitable definition of a near miss for the software industry

was required in order to recognise them. To this end, an objective measure to define a

near miss was proposed in the form of a Service Level Agreement (SLA) that predefines

the performance level of a system. The SLA is used to measure the severity of an event

based on its downtime duration, in comparison with the downtime allowance specified in

the SLA. A near miss is defined as an event that causes a downtime close to exceeding

the downtime allowance specified in the SLA. In the current study an adjustable threshold

was used to define the desired closeness to the downtime allowance for an event to be

considered a near miss. This general definition of a near miss was formally expressed in

a mathematical formula.

It is worth noting that downtime was used as the most common metric of an SLA, but

depending on the type of system and failure at hand, other metrics (e.g. throughput,

response time) could be used and may be more relevant. It is also worth noting that in the

absence of an SLA, a near miss can still be defined by near-miss indicators identified

from the root-cause analysis of a failure, as conducted in the prototype implementation.

The high volume of near misses was addressed with a prioritisation mechanism to ensure

that only the events most likely to result in a failure were passed on for analysis. A

mathematical near-miss detection and prioritisation model was subsequently developed

to calculate the failure probability of a near miss and prioritise near misses based on this

© University of Pretoria

202

probability. The calculation of such failure probability was based on a corresponding

formula from the reliability theory of IT systems, which was extended to accommodate

cases of near misses. The complete mathematical model, comprising the formulae for

near-miss definition and failure probability, was presented in Chapter 6.

11.2.2 Achieving the goal of the research

The architecture of the proposed NMS includes all the partial solutions provided as

answers to the above questions, and involves a thorough multi-stage filtering process that

analyses and prioritises system logs for indicators of an upcoming failure. An alert is

raised for potential near misses with the highest risk level (failure probability). The

forensic investigation process is used throughout the architecture to collect and analyse

data about the detected near misses. The NMS architecture helps improve the

completeness and relevance of the digital evidence of the failure, as well as the accuracy

of its forensic analysis as discussed below.

As soon as a potential high-risk near miss has been detected, a request is automatically

made to collect all the data about the event and to store in a table for forensic analysis at

a later stage. This automatic data collection ensures that the digital evidence is not

affected by the ensuing failure, thereby ensuring that no evidence is lost or tampered with.

As data is only collected for potential near misses with the highest risk level, i.e. events

closest to a potential failure, the collected data is a fairly complete representation of the

likely failure.

The above process (automatic data collection of potential near miss with highest risk

level) is likely to result in digital evidence that is more complete than the evidence

collected after a software failure. It also ensures that the collected evidence is relevant for

the root-cause analysis as it only points to the system’s behaviour close to the point of

failure. Evidence about the normal system behaviour, which might be irrelevant to

identify the root cause of the failure, is therefore not used for the forensic analysis.

Using limited but relevant and complete digital evidence is likely to facilitate the accurate

identification of the root cause of the failure. Accurate root-cause analysis is further

facilitated by the use of the forensic approach throughout the NMS architecture, ensuring

that scientific methods and techniques are used to analyse the evidence. The forensic

© University of Pretoria

203

process also ensures that all the requirements established for an accurate failure

investigation are satisfied, namely objectivity, comprehensiveness, reproducibility and

admissibility in court.

Results of the prototype implementation of the NMS architecture demonstrated the above

as follows. The data collected following the detection of a near miss at runtime provided

all the details pertaining to the potential failure and was therefore complete and suitable

for the forensic analysis. The near-miss analysis also caused a significant reduction of

irrelevant data. Indeed, the monitored software application had 22 attributes that were

logged for an eventual root-cause analysis. However, through the process of identifying

near-miss indicators and defining near misses for that application, only four of these

attributes proved relevant to identify the root cause of the failure. Furthermore, the

analysis of these four attributes accurately pointed to the root cause of the ensuing failure.

The goal of the research was therefore achieved.

11.3 Main contributions

11.3.1 Advancing the state of the art

The first contribution of the research is the fact that it demonstrated that digital forensics

can serve as an effective alternative for investigating major software failures. This is a

new application of digital forensics, which is currently limited to the investigation of

computer crimes, security incidents and civil matters. Digital forensics can help provide

sound evidence of the root cause of a software failure. Applying digital forensics to failure

analysis is not a new idea. It was referred to as Operational Forensics by Michael Corby

in 2000 (Corby, 2000a). However, it has remained at a conceptual level with no end-to-

end process. This research is the first attempt at proposing a complete “operational

forensic” process and demonstrating its effectiveness through the implementation of a

prototype.

The second contribution made by the current research is the fact that it introduced the

concept of near miss in digital forensics. Near-miss analysis is an established field in

many engineering disciplines but it is new to digital forensics. The research demonstrated

© University of Pretoria

204

how near-miss analysis can benefit digital forensics for the purpose of investigating

software failures.

The third and most important contribution of the research is the architecture of an NMS.

Although some features of the architecture are based on the existing digital forensic

process (e.g. collection of digital evidence of the failure, root-cause analysis of the failure

based on the collected evidence), the overall architecture design is completely original as

it includes a near-miss analysis process used to improve the validity of the evidence. The

main novelty of the architecture is the mathematical model developed to define, detect

and prioritise near misses. The prioritisation of near misses ensures that only near misses

closest to the potential point of failure are passed on for root-cause analysis, thereby

reducing the number of false alarms (i.e. raising an alert for an unsafe event that is not

likely to result in a failure and which does not contain data pertaining to the potential

failure).

The final contribution of the research is its proposal of an original process followed in the

prototype implementation for identifying near-miss indicators from the forensic analysis

of logs of a software failure. The forensic analysis used SOM analysis and statistical

analysis to analyse the trends in the execution of a failing program and identify significant

changes close to the point of failure. The SOM analysis provided a simple but accurate

visual representation of the trends in the logged data, thereby facilitating the quick and

accurate identification of the root cause of the failure. A diagram of the above process

was provided in Figure 10.16 in the previous chapter. The process that was followed

proved reliable due to the validity of the resulting near-miss formula and the low number

of false alarms raised.

11.3.2 Publications produced

Throughout this study, results of the research have been published in the following

conference and journal papers.

 Bihina Bella, M.A., Olivier, M.S. and Eloff, J.H.P. Proposing a Digital

Operational Forensic Investigation Process. In Proceedings of the 6th

International Workshop on Digital Forensics and Incident Analysis (WDFIA

2011), 7-8 July 2011, London, UK.

© University of Pretoria

205

This paper presented the adapted digital forensic process proposed for the

investigation of software failures. To demonstrate its viability, the process was

applied to the case study of a real-life fatal software failure, namely the Therac-

25 disaster, which is described in detail in Chapter 3. The case study demonstrated

the advantages of using digital forensics rather than the troubleshooting approach

that had actually been used in the case of the Therac-25 disaster.

 Bihina Bella, M.A., Eloff, J.H.P and Olivier, M.S. Improving System Availability

with Near Miss Analysis. Network Security, October 2012, pp. 18-20.

This positioning paper introduced the concept of a near miss for software systems

with examples of real-life near misses that preceded some severe software

failures. The paper motivated the use of near-miss analysis as a novel approach to

improve the availability of IT systems by preventing disruptive software failures.

 Bihina Bella, M.A., Olivier, M.S. and Eloff, J.H.P. Near Miss Detection for

Software Failure Prevention. In Proceedings of the 2012 Southern Africa

Telecommunications Network and Applications Conference (SATNAC 2012), 2-

5 September 2012, George, South Africa.

This paper provided an overview of near-miss analysis and its potential

application to the prevention of impending software failures. It presented the

proposed definition of a near miss in the context of software systems and the initial

high-level process for detecting and prioritising near misses. The application of

the near-miss definition was illustrated with the example of a real-life mobile

procurement system.

 Bihina Bella, M.A., Eloff, J.H.P and Olivier, M.S. A Near-miss Management

System to Facilitate the Forensic Investigation of Software Failures. In

Proceedings of the 13th European Conference on Cyber Warfare and Security

(ECCWS 2014), 3-4 July 2014, Piraeus, Greece.

This paper presented the architecture of the NMS proposed in this research. The

paper first reviewed challenges to near-miss analysis specific to the software

industry and presented proposed solutions to these challenges. The paper also

© University of Pretoria

206

presented the refined definition of near misses for software systems, as the basis

for the design of the NMS architecture.

 Bihina Bella, M.A. and Eloff, J.H.P. Forensic investigation of software failures.

Computer Fraud & Security, December 2014, submitted for publication.

At the time of press, this article was under review. The article motivated the

combined use of digital forensics and near-miss analysis to improve the root-cause

analysis of software failures. It discussed the advantages of this approach using

the case of the RBS software failure discussed in Chapter 1.

11.4 Future research

This research is the first attempt at applying near-miss analysis to digital forensics with a

view to improving the accuracy of the investigation of software failures. The proposed

NMS architecture achieved the goal of the research to the extent described above, as

demonstrated through the prototype implementation. However, the prototype still suffers

some limitations that should be addressed by future research:

 The prototype only implemented a subset of the NMS architecture, namely the

near-miss detection process and the forensic analysis of a software failure. The

implementation of a complete prototype to test the viability of the entire NMS

architecture is recommended.

 The failure investigated for the prototype implementation was caused by a simple

program and had little impact. Simulating a major failure with significant impact

would have been costly and risky, hence the choice of a simplistic example.

However, it is advisable that the practicality of the NMS architecture be tested in

future with the case of a major complex software failure.

An additional avenue for future research is the generalisation of the proposed near-miss

detection process to accommodate various types of failures, since the current research

was limited to demonstrating potential solutions by focusing on failures due to resource

exhaustion. A general methodology to pinpoint near-miss indicators emerged from the

forensic analysis in the prototype implementation and provides a starting point.

© University of Pretoria

207

Furthermore, future research may consider extending the application of near-miss

analysis to the field of software reliability. The detection of near misses at runtime can be

followed by an automatic response to apply appropriate countermeasures and prevent the

impending failure from unfolding. Although the proposed NMS architecture has a Failure

Prevention component that can be used for this purpose, it was not implemented in this

research as it fell outside the scope of this study.

As a final note, despite its limitations, this research formally introduced the technique of

near-miss analysis to the software industry. Near-miss analysis has proved beneficial in

a number of safety-critical industries and it is continuously applied to a growing number

of disciplines. Although the software industry is not particularly safety conscious, this

research has shown that major software failures can and do affect safety. Near-miss

analysis is therefore a technique worth exploring more formally and in more-depth in

software applications as it can be beneficial to various areas of software improvement

including failure analysis and system reliability.

© University of Pretoria

208

APPENDIX 1

TECHNICAL DETAILS ON THE SOM

ANALYSIS

SOM map creation process

The pre-processing steps that were taken for the SOM map creation involved the

following:

 The parameter File Status was used as a nominal attribute to distinguish between

the records marked as “OK” (video copied successfully) and those marked as “not

OK” (video not copied).

 Viscovery SOMine automatically converted the time values to numerical values.

The creation of maps in Viscovery SOMine follows a simple manual step-by-step process

from importing the input file, selecting attributes to be processed, defining nominal

attributes, and specifying the parameters to train the map. Training parameters include

map size (number of nodes) and training schedule (processing speed from fast to normal).

The default training parameters were kept. The resulting map is automatically created and

displayed after this process and information about each cluster is provided.

How to read Viscovery SOMine output maps: Example of first

1000 records

Figure 12.1 shows the maps of the first 1000 records. Two types of maps are displayed:

in the bottom frame, the overall map from all attributes, and in the top frame, the

component maps for each attribute.

The overall map has four clusters, each one displayed in a different colour. Details about

each cluster are provided in the panel on the right side of the map and include the average

values for each of the attributes in the cluster. The frequency or distribution of each cluster

© University of Pretoria

209

in the main map is also shown. So, the biggest cluster, which is represented in light blue

on the map, has a frequency of 46.7%, which means that 46.7% of the records in the data

set (records 1 to 1000) belong to this cluster. In other words, the values of their attributes

are close to the values of the attributes in this cluster.

The component maps show the distribution of the values in the data set over time for each

attribute. The scale of the values in the data set is displayed on a bar below each map.

Values range from lowest on the left to highest on the right of the bar. Values on the map

are differentiated by their colour on the scale. This means that lowest values are in blue

and highest values are in red, with various shades of blue, green and yellow in between.

Figure 0.1: SOM output maps for first 1000 records

All component maps have the same topology, so any node (record) on one map has the

exact same position on another map. For example, the first record, which has the highest

value for Duration (5850 ms, refer to Figure 12.2) appears as an outlier in red in the top

right corner of the Duration map below (it is circled in black). This record also has the

lowest value for memory used (dark blue in the top right corner of the Mem Used map)

and the highest value for free memory (red in the top right corner of the Mem free map).

Similar observations can be made on the Cached map and the Avail Pages map. This is

© University of Pretoria

210

understandable and to be expected, since at that point (record number 1), the program has

just started running and little memory has been used.

Figure 0.2: Some component maps of first 1000 records – first record appears as an outlier

Adding the number of running processes to the C++ program

The Linux command ps –eLf | wc –l was used to obtain the total number of

processes and threads running on the system and then to display them on the screen. The

ps command displays information about active processes. The eLf option was used to

display all active threads and processes, followed by the wc command to get a count of

the listed processes, counting each line (-l option) of the output. The researcher decided

to get a count of all processes and threads as the ps command did not provide the option

to display only those processes and threads doing I/O activity, which is what the iotop

command provided.

© University of Pretoria

211

APPENDIX 2

GLOSSARY OF TERMS

Accident: An undesirable event resulting in injury or damage (Jones et al., 1999).

Analysis: process of evaluating potential digital evidence in order to assess its relevance

to the investigation (ISO/IEC 27042, 2015).

Accident sequence: Sequence of events that result in an accident. The accident sequence

starts with an initiating event such as a human error, and ends when the accident unfolds,

also known as the accident end-state (Saleh et al., 2013).

Accident sequence precursor (or accident precursor): conditions, events and

sequences that precede and lead up to accidents” (Phimister et al., 2004). They are also

defined as ‘‘events that must occur for an accident to happen in a given scenario’’

(Carroll, 2004).

Cause: A condition or an event that results in or participates in the occurrence of an effect.

Causes can be classified as:

 Direct Cause: A cause that resulted in the occurrence.

 Contributing Cause: A cause that contributed to an occurrence but would not

have caused it by itself.

 Root Cause: The cause that, if corrected, would prevent recurrence of this and

similar occurrences. The root cause usually has generic implications to a broad

group of possible occurrences, and it is the most fundamental aspect of the cause

that can logically be identified and corrected.

Causal analysis: the analysis of the cause of an event. In this research, this term is used

interchangeably with root-cause analysis.

© University of Pretoria

212

Condition: Any system state, whether precursor or resulting from an event, that may have

adverse implications for the normal system’s functionality (Jucan, 2005).

Data reduction: the process of identifying and discarding data that is irrelevant for the

forensic analysis (Walker, 2011). Similarly, it can also be defined as the process of

identifying and extracting data relevant for the forensic analysis. Data reduction is

conducted to reduce the amount of data that an investigator needs to analyse in order to

reconstruct an event and find its root cause.

Digital evidence: after-the-fact digital information derived from digital sources for the

purpose of facilitating or furthering the reconstruction of the events (Willasen & Mjølsnes,

2005). Information or data, stored or transmitted in binary form, that may be relied on as

evidence.

Digital forensic process: structured procedure followed during a digital forensic

investigation to ensure forensic soundness of the evidence, in other words to ensure that

the data is complete and has not been tampered with throughout the investigation.

Digital forensics: the use of scientifically derived and proven methods towards the

preservation, collection, validation, identification, analysis, interpretation and

presentation of digital evidence derived from digital sources for the purposes of

facilitating or furthering the reconstruction of events found to be criminal, or for

anticipating the unauthorised actions shown to be disruptive to planned operations

(Palmer, 2001).

Downtime: the period of time during which a system or component is not operational or

has been taken out of service” (IEEE, 1990). It is also referred to as ‘outage’.

Event: A real-time factual occurrence that could seriously impact the system operation

(Jucan, 2005).

© University of Pretoria

213

Failure: the inability of a system or component to perform its required functions within

specified performance requirements (IEEE, 1999).

Forensic investigation: an investigation where the scientific procedures and techniques

used will allow the results (digital evidence) to be admissible in a court of law. It is also

known as forensic examination, digital forensic investigation, or digital investigation

(Köhn, 2012). ISO 27943 (2015) provides a comprehensive definition for a digital

investigation as the use of scientifically derived and proven methods towards the

identification, collection, transportation, storage, analysis, interpretation, presentation,

distribution, return, and/or destruction of digital evidence derived from digital sources,

while obtaining proper authorizations for all activities, properly documenting all

activities, interacting with the physical investigation, preserving digital evidence, and

maintaining the chain of custody, for the purpose of facilitating or furthering the

reconstruction of events found to be incidents requiring a digital investigation, whether

of criminal nature or not.

Incident: Any undesirable event, including accidents and near misses (Jones et al., 1999).

Investigation: application of examinations, analysis, and interpretation to aid

understanding of an incident (ISO/IEC 27042, 2015).

Forensic soundness: the preservation of the integrity and completeness of the data

throughout the investigation (McKemmish, 2008). Digital evidence is deemed

forensically sound when it has not been tampered with and has remained complete

throughout the investigation.

Near miss: In the general sense, a near miss is a hazardous situation, event or unsafe act

where the sequence of events could have caused an accident if it had not been interrupted

(Jones et al., 1999). In the context of software failures and for the purposes of this study,

the author defines a near miss as an unplanned high-risk event or system condition that

could have caused a major software failure if it had not been interrupted either by chance

or timely intervention.

© University of Pretoria

214

Near-miss analysis: the process of identifying near misses and determining their root

cause with a view to preventing and predicting accidents (Phimister et al., 2004).

Near-miss management system (NMS): software tool used to report, analyse and track

near misses (Oktem, 2002). Also known as a near-miss system or a near-miss reporting

system.

Operational failure: software failure that occurs when a system is in production, after

the design, development and testing phases.

Outage: Period of time when a system is down. It is used as a synonym for downtime.

Post-mortem: analysis of an event held soon after it has occurred, to determine why it was

a failure (Oxford Dictionary of English, 2010). In the context of this research, a post-

mortem investigation is conducted soon after a software failure to determine its cause.

Potential digital evidence: information or data, stored or transmitted in binary form, which

has not yet been determined, through the process of examination and analysis, to be relevant

to the investigation (ISO/IEC 27042, 2015).

Root-cause analysis: logical sequence of steps that leads the investigator through the

process of isolating the facts surrounding an event or failure. Once the problem has been

fully defined, the analysis systematically determines the best course of action that will

resolve the event and assure that it is not repeated (Mobley, 1999). Root cause analysis

uncovers the fundamental issues (root causes) that generate a problem, as opposed to

troubleshooting that seeks immediate solutions to resolve the user visible symptoms (Jucan,

2005).

Runtime: the period during which a computer program is executing.

Scientific method: process used by scientists to conduct an objective investigation of an

event. Its aim is to minimise bias or prejudice from the experimenter and ensure the

accuracy of the results (Bernstein, 2009).

© University of Pretoria

215

Self-organising map (SOM): a model of unsupervised neural networks used for the

analysis and visualisation of multi-dimensional data (Engelbrecht, 2003). It is a data

analysis technique that identifies and displays clusters of similar records in the data set.

Service Level Agreement (SLA): The SLA is the entire contract that specifies what

service the customer can expect from the provider, and the responsibilities of both parties

(Sevcik, 2008). It defines the expected performance level of a system.

Software failure analysis: logical sequence of steps that leads the investigator through the

process of isolating the facts surrounding a software failure

Software failure: an unplanned cessation of a software system or component to function

as specified

System restoration: Putting a system back into its normal mode of operation after a

failure

Troubleshooting: discovering why something does not work effectively and

making suggestions about how to improve it (Cambridge English dictionary). It is the

process of diagnosing the source of a system failure by recreating the problem to identify

its cause. It can be subjective as it is not a scientific process but it is the most common

first response to a failure.

Volatile data: It commonly refers to data that is likely to be lost when a machine is

rebooted or overwritten during the course of the machine’s normal use (Amari, 2009).

This data is especially prone to change and can be easily modified. Change can be

switching off the power or passing through a magnetic field. Volatile data also includes

data that changes as the system state changes (SO/IEC 27037, 2012). This data is stored

in volatile memory, such as RAM (random access memory), which is computer storage

that retains its data only when the machine is switched on, by opposition to persistent

storage on the hard disk. Examples of volatile data include information about running

© University of Pretoria

http://dictionary.cambridge.org/dictionary/british/discover
http://dictionary.cambridge.org/dictionary/british/work_1
http://dictionary.cambridge.org/dictionary/british/effectively
http://dictionary.cambridge.org/dictionary/british/suggestion
http://dictionary.cambridge.org/dictionary/british/improve

216

processes, open files, network connections, passwords and cryptographic keys, hidden

data, and malicious code (Amari, 2009).

© University of Pretoria

217

BIBLIOGRAPHY

AccessData.com. Forensic Toolkit 5. [Online] Available from:

http://www.accessdata.com/products/digital-forensics/ftk#.Ub2w65w3jcw [Accessed:

17 June 2013].

Amari, 2009. Techniques and Tools for Recovering and Analyzing Data from Volatile

Memory, SANS Institute InfoSec Reading Room, Available from:

http://www.sans.org/reading-room/whitepapers/forensics/techniques-tools-recovering-

analyzing-data-volatile-memory-33049 [Accessed: 21 June 2013].

Ammer, C. (2013). The American Heritage® Dictionary of Idioms. 2nd edition.

Houghton Mifflin Company. [Online] Available from:

http://dictionary.reference.com/browse/near miss [Accessed: 26 November 2014].

Andriulo, S. & Gnoni, M. (2014). Measuring the effectiveness of a near-miss

management system: An application in an automotive firm supplier. Reliability

Engineering and System Safety, 132, 154-162.

ANSI/IEEE. (1991). Standard Glossary of Software Engineering Terminology, STD-729-

1991, ANSI/IEEE.

Arnold, D.N. (2000). The Explosion of the Ariane 5. (23 August). [Online] Available

from: http://www.ima.umn.edu/~arnold/disasters/ariane.html [Accessed: 7 February

2013].

Aspden, P., Corrigan, J.M., Wolcott, J. & Erickson, S.M. (2004). Patient safety: Achieving a

new standard for care, The National Academy Press, Washington, DC. [Online] Available

from: http://www.nap.edu/catalog/10863.html. [Accessed: 8 December 2014].

© University of Pretoria

http://www.accessdata.com/products/digital-forensics/ftk#.Ub2w65w3jcw
http://www.sans.org/reading-room/whitepapers/forensics/techniques-tools-recovering-analyzing-data-volatile-memory-33049
http://www.sans.org/reading-room/whitepapers/forensics/techniques-tools-recovering-analyzing-data-volatile-memory-33049
http://dictionary.reference.com/browse/near%20miss
http://www.ima.umn.edu/~arnold/disasters/ariane.html
http://www.nap.edu/catalog/10863.html

218

Barach, P. & Small, S.D. (2000). Reporting and preventing medical mishaps: Lessons

from non-medical near miss reporting systems. British Medical Journal, 320(7237), 759-

763. March.

Basel Committee on Banking Supervision. (2003). Risk Management Principles for

Electronic Banking. Bank for International Settlements. [Online] Available from:

http://www.bis.org/publ/bcbs98.pdf [Accessed: 21 February 2011].

BBC News. (2014). RBS fined £56m over 'unacceptable' computer failure. (20

November) [Online] Available from: http://www.bbc.com/news/business-30125728.

[Accessed: 18 December 2014].

Belles, R-J., Cletcher, J.W., Copinger, D.A., Dolan, B.W., Minarick, J.W., Muhlheim,

M.D, O'Reilly, P.D., Weerakkody, S. & Hamzehee, H. (2000). Precursors to Potential

Severe Core Damage Accidents: 1998 – A Status Report. NUREG/CR-4674

ORNL/NOAC-232 Vol. 27. Oak Ridge National Laboratory, US. Nuclear Regulatory

Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001.

Bernstein, M. (2009). Scientific Method Applied to Forensic Science. [Online] Available

from: http://marybernstein.wordpress.com/2009/05/27/scientific-method-applied-to-

forensic-science/ [Accessed: 09 June 2013].

Bier, V.M. (1993). Statistical methods for the use of accident precursor data in estimating

the frequency of rare events. Reliability Engineering and System Safety, 41, 267-280.

Bier, V.M. (1998). Accident Sequence Precursors and Probabilistic Risk Assessment.

Madison, Wis.: University of Wisconsin Press.

Bier, V.M. & Mosleh, A. (1990). The analysis of accident precursors and near misses:

implications for risk assessment and risk management. Reliability Engineering and

System Safety, 27, 91-101.

© University of Pretoria

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117768/
http://www.bis.org/publ/bcbs98.pdf
http://www.bbc.com/news/business-30125728
http://marybernstein.wordpress.com/2009/05/27/scientific-method-applied-to-forensic-science/
http://marybernstein.wordpress.com/2009/05/27/scientific-method-applied-to-forensic-science/

219

Bihina Bella, M.A., Eloff J.H.P. & Olivier, M.S (2009). A fraud management system

architecture for next-generation networks, Forensic Science International, vol. 185,

pp.51-58, March.

Bihina Bella, M.A., Eloff, J.H.P. & Olivier, M.S. (2012). Improving system availability

with near miss analysis. Network Security, October, 18-20.

Bird (Jr), F.E. & Germain, G.L. (1996). Practical Loss Control Leadership. Loganville,

Georgia: Det Norske Veritas Inc.

Bogdanich, W. (2010a). Radiation offers new cures, and ways to do harm. The New York

Times. [Online] Available from:

http://www.nytimes.com/2010/01/24/health/24radiation.html?hp=&pagewanted=all&_r

=1& [Accessed: 1 April 2013].

Bogdanich, W. (2010b). As technology surges, radiation safeguards lag. The New York

Times. 26 January. [Online] Available from:

http://www.nytimes.com/2010/01/27/us/27radiation.html?ref=radiation_boom

[Accessed: 1 April 2013].

Bogdanich, W. (2011). Radiation boom. The New York Times. [Online] Available from:

http://topics.nytimes.com/top/news/us/series/radiation_boom/index.html [Accessed: 1

April 2013].

Bogdanich, W. & Rebelo, K. (2010). A pinpoint beam strays invisibly, harming instead

of healing. The New York Times. 28 December. [Online] Available from:

http://www.nytimes.com/2010/12/29/health/29radiation.html?pagewanted=all&_r=0

[Accessed: 1 April 2013].

Borg, B. (2002). Predictive Safety from Near Miss and Hazard Reporting. [Online]

Available from: http://www.signalsafety.ca/files/Predictive-Safety-Near-Miss-Hazard-

Reporting.pdf [Accessed: 27 January 2014].

© University of Pretoria

http://topics.nytimes.com/top/reference/timestopics/people/b/walt_bogdanich/index.html?inline=nyt-per
http://www.nytimes.com/2010/01/24/health/24radiation.html?hp=&pagewanted=all&_r=1&
http://www.nytimes.com/2010/01/24/health/24radiation.html?hp=&pagewanted=all&_r=1&
http://topics.nytimes.com/top/reference/timestopics/people/b/walt_bogdanich/index.html?inline=nyt-per
http://www.nytimes.com/2010/01/27/us/27radiation.html?ref=radiation_boom
http://topics.nytimes.com/top/reference/timestopics/people/b/walt_bogdanich/index.html?inline=nyt-per
http://topics.nytimes.com/top/news/us/series/radiation_boom/index.html
http://topics.nytimes.com/top/reference/timestopics/people/b/walt_bogdanich/index.html?inline=nyt-per
http://www.nytimes.com/2010/12/29/health/29radiation.html?pagewanted=all&_r=0
http://www.signalsafety.ca/files/Predictive-Safety-Near-Miss-Hazard-Reporting.pdf
http://www.signalsafety.ca/files/Predictive-Safety-Near-Miss-Hazard-Reporting.pdf

220

Borrás, C. (2006). Overexposure of radiation therapy patients in Panama: Problem

recognition and follow-up measures. Rev Panam Salud Publica, 20(2-3), 173-187. ISSN

1020-4989.

Breitinger, F., Stivaktakis, G. & Baier, H. (2013). FRASH: A framework to test

algorithms of similarity hashing, Digital Investigation, vol. 10, Supplement, pp. S50-S58,

December.

Breeuwsma, M. (2006). Forensic imaging of embedded systems using jtag (boundary-

scan), Digital Investigation, 3(1), pp. 32–42.

Brosgol, B. (2011). Safety in medical device software: Questions and answers. Electronic

Design. 6 June. [Online] Available from: http://electronicdesign.com/embedded/safety-

medical-device-software-questions-and-answers [Accessed: 25 March 2013].

Brown, J.F., Obenski, K.S. & Osborn, T.R. (2003). Forensic Engineering Reconstruction

of Accidents. Second Edition. p. 4. Charles C. Thomas: Springfield, Illinois, USA.

Bytemark.co.uk. My Machine is too slow. [Online] Available from:

https://www.bytemark.co.uk/support/document_library/vm_too_slow/ [Accessed: 07

November 2014].

Callum, J.L., Kaplan, H.S., Merkley, L.L., Pinkerton, P.H., Rabin-Fastman, B., Romans,

R.A., Coovadia, A.S. & Reis, M.D. (2001). Reporting of near-miss events for transfusion

medicine: improving transfusion safety. Transfusion, 41, 1204-1211. October. [Online]

Available from: http://www.iakh.de/tl_files/oldcontent/literatur/ nearmiss.pdf.

[Accessed: 22 November 2014].

Carper, K.L. (2000). Forensic Engineering. Second Edition, pp. 2-4, CRC Press: Boca

Raton.

© University of Pretoria

http://electronicdesign.com/embedded/safety-medical-device-software-questions-and-answers
http://electronicdesign.com/embedded/safety-medical-device-software-questions-and-answers
https://www.bytemark.co.uk/support/document_library/vm_too_slow/
http://www.iakh.de/tl_files/oldcontent/literatur/%20nearmiss.pdf

221

Carrier. B. (2003). Open Source Digital Forensic Tools – The Legal Argument.

September. [Online] Available from: http://www.digital-evidence.org/papers/

opensrc_legal.pdf [Accessed: 9 June 2013].

Carrier, B.D. & Spafford, E.H. (2004). Defining event reconstruction of digital crime

scenes. Journal of Forensic Sciences, 49(6).

Carroll, J.S. (2004). Knowledge management in high-hazard industries: Accident

precursors as practice. In: Phimister, J.R., Bier, V.M. & Kunreuther, H.C. (Eds.), Accident

precursor analysis and management: reducing technological risk through diligence.

Washington, DC: The National Academies Press; pp. 127-36.

Casey, E. (2004). Digital Evidence and Computer Crime, Second Edition. Elsevier.

Casey, E. (2010). Handbook of digital forensics and investigations. Elsevier Academic

Press, Chapter 2, pp. 23-24.

Cashmore, S. (2012). Adding muscle to mobile apps. Brainstorm IT Web, 11(08), 38-39.

April.

Caudill, M. (1989). Neural Network Primer: Part I. AI Expert, 2(12), pp.46-52,

December.

Charette, R. (2010). Software problem blamed for woman’s death in Minnesota. IEEE

Spectrum. [Online] Available from:

http://spectrum.ieee.org/riskfactor/computing/it/software-problem-blamed-for-womans-

death-in-minnesota [Accessed: 28 March 2013].

Coetzee, M. & Eloff, J. (2006). A framework for web services trust. In: Proceedings of

the IFIP TC-11 21st International Information Security Conference (SEC 2006), 22-24

May, Karlstad, Sweden.

© University of Pretoria

http://www.digital-evidence.org/papers/%20opensrc_legal.pdf
http://www.digital-evidence.org/papers/%20opensrc_legal.pdf
http://spectrum.ieee.org/riskfactor/computing/it/software-problem-blamed-for-womans-death-in-minnesota
http://spectrum.ieee.org/riskfactor/computing/it/software-problem-blamed-for-womans-death-in-minnesota

222

Cooke, R. & Goossens, L. (1990). The accident sequence precursor methodology for the

European Post-Seveso era. Reliability Engineering and System Safety, 27, 117-130.

Cooke, R. M., Ross, H. L., & Stern, A. (2011). Precursor Analysis for Offshore Oil and

Gas Drilling: From Prescriptive to Risk-Informed Regulation, Resources for the future,

RFF DP 10-61, January, [Online]. Available from: www.rff.org [Accessed: 10 May

2012].

Corby, M.J. (2000a). Operational Computer Forensics – The New Frontier. Proceedings

of the 23rd National Information Systems Security Conference, Baltimore, USA, 16-19

October. [Online]. Available from: http://csrc.nist.gov/nissc/2000/proceedings/

papers/317slide.pdf [Accessed: 10 May 2010].

Corby, M.J. (2000b). Operational Forensics. Information Security Management

Handbook. Fourth Edition. Vol. 2, chapter 28. Auerbach Publications: Boca Raton.

Corby, M. (2007). Operational Forensics. In: Tipton, H.F. & Krause, M. (Eds.),

Information Security Management Handbook, Sixth Edition, chapter 211, pp. 2773-2779.

Auerbach Publications: Boca Raton.

Corby, M.J. (2011). Forensics: Operational. Encyclopedia of Information Assurance.

Taylor & Francis.

Corcoran, W.R. (2004). Defining and analyzing precursors. In: Phimister, J.R., Bier, V.

& Kunreuther, H. (Eds.), Accident Precursor Analysis and Management: Reducing

Technological Risk through Diligence, Washington DC, USA: The National Academies

Press, pp. 79-84.

Craiger, P. (2006). Computer forensics methods and procedures. In: Bigdoli, H. (Ed.),

Handbook of Information Security, New York, John Wiley and Sons, 2, pp. 736-755.

Daily Mail Reporter. (2010). Wrong organs removed from donors after computer glitch

lay undiscovered for 10 years. 20 October. [Online]. Available from:

© University of Pretoria

http://www.rff.org/
http://csrc.nist.gov/nissc/2000/proceedings/%20papers/317slide.pdf
http://csrc.nist.gov/nissc/2000/proceedings/%20papers/317slide.pdf
http://www.tandfonline.com/doi/abs/10.1081/E-EIA-120046836
http://www.tandfonline.com/doi/book/10.1081/E-EIA
http://www.tandfonline.com/doi/book/10.1081/E-EIA
http://www.dailymail.co.uk/home/search.html?s=y&authornamef=Daily+Mail+Reporter

223

http://www.dailymail.co.uk/news/article-1322081/Wrong-organs-removed-donors-

glitch.html [Accessed: 03 March 2013].

Das, A. (2012). Maximizing Profit Using SLA-Aware Provisioning, In: Proceedings of

Network Operations and Management Symposium (NOMS), 16-20 April 2012, Maui,

Hawaii, pp.393-400.

Dependability Research Group. University of Virginia. Software Forensics (aka Forensic

Software Engineering). [Online] Available from:

http://dependability.cs.virginia.edu/info/Software_Forensics [Accessed 5 May 2012].

Devore, J.L. & Berk, K.N. (2012). Modern mathematical statistics with applications.

Second Edition. New York, London: Springer. pp. 79-81.

DevTopics.Com. (2008). 20 Famous Software Disasters. 12 February. [Online]

Available from: http://www.devtopics.com/20-famous-software-disasters/ [Accessed: 8

April 2013].

Dershowitz, N. (2013). Software Horror Stories. [Online]. Available from:

http://www.cs.tau.ac.il/~nachumd/horror.html [Accessed: 15 March 2013].

Diaz, J.M. (2004). Cuatro años de prisión para físicos del ION. PanamaAmerica. [Online]

Available from: http://www.panamaamerica.com.pa/notas/479486-cuatro-anos-de-

prision-para-fisicos-del-ion. [Accessed: 21 March 2013].

Dimaio, V.J. & DiMaio, D. (2001). Forensic Pathology. Second Edition. Florida: CRC

Press LLC. pp. 3-6. ISBN 0-8493-0072-X.

Dolinak, D., Matshes, E.W. & Lew, E.O. (2005). Forensic pathology: Principles and

practice. p. 68, Elsevier, Oxford.

Durand-Parenti, C. (2009). Une erreur informatique à 300 millions d’euros, in Le Point.

12 May. [Online] Available from: http://www.lepoint.fr/actualites-societe/2009-05-

© University of Pretoria

http://www.dailymail.co.uk/news/article-1322081/Wrong-organs-removed-donors-glitch.html
http://www.dailymail.co.uk/news/article-1322081/Wrong-organs-removed-donors-glitch.html
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/mostRecentIssue.jsp?punumber=6203618
http://dependability.cs.virginia.edu/info/Software_Forensics
http://www.devtopics.com/20-famous-software-disasters/
http://www.cs.tau.ac.il/~nachumd/horror.html
http://www.panamaamerica.com.pa/notas/479486-cuatro-anos-de-prision-para-fisicos-del-ion
http://www.panamaamerica.com.pa/notas/479486-cuatro-anos-de-prision-para-fisicos-del-ion
http://books.google.co.in/books?id=XyG3802xSdwC&pg=PA3&dq#v=onepage&q&f=false
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-8493-0072-X

224

12/une-erreur-informatique-a-300-millions-d-euros/920/0/342633 [Accessed: 4 March

2013].

Evolven.com. (2012). Incident Investigation. [Online] Available from:

http://www.evolven.com/labels/incident-investigation.html [Accessed: 28 January

2013].

Evolven.com. (2013). Gartner Says IT Operations Analytics to Supplement APM. (2

January). [Online] Available from: http://www.evolven.com/blog/what-is-it-operations-

analytics.html [Accessed: 28 January 2013].

Expert Glossary. (2012). Outage. [Online] Available from:

http://www.expertglossary.com/telecom/definition/outage [Accessed: 18 October 2012].

FDA. (2004a). NEURON'VISIONPROGRAMMER. MAUDE Adverse Event Report:

#2182207-2004-00681. 30 April. [Online] Available from:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?MDRFOI__I

D=527622 [Accessed: 25 March 2013].

FDA. (2004b). Medtronic announces nationwide, voluntary recall of model 8870

software application card. 22 September. [Online] Available from:

http://www.fda.gov/MedicalDevices/Safety/ListofRecalls/ucm133126.htm. [Accessed:

25 March 2013].

FDA. (2007). Baxter healthcare pte. ltd. colleague 3 cxe volumetric infusion pump 80frn.

MAUDE Adverse Event Report #6000001-2007-09468. July. [Online] Available from:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?

MDRFOI__ID=914443 [Accessed:26 March 2013]

FDA. (2013). MAUDE - Manufacturer and User Facility Device Experience. [Online]

Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/

TextSearch.cfm [Accessed: 26 March 2013].

© University of Pretoria

http://www.evolven.com/labels/incident-investigation.html
http://www.evolven.com/blog/gartner-it-operations-analytics-supplement-apm.html
http://www.evolven.com/blog/what-is-it-operations-analytics.html
http://www.evolven.com/blog/what-is-it-operations-analytics.html
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?MDRFOI__ID=527622
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?MDRFOI__ID=527622
http://www.fda.gov/MedicalDevices/Safety/ListofRecalls/ucm133126.htm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?%20MDRFOI__ID=914443
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/Detail.cfm?%20MDRFOI__ID=914443
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/%20TextSearch.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/%20TextSearch.cfm

225

Fei, B., Eloff, J., Venter, H. & Olivier, M. (2005). Exploring Forensic Data with Self-

Organizing Maps, Advances in Digital Forensics, 194, 113-123. Springer.

Fei, B., Eloff, J., Venter, H. & Olivier, M. (2006). The use of self-organising maps for

anomalous behaviour detection in a digital investigation. Forensic Science International,

162(1-3), 33-37. November. ·

Feldman, J. (2011). RIM outage explanation leaves big questions. Information Week, 13

October. [Online] Available from: www.informationweek.com/news/global-

cio/interviews/231900785 [Accessed: 22 July 2012].

Fernandez, M. (2009). Computer Error Caused Rent Troubles for Public Housing

Tenants. The New York Times. 6 August. [Online] Available from:

http://www.nytimes.com/2009/08/06/nyregion/06rent.html?_r=0 [Accessed: 4 March

2013].

Finnegan, M. (2013). RBS apologises as customers hit by another IT outage.

Computerworld UK, [Online] Available from: http://www.computerworlduk.com/news/

it-business/3491865/rbs-apologises-as-customers-hit-by-another-it-outage/ [Accessed: 5

February 2013]

Fox News. (2012). United Airlines fixes problem with computer system after thousands

of travellers delayed. 15 November. [Online] Available from:

http://www.foxnews.com/travel/2012/11/15/united-airlines-fixes-problem-with-

computer-system-after-thousands-travelers/ [Accessed: 20 March 2013].

Free Online Law Dictionary. (2013). Legal definition of Forensic Science. [Online]

Available from: http://legal-dictionary.thefreedictionary.com/Forensic+Science

[Accessed: 18 May 2013].

Fried, E. (2009). Near Miss Project Update. Near Miss Project Newsletter, vol. I, issue 3.

[Online] Available from: http://www.nyacp.org/files/public/Near%20Miss%

20Newsletter_Issue%203_Email%20Version.pdf [Accessed: 10 December 2014].

© University of Pretoria

http://link.springer.com/search?facet-author=%22B.+Fei%22
http://link.springer.com/search?facet-author=%22J.+Eloff%22
http://link.springer.com/search?facet-author=%22H.+Venter%22
http://link.springer.com/book/10.1007/0-387-31163-7
http://link.springer.com/search?facet-author=%22B.+Fei%22
http://link.springer.com/search?facet-author=%22J.+Eloff%22
http://link.springer.com/search?facet-author=%22H.+Venter%22
http://www.researchgate.net/publication/6910918_The_use_of_self-organising_maps_for_anomalous_behaviour_detection_in_a_digital_investigation
http://www.researchgate.net/publication/6910918_The_use_of_self-organising_maps_for_anomalous_behaviour_detection_in_a_digital_investigation
http://www.informationweek.com/news/global-cio/interviews/231900785
http://www.informationweek.com/news/global-cio/interviews/231900785
http://www.nytimes.com/2009/08/06/nyregion/06rent.html?_r=0
http://www.computerworlduk.com/news/%20it-business/3491865/rbs-apologises-as-customers-hit-by-another-it-outage/
http://www.computerworlduk.com/news/%20it-business/3491865/rbs-apologises-as-customers-hit-by-another-it-outage/
http://www.foxnews.com/travel/2012/11/15/united-airlines-fixes-problem-with-computer-system-after-thousands-travelers/
http://www.foxnews.com/travel/2012/11/15/united-airlines-fixes-problem-with-computer-system-after-thousands-travelers/
http://legal-dictionary.thefreedictionary.com/Forensic+Science
http://www.nyacp.org/files/public/Near%20Miss%25%2020Newsletter_Issue%203_Email%20Version.pdf
http://www.nyacp.org/files/public/Near%20Miss%25%2020Newsletter_Issue%203_Email%20Version.pdf

226

Garfinkel, S. (2005). History's worst software bugs. Wired.com. 11 August. [Online]

Available from: http://www.wired.com/software/coolapps/news/2005/11/69355?

currentPage=1 [Accessed: 14 March 2013].

Gerhards, R. (2009). The Syslog Protocol. RFC 5424. [Online] Available from:

http://tools.ietf.org/html/rfc5424 [Accessed: 29 July 2011].

Girualt, C. & Valk, R. (2003). Petri Nets for Systems Engineering: A Guide to Modeling,

Verification and Applications. Springer.

Gnoni, M.G., Andriulo, S., Nardone, P. & Maggio, G. (2013). Lean occupational safety:

an application for a near-miss management system design. Safety Science, 53, 96-104.

March.

Gogolin, G. (2013). Digital Forensics Explained. CRC Press: Boca Raton. Chapter 2.

Goode, N., Salmon, P., Lenne, M. & Finch, C. (2014). UPLOADS: An incident reporting

and learning system for the outdoor activity sector. PowerPoint slides. [Online] Available

from: http://uploadsproject.files.wordpress.com/2014/05/goode-n-salmon-p-2013-

uploads-5th-asia-oceania-camping-congress.pdf [Accessed: 28 November 2014].

Grady, R.B. (1996). Software failure analysis for high-return process improvement

decisions. Hewlett-Packard Journal. August. [Online] Available from:

http://www.hpl.hp.com/hpjournal/96aug/aug96a2.pdf [Accessed: 10 May 2012].

Greene, T. (2011). Financial firm fined $25M for hiding software glitch that cost investors

$217M. 4 February. [Online] Available from:

http://www.networkworld.com/news/2011/020411-axa-rosenburg-group-glitch.html

[Accessed: 28 February 2013].

© University of Pretoria

http://www.wired.com/software/coolapps/news/2005/11/69355
http://tools.ietf.org/html/rfc5424
http://uploadsproject.files.wordpress.com/2014/05/goode-n-salmon-p-2013-uploads-5th-asia-oceania-camping-congress.pdf
http://uploadsproject.files.wordpress.com/2014/05/goode-n-salmon-p-2013-uploads-5th-asia-oceania-camping-congress.pdf
http://www.hpl.hp.com/hpjournal/96aug/aug96a2.pdf
http://www.networkworld.com/news/2011/020411-axa-rosenburg-group-glitch.html
http://www.networkworld.com/news/2011/020411-axa-rosenburg-group-glitch.html

227

Greenwell, W.S., Knight, J.C. & Strunk, E.A. (2003). Risk-based classification of

incidents. In: Workshop on the Investigation and Reporting of Incidents and Accidents.

Department of Computer Science, University of Virginia. [Online] Available from:

http://shemesh.larc.nasa.gov/iria03/p03-greenwell.pdf [Accessed: 7 May 2012].

Grobler, M. & von Solms, B. (2009). A best practice approach to live forensic acquisition.

In: Proceedings of the Information Security South Africa 2009 (ISSA 2009), 6-8 July

2009, Johannesburg, South Africa.

Grottke, M., Li, L., Vaidyanathan, K. & Trivedi, K.S. (2006). Analysis of software aging

in a web server. IEEE Transactions on Reliability, 55(3), 411-420.

Guarino, A. (2013). Digital forensics as a big data challenge. ISSE 2013 Securing

Electronic Business Processes, 197-203.

GuidanceSoftware.com. EnCase Forensic v7. [Online] Available from:

http://www.guidancesoftware.com/encase-forensic.htm [Accessed: 17 June 2013].

Hallman, T. (2014). 20 get out of jail free after new Dallas County records system debuts.

[Online] Available from: http://www.dallasnews.com/news/metro/20140618-20-get-out-

of-jail-free-after-new-dallas-county-records-system-debuts.ece [Accessed: 22 June

2015].

Harris, C. (2011). IT Downtime Costs $26.5 Billion in Lost Revenue. Information Week.

24 May. [Online] Available from: http://www.informationweek.com/storage/disaster-

recovery/it-downtime-costs-265-billion-in-lost-re/229625441 [Accessed: 8 October

2012].

Hatton, L. (2004). Forensic software engineering: An overview. CIS, University of

Kingston, UK. 19 December. [Online] Available from: http://www.leshatton.org/wp-

content/uploads/2012/01/fse_Dec2004.pdf [Accessed: 5 May 2012].

© University of Pretoria

http://shemesh.larc.nasa.gov/iria03/p03-greenwell.pdf
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/articleDetails.jsp?tp=&arnumber=1688077&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DSoftware+Rejuvenation+-+Modeling+and+Analysis
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/articleDetails.jsp?tp=&arnumber=1688077&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DSoftware+Rejuvenation+-+Modeling+and+Analysis
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/RecentIssue.jsp?punumber=24
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/tocresult.jsp?isnumber=35614
http://link.springer.com/book/10.1007/978-3-658-03371-2
http://link.springer.com/book/10.1007/978-3-658-03371-2
http://www.guidancesoftware.com/encase-forensic.htm
http://www.dallasnews.com/news/metro/20140618-20-get-out-of-jail-free-after-new-dallas-county-records-system-debuts.ece
http://www.dallasnews.com/news/metro/20140618-20-get-out-of-jail-free-after-new-dallas-county-records-system-debuts.ece
http://www.informationweek.com/storage/disaster-recovery/it-downtime-costs-265-billion-in-lost-re/229625441
http://www.informationweek.com/storage/disaster-recovery/it-downtime-costs-265-billion-in-lost-re/229625441
http://www.leshatton.org/wp-content/uploads/2012/01/fse_Dec2004.pdf
http://www.leshatton.org/wp-content/uploads/2012/01/fse_Dec2004.pdf

228

Hatton, L. (2007). Forensic software engineering: Taking the guesswork out of testing.

[Online] Available from: http://www.leshatton.org/wp-

content/uploads/2012/01/LH_EuroStar07.pdf [Accessed: 17 August 2013].

Hatton, L. (2012). Forensic Software Engineering and not before time. [Online] Available

from: http://www.leshatton.org/wp-content/uploads/2012/01/A7.pdf [Accessed: 5 May

2012].

Hecht, M. (2007). Use of software failure data from large space systems. Presented at the

Workshop on Reliability Analysis of System Failure Data. Cambridge, UK.

Heydebreck, P., Klofsten, M. & Krüger, L. (2011). F2C – An innovative approach to use

fuzzy cognitive maps (FCM) for the valuation of high-technology ventures.

Communications of the IBIMA, Vol 2011, Article ID 483882, 14 pages. [Online]

Available from:

http://www.ibimapublishing.com/journals/CIBIMA/2011/483882/483882.html

[Accessed: 12 November 2014].

Highleyman, W.H. (2008). Why are active/active systems so reliable? [Online] Available

from: www.availabilitydigest.com [Accessed: 1 March 2012].

Holenstein, B., Highleyman, B. & Holenstein, P.J. (2003). Breaking the Availability

Barrier: Survivable Systems for Enterprise Computing, 1, 27-28. December.

Bloomington, USA: Authorhouse.

Holt, C.C. (2004). Forecasting seasonals and trends by exponentially weighted moving

averages. International Journal of Forecasting, 20, 5-10. January-March.

Hood, B. (2010a). Modelling for operational forensics. Digital Forensics Magazine, 3. 1

February.

Hood, B. (2010b). Psychosocial forensics – Exploring a number of novel approaches to

operational forensics. Digital Forensics Magazine, 4. 1 August.

© University of Pretoria

http://www.leshatton.org/wp-content/uploads/2012/01/LH_EuroStar07.pdf
http://www.leshatton.org/wp-content/uploads/2012/01/LH_EuroStar07.pdf
http://www.leshatton.org/wp-content/uploads/2012/01/A7.pdf
http://www.ibimapublishing.com/journals/CIBIMA/2011/483882/483882.html
http://www.availabilitydigest.com/

229

Horton, J. (2008). How BlackBerry outages work. HowStuffWorks.com. 15 May. [Online]

Available from: http://electronics.howstuffworks.com/blackberry-outage1.htm

[Accessed: 26 July 2012].

Hower, R. (2013). Software QA and Testing Frequently-Asked-Questions, Part 1.

[Online] Available from: http://www.softwareqatest.com/qatfaq1.html#FAQ1_3

[Accessed: 6 February 2013].

Huckle, T. 2014 General web site on bugs and reliability. Institut für Informatik, TU

München. [Online] Available from: http://www5.in.tum.de/~huckle/bugse.html#WWW

[Accessed: 6 February 2013].

IAEA (International Atomic Energy Agency). (2001). Investigation of an accidental

exposure of radiotherapy patients in Panama/ Report of a Team of Experts, 26 May–1

June 2001. [Online] Available from: http://www-

pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf [Accessed: 19 March 2013].

IAEA. (2013a). Prevention of Accidental Exposure in Radiotherapy. Training course.

Module 2.7. Error in TPS data entry - Panama (2,111 KB). [Online] Available from:

https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMa

terial/AccidentPreventionRadiotherapy.htm [Accessed: 19 March 2013].

IAEA. (2013b). Prevention of Accidental Exposure in Radiotherapy. Training course.

Module 2.10. Accident update, some newer events - UK, USA & France. [Online]

Available from:

https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMa

terial/AccidentPreventionRadiotherapy.htm [Accessed: 19 March 2013].

IEEE. (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries.

IJoFCS. (2012). The International Journal of Forensic Computer Science. [Online]

Available from: http://www.ijofcs.org/ [Accessed: 18 June 2013].

© University of Pretoria

http://electronics.howstuffworks.com/blackberry-outage1.htm
http://www.softwareqatest.com/qatfaq1.html#FAQ1_3
http://www5.in.tum.de/~huckle/bugse.html#WWW
http://www-pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf
http://www-pub.iaea.org/MTCD/publications/PDF/Pub1114_scr.pdf
https://rpop.iaea.org/RPOP/RPoP/Content/Documents/TrainingAccidentPrevention/Lectures/AccPr_2.07_Error_TPSdata_entry_Panama_WEB.ppt
https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm
https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm
https://rpop.iaea.org/RPOP/RPoP/Content/Documents/TrainingAccidentPrevention/Lectures/AccPr_2.10_Accident_update1_WEB.ppt
https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm
https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm
http://www.ijofcs.org/

230

ISMP-Canada (Institute for Safe Medication Practices Canada). (2014). Definitions of

Terms. [Online] Available from: http://www.ismp-canada.org/definitions.htm.

[Accessed: 24 November 2014].

ISO/IEC. (2007). Information technology - Security techniques - Code of practice for

information security management. Switzerland, Geneva. International Standard ISO/IEC

27002.

ISO/IEC 27037. (2012). Information technology — Security techniques — Guidelines for

identification, collection, acquisition, and preservation of digital evidence. [Online]

Available from: http://www.iso.org/iso/catalogue_detail?csnumber=44381. [Accessed: 8

April 2015]

ISO/IEC 27042. (2015). Information technology - Security techniques - Guidelines for

the analysis and interpretation of digital evidence. [Online] Available from:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=444

06. [Accessed: 21 June 2015]

ISO/IEC 27043. (2015). Information Technology - Security Techniques - Incident

investigation principles and processes. [Online] Available from:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=44407. [Accessed: 21 June

2015]

ItsGov.com. (2011). History of forensic pathology. [Online] Available from:

http://www.itsgov.com/history-of-forensic-pathology.html [Accessed: 05 December

2014].

Jain, M. & Gupta, R. (2011). Redundancy issues in software and hardware systems: an

overview. International Journal of Reliability, Quality and Safety Engineering, 18(1), 61-

98.

© University of Pretoria

http://www.ismp-canada.org/definitions.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44406
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44406
http://www.iso.org/iso/catalogue_detail.htm?csnumber=44407
http://www.itsgov.com/history-of-forensic-pathology.html

231

Jeyaraman, S. & Atallah, M.J. (2006). An empirical study of automatic event

reconstruction systems. Digital Investigation, 3, 108-115.

Johnson, J.W. & Rasmuson, D.M. (1996). The US NRC’s Accident Sequence Precursor

Program: an overview and development of a bayesian approach to estimate core damage

frequency using precursor information. Reliability Engineering and System Safety, 53,

205-216.

Johnson, C. (2002). Forensic software engineering: are software failures symptomatic of

systemic problems? Safety Science, 40(9), 835-847. December.

Jones, A. (2012). 10 Seriously epic computer software bugs. 24 December. [Online]

Available from: http://listverse.com/2012/12/24/10-seriously-epic-computer-software-

bugs/ [Accessed: 8 April 2013].

Jones, S., Kirchsteiger, C. & Bjerke, W. (1999). The importance of near miss reporting

to further improve safety performance. Journal of Loss Prevention in the Process

Industries, 12, 59-67.

Jucan, G. (2005). Root Cause Analysis for IT Incidents Investigation. [Online] Available

from: http://hosteddocs.ittoolbox.com/GJ102105.pdf [Accessed: 10 October 2010].

Karp, G. (2012). United Airlines experiences yet another major computer glitch. Chicago

Tribune. 15 November. [Online] Available from:

http://articles.chicagotribune.com/2012-11-15/business/ct-biz-1116-united-outage-

20121116_1_jeff-smisek-charlie-hobart-reservation-system [Accessed: 1 March 2013].

Khan, M.N.A., Chatwin, C.R. & Young R.C.D. (2007). A framework for post-event

timeline reconstruction using neural networks. Digital Investigation, vol.4, pp. 146-157.

Kent, K., Grance, T., Chevalier, S. & Dang, H. (2006). Guide to Integrating Forensic

Techniques into Incident Response. NIST Special Publication 800-86, National Institute

of Standards and Technology, Gaithersburg, USA. [Online] Available from:

© University of Pretoria

http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/
http://listverse.com/2012/12/24/10-seriously-epic-computer-software-bugs/
http://hosteddocs.ittoolbox.com/GJ102105.pdf
http://articles.chicagotribune.com/2012-11-15/business/ct-biz-1116-united-outage-20121116_1_jeff-smisek-charlie-hobart-reservation-system
http://articles.chicagotribune.com/2012-11-15/business/ct-biz-1116-united-outage-20121116_1_jeff-smisek-charlie-hobart-reservation-system

232

http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf [Accessed: 9 February

2011].

Kessler, G.C. (2009). Computer forensics hardware and software. Processing hard drives

and cell phones. Tutorial. 6 October. [Online] Available from:

http://www.garykessler.net/presentations/HICSS-2009.zip [Accessed: 9 February 2011].

Kirwan, B., Gibson, W.H. & Hickling, B. (2007). Human error data collection as a

precursor to the development of a human reliability assessment capability in air traffic

management. Reliability Engineering and System Safety, 93(2), 217-33.

Kleindorfer, P., Oktem, U.G., Pariyani, A. & Seider, W.D. (2012). Assessment of

catastrophe risk and potential losses in industry. Computers and Chemical Engineering,

47, 85-96.

Köhn, M.D. (2012). Integrated Digital Forensic Process Model. Master’s dissertation,

University of Pretoria, Department of Computer Science, Pretoria, South Africa.

November.

Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE, 78 (9). Sept.

Kohonen, T. & Honkela, T. (2007) Kohonen Network. Scholarpedia, p. 7421.

Krigsman, M. (2012). RBS Bank joins the IT failures 'Hall of Shame'. (25 June). [Online]

Available from: http://www.zdnet.com/blog/projectfailures/rbs-bank-joins-the-it-

failures-hall-of-shame/15685 [Accessed: 7 February 2013].

Lai, R. (2013). Operations Forensics: Business Performance Analysis Using Operations

Measures and Tools, MIT Press, March 2013.

Laprie, J.C. (Ed.). (1992). Dependability: Basic Concepts and Terminology. Springer-

Verlag, Wein, New York.

© University of Pretoria

http://csrc.nist.gov/publications/nistpubs/800-86/SP800-86.pdf
http://www.garykessler.net/presentations/HICSS-2009.zip
http://www.scholarpedia.org/article/Kohonen_Network
http://www.zdnet.com/blog/projectfailures/rbs-bank-joins-the-it-failures-hall-of-shame/15685
http://www.zdnet.com/blog/projectfailures/rbs-bank-joins-the-it-failures-hall-of-shame/15685

233

Laprie, J.C., Arlat, J., Béounes, C., Kanoun, K. & Hourtolle, C. (1987). Hardware and

software fault tolerance: Definition and analysis of architectural solutions. In: Digest of

17th FTCS, pp. 116-121. Pittsburgh, PA.

Linstone, H.A. & Turoff, M. (2002). The Delphi Method: Techniques and Applications.

(electronic version). [On-line] Available from:

http://is.njit.edu/pubs/delphibook/delphibook.pdf [Accessed: 17 May 2012].

Linux.die.net. (2014). Iotop(1) – Linux man page. [Online] Available from:

http://linux.die.net/man/1/iotop [Accessed: 14 November 2014].

Lyu, M.R. (2007). Software Reliability Engineering: A roadmap. In: Proceedings of

Future of Software Engineering. FOSE '07. Minneapolis (23-25 May). pp. 153-170.

Mabuto, E.K. & Venter, H.S. (2011). State-of-the-art digital forensic techniques.

Proceedings of 2011 ISSA conference. Johannesburg, South Africa. [Online] Available

from: http://icsa.cs.up.ac.za/issa/2011/Proceedings/Research/Mabuto_Venter.pdf

[Accessed: 9 June 2013].

Macrae, C. (2007). Analyzing Near-Miss Events: Risk Management in Incident Reporting

and Investigation Systems. December [Online] Available from:

http://www.lse.ac.uk/researchandexpertise/units/carr/pdf/dps/disspaper47.pdf

[Accessed: 02 December 2014].

Mappic, S. (2013). How much does downtime cost? 4 September. [Online] Available

from: http://www.appdynamics.com/blog/devops/how-much-does-downtime-cost/

[Accessed: 8 February 2014].

March, J.G., Sproull, L.S. & Tamuz, M. (1991). Learning from Samples of One or Fewer.

Organization Science, 2(1), 1-13.

© University of Pretoria

http://is.njit.edu/pubs/delphibook/delphibook.pdf
http://linux.die.net/man/1/iotop
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/mostRecentIssue.jsp?punumber=4221600
http://icsa.cs.up.ac.za/issa/2011/Proceedings/Research/Mabuto_Venter.pdf
http://www.lse.ac.uk/researchandexpertise/units/carr/pdf/dps/disspaper47.pdf
http://www.appdynamics.com/blog/devops/how-much-does-downtime-cost/

234

Marcus, E. & Stern, H. (2003). Blueprints for High Availability: Designing Resilient

Distributed Systems. Second Edition. Chapter 2 and 3. 19 September. John Wiley & Sons

(US).

Martin, S.K., Etchegaray, J.M., Simmons, D., Belt, W.T. & Clark. K. (2005).

Development and implementation of the University of Texas Close Call Reporting

System. In: Henriksen, K., Battles, J.B., Marks, E.S. et al. (Eds.), Advances in Patient

Safety: From Research to Implementation (Volume 2: Concepts and Methodology).

Rockville (MD): Agency for Healthcare Research and Quality (US). [Online] Available

from: http://www.ncbi.nlm.nih.gov/books/NBK20498/#A2153 [Accessed: 22 November

2014].

Martinez, H. (2009). How Much Does Downtime Really Cost? Information

Management.com. 6 August. [Online] Available from: http://www.information-

management.com/infodirect/2009_133/downtime_cost-10015855-1.html. [Accessed: 15

October 2012].

McDanels, S.J. (2006). Space shuttle Columbia post-accident analysis and investigation.

Journal of Performance of Constructed Facilities, 42(3), 159-163.

McKemmish, R. (2008). When is digital evidence forensically sound? In: Ray, I. &

Shenoi, S. (Eds.), Advances in Digital Forensics IV, Springer, Chapter 1, pp. 3-16.

Merriam Webster Dictionary. Forensic. [Online] Available from: http://www.merriam-

webster.com/dictionary/forensic [Accessed: 2 December 2014].

Meyer, B. (2011). Again: The one sure way to advance software engineering. ACM

communications blog. (13 January). [Online] Available from:

http://cacm.acm.org/blogs/blog-cacm/101891-again-the-one-sure-way-to-advance-

software-engineering/fulltext [Accessed: 17 February 2012].

Minarick, J.W. & Kukielka, C.A. (1982). Precursors to Potential Severe Core Damage

Accidents: 1969-1979, A Status Report, USNRC Report NUREG/CR-2497

© University of Pretoria

http://www.ahrq.gov/qual/advances/
http://www.ncbi.nlm.nih.gov/books/NBK20498/#A2153
http://www.information-management.com/infodirect/2009_133/downtime_cost-10015855-1.html
http://www.information-management.com/infodirect/2009_133/downtime_cost-10015855-1.html
javascript:__doLinkPostBack('','ss%7E%7EAR%20%22McDanels%2C%20S%2E%20J%2E%22%7C%7Csl%7E%7Erl','');
http://cedb.asce.org/cgi/WWWdisplay.cgi?168578
http://cedb.asce.org/cgi/WWWdisplay.cgi?168578
http://www.merriam-webster.com/dictionary/forensic
http://www.merriam-webster.com/dictionary/forensic
http://cacm.acm.org/blogs/blog-cacm/101891-again-the-one-sure-way-to-advance-software-engineering/fulltext
http://cacm.acm.org/blogs/blog-cacm/101891-again-the-one-sure-way-to-advance-software-engineering/fulltext

235

(ORNL/NSIC-1 82N/1 and V2). Union Carbide Corp., Nuclear Div., Oak Ridge National

Laboratory and Science Applications.

MIC (Mary Immaculate College). (2014). Accident, incident and near miss reporting.

[Online] Available from: http://www.mic.ul.ie/adminservices/healthsafety/Pages/

AccidentIncidentandNearMissReporting.aspx [Accessed: 26 November 2014].

Mobley, R.K. (1999). Root Cause Failure Analysis. Butterworth Heinemann, ISBN: 978-

0-7506-7158-3.

MTL Instruments. (2010). Availability, Reliability, SIL: What’s the difference? [Online]

Available from: http://www.mtl-inst.com/images/uploads/datasheets/App_Notes/

AN9030.pdf [Accessed: 28 February 2012].

Mukasey, M.B, Sedgwick, J.L. & Hagy, D.W. (2008). Electronic Crime Scene

Investigation: A Guide for First Responders. Second Edition. NIJ Special Report. April.

[Online] Available from: http://www.nij.gov/pubs-sum/219941.htm [Accessed: 11 June

2013].

Murff, H.J., Byrne, D.W., Harris, P.A., France, D.J., Hedstrom, C. & Dittus, R.S. (2005).

“Near-miss” reporting system development and implications for human subjects’ protection.

In: Henriksen, K., Battles, J.B., Marks, E.S. et al. (Eds.). Advances in Patient Safety: From

Research to Implementation (Volume 3: Implementation Issues). Rockville (MD): Agency

for Healthcare Research and Quality (US). [Online] Available from:

http://www.ncbi.nlm.nih.gov/books/ NBK20529/ [Accessed: 10 December 2014].

Mürmann, A. & Oktem, U. (2002). The near-miss management of operational risk. The

Journal of Risk Finance, 4(1), 25-36. 23 July.

Napochi. (2013). AlmostMe. Near Miss medical error reporting solution. [Online]

Available from: http://www.almostme.com/ [Accessed: 1 December 2014].

© University of Pretoria

http://www.mic.ul.ie/adminservices/healthsafety/Pages/%20AccidentIncidentandNearMissReporting.aspx
http://www.mic.ul.ie/adminservices/healthsafety/Pages/%20AccidentIncidentandNearMissReporting.aspx
http://www.mtl-inst.com/images/uploads/datasheets/App_Notes/%20AN9030.pdf
http://www.mtl-inst.com/images/uploads/datasheets/App_Notes/%20AN9030.pdf
http://www.nij.gov/pubs-sum/219941.htm
http://www.ncbi.nlm.nih.gov/books/%20NBK20529/
http://grace.wharton.upenn.edu/risk/downloads/02-02-MO.pdf
http://www.almostme.com/

236

NASA. (2006). Safety Depends on "Lessons Learned". The ASRS celebrates its 30th

anniversary. Callback, Number 317, March/April 2006. [Online] Available from:

http://asrs.arc.nasa.gov/publications/callback/cb_317.htm [Accessed: 29 October 2013].

NASA. (2011). NASA accident precursor analysis handbook (NASA/SP-2011-3423).

December. [Online] Available from: http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/

20120003292_2012003430.pdf [Accessed: 28 October 2013].

Nashef, S.A. (2003). What is a near miss? The Lancet, 361(9352), 180-181 (January).

[Online] Available from: http://www.thelancet.com/journals/lancet/article/PIIS0140-

6736(03)12218-0/fulltext [Accessed: 1 December 2014].

Nassif, L.F. & Hruschka, E.R. (2011). Document clustering for forensic computing: An

approach for improving computer inspection. In: Proceedings of the Tenth International

Conference on Machine Learning and Applications (ICMLA), 1, 265-268. IEEE Press.

Near-miss Management LLC. Dynamic Risk Predictor Suite. [Online] Available from:

http://www.nearmissmgmt.com/products.html [Accessed: 03 December 2014].

Neebula.com. (2012). Success Factors for Root-Cause Analysis. [Online] Available from:

http://www.neebula.com [Accessed: 26 March 2013].

Neumann, P. (2013). Illustrative Risks to the Public in the Use of Computer Systems and

Related Technology. 17 December. [Online] Available from:

http://www.csl.sri.com/users/neumann/illustrativerisks.html [Accessed: 8 February

2014].

Nguyen, A. (2012). RBS says UK – not Indian – IT staff caused outage. 2 July.

Computerworld UK. [Online] Available from:

http://www.computerworlduk.com/news/it-business/3367358/rbs-says-uk-not-indian-it-

staff-caused-outage/ [Accessed: 8 March 2013]

© University of Pretoria

http://asrs.arc.nasa.gov/publications/callback/cb_317.htm
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/%2020120003292_2012003430.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/%2020120003292_2012003430.pdf
http://www.thelancet.com/journals/lancet/issue/vol361no9352/PIIS0140-6736(00)X0334-0
http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(03)12218-0/fulltext
http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(03)12218-0/fulltext
http://www.nearmissmgmt.com/products.html
http://www.neebula.com/
http://www.csl.sri.com/users/neumann/illustrativerisks.html
http://www.computerworlduk.com/news/it-business/3367358/rbs-says-uk-not-indian-it-staff-caused-outage/
http://www.computerworlduk.com/news/it-business/3367358/rbs-says-uk-not-indian-it-staff-caused-outage/

237

Nichol, K. (2012). The safety triangle explained. 18 July. [Online] Available from:

http://crsp-safety101.blogspot.com/2012/07/the-safety-triangle-explained.html

[Accessed: 31 October 2013].

NIST. (2013). NSRL project website. [Online] Available from: http://www.nsrl.nist.gov/

[Accessed: 17 June 2013].

Noblett, M.G., Pollitt, M.M. & Presley, L.A. (2000). Recovering and examining computer

forensic evidence. Forensic Science Communications, 2(4). October. [Online] Available

from: http://www.fbi.gov/about-us/lab/forensic-science-

communications/fsc/oct2000/computer.htm [Accessed: 9 June 2013].

Noon, R.K. (2001). Forensic Engineering Investigation. First edition, p. 1, CRC Press:

Boca Raton.

Oktem, U.G. (2002). Near-Miss: A Tool for Integrated Safety, Health, Environmental and

Security Management. 37th Annual AIChE Loss Prevention Symposium – Integration of

Safety and Environmental Concepts. New Orleans, LA.

Oktem, U. & Meel, A. (2008). Near-Miss Management: A participative approach to

improving system reliability. In: Melnick, E. & Everitt, B. (Eds.). Encyclopedia of

Quantitative Risk Assessment and Analysis. Chichester, UK: John Wiley & Sons, pp.

1154-1163.

Oktem, U.G., Seider, W.D., Soroush, M. & Pariyani, A. (2013). Improve process safety

with near-miss analysis, CEP Magazine, May. [Online] Available from:

http://www.aiche.org/sites/default/files/cep/20130520.pdf [Accessed: 10 December

2014].

Oktem, U.G., Wong, R. & Oktem, C. (2010). Near-miss management: Managing the

bottom of the risk pyramid. Risk & Regulation, pp. 12-13. July. ESRC Centre for Analysis

of Risk and Regulation, Special Issue on Close Calls, Near Misses and Early Warnings.

© University of Pretoria

http://crsp-safety101.blogspot.com/2012/07/the-safety-triangle-explained.html
http://www.nsrl.nist.gov/
http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/oct2000/computer.htm
http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/oct2000/computer.htm
javascript:void(0)
http://www.aiche.org/sites/default/files/cep/20130520.pdf
http://opim.wharton.upenn.edu/risk/library/J2010_ESRC_UO,RW,CO_RiskPyramid_p12-13.pdf
http://opim.wharton.upenn.edu/risk/library/J2010_ESRC_UO,RW,CO_RiskPyramid_p12-13.pdf

238

OMG Unified Modeling Language (UML), Superstructure, 2.1.2, 143. [Online]

Available from: http://doc.omg.org/formal/2007-11-02.pdf [Accessed: 31 October

2014].

Onyiaorah, I.V. (2013). Role of forensic pathology in clinical practice and public health:

Need for a re-birth. Afrimedic Journal, 4(1).

ORH (Office of Radiological Health). (2005). ORH Information Notice 2005-01. 25

March. New York City Department of Health and Mental Hygiene. [Online] Available

from: http://www.health.ny.gov/environmental/radiological/radon/radioactive_

material_licensing/docs/berp2005_1.pdf [Accessed: 21 March 2013].

Palmer, G. (2001). A road map for digital forensics research. Technical report, Digital

Forensics Research Workshop Group. August.

Palomo, E.J., North, J., Elizondo, D., Luque, R.M. & Watson, T. (2012). Application of

growing hierarchical SOM for visualisation of network forensics traffic data. Neural

Networks, 32, 275-284.

Pariyani, A., Seider, W.D., Oktem, U.G. & Soroush, M. (2012). Dynamic risk analysis

using alarm databases to improve safety and quality: Part II – Bayesian Analysis.

American Institute of Chemical Engineers (AIChE) Journal, 58(3), 826-841.

Perlin, M. (2012). Downtime, outages and failures – Understanding their true costs. 18

Sept. [Online] Available from: http://www.evolven.com/blog/downtime-outages-and-

failures-understanding-their-true-costs.html [Accessed: 16 March 2013].

Pertet, S. & Narasimhan, P. (2005). Causes of failures in Web Applications. Carnegie

Mellon University: Parallel Data Lab Technical Report CMU-PDL-05-109. (December).

Pettinger, C. (2013). Are near misses leading or lagging indicators? Safety and Health.

(August). [Online] Available from: http://www.safetyandhealthmagazine.com/articles/

9153-near-misses [Accessed: 30 November 2014].

© University of Pretoria

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF
http://doc.omg.org/formal/2007-11-02.pdf
http://www.health.ny.gov/environmental/radiological/radon/radioactive_%20material_licensing/docs/berp2005_1.pdf
http://www.health.ny.gov/environmental/radiological/radon/radioactive_%20material_licensing/docs/berp2005_1.pdf
http://www.ncbi.nlm.nih.gov/pubmed?term=Palomo%20EJ%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=North%20J%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Elizondo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Luque%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.ncbi.nlm.nih.gov/pubmed?term=Watson%20T%5BAuthor%5D&cauthor=true&cauthor_uid=22402325
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html
http://www.safetyandhealthmagazine.com/articles/%209153-near-misses
http://www.safetyandhealthmagazine.com/articles/%209153-near-misses

239

Phimister, J.R., Oktem, U., Kleindorfer, P.R. & Kunreuther, H. (2000). Near-Miss System

Analysis: Phase I. Wharton School, Center for Risk Management and Decision Processes.

[Online] Available from: http://opim.wharton.upenn.edu/risk/downloads/

wp/nearmiss.pdf [Accessed: 19 July 2011].

Phimister, J.R., Oktem, U., Kleindorfer, P.R. & Kunreuther, H. (2003). Near-miss

incident management in the chemical process industry. Risk Analysis, 23(3), 445-459.

Phimister, J., Vicki, R., Bier, M. & Kunreuther, H.C. (2004). Accident Precursor Analysis

and Management: Reducing Technological Risk Through Diligence, National Academies

Press. [Online] Available from: http://www.nap.edu/catalog/11061.html. [Accessed: 15

May 2012].

Pingdom. (2009). 10 historical software bugs with extreme consequences. 10 March.

[Online] Available from: http://royal.pingdom.com/2009/03/19/10-historical-software-

bugs-with-extreme-consequences/ [Accessed: 25 March 2013].

Ponemon Institute. (2011). Calculating the cost of data center outages. Benchmark Study

of 41 US Data Centers. February. [Online] Available from:

http://emersonnetworkpower.com/en-US/Brands/Liebert/Documents/White%20Papers/

data-center-costs_24659-R02-11.pdf [Accessed: 8 February 2014].

Presuhn, R. (2002). Management Information Base (MIB) for the Simple Network

Management Protocol (SNMP). RFC 3418. December. [Online] Available from:

http://tools.ietf.org/html/rfc3418. [Accessed: 29 July 2011].

Pullum, L.L. (2001). Software fault tolerance techniques and implementation. Artech

House.

Quick, D. & Choo, K.R. (2014). Impacts of increasing volume of digital forensic data: A

survey and future research challenges, Digital Investigation, vol. 11, pp. 273-294.

© University of Pretoria

http://opim.wharton.upenn.edu/risk/downloads/%20wp/nearmiss.pdf
http://opim.wharton.upenn.edu/risk/downloads/%20wp/nearmiss.pdf
http://www.nap.edu/catalog/11061.html
http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-consequences/
http://royal.pingdom.com/2009/03/19/10-historical-software-bugs-with-extreme-consequences/
http://emersonnetworkpower.com/en-US/Brands/Liebert/Documents/White%20Papers/%20data-center-costs_24659-R02-11.pdf
http://emersonnetworkpower.com/en-US/Brands/Liebert/Documents/White%20Papers/%20data-center-costs_24659-R02-11.pdf
http://tools.ietf.org/html/rfc3418

240

RealityCharting.com. (2013). Various RCA Methods and Tools in Use Today. [Online]

Available from: http://www.realitycharting.com/methodology/conventional-wisdom/rca-

methods-compared [Accessed: 11 June 2012].

Mashable, L.U. (2011) BlackBerry's outage caused by huge e-mail backup. CNN.

[Online] Available from: http://edition.cnn.com/2011/10/12/tech/mobile/blackberry-

outage-email-backup/index.html [Accessed: 22 June 2015].

Renault, M. (2012). Orange s’explique sur la grande panne de juillet. Le Figaro. 20

September. [Online] Available from: http://www.lefigaro.fr/hightech/2012/09/19/

01007-20120919ARTFIG00606-orange-s-explique-sur-la-grande-panne-de-juillet.php

[Accessed: 4 March 2013].

Ritwik, U. (2002). Risk-based approach to near miss. Hydrocarbon Processing, pp. 93-

96. October.

Roberts, M. (2010). Organ donation errors “avoidable”. BBC News. 19 October. [Online]

Available from: http://www.bbc.co.uk/news/health-11572898 [Accessed: 20 March

2013].

Roberts, P. (2012). FDA: Software failures responsible for 24% of all medical device

recalls. 20 June. [Online] Available from: http://threatpost.com/en_us/blogs/fda-

software-failures-responsible-24-all-medical-device-recalls-062012 [Accessed: 25

March 2013].

Rodrigues, G. (2009). Flushing out pdflush. 1 April. [Online] Available from:

http://lwn.net/Articles/326552/. [Accessed: 8 November 2014].

Roughton, J. (2008). The Accident Pyramid. Safety Culture Plus. July. [Online] Available

from: http://emeetingplace.com/safetyblog/2008/07/22/the-accident-pyramid/

[Accessed: 30 August 2012].

© University of Pretoria

http://www.realitycharting.com/methodology/conventional-wisdom/rca-methods-compared
http://www.realitycharting.com/methodology/conventional-wisdom/rca-methods-compared
http://edition.cnn.com/2011/10/12/tech/mobile/blackberry-outage-email-backup/index.html
http://edition.cnn.com/2011/10/12/tech/mobile/blackberry-outage-email-backup/index.html
http://www.lefigaro.fr/hightech/2012/09/19/%2001007-20120919ARTFIG00606-orange-s-explique-sur-la-grande-panne-de-juillet.php
http://www.lefigaro.fr/hightech/2012/09/19/%2001007-20120919ARTFIG00606-orange-s-explique-sur-la-grande-panne-de-juillet.php
http://www.bbc.co.uk/news/health-11572898
http://threatpost.com/en_us/blogs/fda-software-failures-responsible-24-all-medical-device-recalls-062012
http://threatpost.com/en_us/blogs/fda-software-failures-responsible-24-all-medical-device-recalls-062012
http://threatpost.com/en_us/blogs/fda-software-failures-responsible-24-all-medical-device-recalls-062012
http://threatpost.com/en_us/blogs/fda-software-failures-responsible-24-all-medical-device-recalls-062012
http://lwn.net/Articles/326552/
http://emeetingplace.com/safetyblog/2008/07/22/the-accident-pyramid/

241

Roussev, V. (2009). Hashing and data fingerprinting in digital forensics. IEEE Security

and Privacy, pp 49-55. March/April.

Rusling. D. (1999). The Linux tutorial – swapping out and discarding pages. [Online]

Available from: http://www.linux-

tutorial.info/modules.php?name=MContent&pageid=311. [Accessed: 8 November

2014].

Saferstein, R. (2010). Criminalistics: An Introduction to Forensic Science. Tenth Edition,

Prentice Hall.

Saleh, J. H., Saltmarsh, E. A., Favarò, F. M., & Brevault, L. (2013). “Accident precursors,

near misses and warning signs: Critical review and formal definitions within the

framework of Discrete Event Systems”. Reliability Engineering and System Safety, vol.

114, pp. 148-154, February.

Santosa, M. (2006). When Linux runs out of memory. 30 November. [Online] Available

from: http://www.linuxdevcenter.com/pub/a/linux/2006/11/30/linux-out-of-

memory.html. [Accessed: 8 November 2014].

Scarfone, K., Grance, T. & Masone, K. (2008). Computer security incident handling

guide. NIST Special Publication 800-61, Revision 1 (March). National Institute of

Standards and Technology, Gaithersburg, USA. [Online] Available from:

http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf [Accessed: 22

February 2011].

Scherer, B. (2012). What quants can learn from the Axa case. 20 May. [Online] Available

from: http://www.ft.com/intl/cms/s/0/65a66800-9eb4-11e1-9cc8-

00144feabdc0.html#axzz2MCol3BWr. [Accessed: 28 February 2013].

© University of Pretoria

http://www.linux-tutorial.info/modules.php?name=MContent&pageid=311
http://www.linux-tutorial.info/modules.php?name=MContent&pageid=311
http://www.linuxdevcenter.com/pub/a/linux/2006/11/30/linux-out-of-memory.html
http://www.linuxdevcenter.com/pub/a/linux/2006/11/30/linux-out-of-memory.html
http://csrc.nist.gov/publications/nistpubs/800-61-rev1/SP800-61rev1.pdf
http://www.ft.com/intl/cms/s/0/65a66800-9eb4-11e1-9cc8-00144feabdc0.html#axzz2MCol3BWr
http://www.ft.com/intl/cms/s/0/65a66800-9eb4-11e1-9cc8-00144feabdc0.html#axzz2MCol3BWr

242

Seveso II (1997). Council Directive 96/82/EC of 9 December 1996 on the control of

major-accident hazards involving dangerous substances. Official Journal of the European

Communities, Luxembourg.

Sevcik, P. (2008). Service Level Agreements for Business-Critical Applications.

NetForecast Report 5091. January. [Online] Available from:

http://www.netforecast.com/wp-content/uploads/2012/06/NFR5091SLAsforBusiness-

CriticalApplications.pdf [Accessed 16 February 2013].

Skogdalen, J.E. & Vinnem, J.E. (2011). Combining precursor incidents investigations and

QRA in oil and gas industry. Reliability Engineering and System Safety, 101, 48-58.

Sleuthkit.org. The Sleuth Kit. [Online] Available from:

http://www.sleuthkit.org/sleuthkit/ [Accessed: 17 June 2013].

Smith, C.L. & Borgonovo, E. (2007). Decision making during nuclear power plant

incidents: A new approach to the evaluation of precursor events. Risk Analysis,

27(4):1027-42.

Smith, E. & Eloff, J.H.P. (2002). A prototype for assessing information-technology risks

in health care, Computers & Security, 21(3), 266-284.

Sommer, J. (2010). The Tremors From a Coding Error. New York Times. 19 June.

[Online] Available from:

http://www.nytimes.com/2010/06/20/business/20stra.html?_r=0 [Accessed: 17 June

2013].

Sovani, K. (2013). Linux: The Journaling Block Device. 17 February. [Online] Available

from: http://pipul.org/2013/02/linux-the-journaling-block-device/. [Accessed: 8

November 2014].

© University of Pretoria

http://www.netforecast.com/wp-content/uploads/2012/06/NFR5091SLAsforBusiness-CriticalApplications.pdf
http://www.netforecast.com/wp-content/uploads/2012/06/NFR5091SLAsforBusiness-CriticalApplications.pdf
http://www.sleuthkit.org/sleuthkit/
http://www.nytimes.com/2010/06/20/business/20stra.html?_r=0
http://pipul.org/2013/02/linux-the-journaling-block-device/
http://pipul.org/2013/02/linux-the-journaling-block-device/

243

Splunk Wiki. (2012). Community: Performance Troubleshooting. 7 May. [Online]

Available from: http://wiki.splunk.com/Community:PerformanceTroubleshooting

[Accessed: 13 November 2014].

Springboard. (2014). Career of the Week in Public Health: Forensic Pathologist. 10

February. [Online] Available from: http://www.springerpub.com/w/public-

health/career-of-the-week-in-public-health-forensic-pathologist/ [Accessed: 12 April

2014].

SQS. (2012). SQS identifies the highest profile software failures of 2012. [Online]

Available from: http://www.sqs.com/portal/news/en/press-releases-173.php [Accessed: 8

February 2014].

SRI International. (1981). Computer Science Laboratory. 15 March. [Online] Available

from: http://www.csl.sri.com/ [Accessed: 17 June 2013].

Stamou, K.; Kantere, V.; Morin, J.-H. (2013). SLA data management criteria.

In: Proceedings of IEEE International Conference on Big Data, Silicon Valley,

California, U.S., pp. 34-42.

Stephenson, P. (2003). Modeling of post-incident root cause analysis. International

Journal of Digital Evidence, 2(2).

Stephenson, P. (2004). The application of formal methods to root cause analysis 0f digital

incidents. International Journal of Digital Evidence, 3(1).

Sujan, M.A. (2012). A novel tool for organisational learning and its impact on safety

culture in a hospital dispensary. Reliability Engineering & System Safety, 101, 21-34.

May.

Swedien, J. (2010). Software failure linked to women's death. Daily Globe. 2 June.

[Online] Available from: http://www.dglobe.com/event/article/id/36982/ [Accessed: 28

March 2013].

© University of Pretoria

http://wiki.splunk.com/Community:PerformanceTroubleshooting
http://www.springerpub.com/w/public-health/career-of-the-week-in-public-health-forensic-pathologist/
http://www.springerpub.com/w/public-health/career-of-the-week-in-public-health-forensic-pathologist/
http://www.sqs.com/portal/news/en/press-releases-173.php
http://www.csl.sri.com/
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Stamou%2C%20K..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kantere%2C%20V..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Morin%2C%20J.-H..QT.&newsearch=true
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/articleDetails.jsp?arnumber=6691769&queryText=SLA&newsearch=true&searchField=Search_All
http://0-ieeexplore.ieee.org.innopac.up.ac.za/xpl/mostRecentIssue.jsp?punumber=6679357
http://0-www.sciencedirect.com.innopac.up.ac.za/science/article/pii/S0951832011002845
http://0-www.sciencedirect.com.innopac.up.ac.za/science/article/pii/S0951832011002845
http://www.dglobe.com/event/article/id/36982/

244

Symantec. (2012). State of the Data Center Survey – Global Results. September. [Online]

Available from: http://www.symantec.com/content/en/us/about/media/pdfs/b-state-of-

data-center-survey-global-results-09_2012.en-

us.pdf?om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Sept_wor

ldwide_StateofDataCenter. [Accessed: 18 October 2012].

TechMediaNetwork. (2013). Disk Imaging Software Review. [Online] Available from:

http://disk-imaging-software-review.toptenreviews.com/ [Accessed: 18 June 2013].

TheFreeDictionary.com. (2013a). Chain of custody. [Online] Available from: http://legal-

dictionary.thefreedictionary.com/Chain+of+custody. [Accessed: 18 May 2013]

TheFreeDictionary.com. (2013b). Corroborating evidence. [Online] Available from:

http://legal-dictionary.thefreedictionary.com/corroborating+evidence [Accessed: 7

August 2013].

TheFreeDictionary.com. (2013c). Non-repudiation. [Online] Available from:

http://encyclopedia.thefreedictionary.com/Nonrepudiation. [Accessed: 7 August 2013].

The RISKS DIGEST. [Online] Available from: http://catless.ncl.ac.uk/Risks/ [Accessed:

15 March 2013].

Treanor, J. (2012). RBS computer failure to cost bank £100m. The Guardian. 2 August.

[Online] Available from: http://www.guardian.co.uk/business/2012/aug/02/rbs-

computer-failure-compensation. [Accessed: 19 March 2013].

Trigg, J. & Doulis, J. (2008). Troubleshooting: What can go wrong and how to fix it.

Practical Guide to Clinical Computing- Systems: Design, Operations, and Infrastructure.

Chapter 7, pp. 105-128. Elsevier: London.

© University of Pretoria

http://www.symantec.com/content/en/us/about/media/pdfs/b-state-of-data-center-survey-global-results-09_2012.en-us.pdf?om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Sept_worldwide_StateofDataCenter
http://www.symantec.com/content/en/us/about/media/pdfs/b-state-of-data-center-survey-global-results-09_2012.en-us.pdf?om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Sept_worldwide_StateofDataCenter
http://www.symantec.com/content/en/us/about/media/pdfs/b-state-of-data-center-survey-global-results-09_2012.en-us.pdf?om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Sept_worldwide_StateofDataCenter
http://www.symantec.com/content/en/us/about/media/pdfs/b-state-of-data-center-survey-global-results-09_2012.en-us.pdf?om_ext_cid=biz_socmed_twitter_facebook_marketwire_linkedin_2012Sept_worldwide_StateofDataCenter
http://disk-imaging-software-review.toptenreviews.com/
http://legal-dictionary.thefreedictionary.com/Chain+of+custody
http://legal-dictionary.thefreedictionary.com/Chain+of+custody
http://legal-dictionary.thefreedictionary.com/corroborating+evidence
http://encyclopedia.thefreedictionary.com/Nonrepudiation
http://catless.ncl.ac.uk/Risks/
http://www.guardian.co.uk/business/2012/aug/02/rbs-computer-failure-compensation
http://www.guardian.co.uk/business/2012/aug/02/rbs-computer-failure-compensation

245

Turner, P. (2007). Applying a forensic approach to incident response, network

investigation and system administration using Digital Evidence Bags. Digital

Investigation, 4(1), 30-35. March.

US Department of Defense. (2005). Dictionary of Military and Associated Terms.

[Online] Available from: http://www.thefreedictionary.com/near+miss+(aircraft)

[Accessed: 30 November 2014].

US Department of Labour. (2010). Accident/Incident Investigation. [Online] Available

from: https://www.osha.gov/SLTC/etools/safetyhealth/mod4_factsheets_accinvest.html

[Accessed: 30 November 2014].

Usmani, A.S., Chung, Y.C. & Torero, J.L. (2003). How did the WTC towers collapse: A

new theory. Fire Safety Journal, 38(6), 501-533.

Vacca, J.R. & Rudolph, K. (2010). System Forensics, Investigation and Response.

Chapter 1, pp. 2-16. Sudbury, Mass.: Jones & Bartlett Learning.

Van der Schaaf, T.W., Lucas, D.A. & Hale, A.R.(1991). Near-Miss Reporting as a Safety

Tool. London: Butterworth-Heinemann.

Vesely, W.E. (2011). Probabilistic Risk Assessment. In: S.B. Johnson, T.J. Gormley, S.S.

Kessler, C.D., Mott, A., Patterson-Hine, K.M. Reichard & P.A. Scandura, System Health

Management: With Aerospace Applications. Chichester, UK: John Wiley & Sons.

Vijayaraghavan, G.V. (2003). A taxonomy of e-commerce risks and failures. Master’s

thesis. Florida Institute of Technology.

Vinnem, J.E., Hestad, J.A., Kvaløy, J.T. & Skogdalen, J.E. (2010). Analysis of root

causes of major hazard precursors (hydrocarbon leaks) in the Norwegian offshore

petroleum industry. Reliability Engineering and System Safety, 95(11), 1142-53.

Virtualbox.org. (2014). Welcome to VirtualBox.org! [Online] Available from:

https://www.virtualbox.org/ [Accessed: 17 October 2014].

© University of Pretoria

http://0-www.sciencedirect.com.innopac.up.ac.za/science?_ob=ArticleURL&_udi=B7CW4-4MT5K2R-2&_user=59388&_coverDate=03%2F31%2F2007&_alid=1546292060&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=18096&_sort=r&_st=13&_docanchor=&view=c&_ct=81&_acct=C000005298&_version=1&_urlVersion=0&_userid=59388&md5=351f55718be1d2a0b28c34ea79c55fcc&searchtype=a
http://0-www.sciencedirect.com.innopac.up.ac.za/science?_ob=ArticleURL&_udi=B7CW4-4MT5K2R-2&_user=59388&_coverDate=03%2F31%2F2007&_alid=1546292060&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=18096&_sort=r&_st=13&_docanchor=&view=c&_ct=81&_acct=C000005298&_version=1&_urlVersion=0&_userid=59388&md5=351f55718be1d2a0b28c34ea79c55fcc&searchtype=a
http://www.thefreedictionary.com/near+miss+(aircraft)
https://www.osha.gov/SLTC/etools/safetyhealth/mod4_factsheets_accinvest.html
https://www.virtualbox.org/

246

Viscovery.net. (2014). Viscovery SOMine 6 - Explorative data mining based on SOMs

and statistics. 30 August. [Online] Available from: http://www.viscovery.net/somine/.

[Accessed: 5 November 2014].

Vision Solutions. [2006]. Understanding Downtime. A Vision Solutions White Paper.

May. [Online] Available from: http://www.mik3.gr/docs/VWP_Downtime.pdf

[Accessed: 16 March 2012].

Whittaker, Z. (2011). BlackBerry's outage post-mortem: Where did it all go wrong?

ZDNet. 10 October. [Online] Available from:

http://www.zdnet.com/blog/btl/blackberrys-outage-post-mortem-where-did-it-all-go-

wrong/60801 [Accessed: 26 July 2012].

Willasen, S.Y. & Mjølsnes, S.F. (2005). Digital Forensics Research. Teletronikk Journal,

1, 92-97. [Online] Available from: http://www.telenor.com/telektronikk/ [Accessed: 20

May 2013].

Wong, W.E., Debroy, V., Surampudi, A., Kim, H. &. Siok, M.F. (2010). Recent

Catastrophic Accidents: Investigating How Software Was Responsible. Fourth IEEE

International Conference on Secure Software Integration and Reliability Improvement.

Worstall, T. (2012). RBS/NatWest Computer Failure: Fully Explained. (25 June).

[Online] Available from: http://www.forbes.com/sites/timworstall/2012/06/25/

rbsnatwest-computer-failure-fully-explained [Accessed: 7 February 2013].

Wu, W., Yang, H., Chew, D.A.S., Yang, S., Gibb, A.G.F. & Li, Q. (2010). Towards an

autonomous real-time tracking system of near-miss accidents on construction sites.

Automation in Construction, 19, 134-141. [Online] Available from:

http://202.114.89.42/resource/pdf/5720.pdf [Accessed: 22 November 2014].

Wyld, H.C. (1961). The universal dictionary of the English language. Hazel Watson &

Viney LTD, Aylesbury, Bucks, England.

© University of Pretoria

http://www.viscovery.net/somine/
http://www.mik3.gr/docs/VWP_Downtime.pdf
http://www.telenor.com/telektronikk/
http://www.forbes.com/sites/timworstall/2012/06/25/%20rbsnatwest-computer-failure-fully-explained
http://www.forbes.com/sites/timworstall/2012/06/25/%20rbsnatwest-computer-failure-fully-explained
http://202.114.89.42/resource/pdf/5720.pdf

247

Young, T. (2007). Forensic Science and the Scientific Method. [Online] Available from:

http://www.heartlandforensic.com/writing/forensic-science-and-the-scientific-method.

[Accessed: 08 June 2013].

ZDNet.com. (2005). Average large corporation experiences 87 hours of network

downtime a year. January 20. [Online] Available from:

http://www.zdnet.com/blog/itfacts/average-large-corporation-experiences-87-hours-of-

network-downtime-a-year/268 [Accessed: 26 March 2012].

Zhou, Q. & Yu, T.X. (2004). Use of high-efficiency energy-absorbing device to arrest

progressive collapse of tall building. Journal of Engineering Mechanics, 130(10), 1177-

1187.

© University of Pretoria

http://www.heartlandforensic.com/writing/forensic-science-and-the-scientific-method
http://www.zdnet.com/blog/itfacts/average-large-corporation-experiences-87-hours-of-network-downtime-a-year/268
http://www.zdnet.com/blog/itfacts/average-large-corporation-experiences-87-hours-of-network-downtime-a-year/268

