

A near-miss management system architecture for

the forensic investigation of software failures
M.A. Bihina Bella and J.H.P. Eloff

ICSA Research Lab, Computer Science Department, University of Pretoria, Pretoria, South Africa

Abstract— Digital forensics has been proposed as a methodology for doing root-cause analysis of major software failures for quite a

while. Despite this, similar software failures still occur repeatedly. A reason for this is the difficulty of obtaining detailed evidence of

software failures. Acquiring such evidence can be challenging, as the relevant data may be lost or corrupt following a software system‘s

crash. This paper proposes the use of near-miss analysis to improve on the collection of evidence for software failures. Near-miss analysis

is an incident investigation technique that detects and subsequently analyses indicators of failures. The results of a near-miss analysis in-

vestigation are then used to detect an upcoming failure before the failure unfolds. The detection of these indicators – known as near misses

– therefore provides an opportunity to proactively collect relevant data that can be used as digital evidence, pertaining to software failures.

A Near Miss Management System (NMS) architecture for the forensic investigation of software failures is proposed. The viability of the

proposed architecture is demonstrated through a prototype.

Keywords— Software failure, near miss, near-miss management system (NMS), digital evidence, digital forensics

1. INTRODUCTION

CCORDING to Laprie (1992) ―a system failure occurs
when the delivered service no longer complies with the
specifications, the latter being an agreed description of

the system's expected function and/or service‖. Therefore, for
the purposes of the research in hand, a software failure is de-
fined as the unplanned cessation of a software system to func-
tion as specified. Software systems can fail for various rea-
sons including system overload, logic errors, security breach-
es, human errors, and glitches in routine maintenance opera-
tions (e.g. failed software upgrade) (Pertet & Narasimhan,
2005). As software is embedded in a range of devices and
plays a vital role in a number of industries, a failed software
application can affect any area of a user‘s day-to-day life and
may even be fatal.

Consider for example the various cases of software fail-
ures in medical devices such as radiation therapy machines,
external infusion pumps and implantable pace makers. In
radiaton therapy machines in particular, failures of the
embedded software system causes serious problems such as
overdosage of radiation and administration of incorrect
treatment that result in severe burns or deaths of the affected
patients. Such catastrophic cases of radiation therapy software
glitches have been reported many times in the media
(Bogdanich & Rebelo, 2010) as well as on the portals of the
FDA (the U.S. Food and Drug Administration) (FDA, 2013)
and the IAEA (International Atomic Energy Agency) (IAEA,
2013).

Disastrous events as the above mentioned often result in
lawsuits where a thorough post-mortem investigation is
conducted. Comprehensive forensic reports are available for
these cases, but do not address the software aspect of the
investigation. Such an investigation is absolutely necessary to
prevent the recurrence of these catastrophes. To this end, a
digital forensic investigation is required to understand the root
causes involved in the software failures.

Digital forensics is the process of methodically examining
computer media as well as network components, software and

memory for digital evidence (Vacca and Rudolph, 2010). This
evidence is usually in the form of system logs, but may in-
clude other relevant data such as digital images. The digital
evidence is used to provide clarity on the cause and circum-
stances of a computer-based event in support of the criminal
justice system. As such, digital forensics is primarily used for
the investigation of computer crimes and security-related
events (e.g. breach of company policy). Nevertheless, we
argue that it can also be applied to non-criminal events such
as catastrophic failures that require a court case as the exam-
ples provided earlier. In such cases, using digital forensics
instead of existing informal failure analysis techniques has the
benefits of providing results admissible in a court of law due
to the scientific foundation and the sound digital evidence
used for the root-cause analysis.

 However, being a reactive process, digital forensics can
only be applied after the occurrence of a failure. This limits
its effectiveness as data that could serve as potential evidence
may be destroyed during and after the failure. Acquiring such
data is necessary for the validity of the results of the forensic
investigation. The international ISO/IEC 27037 standard –
Guidelines for the Identification, Collection, Acquisition and
Preservation of Digital Evidence (ISO/IEC 27037, 2012) –
indeed recommends that the evidence collection should be
prioritised based on volatility.

In order to address this limitation of digital forensics, it is
suggested that evidence collection be started at an earlier
stage, before the software failure actually unfolds, so as to
detect the high-risk conditions that can lead to a major failure.
These high-risk conditions, so-called forerunners to failures,
are known as near misses. By definition, a near miss is a high-
risk event that could have led to an accident, but did not, due
to some timely intervention or by chance (Jones et al., 1999).
Almost all major accidents are preceded by a number of near
misses (Phimister et al., 2004). Contrary to other precursors to
the failure, a near miss is the closest to the point of failure; in
other words, it is the closest to the time window during which
the failure occurs. This concept can be better explained with
the following example.

————————————————

*Corresponding author. Tel.: +27 731497384

A

2

Consider for instance a potential car collision at a busy in-
tersection. This potential accident could have been preceded
by the following sequence of events: (1) a driver crossing a
red traffic light; (2) the driver overspeeding; and (3) the driver
struggling to slow down when noticing an incoming car. In
the above scenario, the last high-risk event, Event (3), is the
near-miss event as it is the closest to the potential crash. The
fact that the collision was avoided, maybe due to the careful-
ness of the driver of the incoming car, makes this sequence of
events a near miss.

Near-miss analysis, which refers to the detection and sub-
sequent analysis of near misses, is a technique used in the
domain of risk analysis and safety. Like a forensic investiga-
tion, near-miss analysis attempts to identify the root cause of
accidents and prevent their recurrence and has been used suc-
cessfully in various industries for decades (Phimister et al.,
2004). It is suggested in this paper that this technique should
also be applied to the forensic investigation of software fail-
ures. Reason being that the output of a near-miss analysis in-
vestigation can be used as digital evidence. Furthermore, it
broadens the scope of a forensic investigation so to also pre-
vent the recurrence of similar software failures. Indeed, as near
misses point to the possibly last indicator of an impending
failure, they provide a fairly complete set of data about that
failure. By alerting system users of an upcoming failure, an
opportunity is provided to collect this data at runtime and po-
tentially prevent the failure from unfolding.

Near-miss analysis is usually performed through electron-
ic near-miss management systems (NMS). An NMS that
combines near-miss analysis and digital forensics can con-
tribute significantly to the improvement of the accuracy of the
failure analysis. However, such a system is not available yet
and its design still presents several challenges, due to the fact
that neither digital forensics nor near-miss analysis is current-
ly used to investigate software failures and their existing
methodologies and processes are not directly applicable to
that task.

Preliminary partial solutions to these challenges were pre-
sented in Bihina Bella et al. (2011) and Bihina Bella et al.
(2012) respectively for digital forensics and near-miss analy-
sis. An initial near-miss management model based on these
solutions was presented as work-in-progress in Bihina Bella
et al. (2014). The current paper presents the revised model
and original NMS architecture that resulted from this previous
work.

2. OVERVIEW OF NMS

This section provides some background information on
NMSs. It first presents the types of NMSs currently available
and then reviews their functionality.

2.1 TYPES OF NMSS
There are essentially two types of NMSs: single or dual. A

single NMS only handles near misses, while a dual NMS
handles both near misses and accidents (Phimister et al.,
2000). A review of the literature on NMSs indicated that most
of the research on near-miss analysis focuses on single NMSs.

Initially limited to the nuclear (Phimister et al., 2004) and
aviation industries (NASA, 2006), research on the design of
effective NMSs has received much attention in a wide range
of industries over the last couple of years (Wu et al., 2010;
Gnoni et al., 2013; Andriulo & Gnoni, 2014; Goode et al.,
2014), especially in the healthcare industry for improved pa-

tient safety (Barach & Small, 2000; Callum et al., 2001;
Aspden et al., 2004; Fried, 2009). Most NMSs in use today
are proprietary systems designed specifically for the organisa-
tion that uses them. Barach and Small (2000) provide a com-
prehensive list of proprietary NMSs in various industries.

Apart from proprietary ―private‖ NMSs, some commercial
NMSs are publicly available on the market. Commercial
NMSs are mostly industry-specific. Examples include Al-
mostME, an NMS for the medical field (Napochi, 2013), and
Dynamic Risk Predictor Suite (Near-miss Management LLC,
2014), a comprehensive NMS designed for manufacturing
facilities.

2.2 Functionality of NMSs
An ideal NMS is required to perform all activities pertain-

ing to near-miss analysis. These activities are summarised in
the following diagram by Phimister et al. (2000). The diagram
uses the following notation:

Dissem: shortcut for dissemination of information
R.C.A: Root-cause analysis
Sol. I.D.: Solution identification

Figure 1: Near-miss management process (Phimister et al., 2000)

However, most importantly, an NMS focuses on and per-

forms the following three tasks:

 Identification of near misses

 Selection and prioritisation of near misses for analysis

 Root-cause analysis of the selected near misses

2.2.1 Techniques for the identification of near misses

The identification of near misses is often done manually
by means of observation. Recognising an observed event or
condition as a near miss requires a clear definition of what
constitutes a near miss with various supporting examples.
Organisations therefore spend considerable effort to formulate
a simple and all-encompassing definition of near misses that
is relevant for their respective business operations (Ritwik,
2002; Phimister et al., 2003). This definition can differ signif-
icantly from one industry to the next.

For instance, in the medical field, a near miss is defined as
―an event that could have resulted in unwanted consequences,
but did not because either by chance or through timely inter-
vention the event did not reach the patient‖ (ISMP-Canada,
2014). For example, a hospital doctor mistakenly prescribes
penicillin to a patient who is allergic to the drug. The error
goes unnoticed by both the pharmacist and the nurse, but the
patient mentions his allergic condition just before swallowing
the tablets and the nurse stops him just in time (Nashef, 2003).

Observed near misses such as the above are most often re-
ported manually into the NMS. As such, NMSs are often
called near-miss reporting systems. However, some effort has
also been made at the intelligent detection of near misses
through the NMS by defining metrics to characterise and
quantify near misses.

Much of the industrial work on automated near-miss detec-
tion is based on study reports from the US Nuclear Regulatory
Commission (NRC) and involves the use of Bayesian statistics
to determine the risk of a severe accident based on operational
data of observed unsafe events (Belles et al., 2000). Examples
of such events include the degradation of plant conditions and
failures of safety equipment (Belles et al., 2000).

Significant research has also been conducted in other in-
dustries to find generic metrics or signs of an upcoming acci-
dent, such as equipment failure rates, or failures of system
components (Leveson, 2015). Probabilistic risk analysis
(PRA), a recurring suggestion, also consists of estimating the
risk of failure of a complex system by breaking it down into its
various components and determining potential failure se-
quences (Phimister et al., 2004).

More recent research has proposed the use of location
tracking information and sensors for environment surveillance
to detect near misses in dynamic and uncontrolled environ-
ments such as on construction sites (Wu et al., 2010). In all the
above work, near misses are usually identified as those events
that exceed a predefined level of severity.

2.2.2 Techniques for the prioritisation of near misses

Near misses can be frequent. In actual fact, they can be as
much as 7-100 times more frequent than accidents (Aspden et
al., 2004). This high volume of near misses can become un-
manageable due to limited investigative resources. Therefore,
it is necessary to select and prioritise near misses that are
passed on for root-cause analysis. Only near misses closest to
the impending accident are retained as they offer the most
complete data about the particular accident. Various quantita-
tive and qualitative approaches are used to prioritise near
misses across industries.

The two main approaches used to prioritise near misses
are risk-based classification and statistical analysis.

Risk-based classification ranks near misses according to
the severity level of their potential consequences or their fre-
quency. Determining the severity of the likely impact of a
near miss can be done with a risk decision matrix that assigns
a weight to the near-miss ―relevancy‖ to help identify the
potential worst-case scenario (Ritwik, 2002). Kleindorfer et al
(2012) also propose the risk level of a near miss to be propor-
tional to the amount of time that the event caused the system
to exceed predefined safety and quality limits. This time
measurement is used to determine the risk of profit losses by
calculating the actual loss that would be incurred for that un-
safe period of time.

In terms of statistical analysis, Bayesian statistics is often
proposed to estimate the frequency of severe accidents based
on the frequency of observed near misses (Bier & Mosleh,
1990; Johnson & Rasmuson, 1996). Other factors used to
classify near misses include the existence of initiating events
and the probability of successful recovery (Cooke & Goos-
sens, 1990). In the finance industry, regression analysis is
used to estimate the loss distribution of a near miss – hence
the likelihood of a failure and its losses within a specific
timeframe – so as to assess its level of severity (Mürmann &
Oktem, 2002).

2.2.3 Techniques for the root-cause analysis of near misses

As near misses and accidents have common causes, iden-
tifying the cause of a near miss is a valid method to identify
the cause of the ensuing or potential accident (Andriulo &

Gnoni, 2014). Root-cause analysis of near misses can be per-
formed with investigation techniques taken from engineering
disciplines, such as fishbone diagrams, event and causal fac-
tor diagrams, and failure mode and effects analysis (Phimister
et al., 2003; Jucan, 2005; Hecht, 2007).

Applying the above techniques to near-miss analysis in
the software industry presents a number of challenges that are
discussed next.

3 CHALLENGES TO APPLYING EXISTING NMS TECH-

NIQUES TO THE SOFTWARE INDUSTRY
3.1 CHALLENGES TO THE IDENTIFICATION OF

NEAR MISSES
Identifying near misses through observed physical events

and conditions, as is done in many industries, is especially
challenging in the software industry. Indeed, in the case of
software applications, near misses might not even be visible
as no system failure occurs and the events are virtual rather
than physical. A near-miss might occur in the backend of the
system (e.g. near exhaustion of memory) with no visible sign
on the user interface. In the absence of specific near misses to
refer to, providing a definition that clearly describes near
misses in software systems is also a challenge.

An automated intelligent near-miss detection process is
therefore required. However, although existing techniques can
provide useful results, they are generally specific to the indus-
try concerned and often require prior knowledge about near
misses from historical data. Regrettably such data is not yet
available in the software industry, where the concept of near
miss is still largely unexplored.

3.2 CHALLENGES TO THE PRIORITISATION OF NEAR

MISSES
Although they all have some merit, both the quantitative

and qualitative approaches that are used to classify and priori-
tise near misses have disadvantages that limit their application
to the software industry. For instance, the validity of the
quantitative analysis techniques depends heavily on the risk
threshold set for near misses. A high threshold may overlook
significant events that were not anticipated, especially in new
or immature software systems, while a low threshold will
likely result in many false alarms (Phimisteret al, 2004). Be-
sides, generic metrics of near misses might not be applicable
to all types of systems and all types of failures.

3.3 CHALLENGES TO THE ROOT-CAUSE ANALYSIS OF

NEAR MISSES
As valuable as the available techniques for root-cause

analysis of near misses are, they do not follow sound forensic
principles and do not rely on sound digital evidence. Thus
they are not suitable for the NMS proposed in this paper,
which aims to apply the digital forensic methodology to ana-
lyse near misses in the same way that digital forensics is pro-
posed to investigate software failures.The use of digital foren-
sics to investigate near misses and software failures also faces
specific challenges as are discussed below.

The first challenge is the lack of forensic tools and tech-
niques appropriate for software failure analysis. Various fo-
rensic tools and techniques are available for the investigation
of computer crimes. Although some of these techniques can
be applied to failure analysis, they are either used to authenti-
cate evidence (e.g. mathematical analysis through a hash al-
gorithm) or to find evidence of a known crime (e.g. string

4

searching or reconstruction of web-browsing activity). They
are not designed to find the (unknown) root cause of a failure.
There is also no logical method available to pinpoint the root
cause of a failure by using the scientific techniques that are
currently available for data analysis (e.g. statistical analysis).

Another challenge to the application of the digital forensic
process to software failure analysis is the need to minimise
downtime following a software failure. System downtime can
be very costly and minimising its duration is critical. This
usually requires restoring the system to its normal functioning
before a proper root-cause analysis can be performed or com-
pleted. It also requires the quick restoration of the system
without losing potential evidence. Since restoration can dis-
turb potential evidence, the evidence needs to be collected
before the system is restored (Corby, 2000). This method dif-
fers from digital forensics, where the analysis can be started
as soon as the evidence has been collected, regardless of the
state (on or off) of the suspect machine. The digital forensic
process clearly does not make provision for a two-phased
approach to evidence collection (firstly collection of evidence
and secondly system recovery). It is however valuable for the
forensic investigation of a software failure.

As indicated by the above, some work is still required to
detect, prioritise and analyse near misses from a software
system perspective. Requirements to guide this work for the
design of an effective NMS are established in the next sec-
tion.

3.4 REQUIREMENTS FOR THE NMS FOR THE SOFT-

WARE INDUSTRY
In the light of the above overview of NMSs and the chal-

lenges to near-miss analysis discussed earlier, the authors of
this paper have identified requirements for an effective NMS
for the software industry. Amongst others, the following re-
quirements are discussed briefly:

 A generic model that is relevant to the software in-

dustry at large. The near-miss analysis techniques

must be applicable to various types of systems and

should be able to handle different types of software

failures and near misses.

 An automated system. In order to limit human error

and subjectivity, the identification and prioritisation of

near misses as well as the evidence collection process

should be automated.

4 PROPOSED SOLUTIONS FOR THE NMS DESIGN
4.1 DETECTION OF NEAR MISSES

Since near misses are defined in relation to the associated
accidents, the definition of a software failure is used as a start-
ing point to define and detect near misses in the software in-
dustry.

In the Introduction of this paper, a software failure was
defined as an unplanned cessation of a software system to
function as specified. Indeed, software systems are designed
according to specifications in line with the requirements of
the customer and intended users. The system specifications
can be functional (the functionality and features of the
system) as well as non-fonctional (such as quality of service,
response time and uptime). Since no system is immune to
malfunction, no system vendor can guarantee that the system
will work continuously and perfectly as specified at all time.
In other words, some periods of malfunction and downtime

are expected. For this reason, the performance requirements
of a typical software system make provision for a downtime
―allowance‖. This allowed downtime can be indicated infor-
mally in the system‘s specifications document, but it is usual-
ly specified formally in a contract between the service provid-
er and the receiver of the service (customer). This contract is
referred to as a service level agreement (SLA) (Sevcik, 2008).

For instance, the performance requirements for a website
may specify that the site will be operational and available to
the customer at least 99.9% of the time in any calendar
month. This indicates that the website should not be down for
more than 0.1% of the time in a month. For a 30-day month,
this corresponds to a downtime limit of 0.03 day or 43 min
and 12 s. If the website is down for more than this amount of
time in a month, it does not meet the customer‘s expectation
in terms of the SLA. Hence it violates the SLA and is consid-
ered to have failed.

For the purposes of the research in hand, an event is there-
fore considered a failure if its resulting downtime exceeds the
downtime allowance specified in the SLA. Similarly, an event
is considered a near miss if it can lead to the exceeding of that
allowance. We consequently propose the following definition
of a near miss for the purpose of facilitating its detection:

A near miss is an unsafe event or condition that causes a

downtime whose duration is close to exceeding the specified
downtime allowance.

Note that the SLA concept used in the above definition

does not necessarily refer to a formal contract between the
service provider and the customer. It is rather a concept that
refers to any objective predefined performance level specified
for a given system. As a matter of fact, not all software sys-
tems have formal SLA‘s in place, although they have docu-
mented specifications. Examples include small or trivial ap-
plications developed in-house for internal use that are not
made available to some external customer.

The above concept is proposed as the basis to formally de-

fine a near miss. This requires determining how close the ex-
perienced downtime should be from exceeding the allowed
downtime to be considered a near miss. Specifying a near-
miss threshold is suggested for this purpose. This threshold
will vary from one organisation to the next, depending on its
risk tolerance. For instance, a 95% threshold (95% of the
downtime allowed) would correspond to a total monthly
downtime of 41 min and 2 s. In this case, a near miss is any
monthly downtime of between 41 min and 2 s (the threshold)
and 43 min and 12 s (the allowed downtime). This threshold-
based definition of a near miss can be mathematically ex-
pressed as follows (Equation (1)):

Dexperienced is the experienced downtime
Dallowed is the SLA downtime allowance
α is the near-miss threshold in percentage; α < 1
α × Dallowed is the near-miss threshold in time value
If α × Dallowed ≤ Dexperienced ≤ Dallowed then Dexperienced is
a near miss (1)

Thus, using the above example of a 95% threshold, the

following applies:

α = 0.95
Dallowed = 43 min and 12 s

α × Dallowed = 41 min and 2 s
If 41 min and 2 s ≤ Dexperienced ≤ 43 min and 12 s
then Dexperienced is a near miss.

Figure 2 shows the downtime-based classification of

events explained above.

Downtime duration

SLA downtime

allowance

Near miss

threshold

Dallowed0

Failure

 α×Dallowed

Near missAcceptable failure

Figure 2: Classification of unsafe events based on their downtime

duration

The above definition of a near miss is generic enough to

be applicable to any type of software system and failure. It is
also flexible enough to be adapted to the risk tolerance of any
organisation.

It is worth noting that downtime was used as the most
common metric of an SLA, but depending on the type of sys-
tem and failure at hand, other metrics (e.g. throughput, re-
sponse time) could be used and may be more relevant. It is
also worth noting that in the absence of an SLA, a near miss
can still be defined by near-miss indicators identified from the
root-cause analysis of a failure. An example of this scenario is
provided in the prototype implementation in Section 6.

4.2 PRIORITISATION OF NEAR MISSES
A near miss was previously defined as a potential failure,

more specifically as an event that can lead to the violation of
the SLA. The violation of the SLA was also defined in terms
of the system downtime. According to the same logic that was
used to measure the severity of a failure based on the down-
time experienced, the severity of a potential failure or near
miss can be assessed based on its expected downtime; in other
words, determining for how long the system will be down in
the eventuality of an outage caused by this near-miss event.

To this effect, two parameters are needed: the failure
probability of the near miss and the expected recovery time
for the outage or MTTR (mean time to repair). The expected
downtime is then calculated as the product of the failure
probability and the MTTR. The MTTR can be obtained from
the system vendor specifications or through historical obser-
vations. We are currently exploring formulas from the relia-
bility theory of IT systems (Holenstein et al., 2003) to devel-
op a suitable failure probability formula. The system enters a
―critical zone‖ when the expected downtime is greater than
the SLA downtime allowance. This can be expressed as the
following formula (Equation (2)):

Dexpected is the expected downtime due to a failure

Dallowed is the SLA downtime allowance

P is the probability of failure, given the current unsafe situa-

tion

MTTR is the expected recovery time following an outage

Dexpected = P × MTTR

If Dexpected > Dallowed → critical zone (2)

Only events in the critical zone are passed on for analysis.

If a successful recovery is performed and the outage is pre-

vented when the system is in the critical zone, then this event
is classified as a near miss. On the other hand, if the system
recovery is not successful, the event is classified as a serious
failure in the sense that the SLA has been breached. Both
cases need to be investigated to identify their root cause and
prevent their reoccurrence.

In the case of the failure, the root cause analysis is facili-
tated by the fact that the event data collection occurred before
the system failed.

In the case of a near miss, the closeness between the ex-
pected downtime and the SLA downtime allowance can be
used to assign a risk level to the event. The risk level will
determine how important it is to conduct a thorough forensic
analysis of this near miss and how much of the limited re-
sources available can be allocated to this task. However, as
explained previously, different organisations have different
risk tolerance levels and may prefer a larger margin of safety
when detecting a near miss. Instead of using the whole SLA
downtime allowance to define a near miss, they may specify a
portion of that downtime as their near-miss threshold. Their
system will thus enter a critical zone earlier, which will give
them more time for remedial action. The near-miss threshold
can be adjusted over time as more experience is acquired in
detecting and handling near misses. When this threshold is
included, Equation (2) is adjusted as follows:

 α is the near-miss threshold; α ≤ 1
If Dexpected ≥ α x Dallowed → critical zone (3)

4.3 ROOT-CAUSE ANALYSIS OF NEAR MISSES
The digital forensic process is followed for the root-cause

analysis of the near misses and the failures. In Bihina Bella et
al. (2011), a new forensic investigation process was proposed
to cater for the challenges to failure analysis of the existing
digital forensic process. This new process is an adapation of
the digital forensic process and has four basic stages. The first
two occur immediately after the failure has been detected:
firstly, collect digital evidence and secondly, restore the sys-
tem. The third and fourth phases are the evidence analysis and
the countermeasures specifications. They are conducted once
the system has been restored. Phases 1, 3 and 4 are part of a
standard digital forensic investigation, while Phase 2 is a
troubleshooting task.

Phase 2 was introduced to limit the downtime duration be-
fore completing the root-cause analysis, which is critical (see
discussion in Section 3.3). Phase 2 starts once all the evidence
has been acquired. The failure is then fixed and the system is
restored to its operational state as quickly as possible. A resto-
ration might be as simple as rebooting the system or it might
necessitate some preliminary diagnostic of the failure to fix it.
This will follow a typical troubleshooting process, which re-
quires a recreation of the problem to isolate its cause (Trigg &
Doulis, 2008). Such system restoration is a temporary solu-
tion with temporary countermeasures (e.g. applying a soft-
ware patch) until the root cause of the failure is identified in
the subsequent analysis phase.

The root-cause analysis phase corresponds with the analy-
sis phase of a digital forensic investigation. The digital evi-
dence collected in the first phase is examined in a digital fo-
rensic laboratory to identify the root cause of failure. Digital
forensic and other scientific techniques are used to analyse the
digital evidence. The investigation follows the scientific

6

method, which in general involves three main steps: formulat-
ing a hypothesis; predicting evidence for the hypothesis; and
testing the hypothesis with an experiment (Bernstein, 2009).

5 PROPOSED NMS ARCHITECTURE
5.1 THE OVERALL NEAR-MISS MANAGEMENT PRO-

CESS
To detect near misses, the system needs to be monitored

with a view to recording and reviewing event logs. It is sug-
gested that system events be logged in a central repository
such as a Syslog server. Event logs that match the near-miss
formula established in Equation (1) are flagged as potential
near misses and then sent to another module for prioritisation.
This module calculates the system‘s failure probability and
expected downtime based on each potential near miss.

Afterwards, events identified as being in the critical zone
are passed on to another component for data collection. The
Simple Network Management Protocol (SNMP) is proposed
for this purpose. This Internet-standard protocol enables in-
formation exchange between a manager (central unit) and its
agents (the other system units) (Presuhn, 2002). In this case,
the SNMP manager is the data collection module and it re-
quests additional information about the event from the rele-
vant units through their SNMP agents. Corrective steps are
subsequently taken to prevent a system failure, if possible.
Finally the collected data is used for root-cause analysis of the
event. This root-cause analysis follows the forensic investiga-
tion process specified earlier. Upon identification of the root
cause of the event, recommendations are made to correct the
system flaw.

The resulting architecture of an NMS is described next.

5.2 THE NMS ARCHITECTURE
The proposed NMS architecture is shown in Figure 3. The

architecture consists of five main components:

 The Near-Miss Monitor

 The Near-Miss Classifier

 The Near-Miss Data Collector

 The Failure Prevention

 The Event Investigation

Some components are made up of several sub-

components. Each of the main components processes the
event logs from the units of the system that is being moni-
tored. The five main components of the system are used to
perform a multi-staged filtering process that progressively
discards ―irrelevant‖ events and only retains near misses with
the highest risk factor. A detailed description of the main
components of the architecture follows.

5.2.1 The Near-Miss Monitor

The Near-Miss Monitor monitors the units of the system
to identify potential near misses based on the near-miss defi-
nition formula in Equation (1). Events from the monitored
system are logged to provide information relevant for near-
miss detection in line with the near-miss formula. The logged
information must include, among others, the status of the unit
(up or down) and the duration of the downtime, if applicable.
If the system goes down and a match is found between these
parameters and the near-miss definition formula, the down-
time experienced is classified as a potential near miss and sent
to the Near-Miss Classifier for prioritisation.

5.2.2 The Near-Miss Classifier

The Near-Miss Classifier is expected to calculate the risk
level of the potential near misses based on their failure proba-
bility and expected downtime. The complete formula for the
failure probability is still a work-in-progress. The Near-Miss
Classifier prioritises events according to their failure probabil-
ity as explained in Equation (3). Logs of events identified as
being in the ―critical zone‖ are sent to the Near-Miss Data
Collector and an alarm is raised to notify the system adminis-
trator.

5.2.3 The Near-Miss Data Collector

This component is implemented as an SNMP Manager.
The SNMP Manager requests data from the units in the criti-
cal zone. Such data may include the source identifier (e.g. IP
address), running processes, system settings and error mes-
sages. The data is then stored in the Event Data table and
transferred to the Failure Prevention module.

5.2.4 The Failure Prevention

With this component, the system administrator uses the
collected data to identify and implement appropriate correc-
tive steps in an attempt to prevent – or at least mitigate the
impact of – system failure. This might include ending some
active but unused processes or deleting some stored but un-
necessary data to free up memory. The administrator records
the steps implemented in a log file for future reference. He
then sends the outcome of the recovery attempt (successful or
unsuccessful) to the Event Investigation component.

5.2.5 The Event Investigation

Based on the outcome of the recovery process in the pre-
vious component, the Event Investigation classifies events as
either near misses or failures and stores the event details in
the appropriate table for future reference. If the event is a fail-
ure, a system restoration is first conducted to limit the experi-
enced downtime. The administrator then conducts a forensic
analysis of the event based on the data stored. The root-cause
analysis enables the identification of near-miss indicators that
can be used to adjust the formula used in the Near-Miss Mon-
itor.

Afterwards, recommendations for improvement are made
and implemented either immediately or at a later scheduled
time. The recommendations are stored along with the event
details in the relevant table. These steps allow for the creation
of an event history that can be looked up in the event of a
similar event occurring in the future.

This architecture meets the objectives of an effective
NMS for the software industry specified earlier. It enables the
automatic detection of near misses based on objective per-
formance measures specified in the organisation concerned.
The detection process is flexible enough to accommodate
changing performance requirements and to suit requirements
specific to an organisation. The architecture also enables the
automatic classification of potential near misses and the prior-
itisation of near misses to facilitate their investigation. An
additional benefit of the architecture is that it enables the pre-
vention of an impending failure if appropriate corrective ac-
tions are executed timely.

The prototype implementation of the NMS architecture is
documented in the next section.

 Event Investigation

Failure Prevention

Near-Miss Data Collector

Near-Miss Classifier

Near-Miss Monitor

<<executable>>

Event Logs Classifier

<<table>>

Event Logs

<<document>>

Near-Miss Formula

<<document>>

Near- Miss Risk Level Calculation

<<executable>>

Near-Miss Prioritisation

<<executable>>

Data Collector

<<executable>>

Corrective Steps Implementation

<<document>>

Corrective Steps Recording

<<executable>>

Event Classifier

<<executable>>

Event Root-Cause Analysis

<<table>>

Near Misses

<<table>>

Failures

Monitored

System

Event logs

<<Precondition>>

{Potential near miss identified}

<<Precondition>>

{Events in “critical zone” identified}“Critical zone” events

Event source data

Corrective Steps

Digital evidence

Outcome of failure prevention

High risk logs

<<executable>>

Near-Miss Alert

<<executable>>

Near-Miss IndicatorsSystem

Restoration

<<executable>>

Countermeasures

Figure 3: Component diagram of NMS architecture

6 PROTOTYPING THE NMS ARCHITECTURE
In line with the goal of the paper to use the results of a

near-miss analysis investigation as digital evidence and so to
prevent the recurrence of major software failures, the proto-
type implementation only addresses the following two aspects
of the NMS architecture: the definition and detection of near
misses and the root-cause analysis of software failures. The
other elements of the model were not discussed in detail in the
paper and are therefore not part of the prototype. The goal of
the prototype implementation is therefore twofold:

 Demonstrate the viability of the digital forensic pro-

cess formulated in Section 4.3 to conduct a root-

cause analysis of a software failure.

 Demonstrate the viability of detecting near misses at

runtime. This also demonstrates that a near miss is a

viable and relevant concept for the software indus-

try.

The above-mentioned goal is accomplished by means of the

following:

 The use of collected digital evidence of the failure

as the basis for the root-cause analysis.

 The identification of near-miss indicators that con-

stitute a near miss.

 The development of a near-miss formula.

 The identification of potential near misses using a

set of event logs.

 The detection of near misses at runtime.

The prototype therefore focuses on the following two

components of the architecture: Near-Miss Monitor and Event

Investigation. As the prioritisation formula is a work-in-
progress, it is not included in the prototype implementation.

Conducting a forensic analysis of a software failure was
the basis for the prototype‘s goal. Conducting such an analy-
sis required three necessary elements: the logs of a software
failure; a forensic investigation tool with suitable data analy-
sis techniques; and a test plan, all of which are described in
the discussion that follows.

6.1 THE TEST DATA SET
In order to demonstrate the viability of the proposed NMS

arachitecture, real-life failure logs with no prior knowledge of
the cause of the failure were required. However, for
confidentiality reasons, such real-life data could not be
obtained. We therefore opted to simulate a software failure
and generate logs of the event. Two types of logs were deemed
relevant for this demonstration: logs created by a simple appli-
cation being executed as well as logs generated by the com-
puter system. The process descrcibed below was followed for
obtaining the logs.

Logs generated by the application
A software failure was simulated by designing a C++ pro-

gram that would exhaust the memory of a flash disk. The C++
program was running on a Linux machine and was designed
to run as a loop structure that repetitively copies a video clip
to a flash disk. In this simulation a failure was the inability of
the C++ program to copy the video clip to the flash disk. A
near miss would occur when the program was close to ex-
hausting the flash disk space or the program would show be-
havioural patterns similar to the ones observed close to a fail-
ure. These behaviourial patterns were used to define near-
miss indicators.

The failure simulation program was purposefully designed
to be simple so as to focus on the near-miss indicators instead
of on the complexity of the software system. For this purpose,
the program was intentionally designed to be flawed with no
code to monitor disk space in order to enable a failure. In the
absence of real-life failure data, a more complex and smarter
program could make the illustration and understanding of the
near-miss analysis concept more difficult.

 Since a large data set was required for the subsequent
root-cause analysis, the crash file was designed to maximise
the number of records. This was achieved by running the pro-
gram with the largest flash disk (128 GB) and the smallest
video file at hand (3.91 MB), which resulted in a maximum of
31 001 potential records in the crash file (128 GB/3.91 MB).
In order to force a failure, the size of the program‘s loop was
deliberately set to be higher than 31 001. It was set to 31 150.

Every time a new copy of the video clip was made, vari-
ous statistics about the C++ program, the Linux machine and
the flash disk were written to a file, subsequently referred to
as a crash file. A total of 13 statistics were recorded, including
the duration of a file operation (i.e. copying of the video clip),
the latency (i.e. time delay between two file operations) and
the associated memory statistics such as Mem Used (Amount
of RAM used) and Cached (Amount of RAM used for cach-
ing of data). The latency and the duration were expressed in
milliseconds (ms).

Screenshots of the resulting crash file are provided in Fig-
ure 4 (beginning of file) and Figure 5 (point of failure). The
highlighted row in Figure 5 (file number 31 002) indicates the

8

point of failure, after the last successful copy of the video clip
was made to the flash disk.

Figure 4: Crash file at beginning of program

Figure 5: Crash file – point of failure

System logs
Since the C++ program was performing significant input

(reading copy of video clip) and output (copying video clip to
new file) operations, it was deemed most appropriate to use

the iotop monitoring utility to show input and output (I/O)

usage on the Linux disk. The iotop command continuously
displays I/O statistics such as disk-reading and disk-writing
bandwidth for the various processes running on the system
(Linux.die.net. 2014). The I/O statistics were used to corrobo-
rate the information in the crash file.

Figure 7 shows a screenshot of the first entries in the

iotop output file, which had nine fields. The relevant fields

for the prototype were Time, Disk read (disk-reading band-
width), Disk write (the disk-writing bandwidth) and Com-
mand, which refers to the name of the process. Disk read and
Disk write were expressed in kilobytes per second (kB/s).

Figure 7: iotop output file

6.2 THE FORENSIC INVESTIGATION TOOL
Ideally, one should use a digital forensic tool to conduct a

forensic (root-cause) analysis of the log files. However, these
tools are not equipped to handle software failures. Indeed,
current digital forensic tools are designed to handle criminal
and security-related events, not software failures of an acci-
dental nature. Therefore they are designed to help identify
evidence of a known crime, not evidence of a failure whose
cause is a priori unknown. Since one of the goals of the proto-
type implementation was to observe a pattern in the system‘s
behaviour, a tool with powerful visualisation capability that
could handle large data sets efficiently was required. For this
reason, a tool with a Self-Organising Map (SOM) analysis
capability (Engelbrecht, 2003) was selected, although it is not
a digital forensic tool per se. The SOM is a powerful pattern
classifier algorithm optimised for large data sets (Engelbrecht,
2003), which enables the easy visualisation of clusters in a
data set. The suitability and efficiency of the SOM for foren-
sic investigations was already demonstrated by earlier re-
searchers (Fei et al., 2005).

A commercial SOM tool called Viscovery SOMine (Vis-
covery.net, 2014) was used. The trial version of this tool was
used as it was freely available and it provided all the func-

tionality needed for this experiment. Little pre-processing of
the crash file was required to create the SOM maps as the
crash file was stored as an Excel spreadsheet, which is an
input file format handled by Viscovery SOMine.

Details about the pre-processing steps and map creation
process are provided below.

 The parameter File Status was used as a nominal at-

tribute to distinguish between the records marked as

―OK‖ (video copied successfully) and those marked

as ―not OK‖ (video not copied).

 Viscovery SOMine automatically converted the

time values to numerical values.

The creation of maps in Viscovery SOMine follows a

simple manual step-by-step process from importing the input
file, selecting attributes to be processed, defining nominal
attributes, and specifying the parameters to train the map.
Training parameters include map size (number of nodes) and
training schedule (processing speed from fast to normal). The
default training parameters were kept. The resulting map is
automatically created and displayed after this process and
information about each cluster is provided.

Since the SOM only provides a visual representation of the
patterns in a data set, we also planned on using a statistical
analysis to express the observed patterns mathematically. Sta-
tistics such as the average and the weighted moving average
(WMA) of attributes in the logs were considered relevant for
this purpose. A WMA gives more weight to the most recent
data in a time series and attaches less importance to older data.
It was therefore used for trend analysis and forecasting, which
was particularly relevant for the study in hand (Holt, 2004).
We planned to compare the normal average to the WMA to
determine deviation from normal behaviour.

The WMA of a parameter is calculated by multiplying
each value (D) by its position (n) in the time series, and
dividing the sum of these values by the total of the multipliers
(positions). Its formula is as follows:

6.3 THE TEST PLAN
Since the forensic analysis was conducted with a view to

identifying near-miss indicators, the whole demonstration was
oriented towards that purpose.

Identifying near-miss indicators was based on the assump-
tion that it was possible to see the failure emerging by moni-
toring the relevant attributes – such as memory usage statis-
tics – provided in both the crash file and the iotop output file.
Indeed, it was expected that the C++ program would maintain
a stable operating mode under normal conditions (when
enough memory was available on the flash disk that was used
as an external memory device) and that this normal behaviour
would be disrupted when memory became insufficient. There-
fore the forensic analysis was expected to reveal some unusu-
al changes in the monitored attributes close to the point of
failure, in other words close to the exhaustion of the flash
disk‘s free space. The correlation between the near-miss indi-
cators would be used to create a near-miss formula to define
near misses and detect them as they occur.

6.4 FORENSIC ANALYSIS OF THE CRASH FILE
The forensic analysis of the crash file followed the scien-

tific method described as follows:
Formulate hypothesis

Ideally, one would conduct a root-cause analysis without
any biased opinion regarding the source of the failure. How-
ever, due to the nature of this demonstration, the source of the
failure was already known (chosen) to be memory exhaustion,
which usually manifests through a performance slowdown.
The analysis of the crash file therefore aimed to find evidence
of this trend.

Predict evidence for the hypothesis

Indicators of performance degradation in the execution of
the C++ program were expected from the crash file. In addi-
tion, as memory was being depleted, it was expected that ac-
tivity would be observed on the Linux disk, aimed at manag-
ing a shortage in memory. The following symptoms were
therefore expected:

 A longer time duration to complete a file operation

 A longer latency between two successive file opera-

tions

 An increased level of caching, buffering and swap-

ping
These changes were expected in the last records before the

failure. Based on the calcualted average duration of 1.295s to
create a record, it was assumed these changes would occur in
the last couple of seconds before the failure.

Test hypothesis with experiment

It was assumed that the above trend in the memory statis-
tics would be visible from a trend analysis of the behaviour of
the system (Linux machine) as the program was running. Pro-
filing the system‘s behaviour was performed in three steps.
Firstly, trends in the overall end-to-end behaviour were out-
lined. Then the focus shifted to the system‘s behaviour close
to the point of failure, and finally a comparison between these
two profiles was made.

6.4.1 Behaviour of the system before the failure

In order to observe trends in the system‘s behaviour, we
created SOM maps for several random sets of 1000 records
throughout the crash file. Four sets of records were selected:
first 1000, 10 000 to 11 000, 20 000 to 21 000 and the last
1000 before the failure. An explanation of how to read the
maps is provided next.

The component maps below show the distribution of the
values in the data set over time. The scale of the values in the
data set is displayed on a bar below each map. Values range
from lowest on the left to highest on the right of the bar. Val-
ues on the map are differentiated by their colour on the scale.
This means that lowest values are in dark blue and highest
values are in red with various shades of blue, green and
yellow in between. All component maps have the same
topology, so any node (record) on one map has the exact same
position on another map for the same set of records. For
example, the first record, which has the highest value for
Duration (5850 ms, refer to Figure 8) appears as an outlier in
red in the top right corner of the Duration map below (it is
circled in black). This record also has the highest value for
free memory (red in the top right corner of the Mem free

map). Component maps of some of the other attributes are
provided in Figure 9.

Clusters in the data set are delimited by black lines on the
maps. Each cluster groups together the records with close
values for the various attributes. As we used the trial version
of the Viscovery SOMine tool for the SOM analysis, an
―Evaluation only‖ watermark appears on the maps.

Figure 8: Some component maps of first 1000 records – first record

appears as an outlier

Figure 9: Component maps of first 1000 records for some attributes.

From the component maps that were generated for all at-

tributes in the crash file, we note a high correlation between
the following attributes:

 USB free space and USB free pages

 Mem Free and Avail pages

 Cached and Mem used

As these pairs of attributes point to the same memory
source, their maps have the exact same pattern of value distri-
bution. Therefore, for each pair, one of the maps is discarded
in future analysis. As we were looking for attributes whose
distribution would change over time, we also discarded maps
of attributes whose pattern was the same throughout the pro-
gram. This includes both USB memory attributes, and Avail
pages, whose values decrease linearly. We also noticed that
Cached is the direct inverse of Mem free, as their values fol-
low inverse movements (as Cached increases, Mem free de-
creases). We therefore also discarded Mem free from the fo-
rensic analysis. We also discarded the map of End time as it
had the exact same distribution as the map of Creation time.
Therefore, we conducted the forensic analysis with the fol-
lowing remaining attributes: Creation time, Buffers, Cached,
Swap Used, Duration and Latency.

Results
A study of the component maps shows that the values for

the remaining six attributes listed above remain fairly con-
stant throughout the execution of the C++ program. For in-

10

stance, Duration remains around 1000 ms, with occasional
big jumps throughout the various data sets. However, one
attribute that shows a distinctive change throughout the pro-
gram as well as close to the failure, is Latency. Indeed, Laten-
cy increases over time. As shown in Table 1, the minimal
value goes from 13 ms to 20 ms and finally to 33 ms, and the
maximum value increases from 2031 ms to 3890 ms. There
are occasional big increases, but the biggest increase occurs in
the last data set, closer to the failure (3890 ms).

Table 1: SOM maps for Latency

Records 1-1000 Records 10 000 to 11 000

Records 20 000 to 21 000 Last 1000 records before crash

In order to find more detailed and usable information

about the observed pattern in Latency, a more detailed SOM
analysis for that attribute was conducted. The analysis was
performed with data sets close to the failure and is described
in the next section.

6.4.2 Behaviour of Latency close to the failure

A more detailed analysis of Latency was performed with
the last 50 and the last 100 records before the failure. An ex-
amination of the resulting component maps confirmed the
previous observations with more specific evidence. These
maps are displayed in Table 2.

Table 2: SOM maps of Latency close to the failure

Last 100 records before failure

Last 50 records before failure

The SOM maps showed that in the last 100 records, La-

tency remains mostly around 40 ms, which is much higher
than the values of 13 ms to 20 ms in the first 21 000 records.
The SOM maps also indicated a lack of homogeneity in the

records close to the point of failure. Indeed, the number of
clusters in the data of the last 50 records was considerably
higher than the number of clusters in the previous data sets.
This indicates that these records are erratic in terms of the
other attributes used to train the maps, confirming the lack of
correlation between Latency and the other attributes.

Conclusion based on forensic analysis of the crash file
The conclusion reached from the above analysis of the

crash file and of Latency was that the system did indeed slow
down towards the end of the C++ program‘s execution. This
slowdown was due to a significant increase in Latency, which
was used as our first near-miss indicator.

After establishing a near-miss indicator from the crash
file, the same analysis was conducted with the iotop output
file.

6.5 FORENSIC ANALYSIS OF iotop OUTPUT FILE

The forensic analysis of the iotop output file followed
the same process as with the crash file. SOM maps were gen-
erated for the following attributes in the file: Time, Disk read,
Disk write, I/O and Command (process name). Significant
changes were observed in Disk read, Disk write, and Com-
mand and were used to identify near-miss indicators as speci-
fied below:

 The number of running processes declines towards

the point of failure.

 The values of Disk read are more than double the

overall average.

 In the last few hundred records before the failure, the

value of Disk write drops to 0 at various instances.

6.6 CREATING A NEAR-MISS FORMULA FROM THE

NEAR-MISS INDICATORS
In order to provide reliable results, the near-miss formula
had to be not only accurate, but also relevant when execut-
ing the program with different variables. These variables
were the size of the video clip to be copied, the amount of
free space on the flash disk, and the number of processes
running in parallel to the C++ program. To this end, the

program was executed a number of times with various values

for these variables, each time changing the size of the video

clip or the amount of free space on the flash disk, as well as

running fewer or more programs concurrently. The validity of

the previously identified near-miss indicators was verified in

every new execution of the program.
A number of flash disks with factory settings were used to

run the tests several times. Once all the flash disks had been
used at least once, their content was deleted to empty the flash
disks and get back to their original free space and similar re-
sults were obtained (same number of maximum video files
stored in flash disk). No specialised tool was used the delete
the files stored in the flash drives.

In order to observe the trends in the values of Latency, its
overall average and the WMA were calculated for every new
record as follows.

The WMA of the last 200 records was displayed continu-
ously. This was based on the results of the previous analysis
indicating that some behavioural change was observed in the
last few hundred records before the failure. For the first 200
records of the program, the ―standard‖ WMA was calculated

using all the previous values of Latency. Then, from record
number 201, only the previous 200 records were retained to
calculate the WMA.

Regarding the average of Latency, the overall average was
calculated for every new record, using all the previous values.
The motivation for this process was the fact that the average
of Latency was not known beforehand every time the program
was run. So, it was calculated as the program was running
with the assumption that closer to the end of the program‘s
execution (before the failure), the average would stabilise to
its overall final value. A potential near-miss indicator (‗WMA
is higher than average‘) that was observed when the final
average had been reached would be less likely to be a false
alarm, as the other near-miss indicators would also be
applicable. The crash file resulting from the above
calculations is shown in Figure 10.

Figure 10: Adapted crash file for near-miss detection

The outcome of this verification process was that results

similar to the initial forensic analysis were obtained, except
for the number of processes that would either be smaller than
or equal to the initial number. No explanation could be pro-
vided for this observed pattern. Consequently, the final near-
miss indicators used to define the near-miss formula were
identified as follows:

 The WMA of Latency is greater than its average.

 The number of running processes before the failure

is less than or equal to the initial number at the be-

ginning of the program‘s execution.

 The disk-reading bandwidth is more than twice its

overall average.

 The disk-writing bandwidth drops to 0 at various in-

stances.

Based on the above analysis, the formula to detect poten-
tial near misses was defined as follows:

 The near-miss formula uses the following notation:

 Nr-Processes: number of processes

 Initial-Nr-Processes: Initial number of processes

 WMA-latency: WMA of latency

 Avg-latency: average of latency

 Avg-DR: Average of Disk reading bandwidth

It is worth noting that the above formula was specific to

the software failure at hand, the conditions of its occurrence

(lab experiment) and its analysis (iotop used for correlation

to program‘s logs). However, it can be a starting point for the
identification of near misses for similar types of failures. The
formula was used in the next and last step of the experiment to
detect near misses during the program‘s execution, and the
process involved is documented in the next section.

6.7 DETECTION OF NEAR MISSES AT RUNTIME
The goal of this step was to verify whether near misses

could be detected during the execution of the program by
using the formula developed in the previous step. The plan
was to apply the near-miss formula to the logs as they were
generated. Any log whose attributes matched the near-miss
formula was then labelled as a potential near miss and an alert
was sent. The alert was a notification message with some
suggestion to prevent the failure. Preventing the failure was
outside the scope of this study, which means that no attempt
was made to implement the suggested countermeasures. The
alert was generated to enable the collection of digital evidence
of the potential near miss before the impending software fail-
ure occurred. However, the collection of evidence was not
performed as it was beyond the scope of the experiment.

The near-miss formula was inserted in the program‘s loop
after calculation of all the necessary attributes. The crash file
was generated with 21 829 records before the failure, a loop
size of 22 000, and the original video clip. The formula
matched 162 records at various instances in the crash file,
mostly close to the failure.

The first of the near-miss alerts started at record 5 742, in-
dicating that the near-miss formula did not apply to the early
records in the file, as was expected (see Figure 11). Only 9%
of the near-miss alerts (13) appeared in the first half of the
program‘s execution and are highlighted in Figure 8. These
are clearly false alarms. The remaining 91% of the near-miss
alerts were generated in the second half of the program‘s exe-
cution before the failure. This again confirms that the near-
miss indicators mostly emerged close to the failure. The last
alert was generated 6s 872 ms before the failure. This indi-
cates that it was signalling a near miss as it was not immedi-
ately followed by the failure, although it was very close to its
occurrence.

Figure 11: First near-miss alerts in the crash file

6.8 EVALUATION OF PROTOTYPE

The prototype was successful in the sense that it achieved
the specified goals, which were to demonstrate the viability of
using the digital forensic process for software failure analysis
and demonstrate the viability of detecting near misses at
runtime. In addition, it also showed the following:

 Near-miss detection can reduce the amount of rele-

vant digital evidence that needs to be collected for

root-cause analysis. Indeed, out of the 13 initial at-

tributes in the crash file and the nine attributes in the

iotop output file, only four (latency, processes,

If Nr-Processes <= Initial-Nr-Processes AND
WMA-latency > Avg-latency AND
DR > (Avg-DR x 2) AND
DW == 0

 Near Miss

12

disk-reading bandwidth and disk-writing bandwidth)

proved relevant for near-miss detection.

 In order to detect near misses, indicators of an up-

coming failure need to be identified. A forensic

analysis of the failure logs is a promising approach.

The forensic analysis can provide both the root cause

of the failure and its near-miss indicators.

Furthermore, the validity of the resulting near-miss formu-
la demonstrates the reliability of the technique used for the
root-cause analysis, in other words the SOM analysis. Since
the SOM algorithm is optimised for large data sets, it is ex-
pected that this process can scale to a real-life failure with a
higher number of logs than was used in the prototype. Previ-
ous research using the SOM analysis to analyse real-life sys-
tem logs support this claim (Fei et al, 2005).

On the downside – although the created near-miss formula
proved effective, it was not a direct application of the general
formula presented in Equation (1). Nonetheless, near misses
were defined based on the characteristics of a failure, as is the
case in Equation (1), where failures are characterised by their
downtime. Additionally, some false alarms were observed.
Handling these false alarms automatically could be addressed
with a prioritisation mechanism based on time. E.g. how close
the alarm was generated to the beginning of the program exe-
cution or to the exhaustion of the flash disk or using the num-
ber of alerts per time period. However, this is for future work
as it was not one of the goals of the prototype.

7 CONCLUSION
This paper proposed the technique of near-miss analysis to

assist in the digital forensic investigation of software failures.
Such a forensic investigation may be required following
catastrophes due to the failure and resulting in a court case.
The concept of a near miss was used to help identify the root
cause of a software failure and to prevent its recurrence. This
was achieved through the pattern analysis of the system logs
close to the point of failure. An original architecture of a near-
miss management system (NMS) was proposed to combine
near-miss analysis and digital forensics to automate the detec-
tion of near misses and identify relevant digital evidence re-
quired for the root-cause analysis and the potential failure
prevention. The validity of these two features (i.e. near-miss
detection and evidence identification) of the NMS architec-
ture was demonstrated through a prototype. Future work that
is suggested involves the completion of a prioritisation
scheme to select the most relevant near misses that can be
used for evidence collection and reduce false positives.

REFERENCES

Andriulo, S. & Gnoni, M. (2014). Measuring the effectiveness of a near-

miss management system: An application in an automotive firm supplier.

Reliability Engineering and System Safety, vol. 132, pp. 154-162.

Aspden, P., Corrigan, J.M., Wolcott, J. & Erickson, S.M. (2004). Patient

safety: Achieving a new standard for care, The National Academy Press,

Washington, DC. [Online] Available from:

http://www.nap.edu/catalog/10863.html. [Accessed: 8 December 2014].

Barach, P. & Small, S.D. (2000). Reporting and preventing medical mishaps:

Lessons from non-medical near miss reporting systems. British Medical

Journal, 320(7237), 759-763. March.

Belles, R-J., Cletcher, J.W., Copinger, D.A., Dolan, B.W., Minarick, J.W.,

Muhlheim, M.D, O'Reilly, P.D., Weerakkody, S. & Hamzehee, H. (2000).

Precursors to Potential Severe Core Damage Accidents: 1998 – A Status

Report. NUREG/CR-4674 ORNL/NOAC-232, Vol. 27. Oak Ridge National

Laboratory, US. Nuclear Regulatory Commission Office of Nuclear Regula-

tory Research Washington, DC 20555-0001.

Bier, V.M. & Mosleh, A. (1990). The analysis of accident precursors and

near misses: implications for risk assessment and risk management. Reliabil-

ity Engineering and System Safety, 27, 91-101

Bihina Bella, M.A., Olivier, M.S. & Eloff, J.H.P. (2011). Proposing a Digi-

tal Operational Forensic Investigation Process. In Proceedings of the 6th

International Workshop on Digital Forensics and Incident Analysis (WDFIA

2011), 7-8 July, London, UK.

Bihina Bella, M.A., Olivier, M.S. & Eloff, J.H.P. (2012). Near Miss Detec-

tion for Software Failure Prevention. In Proceedings of the 2012 Southern

Africa Telecommunications Network and Applications Conference

(SATNAC 2012), 2-5 September, George, South Africa.

Bihina Bella, M.A., Eloff, J.H.P. & Olivier, M.S. (2014). A Near-miss Man-

agement System to Facilitate the Forensic Investigation of Software Fail-

ures. In Proceedings of the 13th European Conference on Cyber Warfare and

Security (ECCWS 2014), 3-4 July, Piraeus, Greece.

Bogdanich, W. & Rebelo, K. (2010). A pinpoint beam strays invisibly, harm-

ing instead of healing. The New York Times. 28 December. [Online] Availa-

ble from:

http://www.nytimes.com/2010/12/29/health/29radiation.html?pagewanted=a

ll&_r=0 [Accessed: 1 April 2013].

Callum, J.L., Kaplan, H.S., Merkley, L.L., Pinkerton, P.H., Rabin-Fastman,

B., Romans, R.A., Coovadia, A.S. & Reis, M.D. (2001). Reporting of near-

miss events for transfusion medicine: improving transfusion safety. Transfu-

sion, 41, 1204-1211. October. [Online] Available from:

http://www.iakh.de/tl_files/oldcontent/literatur/ nearmiss.pdf. [Accessed: 22

November 2014].

Cooke, R. & Goossens, L. (1990). The accident sequence precursor method-

ology for the European Post-Seveso era. Reliability Engineering and System

Safety, 27, 117-130.

Corby, M.J. (2000). Operational Forensics. Information Security Manage-

ment Handbook. Fourth Edition. Vol. 2, chapter 28. Auerbach Publications:

Boca Raton.

Engelbrecht, A.P. (2003). Computational Intelligence: An Introduction.

John Wiley & Sons.

FDA. (2013). MAUDE - Manufacturer and User Facility Device Experi-

ence. [Online] Available from:

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/

TextSearch.cfm [Accessed: 26 March 2013].

Fei, B., Eloff, J., Venter, H. & Olivier, M. (2005). Exploring Forensic Data

with Self-Organizing Maps, Advances in Digital Forensics, 194, 113-123.

Springer.

http://www.nap.edu/catalog/10863.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117768/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117768/
http://topics.nytimes.com/top/reference/timestopics/people/b/walt_bogdanich/index.html?inline=nyt-per
http://www.nytimes.com/2010/12/29/health/29radiation.html?pagewanted=all&_r=0
http://www.nytimes.com/2010/12/29/health/29radiation.html?pagewanted=all&_r=0
http://www.iakh.de/tl_files/oldcontent/literatur/%20nearmiss.pdf
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/%20TextSearch.cfm
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/%20TextSearch.cfm
http://link.springer.com/search?facet-author=%22B.+Fei%22
http://link.springer.com/search?facet-author=%22J.+Eloff%22
http://link.springer.com/search?facet-author=%22H.+Venter%22
http://link.springer.com/book/10.1007/0-387-31163-7

Fried, E. (2009). Near Miss Project Update. Near Miss Project Newsletter,

vol. I, Issue 3. [Online] Available from:

http://www.nyacp.org/files/public/Near%20Miss%

20Newsletter_Issue%203_Email%20Version.pdf [Accessed: 10 December

2014].

Gnoni, M.G., Andriulo, S., Nardone, P. & Maggio, G. (2013). Lean occupa-

tional safety: an application for a near-miss management system design.

Safety Science, 53, 96-104. March.

Goode, N., Salmon, P., Lenne, M. & Finch, C. (2014). UPLOADS: An inci-

dent reporting and learning system for the outdoor activity sector. Power-

Point slides. [Online] Available from: http://uploadsproject.files.wordpress.

com/2014/05/goode-n-salmon-p-2013-uploads-5th-asia-oceania-camping-

congress.pdf [Accessed: 28 November 2014].

Hecht, M. (2007). Use of software failure data from large space systems.

Presented at the Workshop on Reliability Analysis of System Failure Data.

Cambridge, UK.

Holenstein, B., Highleyman, B. & Holenstein, P.J. (2003). Breaking the

Availability Barrier: Survivable Systems for Enterprise Computing, 1, 27-28.

December. Bloomington, USA: Authorhouse.

Holt, C.C. (2004). Forecasting seasonals and trends by exponentially

weighted moving averages. International Journal of Forecasting, 20, 5-10.

January-March.

IAEA. (2013b). Prevention of Accidental Exposure in Radiotherapy. Train-

ing course. Module 2.10. Accident update, some newer events - UK, USA &

France. [Online] Available from:

https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_

TrainingMaterial/AccidentPreventionRadiotherapy.htm [Accessed: 19

March 2013].

ISMP-Canada (Institute for Safe Medication Practices Canada). (2014).

Definitions of Terms. [Online] Available from: http://www.ismp-

canada.org/definitions.htm [Accessed: 24 November 2014].

ISO/IEC 27037. (2012). Information technology – Security techniques –

Guidelines for identification, collection, acquisition, and preservation of

digital evidence. [Online] Available from: http://www.iso.org/iso/ cata-

logue_detail?csnumber=44381 [Accessed: 8 April 2015].

Johnson, J.W. & Rasmuson, D.M. (1996). The US NRC‘s Accident Se-

quence Precursor Program: an overview and development of a bayesian

approach to estimate core damage frequency using precursor information.

Reliability Engineering and System Safety, 53, 205-216.

Jones, S., Kirchsteiger, C. & Bjerke, W. (1999). The importance of near miss

reporting to further improve safety performance. Journal of Loss Prevention

in the Process Industries, vol. 12, pp. 59-67.

Jucan, G. (2005). Root Cause Analysis for IT Incidents Investigation.

[Online] Available from: http://hosteddocs.ittoolbox.com/GJ102105.pdf

[Accessed: 10 October 2010].

Kleindorfer, P., Oktem, U.G., Pariyani, A. & Seider, W.D. (2012). Assess-

ment of catastrophe risk and potential losses in industry. Computers and

Chemical Engineering, 47, 85-96.

Laprie, J.C. (Ed.). (1992). Dependability: Basic Concepts and Terminology.

Springer-Verlag, Wein, New York.

Leveson, N. (1995). Safeware. Boston: Addison-Wesley Publishers.

Leveson, N. (2015). A systems approach to risk management through lead-

ing safety indicators. Reliability Engineering and System Safety, vol. 136, pp.

17-34.

Linux.die.net. (2014). Iotop(1) – Linux man page. [Online] Available from:

http://linux.die.net/man/1/iotop [Accessed: 14 November 2014].

Mürmann, A. & Oktem, U. (2002). The near-miss management of operation-

al risk. The Journal of Risk Finance, 4(1), 25-36. 23 July.

Napochi. (2013). AlmostMe. Near Miss medical error reporting solution.

[Online] Available from: http://www.almostme.com/ [Accessed: 1 December

2014].

NASA. (2006). Safety Depends on "Lessons Learned". The ASRS celebrates

its 30th anniversary. Callback, Number 317, March/April 2006. [Online]

Available from: http://asrs.arc.nasa.gov/publications/callback/cb_317.htm

[Accessed: 29 October 2013].

Nashef, S.A. (2003). What is a near miss? The Lancet, 361(9352), 180-181

(January). [Online] Available from: http://www.thelancet.com/journals/

lancet/article/PIIS0140-6736(03)12218-0/fulltext [Accessed: 1 December

2014].

Near-miss Management LLC. Dynamic Risk Predictor Suite. [Online] Avail-

able from: http://www.nearmissmgmt.com/products.html [Accessed: 03

December 2014].

Pertet, S. & Narasimhan, P. (2005). Causes of failures in Web Applications.

Carnegie Mellon University: Parallel Data Lab Technical Report CMU-

PDL-05-109. (December).

Phimister, J., Vicki, R., Bier, M. & Kunreuther, H.C. (2004). Accident Pre-

cursor Analysis and Management: Reducing Technological Risk Through

Diligence, National Academies Press. [Online] Available from:

http://www.nap.edu/catalog/11061.html [Accessed: 15 May 2012].

Phimister, J.R., Oktem, U., Kleindorfer, P.R. & Kunreuther, H. (2000). Near-

Miss System Analysis: Phase I. Wharton School, Center for Risk Manage-

ment and Decision Processes. [Online] Available from:

http://opim.wharton.upenn.edu/risk/downloads/ wp/nearmiss.pdf [Accessed:

19 July 2011].

Phimister, J.R., Oktem, U., Kleindorfer, P.R. & Kunreuther, H. (2003). Near-

miss incident management in the chemical process industry. Risk Analysis,

23(3), 445-459.

Presuhn, R. (2002). Management Information Base (MIB) for the Simple

Network Management Protocol (SNMP). RFC 3418. December. [Online]

Available from: http://tools.ietf.org/html/rfc3418. [Accessed: 29 July 2011].

Ritwik, U. (2002). Risk-based approach to near miss. Hydrocarbon Pro-

http://www.nyacp.org/files/public/Near%20Miss%25%2020Newsletter_Issue%203_Email%20Version.pdf
http://www.nyacp.org/files/public/Near%20Miss%25%2020Newsletter_Issue%203_Email%20Version.pdf
https://rpop.iaea.org/RPOP/RPoP/Content/Documents/TrainingAccidentPrevention/Lectures/AccPr_2.10_Accident_update1_WEB.ppt
https://rpop.iaea.org/RPOP/RPoP/Content/Documents/TrainingAccidentPrevention/Lectures/AccPr_2.10_Accident_update1_WEB.ppt
https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm
https://rpop.iaea.org/RPOP/RPoP/Content/AdditionalResources/Training/1_TrainingMaterial/AccidentPreventionRadiotherapy.htm
http://www.ismp-canada.org/definitions.htm
http://www.ismp-canada.org/definitions.htm
http://www.iso.org/iso/
http://hosteddocs.ittoolbox.com/GJ102105.pdf
http://linux.die.net/man/1/iotop
http://grace.wharton.upenn.edu/risk/downloads/02-02-MO.pdf
http://grace.wharton.upenn.edu/risk/downloads/02-02-MO.pdf
http://www.almostme.com/
http://asrs.arc.nasa.gov/publications/callback/cb_317.htm
http://www.thelancet.com/journals/lancet/issue/vol361no9352/PIIS0140-6736(00)X0334-0
http://www.thelancet.com/journals/%20lancet/article/PIIS0140-6736(03)12218-0/fulltext
http://www.thelancet.com/journals/%20lancet/article/PIIS0140-6736(03)12218-0/fulltext
http://www.nearmissmgmt.com/products.html
http://www.nap.edu/catalog/11061.html
http://opim.wharton.upenn.edu/risk/downloads/%20wp/nearmiss.pdf
http://tools.ietf.org/html/rfc3418

14

cessing, pp. 93-96. October.

Sevcik, P. (2008). Service Level Agreements for Business-Critical Applica-

tions. NetForecast Report 5091. January. [Online] Available from:

http://www.netforecast.com/wp-

content/uploads/2012/06/NFR5091SLAsforBusiness-

CriticalApplications.pdf [Accessed 16 February 2013].

Trigg, J. & Doulis, J. (2008). Troubleshooting: What can go wrong and how

to fix it. Practical Guide to Clinical Computing- Systems: Design, Opera-

tions, and Infrastructure. Chapter 7, pp. 105-128. Elsevier: London.

Vacca, J.R. & Rudolph, K. (2010). System Forensics, Investigation and

Response. Chapter 1, pp. 2-16. Sudbury, Mass.: Jones & Bartlett Learning.

Viscovery.net. (2014). Viscovery SOMine 6 - Explorative data mining based

on SOMs and statistics. 30 August. [Online] Available from:

http://www.viscovery.net/somine/. [Accessed: 5 November 2014].

Wu, W., Yang, H., Chew, D.A.S., Yang, S., Gibb, A.G.F. & Li, Q. (2010).

Towards an autonomous real-time tracking system of near-miss accidents on

construction sites. Automation in Construction, 19, 134-141. [Online] Avail-

able from: http://202.114.89.42/resource/pdf/5720.pdf [Accessed: 22 No-

vember 2014].

http://www.netforecast.com/wp-content/uploads/2012/06/NFR5091SLAsforBusiness-CriticalApplications.pdf
http://www.netforecast.com/wp-content/uploads/2012/06/NFR5091SLAsforBusiness-CriticalApplications.pdf
http://www.netforecast.com/wp-content/uploads/2012/06/NFR5091SLAsforBusiness-CriticalApplications.pdf
http://www.viscovery.net/somine/
http://202.114.89.42/resource/pdf/5720.pdf

	1. Introduction
	2. Overview of NMS
	References

