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Abstract— Digital forensics has been proposed as a methodology for doing root-cause analysis of major software failures for quite a 

while. Despite this, similar software failures still occur repeatedly. A reason for this is the difficulty of obtaining detailed evidence of 

software failures.  Acquiring such evidence can be challenging, as the relevant data may be lost or corrupt following a software system‘s 

crash. This paper proposes the use of near-miss analysis to improve on the collection of evidence for software failures. Near-miss analysis 

is an incident investigation technique that detects and subsequently analyses indicators of failures. The results of a near-miss analysis in-

vestigation are then used to detect an upcoming failure before the failure unfolds. The detection of these indicators – known as near misses 

– therefore provides an opportunity to proactively collect relevant data that can be used as digital evidence, pertaining to software failures. 

A Near Miss Management System (NMS) architecture for the forensic investigation of software failures is proposed. The viability of the 

proposed architecture is demonstrated through a prototype. 
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1. INTRODUCTION

CCORDING to Laprie (1992) ―a system failure occurs 
when the delivered service no longer complies with the 
specifications, the latter being an agreed description of 

the system's expected function and/or service‖. Therefore, for 
the purposes of the research in hand, a software failure is de-
fined as the unplanned cessation of a software system to func-
tion as specified. Software systems can fail for various rea-
sons including system overload, logic errors, security breach-
es, human errors, and glitches in routine maintenance opera-
tions (e.g. failed software upgrade) (Pertet & Narasimhan, 
2005). As software is embedded in a range of devices and 
plays a vital role in a number of industries, a failed software 
application can affect any area of a user‘s day-to-day life and 
may even be fatal.  

Consider for example the various cases of software fail-
ures in medical devices such as radiation therapy machines, 
external infusion pumps and implantable pace makers. In 
radiaton therapy machines in particular, failures of the 
embedded software system causes serious problems such as 
overdosage of radiation and administration of incorrect 
treatment that result in severe burns or deaths of the affected 
patients. Such catastrophic cases of radiation therapy software 
glitches have been reported many times in the media 
(Bogdanich & Rebelo, 2010) as well as on the portals of the 
FDA (the U.S. Food and Drug Administration) (FDA, 2013) 
and the IAEA (International Atomic Energy Agency) (IAEA, 
2013). 

Disastrous events as the above mentioned often result in 
lawsuits where a thorough post-mortem investigation is 
conducted.  Comprehensive forensic reports are available for 
these cases, but do not address the software aspect of the 
investigation. Such an investigation is absolutely necessary to 
prevent the recurrence of these catastrophes. To this end, a 
digital forensic investigation is required to understand the root 
causes involved in the software failures.  

Digital forensics is the process of methodically examining 
computer media as well as network components, software and 

memory for digital evidence (Vacca and Rudolph, 2010). This 
evidence is usually in the form of system logs, but may in-
clude other relevant data such as digital images. The digital 
evidence is used to provide clarity on the cause and circum-
stances of a computer-based event in support of the criminal 
justice system. As such, digital forensics is primarily used for 
the investigation of computer crimes and security-related 
events (e.g. breach of company policy). Nevertheless, we 
argue that it can also be applied to non-criminal events such 
as catastrophic failures that require a court case as the exam-
ples provided earlier. In such cases, using digital forensics 
instead of existing informal failure analysis techniques has the 
benefits of providing results admissible in a court of law due 
to the scientific foundation and the sound digital evidence 
used for the root-cause analysis. 

  However, being a reactive process, digital forensics can 
only be applied after the occurrence of a failure. This limits 
its effectiveness as data that could serve as potential evidence 
may be destroyed during and after the failure. Acquiring such 
data is necessary for the validity of the results of the forensic 
investigation. The international ISO/IEC 27037 standard – 
Guidelines for the Identification, Collection, Acquisition and 
Preservation of Digital Evidence (ISO/IEC 27037, 2012) – 
indeed recommends that the evidence collection should be 
prioritised based on volatility. 

In order to address this limitation of digital forensics, it is 
suggested that evidence collection be started at an earlier 
stage, before the software failure actually unfolds, so as to 
detect the high-risk conditions that can lead to a major failure. 
These high-risk conditions, so-called forerunners to failures, 
are known as near misses. By definition, a near miss is a high-
risk event that could have led to an accident, but did not, due 
to some timely intervention or by chance (Jones et al., 1999). 
Almost all major accidents are preceded by a number of near 
misses (Phimister et al., 2004). Contrary to other precursors to 
the failure, a near miss is the closest to the point of failure; in 
other words, it is the closest to the time window during which 
the failure occurs. This concept can be better explained with 
the following example. 
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Consider for instance a potential car collision at a busy in-
tersection. This potential accident could have been preceded 
by the following sequence of events: (1) a driver crossing a 
red traffic light; (2) the driver overspeeding; and (3) the driver 
struggling to slow down when noticing an incoming car. In 
the above scenario, the last high-risk event, Event (3), is the 
near-miss event as it is the closest to the potential crash. The 
fact that the collision was avoided, maybe due to the careful-
ness of the driver of the incoming car, makes this sequence of 
events a near miss. 

Near-miss analysis, which refers to the detection and sub-
sequent analysis of near misses, is a technique used in the 
domain of risk analysis and safety. Like a forensic investiga-
tion, near-miss analysis attempts to identify the root cause of 
accidents and prevent their recurrence and has been used suc-
cessfully in various industries for decades (Phimister et al., 
2004). It is suggested in this paper that this technique should 
also be applied to the forensic investigation of software fail-
ures. Reason being that the output of a near-miss analysis in-
vestigation can be used as digital evidence. Furthermore, it 
broadens the scope of a forensic investigation so to also pre-
vent the recurrence of similar software failures. Indeed, as near 
misses point to the possibly last indicator of an impending 
failure, they provide a fairly complete set of data about that 
failure. By alerting system users of an upcoming failure, an 
opportunity is provided to collect this data at runtime and po-
tentially prevent the failure from unfolding.  

Near-miss analysis is usually performed through electron-
ic near-miss management systems (NMS). An NMS that 
combines near-miss analysis and digital forensics can con-
tribute significantly to the improvement of the accuracy of the 
failure analysis. However, such a system is not available yet 
and its design still presents several challenges, due to the fact 
that neither digital forensics nor near-miss analysis is current-
ly used to investigate software failures and their existing 
methodologies and processes are not directly applicable to 
that task.  

Preliminary partial solutions to these challenges were pre-
sented in Bihina Bella et al. (2011) and Bihina Bella et al. 
(2012) respectively for digital forensics and near-miss analy-
sis. An initial near-miss management model based on these 
solutions was presented as work-in-progress in Bihina Bella 
et al. (2014). The current paper presents the revised model 
and original NMS architecture that resulted from this previous 
work. 

2. OVERVIEW OF NMS 

This section provides some background information on 
NMSs. It first presents the types of NMSs currently available 
and then reviews their functionality. 

  

2.1 TYPES OF NMSS 
There are essentially two types of NMSs: single or dual. A 

single NMS only handles near misses, while a dual NMS 
handles both near misses and accidents (Phimister et al., 
2000). A review of the literature on NMSs indicated that most 
of the research on near-miss analysis focuses on single NMSs.  

Initially limited to the nuclear (Phimister et al., 2004) and 
aviation industries (NASA, 2006), research on the design of 
effective NMSs has received much attention in a wide range 
of industries over the last couple of years (Wu et al., 2010; 
Gnoni et al., 2013; Andriulo & Gnoni, 2014; Goode et al., 
2014), especially in the healthcare industry for improved pa-

tient safety (Barach & Small, 2000; Callum et al., 2001; 
Aspden et al., 2004; Fried, 2009). Most NMSs in use today 
are proprietary systems designed specifically for the organisa-
tion that uses them. Barach and Small (2000) provide a com-
prehensive list of proprietary NMSs in various industries. 

Apart from proprietary ―private‖ NMSs, some commercial 
NMSs are publicly available on the market. Commercial 
NMSs are mostly industry-specific. Examples include Al-
mostME, an NMS for the medical field (Napochi, 2013), and 
Dynamic Risk Predictor Suite (Near-miss Management LLC, 
2014), a comprehensive NMS designed for manufacturing 
facilities. 

 

2.2 Functionality of NMSs 
An ideal NMS is required to perform all activities pertain-

ing to near-miss analysis. These activities are summarised in 
the following diagram by Phimister et al. (2000). The diagram 
uses the following notation: 

Dissem: shortcut for dissemination of information 
R.C.A: Root-cause analysis 
Sol. I.D.: Solution identification 
 

 
Figure 1: Near-miss management process (Phimister et al., 2000) 

 
However, most importantly, an NMS focuses on and per-

forms the following three tasks: 

 Identification of near misses 

 Selection and prioritisation of near misses for analysis 

 Root-cause analysis of the selected near misses 

 
2.2.1 Techniques for the identification of near misses 

The identification of near misses is often done manually 
by means of observation. Recognising an observed event or 
condition as a near miss requires a clear definition of what 
constitutes a near miss with various supporting examples. 
Organisations therefore spend considerable effort to formulate 
a simple and all-encompassing definition of near misses that 
is relevant for their respective business operations (Ritwik, 
2002; Phimister et al., 2003). This definition can differ signif-
icantly from one industry to the next.  

For instance, in the medical field, a near miss is defined as 
―an event that could have resulted in unwanted consequences, 
but did not because either by chance or through timely inter-
vention the event did not reach the patient‖ (ISMP-Canada, 
2014). For example, a hospital doctor mistakenly prescribes 
penicillin to a patient who is allergic to the drug. The error 
goes unnoticed by both the pharmacist and the nurse, but the 
patient mentions his allergic condition just before swallowing 
the tablets and the nurse stops him just in time (Nashef, 2003).  

Observed near misses such as the above are most often re-
ported manually into the NMS. As such, NMSs are often 
called near-miss reporting systems. However, some effort has 
also been made at the intelligent detection of near misses 
through the NMS by defining metrics to characterise and 
quantify near misses. 



  

 

Much of the industrial work on automated near-miss detec-
tion is based on study reports from the US Nuclear Regulatory 
Commission (NRC) and involves the use of Bayesian statistics 
to determine the risk of a severe accident based on operational 
data of observed unsafe events (Belles et al., 2000). Examples 
of such events include the degradation of plant conditions and 
failures of safety equipment (Belles et al., 2000).  

Significant research has also been conducted in other in-
dustries to find generic metrics or signs of an upcoming acci-
dent, such as equipment failure rates, or failures of system 
components (Leveson, 2015). Probabilistic risk analysis 
(PRA), a recurring suggestion, also consists of estimating the 
risk of failure of a complex system by breaking it down into its 
various components and determining potential failure se-
quences (Phimister et al., 2004).  

More recent research has proposed the use of location 
tracking information and sensors for environment surveillance 
to detect near misses in dynamic and uncontrolled environ-
ments such as on construction sites (Wu et al., 2010). In all the 
above work, near misses are usually identified as those events 
that exceed a predefined level of severity. 

 
2.2.2 Techniques for the prioritisation of near misses 

Near misses can be frequent. In actual fact, they can be as 
much as 7-100 times more frequent than accidents (Aspden et 
al., 2004). This high volume of near misses can become un-
manageable due to limited investigative resources. Therefore, 
it is necessary to select and prioritise near misses that are 
passed on for root-cause analysis. Only near misses closest to 
the impending accident are retained as they offer the most 
complete data about the particular accident. Various quantita-
tive and qualitative approaches are used to prioritise near 
misses across industries.  

The two main approaches used to prioritise near misses 
are risk-based classification and statistical analysis.  

Risk-based classification ranks near misses according to 
the severity level of their potential consequences or their fre-
quency. Determining the severity of the likely impact of a 
near miss can be done with a risk decision matrix that assigns 
a weight to the near-miss ―relevancy‖ to help identify the 
potential worst-case scenario (Ritwik, 2002). Kleindorfer et al 
(2012) also propose the risk level of a near miss to be propor-
tional to the amount of time that the event caused the system 
to exceed predefined safety and quality limits. This time 
measurement is used to determine the risk of profit losses by 
calculating the actual loss that would be incurred for that un-
safe period of time.  

In terms of statistical analysis, Bayesian statistics is often 
proposed to estimate the frequency of severe accidents based 
on the frequency of observed near misses (Bier & Mosleh, 
1990; Johnson & Rasmuson, 1996). Other factors used to 
classify near misses include the existence of initiating events 
and the probability of successful recovery (Cooke & Goos-
sens, 1990). In the finance industry, regression analysis is 
used to estimate the loss distribution of a near miss – hence 
the likelihood of a failure and its losses within a specific 
timeframe – so as to assess its level of severity (Mürmann & 
Oktem, 2002).  

 
2.2.3 Techniques for the root-cause analysis of near misses 

As near misses and accidents have common causes, iden-
tifying the cause of a near miss is a valid method to identify 
the cause of the ensuing or potential accident (Andriulo & 

Gnoni, 2014). Root-cause analysis of near misses can be per-
formed with investigation techniques taken from engineering 
disciplines, such as fishbone diagrams, event and causal fac-
tor diagrams, and failure mode and effects analysis (Phimister 
et al., 2003; Jucan, 2005; Hecht, 2007).  

Applying the above techniques to near-miss analysis in 
the software industry presents a number of challenges that are 
discussed next. 

 

3 CHALLENGES TO APPLYING EXISTING NMS TECH-

NIQUES TO THE SOFTWARE INDUSTRY 
3.1 CHALLENGES TO THE IDENTIFICATION OF 

NEAR MISSES  
Identifying near misses through observed physical events 

and conditions, as is done in many industries, is especially 
challenging in the software industry. Indeed, in the case of 
software applications, near misses might not even be visible 
as no system failure occurs and the events are virtual rather 
than physical. A near-miss might occur in the backend of the 
system (e.g. near exhaustion of memory) with no visible sign 
on the user interface. In the absence of specific near misses to 
refer to, providing a definition that clearly describes near 
misses in software systems is also a challenge. 

An automated intelligent near-miss detection process is 
therefore required. However, although existing techniques can 
provide useful results, they are generally specific to the indus-
try concerned and often require prior knowledge about near 
misses from historical data. Regrettably such data is not yet 
available in the software industry, where the concept of near 
miss is still largely unexplored.  

 

3.2 CHALLENGES TO THE PRIORITISATION OF NEAR 

MISSES  
Although they all have some merit, both the quantitative 

and qualitative approaches that are used to classify and priori-
tise near misses have disadvantages that limit their application 
to the software industry. For instance, the validity of the 
quantitative analysis techniques depends heavily on the risk 
threshold set for near misses. A high threshold may overlook 
significant events that were not anticipated, especially in new 
or immature software systems, while a low threshold will 
likely result in many false alarms (Phimisteret al, 2004). Be-
sides, generic metrics of near misses might not be applicable 
to all types of systems and all types of failures.  

 

3.3 CHALLENGES TO THE ROOT-CAUSE ANALYSIS OF 

NEAR MISSES  
As valuable as the available techniques for root-cause 

analysis of near misses are, they do not follow sound forensic 
principles and do not rely on sound digital evidence. Thus 
they are not suitable for the NMS proposed in this paper, 
which aims to apply the digital forensic methodology to ana-
lyse near misses in the same way that digital forensics is pro-
posed to investigate software failures.The use of digital foren-
sics to investigate near misses and software failures also faces 
specific challenges as are discussed below.  

The first challenge is the lack of forensic tools and tech-
niques appropriate for software failure analysis. Various fo-
rensic tools and techniques are available for the investigation 
of computer crimes. Although some of these techniques can 
be applied to failure analysis, they are either used to authenti-
cate evidence (e.g. mathematical analysis through a hash al-
gorithm) or to find evidence of a known crime (e.g. string 
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searching or reconstruction of web-browsing activity). They 
are not designed to find the (unknown) root cause of a failure. 
There is also no logical method available to pinpoint the root 
cause of a failure by using the scientific techniques that are 
currently available for data analysis (e.g. statistical analysis). 

Another challenge to the application of the digital forensic 
process to software failure analysis is the need to minimise 
downtime following a software failure. System downtime can 
be very costly and minimising its duration is critical. This 
usually requires restoring the system to its normal functioning 
before a proper root-cause analysis can be performed or com-
pleted. It also requires the quick restoration of the system 
without losing potential evidence. Since restoration can dis-
turb potential evidence, the evidence needs to be collected 
before the system is restored (Corby, 2000). This method dif-
fers from digital forensics, where the analysis can be started 
as soon as the evidence has been collected, regardless of the 
state (on or off) of the suspect machine. The digital forensic 
process clearly does not make provision for a two-phased 
approach to evidence collection (firstly collection of evidence 
and secondly system recovery). It is however valuable for the 
forensic investigation of a software failure. 

As indicated by the above, some work is still required to 
detect, prioritise and analyse near misses from a software 
system perspective. Requirements to guide this work for the 
design of an effective NMS are established in the next sec-
tion. 

 

3.4 REQUIREMENTS FOR THE NMS FOR THE SOFT-

WARE INDUSTRY 
In the light of the above overview of NMSs and the chal-

lenges to near-miss analysis discussed earlier, the authors of 
this paper have identified requirements for an effective NMS 
for the software industry. Amongst others, the following re-
quirements are discussed briefly: 

 A generic model that is relevant to the software in-

dustry at large. The near-miss analysis techniques 

must be applicable to various types of systems and 

should be able to handle different types of software 

failures and near misses.  

 An automated system. In order to limit human error 

and subjectivity, the identification and prioritisation of 

near misses as well as the evidence collection process 

should be automated. 

 

4 PROPOSED SOLUTIONS FOR THE NMS DESIGN 
4.1 DETECTION OF NEAR MISSES 

Since near misses are defined in relation to the associated 
accidents, the definition of a software failure is used as a start-
ing point to define and detect near misses in the software in-
dustry. 

In the Introduction of this paper, a software failure was 
defined as an unplanned cessation of a software system to 
function as specified. Indeed, software systems are designed 
according to specifications in line with the requirements of 
the customer and intended users. The system specifications 
can be functional (the functionality and features of the 
system) as well as non-fonctional (such as quality of service, 
response time and uptime). Since no system is immune to 
malfunction, no system vendor can guarantee that the system 
will work continuously and perfectly as specified at all time. 
In other words, some periods of malfunction and downtime 

are expected. For this reason, the performance requirements 
of a typical software system make provision for a downtime 
―allowance‖. This allowed downtime can be indicated infor-
mally in the system‘s specifications document, but it is usual-
ly specified formally in a contract between the service provid-
er and the receiver of the service (customer). This contract is 
referred to as a service level agreement (SLA) (Sevcik, 2008). 

For instance, the performance requirements for a website 
may specify that the site will be operational and available to 
the customer at least 99.9% of the time in any calendar 
month. This indicates that the website should not be down for 
more than 0.1% of the time in a month. For a 30-day month, 
this corresponds to a downtime limit of 0.03 day or 43 min 
and 12 s. If the website is down for more than this amount of 
time in a month, it does not meet the customer‘s expectation 
in terms of the SLA. Hence it violates the SLA and is consid-
ered to have failed. 

For the purposes of the research in hand, an event is there-
fore considered a failure if its resulting downtime exceeds the 
downtime allowance specified in the SLA. Similarly, an event 
is considered a near miss if it can lead to the exceeding of that 
allowance. We consequently propose the following definition 
of a near miss for the purpose of facilitating its detection: 

 
A near miss is an unsafe event or condition that causes a 

downtime whose duration is close to exceeding the specified 
downtime allowance.  

 
Note that the SLA concept used in the above definition 

does not necessarily refer to a formal contract between the 
service provider and the customer. It is rather a concept that 
refers to any objective predefined performance level specified 
for a given system. As a matter of fact, not all software sys-
tems have formal SLA‘s in place, although they have docu-
mented specifications. Examples include small or trivial ap-
plications developed in-house for internal use that are not 
made available to some external customer. 

 
The above concept is proposed as the basis to formally de-

fine a near miss. This requires determining how close the ex-
perienced downtime should be from exceeding the allowed 
downtime to be considered a near miss. Specifying a near-
miss threshold is suggested for this purpose. This threshold 
will vary from one organisation to the next, depending on its 
risk tolerance. For instance, a 95% threshold (95% of the 
downtime allowed) would correspond to a total monthly 
downtime of 41 min and 2 s. In this case, a near miss is any 
monthly downtime of between 41 min and 2 s (the threshold) 
and 43 min and 12 s (the allowed downtime). This threshold-
based definition of a near miss can be mathematically ex-
pressed as follows (Equation (1)): 

 
Dexperienced is the experienced downtime 
Dallowed is the SLA downtime allowance  
α is the near-miss threshold in percentage; α < 1 
α × Dallowed is the near-miss threshold in time value 
If α × Dallowed ≤  Dexperienced ≤ Dallowed then Dexperienced  is 
a near miss                                                                 (1) 

 
Thus, using the above example of a 95% threshold, the 

following applies: 

α = 0.95 
Dallowed = 43 min and 12 s 



  

 

α × Dallowed = 41 min and 2 s 
If 41 min and 2 s  ≤ Dexperienced ≤ 43 min and 12 s 
then Dexperienced is a near miss. 

 
Figure 2 shows the downtime-based classification of 

events explained above. 

Downtime duration

SLA downtime 

allowance

Near miss 

threshold

Dallowed0

Failure

 α×Dallowed

Near missAcceptable failure

 
 

Figure 2: Classification of unsafe events based on their downtime 

duration  

 
The above definition of a near miss is generic enough to 

be applicable to any type of software system and failure. It is 
also flexible enough to be adapted to the risk tolerance of any 
organisation.  

It is worth noting that downtime was used as the most 
common metric of an SLA, but depending on the type of sys-
tem and failure at hand, other metrics (e.g. throughput, re-
sponse time) could be used and may be more relevant. It is 
also worth noting that in the absence of an SLA, a near miss 
can still be defined by near-miss indicators identified from the 
root-cause analysis of a failure. An example of this scenario is 
provided in the prototype implementation in Section 6. 

 

4.2 PRIORITISATION OF NEAR MISSES 
A near miss was previously defined as a potential failure, 

more specifically as an event that can lead to the violation of 
the SLA. The violation of the SLA was also defined in terms 
of the system downtime. According to the same logic that was 
used to measure the severity of a failure based on the down-
time experienced, the severity of a potential failure or near 
miss can be assessed based on its expected downtime; in other 
words, determining for how long the system will be down in 
the eventuality of an outage caused by this near-miss event. 

To this effect, two parameters are needed: the failure 
probability of the near miss and the expected recovery time 
for the outage or MTTR (mean time to repair). The expected 
downtime is then calculated as the product of the failure 
probability and the MTTR. The MTTR can be obtained from 
the system vendor specifications or through historical obser-
vations. We are currently exploring formulas from the relia-
bility theory of IT systems (Holenstein et al., 2003) to devel-
op a suitable failure probability formula. The system enters a 
―critical zone‖ when the expected downtime is greater than 
the SLA downtime allowance. This can be expressed as the 
following formula (Equation (2)): 

 

Dexpected is the expected downtime due to a failure 

Dallowed is the SLA downtime allowance  

P is the probability of failure, given the current unsafe situa-

tion  

MTTR is the expected recovery time following an outage 

Dexpected = P × MTTR 

If Dexpected  > Dallowed → critical zone                                    (2) 

        
Only events in the critical zone are passed on for analysis. 

If a successful recovery is performed and the outage is pre-

vented when the system is in the critical zone, then this event 
is classified as a near miss. On the other hand, if the system 
recovery is not successful, the event is classified as a serious 
failure in the sense that the SLA has been breached. Both 
cases need to be investigated to identify their root cause and 
prevent their reoccurrence.  

In the case of the failure, the root cause analysis is facili-
tated by the fact that the event data collection occurred before 
the system failed. 

In the case of a near miss, the closeness between the ex-
pected downtime and the SLA downtime allowance can be 
used to assign a risk level to the event. The risk level will 
determine how important it is to conduct a thorough forensic 
analysis of this near miss and how much of the limited re-
sources available can be allocated to this task. However, as 
explained previously, different organisations have different 
risk tolerance levels and may prefer a larger margin of safety 
when detecting a near miss. Instead of using the whole SLA 
downtime allowance to define a near miss, they may specify a 
portion of that downtime as their near-miss threshold. Their 
system will thus enter a critical zone earlier, which will give 
them more time for remedial action. The near-miss threshold 
can be adjusted over time as more experience is acquired in 
detecting and handling near misses. When this threshold is 
included, Equation (2) is adjusted as follows: 

 
 

      α is the near-miss threshold; α ≤ 1  
If Dexpected  ≥ α x Dallowed → critical zone                 (3)    
 

4.3 ROOT-CAUSE ANALYSIS OF NEAR MISSES 
The digital forensic process is followed for the root-cause 

analysis of the near misses and the failures. In Bihina Bella et 
al. (2011), a new forensic investigation process was proposed 
to cater for the challenges to failure analysis of the existing 
digital forensic process. This new process is an adapation of 
the digital forensic process and has four basic stages. The first 
two occur immediately after the failure has been detected: 
firstly, collect digital evidence and secondly, restore the sys-
tem. The third and fourth phases are the evidence analysis and 
the countermeasures specifications. They are conducted once 
the system has been restored. Phases 1, 3 and 4 are part of a 
standard digital forensic investigation, while Phase 2 is a 
troubleshooting task.  

Phase 2 was introduced to limit the downtime duration be-
fore completing the root-cause analysis, which is critical (see 
discussion in Section 3.3). Phase 2 starts once all the evidence 
has been acquired. The failure is then fixed and the system is 
restored to its operational state as quickly as possible. A resto-
ration might be as simple as rebooting the system or it might 
necessitate some preliminary diagnostic of the failure to fix it. 
This will follow a typical troubleshooting process, which re-
quires a recreation of the problem to isolate its cause (Trigg & 
Doulis, 2008). Such system restoration is a temporary solu-
tion with temporary countermeasures (e.g. applying a soft-
ware patch) until the root cause of the failure is identified in 
the subsequent analysis phase. 

The root-cause analysis phase corresponds with the analy-
sis phase of a digital forensic investigation. The digital evi-
dence collected in the first phase is examined in a digital fo-
rensic laboratory to identify the root cause of failure. Digital 
forensic and other scientific techniques are used to analyse the 
digital evidence. The investigation follows the scientific 
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method, which in general involves three main steps: formulat-
ing a hypothesis; predicting evidence for the hypothesis; and 
testing the hypothesis with an experiment (Bernstein, 2009). 

 

5 PROPOSED NMS ARCHITECTURE 
5.1 THE OVERALL NEAR-MISS MANAGEMENT PRO-

CESS 
To detect near misses, the system needs to be monitored 

with a view to recording and reviewing event logs. It is sug-
gested that system events be logged in a central repository 
such as a Syslog server. Event logs that match the near-miss 
formula established in Equation (1) are flagged as potential 
near misses and then sent to another module for prioritisation. 
This module calculates the system‘s failure probability and 
expected downtime based on each potential near miss.  

Afterwards, events identified as being in the critical zone 
are passed on to another component for data collection. The 
Simple Network Management Protocol (SNMP) is proposed 
for this purpose. This Internet-standard protocol enables in-
formation exchange between a manager (central unit) and its 
agents (the other system units) (Presuhn, 2002). In this case, 
the SNMP manager is the data collection module and it re-
quests additional information about the event from the rele-
vant units through their SNMP agents. Corrective steps are 
subsequently taken to prevent a system failure, if possible. 
Finally the collected data is used for root-cause analysis of the 
event. This root-cause analysis follows the forensic investiga-
tion process specified earlier. Upon identification of the root 
cause of the event, recommendations are made to correct the 
system flaw. 

The resulting architecture of an NMS is described next. 
 

5.2 THE NMS ARCHITECTURE 
The proposed NMS architecture is shown in Figure 3. The 

architecture consists of five main components:  

 The Near-Miss Monitor 

 The Near-Miss Classifier 

 The Near-Miss Data Collector 

 The Failure Prevention 

 The Event Investigation 
 
Some components are made up of several sub-

components. Each of the main components processes the 
event logs from the units of the system that is being moni-
tored. The five main components of the system are used to 
perform a multi-staged filtering process that progressively 
discards ―irrelevant‖ events and only retains near misses with 
the highest risk factor. A detailed description of the main 
components of the architecture follows.  

 
5.2.1 The Near-Miss Monitor 

The Near-Miss Monitor monitors the units of the system 
to identify potential near misses based on the near-miss defi-
nition formula in Equation (1). Events from the monitored 
system are logged to provide information relevant for near-
miss detection in line with the near-miss formula. The logged 
information must include, among others, the status of the unit 
(up or down) and the duration of the downtime, if applicable. 
If the system goes down and a match is found between these 
parameters and the near-miss definition formula, the down-
time experienced is classified as a potential near miss and sent 
to the Near-Miss Classifier for prioritisation.  

 
5.2.2 The Near-Miss Classifier 

The Near-Miss Classifier is expected to calculate the risk 
level of the potential near misses based on their failure proba-
bility and expected downtime. The complete formula for the 
failure probability is still a work-in-progress. The Near-Miss 
Classifier prioritises events according to their failure probabil-
ity as explained in Equation (3). Logs of events identified as 
being in the ―critical zone‖ are sent to the Near-Miss Data 
Collector and an alarm is raised to notify the system adminis-
trator. 

 
5.2.3 The Near-Miss Data Collector 

This component is implemented as an SNMP Manager. 
The SNMP Manager requests data from the units in the criti-
cal zone. Such data may include the source identifier (e.g. IP 
address), running processes, system settings and error mes-
sages. The data is then stored in the Event Data table and 
transferred to the Failure Prevention module. 

 
5.2.4 The Failure Prevention 

With this component, the system administrator uses the 
collected data to identify and implement appropriate correc-
tive steps in an attempt to prevent – or at least mitigate the 
impact of – system failure. This might include ending some 
active but unused processes or deleting some stored but un-
necessary data to free up memory. The administrator records 
the steps implemented in a log file for future reference. He 
then sends the outcome of the recovery attempt (successful or 
unsuccessful) to the Event Investigation component.  

 
5.2.5 The Event Investigation 

Based on the outcome of the recovery process in the pre-
vious component, the Event Investigation classifies events as 
either near misses or failures and stores the event details in 
the appropriate table for future reference. If the event is a fail-
ure, a system restoration is first conducted to limit the experi-
enced downtime. The administrator then conducts a forensic 
analysis of the event based on the data stored. The root-cause 
analysis enables the identification of near-miss indicators that 
can be used to adjust the formula used in the Near-Miss Mon-
itor. 

Afterwards, recommendations for improvement are made 
and implemented either immediately or at a later scheduled 
time. The recommendations are stored along with the event 
details in the relevant table. These steps allow for the creation 
of an event history that can be looked up in the event of a 
similar event occurring in the future. 

This architecture meets the objectives of an effective 
NMS for the software industry specified earlier. It enables the 
automatic detection of near misses based on objective per-
formance measures specified in the organisation concerned. 
The detection process is flexible enough to accommodate 
changing performance requirements and to suit requirements 
specific to an organisation. The architecture also enables the 
automatic classification of potential near misses and the prior-
itisation of near misses to facilitate their investigation. An 
additional benefit of the architecture is that it enables the pre-
vention of an impending failure if appropriate corrective ac-
tions are executed timely.   

The prototype implementation of the NMS architecture is 
documented in the next section. 
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Figure 3: Component diagram of NMS architecture 

 

6 PROTOTYPING THE NMS ARCHITECTURE 
In line with the goal of the paper to use the results of a 

near-miss analysis investigation as digital evidence and so to 
prevent the recurrence of major software failures, the proto-
type implementation only addresses the following two aspects 
of the NMS architecture: the definition and detection of near 
misses and the root-cause analysis of software failures. The 
other elements of the model were not discussed in detail in the 
paper and are therefore not part of the prototype. The goal of 
the prototype implementation is therefore twofold: 

 Demonstrate the viability of the digital forensic pro-

cess formulated in Section 4.3 to conduct a root-

cause analysis of a software failure.  

 Demonstrate the viability of detecting near misses at 

runtime. This also demonstrates that a near miss is a 

viable and relevant concept for the software indus-

try. 
 

The above-mentioned goal is accomplished by means of the 

following: 

 The use of collected digital evidence of the failure 

as the basis for the root-cause analysis.  

 The identification of near-miss indicators that con-

stitute a near miss.  

 The development of a near-miss formula.  

 The identification of potential near misses using a 

set of event logs.  

 The detection of near misses at runtime. 
 
The prototype therefore focuses on the following two 

components of the architecture: Near-Miss Monitor and Event 

Investigation. As the prioritisation formula is a work-in-
progress, it is not included in the prototype implementation. 

Conducting a forensic analysis of a software failure was 
the basis for the prototype‘s goal. Conducting such an analy-
sis required three necessary elements: the logs of a software 
failure; a forensic investigation tool with suitable data analy-
sis techniques; and a test plan, all of which are described in 
the discussion that follows. 

 

6.1 THE TEST DATA SET 
In order to demonstrate the viability of the proposed NMS 

arachitecture, real-life failure logs with no prior knowledge of 
the cause of the failure were required. However, for 
confidentiality reasons, such real-life data could not be 
obtained. We therefore opted to simulate a software failure 
and generate logs of the event. Two types of logs were deemed 
relevant for this demonstration: logs created by a simple appli-
cation being executed as well as logs generated by the com-
puter system. The process descrcibed below was followed for 
obtaining the logs.  

 

Logs generated by the application  
A software failure was simulated by designing a C++ pro-

gram that would exhaust the memory of a flash disk. The C++ 
program was running on a Linux machine and was designed 
to run as a loop structure that repetitively copies a video clip 
to a flash disk. In this simulation a failure was the inability of 
the C++ program to copy the video clip to the flash disk. A 
near miss would occur when the program was close to ex-
hausting the flash disk space or the program would show be-
havioural patterns similar to the ones observed close to a fail-
ure. These behaviourial patterns were used to define near-
miss indicators. 

The failure simulation program was purposefully designed 
to be simple so as to focus on the near-miss indicators instead 
of on the complexity of the software system. For this purpose, 
the program was intentionally designed to be flawed with no 
code to monitor disk space in order to enable a failure. In the 
absence of real-life failure data, a more complex and smarter 
program could make the illustration and understanding of the 
near-miss analysis concept more difficult. 

 Since a large data set was required for the subsequent 
root-cause analysis, the crash file was designed to maximise 
the number of records. This was achieved by running the pro-
gram with the largest flash disk (128 GB) and the smallest 
video file at hand (3.91 MB), which resulted in a maximum of 
31 001 potential records in the crash file (128 GB/3.91 MB). 
In order to force a failure, the size of the program‘s loop was 
deliberately set to be higher than 31 001. It was set to 31 150.  

Every time a new copy of the video clip was made, vari-
ous statistics about the C++ program, the Linux machine and 
the flash disk were written to a file, subsequently referred to 
as a crash file. A total of 13 statistics were recorded, including 
the duration of a file operation (i.e. copying of the video clip), 
the latency (i.e. time delay between two file operations) and 
the associated memory statistics such as Mem Used (Amount 
of RAM used) and Cached (Amount of RAM used for cach-
ing of data). The latency and the duration were expressed in 
milliseconds (ms). 

Screenshots of the resulting crash file are provided in Fig-
ure 4 (beginning of file) and Figure 5 (point of failure). The 
highlighted row in Figure 5 (file number 31 002) indicates the 
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point of failure, after the last successful copy of the video clip 
was made to the flash disk. 

 
Figure 4: Crash file at beginning of program 

 
Figure 5: Crash file – point of failure 

System logs 
Since the C++ program was performing significant input 

(reading copy of video clip) and output (copying video clip to 
new file) operations, it was deemed most appropriate to use 

the iotop monitoring utility to show input and output (I/O) 

usage on the Linux disk. The iotop command continuously 
displays I/O statistics such as disk-reading and disk-writing 
bandwidth for the various processes running on the system 
(Linux.die.net. 2014). The I/O statistics were used to corrobo-
rate the information in the crash file.  

Figure 7 shows a screenshot of the first entries in the 

iotop output file, which had nine fields. The relevant fields 

for the prototype were Time, Disk read (disk-reading band-
width), Disk write (the disk-writing bandwidth) and Com-
mand, which refers to the name of the process. Disk read and 
Disk write were expressed in kilobytes per second (kB/s). 

 

 
Figure 7: iotop output file 

6.2 THE FORENSIC INVESTIGATION TOOL 
Ideally, one should use a digital forensic tool to conduct a 

forensic (root-cause) analysis of the log files. However, these 
tools are not equipped to handle software failures. Indeed, 
current digital forensic tools are designed to handle criminal 
and security-related events, not software failures of an acci-
dental nature. Therefore they are designed to help identify 
evidence of a known crime, not evidence of a failure whose 
cause is a priori unknown. Since one of the goals of the proto-
type implementation was to observe a pattern in the system‘s 
behaviour, a tool with powerful visualisation capability that 
could handle large data sets efficiently was required. For this 
reason, a tool with a Self-Organising Map (SOM) analysis 
capability (Engelbrecht, 2003) was selected, although it is not 
a digital forensic tool per se. The SOM is a powerful pattern 
classifier algorithm optimised for large data sets (Engelbrecht, 
2003), which enables the easy visualisation of clusters in a 
data set. The suitability and efficiency of the SOM for foren-
sic investigations was already demonstrated by earlier re-
searchers (Fei et al., 2005). 

A commercial SOM tool called Viscovery SOMine (Vis-
covery.net, 2014) was used. The trial version of this tool was 
used as it was freely available and it provided all the func-

tionality needed for this experiment. Little pre-processing of 
the crash file was required to create the SOM maps as the 
crash file was stored as an Excel spreadsheet, which is an 
input file format handled by Viscovery SOMine.  

Details about the pre-processing steps and map creation 
process are provided below. 

 The parameter File Status was used as a nominal at-

tribute to distinguish between the records marked as 

―OK‖ (video copied successfully) and those marked 

as ―not OK‖ (video not copied).  

 Viscovery SOMine automatically converted the 

time values to numerical values.  

 
The creation of maps in Viscovery SOMine follows a 

simple manual step-by-step process from importing the input 
file, selecting attributes to be processed, defining nominal 
attributes, and specifying the parameters to train the map. 
Training parameters include map size (number of nodes) and 
training schedule (processing speed from fast to normal). The 
default training parameters were kept. The resulting map is 
automatically created and displayed after this process and 
information about each cluster is provided. 

Since the SOM only provides a visual representation of the 
patterns in a data set, we also planned on using a statistical 
analysis to express the observed patterns mathematically. Sta-
tistics such as the average and the weighted moving average 
(WMA) of attributes in the logs were considered relevant for 
this purpose. A WMA gives more weight to the most recent 
data in a time series and attaches less importance to older data. 
It was therefore used for trend analysis and forecasting, which 
was particularly relevant for the study in hand (Holt, 2004). 
We planned to compare the normal average to the WMA to 
determine deviation from normal behaviour.  

The WMA of a parameter is calculated by multiplying 
each value (D) by its position (n) in the time series, and 
dividing the sum of these values by the total of the multipliers 
(positions). Its formula is as follows:  

  

 

 
 

6.3 THE TEST PLAN 
Since the forensic analysis was conducted with a view to 

identifying near-miss indicators, the whole demonstration was 
oriented towards that purpose.  

Identifying near-miss indicators was based on the assump-
tion that it was possible to see the failure emerging by moni-
toring the relevant attributes – such as memory usage statis-
tics – provided in both the crash file and the iotop output file. 
Indeed, it was expected that the C++ program would maintain 
a stable operating mode under normal conditions (when 
enough memory was available on the flash disk that was used 
as an external memory device) and that this normal behaviour 
would be disrupted when memory became insufficient. There-
fore the forensic analysis was expected to reveal some unusu-
al changes in the monitored attributes close to the point of 
failure, in other words close to the exhaustion of the flash 
disk‘s free space. The correlation between the near-miss indi-
cators would be used to create a near-miss formula to define 
near misses and detect them as they occur. 

 

 



  

 

6.4 FORENSIC ANALYSIS OF THE CRASH FILE  
The forensic analysis of the crash file followed the scien-

tific method described as follows:  
Formulate hypothesis  

Ideally, one would conduct a root-cause analysis without 
any biased opinion regarding the source of the failure. How-
ever, due to the nature of this demonstration, the source of the 
failure was already known (chosen) to be memory exhaustion, 
which usually manifests through a performance slowdown. 
The analysis of the crash file therefore aimed to find evidence 
of this trend.  

 
Predict evidence for the hypothesis  

Indicators of performance degradation in the execution of 
the C++ program were expected from the crash file. In addi-
tion, as memory was being depleted, it was expected that ac-
tivity would be observed on the Linux disk, aimed at manag-
ing a shortage in memory. The following symptoms were 
therefore expected: 

 A longer time duration to complete a file operation 

 A longer latency between two successive file opera-

tions  

 An increased level of caching, buffering and swap-

ping  
These changes were expected in the last records before the 

failure. Based on the calcualted average duration of 1.295s to 
create a record, it was assumed these changes would occur in 
the last couple of seconds before the failure. 

 
Test hypothesis with experiment  

It was assumed that the above trend in the memory statis-
tics would be visible from a trend analysis of the behaviour of 
the system (Linux machine) as the program was running. Pro-
filing the system‘s behaviour was performed in three steps. 
Firstly, trends in the overall end-to-end behaviour were out-
lined. Then the focus shifted to the system‘s behaviour close 
to the point of failure, and finally a comparison between these 
two profiles was made.  

 
6.4.1 Behaviour of the system before the failure 

In order to observe trends in the system‘s behaviour, we 
created SOM maps for several random sets of 1000 records 
throughout the crash file. Four sets of records were selected: 
first 1000, 10 000 to 11 000, 20 000 to 21 000 and the last 
1000 before the failure. An explanation of how to read the 
maps is provided next.  

The component maps below show the distribution of the 
values in the data set over time. The scale of the values in the 
data set is displayed on a bar below each map. Values range 
from lowest on the left to highest on the right of the bar. Val-
ues on the map are differentiated by their colour on the scale. 
This means that lowest values are in dark blue and highest 
values are in red with various shades of blue, green and 
yellow in between. All component maps have the same 
topology, so any node (record) on one map has the exact same 
position on another map for the same set of records. For 
example, the first record, which has the highest value for 
Duration (5850 ms, refer to Figure 8) appears as an outlier in 
red in the top right corner of the Duration map below (it is 
circled in black). This record also has the highest value for 
free memory (red in the top right corner of the Mem free 

map). Component maps of some of the other attributes are 
provided in Figure 9. 

Clusters in the data set are delimited by black lines on the 
maps. Each cluster groups together the records with close 
values for the various attributes. As we used the trial version 
of the Viscovery SOMine tool for the SOM analysis, an 
―Evaluation only‖ watermark appears on the maps.  

 

 
Figure 8: Some component maps of first 1000 records – first record 

appears as an outlier 

 
 
 
 
 
 
 
Figure 9: Component maps of first 1000 records for some attributes. 

 
From the component maps that were generated for all at-

tributes in the crash file, we note a high correlation between 
the following attributes: 

 USB free space and USB free pages 

 Mem Free and Avail pages  

 Cached and Mem used  

As these pairs of attributes point to the same memory 
source, their maps have the exact same pattern of value distri-
bution. Therefore, for each pair, one of the maps is discarded 
in future analysis. As we were looking for attributes whose 
distribution would change over time, we also discarded maps 
of attributes whose pattern was the same throughout the pro-
gram. This includes both USB memory attributes, and Avail 
pages, whose values decrease linearly. We also noticed that 
Cached is the direct inverse of Mem free, as their values fol-
low inverse movements (as Cached increases, Mem free de-
creases). We therefore also discarded Mem free from the fo-
rensic analysis. We also discarded the map of End time as it 
had the exact same distribution as the map of Creation time. 
Therefore, we conducted the forensic analysis with the fol-
lowing remaining attributes: Creation time, Buffers, Cached, 
Swap Used, Duration and Latency. 

 

Results  
A study of the component maps shows that the values for 

the remaining six attributes listed above remain fairly con-
stant throughout the execution of the C++ program. For in-
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stance, Duration remains around 1000 ms, with occasional 
big jumps throughout the various data sets. However, one 
attribute that shows a distinctive change throughout the pro-
gram as well as close to the failure, is Latency. Indeed, Laten-
cy increases over time. As shown in Table 1, the minimal 
value goes from 13 ms to 20 ms and finally to 33 ms, and the 
maximum value increases from 2031 ms to 3890 ms. There 
are occasional big increases, but the biggest increase occurs in 
the last data set, closer to the failure (3890 ms). 

 

Table 1: SOM maps for Latency 

 

Records 1-1000 Records 10 000 to 11 000 

  

Records 20 000 to 21 000 Last 1000 records before crash 

  

 
In order to find more detailed and usable information 

about the observed pattern in Latency, a more detailed SOM 
analysis for that attribute was conducted. The analysis was 
performed with data sets close to the failure and is described 
in the next section. 

 
6.4.2 Behaviour of Latency close to the failure 

A more detailed analysis of Latency was performed with 
the last 50 and the last 100 records before the failure. An ex-
amination of the resulting component maps confirmed the 
previous observations with more specific evidence. These 
maps are displayed in Table 2. 

 
Table 2: SOM maps of Latency close to the failure 

        

Last 100 records before failure 

 

Last 50 records before failure 

  
 
The SOM maps showed that in the last 100 records, La-

tency remains mostly around 40 ms, which is much higher 
than the values of 13 ms to 20 ms in the first 21 000 records. 
The SOM maps also indicated a lack of homogeneity in the 

records close to the point of failure. Indeed, the number of 
clusters in the data of the last 50 records was considerably 
higher than the number of clusters in the previous data sets. 
This indicates that these records are erratic in terms of the 
other attributes used to train the maps, confirming the lack of 
correlation between Latency and the other attributes.  

 

Conclusion based on forensic analysis of the crash file  
The conclusion reached from the above analysis of the 

crash file and of Latency was that the system did indeed slow 
down towards the end of the C++ program‘s execution. This 
slowdown was due to a significant increase in Latency, which 
was used as our first near-miss indicator. 

After establishing a near-miss indicator from the crash 
file, the same analysis was conducted with the iotop output 
file.  

 

6.5 FORENSIC ANALYSIS OF iotop OUTPUT FILE  

The forensic analysis of the iotop output file followed 
the same process as with the crash file. SOM maps were gen-
erated for the following attributes in the file: Time, Disk read, 
Disk write, I/O and Command (process name). Significant 
changes were observed in Disk read, Disk write, and Com-
mand and were used to identify near-miss indicators as speci-
fied below:  

 The number of running processes declines towards 

the point of failure.  

 The values of Disk read are more than double the 

overall average.  

 In the last few hundred records before the failure, the 

value of Disk write drops to 0 at various instances.  

 
6.6 CREATING A NEAR-MISS FORMULA FROM THE 

NEAR-MISS INDICATORS  
In order to provide reliable results, the near-miss formula 
had to be not only accurate, but also relevant when execut-
ing the program with different variables. These variables 
were the size of the video clip to be copied, the amount of 
free space on the flash disk, and the number of processes 
running in parallel to the C++ program. To this end, the 

program was executed a number of times with various values 

for these variables, each time changing the size of the video 

clip or the amount of free space on the flash disk, as well as 

running fewer or more programs concurrently. The validity of 

the previously identified near-miss indicators was verified in 

every new execution of the program.  
A number of flash disks with factory settings were used to 

run the tests several times. Once all the flash disks had been 
used at least once, their content was deleted to empty the flash 
disks and get back to their original free space and similar re-
sults were obtained (same number of maximum video files 
stored in flash disk). No specialised tool was used the delete 
the files stored in the flash drives.  

In order to observe the trends in the values of Latency, its 
overall average and the WMA were calculated for every new 
record as follows.  

The WMA of the last 200 records was displayed continu-
ously. This was based on the results of the previous analysis 
indicating that some behavioural change was observed in the 
last few hundred records before the failure. For the first 200 
records of the program, the ―standard‖ WMA was calculated 



  

 

using all the previous values of Latency. Then, from record 
number 201, only the previous 200 records were retained to 
calculate the WMA.  

Regarding the average of Latency, the overall average was 
calculated for every new record, using all the previous values. 
The motivation for this process was the fact that the average 
of Latency was not known beforehand every time the program 
was run. So, it was calculated as the program was running 
with the assumption that closer to the end of the program‘s 
execution (before the failure), the average would stabilise to 
its overall final value. A potential near-miss indicator (‗WMA 
is higher than average‘) that was observed when the final 
average had been reached would be less likely to be a false 
alarm, as the other near-miss indicators would also be 
applicable. The crash file resulting from the above 
calculations is shown in Figure 10. 

 

 
Figure 10: Adapted crash file for near-miss detection 

 
The outcome of this verification process was that results 

similar to the initial forensic analysis were obtained, except 
for the number of processes that would either be smaller than 
or equal to the initial number. No explanation could be pro-
vided for this observed pattern. Consequently, the final near-
miss indicators used to define the near-miss formula were 
identified as follows: 

 The WMA of Latency is greater than its average.  

 The number of running processes before the failure 

is less than or equal to the initial number at the be-

ginning of the program‘s execution. 

 The disk-reading bandwidth is more than twice its 

overall average.  

 The disk-writing bandwidth drops to 0 at various in-

stances.  

Based on the above analysis, the formula to detect poten-
tial near misses was defined as follows: 

 
 
 
 
 
 
 
 

 The near-miss formula uses the following notation: 

 Nr-Processes: number of processes 

 Initial-Nr-Processes: Initial number of processes 

 WMA-latency: WMA of latency 

 Avg-latency: average of latency 

 Avg-DR: Average of Disk reading bandwidth 

 
It is worth noting that the above formula was specific to 

the software failure at hand, the conditions of its occurrence 

(lab experiment) and its analysis (iotop used for correlation 

to program‘s logs). However, it can be a starting point for the 
identification of near misses for similar types of failures. The 
formula was used in the next and last step of the experiment to 
detect near misses during the program‘s execution, and the 
process involved is documented in the next section. 

 

6.7 DETECTION OF NEAR MISSES AT RUNTIME 
The goal of this step was to verify whether near misses 

could be detected during the execution of the program by 
using the formula developed in the previous step. The plan 
was to apply the near-miss formula to the logs as they were 
generated. Any log whose attributes matched the near-miss 
formula was then labelled as a potential near miss and an alert 
was sent. The alert was a notification message with some 
suggestion to prevent the failure. Preventing the failure was 
outside the scope of this study, which means that no attempt 
was made to implement the suggested countermeasures. The 
alert was generated to enable the collection of digital evidence 
of the potential near miss before the impending software fail-
ure occurred. However, the collection of evidence was not 
performed as it was beyond the scope of the experiment. 

The near-miss formula was inserted in the program‘s loop 
after calculation of all the necessary attributes. The crash file 
was generated with 21 829 records before the failure, a loop 
size of 22 000, and the original video clip. The formula 
matched 162 records at various instances in the crash file, 
mostly close to the failure. 

The first of the near-miss alerts started at record 5 742, in-
dicating that the near-miss formula did not apply to the early 
records in the file, as was expected (see Figure 11). Only 9% 
of the near-miss alerts (13) appeared in the first half of the 
program‘s execution and are highlighted in Figure 8. These 
are clearly false alarms. The remaining 91% of the near-miss 
alerts were generated in the second half of the program‘s exe-
cution before the failure. This again confirms that the near-
miss indicators mostly emerged close to the failure. The last 
alert was generated 6s 872 ms before the failure. This indi-
cates that it was signalling a near miss as it was not immedi-
ately followed by the failure, although it was very close to its 
occurrence.  

 

 
Figure 11: First near-miss alerts in the crash file 

 
6.8 EVALUATION OF PROTOTYPE 

The prototype was successful in the sense that it achieved 
the specified goals, which were to demonstrate the viability of 
using the digital forensic process for software failure analysis 
and demonstrate the viability of detecting near misses at 
runtime. In addition, it also showed the following: 

 Near-miss detection can reduce the amount of rele-

vant digital evidence that needs to be collected for 

root-cause analysis. Indeed, out of the 13 initial at-

tributes in the crash file and the nine attributes in the 

iotop output file, only four (latency, processes, 

If Nr-Processes <= Initial-Nr-Processes AND 
WMA-latency > Avg-latency AND 
DR > (Avg-DR x 2) AND 
DW == 0 

 Near Miss 
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disk-reading bandwidth and disk-writing bandwidth) 

proved relevant for near-miss detection. 

 In order to detect near misses, indicators of an up-

coming failure need to be identified. A forensic 

analysis of the failure logs is a promising approach. 

The forensic analysis can provide both the root cause 

of the failure and its near-miss indicators.  

Furthermore, the validity of the resulting near-miss formu-
la demonstrates the reliability of the technique used for the 
root-cause analysis, in other words the SOM analysis. Since 
the SOM algorithm is optimised for large data sets, it is ex-
pected that this process can scale to a real-life failure with a 
higher number of logs than was used in the prototype. Previ-
ous research using the SOM analysis to analyse real-life sys-
tem logs support this claim (Fei et al, 2005).  

On the downside – although the created near-miss formula 
proved effective, it was not a direct application of the general 
formula presented in Equation (1). Nonetheless, near misses 
were defined based on the characteristics of a failure, as is the 
case in Equation (1), where failures are characterised by their 
downtime. Additionally, some false alarms were observed. 
Handling these false alarms automatically could be addressed 
with a prioritisation mechanism based on time. E.g. how close 
the alarm was generated to the beginning of the program exe-
cution or to the exhaustion of the flash disk or using the num-
ber of alerts per time period. However, this is for future work 
as it was not one of the goals of the prototype.  

 

7 CONCLUSION 
This paper proposed the technique of near-miss analysis to 

assist in the digital forensic investigation of software failures. 
Such a forensic investigation may be required following 
catastrophes due to the failure and resulting in a court case. 
The concept of a near miss was used to help identify the root 
cause of a software failure and to prevent its recurrence. This 
was achieved through the pattern analysis of the system logs 
close to the point of failure. An original architecture of a near-
miss management system (NMS) was proposed to combine 
near-miss analysis and digital forensics to automate the detec-
tion of near misses and identify relevant digital evidence re-
quired for the root-cause analysis and the potential failure 
prevention. The validity of these two features (i.e. near-miss 
detection and evidence identification) of the NMS architec-
ture was demonstrated through a prototype. Future work that 
is suggested involves the completion of a prioritisation 
scheme to select the most relevant near misses that can be 
used for evidence collection and reduce false positives. 
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