Onderstepoort J. vet. Res. (1969), 36 (1), 3-58
Printed in the Repub. of S. Afr, by the Government Printer, Pretoria

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS, 1758 S. STR.

ANNA VERSTER, Veterinary Research Institute, Onderstepoort(1)

Contents

Abstract

Abstract

ANNA VERSTER. A taxonomic revision of the genus Taenia Linnaeus, 1758 s. str. Onderstepoort J. vet. Res. 36 (1), 3-58.

The genus Taenia Linnaeus, 1758 sensu strictu is revised. Besides the type species, Taenia solium Linnaeus, 1758, the valid species are: T. acinonyxi; T. brachyacantha; T. crassiceps; T. crocutae; T. endothoracicus; T. gonyamai; T. hyaenae; T. hydatigena; T. ingwei; T. laticollis; T. macrocystis, T. martis; T. multiceps; T. mustelae; T. omissa; T. ovis; T. parenchymatosa; T. parva; T. pisiformis, T. polyacantha; T. rileyi; T. regis, T. saginata; T. selousi; T. serialis; T. taeniaeformis; T. taxidiensis, T. twitchelli. "T. laticollis" of Skinker (1935) and Joyeux (1945) is renamed, T. pseudolaticollis. T. braumi is considered a subspecies of T. serialis and T. krabbei a subspecies of T. ovis. Invalid species and species inquirendae are also listed.

Introduction

Although 70 species, belonging to the genus Taenia Linnaeus, 1758 sensu strictu have been described, it would appear, from some of their descriptions, that not all of them are valid. Consideration
of the present nomenclature makes it apparent that taxonomists adopted different morphological features as well as the host range of immature and mature stages as criteria for the creation of genera and species. The status of these species according to various workers is analysed in Table 1.

Table 1．－Analysis of the status of Tacnia spp．according to various authors

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Num－ ber \& \& Species \& $$
\begin{gathered}
\text { Hall } \\
(1919)
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Baer } \\
(1926)
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Joyeux \& } \\
\text { Baer } \\
(1929)
\end{gathered}
$$ \& Ortlepp （1938） \& Abuladse （1964） \& $$
\begin{aligned}
& \text { Verster } \\
& (1967)
\end{aligned}
$$ \& This Paper

\hline 1 \& Taenia \& solium Linnaeus，1758．．．．．．．． \& T

\hline 2 \& ＂， \& acinonyxi Ortlepp，1938．．．．．． \& － \& － \& － \& T \& T \& － \& T

\hline 3 \& ＂ \& africana von Linstow，1900．．． \& － \& T \& O \& \& TR \& O（1，57） \&

\hline 4 \& ， \& antarctica Fuhrmann，1922．．． \& \& T \& － \& T \& T \& （1， \& O（60）

\hline 5 \& ＂ \& balaniceps Hall，1910．．．．．．．． \& T \& T \& － \& T \& T \& － \& O

\hline \& ， \& brachyacantha Baer \＆Fain， 1951. \& \& \& － \& \& \& － \&

\hline 7 \& ＂ \& brachysoma Setti，1899．．．．．．． \& T \& O \& － \& T \& O \& － \& ？（60）

\hline 8 \& ＂ \& brauni Setti，1897．．．．．．．．．．．． \& T \& T \& － \& T \& M \& － \& 0 （60）

\hline 9 \& ＂ \& bremneri Stephens，1908．．．．．． \& － \& ？ \& O \& T \& O \& O（57） \&

\hline 10 \& ＂ \& bubesei Ortlepp，1938．．．．．．．． \& － \& － \& － \& T \& T \& － \& O（55）

\hline 11
12 \& ， \& cervi Christiansen，1931．．．．．．
confusa Ward，1894．．．．．．．． \& 二 \& ？ \& O \& － \& T \& \& O（45）

\hline 13 \& ＂， \& confusa Ward，1894，${ }_{\text {crassiceps }}$（Zeder，1800）Ru－ \& － \& ？ \& O \& － \& TR \& O（57） \&

\hline \& ＂ \& dolphi， $1810 \ldots \ldots . . .$. \& － \& T \& － \& T \& T \& － \& T

\hline 14 \& ＂ \& crocutae Mettrick \＆Beverley－ Burton， 1961. \& － \& － \& \& － \& \& \& T

\hline 15 \& ＂ \& cylindrica Leon，1922．．．．．．． \& － \& － \& O \& － \& O \& O（57） \& －

\hline 16 \& ＂ \& djeirani Boev，Sokolova \＆Ta－ zieva， 1964. \& － \& － \& － \& － \& － \& － \& O（45）

\hline 17 \& ＂ \& endothoracicus（Kirschenblatt， 1948）． \& － \& \& － \& \& M \& － \& T

\hline 18 \& ＂ \& erythraea Setti，1897．．．．．．．． \& \cdots \& $?$ \& － \& T \& ， \& － \&

\hline 19 \& ＂ \& gaigeri（Hall，1916）．．．．．．．．． \& M \& T \& － \& T \& M \& － \& O（40）

\hline 20 \& ＂ \& gonyamai Ortlepp，1938．．．．．
hlosei Ortlepp，1938．．．．．．． \& － \& － \& － \& T \& T \& － \& T

\hline 22 \& ＂ \& hominis von Linstow，1902．．． \& － \& － \& O \& T \& TR \& $\overline{\mathrm{O}}$（57） \&

\hline 23 \& ＂， \& hyaenae Baer，1926．．．．．．．．． \& \bar{T} \& T \& － \& T \& T \& （ \& T

\hline 24 \& ＂ \& hydatigena Pallas，1766．．．．．． \& T \& T \& － \& T \& T \& － \&

\hline 25 \& ＂ \& hyperborea von Linstow， 1905 \& － \& O \& － \& T \& H \& － \& $\mathrm{O} /(13)$

\hline 26 \& ＂ \& ingwei Ortlepp，1938．．．．．．． \& － \& \& \& T \& T \& （64） \& $$
\mathrm{T}
$$

\hline 27 \& ＂ \& infantis Bacigalupo，1922．．．． \& 二 \& T \& O \& T \& O \& O（64） \&

\hline 28
29 \& ＂ \& intermedia Rudolphi，1810．．．．
jakhalsi Ortlepp，1938．．．．．．． \& － \& O \& － \& T \& T \& \& O（37）
O

（24）

\hline 30 \& ＂ \& krepkogorski（Schulz \＆Landa， 1934）． \& －－ \& \& － \& \& H \& － \& ？（64）

\hline 31 \& ＂ \& krabbei Moniez，1879．．．．．．． \& T \& T \& － \& T \& T \& － \& O（45）

\hline 32 \& ＂ \& laruei Hamilton，1940．．．．．．．． \& T \& T \& － \& \& T \& － \& O（60）

\hline 33 \& ＂， \& laticollis Rudolphi，1819．．．．． \& T \& T \& － \& T \& T \& － \&

\hline 34 \& ＂ \& lycaontis Baer \＆Fain，1955．． \& － \& － \& － \& T \& T \& － \&

\hline 35
36 \& ， \& lyncis Skinker，1935．．．．．．．． \& － \& － \& － \& T \& T \& － \& O（54）

\hline 36 \& ＂ \& | macrocystis（Diesing，1850） |
| :--- |
| Lühe， 1910 | \& T \& T \& － \& T \& T \& － \& T

\hline 37 \& ＂ \& martis（Zeder，1803）．．．．．．．．． \& － \& － \& － \& － \& O \& － \&

\hline 38 \& ＂ \& melesi Petrov \＆Sadychow， 1956 \& － \& － \& － \& － \& T \& － \& ？（37）

\hline 39 \& ＂ \& monostephanos von Linstow， 1905 \& T \& O \& － \& T \& F \& － \& ？（33）

\hline 40 \& ＂ \& multiceps Leske， 1780. \& M \& T \& － \& T \& M \& － \& T

\hline 41 \& \& mustelae Gmelin，1790．．．．．． \& \& － \& － \& － \& 0 \& － \&

\hline 42 \& ＂， \& novella Neumann，1896．．．．．． \& O \& T \& － \& T \& O \& － \& O（50）

\hline 43 \& ＂ \& omissa Lühe，1910．．．．．．．．．．． \& － \& T \& － \& T \& T \& － \&

\hline 44 \& ＂ \& ovata Molin，1858．．．．．．．．．． \& － \& － \& － \& － \& T \& － \& ？（51）

\hline 45 \& ＂ \& ovis（Cobbold，1869）Ransom， 1913 \& T \& T \& － \& T \& T \& － \& T

\hline 46 \& ＂ \& packi（Christensen，1929）．．．． \& － \& $\underline{ }$ \& － \& T \& M \& － \& O（60）

\hline 47 \& ＂ \& parenchymatosa Pushmenkov， 1945. \& － \& \& － \& \& T \& － \& T

\hline 48 \& \& parva Baer，1926．．．．．．．．．．．． \& － \& T \& － \& \& T \& \& T

\hline 49
50 \& ＂ \& phillipina Garrison，1907．．．．．． \& － \& － \& 0 \& T \& O \& O（57） \& T

\hline 50 \& ＂ \& pisiformis（Block，1780）Gmelin， 1790. \& T \& T \& － \& T \& T \& （ \& T

\hline 51 \& ＂ \& polyacantha Leuckart，1856．．． \& T \& T \& － \& T \& TT \& － \& T

\hline 52 \& ＂ \& polycalcaria von Linstow， 1903 \& － \& O \& － \& \& T \& － \& ？（50）

\hline 53
54 \& ＂ \& pungutchui Ortlepp，1938．．．． \& － \& － \& － \& T \& T \& － \& ？

\hline 54
55 \& ＂ \& rileyi Loewen，1929．．．．．．．．．． ．
regis Baer，1923．．．．．．．．． \& 二 \& T \& － \& T \& ${ }_{\text {H }}$ \& E \& T

\hline 56 \& ＂， \& retracta von Linstow，1903．．． \& － \& T \& － \& T \& T \& － \& ？（13）

\hline 57 \& ＂ \& saginata Goeze，1782．．．．．．． \& － \& T \& － \& T \& TR \& T \& T

\hline 58 \& ＂ \& secunda Olssen，1893．．．．．．．．． \& － \& － \& － \& － \& T \& － \& ？

\hline 59
60 \& ＂， \& selousi Mettrick， $1962 \ldots$.
serialis（Gervais，1847）Bailiet \& － \& － \& － \& － \& － \& － \& T

\hline 60 \& ＂ \& serialis（Gervais，1847）Bailiet， 1863. \& M \& T \& － \& T \& M \& － \& T

\hline \& \& \& － \& － \& － \& － \& T \& － \& O（37）

\hline $$
62
$$ \& ＂ \& skrjabini（Popov，1937）．．．．．．． \& － \& － \& － \& － \& M \& － \& $?$ ？（40）

\hline 64 \& ＂， \& smythi（Johri，1957）．．．．．．．．．．
taeniaeformis（Batsch，1786） \& － \& － \& － \& － \& M \& － \& ？（50）

\hline \& \& Wolffügel，1863，．．．．．．．．． \& T \& T \& － \& T \& H \& － \& T

\hline
\end{tabular}

Table 1.-Analysis of the status of Taenia spp. according to various authors (continued)

By using the larval morphology as criterion authors such as Hall (1919) and Abuladse (1964) place some of the Taenia spp. in either the genus Multiceps Goeze, 1782, Hydatigera Lamarck, 1861 or Tetratirotaenia Abuladse, 1964. Freeman (1956), however, shows that the larvae of T. mustelae may be mono- or poly-cephalic in the same host. Although such diversity has not been found in other species.it does indicate that the structure of the larva is a variable character. As the criteria used for distinguishing between the adults of these four genera are variable it is impossible to assign to any of these an adult of which the larval stage is unknown. The genera Taeniarhynchus Weinland, 1858 and Monordotaenia Little, 1967 (synonym: Fossor Honess 1937) are differentiated from Taenia only on the absence of rostellar hooks in the former and on a single row in the latter. A single character may justify the creation of a new species but it cannot be the sole criterion for the erection of a new genus. If the practice of basing a genus on a single character were to be consistently followed, it would necessitate the erection of four more genera to accommodate the eight species in which the genital ducts pass the longitudinal excretory vessels ventrally, to cross into the cortex. This is, however, clearly unwarranted and the continued use of Taeniarhynchus, and Monordotaenia as well as Multiceps, Hydatigera and Tetratirotaenia at the generic level would only lead to further confusion.

By present day standards the descriptions of many species are incomplete thus leaving their status in doubt. Yet other species have been differentiated from existing ones using characters which are invalid. Only too frequently descriptions are based on the assumption that fragments of cestodes recovered from the same host represent a single species, whereas subsequent work has shown them to be fragments of two or more species parasitizing the host simultaneously. In one instance fragments of cestodes from such diverse hosts as the dog and the lynx were empirically thrown together to create yet another "composite" species (e.g. T. balaniceps).

In the present study it was found that most of the characters used for specific identification are subject to some variation and that it is rarely possible to use a single character as the only criterion for specific diagnosis.

The size and shape of the strobila, scolex, rostellum and suckers, as well as the presence or absence of a "neck" are dependent on the method of fixation and are thus invalid criteria.

The number and size of the rostellar hooks are reliable criteria, but in the case of small differences, should be used in conjunction with other characters. The number and size of these structures should be determined on rostella which are mounted en face and only those which are in profile, measured. Hall (1919) states that in Multiceps the handles of the large rostellar hooks are usually sinuous, but this is variable and also occurs in species in which the larval stage is not a coenurus. Clapham \& Peters (1941) show that the rostellar hooks of some species do not increase in size after ingestion by the definitive host and also that adjacent scolices in a coenurus show little variation in size. When measuring larval rostellar hooks, scolices should therefore be removed from different parts of the coenurus and only hooks that are fully developed, measured.

It is rarely possible to make accurate counts of the number of testes in the species of this genus. Their number can be determined by estimating the number in frontal sections and correcting this by the number of layers determined in the transverse sections. In severely contracted material there may be as many as three layers whereas there is only one layer in relaxed material. The size of the cirrus pouch is not constant throughout the length of the strobila; ideally it should therefore be measured in proglottids of varying age. The shape of this structure may also change with the age of the proglottids.

The ovary has two lobes except in T. solium which has three. The relative size of the two lobes appears to be constant in any one species. In some species the vagina is surrounded by a well developed sphincter muscle similar to that described by Guyer (1898) in T. saginata and by Hall (1919) in T. taeniaeformis, but does not occur in others. In one species, T. multiceps, there is a "pad" of muscular tissue in the anterior wall of the vagina. With the exception of T. rileyi where vaginal sphincters and "pads" may occur haphazardly in the same strobila, they are consistently present or absent in all other species. Hall (1919) states that in Multiceps: "The vagina usually shows a reflexed loop in the vicinity of the
lateral excretory canals". This neither occurs throughout the length of the strobila nor in all members of the same species. Verster (1967) shows the number of primary branches of the uterus to be subject to marked variation and that they are often difficult to determine. T. omissa appears to be the only species in which the uterus shows so characteristic a shape that it has been used as a criterion for specific diagnosis. The size of the ova should be determined in the terminal proglottid only. This character is subject to extreme variation and different authors rarely, if ever, record the same measurements.

From the evidence available at present, it appears that the adult shows a greater host-specificity than that displayed by the larval stage. Although it has been shown that adult T. solium may become established in the golden hamster [Mesocricetus auratus (Waterhouse, 1839)] by Gnezdilov (1957) and in the chacma baboon [Papio ursinus (Kerr, 1792)] by Verster (1965), it is known to attain patency only in man and the lar gibbon, Hylobates lar Linnaeus, 1771 [Cadigan, Stanton, Tanticharoenyos \& Chaicumpa (1967)]. Cysticercus cellulosae, the larval stage has, however, been recorded from a wide range of mammals other than its normal intermediate host, the pig. Buljevic (1960) records T. hydatigena from an experimentally infested domestic cat, but Sweatman \& Williams (1962) found that although this cestode can establish itself in cats it does not attain patency. They also showed that T. ovis can establish itself in the domestic cat and attain patency in animals fed on horse meat. The evidence of hostspecificity in the larval stages of these cestodes is rather less convincing. Sweatman \& Henshall (1962) found that there are no morphological differences between T. ovis and T. krabhei and that sheep are susceptible to infestation with the former but refractory to the latter species. In the absence of other criteria, Boev, Sokolova \& Tazieva (1964) used the host preferences of T. djeirani to distinguish it from T. ovis and T. cervi. In view of the fact that species such as T. solium and T. hydatigena are known to utilize a wide range of animals as intermediate hosts, it is advisable that host-specificity should not be the sole criterion for the diagnosis of a species. It is therefore preferable, that forms showing such preferences be considered subspecies rather than species.

Synonyms and host lists of the species are not given in this paper. The lists given by Abuladse (1964) are accepted; where, however, the writer's findings disagree with those of Abuladse, they are included.

In the text the current names of African states will be used instead of those mentioned in the literature. They are:

Botswana-Bechuanaland.
Congo (Democratic Republic)-Belgian Congo.
Rhodesia-Southern Rhodesia.
Somalia-Italian Somaliland.
Tanzania-Tanganyika.
Zambia-Northern Rhodesia.

Diagnosis of the Genus

The genus Taenia Linnaeus, 1758 sensu strictu is here defined to read as follows:-

Taeniidae of large size. Rostellum usually present; armed with one or two crowns of hooks. Testes numerous, confluent anterior to female genitalia. Adults parasitic in the intestine of carnivorous mammals and man, rarely in birds. Larval stage a monocephalic cysticercus, or a strobilocercus or a tetra hyridium or a polycephalic coenurus. Type species Taenia solium Linnaeus, 1758.

The valid species of this genus may be divided into two groups*:

Group I: Taenia solium

The genital ducts pass between the longitudinal excretory vessels when they cross from the medulla into the cortex. This includes T. solium and T. saginata from man; all the species from canines and all those from felines with the exception of T. taeniaeformis.

Group 1I: Taenia taeniaeformis

The genital ducts pass the longitudinal excretory vessels ventrally when they cross from the medulla to the cortex. In addition to T. taeniaeformis of the domestic cat this group includes the older species which parasitize mustelids and viverids.

Valid Species

Group I

Taenia solium Linnaeus, 1758
Synonym: Taenia africana von Linstow, 1900-pro parte
Definitive host: Man
Intermediate host: Pig; various mammals
Distribution: Cosmopolitan

Material:

1. Adults from man (Chile, Mexico, Republic of South Africa)
2. Larval stage from pig (Poland, unknown European locality, Brazil, Senegal, Republic of South Africa); man (France, Angola, Republic of South Africa); dog; vervet monkey Cercopithecus aethiops (Cuvier, 1821); bushbaby Galago sp.; rock hyrax, Procavia capensis (Pallas, 1766)

Description (according to Verster, 1967)

Scolex, rostellum and suckers: In an adult from Chile these structures are $937 \mu, 375 \mu$ and 411μ in diameter. The number and size of the rostellar hooks of adult and larval stages are summarized in

[^0]Table 2.-Number and length (in μ) of rostellar hooks of adult and larval T. solium

Stage	Host	Number	Large Hook			Small Hook		
			n*	Range	Mean \pm S.D.**	n	Range	Mean \pm S.D.
Adult...	Man.	27-28	10	159-173	$165 \cdot 7 \pm 5 \cdot 0$	10	93-127	$120 \cdot 3 \pm 10 \cdot 0$
Larva...	Pig.	22-36	499	139-200	$171 \cdot 6 \pm 10 \cdot 7$	410	100-159	$125 \cdot 2 \pm 10 \cdot 2$
	Man.	24-32	39	163-198	183.6 ± 9.2	35	104-134	$123 \cdot 1 \pm 8 \cdot 0$
	Dog............	25-32	47	160-198	176.6	42	111-143	$122 \cdot 6 \pm 6.2$
	Vervet monkey..	32	3	170-175	171.8	3	$115 \cdot 8$	$11 \overline{5 \cdot 8}$
	Bushbaby.......	28	${ }^{3}$	170-177	$173 \cdot 3$	3	$100-114$	$108 \cdot 0$
	Rock hyrax.....	24-28	12		$168 \cdot 2 \pm 5 \cdot 1$	12	$114-139$	$125 \cdot 3 \pm 6 \cdot 6$

Fig. 1. $-T$. solium. Rostellar hooks of adult (From Verster, 1967)

a

b

Fig. 2.-T. solium. Rostellar hooks of larval stage from pig. a. from Poland, b. Brazil (From Verster, 1967)

Fig. 3.-T. solium. Rostellar hooks of larval stage from man (From Verster, 1967)

Table 2. The rostellar hooks (Fig. 1 to 3) are usually arranged in two rows but in both adult and larval stages there may be from one to three hooks in a third row posterior to and alternating with the small hooks of the second row. These accessory hooks are from 86 to 118μ long. (Fig. 4).

Male genitalia: There are 375 to 575 testes, 64 to 91μ by 52 to 73μ in size, usually in a single layer but in severely contracted specimens there may be two or even three layers. They extend from the anterior to the posterior margin of the segment and are confluent posterior to the vitellarium. Both

Fig. 4.-T, solium. Accessory rostellar hooks (From Verster, 1967)
male and female genital ducts pass between the ventral and dorsal longitudinal excretory vessels to cross into the cortex. The cirrus pouch extends to the longitudinal excretory vessels but not into the medulla. In the sexually mature segment it is 320 to 640μ long and 114 to 229μ wide; in the early gravid segment it is 398 to 491μ by 105 to 160μ and in the gravid one 519 to 786μ by 137 to 251μ. The unarmed cirrus is 25 to 37μ in diameter.

Female genitalia: The aporal lobe of the ovary is larger than the poral one and gives off an accessory lobe which is situated on the poral side of the uterus, between it and the genital ducts (Fig. 5). The

Fig. 5.-T. solium. Sexually mature segment (From Verster 1967)
looping of the vagina is more marked in the cortex than in the medulla; it loops anteriorly before opening posteriorly to the cirrus pouch in the genital atrium. There is no vaginal sphincter (Fig. 6). The uterus has 7 to 16 lateral branches which redivide. The ova are spherical, 29 to 34μ in diameter with an embryophore $4 \cdot 5$ to $5 \cdot 6 \mu$ thick.

Taenia acinonyxi Ortlepp, 1938
Definitive host: Acinonyx jubatus (Schreber, 1775); Panthera pardus (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: Africa

Fig. 6.-T. solium. Genital atrium (From Verster, 1967)

Material:

1. Type specimens from cheetah, South West Africa (Veterinary Research Institute, Onderstepoort)
2. Adults from leopard, Congo (Democratic Republic)

Redescription

Scolex, rostellum and suckers: These structures are $900 \mu, 435 \mu$ and 350μ in diameter in the type specimen (Ortlepp, 1938) and $650 \mu, 390 \mu$ and 274μ in the Congo leopard material (Mahon, 1954). The type specimen has 38 rostellar hooks; there are 34 to 42 in the Congo material (Mahon, 1954). In the type specimen the large hook is 209 to 219μ long and the small hook 119 to 133μ; in the Congo material they are 205 to 209μ and 119 to 133μ respectively (Fig. 7).

Fig. 7.-T. acinonyxi. Rostellar hooks of adult

Male genitalia: There are 250 to 400 testes which are elongated dorsoventrally, 69 to 78μ by 46 to 55μ in diameter. They are in a single dorsal layer, mainly in two lateral fields which are united anteriorly by a few testes; posteriorly they extend to the level of the vitellarium. The cirrus pouch, which extends to the longitudinal excretory vessels, is 201 to 366μ long and 69 to 114μ wide in the sexually mature segment.

Female genitalia: The two lobes of the ovary are of equal size. The vagina has no sphincter and is not dilated before opening in the genital atrium (Table 3; Fig. 8).

Table 3.-Comparison of T. acinonyxi described by various authors

Fig. 8.-T. acinonyxi. Genital atrium

Discussion

Ortlepp (1938) differentiated this species from T. hydatigena on the shape of the strobila and on the number and distribution of the testes. It is agreed that the shape of the strobila is not a valid criterion for specific diagnosis, nor does the distribution of the testes differ significantly from that of T. hydatigena. The two species, however, do differ in the number of testes (250 to 400 vs. 600 to 700) and in the relative size of the two ovarian lobes.

Abuladse (1964) lists T. hydatigena from various hosts including felines and mustelids, but some of these records are doubtful. Buljevic (1960) records T. hydatigena from an experimentally infested domestic cat. Sweatman \& Williams (1962) found that T. hydatigena may establish itself in some cats but does not become patent in these animals. Thus despite its close morphological resemblance to T. hydatigena, T. acinonyxi is to be considered a distinct species.

Its life-cycle is unknown. Cysticerci which macroscopically resemble those of T. solium and T. ovis but which have rostellar hooks resembling those of the adult of this species in number, size and shape, have been recovered from the muscles of various herbivores: impala [Aepyceros melampus (Lichtenstein, 1812)], sable antelope [Hippotragus niger (Harris, 1838)], gemsbok [Oryx gazella (Linnaeus, 1758)], grey duiker [Sylvicapra grimmia (Linnaeus, 1758)] African buffalo [Syncerus caffer (Sparrman, 1779)] and warthog [Phacochoerus aethiopicus (Pallas, 1766)] in South Africa and from gereneuk [Litocranius walleri (Brooke, 1879)] in East Africa.

Taenia crassiceps (Zeder, 1800) Rudolphi, 1810
Synonyms: Taenia hyperborea von Linstow, 1905 Hydatigera hyperborea (von Linstow, 1905) Abuladse, 1964

Definitive host: Vulpes spp.; Alopex spp.
Intermediate host: Various rodents (Abuladse, 1964)

Distribution: Northern Hemisphere.
The adult of this species parasitizes Vulpes spp. and Alopex spp. in the northern hemisphere. Rausch (1959a) showed that it is often confused with T. polyacantha which also occurs in both these hosts.

Material:

1. Adults from naturally infested foxes: Vulpes vulpes (Linnaeus, 1758) from Switzerland; Alopex lagopus (Linnaeus, 1758) from Alaska.
2. Larval stage from an experimentally infested golden hamster, Mesocricetus auratus (Waterhouse, 1839) from Switzerland.

Redescription

Scolex, rostellum and suckers: In the Alaskan material these are $960 \mu, 261 \mu$ and 366μ in diameter. The larval stage has 30 to 34 rostellar hooks. The large hooks are 178 to $200(188 \cdot 2 \pm 4 \cdot 6) \mu$ and the small hooks 130 to $155(143 \cdot 6 \pm 5 \cdot 4) \mu$ long (Table 4; Fig. 9).

Table 4.-Size of rostellar hooks of T. crassiceps

Stage	Large Hook			Small Hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
Larva.....	25	178-195	$187 \cdot 2 \pm 4 \cdot 0$	25	142-155	$146 \cdot 0 \pm 3 \cdot 2$
Adult: ex V. vulpes.	12	183-195	$189 \cdot 8 \pm 4 \cdot 2$	11	136-150	$145 \cdot 3 \pm 4 \cdot 5$
ex A. lagopus	12	180-200	$189 \cdot 2 \pm 5 \cdot 9$	12	130-145	$137 \cdot 1 \pm 4 \cdot 5$
Total..........	49	178-200	$188 \cdot 2 \pm 4 \cdot 6$		130-155	$143 \cdot 6 \pm 5 \cdot 4$

Fig. 9.-T. crassiceps. Rostellar hooks of adult

Male genitalia: There are 200 to 220 testes, 45 to 55μ by 18 to 37μ in diameter. They are mainly in two layers which are confluent posterior to the vitellaria as well as anterior to the ovary but do not extend to the extreme anterior margin of the segment. The vas deferens arises posteriorly to the level of the genital atrium and, like the vagina, runs obliquely forward to this point. The cirrus pouch extends into the medulla; in the sexually mature segment it is 183 to 218μ long and 78 to 110μ wide; in the gravid one 146 to 320μ by 50 to 105μ.

Female genitalia: The two lobes of the ovary are of equal size. On entering the cortex, the lumen of the vagina dilates to 23μ and does not narrow again before opening in the genital atrium. There is no vaginal sphincter (Fig. 10). The uterus has 11 to 18 lateral branches which redivide. The ova are oval, 21 to 26μ by 19 to 22μ in diameter, with an embryophore $2 \cdot 2$ to $3 \cdot 4 \mu$ thick.

Fig. 10.-T. crassiceps. Genital atrium

Discussion

Kirschenblatt (1949) records 30 to 36 rostellar hooks 180 to 197μ and 130 to 157μ long on larvae from the hamster while Müller (1965) records hooks 177 to 183μ and 132 to 141μ long from the muskrat, Ondatra zibethica (Linnaeus, 1766), in Europe. Leiby \& Whittaker (1966) found 32 to 34 hooks 183 to 187μ and 124 to 136μ long in Microtus pennsylvanicus Ord, 1815.

Funikova (1940, according to Abuladse, 1964) found 32 to 34 hooks 170 to 195μ and 126 to 147μ long on adult specimens (Table 5).

Rausch (1959a) considers T. hyperborea a synonym of this species. Kolmakov (1937) and Petrov \& Kosupko (1959), however, regard T. hyperborea a valid species differing from T. crassiceps in the shape of the strobila, the number, size and distribution of the testes and the secondary branching of the uterus. These criteria are, however, not valid in that the presence or absence of a "neck" as well as the ratio of length to width of the segments is dependent on fixation; the size of the testes may vary considerably in different parts of the strobila. The material of Von Linstow (1905) undoubtedly had more testes than the 94 illustrated, as the illustration of the transverse sections shows three layers of testes. In addition, as pointed out by Rausch, the illustration shows the testes confluent in the posterior part of the segment. The absence of secondary branches in Von Linstow's material may be due to the disension of the branches by eggs. Finally the rostellar hooks

Table 5.-Comparison of T. crassiceps described by various authors

Synonym	T. crassiceps							T. hyperborea	
Author	Leuckart(1856)	$\begin{gathered} \text { Joyeux \& } \\ \text { Baer } \\ (1936) \end{gathered}$	$\begin{aligned} & \text { Rausch } \\ & \text { (1952; } \\ & \text { 1959a) } \end{aligned}$	Romanov (1955; in Abuladse, 1964)	Petrov \& Kosupko(1959)	This Paper		$\begin{aligned} & \text { Von } \\ & \text { Linstow } \\ & (1905) \end{aligned}$	$\begin{aligned} & \text { Kolmakov } \\ & (1937) \end{aligned}$
						European	Alaskan		
Scolex..	750	760	700	624-702	610-720	-	960	790	710
Rostellu	280			364-406	-	-	261	-	268-273
Suckers...	280 $32-34$	209 $30-34$	${ }_{28}^{200}$	-	180-210	-	366	-	264
No. Hooks. Large Hook	32-34 186	$30-34$ $185-190$	28-32	32 $186-192$	$30-34$ $176-186$	30-34	28-34	30-32	28-34
Small Hook	135	180-144	172-178	186-192	176-186	178-195	180-200	170	172-188
Testes,....	135	175-180	$121-136$ 200	$137-139$ 200	$130-138$ 200	$136-155$ $200-220$	130-145	120	132-154
Cirrus Pouch L.	-	-	160-250	182-272	210-230	146-320	-	180	183-243
W.		-	50-70	126-162	130-148	50-110	-	27	130
Uterus.	8	15-20	16-20	18-20	16-18	11-18	-	16	10-12

illustrated by Von Linstow are of the same shape as those of T. crassiceps; T. hyperborea is therefore to be considered a synonym of this species.

Taenia crocutae Mettrick and Beverley-Burton, 1961
Definitive host: Crocuta crocuta (Erxleben, 1777); Hyaena brunnea Thunberg, 1820

Intermediate host: Unknown

Distribution: Africa

Mettrick \& Beverley-Burton (1961) describe this species from the spotted hyaena in Rhodesia. They show that the cestodes from the brown hyaena described by Baylis (1937) from Tanzania and by Baer \& Fain (1955) from the Congo, were assigned to the wrong species as they are T, crocutae and not T. hyaenae.

Material:

1. Co-type from C. crocuta (British Museum).
2. Adults from C. crocuta, Congo (Democratic Republic).
3. Adults from H. brunnea, Republic of South Africa.

Redescription

Rostellum and suckers: In the co-type these are 457μ and 306μ in diameter. The co-type has 38 rostellar hooks and the South African specimen 40; the large hooks are 159 to $201(185 \cdot 1 \pm 5 \cdot 5) \mu$ and the small ones 107 to $123(116 \cdot 0 \pm 4 \cdot 6) \mu$ long (Table 6; Fig. 11).

Male genitalia: There are 400 to 500 testes in one to two dorsal layers; anteriorly they do not extend to the margin of the segment and posteriorly they extend to the posterior border of the ovary. In the co-type the cirrus pouch extends halfway across the cortex but in the severely contracted Congo material it extends into the medulla. In the sexually mature segment it is 297 to 334μ long and 105 to 114μ wide; in the gravid segment 320 to 374μ by 101 to 114μ; in the Congo material it is 265 to 329μ by 73 to 91μ and 320 to 343μ by 101 to 114μ respectively in the mature and the gravid segment. The cirrus is 13μ in diameter.

Female genitalia: The two lobes of the ovary are of equal size. After passing into the cortex, the vagina loops two or three times but then straightens until it opens in the genital atrium. When it straightens the lumen of the vagina dilates to 46μ and then narrows to 11μ to pass through the sphincter, which is 37 to 46μ in diameter, situated

Fig. 11.-T. crocutae. Rostellar hooks of adult

Fig. 12.-T. crocutae. Genital atrium

64 to 105μ from the opening in the genital atrium (Fig. 12). The uterus has 24 to 27 lateral branches which redivide; in the Congo material there are 22 to 28 uterine branches. The ova of the co-type were

Table 6.-Size of the rostellar hooks of T, crocutae

Origin of specimen	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean it S.D.
Co-type.	5	159-170	$165 \cdot 7$	5	109-116	$113 \cdot 0$
Congo..	10	168-198	$189 \cdot 3$	10	107-120	$113 \cdot 6$
South Africa.	5	192-201	$195 \cdot 3$	5	114-123	117.9
Total.......	20	159-201	$185 \cdot 1 \pm 5 \cdot 5$	20	107-123	$116 \cdot 0 \pm 4 \cdot 6$

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS

immature; in the Congo material they are oval, 36 to 38μ by 31 to 34μ in diameter, with an embryophore 4.5 to $5 \cdot 6 \mu$ thick (Table 7).

Discussion

This species, like T. hyaenae, parasitizes both the spotted and the brown hyaena. It may be differentiated from the latter species by the shape of the rostellar hook; the testes number is greater and they do not extend to the posterior margin of the segment; the cirrus pouch is smaller; the ovarian lobes are of equal size and the uterus has a greater number of branches, viz. 22 to 28 vs. 10 to 13 .

As mentioned later, the adult cestode described by Pellegrini (1949) as T. hyaenae which resulted from Cysticercus dromedarii, shows some similarity to this species. Cysticerci resembling T. crocutae in number, size and shape of the rostellar hooks have been recovered from impala [Aepyceros melampus (Lichtenstein, 1812)]; blue wildebeest [Connochaetes taurinus (Burchell, 1823)]; tsesseby [Damaliscus lunatus (Burchell, 1823)]; roan antelope [Hippotragus equinus (Desmarest, 1804)]; sable antelope [Hippotragus niger (Harris, 1838)]; kudu [Tragelaphus strepsiceros (Pallas, 1766)]; grey duiker [Sylvicapra grimmia (Linnaeus, 1758)], and African buffalo [Syncerus caffer (Sparrmann, 1779)], in the Republic of South Africa. Similar cysticerci have been recovered from lechwe [Kobus leche (Gray, 1850)] in Zambia.

Taenia endothoracicus (Kirschenblatt, 1948)
Definitive host: Vulpes vulpes (Linnaeus, 1758)
Intermediate host: Meriones spp.; Rhombomys opimus (Lichtenstein, 1823); Gerbillus pyramidus hirtipes Lataste, 1882 (Abuladse, 1964)

Distribution: Asia; North Africa

Kirschenblatt (1948) described a polycephalic larva from the thoracic cavity of a gerbil, Meriones erythrourus Gray, 1842, as Coenurus endothoracicus. Dubnizky (1952a) assigns cestodes from naturally infested foxes, V. vulpes, to this species.

Material:

Larval stage from naturally infested Meriones blackleri Thomas, 1903, from Kazvin, Iran.

Redescription

[Based on larval stage available for study and on description by Dubnizky (1952a)]

Scolex, rostellum and suckers: According to Dubnizky (1952a): Scolex 1,200 to $1,600 \mu$ and the suckers 400 to 500μ in diameter. The rostellum has 52 to 60 hooks arranged in two crowns; the large hooks are 351 to 372μ and the small 224 to 241μ in length. The laryal scolex available for study in this investigation has 54 hooks, 329 to 338μ and 209 to 218μ in length respectively (Fig. 13).

Fig. 13.-T. endothoracicus. Rostellar hooks of larval stage
Male genitalia: There are 300 to 400 testes, 45 to 62μ in diameter. They are mainly anterior to the female genitalia, not confluent at the posterior margin of the segment, nor present in the area immediately surrounding the female genitalia. The cirrus pouch extends to the longitudinal excretory vessels; it is 360 to 375μ in length and 100μ in width.

TAble 7.-Comparison of T. crocutae described by various authors

Synonym	T. crocutae			T. hyaenae	
Author	Mettrick \& BeverleyBurton (1961)	This Paper		Bayliss(1937)	Baer \& Fain (1955)
		Co-type	Congo material		
Scolex.	1,240-1,410	$\overline{57}$	-	-	-
Rostellum.	430	457	-	-	-
Suckers...	310-320	306	$\overline{40}$	-	-
No. hooks.	36-40	38	40	38	38-40
Large hook,	181-192	159-170	168-201	200	190-200
Small hook.	128-132	109-116	107-123	127-156	110-125
Testes..	390-420	400-500	-	-	400-600
Cirrus Pouch L.	310-340	297-374	265-343	-	200-250
W.	120	101-114	73-114		75-85
Uterus..........	$19-24$	24-27	22-28	25-28	20-30

Female genitalia: The two lobes of the ovary are almost spherical in shape. The uterus has 10 to 12 branches which redivide. The ova are spherical or oval, 38 to 42μ by 33 to 42μ in diameter (Table 8).

Discussion

This species resembles T. laticollis in the number, size and shape of the rostellar hooks. The most marked differences are in the size of the strobila (277 to 399 mm according to Dubnizky, 1952a), which is three to four times that of T. laticollis, and the distribution of the testes which do not overlie the female genitalia as they do in T. laticollis. Since the host preferences tend to support the morphological differences, T. endothoracicus being known only from foxes and T. laticollis appearing to be limited to felines, the two are retained as distinct species until further studies prove them to be otherwise.

Taenia gonyamai Ortlepp, 1938

Synonym: Taenia hlosei Ortlepp, 1938
Definitive host: Panthera leo (Linnaeus, 1758); Acinonyx jubatus (Schreber, 1775)
Intermediate host: Unknown
Distribution: South Africa
Ortlepp (1938) differentiated this species of the lion from T. hlosei of the cheetah on the number of uterine branches and on the number of testes.

Material:

1. Type specimens of T. gonyamai from lion, Republic of South Africa. (Veterinary Research Institute, Onderstepoort)
2. Type specimens of T. hlosei from cheetah, Republic of South Africa

Redescription

Scolex, rostellum and suckers: These are 731 to $1371 \mu, 352$ to 411μ and 229 to 320μ in diameter. There are 32 to 40 rostellar hooks arranged in two crowns (Fig. 14; Table 9).

Fig. 14.-T. gonyamai. Rostellar hooks of adult

Table 8.-Comparison of T, endothoracicus described by various authors

	Kirschenblatt (1948)	$\begin{gathered} \text { Dubnizky } \\ (1952 a) \end{gathered}$	Dollfus (1965)	This Paper
Scolex	830-840	1,200-1,600		-
Rostellum	+590-600			
Suckers....	$351 \times 518-444 \times 481$	400- 500		
No, hooks.	$52-56$ $314-332$	$52-\quad 60$ $351-372$	$56-62$ $335-360$	${ }_{329}^{54} 3$
Sarge hook	- $203-218$	$224-241$	205-219	209-218
Testes.		300-400		
Cirrus Pouch	-	360-375	-	-
Uterus	-	100 $10-12$	-	

Table 9.-Size of rostellar hooks of T. gonyamai

Type specimens	Large hooks			Small hooks		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
T. gonyamai,	34	183-218	$193 \cdot 0 \pm 9 \cdot 9$	23	120-143	$131 \cdot 2 \pm 6 \cdot 3$
T. hlosei....	21	187-209	$199.0 \pm 5 \cdot 7$	16	123-146	133.8 ± 5.7
Total....	55	183-218	195.4 ± 9.0	39	120-146	$132 \cdot 2 \pm 6 \cdot 1$

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS

Male genitalia: There are 500 to 750 testes, 69 to 128μ by 46 to 69μ in diameter; they are in a single dorsal layer which extends posteriorly to the vitellarium and are not confluent along the posterior margin. The cirrus pouch may extend to the lateral wall of the ventral longitudinal vessel; in the sexually mature segment it is 375 to 617μ long and 60 to 205μ wide; in the gravid one 411 to 662μ by 101 to 183μ. The cirrus 18 to 23μ in diameter, is covered with bristles.

Female genitalia: The aporal lobe of the ovary is smaller than the poral one. The vagina is relatively straight until it enters the cortex where it loops several times; its lumen dilates (50 to 78μ in diameter) and then narrows abruptly to pass through the sphincter before opening in the genital atrium The sphincter, 37 to 63μ in diameter, is 55 to 91μ from the opening in the genital pore (Fig. 15). The uterus has 17 to 30 lateral branches which redivide (Table 10).

Table 10.-Comparison of T. gonyamai described by various authors

Fig. 15,-T. gonyamai. Genital atrium

Discussion

Ortlepp (1938) differentiated this species from T. hlosei on the number of uterine branches and the number of testes. Examination of the types and cotypes showed that the number of uterine branches of the two species overlaps. The type specimens of T. hlosei differ from those of T. gonyamai only in having somewhat fewer testes (500 vs 730 to 750) and in that the cirrus pouch is shorter and narrower, Since these characters are subject to marked variation in other species, T. hlosei must be considered a synonym of T. gonyamai which has page precedence.

Ortlepp (1938) differentiated this species from T. hydatigena on the number and shape of the rostellar hooks and on the number of uterine branches. It further differs in having a well-developed vaginal sphincter which is absent in T. hydatigena.

Cysticerci resembling this species in the number, size and shape of the rostellar hooks have been recovered from impala [Aepyceros melampus (Lichtenstein, 1812)]; blue wildebeest [Connochaetus taurinus (Burchell, 1823)]; African buffalo [Syncerus caffer (Sparrmann, 1779)], and kudu [Tragelaphus strepsiceros (Pallas, 1766)].

Taenia hyaenae Baer, 1926
Synonym: Taenia lycaontis Baer \& Fain, 1955
Definitive host: Hyaena brunnea Thunberg, 1820; Crocuta crocuta (Erxleben, 1777); Lycaon pictus (Temminck, 1820)
Intermediate host: Unknown
Distribution: Africa
As pointed out earlier, the cestodes from brown hyaena described as T. hyaenae by Baylis (1937) and Baer \& Fain (1955) are actually T. crocutae.

Material:

1. Type specimens from H. brunnea, Republic of South Africa (Institute of Zoology, Neuchatel)
2. Type specimens of T. Lycaontis, from L. pictus Congo (Democratic Republic) (Institute of Zoology, Neuchatel)
3. Adults from H. brunnea and C. crocuta. Republic of South Africa

Redescription

Scolex, rostellum and suckers: Baer (1926) records these as $1 \cdot 2 \mathrm{~mm}, 500 \mu$ and 400μ in diameter; Baer \& Fain (1955) as $1.0 \mathrm{~mm}, 400 \mu$ and 310 to

Table 11.-Size of rostellar hooks of T. hyaenae

Specimens	Large hooks			Small hooks		
	n	Range	Mean \doteq S. D.	n	Range	Mean \pm S.D.
T. hyaenae (types)	10	202-216	$208 \cdot 2 \pm 1.4$	6	132-141	136.6
T. lycaontis (types).	20	218-242	$230 \cdot 0 \pm 5.8$	16	142-165	$152 \cdot 0 \pm 7 \cdot 2$
South African material.	19	195-223	209.8 ± 6.7	19	128-159	$143 \cdot 8 \pm 9 \cdot 3$
Total..	49	195-242	$217 \cdot 7 \pm 11 \cdot 9$	41	128-165	$146 \cdot 1 \pm 9 \cdot 5$

330μ in diameter. The type specimen of T. hyaenae has 32 rostellar hooks arranged in two crowns. The additional South African material has 28 to 36 (Table 1I; Fig. 16).

Fig. 16.-T. hyaenae. Rostellar hooks of adult
Male genitalia: There are 280 to 410 testes, 91 to 128μ by 69 to 82μ in diameter, in a single dorsal layer. They extend from the anterior to the posterior margin and are confluent posterior to the vitellarium. The cirrus pouch extends to the longitudinal vessels; in the sexually mature segment it is 366 to 457μ long and 69 to 105μ wide; in the gravid one 457 to 584μ by 69 to 114μ. The cirrus 14 to 18μ in diameter, is covered with hairlike bristles.

Female genitalia: The poral lobe of the ovary is slightly smaller than the aporal one. The lumen of the vagina dilates to 37μ and then narrows to pass through the vaginal sphincter, which is 27 to 41μ in diameter and situated 64 to 105μ from the opening in the genital atrium (Fig. 17). The uterus has 7 to 13 lateral branches which redivide (Table 12).

Fig. 17.-T. hyaenae. Genital atrium

Discussion

The rostellar hooks of the type specimen of T, lycaontis are somewhat larger than those of the types of T. hyaenae. The range of variation in the size of the rostellar hooks of the additional material from South Africa overlaps that of the type specimens of T. hyaenae and that of T. lycaontis; also the rostellar hooks of all these specimens are similar in shape.

Pellegrini (1949) infested hyaenas with Cysticercus dromedarii Pellegrini, 1945 which occurs in camels [Camelus dromedarius (Linnaeus, 1758)] and cattle in Somalia, and concludes that these are the larval stage of T. hyaenae. This conclusion, however, cannot be accepted as the description of the adult resulting from this infestation has characters in common with both T. hyaenae and T. crocutae. The number (34 to 44) of rostellar hooks and their size (187 to 212μ and 112 to 137μ) overlaps those of both species. The size of the cirrus pouch (400 to 480μ by 110 to 140μ) is similar to that of T. hyaenae, but the number of uterine branches (24 to 30) and the distribution of the testes correspond with that of T. crocutae. It therefore seems possible that Pellegrini was dealing with a dual infestation which may be due to a previous naturally acquired infestation of the experimental animal.

Cysticerci, which resemble this species in the number, size and shape of the rostellar hooks, have been recovered from impala [Aepyceros melampus (Lichtenstein, 1812)], and sable antelope [Hippotragus niger (Harris, 1838)], in the Republic of South Africa.

Table 12.-Comparison of T. hyaenae described by various authors

Synonym	T, hyaenae		T. lycaontis		
Author	$\begin{gathered} \text { Baer } \\ (1926) \end{gathered}$	This Paper	Baer \& Fain (1955)	Mettrick (1962)	This Paper
Scolex.	1,200	-	1,000	970-1,000	-
Rostellum.	500	-	400	480	-
Suckers.	400	8	310-330	440-460	-
No. hooks.	32-38	28-36	32	$30-34$	-
Large hook	223	202-216	215-240	212- 220	218-242
Small hook.	127	132-141	131-165	133-142	142-165
Testes.	300	280	300-500	-	360-410
Cirrus Pouch L.	400	366-503	300-450	-	389-584
Wterus	12	91-114	80-150	-	69-105
Uterus.	12-14	10-13	8-15	-	7-12

Taenia hydatigena Pallas, 1766
Synonym: Taenia ursina von Linstow, 1893 Taenia jakhalsi Ortlepp, 1938
Definitive host: Canis familiaris Linnaeus, 1758 and various canines; Ursus arctos Linnaeus, 1758
Intermediate host: Various ruminants (Abuladse, 1964)

Distribution: Cosmopolitan

Material:

1. Adults from experimentally infested dogs, Republic of South Africa
2. Co-type of T, ursina from U, arctos (Dept. of Zoology, Royal Agricultural and Veterinary College, Copenhagen)
3. Type specimen of T, jakhalsi from Canis mesomelas Schreber, 1775. (Veterinary Research Institute, Onderstepoort)

Redescription

Scolex, rostellum and suckers: On two adults these were 601 to $682 \mu, 373$ to 382μ and 228 to 273μ in diameter. Ten adult specimens have 28 to 36 rostellar hooks arranged in two crowns. The large hooks vary from 191 to $218(203 \cdot 9 \pm 3 \cdot 5) \mu$ and the small ones from 118 to $143(132 \cdot 5 \pm 3 \cdot 1) \mu$ (Fig. 18).

FIG. 18.-T. hydatigena. Rostellar hooks of adult
Male genitalia: There are 600 to 700 testes which are 69 to 91μ by 55 to 78μ in diameter. They are in a single dorsal layer; posteriorly they extend to
the vitellarium but are not confluent. The cirrus pouch extends to the longitudinal excretory vessels but does not extend into the medulla. In sexually mature segments it is 273 to 342μ long and 114 to 191μ wide; in the early gravid one 319 to 376μ by 114 to 165μ and in the gravid one 320 to 434μ by 160μ. The cirrus, 41 to 46μ in diameter, is covered with hairlike bristles.

Female genitalia: The two lobes of the ovary are of unequal size. The vagina which has a well developed muscular wall throughout, skirts the poral ovarian lobe and then runs close to and parallel with the vas deferens. After passing into the cortex, it loops posteriorly and its lumen (13 to 18μ) forms a dilatation 40μ wide and 215μ long before opening in the genital atrium (Fig. 19). The uterus has 6 to 10 lateral branches which redivide. The ova are oval, 36 to 39μ by 31 to 35μ in diameter, with an embryophore $4 \cdot 5$ to $5 \cdot 6 \mu$ thick (Table 13).

Fig. 19.-T. hydatigena, Genital atrium

Discussion

Abuladse (1964) lists T. hydatigena from a wide range of definitive and intermediate hosts. The larval stage, Cysticercus tenuicollis, is much larger than that of other species, and is thus easily identified; the majority of the records, particularly those in ruminants, are thus probably correct. This, however, is not true of the records of the adults listed by Abuladse (1964), which have been recorded not only from canines but also from felines and mustelids. Sweatman \& Williams (1962) have shown by experimental infestation that the domestic cat is not a suitable host for this cestode. The records from lion [Panthera leo (Linnaeus, 1758)] and leopard [Panthera pardus (Linnaeus, 1758)] could be erroneous identifications implicating a number of species having the same number of rostellar hooks of comparable size; those from mustelids could be T. martis.

The larval stage is common and widespread in domesticated ruminants in South Africa. Ortlepp (1961) records it from springbok [Antidorcas marsupialis (Zimmermann, 1780)], and black wildebeest [Connochaetus gnou (Zimmermann, 1780)]. It has also been recovered from impala [Aepyceros melampus (Lichtenstein, 1812)]; hartebeest [Alcelaphus buselaphus (Pallas, 1766)]; blue wildebeest [Connochaetus taurinus (Burchell, 1823)]; blesbuck [Damaliscus dorcas phillipsi (Harper, 1939)] and tsesseby[Damaliscus lunatus (Burchell, 1823)].
Table 13.-Comparison of T . hydatigena described by various authors

Synonym	T. hydatigena							T. ursina		T. jakhalsi	
Author	$\underset{(1856)}{\text { Leuckart }}$	$\begin{aligned} & \text { Deffke } \\ & (1891) \end{aligned}$	$\begin{aligned} & \text { Ransom } \\ & \text { (1913) } \end{aligned}$	$\begin{gathered} \text { Hall } \\ (1919) \end{gathered}$	Petrov (1941; in Abuladse, 1964)	$\begin{gathered} \text { Christensen } \\ \& \\ \text { Roth } \\ (1949) \end{gathered}$	$\begin{aligned} & \text { This } \\ & \text { paper } \end{aligned}$	$\begin{gathered} \text { Von Linstow } \\ (1893) \end{gathered}$	This paper	$\begin{aligned} & \text { Ortlepp } \\ & \text { (1938) } \end{aligned}$	$\begin{aligned} & \text { This } \\ & \text { paper } \end{aligned}$
Scolex.	$\bar{\square}$	-	-	1,000	1,000	1,000	601-682	1,106	-	922-956	-
Rostellum.	340	-	-				373-382	480		315-405	-
Suckers.	340	-	6	310	310	-	228-273	440	-	371-394	
No. hooks.	32-38	36	26-44	26-44	26-44		28-36	26	-	30-32	30-32
Large hook	178	200	170-220	170-220	170-220	170-200	191-218	169		195-220	188-201
Small hook.	114	160	110-160	110-160	110-160	110-160	118-143	130	-	131-142	124-137
Testes....	-	600-700		600-700	600-700	-	600-700	-	890-1,000	400-500	400
Cirrus pouch L_{W}.	-	450 130	二	450 130	450 130		273-434	-	-	450-464	274-366
Uterus..........	二	${ }_{5-}^{130} 8$		${ }_{5-10}^{130}$	${ }_{5-10}^{130}$		114-191 6 - 10	-		133 $6-10$	$69-114$ $6-10$
Ulerus...											

Taenia ingwei Ortlepp, 1938
Definitive host: Panthera pardus (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: Africa

Material:

1. Type specimens from leopard, Republic of South Africa (Veterinary Research Institute, Onderstepoort)
2. Additional adults from the same host and locality

Redescription

Scolex, rostellum and suckers: Ortlepp (1938) records the scolex as 720 to 790μ, the rostellum 390μ and the suckers 290μ in diameter. There are 30 to 34 rostellar hooks arranged in two crowns. The large hooks are 183 to 193 (mean 187.9μ) and the small hooks 134 to 145 (mean $140 \cdot 2 \mu$) long (Fig. 20).

Fig. 20.-T. ingwei. Rostellar hooks of adult
Male genitalia: There are 600 to 670 testes, 64 to 87μ in diameter; they are in a single dorsal layer which is confluent dorso-posteriorly to the vitellarium. The cirrus pouch almost extends to the lateral wall of the ventral longitudinal vessel; in the mature segment it is 343 to 411μ long and 55 to 137μ wide; in the gravid one 366 to 411μ by 78 to 105μ.

Female genitalia: The poral lobe of the ovary is only slightly smaller than the aporal one. The vagina has very few convolutions; in the cortex its lumen dilates gradually but narrows again to pass through the sphincter before opening in the genital atrium (Fig. 21). The sphincter, 50 to 64μ in diameter, is 50 to 69μ from the opening in the genital atrium. The uterus has 8 to 11 lateral branches which subdivide. (Table 14).

Fig. 21.-T. ingwei. Genital atrium

Table 14.-Comparison of T . ingwei described by various authors

| (1938) |
| :--- | :---: | :---: | :---: |\(\left|\begin{array}{c}Ortlepp

(1961)

Beverley-

Burton

(1961\end{array}\right|\)| This |
| :---: |
| Paper |

Discussion

This species has relatively few uterine branches resembling T. hydatigena; it differs from the latter, however, in having a well developed vaginal sphincter. It differs from T. gonyamai in the shape of the large rostellar hook; in that the testes are confluent posterior to the vitellarium and in having fewer uterine branches; from T. hyaenae in the shape and smaller size of the rostellar hooks; in having testes posterior to the vitellarium; and in having a greater number of testes.

Taenia laticollis Rudolphi, 1819
Definitive host: Lynx lynx (Linnaeus, 1758); Lynx canadensis Kerr, 1792

Intermediate host: Unknown
Distribution: Northern Hemisphere
This cestode was described in detail by Leuckart (1856). It has since been redescribed by several authors, but some of the latter descriptions do not apply to this species. These misidentifications are based on the statement of Lühe (1910) that there are 38 to 40 rostellar hooks, and not 60 as recorded by Leuckart (1856).

Material:

1. Type specimens from L. lynx (Vienna Museum)
2. Specimens from L. canadensis, Alaska and Canada

Redescription

Strobila: This is 55 to 65 mm long and up to 2 mm wide. The total length would be greater as the specimens are not gravid.
Scolex, rostellum and suckers: On two type specimens these are 892 to $910 \mu, 563$ to 592μ and 346 to 364μ in diameter. The type specimens have lost all the large and some of the small rostellar hooks. The number of rostellar hooks, determined from the remaining hooks and the "scars" of those lost, is 58 to 62. The small hooks are 183 to 247 (mean $215 \cdot 7$) μ long (Fig. 22a). The majority of the specimens from North America have also lost all the large hooks, but there are one to 12 large hooks remaining on four specimens. This material has 58 to 62 hooks; the large hook is 370 to 407 (mean $382 \cdot 2$) μ and the small hook 218 to 233 (mean 224.0) μ long (Fig. 22b).

a
Fig. 22a.-T. laticollis. Rostellar hooks of adult. Type specimens
Male genitalia: There are 290 to 430 testes, 50 to 69μ by 46 to 55μ in diameter. They are in two, sometimes three layers; extend from the anterior to the posterior margin; are also present dorsal to the female genitalia but are interrupted by the uterus.

Fig. 22b.-T. laticollis. Rostellar hooks of adult. b. American material

The vas deferens is heavily coiled and relatively large. The cirrus pouch extends to the longitudinal vessels and may just enter the medulla; in the sexually mature segment it is 218 to 320μ long by 110 to 155μ wide.

Female genitalia: The two lobes of the ovary are of equal size. The vagina is not surrounded by a sphincter and its lumen dilates only slightly before opening in the genital atrium (Fig. 23). In the Canadian specimens the uterus has 15 to 20 lateral branches. The ova are oval, 36 to 38μ by 28 to 31μ in diameter, with an embryophore $3 \cdot 3$ to $4 \cdot 5 \mu$ thick.

FIG. 23.-T. laticollis. Genital atrium

Discussion

Type specimens of Taenia laticollis Rudolphi, 1819, deposited at the Museums of Berlin and Vienna, appear to be two species. Lühe (1910) found 38 to 40 hooks on specimens from Berlin while those from Vienna (described above) have 58 to 62 . Although Leuckart (1856) did not examine the type specimens, his description agrees with that of the only remaining type specimens in Vienna and must therefore be accepted as correct.

Hall (1919) compiled the descriptions of previous workers. The descriptions given by Skinker (1935a) and Joyeux (1945) agree with that of Lühe, but as they all have a maximum of 42 rostellar hooks they are not T. laticollis. Joyeux \& Baer (1937) described T. laticollis from Genetta genetta (Linnaeus, 1758) but examination of these specimens has shown them to be T. parva. The cestodes listed as T. laticollis from the genet in Spain by Lopez-Neyra (1945) are also probably T. parva as are those described by Dollfus (1962) from Herpestes ichneumon (Linnaeus, 1758) in Algeria. FloresBarroeta, Hidalgo-Ecalante \& Brenes (1958) identified a cestode from the grey fox [Urocyon cinereoargenteus (Schreber, 1775)] as T. laticollis, but this is incorrect as it has only 40 hooks which, according to the illustration, are 236μ and 148μ long respectively. It is possible that this is actually T. pisiformis. Fagasinski (1961) identified cestodes from a Felis sylvestris \times F. catus hybrid in Poland as T. laticollis, distinguishing it from T. taeniaeformis on the absence of a vaginal sphincter. It is possible that Fagasinski's specimens were in fact T. taeniaeformis, but that the vaginal sphincter was not detected due to the maceration of the material, collected several days after the death of the host. The number of the rostellar hooks, viz. 32 to 40 , excludes them from being T. laticollis, T. macrocystis or T. endothoracicus. They agree closely with T. pseudolaticollis nom. nov. described as T. laticollis by Skinker (1935a) and Joyeux (1945), which does not have a vaginal sphincter; further study of the specimens is necessary for their final placement (Table 15).

The Canadian specimens agree in all respects with the type specimens from Vienna, but the cirrus pouch is 229 to 315μ by 78 to 101μ while it is 218 to 320μ by 110 to 155μ in the type specimens. As the type
specimens are immature the number of uterine branches and the size of the ova were determined in the Canadian specimens.
This species may be differentiated from T. macrocystis on the following:

1. All the large hooks are embedded equidistant from the tip of the rostellum; in T. macrocystis alternate large hooks are situated further back than the adjacent large hooks.
2. It is the only species in which some testes are present dorsal to the ovary and not just overlapping the edge of the ovary.
3. The vas deferens is larger and more heavily coiled than in any other species.
4. The cirrus pouch does not extend into the medulla as it does in T. macrocystis.

The rostellar hooks of both T. taeniaeformis and T. parva resemble those of T. laticollis in size but differ in number. Furthermore, in T. laticollis the male and female genital ducts pass between the dorsal and ventral longitudinal vessels, but in T. taeniaeformis and T. parva they pass ventral to both these vessels.
T. endothoracicus is the only other species with rostellar hooks comparable both in number and size, The shape of the large rostellar hook to a certain extent resembles that of T. laticollis; the number of testes (300 to 400), the size of the cirrus pouch (360 to 375μ by 100μ) and the number of uterine branches (10 to 12) are close to those of T. laticollis. T. endothoracicus differs, however, in that the area immediately around the ovary and vitellarium is free of testes. In view of their close similarities it is desirable that these two species be studied in greater detail not only as to their anatomy but also as to their host preferences.

If these two species are shown to be distinct from one another, it is possible that the cestodes recorded from the coyote (Canis latrans Say, 1823) by Skinker (1935a) and Freeman, Adorjan \& Pimlott (1961) and from the wolf (Canis lupus Linnaeus, 1758) by Freeman, et al., (1961) in North America are T. endothoracicus. T. endothoracicus is known from the fox in Asia (Dubnizky, 1952a) which may have been introduced into North America via Siberia and

Table 15.-Comparison of T. laticollis described by various authors

Alaska. At present it would seem that the felines, L. lynx and L. canadensis however, are the only authentic hosts of T. laticollis.

Taenia macrocystis (Diesing, 1850)
Definitive host: Felines (Abuladse, 1964)
Intermediate host: Lagomorphs (Abuladse, 1964) Distribution: North and South America

The larval stage of this cestode, Cysticercus macrocystis Diesing, 1850 from Sylvilagus brasiliensis (Linnaeus, 1758) in Brazil, was described before the adult was known. Lühe (1910) reexamined specimens from South American felines which Diesing had identified as T. crassicollis (synonym: T. taeniaeformis), and amongst these there were specimens which appeared to be the sexual stage of the cysticercus.

Material:

1. Type specimens from S. brasiliensis, Brazil(Vienna Museum)
2. Larval stage from S. brasiliensis, Caracas, Venezuela
3. One scolex from among the type specimens of T. omissa. (Vienna Museum)
4. Two specimens from Felis wiedii wiedii Schinz, 1821 (synonym: Felis macroura Wied, 1823), Brazil

Redescription

Scolex, rostellum and suckers: In the specimens of Lühe's material these are $974 \mu, 728 \mu$ and 300μ in diameter. There are 58 to 60 rostellar hooks. The large hooks are equal in number to the small hooks, but are set in a characteristic fashion: the point of attachment of alternate large hooks is behind that of the adjacent hooks so that they are intermediate in position between those in the first crown and the small hooks. The large hooks in the anterior row have thick handles while the alternating hooks have more slender handles. The total lengths of these two types of large hooks do not differ significantly; in the type specimens they are 297 to 343μ and 306 to 338μ long (Fig. 24; Table 16).

Male genitalia: There are 340 to 480 testes, 69 to 91μ by 50 to 69μ in diameter; these are in two layers extending from the anterior to the posterior margin, but are not confluent at the latter. The cirrus pouch extends into the medulla; in the sexually mature
segment it is 233 to 297μ long by 46 to 64μ wide; in the early gravid one 242 to 297μ by 59 to 79μ and in the gravid segment 242 to 320μ by 50 to 73μ.

Fig. 24.-T. macrocystis. Rostellar hooks of larval stage (types)

Female genitalia: The two lobes of the ovary are of equal size. The vagina is wavy throughout its length, most marked in the cortex; it has no sphincter and no real dilatation although its lumen is sometimes slightly wider (Fig. 25). The uterus has 9 to 12 lateral branches. The ova are oval, 33 to 35μ by 22 to 25μ in diameter, with an embryophore $2 \cdot 2$ to $3 \cdot 4 \mu$ thick (Table 17).

Table 16.-Size of the rostellar hooks of T. macrocystis

	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
Larval stage:						
Type specimens.	22	297-343	$324 \cdot 7 \pm 12 \cdot 8$	11	183-196	$189 \cdot 0 \pm 6 \cdot 0$
Venezuelan...	5	338-352	$344 \cdot 6$	5	201-209	$204 \cdot 1$
Lühe's collection.	6	356-370	$363 \cdot 3$	3	196-223	$210 \cdot 9$
Baer's collection.	2	329-338	$333 \cdot 6$	4	187-197	$192 \cdot 1$
Total.	35	297-370	334.7 ± 18.4	23	183-223	$195 \cdot 7 \pm 10 \cdot 5$

Table 17.-Comparison of T , macrocystis described by various authors

	$\begin{aligned} & \text { Lühe } \\ & (1910) \end{aligned}$	$\underset{(1919)}{\text { Hall }}$	$\begin{gathered} \text { Riser } \\ (1956) \end{gathered}$	This Paper	
				Type specimen (larval)	Adults
Scolex. .	1,250-1,500	1,250-1,600	-	-	974
	620	515-690	二		728
Suckers....	$340-350$	290-350	-	58-60	300
Large hooks..	${ }^{60} 320-340$	$60-74$ $320-365$	320-340	58-60 $297-338$	${ }^{60}$ 329-370
Small hooks..	${ }_{180}$	320- 300	190	297-338 $183-196$	$329-370$ $187-223$
Testes.......		Few	1		340-480
Cirrus pouch	-	300-345	-	-	233-320
Uterus..	9- 12	$35-$ $8-$ 60	二	=	+46-79

Fig. 25.-T. macrocystis. Genital atrium

Discussion

Moniez (1880) records 34 to 40 rostellar hooks on the type specimens but Lühe (1910) regards this as an error. It is not known whether the type specimens are all from a single animal, but it is possible that there were some C. fasciolaris among them, and that these were the specimens described by Moniez. The larvae of both T. macrocystis, which is intramuscular in leporids, and of T. taeniaeformis in the liver of rodents, are strobilocerci; the type specimens of T. macrocystis were collected not only from the back muscles but also from the body cavity and encapsulated in the liver (Lühe, 1910). While C. fasciolaris is not common in leporids, it has been recorded from them by Joyeux, Senevet \& Gros (1936, according to Mahon, 1954b).

Hall (1919) records the larval stage of this species from S. braziliensis and Grundmann (1958) from Lepus californicus Gray, 1837. In the U.S.S.R. Abuladse (1964) states that Gubanov recorded it from Lepus timidus Linnaeus, 1758 in 1956 and in 1958 from Sciurus vulgaris Linnaeus, 1758. In Canada, Mahon (1954b) records C. fasciolaris from the back muscles of Lepus americanus Erxleben, 1777. These larvae which have 50 to 60 rostellar hooks, 380 to 392μ and 225 to 240μ long, are probably T. macrocystis. In Venezuela Lopez-Neyra \& DiazUngria (1956) describe a cysticercus from the muscles of Sylvilagus floridianus (J. A. Allen, 1890) as that of T. rileyi. As these cysts have 62 to 68 rostellar hooks, 310 to 350μ and 200 to 250μ long, they cannot be those of T. rileyi but are probably T. macrocystis.

Lühe (1910) recorded the adult from Panthera onca (Linnaeus, 1758); Lynx rufus (Schreber, 1777) and Lynx baileyi Merriam, 1890 and Riser (1956) from an unidentified lynx. In the present study immature specimens were found in L. canadensis from Alaska. According to Abuladse (1964) it has been recorded by Petrov \& Potekhina (1953), Irgashev (1956) and Muminov (1962) from V. vulpes and by Gubanov (1956) from an experimentally infested wolf cub (Canis lupus Linnaeus, 1758). The records of this species in canines must be treated with some reserve, since T. endothoracicus, a parasite of the fox, may be confused with it. It is difficult to assess the validity of Gubanov's identification of the cestodes from the experimentally infested wolf. It is improbable that the monocephalic strobilocercus of T. macrocystis can be confused with the polycephalic coenurus of T. endothoracicus. A re-examination of these canine records is indicated.

Taenia multiceps Leske, 1780

Synonym: Multiceps multiceps (Leske, 1780) Hall 1919
Multiceps gaigeri Hall, 1916
Multiceps skrjabini Popov, 1937
Definitive host: Canis familiaris Linnaeus, 1758 and various canines (Abuladse, 1964)
Intermediate host: Sheep, goats and other ruminants (Abuladse, 1964)
Distribution: Cosmopolitan
Clapham (1942b) lists T. serialis and T. packii as well as Taenia clavifer (Railliet \& Moque, 1919), Taenia glomeratus (Railliet \& Henry, 1915), Taenia lemuris (Cobbold 1862), Taenia polytuberculosus (Megnin, 1880) and Taenia ramosus (Railliet \& Marulla, 1919) synonyms of this species. She considers the other valid species to be: T. brauni, T. gaigeri, T. twitchelli, Taenia macracantha (Clapham, 1942) and Taenia otomys (Clapham, 1942). Nagaty \& Ezzat (1947) regard T. serialis as a valid species, with T. gaigeri a synonym of T. multiceps. Bondareva (1953) considers T. serialis, T. gaigeri and M. skrjabini distinct from one another and from T. multiceps.

Material.

1. Type specimen of T. gaigeri (U.S.D.A.)
2. Adult T. gaigeri from an experimentally infested dog (Egypt)
3. Adults from dog, black-backed jackal and hunting dog infested with scolices originating from experimentally infested sheep; Republic of South Africa.
4. Coenuri from experimentally infested sheep, Republic of South Africa.

Redescription

Scolex, rostellum and suckers: In seven adults of South African origin these structures are 746 to $956 \mu, 273$ to 364μ and 200 to 273μ in diameter. The type specimen of T. gaigeri has 28 and the South African material 22 to 30 rostellar hooks arranged in two crowns (Fig. 26, Table 18).

Fig. 26.-T. multiceps. Rostellar hooks of adult
Male genitalia: There are 284 to 388 testes in two dorsal layers. They are mainly in two lateral fields, few being present anterior to the female genitalia; posteriorly they extend to the level of the vitellarium but are not confluent at the posterior margin. The vas deferens is markedly coiled throughout its length. The cirrus pouch extends to the longitudinal vessels but not into the medulla. In the sexually mature segment it is 200 to 261μ long and 64 to 100μ wide; in the early gravid segment it is 227 to 295μ by 80 to 91μ; and in the gravid segment 238 to 306μ by 78 to 101μ. The cirrus is covered with hairlike bristles.

Female genitalia: The two lobes of the ovary are of equal size. There is a "pad" of muscle fibres against the anterior wall of the vagina between the
latter and the cirrus pouch; this "pad", 14 to 23μ in diameter, is 90 to 105μ from the vaginal opening in the genital pore (Fig. 27). The uterus has 14 to 20 lateral branches which redivide. The ova are oval, 28 to 36μ by 24 to 33μ, and have an embryophore 3.4 to 5.6μ thick (Table 19).

Fig. 27.-T. multiceps. Genital atrium

Discussion

Clapham (1942b) regards T. serialis as a synonym of T. multiceps while Nagaty \& Ezzat (1947) consider them to be different species. The present findings substantiate the latter view, as among other differences, T. serialis has a well-developed vaginal sphincter while T. multiceps has a "pad" only.

Contrary to Clapham's findings, Nagaty \& Ezzat (1947) regard Taenia gaigeri, resulting from experimental infestations, as identical to T. multiceps. Re-examination of these specimens has confirmed their conclusion.

Hall (1919) states that the larval stage of T. multiceps occurs in the central nervous system of the intermediate host and that of T. gaigeri in the central nervous system, other organs, intramuscularly and subcutaneously. This difference in habitat appears to be related to the species of the intermediate host involved: in sheep coenuri mature only in nervous tissue but in goats they may reach maturity in other organs. The description of the sexual stage of Multiceps skrjabini Popov, 1937 does not differ from that of T. multiceps, but in sheep the larval stage develops to maturity in the intramuscular connective tissues, subcutaneous tissues and in the thoracic and abdominal cavities (Abuladse, 1964). This parasite is probably a subspecies of T. multiceps, the difference in habitat being due to isolation and selection in a restricted locality (Kazakh SSR).

Table 18.-Size of rostellar hooks of T. multiceps of S. African origin

	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
Larval stage.	50	157-177	$166 \cdot 7 \pm 5 \cdot 3$	35	109-136	$125 \cdot 0 \pm 5 \cdot 8$
Adult.	34	157-177	$168 \cdot 0 \pm 5 \cdot 7$	21	98-136	$125 \cdot 7 \pm 9.4$
Total.	84	157-177	$167 \cdot 2 \pm 5 \cdot 4$	56	98-136	$125 \cdot 5 \pm 7 \cdot 3$

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS
Table 19．－Comparison of T．multiceps described by various authors

$\begin{aligned} & \text { N } \\ & \text { s } \\ & \text { s } \end{aligned}$		
	$\frac{\stackrel{\rightharpoonup}{\partial}}{\hat{E}}$	$\left\|\left\|\|\stackrel{\infty}{\infty}\| \begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \text { ind } \\ \text { ind } \\ \hline 1 \end{array}\right\|\right.$
	$\begin{aligned} & \text { 등 } \\ & \therefore Q_{0} \end{aligned}$	
	$\begin{aligned} & \text { 틍 } \\ & \text { 터N } \\ & \text { ㅇig } \end{aligned}$	
	言产弯	
	$\begin{aligned} & \text { Ef } \\ & \text { ond } \\ & \text { win } \end{aligned}$	

Taenia omissa Lühe, 1910
Definitive host: Felines
Intermediate host: ? Odocoileus spp.
Distribution: North and South America

Material:

1. Type specimens (Vienna Museum): Felis concolor Linnaeus, 1771; scolices only
2. Adults from F. concolor; British Columbia, Canada

Redescription

Scolex, rostellum and suckers: In six type specimens these structures are 637 to $774 \mu, 391$ to 546μ and 173 to 237μ in diameter and on two specimens from Canada 1,229 to $1,482 \mu, 610$ to 626μ and 283 to 324μ in diameter.

In one type specimen the two crowns of rostellar hooks were complete, there being 22 in each crown. The remaining scolices had lost some of their hooks, but the number could be gauged by the "scars" where they had been attached, the number varying from 38 to 44 . The two specimens from Canada each had 20 small hooks but had lost all the large ones. The large hooks are 270 to $297 \mu(284 \cdot 8$ $8 \cdot 0 \mu)$ and the small ones 201 to $223 \mu(216 \cdot 7 \pm 6 \cdot 5 \mu)$ long (Fig. 28). The small hooks of the Canadian material are 192 to 214μ long.

Fig. 28.-T. omissa. Rostellar hooks of adult (Type specimens)
Male genitalia: In the Canadian material there are 345 to 380 testes, in a single dorsal layer. They are mainly in two lateral fields with relatively few
anterior to the female genitalia, posteriorly they extend slightly beyond the posterior margin of the ovary. The cirrus pouch does not quite extend to the longitudinal vessels; in the sexually mature segment it is 503 to 617μ long by 105 to 119μ wide, in the early gravid segment 503 to 548μ by 114 to 137μ and in the gravid one 448 to 594μ by 114 to 160μ.

Female genitalia: The poral lobe of the ovary is markedly smaller than the aporal one. The vagina is wavy throughout its length, most marked in the cortex where it loops several times before opening in the genital atrium. It is surrounded by a well developed sphincter, 46 to 69μ in diameter, situated 91 to 110μ from its opening (Fig. 29). The uterus has one to three main lateral branches which redivide. The ova are oval, 37 to 41μ by 31 to 34μ in diameter, with an embryophore $4 \cdot 5$ to $5 \cdot 6 \mu$ thick (Table 20).

FIG. 29.-T. omissa. Genital atrium

Discussion

Van Zyll de Jong (1966) found that T. omissa and T. rileyi (from the lynx) could not be differentiated from one another on the number and size of the rostellar hooks, but that they could be differentiated on the length of the handles. This criterion does not, however, appear to be reliable as these lengths are seen to overlap in his illustrations; further Clapham (1942b) showed in T. multiceps and T. serialis, that handle length is subject to great variations; van Zyll de Jong also points out that these two species may be separated from one another on the number and shape of the uterine branches.

Riser (1956) records Odocoileus hemionus (Rafinesque, 1817) and Dama virginianus Zimmermann, 1780 as the intermediate hosts; Van Zyll de Jong (1966) lists the former host only. These records, however, are assumptions based on the food preferences of the definitive host and have still to be proved experimentally. The cysticercus from Odocoileus virginianus coriacou (Boddaert, 1784) (synonym: Odocoileus cariacou) described by LopezNeyra \& Diaz-Ungria (1956) as "T. lyncis" (Synonym: T. rileyi) would be that of T. omissa, should this assumption be proved correct.
Taenia ovis (Cobbold, 1869) Ransom, 1913 sensu latu
Synonym: Taenia krabbei Moniez, 1879
Taenia cervi Christiansen, 1931
Taenia djeirani Boev, Sokolova and Tazieva, 1964

Table 20.-Comparison of T. omissa described by various authors

	$\begin{aligned} & \text { Lühe } \\ & (1910) \end{aligned}$	Dollfus(1944)	$\begin{gathered} \text { Riser } \\ (1956) \end{gathered}$	$\begin{gathered} \text { Van Zyll de Jong } \\ (1966) \end{gathered}$	This Paper	
					Types	Canadian
Scolex...	780	-	-	-	637-774	1,229-1,482
Rostellum.......	470	-	-	-	391-546	610-626
Suckers..........	230-280	-	-	-	173-237	283-325
No, hooks......	40	40	-	-	38-44	40
Large hook......	270-290	270-290	240-280	253	270-297	-
Small hook.......	190-200	190-200	180-210	203	201-223	192- 214
Testes...........	-	100	-	-	,	345- 380
Cirrus pouch L...	-	-	-	-	-	$\begin{array}{ll} 448-617 \\ 105- & 160 \end{array}$
Uterus...........	1-2	2	-	45	三	1- 3

Table 21.-Size of rostellar hooks of T. ovis ovis

Cobbold described the cystic stage of this parasite of sheep in 1869, but it was subsequently confused with and believed to be identical to, the cystic stage of T. solium of the pig. In 1913, however, Ransom proved experimentally that the cysticerci found in sheep are the larval stage of a dog tapeworm and not that of T. solium.

Moniez based the description T. krabbei on material recovered from a dog experimentally infested with cysticerci (C. tarandi) recovered from reindeer [Rangifer tarandus (Linnaeus, 1758)]. Likewise Christiansen (1931) based the description of T. cervi on material recovered from a dog infested with cysticerci from roedeer [Capreolus capreolus (Linnaeus, 1758)] and Boev, Sokolova \& Tazieva (1964) that of T. djeirani from specimens of a dog infested with material from the Persian gazelle [Gazella subguttorosa (Güldenstaedt, 1780)].

Taenia ovis ovis n. comb.
Synonym: Taenia ovis (Cobbold, 1869) Ransom, 1913
Definitive host: Canis familiaris Linnaeus, 1758 and various canines
Intermediate host: Sheep and other ruminants
Distribution: Cosmopolitan

Material:

1. Larval stage from experimentally infested sheep, Republic of South Africa
2. Adults from experimentally infested dogs, Republic of South Africa and Kazakh S.S.R.
3. Adult from a naturally infested dog, New Zealand

Redescription

Scolex, rostellum and suckers: In eight adults these structures are 637 to $1092 \mu, 364$ to 419μ and 319 to 455μ in diameter. Eleven adults and three cysticerci have 30 to 34 rostellar hooks arranged in two crowns (Table 21; Fig. 30).

Fig. 30.-T. ovis ovis. Rostellar hooks of adult

Male genitalia: There are 600 to 750 testes in the South African and New Zealand material and 350 to 450 in the Kazakhstan material. They are 91 to 101μ by 59 to 78μ in diameter. They are mainly in a single dorsal layer, extending from the anterior margin of the segment to the posterior edge of the ovary. The cirrus pouch does not extend to the longitudinal vessels. In the sexually mature segment it is 301 to 329μ long and 82 to 105μ wide (but 460 to 550μ by 130 to 150μ in the Kazakhstan material) and in the gravid one 320 to 411μ by 101 to 137μ (500 to 650μ by 130 to 150μ in the Kazakhstan material). The cirrus, 32μ in diameter, is provided with hairlike bristles.

Female genitalia: The poral lobe of the ovary is smaller than the aporal one. The vagina which is almost straight, just clears or touches the poral lobe of the ovary. It is surrounded by a well developed sphincter, 46 to 69μ in diameter, from 78 to 114μ from its opening in the genital atrium (Fig. 31). The uterus has 11 to 20 lateral branches which subdivide soon after leaving the main stem. The ova are oval, 29 to 31μ by 24 to 26μ in diameter with an embryophore $2 \cdot 2$ to $4 \cdot 5 \mu$ thick (Table 22).

Fig. 31.-T. ovis ovis. Genital atrium

Discussion

Although the sheep is the type host of this species, it is doubtful that it is its normal intermediate host. Ransom (1913) records degenerate cysts in sheep 83 days after infestation while Sweatman \& Henshall (1962) found similar cysts after 21 days. The author has also found degenerate cysts 28 days after infestation in South Africa. As it is improbable that a parasite in its usual host would be subject to degeneration at such an early stage, it is more than likely that another ruminant is its normal intermediate host.

Taenia ovis krabbei n . comb.
Synonym: Taenia krabbei Moniez, 1879
Taenia cervi Christiansen, 1931
Taenia djeirani Boev, Sokolova and Tazieva, 1964
Definitive host: Canis familiaris Linnaeus, 1758 and various canines
Intermediate host: Rangifer tarandus (Linnaeus, 1758); Capreolus capreolus (Linnaeus, 1758); Gazella subguttorosa Güldenstaedt, 1780) and other ruminants
Distribution: Northern hemisphere

Material:

1. T. krabbei-
(a) Cotype (U.S.D.A.)
(b) Adult (experimental infestation); Canada
2. T. cervi-
(a) Larval and adult type specimens (Royal Agricultural \& Veterinary College, Copenhagen)
(b) Adult (experimental infestation); Kazakh S.S.R.
3. T. djeirani-Adult (experimental infestation); Kazakh S.S.R.

Redescription

Scolex, rostellum and suckers: These structures are 864 to $972 \mu, 324$ to 432μ and 252 to 396μ in diameter. There are 24 to 32 rostellar hooks; the large hooks are 152 to 180μ and the small ones 87 to 115μ long.

Male genitalia: The number of testes could not be determined in the T. krabbei cotype nor in the T. cervi material. The T. krabbei material of Canadian origin has 760 to 900 while T. djeirani has 650 testes. The cirrus pouch does not extend to the longitudinal excretory vessels. In the secually mature segment it is 320 to 560μ long and 90 to 150μ wide; in the early gravid segment it is 311 to 560μ by 82 to 170μ and in the gravid one 338 to 540μ by 105 to 150μ. The cirrus is 18 to 20μ in diameter.

Female genitalia: The poral lobe of the ovary is smaller than the aporal one. The vagina is surrounded by a sphincter, 32 to 73μ in diameter, which is situated 55 to 110μ from its opening in the genital atrium. The uterus has 9 to 15 lateral branches which redivide. The ova are oval, 29 to 34μ by 24 to 28μ in diameter, with an embryophore $4 \cdot 5$ to $5 \cdot 6 \mu$ thick (Table 23).

Table 22.-Comparison of T. ovis ovis described by various authors

	$\underset{(1913)}{\substack{\text { Ransom }}}$	$\begin{gathered} \text { Hall } \\ (1919) \end{gathered}$	Sweatman \& Henshall (1962)	Boev et al. (1964)	This Paper		
					S. Africa	New Zealand	Kazakhstan
Scolex..	800-1,250	800-1,250	-	880-1,202	637-1,092	-	-
Rostellum.	275- 375	275- 375	-	360- 430	364-419	-	-
Suckers..	240-320	240-320	-	270-350	319-455	-	-
No. Hooks..	24- 36	24- 36	32- 38	$24-38$	30- 34	-	-
Large Hook.	156-188	156-188	160-202	131-188	170-191	-	-
Small Hook.	96-128	96-128	89-157	95-128	111-127	-	- 150
Testes.		300	301-507	300-465	650-700	600-750	350-450
Cirrus Pouch	450-550	450-550	-		301- 411	311-366	460-650
Uterus.	20- 25	20- 25	14-31	10-30	15- 20	11-13	$12-18$ $12-18$

Table 23.-Comparison of T. ovis krabbei as described by various authors

Synonym	T. krabbei					T. cervi				T. djeirani	
Author	$\underset{(1926)}{\text { Cram }}$	$\underset{\substack{\text { Sweatman } \\ \text { Henshall } \\ \text { (1962) }}}{ }$	$\begin{gathered} \text { Bržeskii } \\ (1962 / 63) \end{gathered}$	This paper		Christiansen (1931)	Boev et al. (1964)	This paper		Boev et al. (1964)	This paper
				Co-type	Canadian material			Types	Kazakhstan material		
Scolex.	500	-	860-922	-	914	550-700	1,070-1,540	-	972	990-1,540	864-936
Rostellum.	-	-	278-483	-	366	-		-	324		324-432
Suckers. No Ho.				-	352	24-32	$310-330$ $24-34$		288	$310-\quad 350$ $22-\quad 30$	$252-396$ $26-30$
No. Hooks	148-170	rer-195	137-179	-	二	160-177	$\begin{array}{ll}\text { 24- } & 38 \\ 142-181\end{array}$	- ${ }^{26-32-161}$	${ }_{160-170}^{24}$	147- 195	rer-30
Small Hook.	85-120	92-141	98-120			93-123	86-129	87-110	110-115	95-125	106-115
Testes.....	260	281-533	390-593	>300	760-900	-	355-514			247-532	${ }^{650}$
Cirrus Pouch L.	400	-	252-304	410-420	311-411	-		320-450	410-510	-	430-560
Uterus..........	9- $\overline{10}$	18-24	42- 94 $9-10$	$\begin{aligned} & 90 \\ & 11 \end{aligned}$	82-133 $12-15$	$\overline{10-12}$	8- 20	$90-140$ $9-13$	120-170	$\overline{10-} 17$	$90-150$ $10-14$

Discussion

Both Cram (1926) and Brzeskii (1962/63) describe two vaginal sphincters in this species: one in the usual position close to the vagina's opening in the genital atrium and the other where it leaves the seminal receptacle. The latter structure is not a sphincter nor is it peculiar to T. ovis krabbei because it is present in all the species examined for it.

Sweatman \& Henshall (1962) found T. ovis ovis and T. ovis krabbei indistinguishable morphologically but that the strobila of the latter matures more rapidly. The material described above as T. ovis krabbei differs from that of T. ovis ovis in that the cirrus pouch does not extend to the longitudinal excretory vessels and the testes are in two dorsoventral layers. The number of testes in the T. krabbei cotype could not be determined accurately as it is not possible to determine the number of layers of testes.

Sweatman \& Henshall (1962) found that the two subspecies of T. ovis are biologically distinct, lambs, goats, calves and pigs being refractory to infestation with T. ovis krabbei. Lambs are susceptible to infestation with T. ovis ovis, but fallow deer, Dama dama (Linnaeus, 1758), and red deer, Cervus elaphus Linnaeus, 1758, are refractory to it. It is regrettable that these authors did not have reindeer available to test the viability of the T. ovis krabbei ova used in their infestations of domestic ruminants, nor did they attempt to infest either fallow or red deer with the same material.

Christiansen (1938) considers it probable that T. ovis krabbei and T. cervi are identical but retains the latter as a distinct species until it is possible to compare the adults of the two forms. The validity of the differences used to separate these two forms is questioned by Sweatman \& Henshall (1962). Boev et al. (1964) found that there were no morphological differences between the adults or the cysticerci of T. ovis sensu latu, T. cervi or T. djeirani but consider that the intermediate host preferences of these three forms justify their specific separation. As this study also shows that there are no morphological differences they are considered synonyms (Table 23). Further investigation of their intermediate host preferences may justify a separation at the subspecific level of T. cervi and T. djeirani.

Taenia parenchymatosa Pushmenkov, 1945
Definitive host: Dog; Canis lupus Linnaeus, 1758; Alopex lagopus (Linnaeus, 1758) (Abuladse, 1964)

Intermediate host: Rangifer tarandus (Linnaeus, 1758); Cervus elaphus Linnaeus, 1758 (Abuladse, 1964)

Distribution: U.S.S.R
Pushmenkov (1945) found that cysticerci occurring in the liver and heart of reindeer are not the cystic stage of T. ovis krabbei, but represent a new species, T. parenchymatosa.

Material:

Specimens of this species were not available for study.

Description

According to Pushmenkov (1945) and Brzeskii (1962/63).

Scolex, rostellum and suckers: These structures are 1,034 to $1,368 \mu, 286$ to 588μ and 240 to 342μ in diameter. There are 30 to 34 rostellar hooks arranged in two crowns; the large hooks are 210 to 230μ and the small ones 124 to 160μ long (Fig. 32).

Fig. 32.-T. parenchymatosa. Rostellar hooks (From Brzeskii, 1962/63)

Male genitalia: There are 340 to 419 testes, 67 to 84μ in diameter. They are confluent at the anterior margin but not at the posterior margin of the segment. The cirrus pouch extends to the longitudinal excretory vessels, and is 382 to 460μ long by 84 to 145μ wide.

Female genitalia: The two lobes of the ovary are of unequal size. The uterus has 9 to 10 branches which redivide. The ova are either spherical or oval: when spherical 29 to 33μ and when oval 26 to 29μ by 33 to 37μ in diameter (Table 24).

Table 24.--Comparison of T. parenchymatosa described by various authors

	$\begin{aligned} & \text { Pushmenkov } \\ & (1945) \end{aligned}$	$\begin{gathered} \text { Brzeskii } \\ (1962 / 63) \end{gathered}$
Scolex.	1,260	1,034-1,638
Rostellum.	330	286-588
Suckers.	240-340	300-342
No. Hooks.	30	32- 34
Large Hook	220-230	210-228
Small Hook.	130-160	124-145
Testes.......	-	340-419
Cirrus Pouch	-	382- 460
俍	-	84-145
Uterus.	-	9 - 10

Discussion

Brzeskii (1962/63) studied and compared T. ovis krabbei with this species and described the structure at the junction of the seminal receptacle and vagina, as a sphincter. As pointed out earlier, this not a sphincter and is found in all the species examined for it. Brzeskii does not describe or illustrate a sphincter surrounding the vagina proximal to its opening in the genital atrium either in T. ovis krabbei

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS

or in this species. Judging by the dilatation and sudden narrowing of the lumen of the vagina, it seems probable that it is surrounded by a sphincter in this region (Fig. 33).

Fig. 33.-T, parenchymatosa. Genital atrium (From Brzeskii, 1962/63)
This species resembles T. hydatigena in number and size of rostellar hooks and in the number of uterine branches. T. hydatigena does not have a vaginal sphincter and should this structure be present in T. parenchymatosa it would be a valid difference for distinguishing between these species. Furthermore, the cysticerci of T. hydatigena are found in the abdominal cavity and only rarely remain in the liver itself. According to Pushmenkov (1945) these cysticerci (10 to 18 mm in diameter) occur either in the substance of or under the capsule of the liver.

Taenia pisiformis (Bloch, 1780) Gmelin, 1790
Definitive host: Canines and rarely felines (Abuladse, 1964)
Intermediate host: Lagomorphs and rodents. (Abuladse, 1964)
Distribution: Cosmopolitan

Material:

1. Larval stage from naturally infested Oryctolagus cuniculus (Linnaeus, 1758); Germany
2. Adults from a naturally infested dog; Switzerland
3. Adults from an experimentally infested dog; England

Redescription

Scolex, rostellum and suckers: In seven adults these are 864 to $1500 \mu, 347$ to 546μ and 228 to 324μ in diameter. Two larvae and seven adults have 34 to 42 rostellar hooks arranged in two crowns (Table 25; Fig. 34).

Fig. 34.-T. pisiformis. Rostellar hooks of adult
Male genitalia: There are 600 to 950 testes, 55 to 91μ by 69 to 72μ in diameter. They are in two to four layers scattered throughout the medulla. They are confluent at both the anterior and the posterior margins of the segment and are present between the ovary and vitellarium. The cirrus pouch extends to the median margin of the longitudinal vessels and in some segments into the medulla. In the mature segment it is 319 to 451μ long by 114 to 137μ wide, in the early gravid segment 343 to 520μ by 114 to 180μ and in the gravid one 411 to 457μ by 114 to 190μ. The cirrus, 39μ in diameter, is covered with hairlike bristles.

Female genitalia: The poral lobe of the ovary is smaller than the aporal one. The vagina follows a straight course and loops dorso-ventrally only in the medulla; it loops posteriorly in the cortex before opening in the genital atrium dorso-posteriorly to the cirrus pouch. There is no vaginal sphincter and it does not dilate before opening in the genital atrium (Fig. 35). The uterus has 10 to 16 branches which redivide. The ova are slightly oval, 43 to 53μ by 43 to 49μ in diameter with an embryophore 5.6 to $7 \cdot 8 \mu$ thick (Table 26).

Fig. 35.-T. pisiformis. Genital atrium

Table 25.-Size of rostellar hooks of T. pisiformis

Table 26.-Comparison of T. pisiformis described by various authors

	$\begin{aligned} & \text { Deffke } \\ & (1891) \end{aligned}$	$\begin{gathered} \text { Hall } \\ (1919) \end{gathered}$	Ortlepp (1938)	$\begin{gathered} \text { Riser } \\ (1956) \end{gathered}$	Mettrick (1962)	Esch \& Self (1965)	This Paper
Scolex.	-	1,300	-	-	-	-	864-1,500
Rostellum.	-	515-640	-	-	-	322-3>2881	347- 546
Suckers.	$\bar{\square}$	310-330	-	-	- 40	$322 \cdot 3 \times 288 \cdot 1$	228- 324
No. hooks	42	34-48	36	-	$34-40$		$34-42$
Large hook	260	255-294	220	250-270	232-278	$200-269$	220- 261
Small hook	120	132-177	150	140-150	142-169	$114-172$	128-155
Testes.	400-500	400-500	400-500	-	400-500	- -	600-950
Cirrus pouch	700-800	460-800	-	-	-	$370 \cdot 6-380 \cdot 4$	319-520
	130	130-140				$140-144 \cdot 2$	114190
Uterus.	8-10	8-14	10-12	-	9-20	$11-15$	10-16

Discussion

In this material as well as that described by Esch \& Self (1965) the cirrus pouch is shorter than recorded by Deffke (1891) or Hall (1919). Deffke records the length as 700 to 800μ but this is probably a printing error; from his illustration it appears to be about 380μ long. Hall (1919) states that the vesicula seminalis is well developed but Deffke (1891) found that it was not a constant feature. It was not present in this material.

Hall (1919) considers Taenia novella Neumann, 1896 of the domestic cat a synonym of T. pisiformis. This conclusion, as well as the records of this parasite in various felines, is supported by the fact that Ackert \& Grant (1917) succeeded in infesting seven of eight kittens with this parasite. Jacob (1939) records T. pisiformis from the polecat in Germany. The identity of these cestodes is, however, doubtful; They may possibly be T. martis.

Johri (1957) describes a cestode from a dog in Dublin as a new species, Multiceps smythii (listed as a species inquirendae), which is most probably T. pisiformis. Johri places this cestode in the genus Multiceps Goeze, 1782 as the large rostellar hooks have sinuous handles and there is a reflexed loop in the vagina. The description of this cestode differs from that of T. pisiformis only in the number and distribution of the testes. The fewer testes are probably due to Johri assuming that these are in one layer only. The photograph of a section of this cestode shows that the section is markedly skew which may account for the apparent absence of testes from the postero-poral part of the segment.

Taenia polyacantha Leuckart, 1856
Synonym: Tetratirotaenia polyacantha (Leuckart, 1856) Abuladse, 1964

Definitive host: Vulpes spp., Alopex spp., and other canines (Abuladse, 1964)
Intermediate host: Rodents (Abuladse, 1964)
Distribution: Northern hemisphere
The adult of this species was described by
Leuckart in 1856; the larval stage was unknown until Baer (1932) described it from Clethrionomys glareolus helveticus (Miller, 1900). Baer describes it as a type of tetrathyridium. Abuladse (1964) uses the structure of the larva as a criterion for erecting the genus Tetratirotaenia.

Material:

Adults from naturally infested V. vulpes; Switzerland

Redescription

Scolex, rostellum and suckers: In three specimens these are 868 to $960 \mu, 343$ to 457μ and 256 to 285μ in diameter. On two scolices there are 62 rostellar hooks arranged in two crowns; the large hooks are 196 to 214μ (mean $204 \cdot 6 \pm 6 \cdot 2 \mu$) and the small hooks 123 to 133μ (mean $126 \cdot 6 \pm 3 \cdot 7 \mu$) long (Fig. 36).

Fig. 36.-T. polyacantha. Rostellar hooks of adult

Male genitalia: There are 215 to 300 testes, 55 to 69μ by 32 to 46μ in diameter. They are in two layers which are confluent at the anterior but not at the posterior margin. The cirrus pouch extends to the longitudinal vessels, but not into the cortex; in the early sexually mature segment it is long and narrow (160μ by 55μ) but rapidly increases in width to become subspherical in the older segments. In the sexually mature segment it is 160 to 229μ long and 55 to 137μ wide, in the early gravid segment 174 to 205μ by 124 to 137μ and in the gravid $!69$ to 214μ by 105 to 114μ.

Female genitalia: The poral lobe of the ovary is much smaller than the aporal one. The vagina loops on crossing into the cortex but does not loop again before opening in the genital pore. There is no sphincter; its lumen dilates slightly before opening in the genital atrium (Fig. 37). The uterus has 12

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS

to 15 lateral branches. The ova are oval, 31 to 34μ by 28 to 30μ in diameter, with an embryophore 3.4 to $4 \cdot 5 \mu$ thick (Table 27).

Fig. 37.-T. polyacantha. Genital atrium

Discussion

Both Schiller (1953) and Rausch (1959a) record fewer rostellar hooks (44 to 50) in specimens from Alaska than have been recorded in European material. It is possible that T. ovata, considered a species inquirendae in this paper, belongs here.

Taenia pseudolaticollis nom. nov.
Synonym: Taenia laticollis of Skinker (1935) and Joyeux (1945)
Definitive host: Felis wiedii wiedii Schinz, 1821; Lynx spp.
Intermediate host: Unknown
Distribution: North and South America
Skinker (1935a) identified and described cestodes from the lynx in the United States as T. laticollis; Joyeux (1945) records a similar specimen from F. w. wiedii (synonym: Felis macroura Wied, 1823) in Brazil. As pointed out earlier these are not T. laticollis; the name Taenia pseudolaticollis is proposed for this species.

Material:

1. Type specimen from F. macroura, Brazil, previously described by Joyeux (1945). Scolex deposited in the Stockholm Museum; strobila in Institute of Zoology, Neuchatel
2. Specimen from lynx previously described by Skinker (1935); U.S.D.A.

Redescription

Scolex, rostellum and suckers: It is not possible to determine the size of these structures on the material available. The large rostellar hooks are 352 to 380μ and the small ones 220 to 229μ long (Fig. 38).

Male genitalia: There are 204 to 320 testes, 82 to 101μ by 50 to 78μ in diameter. They are mainly in a single dorsal layer which extends posteriorly to just beyond the limits of the ovary, being absent dorsally and laterally to the vitellarium. The cirrus
pouch does not extend to the longitudinal vessels; in the sexually mature segment it is 200 to 300μ long and 64 to 120μ wide, while in the gravid segment it is 209 to 310μ by 90 to 110μ.

Fig. 38.-T. pseudolaticollis. Rostellar hooks of adult (Type specimen)

Female genitalia: The poral lobe of the ovary is slightly smaller than the aporal one. The vagina is not surrounded by a sphincter; its lumen dilates slightly before opening in the genital atrium (Fig. 39).

FIG. 39.-T. pseudolaticollis. Genital atrium

The uterus has 7 to 15 lateral branches which redivide. The ova are 24 to 27μ by 22 to 25μ in diameter with an embryophore 3.4 to 4.5μ thick.

Nerve: The main longitudinal nerve is conspicuous and large, 114μ by 91μ in diameter; the accessory nerves are 37μ by 55μ in diameter (Table 28).
Table 27 -Comparison of T. polyacantha described by various authors

Author	$\begin{gathered} \text { Leuckart } \\ (1856) \end{gathered}$	$\underset{(1932)}{\text { Baer }}$	Joyeux Baer (1936)	$\begin{gathered} \text { Kirschen- } \\ \text { blatt } \\ (1940) \end{gathered}$	Petrov (1941; in Abuladse, 1964)	$\underset{\text { (1953) }}{\substack{\text { Schiller }}}$	$\begin{aligned} & \text { Rausch } \\ & \text { (1959a) } \end{aligned}$	Abuladse (1964)	Muller (1965)	$\begin{aligned} & \text { This } \\ & \text { paper } \end{aligned}$
Scolex	1,000	-	840-900	-	800-900	-	1,200	-	-	868-960
Rostellum.	490	-		-	400-600	-				343-457
Suckers...	350		230	56	229-238	-	450			256-285
No. hooks.	${ }^{62}$	${ }^{60}$	52-60	56	60-62	44.48	44-50	60		62
Large hook.	183(1)	200 126	200 126	200 116	${ }^{201-217}$	${ }_{140-155}^{210}$	200-214	$200-220$ $120-130$	195-201	196-214
Testes......	114	126	500-600	116	400-600	140-155	${ }_{220}^{142-157}$	120-130	132-138	- $\begin{array}{r}123-133 \\ 215-300\end{array}$
Cirrus pouch L	-	-	220	-	201-217	-	140-215	-	-	160-229
Uterus..........	8	-		-	$77-124$ $8-10$	二	140-180	二	-	55-137
										12-15

${ }^{(1)}$ Leuckart erroneously records these measurements as 53μ and 34μ respectively; the above measurements were calculated from his illustrations.

Table 28.-Comparison of T. pseudolaticollis described by various authors

Author	$\begin{aligned} & \text { Skinker } \\ & \text { (1935a) } \end{aligned}$	Joyeux(1945)	This Paper	
			Skinker's Material	Joyeux's Specimen
Scolex.	1,500	1,100	-	-
Rostellum.	714	450	-	-
Suckers..........	390	560	-	-
No. Hooks......	38-42	40	-	-
Large Hook......	390-415	390	380	352-361
Small Hook......	214-238	240	220	223-229
Testes...........	180-250	250	204-258	210-320
Cirrus Pouch L...	275-293	250	200-310	209-310
W...	66-131	120 $8-10$	80-120	64-110
Uterus...........	10-15	8-10	10-15	7-9

Discussion

These specimens were incorrectly assigned to T. laticollis by Skinker (1935) and Joyeux (1945) from which they differ in that:

1. There are 38 to 42 rostellar hooks instead of 52 to 62 .
2. There are no testes dorsal to the ovary and vitellarium.
3. There are rather fewer uterine branches, viz. 7 to 15 vs 15 to 20 .
T. pseudolaticollis resembles T. macrocystis, T. endothoracicus, T. taeniaeformis and T. parva in the size of the rostellar hooks. It can be distinguished from the first two species in having only 38 to 42 hooks while both T. macrocystis and T. endothoracicus have 58 or more. It differs from T. taeniaeformis and T. parva in that the male and female genital ducts pass between the ventral and dorsal longitudinal vessels, and not ventral to both these vessels as is the case in T. taeniaeformis and T. parva. (This criterion could be determined only on the specimen from F. w. wiedii).

As stated by Joyeux (1945) the cestode from F.w. wiedii agrees well with the description of " T. laticollis" by Skinker (1935). The difference in the length of the large hook from F. w. wiedii as recorded by Joyeux and in this paper, viz. 390μ and 352 to 361μ, is probably due to the fact that Joyeux measured the hooks by projection while the present data were measured directly by ocular micrometer.

As surmised earlier the cestode identified as " T. laticollis" by Fagasinski (1961) from a F. silvestris \times F. catus hybrid, may be T. pscudolaticollis.

Taenia regis Baer, 1923
Synonym: Taenia bubesei Ortlepp, 1938
Definitive host: Panthera leo (Linnaeus, 1758); Panthera pardus (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: Africa, Tadzhik S.S.R.

Material:

1. Type specimens of T. regis, (Institute of Zoology, Neuchatel)
2. Type specimens of T. bubesei, Republic of South Africa (Veterinary Research Institute, Onderstepoort)

Redescription

Scolex, rostellum and suckers: These structures are 1.0 to $1.2 \mathrm{~mm}, 519$ to 646μ and 273 to 346μ in diameter. There are 40 to 49 rostellar hooks usually arranged in two crowns (Table 29; Fig. 40). One specimen has 49 hooks, there are 24 in each of two anterior crowns and a single accessory hook in a third more posteriorly situated crown (cf T. solium).

Fig. 40.-T. regis. Rostellar hooks of adult

TABLE ${ }^{\text {² }}$ 29.-Size of rostellar hooks of T. regis

Specimens	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
T. regis.	49	229-290	$257 \cdot 1 \pm 16 \cdot 8$	40	142-187	$158 \cdot 6 \pm 14 \cdot 6$
T. bubesei...	24	223-270	$246 \cdot 2 \pm 13 \cdot 0$	15	128-174	$153 \cdot 4 \pm 14 \cdot 1$
Total.......	73	223-290	$253 \cdot 5 \pm 16.9$	55	128-187	$157 \cdot 2 \pm 14.7$

Male genitalia: There are 350 to 544 testes, 50 to 82μ by 46 to 69μ in diameter, in a single dorsal layer. They are mainly in two lateral fields with relatively few anterior to the female genitalia; posteriorly they extend to the level of the vitellarium and are not confluent along the posterior margin. The cirrus pouch extends to the longitudinal vessels; in the sexually mature segment it is 366 to 503μ long and 101 to 160μ wide, in the early gravid segment 366 to 526μ by 101 to 151μ and in the gravid segment 411 to 571μ by 111 to 160μ.

Female genitalia: The poral lobe of the ovary is smaller than the aporal one. After the vagina crosses into the cortex its lumen dilates to 55 to 69μ in diameter, but narrows again when it passes through the vaginal sphincter before opening in the genital atrium. The vaginal sphincter varies from 41 to 55μ in diameter and is 46 by 69μ from the opening in the genital atrium (Fig. 41). The uterus has 2 to 8 branches which redivide. The ova are 36 to 43μ by 33 to 41μ in diameter with an embryophore 3.4 to 5.6μ thick (Table 30).

Fig. 41.-T. regis. Genital atrium

Discussion

Ortlepp (1938) differentiated Taenia bubesei from Taenia regis on the number and size of the rostellar hooks, number and distribution of the testes and the number of uterine branches. As the range of
variation of these and other characters overlaps in the type and cotype specimens of both species, T. bubesei must be considered a synonym of T. regis.
T. regis differs from T. pisiformis in the number and distribution of the testes, the number of uterine branches, and the presence of a vaginal sphincter which is absent in T. pisiformis. T. hyaenae also has a vaginal sphincter, but it has fewer and somewhat smaller rostellar hooks, fewer testes and a greater number of uterine branches. T. regis differs from T. omissa in the shape of both the rostellar hooks and of the uterus. T. omissa has been recorded from felines in the Americas only, while T. regis is known from lion in Africa and from tiger in Tadzhikistan S.S.R. (Petrov \& Potekhina, 1957; in Abuladse, 1964).

It has not yet been possible to prove the life cycle of this species experimentally. Cysticerci with rostellar hooks resembling those of T. regis have been recovered from various herbivores in South Africa (Table 31). These parasites, about 1 cm in diameter are attached to the mesentery; or are in the liver or the lung. On removal from the adventitious layer, the cysticercus is about 40 mm long by 5 mm wide with an invaginated scolex at one end. The rostellar hooks vary in number from 38 to 46 , the large ones from 219 to 270μ and the small ones from 124 to 169μ in length. Although one cysticercus from a sable Hippotragus niger (Harris, 1838), had only 38 hooks, and that from a zebra (Equus burchelli Gray, 1824), had rostellar hooks slightly smaller than those recorded in the sexual stage, their measurements are so similar as to warrant their inclusion here (Table 31).

As no lion was available, attempts were made to infest domestic cats; these were all unsuccessful. Attempts to infest the domestic dog, black-backed jackal and hunting dog were also unsuccessful.

Taenia rileyi Loewen, 1929
Synonym: Taenia lyncis Skinker, 1935-pro parte Definitive host: Lynx spp.
Intermediate host: Unknown, probably rodents Distribution: North America

Table 30.-Comparison of T. regis described by various authors

Synonym	T. regis				T. bubesei	
Author	$\begin{gathered} \text { Baer } \\ (1923) \end{gathered}$	Mahon (1954a)	Baer \& Fain (1965)	This Paper	Ortlepp (1938)	This Paper
Scolex...........	1,000	-	-	1,001-1,183	1,300	1,201
Rostellum.......	500	-	-	519-646	- 790	- 526
Suckers..........	300	-	-	273-346	340	290
No. hooks.	32	$46\left({ }^{1}\right)$	- 50	40- 49	42-46	42-46
Large hook	290	288	250-270	229-290	235-273	223-270
Small hook......	190	176-199	-	142- 187	136-180	128-174
Testes..........	200	-		350- 530	500-600	416-544
Cirrus pouch L...	-	-	-	366-503	$380-400$	366-571
Uterus...........	$\overline{4-10}$	-	4-9	$101-114$ 4	${ }^{100} 3$	$133-160$ $2-8$

${ }^{(1)}$ Mahon records 26 rostellar hooks but this is apparently a misprint as the specimen actually has 46.

Table 31.-Number and size of rostellar hooks of cysticerci of T . regis?

Host	Common name	Number of infested hosts	Rostellar hooks		
			Number	Length	
				Large	Small
Connochaetus taurinus (Burchell, 1823)... .	Blue wildebeest...	3	40-46	229-261	146-169
Equus burchelli (Gray, 1824)...............	Zebra...........	1	42	219	124-137
Hippotragus niger (Harris, 1838).........	Sable antelope...	3	38-46	242-270	151-169
Kobus ellipsiprymnus (Ogilby, 1833).......	Waterbuck.......	2	42-44	238-261	160-169
Oryx gazella (Linnaeus, 1758).............	Gemsbok; oryx. .	2	40-42	247-261	$137-165$
Phacochoerus aethiopicus (Pallas, 1776)...	Warthog........	1	42	261-265	146-160

Riser (1956) showed that Loewen (1929) described a composite species: the scolex and rostellar hooks are those of T. laticollis while the strobila is that of a new species. He also concluded that Skinker's (1935) description of T. lyncis is composite of T. rileyi and T. omissa.

Material:

1. Type specimen of T. rileyi (U.S.D.A.)
2. Type specimens of T. lyncis (U.S.D.A.).
3. Adults from Lynx canadensis; Alaska \& British Columbia, Canada.

Redescription

Scolex, rostellum and suckers: In the type specimen of T. rileyi these structures are $910 \mu, 420 \mu$ and 240μ in diameter; in the Alaskan material they vary from 1,050 to $1,140 \mu, 434$ to 592μ and 274 to 297μ in diameter. The type specimen of T. rileyi has lost all its rostellar hooks. Four paratypes of "T. lyncis" have 40 to 44 rostellar hooks arranged in two crowns; the large hooks are 207 to 230μ and the small ones 170 to 179μ in length. All the specimens from Alaska and Canada had lost some of their rostellar hooks. Two specimens, however, have a complete crown of small hooks, viz. 18 and 19. The two crowns would thus have 36 and 38 respectively. On four scolices 19 large hooks vary in length from 238 to 256 (mean $245 \cdot 1 \pm 4 \cdot 2$) $\mu ; 30$ small hooks on eight scolices vary from 169 to 198 (mean $185 \cdot 4 \pm 8 \cdot 5$) μ (Fig. 42).

Fig. 42.-T. rileyi. Rostellar hooks of adult
Male genitalia: The type specimen of T. rileyi has 500 to 560 testes, T. lyncis paratypes 350 to 520 . The Alaskan material has 340 to 480 testes, 46 to 69μ by 40 to 50μ in diameter. They are in a single
dorsal layer which extends to the posterior margin of the segment; occasionally there are a few testes between the ovary and vitellarium and posterior to the latter. The cirrus pouch does not extend to the longitudinal excretory vessels. In the T. rileyi type specimen it is 320 to 370μ long and 80 to 130μ wide in the mature segment and 380 to 400μ by 150μ in the gravid segment. In the T. lyncis paratypes it is 170 to 221μ by 69 to 115μ in the mature segments. In the mature segment of the Alaskan material it is 247 to 320μ long and 91 to 105μ wide, in the early gravid segment 297 to 329μ by 91 to 110μ and in the gravid one 297 to 336μ by 91 to 124μ. In the latter material, the cirrus is 20 to 23μ in diameter; it is covered with hairlike bristles.

Female genitalia: The poral lobe of the ovary is slightly smaller than the aporal one. The vagina is not markedly looped; in some segments it crosses the vas deferens to run anteriorly to it while passing between the longitudinal vessels but in the cortex recrosses it again to run posteriorly to the cirrus pouch. In the cortex its lumen dilates to about 40μ and then gradually narrows again before opening in the genital atrium. Between 37 and 82μ from this opening the vagina is either surrounded by a sphincter muscle, or a "pad" of muscle cells is situated between its anterior wall and the posterior wall of the cirrus pouch (Fig. 43). In the type specimen of T, rileyi and in the Alaskan and Canadian material the uterus has 6 to 9 lateral branches which redivide; in the T. lyncis paratypes the uterus is not fully gravid. The ova of the Alaskan material are oval, 40 to 44μ by 34 to 38μ in diameter with an embryophore 3.4 to $4 \cdot 5 \mu$ thick (Table 32).

FIG 43,-T. rileyi. Genital atrium

Table 32.-Comparison of T. rileyi described by various authors

Synonym	T. rileyi				T. lyncis	
Author	$\begin{gathered} \text { Loewen } \\ (1929) \end{gathered}$	$\begin{gathered} \text { Riser } \\ (1956) \end{gathered}$	This Paper		Skinker (1935a)	This Paper Type specimen
			Type specimen	Additional material		
Scolex. .	-	-	910	1,050-1,140	620-1,000	-
Rostellum.	-	-	420	434-592	250-400	-
Suckers.	-	-	240	274-297	165-205	-
No. hooks.	-	-	-	36- 38	36-46	40-44
Large hook	-	220-240	-	238- 256	220- 258	207-230
Small hook	- -550	160-170	500-560	169-198	159-208	170-179
Testes.....	450-550	-	500-560	340-480	200- 500	350-520
Cirrus pouch L.	425	-	320-400	247- 366	200-375	170-221
W.	120	-	80-150	91-124	70-110	69-115
Uterus.	7-11	-	6- 9	6- 9	4- 10	$5-6\left({ }^{1}\right)$

() Uterus not fully gravid.

Discussion

Riser (1956) showed the descriptions of both T. rileyi and T. lyncis to be composites, that of T. rileyi being based on a hitherto undescribed strobila but the scolex belonged to either T. laticollis or T. macrocystis, while the description of T. lyncis is a composite of T. rileyi and T. omissa. The type specimen of T. rileyi (U.S. Nat. Mus. Helminthological Collection No. 8069) has lost all its rostellar hooks. Two strobila of T. lyncis (U.S. Nat. Mus. Helminthological Collection No. 28482) are identical with that of T. rileyi. Some of the mounted rostella have hooks similar to those described as T. rileyi by Riser (1956) and van Zyll de Jong (1966), while others have hooks identical with those of T. laticollis. Paratypes of T. lyncis (U.S. Nat. Mus. Helminthological Collection, No. 26886) consist of cestode fragments which have a uterine structure identical with that of T. omissa. Skinker (1935) based the description of T. lyncis on specimens from lynx and from Felis concolor and it is probable that the T. omissa included amongst these type specimens are derived from the latter host. Van Zyll de Jong (1966) showed that T. rileyi and T. omissa can only be distinguished from one another by the structure of the uterus and on the length of the handle of the large rostellar hook. He found that the handle of the large rostellar hook had a mean length of 74μ in T. rileyi and of 92μ in T. omissa. It is apparent, however, from his illustrations that the length of this structure overlaps in the two species. The only reliable character for separating these two species is therefore the structure of the uterus, which in T. omissa has from one to three lateral branches.

The presence of a vaginal sphincter in T. rileyi is not constant, it being present in some segments while in others of the same strobila there is a "pad".

Riser (1956) and Van Zyll de Jong (1966) are of the opinion that cysticerci from deer (Odocoileus spp.) are those of T. omissa while those from rodents (Peromyscus spp., Tamiasciurus spp., and Clethrionomys spp.) are those of T. rileyi. Riser and Van Zyll de Jong arrive at this conclusion mainly on differences in the feeding habits of the definitive hosts of these two cestodes: the cougar feeds predominantly on deer and infrequently on rodents while
lynx feed predominantly on rodents and only rarely on deer. The allocation of cysticerci from deer to T. omissa and from rodents to T. rileyi must be looked upon as tentative until it is substantiated by experimental infestations.

Joyeux \& Baer (1940) record the cysticercus of T. lyncis from Cervus (Rusa) unicolor Kerr, 1792 in Indo China and Lopez-Neyra \& Diaz Ungria (1956) from Odocoileus virginianus coriacou (Boddoert, 1784) in Venezuela, but if we accept Riser and van Zyll de Jong's assumption, these are probably cysticerci of T. omissa. Lopez-Neyra \& Diaz Ungria (1956) record the cyst of T. rileyi from Sylvilagus floridianus (J. A. Allen, 1890) in Venezuela but this is probably the cyst of T. macrocystis.

It is clear that the status of both T. rileyi and T. omissa is unsatisfactory, and that further investigations should be undertaken on their morphology and life cycle. It is imperative that the morphological studies be based on intact specimens from a single host. Thereafter, attempts can be made to determine variai ons in different hosts of the same and of different species.

Taenia saginata Goeze, 1782
Synonym: Taenia confusa Ward, 1896
Taenia africana von Linstow, 1900pro parte
Taenia hominis von Linstow, 1904
Taenia tonkinensis Railliet \& Henry, 1905
Taenia phillipina Garrison, 1907
Taenia bremneri Stephens, 1908
Taenia cylindrica Leon, 1922
Definitive host: Man
Intermediate host: Cattle
Distribution: Cosmopolitan

Material:

1. Adults from man (Switzerland, Mexico and South Africa)
2. Type specimens of T. bremneri from man (Nigeria)

Description (according to Verster, 1967)
Scolex and suckers: These structures are $1,420 \mu$ and 526μ in diameter.

Male genitalia: There are 880 to 1200 testes, 91 to 137μ by 69 to 91μ in diameter. They are in a single dorsal layer but as they are very closely packed, it may appear as if there is a second layer lateral to the female genitalia. They are mainly in two lateral fields with relatively few anterior to the female genitalia; they extend to the posterior margin but are not confluent posterior to the vitellarium. The cirrus pouch does not extend to the longitudinal excretory vessels; in the sexually mature segment it is 356 to 457μ long and 91 to 160μ wide, in the early gravid segment 374 to 457μ by 73 to 128μ and in the gravid segment 356 to 571μ by 101 to 142μ. The cirrus is unarmed, 25 to 32μ in diameter.

Female genitalia: The two lobes of the ovary are of unequal size. In the cortex the lumen of the vagina dilates from 32μ to 69 to 82μ. This dilatation, 160 to 225μ long, narrows abruptly when it passes through the vaginal sphincter which is 41 to 50μ in diameter and situated 91 to 119μ from the opening in the genital atrium (Fig. 44). The uterus has 14 to 32 lateral branches which redivide. The ova are oval, 46 to 50μ by 39 to 41μ in diameter with an embryophore 6.7 to 8.4μ thick.

Fig. 44.-T. saginata. Genital atrium (From Verster, 1967)

Taenia serialis (Gervais, 1847) Baillet, 1863 sensu latu
Synonym: Taenia brauni Setti, 1897
Multiceps serialis (Gervais, 1847) Stiles and Stevenson, 1905
Multiceps glomeratus Railliet \& Henry, 1915
Taenia antarctica Fuhrmann, 1922 Multiceps serialis var. theropitheci Schwartz, 1927
Multiceps packii Christenson, 1929
Taenia laruei Hamilton, 1940
Clapham (1942b) regards T. serialis and T glomeratus as synonyms of T. multiceps but is of the opinion that T. brauni is a valid species. Nagaty \& Ezzat (1947) and Meyer (1955), however, consider T. serialis to be a valid species. In the present study it was found that besides differences in their intermediate host preferences T. serialis has a well developed vaginal sphincter whereas T. multiceps has
a "pad"; these two must therefore be considered distinct species. No valid morphological differences could be found between T. serialis and T. brauni, but they appear to show slight, though not consistent, differences in their intermediate host preferences. It is therefore deemed advisable that they be retained as two subspecies until further investigations should prove otherwise.

Taenia serialis serialis subsp. nov.
Synonyms: Taenia serialts (Gervais, 1847) Baillet, 1863
Taenia antarctica Fuhrmann, 1922
Multiceps packii Christenson, 1929
Taenia laruei Hamilton, 1940
Definitive host: Canis familiaris Linnaeus, 1758 and various canines
Intermediate host: Lagomorphs; more rarely rodents
Distribution: Cosmopolitan

Material:

1. Cystic stage from naturally infested Chilichilla laniger Molina, 1782; Republic of South Africa
2. Adults from dogs experimentally infested with scolices from the above host
3. Type specimen of T. packii (U.S.D.A.)
4. Type specimen of T. laruei (U.S.D.A.)
5. Type specimen of T, antarctica (Institute of Zoology, Neuchatel)

Redescription

Scolex, rostellum and suckers: In eight adults these are 582 to $774 \mu, 273$ to 364μ and 228 to 346μ in diameter. There are 28 to 34 rostellar hooks in two crowns (Table 33; Fig. 45). One specimen

Fig. 45.-T. serialis serialis. Rostellar hooks of adult
with 31 hooks had one small hook in an accessory crown posterior to the first two crowns.

Male genitalia: There are 350 to 500 testes, 55 to 69μ by 59 to 69μ in diameter. They are in one to three, usually two layers and are mainly in two lateral fields which are confluent in the anterior part of the segment, posteriorly they extend to the level of the vitellarium but are not confluent. The type specimens of T. antarctica have 550 testes, those of

Table 33.-Size of rostellar hooks of T. serialis serialis

	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
Larval stage	50	145-170	$155 \cdot 8 \pm 5 \cdot 4$	47	95-125	$111 \cdot 0 \pm 6 \cdot 2$
Adult....	37	154-175	$164 \cdot 6 \pm 4 \cdot 5$	35	107-123	$113 \cdot 2 \pm 4 \cdot 5$
Total.	87	145-175	$162 \cdot 1 \pm 6 \cdot 3$	82	95-125	$112 \cdot 0 \pm 5 \cdot 9$

T. laruei 650 and T. packii 300 to 340 . The cirrus pouch extends to the longitudinal vessels but not into the medulla. In the sexually mature segment, it is 170 to 238μ long and 68 to 114μ wide; in the early gravid segment, it is 233 to 284μ by 91 to 114μ and in the gravid segment 261 to 284μ by 91 to 102μ. In the mature segment the cirrus pouch is 345 to 350μ long and 68 to 70μ wide in the type specimens of T. antarctica, in T. laruei 290 to 400μ by 90 to 100μ and in T. packii 290 to 360μ by 70 to 83μ. The cirrus has hairlike bristles.

Female genitalia: The poral lobe of the ovary is smaller than the aporal one. The vagina is surrounded by a sphincter, 36 to 59μ in diameter, which is situated 70 to 100μ from its opening in the genital atrium (Fig. 46). Its lumen is constricted where it passes through the sphincter but widens again before it opens in the atrium. The uterus has 10 to 18 lateral branches which redivide. The ova are oval, 34 to 41μ by 30 to 34μ in diameter with an embryophore 3.4 to $5 \cdot 6 \mu$ thick (Table 34).

Fig. 46.-T. serialis serialis. Genital atrium

Discussion

The range of variations in the length of the large hook is within those given by Hall (1919 and Clapham (1942b) and Crusz (1944) but the mean length
is greater $(162 \cdot 1 \mu)$ than either that recorded by Clapham (1942) $136 \cdot 06 \mu$, or Meyer (1955) $133 \cdot 0 \mu$, or Esch \& Self (1965) 139•3 μ.

Flores-Barroeta (1955) assigns cestodes from naturally infested dogs in Mexico to this species, as their rostellar hooks were 230μ and 185μ in length, respectively. These cestodes cannot belong to this species, but are probably T. pisiformis.

Taenia serialis brauni n. comb.
Synonyms: Taenia brauni Setti, 1897
Taenia serialis var. theropitheci Schwartz, 1927
Definitive host: Dog and other canines
Intermediate host: Rodents and Primates
Distribution: Africa, U.S.A. (Importation?)
Material:

1. Cystic stage from naturally infested Rattus spp.; Congo (Democratic Republic)
2. Adult from experimentally infested dog; Congo (Democratic Republic)
3. Adult from dog experimentally infested with C. glomeratus

Redescription

Scolex, rostellum and suckers: In five adults these are 737 to $892 \mu, 319$ to 373μ and 273 to 364μ in diameter; in the T. glomeratus material they are $910 \mu, 273 \mu$ and 255μ in diameter. There are 22 to 30 rostellar hooks in two crowns (Table 35).
Male genitalia: There are 350 to 450 testes (430 to 550 in T. glomeratus); these are exceptionally large being 78 to 91μ by 64 to 73μ in early sexually mature segments and 142 to 169μ by 105 to 110μ in older segments. They are in one to two layers, and are absent immediately anterior to the female genitalia and posterior to the vitellarium. The cirrus pouch extends to the longitudinal excretory vessels. In the mature segment it is 274 to 283μ by 101 to 114μ, in the early gravid 334 to 347μ by 105 to 114μ. In T. glomeratus it is 384 to 434μ by 78 to 105μ in the gravid segment. The cirrus is 12 to 16μ in diameter.

Table 35.-Size of rostellar hooks of T. serialis brauni

	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
Larval stage.	17	139-150	$144 \cdot 8 \pm 2 \cdot 6$	13	102-114	$108 \cdot 2 \pm 2 \cdot 7$
Adult......	40	125-148	$136 \cdot 9 \pm 5 \cdot 7$	33	91-102	$96 \cdot 2 \pm 3 \cdot 3$
Total.	57	125-150	$139 \cdot 1 \pm 6 \cdot 2$	46	91-114	$99 \cdot 6 \pm 6 \cdot 2$

Table 34.-Comparison of T. serialis serialis described by various authors

Synonym	T. serialis							T. antarctica		T. packi				T. laruei	
Author	$\begin{gathered} \text { Hall } \\ (1919) \end{gathered}$	$\underset{(1934)}{\text { Yamaguti }}$	$\begin{gathered} \text { Clapham } \\ (1942 \mathrm{~b}) \end{gathered}$	$\underset{\substack{\text { Crusz } \\(1944)}}{ }$	$\begin{gathered} \text { Meyer } \\ \text { (1955) } \end{gathered}$	$\underset{(1965)}{\text { Esch \& Self }}$	This paper	Fuhrmann (1922)	This paper	$\begin{aligned} & \text { Christen- } \\ & \text { son (1929) } \end{aligned}$	$\underset{(1942 b)}{C l a p h a m}$	$\begin{array}{\|c} \text { Byrd \& } \\ \text { Fite (1955) } \end{array}$	This paper	Hamilton (1940)	This paper
Scolex.	850-1,500	650	-	-	-	-	582-774	750-900	-	600-750	-	660-910	-	690	680
Rostellum.	390	230-260	-	-	-	-	273-364	340	-	300-350	-	230	-	174	210
Suckers.	300	250	-	-	-	$241 \cdot 3$	228-346	300-360	-	200-250	-	180-250	-	240	230
No. hooks.	26-32	26-32	-	26-32	-	-	28-34	28-34	28	26-32	-	26-30	-	28	28
Large hook.	135-175	138-153	110-175	115.5-177.0	117.6-159.6	$113-157$	145-175	144-156	152-170	140-150	140-150	125	-	125	-
Small hook.	78-120	96-120	68-120	75.0-129.0	63.0-109.2	$67-112$	95-125	92-102	102-110	96-100	96-100	88-96	-	90	-
Testes.	Numerous	-	-	-	-	-	350-500	500	550	300	-	393-694	300-340	500-550	650
Cirrus pouch L..	200-300	-	-	-	-	320.8-338.5	170-284	350	345-350	-	-	-	290-360	300-400	290-400
w.	59-99	-	-	-	-	107.1-108.2	68-114	-	68-70	-	-	-	70-83	100	90-100
Uterus.	20- 25	-	-	-	-	13- 18	11-18	13-15	10-14	8-12	-	19	-	13-15	-

Table 36．－Comparison of T ．serialis brauni described by various authors

Synonym	T．brauni							T．glomeratus			T．serialis theropitheci
Author	$\begin{aligned} & \text { Von } \\ & \text { Linstow } \\ & (1902) \end{aligned}$	$\underset{(1913)}{\substack{\text { Ransom }}}$	$\begin{gathered} \text { Railliet \& } \\ \text { Henry } \\ (1915) \end{gathered}$	$\underset{(1919)}{\text { Hall }}$	$\begin{gathered} \text { Clapham } \\ (1942 \mathrm{~b}) \end{gathered}$	$\begin{gathered} \text { Fain } \\ (1952 ; 1956) \end{gathered}$	This paper	Railliet \＆ Henry （1915）	$\begin{aligned} & \text { Clapham } \\ & \text { (1942b) } \end{aligned}$	This paper	Schwartz （1927）
Scolex．	－	－	－	1，000	－	1，000－1，500	737－892	－	－	910	－
Rostellum．	－	－	－		－		319－373	－	－	273	－
Suckers．．．	130－180			300	－	250－300	273－364		－	255	
No．hooks．	30		30			26－ 34	22－30	18－34			28－32
Large hook．	114	130－140	130－140	95－140	85－140	140－160	125－150	96－105	90－110	－	135－153
Small hook．	47	85－90	（95－100） $85-90$	70－90	－	90－110	91－114	58－65	－	－	81－103
			（70－75）								
${ }_{\text {Testes．}}$ Cirrus pouch L L	二	二	－			$250-350$ $375-480$	350－450	－	－	430－550	－
Cirrus pouch W ．	二	二	－	250－350	二	$375-480$ $100-140$	274－347	－	二	$384-434$ $78-105$	－
Uterus．．．．．．．．．．．	－	－	－	－	－	10－ 14	12－13	－	－	11－12	－

Female genitalia: The two lobes of the ovary are of unequal size. The vagina is surrounded by a sphincter 27 to 34μ in diameter and situated 69 to 91μ from the vagina's opening in the genital atrium. The uterus has 11 to 13 lateral branches. The ova are 36 to 41μ by 34 to 36μ in diameter with an embryophore 3.4 to 4.5μ thick. The oncosphere is 19 to 21μ by 17 to 21μ in diameter (Table 36).

Discussion

T. brauni described from a dog in Ethiopia, was redescribed and its life cycle determined by Fain (1952) in the Congo. The material investigated differs from Fain's description mainly in the smaller size of the large hook. As both this material and that of Fain resulted from experimental infestations and are from the same locality, these differences probably represent the normal variation in these characters.

An adult T. glomeratus resulting from the experimental infestation of a dog with a coenurus from a mouse, resembles $T . s$. brauni in the number and distribution of the testes, the size of the cirrus pouch, the number of uterine branches and in the presence of a vaginal sphincter. As the rostellar hooks of the specimen were abnormal neither their number nor their size could be determined. Railliet \& Henry (1915) described this species from Gerbillus pyramidium hirtipus Lataste, 1882 (Synonym: Gerbillus hirtipus) in Tunis, as having 18 to 34 rostellar hooks, the large hook being 96 to 105μ and the small one 58 to 65μ in length. Although these lengths are considerably smaller than those recorded by Fain (1952) and in this paper, it is probable that these parasites are identical. The species of this genus show considerable variation in the length of the rostellar hooks and, as is to be expected in a polycephalic larva this variation is more marked because the scolices may differ greatly in age. The conclusion that these species are identical is further supported by the localities and the intermediate hosts from which they have been recorded.

As stated earlier, Clapham (1942b) considers T. serialis and T. packi as well as Taenia clavifer (Railliet \& Moque, 1919), Taenia lemuris (Cobbold, 1862), Taenia polytuberculosus (Megnin, 1880), and Taenia ramosus (Railliet \& Marullaz, 1919) synonyms of T. multiceps. With the exception of T. serialis, T. glomeratus and T. packi of which the adults are known, these species are known only as larvae and therefore cannot be assigned to any one species. It is possible that these as well as Taenia otomys (Clapham, 1942a), are synonyms of T. s. brauni.

The larval stage of T. s. brauni was first recorded by Von Linstow (1902) from Gerbillus pyramidium Geoffrey, 1825 in Egypt. It has since been recorded in the Congo by Fain (1956) from various rodents, man and Cercopithecus mitis and by Mahon (1954a) from Praomys natalensis (Smith, 1834) (Synonym: Mastomys coucha). Nelson \& Pester (1966) record it in Kenya from Otomys sp., Hystrix sp. and man. The type material of T. glomeratus originated in Tunis from G. hirtipus and Turner \& Leiper (1919) record it under this name from man in Nigeria.

Clapham (1942a, b) established experimental infestations of "T. glomeratus" in Gerbillus sp., Mus musculus Linnaeus, 1758 and rabbits. It has recently been recorded in the Republic of South Africa from P. natalensis.

Group II

Taenia taeniaeformis (Batsch, 1786) Wolffügel, 1911
Synonym: Taenia infantis Bacigalupo, 1922
Definitive host: Felis catus Linnaeus, 1758 and other felines and viverrids
Intermediate host: Rodents and Lagomorphs
Distribution: Cosmopolitan

Material:

1. Larval stage from naturally infested Rattus norvegicus (Berkenhout, 1769); Republic of South Africa
2. Adults from experimentally infested domestic cat; Republic of South Africa

Redescription

Scolex, rostellum and suckers: In five adults these are 1,001 to $1,183 \mu, 546$ to 918μ and 291 to 491μ in diameter. There are 34 to 36 rostellar hooks arranged in two crowns. The large hooks are 370 to 402μ (mean $384 \cdot 4 \pm 9 \cdot 8 \mu$) and the small hooks 210 to 261μ (mean $241 \cdot 2 \pm 4 \cdot 5 \mu$) in length (Fig. 47).

Fig. 47.-T. taeniaeformis. Rostellar hooks of adult

Male genitalia: There are 450 to 500 testes, 50 to 64μ by 32 to 41μ in diameter. They are in one to two layers which are dorsal only in the median part, but both dorsal and ventral in the lateral parts of the medulla. They extend to the vitellarium but are not confluent posterior to it. The cirrus pouch which extends into the medulla partly overlaps the vas deferens. In the sexually mature segment the cirrus pouch is 301 to 412μ long and 64 to 82μ wide; in the early gravid segment it is 269 to 411μ by 64 to 73μ, and in the gravid one 320 to 503μ by 64 to 73μ. The cirrus is not covered with hairlike bristles.

Female genitalia: The two lobes of the ovary are of equal size. There is no seminal receptacle, but in some early gravid segments the lumen of the vagina in this region dilates to 55μ. The vagina runs close to the vas deferens and is markedly looped dorso-ventrally. After crossing into the cortex, it loops posteriorly and then loops anteriorly to open in the genital pore. At this loop (69 to 80μ from the opening in the genital pore) it is surrounded by a well developed sphincter, 55 to 69μ in diameter anterio-posteriorly; dorso-ventrally it is up to 91μ in diameter (Fig. 48). The uterus has 5 to 9 lateral branches which redivide; as the branches fill with ova they may become sacculate. The ova are spherical, 31 to 36μ in diameter, with an embryophore $3 \cdot 4$ to $4 \cdot 5 \mu$ thick (Table 37).

Fig. 48.-T. taeniaeformis. Genital atrium

Discussion

This cestode has been recorded from a wide range of felines as well as viverrids, mustelids and canines. The records from canines must, however, be treated
with reserve. Joyeux \& Baer (1935) record it from Viverra zibetha (Linnaeus, 1758); re-examination of this specimen has proved this to be correct. Abuladse (1964) also lists Genetta genetta (Linnaeus, 1758) but does not record the responsible authority; genets are often infested with T. parva, which is easily confused with this species. According to Abuladse (1964), Ryabov (1958) and Rybaltovski \& Ovchinnikova (1960) record T. taeniaeformis from mustelids; the veracity of these records is difficult to assess without consulting the original publication. Abuladse (1964) also lists Mellivora capensis (Schreber, 1776) (Synonym: Mellivora ratel) as a host; this too must be treated with reserve. According to Abuladse (1964) it has been recorded from dogs (Bol, 1904; Dubinin, 1953); Kornienko \& Pelevin, 1948; Zdanova \& Polous, 1956; Delyanova, 1957); from the jackal, Canis aureus Linnaeus, 1758 (Petrov \& Potekhina, 1953); from the fox, Vulpes vulpes (Linnaeus, 1758), (Khlodkovskii, 1912; Troitskaya, 1955; Dubinin, 1953). These records in canines could be misidentifications of T. endothoracicus, a parasite of canines, which has rostellar hooks of comparable size.
Mahon (1954b) records the larvae of T. taeniaeformis from the back muscles of Lepus americanus Erxleben, 1777 in Canada. It is possible that her specimen is the larval stage of T. macrocystis which is intramuscular in leporids but resembles T. taeniaformis which occurs in the liver of rodents. The larval stage of this cestode has been recorded from the liver of leporids (Joyeux, Senevet \& Gros, 1936; in Mahon 1954b); re-examination of their specimen has verified its identification as T. taeniaeformis.
Taenia brachyacantha Baer \& Fain, 1951
Definitive host: Poecilogale albinucha (Gray, 1864)
Intermediate host: Unknown
Distribution: Africa

Material:

1. Type specimen from the Congo (Democratic Republic) (Institute of Zoology, Neuchatel)
2. Incomplete strobila from P. albinucha, Republic of South Africa

Redescription

Scolex, rostellum and suckers: These are 480μ, 126μ and 176μ in diameter; there are 54 rostellar hooks in two crowns (Baer \& Fain, 1951). The hooks

Table 37.-Comparison of T. taeniaeformis described by various authors

Author	Leuckart (1856)	Hall (1919)	 Baer (1937)	Riser (1956)	Müller (1965)	Esch \& Self (1965)	This Paper

[^1]and the two crowns are not of two distinct sizes nor is there a consistent difference in their shape. The smallest hooks are $23 \cdot 5 \mu$ and the largest 28.0μ long (Fig. 49).

FIG. 49.-T. brachyacantha. Rostellar hooks (From Baer \& Fain, 1951)
Male genitalia: There are 120 to 140 testes, 5 to 86μ by 32 to 46μ in diameter. They are in one to two dorsal layers, extend from the anterior margin of the segment posteriorly to the vitellarium. The genital pore is large and deep, extends almost to the ventral longitudinal vessel. The circular muscles surrounding the genital pore are very well developed. The cirrus pouch, which extends into the medulla, in the sexually mature segment is 227 to 272μ long and 70 to 114μ wide; in the gravid segment it is 193 to 227μ by 125 to 129μ. The cirrus, 32 to 40μ in diameter, is covered with hairlike bristles.

Female genitalia: The two lobes of the ovary are slightly unequal in size. In the medulla the vagina is strongly coiled and has a thick, muscular wall; it straightens to pass into the cortex (Fig. 50). The early gravid uterus appears saccular (type specimen) but when fully gravid (S. African material) there are 14 to 17 branches which redivide. The ova are spherical, 24 to 27μ in diameter, with an embryophore $3 \cdot 4$ to $4 \cdot 5 \mu$ thick (Table 38).

Fig. 50.-T. brachyacantha. Genital atrium

Discussion

According to Baer \& Fain (1951) the large hooks are 28μ and the small ones 26μ long. There is, however, no clear difference in the size of the hooks in the two crowns as hooks of $23 \cdot 5 \mu, 24 \cdot 6 \mu, 25 \cdot 8 \mu$

Table 38.-Comparison of T. brachyacantha described by various authors

Author	$\begin{gathered} \text { Baer \& Fain } \\ (1951) \end{gathered}$	This Paper	
		Type	S. African material
Scolex.	480	-	-
Rostellum..	126	-	-
Suckers.....	176 54		
Large Hooks.	28	23.5-28.0	-
Small Hooks...	26		
Testes.	100-145	120-140	120
Cirrus Pouch ${ }_{\text {L }}^{\mathrm{W}}$.	240-280	193-272	209-251
	$\begin{gathered} 120 \\ \text { Saccular } \end{gathered}$	Saccular	128-151 Branched
Uterus......			(14-17)

and 28.0μ in length are present. The sacculate structure of the uterus in the type specimen is probably a factor of its immaturity. On superficial examination the uterus of the South African specimen also appeared sacculate but on closer examination it was found to be branched as is usual in taeniids.

On present information this species differs from T. mustelae only in having larger rostellar hooks, viz. $23 \cdot 5$ to 28μ vs 12 to 22μ. Examination of further specimens may show it to be a subspecies of, or even identical with, T. mustelae.

Taenia martis (Zeder, 1803)
Synonyms: Taenia intermedia Rudolphi, 1810
Taenia skrjabini Romanov, 1952
Taenia sibirica Dubnitzky, 1952
Freeman (1956) reviews the synonyms of this species and concludes that Taenia martis (Zeder, 1803) has priority over the other names including T. intermedia Rudolphi, 1810 and furthermore that T. skrjabini Romanov, 1952 and T. sibirica Dubnitzky, 1952 are synonyms of it. Freeman (1956) questions the identity of parasites assigned to this species by Joyeux \& Baer (1934) as the rostellar hooks in their specimens are larger than those recorded by Thienemann (1906). Wahl (1967) concludes that the specimens described by Joyeux \& Baer were correctly identified and that Thienemann's records are of the small and not of the large hook. Wahl (1967) erects two subspecies, Taenia martis martis from Europe with larger rostellar hooks than those of T. martis americana from America and Asia.

Taenia martis martis (Zeder, 1803) Wahl, 1967
Synonym: Taenia intermedia Rudolphi, 1810
Definitive host: Martes spp.; Mustela spp.
Intermediate host: Rodents
Distribution: Europe

Material:

Adults from Martes foina (Erxleben, 1777); Switzerland

Redescription

Scolex, rostellum and suckers: In two specimens these are 960 to $1,097 \mu, 352$ to 357μ and 229 to 242μ in diameter. There are 28 to 30 rostellar
hooks arranged in two crowns. The large hooks are 183 to 218μ (mean $206 \cdot 3 \pm 8 \cdot 0 \mu$) and the small ones 151 to 169μ (mean $162 \cdot 7 \pm 5 \cdot 1 \mu$) in length (Fig. 51). The two crowns of hooks are of the same shape, but those of the second crown are smaller.

Fig. 51.-T. martis martis. Rostellar hooks of adult
Male genitalia: There are 106 to 168 testes, 69 to 91μ by 41 to 59μ in diameter. They are in two dorsal layers and extend to the posterior margin laterally but are not confluent posterior to the vitellarium; testes are also present between the ovary and the vitellarium. The cirrus pouch extends to the median wall of the longitudinal excretory vessel; in the sexually mature segment it is 107 to 161μ long by 25 to 41μ wide; in the gravid segment it is 148 to 182μ by 30 to 50μ. The cirrus is not covered with bristles.

Female genitalia: The two lobes of the ovary are of unequal size. The vagina is straight and thickwalled with a lumen 9μ in diameter; it loops in the medulla and in the cortex its lumen dilates to 27 to 50μ in diameter for a distance of 114 to 151μ, then narrows again to 9μ before opening in the genital atrium (Fig. 52). The uterus has 6 to 9 lateral branches which redivide. The ova are spherical, 28 to 33μ in diameter, with an embryophore 2.2 to 3.4μ thick.

Fig. 52.-T. martis martis. Genital atrium

Taenia martis americana (Zeder, 1803) Wahl, 1967
Synonyms: Taenia sibirica Dubnizky, 1952
Taenia skrjabini Romanov, 1952
Definitive host: Martes spp.; Mustela spp.
Intermediate host: Rodents
Distribution: North America; U.S.S.R.
Material:
Larval stage from Clethrionomys gapperi gapperi Vigors, 1830

Redescription

Rostellar hooks: There are 24 to 26 rostellar hooks arranged in two crowns. The large hooks are 134 to 157μ (mean $143 \cdot 4 \pm 7 \cdot 8 \mu$) and the small ones 125 to 141μ (mean $131 \cdot 5 \pm 5 \cdot 4 \mu$) long (Tables 39 and 40).

Discussion

These two subspecies can be differentiated on the length of the large hook, that of the nominate subspecies being 175 to 220μ and that of the Asiatic and American subspecies 134 to 157μ. The lengths of the small hook, however, overlap being 130 to 171μ and 125 to 141μ respectively in the two subspecies and thus cannot be used for their separation.

Wahl (1967) considers it possible that T. twitchelli Schwartz, 1924 of Gulo gulo (Linnaeus, 1758) is identical with this species. This cannot be so as T. twitchelli has proliferating larvae in porcupines (Erethizon epixanthum Brandt, 1835) while Wahl (1967) describes the larva of T. martis martis as monocephalic in Apodemus flavicollis (Melchoir, 1834), Apodemus silvaticus silvaticus (Linnaeus, 1758), and Clethrionomys glareolus (Schreber, 1780). Moreover the length of the large hook of T. twitchelli is recorded as 195μ by McIntosh (1938), 200 to 212μ by Rausch (1959b) and 209 to 218μ (this paper); these measurements correspond with those of T. martis martis in Europe and not with those of T. m. americana. It is improbable that a parasite will have hooks so markedly different in size in different hosts in the same locality.
Taenia melesi Petrow \& Sadychow, 1956 (listed as a species inquirendae in this paper) described from a badger, Meles meles (Linnaeus, 1785) may be identical with T. martis americana.

Taenia mustelae Gmelin, 1790
Synonym: Taenia tenuicollis Rudolphi, 1819
Definitive host: Martes spp.; Mustela spp.
Intermediate host: Talpa europaea; various rodents
Distribution: Europe, U.S.S.R.; North America
Freeman (1956) reviews the synonyms of this species and concludes that T. mustelae has priority over other names including T. tenuicollis.

Material:

1. Cystic stage from naturally infested Clethrionomys glareolus (Schreber, 1780); Switzerland
2. Adults from Mustela putorius Linnaeus, 1758 and Mustela erminea Linnaeus, 1758, previously described by Joyeux \& Baer (1934) and Wahl (1967)

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS

Table 39.-Comparison of T. martis martis described by various authors

Author	Joyeux \& Baer (1936)	Shakhmatova (1963; in Abuladse, 1964)	Muller (1965)	$\begin{gathered} \text { Wahl } \\ (1967) \end{gathered}$	This Paper
Scolex.	1,500	940-960	-	680-880	960-1,097
Rostellum	420	300-330	-	340-410	352-357
Sucker.	280	210-243	-	200	229-242
No. hooks.	$34-40$	28		28-30	28-30
Large hook,	210-220	175-195	204-211	186-213	183-218
Small hook.	150-160	130-145	152-171	145-168	151-169
Testes......		160-180		120	106-168
Cirrus pouch L	210-230	-	-	160	107-182
Uterus	$70-80$ $10-13$	$\overline{12-14}$	=	12-14	$\begin{array}{cc}25- & 50 \\ 6-\quad 9\end{array}$

Table 40.-Comparison of T. martis americana by various authors

3. Adults from Mustela ermina arctica (Merriam, 1896) infested with larvae from Microtus pennsylvanicus Ord, 1815. North Dakota, U.S.A.
4. Adults from naturally infested Mustela nivalis Linnaeus, 1766 and Mustela vison Schreber, 1777; Alaska

Redescription

Scolex, rostellum and suckers: Wahl (1967) records these as $300 \mu, 91 \mu$ and $130-150 \mu$ in diameter. The larval stage from C. glareolus has 38 rostellar hooks, $20 \cdot 7$ to $22 \cdot 1 \mu$ long; hooks on one adult (M. putorius) are $18 \cdot 4$ to $20 \cdot 7 \mu$ in length (Fig. 53).

Male genitalia: There are 83 to 127 testes, 36 to 52μ by 32 to 39μ in diameter. The testes are mainly anterior to the female genitalia but their distribution relative to these organs is variable; they extend from the anterior margin of the segment posteriorly to the middle of the ovary, and in some instances may extend as far as the posterior margin of the ovary. The genital atrium is deep with well developed circular muscles. The cirrus pouch in the sexually mature segment is 129 to 265μ long by 80 to 137μ wide, in the early gravid segment 220 to 230μ by 100 to 110μ and in the gravid one 104 to 306μ by 75 to 120μ. The cirrus, 23 to 24μ in diameter, is not covered with bristles.

Fig. 53,-T. mustelae. Rostellar hooks (From Wahl, 1967)
Table 41.-Comparison of T. mustelae described by various authors

Synonym	$\underset{(1906)}{\substack{\text { Thienemann }}}$	Joyeux \& Baer (1934)	$\begin{aligned} & \text { Skinker } \\ & \text { (1935b) } \end{aligned}$	Joyeux \& Baer (1936)	$\begin{aligned} & \text { Petrov (1941; } \\ & \text { in Abuladse } \\ & \text { 1964) } \end{aligned}$	$\underset{(1955)}{\substack{\text { Locker }}}$	Freeman (1956)	$\begin{gathered} \text { Wahl } \\ (1967) \end{gathered}$	This paper	
									European material	Alaskan material
Scolex.	$333-400$	300	237-303	260-350	449-477	-	200-440	300	-	-
Rostellum.	133	35-90	61-77	100-180	108	-	70-97	91	-	-
Suckers.....	${ }_{\text {100 }}^{10-52}$	120 52	$77-110$ $42-60$	${ }^{60-100}$	167-186	44-48	92-132	$\begin{array}{rr}130 & -150 \\ 37 & -46\end{array}$	38	-
No. hooks..	$50-52$ 16.38	52 20	42-60	52 20	18-21	$44{ }^{\text {a }}$ - 48 $15 \cdot 5-18 \cdot 0$	$47-66$ $14-20$	$37-46$ $19 \cdot 0-20 \cdot 1$	38 $18 \cdot 4-22 \cdot 1$	-
Small hook.	13.86				12-15	14.0-16.5				
Testes......	114	90-110	90-125	110	114	-	-	$100-110$	$83-127$	97-117
Cirrus pouch ${ }_{\text {W }}^{\text {W }}$	${ }_{150}^{150} \cdot 0-250$	160	193-220	175-250	352-369	-	-	$\begin{array}{cc}229 & -319 \\ 91\end{array}$	$104-306$	138-250
Uterus W.	${ }_{12}^{105} 0-1812 \cdot 5$	70-80	130-150	40- 90 $12-14$	$158-176$ $14-16$	-		$91-146$	$\begin{array}{cc}75 & -137 \\ 10\end{array}$	90-120
Uterus..	12-18	12-15	10-19	12-14	14-16	-	10-23	28	10-23	13-18

Female genitalia: The two lobes of the ovary are of equal size. The wall of the vagina is thick and muscular throughout its length. There is no vaginal sphincter nor does the lumen dilate markedly before opening in the genital atrium which has well developed circular muscles (Fig. 54). The uterus has 10 to 23 branches which redivide. The ova are spherical, 17 to 20μ in diameter, with an embryophore $1 \cdot 1$ to $2 \cdot 2 \mu$ thick (Table 41).

Fig. 54.-T. mustelae. Genital atrium

Discussion

Thienemann (1906), Locker (1955) and Petrov (1941; according to Abuladse, 1964) divide the rostellar hooks into two categories based on size. It is, however, not possible to place them in two categories as many of the hooks are intermediate between the greatest and smallest measurement.

Kirschenblatt (1939) described Coenurus parviuncinatus from Citellus citellus (Linnaeus, 1766) and Spalax leucodon Nordmann, 1840 which is probably the larval stage of T. mustelae. Wahl (1967) describes it as a monocephalic larva, but Freeman (1956) showed that it is both mono- and polycephalic in the same host.

Taenia parva Baer, 1926
Synonyms: "Taenia laticollis" of Joyeux and Baer (1937)
Multiceps macracantha Clapham, 1942 Hydatigena laticollis forme parva (Baer, 1926) of Dollfus, 1962

Definitive host: Genetta spp.; Herpestes ichneumon (Linnaeus, 1758); Ictonyx striatus (Perry, 1810);
Felis silvestris Schreber, 1777
Intermediate host: Mus musculus Linnaeus, 1758;
Rattus chrysophilus (De Winton, 1897);

Rattus namaquensis (Smith, 1834);

Rattus paedulus (Sundevall, 1846);

Rhabdomys pumilo (Sparrman, 1784);

Praomys natalensis (Smith, 1834);

Apodemus silvaticus (Linnaeus, 1758)

Distribution: Africa, Europe

Material:

1. Type specimens from Genetta tigrina (Schreber, 1776) (Institute of Zoology, Neuchatel)
2. Adult from Genetta spp., Republic of South Africa, Rhodesia and Europe; from I. striatus, Republic of South Africa
3. Larval stage from R. chrysophilus, P. natalensis, Republic of South Africa; A. silvaticus, France

Redescription

Scolex, rostellum and suckers: In six adults these are 683 to $1,001 \mu, 546$ to 655μ and 165 to 237μ in diameter. There are 38 to 48 rostellar hooks arranged in two crowns (Table 42; Fig. 55).

Fig. 55.-T. parva. Rostellar hooks of adult

Male genitalia: There are 500 to 650 testes, 69 to 91μ by 37 to 69μ in diameter. They are in one to two dorsal layers and extend to the posterior margin of the segment, confluent posterior to the vitellarium and are also present between the ovary and vitellarium. The cirrus pouch extends into the medulla; it is long and narrow and at its origin overlaps the vas deferens. In the sexually mature segment it is 352 to 470μ long and 78 to 110μ wide; in the early gravid segment it is 375 to 420μ by 69 to 91μ and in the gravid one 297 to 357μ by 78 to 91μ.

Female genitalia: The two lobes of the ovary are slightly unequal in size. The vagina is not surrounded by a sphincter nor does it dilate before opening in the genital atrium (Fig. 56). The uterus has 7 to 12 lateral branches which redivide. The ova are spherical, 25 to 29μ in diameter with an embryophore $2 \cdot 2$ to $3 \cdot 4 \mu$ thick (Table 43).

Table 42.-Size of rostellar hooks of T. parva

	Large hooks			Small hooks		
	n	Range	Mean \pm S. D.	n	Range	Mean \pm S.D.
Larval stage:						
R. natalensis..	25	351-366	$361 \cdot 9 \pm 3 \cdot 5$			
A. chrysophilus.	9	306-320	313.8	9	196-209	203.9 -
Adult..............	50	302-370	$324 \cdot 0 \pm 15 \cdot 4$	50	192-233	$210 \cdot 1 \pm 3 \cdot 5$
Total.	84	302-370	$335 \cdot 3 \pm 22 \cdot 2$	84	192-238	$214.9 \pm 12 \cdot 2$

Table 43.-Comparison of T. parva described by various authors

Synonym	T. parva				T. laticollis	Hydatigena laticollis
Author	$\begin{gathered} \text { Baer } \\ (1926) \end{gathered}$	$\begin{aligned} & \text { Mahon } \\ & \text { (1954a) } \end{aligned}$	Baer \& Fain (1965)	This paper	Joyeux \& Baer (1937)	$\begin{aligned} & \text { Dollfus } \\ & (1962) \end{aligned}$
Scolex...	1,000	-	-	683-1,001	1,200	880-900
Rostellum	600	-	-	546-655	700	220-227 $\times 230-246$
Suckers..	200	-	36	165-237	260	$220-227 \times 230-246$
No. hooks.	44	42-46	36	38- 48	30-40	40-46
Large hook	361	392-424	398-410	302-370	315-340	320-358•8
Small hook	228	240-264	260-266	192- 238	205-235	215-245
Testes..	500	-	-	500-650	-	Numerous
Cirrus pouch L .	440	-	-	297- 470	440-450	280-380
Uterus W	80	-	-	69-110	80-100	40-47
Uterus.	7-12	-	-	7- 12	-	10-12

Fig. 56.-T. parva. Genital atrium

Discussion

This species shows great variation in the size of the rostellar hooks. Examination of the cotypes showed that the majority of the specimens had rostellar hooks which were smaller than those previously reported for this species. Comparison of specimens from a single genet (Rhodesia) showed that individuals with large hooks 361 to 384μ long, occur together with specimens with hooks 306 to 311μ long; in other respects these specimens are morphologically identical.

Although T. parva is common in the genet in Southern Africa, it has been recovered from this host once in Europe when it was recorded as T. laticollis
(Joyeux \& Baer, 1937). Re-examination of this material shows it to be T. parva. Dollfus (1962) described it as Hydatigena laticollis forme parva from H. ichneumon in Algeria. Baer \& Fain (1965) recorded it from F. silvestris in the Congo; it has also beeu recovered from the same host in Botswana. In South Africa, however, it was not found in any of 65 wild cats examined.

Mahon (1954a) assigned a polycephalic larva from M. musculus to this species. Although this has not been substantiated by experimental infestation, there is little doubt that Mahon's identification is correct. This species may be distinguished from T. endothoracicus and T. selousi, which also have polycephalic larvae, on the number and size of the rostellar hooks. T. parva larvae have been recovered from R. chrysophilus, R. namaquensis, R. pumilo and P. natalensis in South Africa and from R. paedulus in Moçambique, as well as from A. silvaticus in France (Lussan).

Taenia selousi Mettrick, 1962

Definitive host: Felis silvestris Schreber 1776
Intermediate host: Rhabdomys pumilo (Sparrman, 1784)

Distribution: Southern Africa

Material:

1. Cotype from F. silvestris; Rhodesia (British Museum)
2. Adults from F. silvestris; Republic of South Africa

A TAXONOMIC REVISION OF THE GENUS TAENIA LINNAEUS

3. Polycephalic larvae from R. pumilo; Republic of South Africa

Redescription

Scolex, rostellum and suckers: In three adults these are 801 to $828 \mu, 456$ to 519μ and 200 to 246μ in diameter. There are 50 to 58 rostellar hooks arranged in two crowns (Table 44; Fig. 57).

Fig. 57.-T. selousi. Rostellar hooks of adult
Male genitalia: There are 220 to 300 testes, 46 to 91μ by 46 to 69μ in diameter. They are in one or two layers and overlie the vas deferens and the vagina. Posteriorly they extend to the vitellarium but are not confluent posterior to it. The cirrus pouch extends into the medulla; in the sexually mature segment it is 251 to 366μ long by 46 to 69μ wide, in the early gravid segment 274 to 343μ by by 46 to 87μ and in the gravid one 274 to 357μ by 59 to 87μ.

Female genitalia: The poral lobe of the ovary is slightly smaller than the aporal one. The vagina is not surrounded by a sphincter and there is no dilatation of its lumen before its opening into the genital
atrium (Fig. 58). The uterus has 4 to 8 lateral branches which redivide. The ova are oval, 30 to 36μ by 27 to 33μ in diameter, with an embryophore $2 \cdot 2$ to $3 \cdot 4 \mu$ thick (Table 45).

FIG. 58.-T, selousi. Genital atrium

Table 45.-Comparison of T. selousi described by various authors

	Mettrick (1962)	This Paper
Scolex.	790-810	801-828
Rostellum.	530-580	456-519
Suckers.	160-200	200-246
No. Hooks,	48	50-58
Large Hook.	265-274	256-290
Small Hook.	171-176	160-187
Testes.	220-240	220-300
Cirrus Pouch	510-570	251-366
	70-80	46-87
Uterus.	6-11	$4-8$

Discussion

The material described above differs from Mettrick's (1962) description in the distribution of the testes and in the size of the cirrus pouch. Mettrick states that the testes do not extend posteriorly beyond the ovary, but in the specimens described above they extend to the level of the vitellarium. This difference could be ascribed to differences in the state of contraction of the specimens. In the specimens described above the ova are somewhat larger, 30 to 36μ by 27 to 33μ, than those recorded by Mettrick, 24 to 26μ by 28 to 31μ.
T. selousi resembles T. parva both macro- and microscopically: both are short, stocky cestodes usually occurring in large numbers. T. selousi, however, has more rostellar hooks which are smaller,

Table 44.-Size of rostellar hooks of T. selousi

	Large hook			Small hook		
	n	Range	Mean \pm S.D.	n	Range	Mean \pm S.D.
Larval stage.	25	256-274	$264 \cdot 5 \pm 4 \cdot 9$	23	169-183	$175 \cdot 6 \pm 5 \cdot 1$
Adult.......	50	256-290	$270 \cdot 3 \pm 7 \cdot 0$	50	160-187	$173 \cdot 2 \pm 5 \cdot 8$
Total.	75	256-290	268.4 ± 6.9	73	160-187	$173 \cdot 9 \pm 5 \cdot 7$

and fewer testes than T. parva. T. selousi resembles T. endothoracicus in the number of rostellar hooks but they are considerably smaller than in the latter species.

Taenia taxidiensis Skinker, 1935
Synonym: Fossor angertrudae Honess, 1937 Monordotaenia taxidiensis (Skinker, 1935a) Little, 1967
Definitive host: Taxidea taxus Schreber, 1778
Intermediate host: Unknown
Distribution: North America
Skinker (1935) when describing this cestode was under the impression that some of the rostellar hooks had been lost as there was only one crown present. Rausch (1947) found only one crown of rostellar hooks in this species. Honess (1937), describing a cestode from the same host, used the single crown of rostellar hooks as a criterion for placing it in a new genus, Fossor angertrudae. Little (1967) concludes that T. taxidiensis and F. angertrudae are identical, but since the genus Fossor is a junior homonym of Fossor Lichtenstein, 1844 he erects a new genus, Monordotaenia, for this species.

Material:

1. Type specimen from T. taxus; U.S.A. (U.S.D.A.)
2. Immature strobila and another incomplete strobila from the type host; U.S.A.

Fig. 59.-T. taxidiensis. Rostellar hook of adult

Redescription

Scolex, rostellum and suckers: These are 900μ, 251μ and 215μ in diameter. There is a single crown of 22 rostellar hooks, 100 to 104μ long (Fig. 59).

Male genitalia: As the strobila is macerated and not fully mature, the number of the testes cannot be determined accurately, but there are at least 150 , 41 to 46μ by 37 to 41μ in diameter. They are in a single layer extending from the anterior to the posterior margin where they are confluent. The cirrus pouch does not quite reach the longitudinal vessels; in the early gravid segment it is 229 to 279μ long and 91 to 101μ wide. The cirrus is 37 to 50μ in diameter.

Female genitalia: It was not possible to study these in detail. The vagina dilates slightly before opening in the genital atrium; there is no vaginal sphincter (Fig. 60). The early gravid uterus has 12 to 15 branches (Table 46).

FIG. 60.-T. taxidiensis. Genital atrium

Discussion

Adams (1966) and Little (1967) examined the type specimens of T. taxidiensis and F. angertrudae and conclude that they are identical.

Honess (1937), Keppner (1967) and Little (1967) object to the inclusion of this species in the genus Taenia as it has a single and not a double crown of rostellar hooks. As stated in the introduction, however, the procedure of erecting a new genus based on a single character is completely unwarranted.

Table 46.-Comparison of T. taxidiensis described by various authors

Synonym	T. taxidiensis			F. angertrudae	
Author	$\begin{aligned} & \text { Skinker } \\ & \text { (1935b) } \end{aligned}$	$\begin{aligned} & \text { Rausc } \\ & \text { (1947) } \end{aligned}$	This paper	Honess (1937)	$\underset{(1967)}{\substack{\text { Little }}}$
Scolex...	450	497-596	900	666-818	780
Rostellum.	170		251	262-308	
	140		215	192-239	200
No. hooks	90-93	20-27		22-25	-89
Hook length. Testes	$90-93$ $150-250$	79-99	100-104	83-99	${ }^{89}$
Cirrus pouch L.	150-250	200-300	150 ${ }^{150}$	Numerous 281	200-300 270
W		${ }^{2400}$	-91-101	137	110
Uterus.	11-19	10	12-15	11-23	,

Taenia twitchelli Schwartz, 1927
Synonym: Multiceps twitchelli (Schwartz, 1927) Clapham, 1942
Definitive host: Gulo gulo (Linnaeus, 1758)
Intermediate host: Erithizon epixanthum Brandt, 1835;
Erithizon dorsatum (Linnaeus, 1758) and various rodents

Distribution: North America

Material:

1. Type specimen from E. epixanthum; Alaska. (U.S.D.A.)
2. Adults from G. gulo, Alaska

Redescription

Scolex, rostellum and suckers: These structures are $960 \mu, 457 \mu$ and 247μ in diameter. The type specimen has 36 rostellar hooks arranged in two crowns, the large hooks are 184 to 193μ and the small ones 143 to 147μ long. The adult has 28 hooks, the large hook 209 to 218μ and the small one 165 to 178μ in length (Fig. 61).

Fig. 61.-T. twitchelli. Rostellar hooks of adult
Male genitalia: There are 204 to 214 testes, 50 to 82μ by 46μ in diameter. They are in two dorsal layers which are confluent posterior to the vitellarium. The cirrus pouch extends to the longitudinal excretory vessels but not into the cortex; in the sexually mature segment it is 209 to 229μ long by 55 to 78μ wide; in the gravid segment it is 218 to 283μ by 55 to 69μ. The cirrus is covered with hairlike bristles.

Female genitalia: The poral lobe of the ovary is slightly smaller than the aporal one. In the cortex the lumen of the vagina dilates from 14μ to 23μ and then narrows gradually before opening in the genital atrium (Fig. 62). The uterus has 8 to 11 lateral branches which redivide. The ova are spherical, 28 to 31μ in diameter, with an embryophore $2 \cdot 2$ to $3 \cdot 4 \mu$ thick (Table 47).

FIG. 62.-T. twitchelli. Genital atrium

Discussion

Wahl (1967) believes that this species is possibly identical to T. martis. This, however, is improbable as it has a polycephalic proliferating larva while that of T. martis is monocephalic (Wahl, 1967). Furthermore, T. twitchelli which is a North American species has rostellar hooks corresponding in size with those of T. m. martis (a European subspecies) and not with those of T. m. americana.

Species Inquirendae

Taenia brachysoma Setti, 1899
Definitive host: Canis familiaris Linnaeus, 1758
Intermediate host: Unknown
Distribution: Eritrea

Material:

No specimens available.

Discussion

Baer (1926) considers this species a synonym of T. brauni. It is also listed as such by Yamaguti (1959) and Abuladse (1964).

Table 47.-Comparison of T. twitchelli described by various authors

	Schwartz (1924)	McIntosh (1938)	Clapham(1942b)	$\begin{aligned} & \text { Rausch } \\ & \text { (1959b) } \end{aligned}$	This paper	
					Type specimen	Adult
Scolex...	-	620	-	1,200	-	960
Rostellum.	-		-		-	457
Suckers.	$\overline{36}$	215	-	265	$\overline{36}$	247
No. hooks.	36	$30-36$		$32-36$	36	28
Large hook.	189-198	195	189-198	$200-216$	$184-193$	$209-218$
Small hook.	155-163	155	155-163	156-168	143-147	165-178
Testes.......		\square	-	200	-	204-214
Cirrus pouch	-		-	220	-	209-283
Uterus.....	-	$\begin{gathered} 50 \\ 7-9 \end{gathered}$	-	$\begin{gathered} 80 \\ 10-12 \end{gathered}$	-	$\begin{array}{r} 55-78 \\ 8-11 \end{array}$

Taenia erythraea Setti, 1897
Definitive host: Canis mesomelas Schreber, 1775
Intermediate host: Unknown
Distribution: Eritrea

Material:

No specimens available

Discussion

Unfortunately it was not possible to consult the original description; references to it in the literature are contradictory. Baer (1926) remarks on the small size of the single crown of rostellar hooks and in the table lists the large hook as 85μ and the small as 95μ in length. Wardle \& McLeod (1952) record them as 185μ and 95μ in length.

Taenia krepkogorski (Schulz \& Landa, 1934) n. comb.
Synonym: Hydatigera krepkogorski Schulz \& Landa, 1934
Definitive host: Felis spp.; Vulpes vulpes (Linnaeus, 1758)

Intermediate host: Rodents, Lagomorphs
Distribution: U.S.S.R.

Material:

No specimens available

Discussion

Schulz \& Landa (1934) describe the strobilocercus of this cestode from Rhombomys opimus (Lichtenstein, 1823) and Meriones meridianus (Pallas, 1773). According to Abuladse (1964) Petrov \& Potekhina (1953) described the sexual stage from Felis catus Linnaeus, 1758 (Synonym: Felis ocreata). The latter description, however, appears to be identical to T. macrocystis. According to Abuladse (1964) Agapova \& Sapozenkov (1961) assign cestodes from V. vulpes to this species. The latter specimens are possibly T. endothoracicus.

Taenia melesi Petrov \& Sadychow, 1956
Definitive host: Meles meles (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: U.S.S.R.

Material:

No specimens available

Discussion

This species appears to be identical to T. martis americana (synonym: T. sibirica Dubnizky, 1952).

Taenia monostephanos von Linstow, 1905
Synonym: Fossor monostephanos (von Linstow, 1905) Abuladse, 1964

Definitive host: Lynx lynx (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: Russia
Material:
No specimens available

Discussion

Baer (1926) considers this species an anomaly. Adams (1966) pointed out that T. laticollis frequently loses all the large rostellar hooks and that such specimens agree well with the description of Von Linstow (1905) of T. monostephanos. The author agrees with Adams.
Taenia ovata Molin, 1858
Definitive host: Vulpes vulpes (Linnaeus, 1758); Alopex lagopus (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: Norway

Material:

No specimens available

Discussion

Abuladse (1964) considers this a species inquirendae. The description is incomplete, but from the number and size of the rostellar hooks as well as the host and locality, it is probable that this species is identical with T. polyacantha.

Taenia polycalcaria Von Linstow, 1903
Definitive host: Panthera pardus (Linnaeus, 1758) Intermediate host: Unknown
Distribution: Ceylon

Material:

No specimens available

Discussion

The description of this species is incomplete. Baer (1926) considers it a synonym of T. pisiformis.
Taenia pungutchi Ortlepp, 1938
Definitive host: Canis mesomelas Schreber, 1775 Intermediate host: Unknown
Distribution: Republic of South Africa

Material:

Type specimen from C. mesomelas, Republic of South Africa (Veterinary Research Institute, Onderstepoort)

Redescription

Male genitalia: There are 200 to 250 testes, 91 to 114μ by 69 to 91μ in diameter. They are in two and sometimes three layers, present between the ovary and the vitellarium and extend to the posterior margin of the vitellarium but are not confluent. The cirrus pouch does not extend to the longitudinal vessels; in the sexually mature segment it is 238 to 352μ long and 59 to 69μ wide. The cirrus is covered with hairlike bristles.

Female genitalia: The poral lobe of the ovary is smaller than the aporal one. After entering the cortex the lumen of the vagina dilates to 32μ and then narrows to pass through the sphincter before opening in the genital atrium. The sphincter is weakly developed, 27 to 32μ in diameter, situated 69 to 91μ from the opening in the atrium. The part of the sphincter situated between the vagina and the cirrus pouch is only 7μ thick while posterior to the vagina it is 14 to 16μ thick. In one segment only the sphincter is the same thickness throughout. The uterus has 8 lateral branches.

Discussion

The above data agree with those of Ortlepp (1938) but he records the size of the cirrus pouch as 320 to 380μ by 70 to 80μ and found 8 to 10 uterine branches. Ortlepp states that the cirrus is unarmed. The bristles occurring in this species and in many other Taenia spp. are hairlike and resemble the lining of the vagina.

Ortlepp is correct in concluding that this material is unlike any other known species in that it has very few testes and few uterine branches. It differs from T. ovis in having two layers of testes which do not exceed 250 per segment, while the latter species has 600 in one layer. T. serialis has 350 to 500 testes in one to three layers but has 11 to 18 uterine branches. T. hydatigena also has few uterine branches, but has at least 600 testes in a single layer, and does not have a vaginal sphincter. T. multiceps has 280 to 350 testes in two layers, but has 14 to 20 uterine branches and a "pad" between the vagina and the cirrus pouch. As the scolex, rostellum and suckers of this species are unknown, it must be considered species inquirendae.

Taenia retracta von Linstow, 1903

Definitive host: Vulpes ferrilata Hodgson, 1842 Intermediate host: Unknown
Distribution: Tibet(?)

Material:

No specimens available

Discussion

This species has the same number of rostellar hooks as T. crassiceps; they are similar in shape to those of the latter species but are larger.

Taenia secunda Olsson, 1893
Definitive host: Meles meles (Linnaeus, 1758)
Intermediate host: Unknown
Distribution: Europe
Material:
No specimens available

Discussion

The description of this species is too incomplete for consideration.

Taenia smythi (Johri, 1957) n. comb.
Definitive host: Canis familiaris Linnaeus, 1758
Intermediate host: Unknown
Distribution: Ireland

Material:

No specimens available

Discussion

As stated earlier this species is probably identical with T. pisiformis.

Invalid Species

Taenia balaniceps Hall, 1910
Definitive host: Canis familiaris Linnaeus, 1758; Lynx spp.
Intermediate host: Unknown
Distribution: U.S.A.

Material:

Type specimen. (U.S.D.A.)

Discussion

The description of this species is a composite, being based on incomplete specimens from a dog and a lynx; those from the dog consist of an immature strobila which has lost its large rostellar hooks and a strobila without a scolex; those from the lynx retained some large rostellar hooks, but they are immature and unsegmented. Hall (1910) considered these specimens identical because the small rostellar hooks are similar; this is, however, not a reliable criterion for specific identification. This species was differentiated from others mainly on the uterine structure; Hall describes this as "practically a lobed pouch." It is probable that the fragment of strobila concerned is that of another species showing abnormal uterine development. The supposition that these are aberrant specimens is supported by the fact that this species has not been recorded since the original description. It is also most unlikely that such diverse hosts as the dog and lynx are parasitized by the same cestode.

Examination of the type specimen does not assist with a possible identification. As stated above, the scolex has only small hooks remaining. It is not possible to determine the number of testes nor their distribution. The vagina appears to be surrounded by a sphincter.
Taenia triserrata Meggitt, 1928
Definitive host: Felis sp.
Intermediate host: Unknown
Distribution: Paraguay

Material:

Type specimen (British Museum)

Discussion

Meggitt (1928) assigned these cestodes to the genus Taenia mainly on the structure of the eggs. The rostellar hooks which are in three crowns, are described as similar in shape to those of T. monostephanos.

The rostellar hooks of T. triserrata are 183μ, 160μ and 135μ in length. These hooks are, however, incomplete consisting of a blade only; there is therefore little evidence, if any, that it belongs to this genus.

Summary

The genus Taenia Linnaeus, 1758 sensu strictu is revised. Besides the type species, Taenia solium Linnaeus, 1758, there are 29 valid species: T. acinonyxi, T. brachyacantha, T. crassiceps, T. crocutae, T. endothoracicus, T. gonyamai, T. hyaenae, T. hydatigena, T. ingwei, T. laticollis, T. macrocystis, T. martis,
T. multiceps, T. mustelae, T. omissa, T. ovis, T. parenchymatosa, T. parva, T. pisiformis, T. polyacantha, T. rileyi, T. regis, T. saginata, T. selousi, T. serialis, T. taeniaeformis, T. taxidiensis, T. twitchelli. " T. laticollis" of Skinker (1935) and Joyeux (1945) is renamed, T. pseudolaticollis. T. brauni is considered a subspecies of T. serialis and T. krabbei a subspecies of T. ovis. Invalid species and species inquirendae are also listed.

Acknowledgements

This study was undertaken while the author was the recipient of a grant from the Swiss Foundation for Scientific Research. I wish to express my sincere appreciation to Prof. Dr. J. G. Baer, UniversitéMail, Neuchatel, not only for suggesting the study, providing the necessary facilities and the use of his library, but also for his unfailing interest and encouragement throughout the investigation.

I am most grateful for the material loaned to me by: Dr. W. W. Becklund, Beltsville, U.S.A.; Prof. Dr. S. N. Boev, Alma-Ata, U.S.S.R.; Dr. G. Bouvier, Lausanne, Switzerland; Dr. Margarita Bravo-Hollis, Mexico City, Mexico; Prof. Dr. K. Enigk, Hanover, West Germany; Dr. M. A. E. Ezzat, Cairo, U.A.R.; Prof. Dr. A. Fain, Antwerp, Belgium; Dr. M. A. Gemmell, Dunedin, New Zealand; Dr. S. Gretillat, Dakar, Senegal; Prof. Dr. N. Haarl $\phi \mathrm{v}$, Copenhagen, Denmark; Prof. Dr. J. C. Holmes, Edmonton, Canada; Dr. B. Hörning, Bern, Switzerland; Prof. Dr. Z. Kozar, Wroclaw, Poland; Dr. E. Kritscher, Vienna, Austria; Dr. H. Madesn, Copenhagen, Denmark; Prof. Dr. G. S. Nelson, London, England; Dr. R. Olerod, Stockholm, Sweden; Mr. F. R. S. Pester, London, England; Mr. S. Prudhoe, London, England; Dr. J. C. Quenten, Paris, France; Dr. R. L. Rausch, College, Alaska; Dr. H. Schenone, Santiago, Chile; Mr. N. Sloan, Berkhamsted, England; Dr. G. K. Sweatman, Beirut, Lebanon; Mr. C. G. Van Zyll de Jong, Toronto, Canada, and Mr. C. Vaucher, Neuchatel, Switzerland.

I also wish to thank Dr. Gertrud Theiler for helpful criticism of the manuscript; Dr. N. Thamm for transliterating the Russian names; Dr. J. Meester and Miss Jean Inglis for providing the zoological names of mammals; Mme. J. Billeter for typing part of the manuscript and Miss D. Brooker for assistance with the figures.

References

ABULADSE, K. I., 1964. [Principles of cestodology. (ed. K. I. Skrjabin), Vol. IV. Taeniidae-cestodes of animals and man and the diseases they provoke.] (In Russian). Moscow: Acad. Nauk USSR.
ACKERT, J. E. \& GRANT, A. A., 1917. Another cestode from the young cat. Trans. Am. microsc. Soc., 36, 93-99.
ADAMS, J. R., 1966. Taeniids from Lynx in British Columbia with a comment on Taenia monostephanos von Linstow and other Taeniids with a single crown of hooks. Proc. Int. Congr. Parasit. I, Rome, 1964, 480-481.
BAER, J. G., 1923. Résultats zoologiques du voyage du Dr. P. A. Chappins au Nil supérieur. III. Helminthes. Revue suisse Zool., 30, 337-352.
BAER, J. G., 1926. Cestodes de Mammifères. Bull. Soc. neuchâtel. Sci. nat., 50, 77-81.
BAER, J. G., 1926. Contributions to the helminth fauna of South Africa. Rep. vet. Res. Un. S. Afi. 11/12, 61-136.

BAER, J. G., 1932. Contributions à la faune helminthologique de Suisse (Deuxième partie). Revue suisse Zool., 39, 1-57.
BAER, J. G. \& FAIN, A., 1951. Cestodes nouveaux du Congo Belge. Acta trop., 8, 59-63.
BAER, J. G. \& FAIN, A., 1955. Cestodes. Explor. Parc natn. Upemba. Miss G. F. de Witte, 36, 1-38.
BAER, J. G. \& FAIN, A., 1965. Cestodes. Explor. Parc natn. Albert. Miss G. F. de Witte, 100, 3-7.
BAYLIS, H. A., 1937. Records of some helminths from the spotted hyaena. Ann. Mag. nat. Hist., Ser. 10, 20, 438-441.
BHADURI, N. V. \& MAPLESTONE, P. A., 1940. Variations in Taenia gaigeri (Hall, 1919). Rec. Indian Mus., 42, 431-435.
BOEV, S. N., SOKOLOVA, I. B. \& TAZIEVA, Z. K., 1964. [Specificity of species causing cysticercosis in ruminants] In [Parasites of farm animals in Kazakhstan] (Ed. S. N. Boev), III. [In Russian]. Alma-Ata: Izdatel. Akad. Nauk Kazakh SSSR.
BONDAREVA, V. I., 1953. [Species validity of various members of the genus Multiceps] (In Russian). In Rabot Gel'mint. (Skrjabin) (Ed. by A. M. Petrov et al.). Moscow: Akad. Nauk SSSR.
BRZESKII, V. V., 1962/63, [Morphological characteristics of Taenia krabbei Moniez, 1879 and T. parenchymatosa Pushmenkov, 1945.] (In Russian). Helminthologia, 4, 115-132.
BULJEVIČ, S., 1960. Uloga mačke u epizootiologii T. hydatigena (Pallas, 1877). Vet. Glasn., 14, 667-678. (Abstr. Helminth. Abstr., 32, 393, 1963).
BYRD, E. E. \& FITE, F. W., 1955. Studies on the anatomical features of Multiceps packi Christenson, 1929, a cestode parasite of the dog. J. Parasit., 41, 149-156.
CADIGAN, F. C., STANTON, J. S., TANTICHAROENYOS, P. \& CHAICUMPA, V., 1967. The lar gibbon as definitive and intermediate host of Taenia solium. J. Parasit., 53, 844.
CHRISTENSON, N. O. \& ROTH, H., 1949. Investigations on internal parasites of dogs. Asskr. K. Vet.-Landbфhosjk., 1949, 1-73.
CHRISTENSON, R. O., 1929. A new cestode reared in the dog, Multiceps packi sp. nov. J. Parasit., 16, 49-53.
CHRISTIANSEN, M., 1931. Die Muskelfinne des Rehes und deren Bandwurm (Cysticercus et Taenia cervi n. sp. ad interim). Z. ParasitKde, 4, 75-100.
CHRISTIANSEN, M., 1938. Cestoden bei S ugetierwild, ihre Bedeutung und Bekämpfung. Int. vet. Congr. 13, Zurich, 1938, 623-632.
CLAPHAM, PHYLLIS A., 1942a. On two new coenuri from Africa, and a note on the development of the hooks. J. Helminth., 20, 25-31.

CLAPHAM, PHYLLIS A., 1942b. On identifying Multiceps spp. by measurement of the large hook. J. Helminth., 20, 31-40.
CLAPHAM, PHYLLIS, A. \& PETERS, B. G., 1941. The differentiation of Coenurus species by hook measurements. J. Helminth., 19, 75-84.

CRAM, ELOISE B., 1926. Re-description of Taenia krabbei Moniez. J. Parasit., 13, 34-41.
CRUSZ, H., 1944. Contributions to the helminthology of Ceylon. I. On Multiceps serialis. Ceylon J. Sci., 22, 173-181.
DEFFKE, O., 1891. Die Entozoen des Hundes. Arch. wiss. prakt. Tierheilk., 17, 1-61.
DOLLFUS, R. P., 1944. Sur les Cestodes de Puma concolor. Bull. Mus. natn. Hist. nat., Paris, Series 2, 16, 316-320.
DOLLFUS, R. P., 1959. Sur un Taenia (Multiceps) du renard, Vulpes vulpes (L), discussion de son identification spécifique. Parassitologia, 1, 143-165.
DOLLFUS, R. P., 1962. Sur un Taenia d'Herpestes ichneumon L. d'Algérie: Hydatigena laticollis (Rudolphi, 1810) forme parva (J. G. Baer, 1926). Archs Inst. Pasteur Algér., 40, 387-393.
DOLLFUS, R. P., 1965. Cestodes de Carnivores, Rongeurs, Insectivores, Reptiles et Batraciens, Annls Parasit. hum, comp., 40, 61-86.

DUBNITZKY, A. A., 1952a. [Data on the life-cycle of the cestode Multiceps endothoracicus Kirschenblatt, 1947.] (In Russian). Dokl. Akad. Nauk SSSR, 85, 1193-1195.
DUBNITZKY, A. A., 1952b. [A new cestode from the intestine of Bargyzin sables] (In Russian). Karakulev. Zverov., 5, 79.
ESCH, G. W. \& SELF, J. T., 1965. A critical study of the taxonomy of Taenia pisiformis Bloch, 1780; Multiceps multiceps (Leske, 1780) and Hydatigera taeniaeformis Batsch, 1786. J. Parasit., 51, 932-937.

FAGASINSKI, A., 1961. A contribution to the knowledge of the helminth fauna of the lynx and wild cat in Poland. Acta parasit. pol., 9, 1-6.
FAIN, A., 1952. Morphologie et cycle évolutif de Taenia brauni Setti, 1897, cestode très commun chez le chien et le chacal en Ituri. Revue suisse Zool., 59, 487-501.
FAIN, A., 1956. Coenurus of Taenia brauni Setti parasitic in man and animals from the Belgian Congo and RuandaUrundi. Nature, Lond., 178, 1353.
FREEMAN, R. S., 1956. Life history studies on Taenia mustelae Gmelin, 1790 and the taxonomy of certain taenioid cestodes from Mustelidae. Can. J. Zool., 34, 219-242.
FREEMAN, R. S., ADORJAN, A. \& PIMLOTT, D. H., 1961. Cestodes of wolves, coyotes and coyote-dog hybrids in Ontario. Can. J. Zool., 39, 527-532.
FLORES-BARROETA, L., 1955. Helmintos de los perros Canis familiaris y gatos Felis catus en la Ciudad de Mexico. An. Esc. nac. Cienc. biol., Mex., 8, 159-202.
FLORES-BARROETA, L., HIDALGO-ECALANTE, E. \& BRENES, R. R., 1958. Cestodos de Vertebrados VI. Revta Biol. trop., 6, 167-188.
FUHRMANN, O., 1922. Die Cestoden der Deutschen Süd-polar-Expedition 1901-1903. Dt. Südpol.-Exped., 16, Zool., 8, 469-524.
GNEZDILOV, V. G., 1957. [The golden hamster (Mesocricetus auratus Waterhouse) as a potential definitive host of the tapeworm Taenia solium]. (In Russian). Zool. Zh. 36, 1770-1773.
GRUNDMANN, A. W., 1958. Cestodes of mammals from the Great Salt Lake desert region in Utah. J. Parasit., 44, 425-429.
GUYER, M. F., 1898. On the structure of Taenia confiusa Ward. Zool. Jb., Syst., 11, 469-492.
HALL, M. C., 1910. A new species of cestode parasite (Taenia balaniceps) of the dog and of the lynx, with a note on Proteocephalus punicus. Proc. U.S. natn. Mus., 39, 139-151.
HALL, M. C., 1919. The adult taenioid cestodes of dogs and cats and related carnivores in North America. Proc. U.S. natn. Mus., 55, 1-94.
HAMILTON, P. C., 1940. A new species of Taenia from a coyote. Trans. Am. microse. Soc., 59, 64-69.
HONESS, R. F., 1937. Un nouveau cestode: Fossor angertrudae n.g., n. sp. du Blaireau d'Amérique Taxidea taxus taxus; (Schreber, 1778). Annls Parasit. hum. comp., 15, 363-366.
JACOB, E., 1939. Parasiten beim Iltis aus freier Wildbahn. Dt. tierärztl. Wschr., 47, 475-477.
JOHRI, L. N., 1950. Report on Cestodes collected in India and Burma. Indian J. Helminth., 2, 23-34.
JOHR1, L. N., 1957. On a new Cyclophyllidean cestode, Multiceps smythi n. sp., from dogs in Dublin, Eire. Parasitology, 47, 16-20.
JOYEUX, CH., 1945. Cestodes du Brésil. II. Ark. Zool., 37, 1-5.
JOYEUX, CH. \& BAER, J. G., 1929. Les cestodes rares de l'homme. Bull. Soc. Path. exot., 22, 114-136.
JOYEUX, CH. \& BAER, J. G., 1934. Sur quelques cestodes de France. Archs Mus. natn. Hist. nat., Paris, 6 Ser., 11, 157-171.
JOYEUX, CH. \& BAER, J. G., 1935. Notices helminthologiques. Bull. Soc. zool. Fr., 60, 482-501.
JOYEUX, CH. \& BAER, J. G., 1936. Cestodes. Faune de France, 30. Paris: Féd. Franc. Soc. Sc. Nat.
JOYEUX, CH. \& BAER, J. G., 1937. Remarques morphologiques et biologiques sur quelques cestodes de la famille des Taeniidae Ludwig. In Rabot Gel'mint. (Skrjabin). (Ed. by R. E. S. Schulz \& M. P. Gnyedina). Moscow: Lenin Academy of Agricultural Sciences.

JOYEUX, CH. \& BAER, J. G., 1940. Sur quelques cestodes. Revue suisse Zool., 47, 381-388.
KEPPNER, E. J., 1967. Fossor taxidiensis (Skinker, 1935) n. comb. with a note on the genus Fossor Honess, 1937 (Cestoda: Taeniidae). Trans. Am. microsc. Soc., 86, 157-158.
KIRSCHENBLATT, Y. D., 1939. [Parasitic worms of Citellus xanthoprymnus Bennet in Armenia.] (In Russian). Uchen. Zap. leningr. gos. Univ., Ser. Biol., No. 43, 116-128.
KIRSCHENBLATT, Y. D., 1940. [Larval stages of cestodes in rodents in Georgia and Armenia.] (In Russian). Trudy Zool. Sekt. Tbilisi, 1, 551-556.
KIRSCHENBLATT, Y. D., 1948. [New data on larval stages of cestodes of Georgian rodents.] (In Russian). Trudy Zool. Sekt., Tbilisi, 9, 269-271.
KIRSCHENBLATT, Y. D., 1949. [The helminths of the golden hamster (Mesocricetus auratus brandti Nehr)]. (In Russian). Uchen Zap. leningr. gos. Univ., Ser. Biol., No. 101, 110-127.
KOLMAKOV, D. V., 1937. [Parasitic worms of Vulpes lagopus of Obdorsky territory] (In Russian). In Rabot Gel'mint. (Skrjabin) (Ed. by R. E. S. Schulz \& M. P. Gnyedina). Moscow: Lenin Academy of Agricultural Sciences.
LEIBY, P. D. \& WHITTAKER, F. H., 1966. Occurrence of Taenia crassiceps in the Conterminous United States. J. Parasit., 52, 786.
LEUCKART, R., 1856. Die Blasenbandwürmer und ihre Entwicklung. Zugleich ein Beitrag zur Kenntnis des Cysticercus. Giessen.
LITTLE, J. W., 1967. Monordotaenia nom. nov. for the badger Taeniid cestodes with one row of hooks. Proc. helminth. Soc. Wash., 34, 67-68.
LOCKER, BETTY, 1955. The identification of Taenia tenuicollis Rudolphi, 1819, in North America. J. Parasit., 41, 51-56.
LOEWEN, S. L., 1929. A new cestode, Taenia rileyi n. sp., from a lynx. Parasitology, 21, 469-471.
LOPEZ- NEYRA, C. R., 1945, Compendio de helmintologia iberica (continuacion), pt. II, Cap. III, Taeniidae. Revta ibér. Parasit., 5, 121-151.
LOPEZ-NEYRA, C. R. \& DIAZ-UNGRIA, C., 1958. Cestodes de Venezuela. V. Cestodes de Vertebrados Venezolanos. Noved. cient. Mus. Hist. nat. La Salle. Serie Zoologica, 23, 1-41.
LUHE, M., 1910. Cystot nien südamerikanischen Feliden. Zool. Jb., Supplement 12, 687-710.
MAHON, JUNE, 1954a. Tapeworms from the Belgian Congo. Annls Mus. r. Congo belge, C, Zoologie, Ser. V., 1, 137-264.
MAHON, JUNE, 1954b. Occurrence of larvae of Taenia taeniaeformis (Batsch, 1786) in the American rabbit, Lepus americanus. J. Parasit., 40, 698.
MCINTOSH, A., 1938. Description of the adult stage of Taenia twitchelli from an Alaskan wolverine. Proc. helminth. Soc. Wash., 5, 14-15.
MEGGITT, F. J., 1928. Report on a collection of cestoda, mainly from Egypt. Part III. Cyclophyllidea (Conclusion): Tetraphyllidea. Parasitology, 20, 315-328.
METTRICK, D. F., 1962. Some trematodes and cestodes from mammals of Central Africa. Revta Biol., Lisb., 3, 149-170.
METTRICK, D. F. \& BEVERLEY-BURTON, MARY, 1961. Some Cyclophyllidean cestodes from carnivores in Southern Rhodesia. Parasitology, 51, 533-544.
MEYER, M. C., 1955. Coenuriasis in Varying Hare in Maine with remarks on the validity of Multiceps serialis. Trans. Am. microsc. Soc., 74, 163-169.
MONIEZ, R., 1880. Essai monographique sur les cysticerques. M.D. Thesis. Univ. Lille.
MƯLLER, HELGA, 1965. Untersuchungen über die Entoparasiten Fauna der Bisamratte. Hercynia, 3, 52-99.
NAGATY, H. F. \& EZZAT, M. A. E., 1947. On the identity of Multiceps multiceps (Leske, 1780), M. gaigeri Hall, 1916 and M. serialis (Gervais, 1845), with a review of these and similar forms in man and animals. Proc. helminth. Soc. Wash., 13, 33-44.

NELSON, G. S. \& PESTER, F. R. N., 1966. The role of wild animals in the transmission of cestodes of medical interest in Kenya. Proc. Int. Congr. Parasit. I, Rome, 1964, 484-485.
ORTLEPP, R. J., 1938. South African Helminths. Pt II. Some Taenias from large wild carnivores. Onderstepoort J. vet. Res., 10, 253-278.

ORTLEPP, R. J., 1961. 'n Oorsig van Suid-Afrikaanse helminte veral met verwysing na die wat in ons wilde herkouers voorkom. Tydskr. Natuurwet., 1, 203-212.
PELLEGRINI, D., 1949. Il Cysticercus dromedarii (Pellegrini, 1945) del cammello e del bovino e relativa Taenia hyaenae (Baer, 1927) della iena. Riv. Parassit., 10, 237-243.
PETROV, A. M. \& KOSUPKO, G. A., 1959. [Cestode fauna of Arctic foxes] (In Russian). In Rabot Gel'mint. (Skrjabin) (Ed. by M. P. Gnedina et al.). Moscow: Ministry Agricultural Economy SSSR.
PETROV, A. M. \& SADYCHOW, I. A., 1956. [Taenia melesi sp. nov., a parasite from badger in Azerbaidshan] (In Russian). Dokl. Acad. Nauk azerb. SSR., 12, 213-216.
PUSHMENKOV, E. P., 1945. A contribution to the knowledge of the development cycle of the larvae of cestodes parasitic in the liver of reindeer. Dokl. Acad. Nauk SSSR., 49, 303-304.
RAILLIET, A. \& HENRY, A., 1915. Sur un cénure de la gerbille à pieds velus. Bull. Soc. Path. exot., 8, 173-177.
RANSOM, B. H., 1913. Cysticercus ovis, the cause of tapeworm cysts in mutton. J. agric. Res., 1, 15-58.
RAUSCH, R. L., 1947. A redescription of Taenia taxidiensis Skinker, 1935. Proc. helminth Soc. Wash., 14, 73-75.
RAUSCH, R. L., 1952. Studies on the helminth fauna of Alaska XI. Helminth parasites of microtine rodents-Taxonomic considerations. J. Parasit., 38, 415-444.
RAUSCH, R. L... 1959a. Studies on the helminth fauna of Alaska. XXXV. On the identity of certain cestodes (Taeniidae) from foxes. Proc. helminth. Soc. Wash., 26, 125-131.
RAUSCH, R. L., 1959b. Studies on the helminth fauna of Alaska. XXXVI. Parasites of the wolverine, Gulo gulo L., with observations on the biology of Taenia twitchelli Schwartz, 1924. J. Parasit., 45, 465-484.
RISER, N. W., 1956. The hooks of Taenioid cestodes from North American Felids. Am. Midl. Nat., 56, 133-137.
SCHILLER, E. L., 1953. Studies on the helminth fauna of Alaska. XV. Some notes on the cysticercus of Taenia polyacantha Leuckart, 1856, from a vole (Microtus oeconomus operarius Nelson). J. Parasit., 39, 344-347.
SCHWARTZ, B., 1924. A new proliferating larval tapeworm from a porcupine. Proc. U.S. natn. Mus., 66, 1-4.
SCHWARTZ, B., 1927. A subcutaneous tumor in a primate caused by tapeworm larvae experimentally reared to maturity in dogs. J. agric. Res., 35, 471-480.
SCHULZ, R. E. \& LANDA, D. M., 1934. [Parasitische Würmen der grossen Reunmaus, Rhombomys opimus Licht]. (In Russian). Vest. Mikrobiol. Epidem. Parazit., 13, 305-316.
SKINKER, MARY S., 1935a. Two new species of tapeworms from carnivores and a redescription of Taenia laticollis Rudolphi, 1819. Proc. U.S. natn. Mus., 83, 211-220.
SKINKER, MARY S., 1935b. A redescription of Taenia tenuicollis Rudolphi, 1819 and its larva, Cysticercus talpae Rudolphi, 1819. Parasitology, 27, 175-185.
SWEATMAN, G. K. \& WILLIAMS, R. J., 1962. Wild animals in New Zealand as hosts of Echinococcus granulosus and other Taeniid tapeworms. Trans. R. Soc. N.Z., 2, 221-250.
SWEATMAN, G. K. \& HENSHALL, T. C., 1962. The comparative biology and morphology of Taenia ovis and Taenia krabbei, with observations on the development of T. ovis in domestic sheep. Can. J. Zool., 40, 1287-1311.
THIENEMANN, J. W., 1906. Untersuchungen über Taenia tenuicollis Rud. mit Berücksicktigung der übrigen MustelidenTaenien. Arch. Naturgesch., 72, 227-248.
TURNER, M. \& LEIPER, R. T., 1919. On the occurrence of Coenurus glomeratus in man in West Africa. Trans. R. Soc. trop. Med. Hyg., 13, 23-24.

VAN ZYLL DE JONG, C. G., 1966. Parasites from the Canada lynx, Felis (Lynx) canadensis (Kerr). Can. J. Zool., 44, 499-509.
VERSTER, ANNA, 1965. Taenia solium Lin., 1758 in the chaema baboon, Papio ursinus (Kerr, 1792). Il S. Afr. vet. med. Ass., 36, 580.
VERSTER, ANNA, 1967. Redescription of Taenia solium Linnaeus, 1758 and Taenia saginata Goeze, 1782. Z. ParasitKde, 29, 313-328.
VON LINSTOW, O., 1893. Zur Anatomie und Entwicklungsgeschichte der Tanen. Arch. mikrosk. Anat. EntwMech., 42, 442-459.
VON LINSTOW, O., 1902. Eine neue Cysticercus-Form' Cysticercus-Taeniae Braumi Setti. Zentbl. Bakt. ParasitKde, Abt. I, Originale, 32., 882-886.
VON LINSTOW, O., 1905. Neue Helminthen. Arch. Naturgesch., 71, 267-276.
WAHL, E., 1967. Etude parasito-écologique des petits mammifères (Insectivores et Rongeurs) du val de I'Allondon (Geneve). Revue suisse Zool., 74, 129-188.
WARDLE, R. A. \& MCLEOD, J. A., 1952. The zoology of tapeworms. Minneapolis: University of Minnesota Press.
YAMAGUTI, S., 1934. Helminth fauna of Japan. VII. Cestodes of mammals and snakes. Jap. J. Zool., 6, 233-246.
YAMAGUTI, S., 1959. Systema Helminthum. Vol. II. The cestodes of vertebrates. New York: Interscience Publishers.

Addendum

Since the above was written Dinnik \& Sachs (1969. Z. ParasitKde, 31, 326-339) have described a new species, Taenia olngojinei, from the spotted hyaena in Tanzania. This species is to be included in the valid species Group I.

Taenia olngojinei Dinnik \& Sachs, 1969

Definitive host: Crocuta crocuta (Erxleben, 1777). Intermediate host: Gazella granti Brooke, 1872; Damaliscus korrigum (Ogilby, 1836); Alcelaphus buselaphus (Pallas, 1766); Connochaetus taurinus (Burchell, 1823).
Distribution: Tanzania.

Material:

> No specimens available.

Description

According to Dinnik \& Sachs (1969).

Scolex, rostellum and suckers: These structures are 980 to $1,150 \mu, 480$ to 660μ and 400 to 500μ in diameter. There are 42 to 48 rostellar hooks arranged in two crowns: the large hooks are 274 to 314μ and the small ones 167 to 222μ long.

Male Genitalia: There are about 400 oval testes in a single layer; they are in two lateral groups extending from the anterior margin to the posterior border of the ovary. The cirrus pouch extends to the longitudinal vessels, and is 400 to 500μ long by 120 to 140μ wide.
Female Genitalia: The two lobes of the ovary are of unequal size. The uterus has 10 to 15 lateral branches which redivide. The ova are oval, 36 to 43μ by 30 to 33μ in diameter.

Discussion
T. olngojinei differs from the other species in that the testes are divided into two groups. Two other species, T. corcutae and T. hyaenae, have also been recorded from the same definitive host, but they have fewer rostellar hooks which are smaller than those of T. olngojinei.

The rostellar hooks of this species resemble those of T. regis in number and shape but are somewhat larger (274 to 314μ vs 223 to 290μ); the distribution of the testes and the number of uterine branches are also different.

[^0]: * The available material does not permit the determination of this character in T. endothoracicus and T. parenchymatosa, but for convenience they are included in Group 1.

[^1]: ${ }^{(1)}$ Length not given; calculated from illustration.
 (${ }^{2}$) According to the histogram the large hooks are 320 to 430μ and the small 195 to 295μ.

