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Ck(D) space of k-times continuously differentiable function on D
C∞(D) infinitely differentiable functions on D
C∞0 (D) infinitely differentiable functions with compact support on D,

this space is also denoted by D(D)

C([0, T ];D) continuous function u : [0, T ]→ D
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X = (X(t), t > 0) stochastic process X
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a.s. almost surely
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a.a. almost all

‖ · ‖E norm in a normed space E

↪→ continuous embedding

↪→↪→ compact embedding

p real number such that 1 6 p 6∞
p′ the Hölder conjugate of p

Lp(D) Lp-space of equivalent classes of mappings from D to R
the usual Lebesgue space

Lp
′
(D) the dual of Lp(D)∫

D |v(x)|pdx <∞ and 1 6 p <∞
L∞(D) essentially bounded real-valued measurable functions v on D
Wm,p(D) usual Sobolev space

Wm,p
0 (D) closure of C∞0 (D) w.r.t. the norm ‖ · ‖Wm,p(D)

q real number such that q ∈ [1,∞]

W−m,p′(D) space dual of the space Wm,p
0 (D)

Lq(0, T ;E) Lq-space of equivalent classes φ : [0, T ] 3 t→ φ(t) ∈ E
such that ‖φ(t)‖E ∈ Lq([0, T ])
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p(·) the variable exponent i.e., a measurable function on D
with p(x) ∈ [1,∞] for x ∈ D

q(·) the conjugate exponent function of p(·)
%p the modular( convex )

ODE ordinary differential equations

PDE partial differential equations

SDE stochastic differential equations

SPDE stochastic partial differential equations

Lp(·)(D) the generalized Lebesgue spaces called also

Lebesgue space with variable exponents

Lq(·)(D) dual of Lp(·)(D)

W k,p(·)(D) the generalized Sobolev spaces called sometimes

Sobolev spaces with variable exponents

W̊ k,p(·)(D) closure of C∞0 (D) in W k,p(x)(D)

W−k,q(·)(D) dual space of W̊ k,p(x)(D)

a ∧ b minimum of a and b for a, b ∈ R
(·, ·) inner product in L2(D)

〈·, ·〉X×X′ duality paring between X and its dual X ′

∇ gradient

∆pk pk-Laplacian, with pk ∈ (1,∞) for k = 1, 2

∆p(x) p(x)-Laplacian

ix



Contents

Declaration i

Acknowledgements iii

Acronyms vii

Abstract xii

1 Introduction 1

1.1 Our Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Main Results of Part 1 . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Main Results of Part 2 . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2.1 Existence of weak probabilistic solution . . . . . . . 9

1.1.2.2 Strong solution . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries 15

2.1 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Standard Lebesgue and Sobolev spaces . . . . . . . . . . . . . . . . . 15

2.3 Some analytic and probabilistic theoretical facts . . . . . . . . . . . . 21

3 A quasilinear stochastic parabolic equation with non-standard growth:

Probabilistic weak solvability 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Preliminaries and notations . . . . . . . . . . . . . . . . . . . . . . . 38

x



3.2.1 Generalized Lebesgue and Sobolev spaces . . . . . . . . . . . . 38

3.2.2 Cylindrical Wiener Processes . . . . . . . . . . . . . . . . . . 46

3.3 Setting of the problem and formulation of the main result . . . . . . . 49

3.4 Proof of Theorem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Galerkin approximating sequence . . . . . . . . . . . . . . . . 51

3.4.2 A priori estimates for the approximate solutions . . . . . . . . 57

3.4.3 Compactness results and tightness criterion . . . . . . . . . . 70

3.4.4 Existence of probabilistic weak solution . . . . . . . . . . . . . 76

3.4.4.1 Monotonicity Method . . . . . . . . . . . . . . . . . 84

4 Weak and strong probabilistic solutions for a class of strongly non-

linear stochastic parabolic problems 88

4.1 Introductory background . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 The weak probabilistic solution . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.2 Assumptions and formulation of main result . . . . . . . . . . 90

4.2.3 Regularization of problem (P ) and Krylov-Rozovskii’s result . 93

4.3 Proof of Theorem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Uniform A Priori Estimates . . . . . . . . . . . . . . . . . . . 99

4.3.2 Compactness Results . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.3 Tightness result . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.4 Application of Prokhorov and Skorokhod theorems . . . . . . 111

4.3.5 Existence of weak probabilistic solution . . . . . . . . . . . . . 111

4.4 Strong solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Conclusion and Future Work 125

Bibliography 127

xi



Title Existence results for a class of nonlinear stochastic partial differential

equations

Name Ali Zakaria Idriss

Supervisor Prof Mamadou Sango

Department Mathematics & Applied Mathematics

Degree Philosophiae Doctor

Abstract

This thesis consists of two main parts.

The first part concerns the existence of weak probabilistic solutions (called elsewhere

martingale solutions) for a stochastic quasilinear parabolic equation of generalized

polytropic filtration, characterized by the presence of a nonlinear elliptic part admit-

ting nonstandard growth.

The deterministic version of the equation was first introduced and studied by Samokhin

in [178] as a generalized model for polytropic filtration. Our objective is to investi-

gate the corresponding stochastic counterpart in the functional setting of generalized

Lebesgue and Sobolev spaces. We establish an existence result of weak probabilistic

solutions when the forcing terms do not satisfy Lipschitz conditions and the noise

involves cylindrical Wiener processes.

The second part is devoted to the existence and uniqueness results for a class of

strongly nonlinear stochastic parabolic partial differential equations.

This part aims to treat an important class of higher-order stochastic quasilinear

parabolic equations involving unbounded perturbation of zeroth order. The deter-

ministic case was studied by Brezis and Browder (Proc. Natl. Acad. Sci. USA,

76(1): 38-40, 1979). Our main goal is to provide a detailed study of the correspond-

ing stochastic problem. We establish the existence of a probabilistic weak solution

and a unique strong probabilistic solution. The main tools used in this part of the

thesis are a regularization through a truncation procedure which enables us to adapt

the work of Krylov and Rozosvkii (Journal of Soviet Mathematics, 14: 1233-1277,



1981), combined with analytic and probabilistic compactness results (Prokhorov and

Skorokhod Theorems), the theory of pseudomonotone operators, and a Banach space

version of Yamada-Watanabe’s theorem due to Röckner, Schmuland and Zhang.

The study undertaken in this thesis is in some sense pioneering since both classes

of stochastic partial differential equations have not been the object of previous in-

vestigation, to the best of our knowledge.

The results obtained are therefore original and constitute in our view significant

contribution to the nonlinear theory of stochastic parabolic equations.
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Chapter 1

Introduction

Mathematical models of natural and physical phenomena governed by ordinary or partial

differential equations (ODEs or PDEs for shorts) have always played a central role in science

since the times of Newton and Euler. Among them, parabolic equations have been the ob-

ject of extensive research in the mathematical community. These equations are of evolution

type, time-dependent and often nonlinear; and within their range of important application we

find aircraft simulation, non-Newtonian fluids (e.g., electro-rheological fluids), flow through

porous media, crud oil extraction, weather prediction, image restoration, etc.

The nonlinearities generally introduce many features such as singularity, blow up, extinc-

tion, instability, just to name a few; as opposed to linearity which tends to account for more

regularity in the related processes. In view of the prevalence of randomness in nearly every

natural phenomena, it became imperative to incorporate that feature in governing partial

differential equations. This led to the emerging of stochastic PDEs (SPDEs) with the incep-

tion of modern probability at the beginning of the 20th century; a noise involving Brownian

or Wiener process is added to the deterministic PDEs. For example, the stochastic Navier-

Stokes equations govern the complicated phenomena of turbulence in fluids.

Rigorous mathematical study of SPDEs may be traced back to the pioneering works of

Bensoussan and Temam [23], [25] in the early 1970’s. These works were followed by the

important theses of Viot [206] and Pardoux [155]. Viot deals with important classes of

nonlinear SPDEs in the infinite dimensional framework of weak probabilistic solutions us-

ing compactness method. Pardoux developed quite general theory of strong solutions for

nonlinear equations using monotonicity arguments. This theory is further extended by the

fundamental work of Krylov and Rozovskii [123] which concentrates on general studies on

concepts of strong probabilistic solutions using compactness and classical monotonicity meth-

ods. Further developments are due to Metivier [141], Mikulivicius and Rozovskii in [54], the
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works of Krylov and Gyongy [97, 98], Röckner, Schmuland and Zhang [175], Ondreját [152],

Da Prato and Zabczyk [64], Peszat and Zabczyk [159], Benssoussan [21], Brzezniak et al.

[50, 46, 48, 49, 50, 47], Rozovskǐi [176], where more references are given therein.

The above mentioned works extended the results of Lions [138], Browder [40], Vishik [207]

on various classes of nonlinear parabolic PDEs to their stochastic counterparts. As we men-

tioned above, the monotonicity and compactness methods were key tools in the progress

made.

In this thesis, we initiate the study of some interesting classes of nonlinear parabolic

SPDEs driven by Wiener processes and we shall investigate the issues of existence and unique-

ness of solutions to these equations. The thesis is mainly divided into two parts. The first

part addresses the existence of weak probabilistic solutions to stochastic nonlinear parabolic

PDEs with non-Lipschitz coefficients and having a nonstandard growth characterized by the

presence of variable power of the gradient of the unknown. And the second part of this

thesis deals with the existence and uniqueness of weak and strong probabilistic solutions to

strongly nonlinear stochastic parabolic problems, of Brézis-Browder type; the main feature

is the presence of a nonlinear unbounded perturbation of zero-th order.

There has been a growing interest in the mathematical study of nonlinear parabolic prob-

lems involving the p(·)-Laplace operator. These problems arise naturally in the mathematical

modeling of several phenomena such as flows of incompressible turbulent fluids or gases in

pipes, generalized non-Newtonian fluids, e.g., electrorheological fluids, filtration in porous

media, etc... We refer for instance to [114] for the physical processes of filtration in porous

media and turbulent gas in pipelines, [205] for glaciology, [70] for related model of turbulent

flows and so on. Electrorheological fluids have interesting mechanical properties which can

lead to several technical applications such as crud oil, breaks, actuators, clutches, shock ab-

sorbers just to name a few. More details regarding their characterization and corresponding

problems in their mathematical modeling can be found in [177, 164, 72]. Further development

of the results of [177] can be found in Lars Diening’s thesis [72].

The influential work of Kovac̆ik and Rákosńik [120] contains key properties of the gen-

eralized Lebesgue space Lp(x)(D) and the corresponding Sobolev space W k,p(x)(D); for latest

developments in this direction we refer to the recent monograph [71] by Lars Diening and his

coworkers; also earlier works by Edmunds and Rákosńik [81, 82] and Fan et al. [87, 88].

The weak solvability in the deterministic case was first studied by Samokhin, in [178].

We refer to [2]-[4], [70, 13, 83, 87, 30] for more details about other important results. The

regularity and higher integrability theory have been considered in [177, 137, 56, 9, 11, 30, 158],

[101]-[104], [196, 210, 214]. For a localization property of weak solutions for parabolic initial-

boundary value problem with nonstandard growth conditions, we refer to [96].
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The stochastic case has been considered only recently [7, 19]. We note the work in [19]

dealing with one dimensional Wiener process and the dissertation [7] which was devoted to

the case of d-dimensional multiplicative noises. It seems to us that the work [8] predated

[19].

Despite these contributions, however, the investigation of existence for nonlinear parabolic

SPDEs perturbed by cylindrical Wiener processes in the functional setting of generalized

Lebesgue and Sobolev spaces has not yet been undertaken in the literature. This is the

object of part of the present thesis.

We establish the existence of probabilistic weak solution for a certain class of models

that generalize the problems of polytropic elastic filtration perturbed by cylindrical Wiener

process in a framework of probabilistic evolution spaces involving the generalized Lebesgue

and Sobolev spaces. This study is motivated by the stochastic version of practical engineering

problems such as the electrorheological fluids; as indicated earlier. Besides the non standard

growth difficulty present in the equation, the nonlinear external forces (depending on the

solution), do not satisfy any Lipschitz conditions with respect to the solution. However we

impose on the intensity of the noise a linear growth condition. This potentially avoids the

occurrence of blow-up (explosion).

As aforementioned, in the second part of the thesis, we investigate the existence and

uniqueness of an important class of SPDEs which has so far not been studied by experts

in the field; it is the stochastic counterpart of strongly nonlinear parabolic equations which

originated from the works of Brezis-Browder [34, 33]. The main feature of these equations

is characterized by the presence of nonlinear terms which are unbounded perturbations of

zero-th order, making it impossible to treat the resulting problem by directly using methods

considered in works cited in the previous paragraphs (for instance [21, 123, 140, 155, 206]).

Brezis and Browder introduced a suitable regularization through appropriate truncations

and thanks to compactness arguments, they derived the needed existence result. Further

advances in the study of these equations are due to Landes and Mustonen; see [129], [130],

[131] and [133].

The main results of this part are the construction of a probabilistic weak solution under

rather general conditions on the nonlinear intensity of the noise followed by the existence of a

probabilistic strong solution for the present problem under Lipschitz conditions on the forcing

term. Since a direct approach through Galerkin approximation is hopeless and Itô’s formula

is prohibited in that case, we therefore introduce a regularization through truncations which

reduces the problem to a sequence of problems in the sequel which fits into the framework of

quite general SPDEs studied by Krylov and Rozovskii [123]. We establish uniform a priori

estimates which enable us to implement analytic and probabilistic compactness results as
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in the previous part. This leads to the weak probabilistic solution. We close this part by

establishing a strong probabilistic solution under Lipschitz condition on the nonlinear inten-

sity of the force. A key tool turns out to be a Banach space version of Yamada-Watanabe’s

celebrated theorem.

To the best of our knowledge, the results obtained in the present thesis are novel. Beside

the novelty of the results, several difficulties which are due to the stochastic nature of the

problem and therefore absent in the deterministic case [178, 33, 34], had to be overcome.

1.1 Our Main Results

We now state the key results obtained in the thesis.

1.1.1 Main Results of Part 1

The objective of the first part of the thesis is to study a class of stochastic quasilinear

parabolic initial boundary value problem with nonstandard growth subjected to cylindrical

Wiener perturbation in the functional setting of generalized Sobolev spaces. Namely, we

consider in (0, T ) × D (where T < ∞ and D is an open bounded subset of Rn with C2

boundary ∂D) the stochastic problem

du+ A(t, u)dt = f(t, u)dt+G(t, u)dW (t) in (0, T )× D, (1.1)

u(t, x) = 0, on (0, T )× ∂D, (1.2)

u(0, x) = u0(x), in D, (1.3)

where the function u = u(t, x) is unknown alongside with W , the cylindrical Wiener process.

The nonlinear terms f(t, u) and G(t, x, u) are known functions, u0 ∈ L2(D) and the leading

operator A is given by

A(t, u) = −
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(·)−2

∂u

∂xi

)
.

We emphasis that the problem we are considering in this thesis is the first stochastic ver-

sion of a generalized model for polytropic filtration with a multiplicative noise of cylindrical

type. The main result is the existence of weak probabilistic solution under continuity and

linear growth of the nonlinear external forcing terms.

The formulation of our results in this subsection involves generalized Lebesgue and Sobolev

spaces Lp(·)(D), W̊ 1,p(·)(D),
(
W 1,p(·)(D)

)′
, V̊ (Q) which will be defined later. We also postpone
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other relevant semantics.

The nonlinear external forces f(t, u) and G(t, x, u) are jointly continuous from (0, T ) ×
L2(D) −→

(
W̊ 1,p(·)(D)

)′
and (0, T )× L2(D) −→ L2 (K, L2(D)) respectively and satisfy

‖f(t, u)‖(W̊ 1,p(·)(D))
′ 6 C

(
1 + ‖u(t)‖L2(D)

)
; (1.4)

‖G(t, x, u)‖L2(K,L2(D)) 6 C
(
1 + ‖u(t)‖L2(D)

)
. (1.5)

Here, L2(K,U) stands for the space of Hilbert Schmidt operators defined from K to U,(
W̊ 1,p(·)(D)

)′
, the dual of the space W̊ 1,p(·)(D) and C is a generic constant.

Moreover, the variable exponent function p(·) satisfies

2 6 r 6 p(·) 6 s <∞. (1.6)

Our main result in the first part of the thesis is

Theorem 1. Under the conditions (1.4), (1.5), (1.6) and u0 ∈ L2(D), the problem (1.1)-

(1.3) has a probabilistic weak solution which is a tuple (Ω,F , (Ft)06t6T ,P,W, u), where

(1) (Ω,F , (Ft)06t6T ,P) is a stochastic basis satisfying the usual conditions,

(2) W is an Ft-adapted cylindrical Wiener process evolving on L2(D),

(3) the process u(t, ω) is progressively measurable and

u ∈ Lq
(

Ω,F ,P, Lr(0, T ; W̊ 1,p(·)(D)
)
∩ Lr

(
Ω,F ,P; V̊ (QT )

)
, ∀q ∈ [2,∞),

(4) u ∈ Lq (Ω,F ,P, Cw([0, T ];L2(D))) and for all t ∈ [0, T ], P-a.s.

(u(t), v) +

∫ t

0

〈A(s, u), v〉ds = (u0, v) +

∫ t

0

〈f(s, u), v〉ds+

(∫ t

0

G(s, u(s)) dW (s), v

)
,

(1.7)

for any v ∈ W̊ 1,p(·)(D); Cw([0, T ];L2(D)) stands for functions which are weakly continuous

on [0, T ] with values in L2(D).

Without loss of generality, we suppose given a probability space (Ω̄, F̄ , P̄) with W̄ , a

cylindrical Wiener process prescribed on it and (F̄t)t∈[0,T ], the P̄-augmentation of the natural
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filtration generated by W̄ . Using Galerkin procedure, we construct approximating solutions

(um)m∈N and obtain among others, uniform estimates of the forms

Ē sup
06t6T

‖um(t)‖qL2(D) 6 C, ∀q ∈ [2,∞), (1.8)

Ē‖um‖rV̊ (Q)
6 C, (1.9)

Ē
(∫ T

0

‖um(t)‖2
W̊ 1,p(·)(D)

) r
2

6 C, (1.10)

Ē sup
06|θ|6δ

∫ T

0

‖um(t+ θ)− um(t)‖2
W−1,q(·)(D)dt 6 Cδ, ∀δ ∈ [0, 1), (1.11)

where Ē is the mathematical expectation with respect to the probability measure P̄ and

W−1,q(·)(D), the dual of W̊ 1,p(·)(D). We construct a family of probability measures {Πm : m ∈
N} on S = C([0, T ];K)×L2(0, T ;L2(D))∩C([0, T ];W−1,q(·)(D)) by Πm(A) = P̄

(
φ̄−1
m (A)

)
, ∀A ∈

B(S), where φ̄m : ω̄ 7→ (W̄ (·, ω̄), um(·, ω̄)). Here, K = Q 1
2 (U), where Q : U∗ −→ U is a sym-

metric nonnegative operator, U is a separable Banach space and U∗ its dual. Following ideas

from [166] and invoking results from [192, Theorem 1, p.80] we show that (Π1,m = L(um)), the

family of laws of the sequence (um)m>1 is tight on S1 = L2(0, T ;L2(D))∩C([0, T ];W−1,q(·)(D)).

Next, thanks to [157, Chap. II, Theorem 3.2] we also show that (Π2,m = L(W̄ ))m∈N, the

law of the cylindrical Wiener process W̄ is tight on S2 = C([0, T ];K). Once more, argu-

ing as in [166], we prove that {Πm : m ∈ N} is tight in (S,B(S)). Therefore, applying

Prokhorov’s compactness procedure, we assert that there exists a subsequence Πmν , that

weakly converges to a probability measure Π on S. By Skorohod’s compactness result [193],

we can find a probability space (Ω,F ,P) and S-valued random variables (Wmν , umν ) and

(W,u) defined on (Ω,F ,P) such that L(Wmν , umν ) (resp. L(W,u)), the law of (Wmν , umν ) is

Πmν = L(W̄ , um) (resp. the law of (W,u) is Π) and

Wmν −→ W in C([0, T ];K) P− a.s.,

umν −→ u in L2(0, T ;L2(D)) P− a.s.,

umν −→ u in C([0, T ];W−1,q(·)(D)) P− a.s..

Next, we prove that the stochastic process W is K-valued Q-Wiener process by constructing

the filtration Ft = σ(N ∪σ((W (τ), u(τ)); τ ∈ [0, t])), where N is a null set of F and checking

that the finite dimensional distributions of W are Gaussian. We proceed by showing that

the processes (umν )m∈N are solutions of the finite dimensional SDE’s

umν (t) +

∫ t

0

PmνA(s, umν )ds = Pmν (u0) +

∫ t

0

Pmνf(s, umν )ds+

∫ t

0

PmνG(s, umν ) ◦J −1dWmν ,

where the injection J : U −→ K is a Hilbert-Schmidt operator and Q = JJ ∗.
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The compactness procedures of Prokhorov and Skorokhod enable us to prove that the

sequence um (modulo an extraction of a subsequence denoted in the same way) converges

in appropriate topologies to the process u satisfying the same uniform estimates. Briefly, it

follows from the cited estimates that we can extract a subsequence (umν )ν∈N ⊆ (um)m∈N such

that

umν −→ u weakly in Lq(Ω,F ,P;La(0, T ;L2(D)))

∩ L2(Ω,F ,P;L2(0, T ; W̊ 1,p(·)(D))),∀a ∈ [2,∞); (1.12)

umν −→ u weakly in Lr
(

Ω,F ,P; V̊ (Q)
)

for any 2 6 r 6 p(·) 6 s <∞; (1.13)

A(t, umν (ω)) −→ χ(ω) weakly in
(
V̊ (Q)

)′
for a.e. ω ∈ Ω (1.14)

umν (T ) −→ ג weakly in L2(Ω,F ,P;L2(D)). (1.15)

Furthermore,

umν (ω) −→ u (ω) weakly − ∗ in L∞(0, T ;L2(D)) a.e. ω. (1.16)

Moreover, the process u satisfies the estimates

E‖u‖qLa(0,T ;L2(D)) 6 C, q ∈ [2,∞), a ∈ [2,∞),(
E‖u‖r

V̊ (Q)

)1/r

6 C, for any 2 6 r 6 p(·) 6 s <∞,

E
(∫ T

0

‖u(t)‖2
W̊ 1,p(·)(D)

dt

) r
2

6 C,

E sup
06|θ|6δ<1

∫ T

0

‖u(t+ θ)− u(t)‖2
W−1,q(·)(D)dt 6 Cδ.

We observe by Vitali’s theorem that

umν −→ u strongly in L2(Ω,F ,P;L2(0, T ;L2(D))). (1.17)

Hence, there exists a subsequence still denoted (umν ) such that

umν −→ u for almost all (t, ω) w.r.t. dP× dt. (1.18)

We combine the assumption on f , (1.8), (1.18) with Vitali’s theorem to obtain

f(·, umν (·)) −→ f( ·, u(·)) in L2
(
Ω,F ,P;L2

(
0, T ;W−1,q(·)(D)

))
.

Finally, following essential ideas of [22, 67, 168, 183, 184, 185, 186], we prove that∫ T

0

PmνG(t, umν ) ◦ J −1dWmν −→
∫ T

0

G(t, x, u)dW weakly in L2
(
Ω,F ,P;L2(D)

)
,

(1.19)
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where J : L2(D) −→ K is the injection (Hilbert-Schmidt) with K = Q 1
2 (L2(D)) and

Q = JJ ∗.
And lastly, we end by adapting monotonicity and hemicontinuity arguments used in [138,

145, 207] to prove that χ(t) = A(t, u). Similar ideas have already been used in [7, 8, 21, 155].

We prove that u is a solution of the considered problem in the sense of Theorem 1.

Our results extend some related results developed previously by many authors in [2], [4],

[13], [23], [25], [71], [81, 82], [83], [87], [88], [96], [120], [155], [164], [177], [178], [183], [214]

and many more in the references therein. The results of this part in the finite dimensional

setting of the noise have been the object of the publication [8]. We also addressed there the

issue of existence of strong solution.

1.1.2 Main Results of Part 2

The main purpose of the second part of the thesis is to investigate weak and strong solvabil-

ity of the stochastic counterpart of strongly nonlinear parabolic equations with unbounded

perturbation of zero-th order in the sense of Brézis-Browder [34, 33].

Let D ⊂ Rm, m > 1 be an open bounded subset with sufficiently regular boundary ∂D.

We consider the stochastic initial boundary value problem

(P )


du+ [At(u) + g(t, x, u)] dt = f(t)dt+G(t, x, u)dW (t) in QT = (0, T )× D

u(x, 0) = 0 in D
∂ju

∂N j
= 0 on (0, T )× ∂D,

where the processes u, W (a m-dimensional Wiener process which could have been infinite-

dimensional of cylindrical type) and the probability space on which they are defined are

unknown, the linear term f , the nonlinear term G and the nonlinear perturbation g are

given;
∂ju

∂N j
= 0 is the Dirichlet boundary condition where

∂ju

∂N j
is the jth normal derivative

of u with 0 6 j 6 m − 1; At is a nonlinear elliptic operator of order 2m in the generalized

divergence form, that is,

At(u) =
∑
|β|6m

(−1)|β|DβAβ(x, t, u,Du, . . . , Dmu),

where the coefficient functions Aβ satisfies the Carathéodory conditions.

Note that W = (W1, . . . ,Wm), where each Wi, i = 1, . . . ,m is a standard one dimensional

Wiener process and dW = (dW1, . . . , dWm) stands for the m-dimensional white noise.
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1.1.2.1 Existence of weak probabilistic solution

We formulate the structure conditions on Aβ. Let 2 ≤ p <∞ with p′ = p
p−1

.

(i) There exists c0 > 0, h0 ∈ Lp
′
(Q) such that

|Aβ(t, x, ξ)| 6 c0{|ξ|p−1 + h0(t, x)}, ∀(t, x, ξ) ∈ [0, T ]× D× Rn.

(ii) For all (t, x) ∈ Q = [0, T ]×D, all lower-order jets η ∈ RN1 , and γ 6= ζ in RN2 , we have∑
|β|=m

[Aβ(t, x, η, γ)− Aβ(t, x, η, ζ)] (γβ − ζβ) > 0.

(iii) There exists c1 > 0, h1 ∈ L1(Q) such that for all (t, x) ∈ Q and all ξ ∈ Rn, we have∑
|β|6m

Aβ(t, x, ξ)ξβ ≥ c1|ξ|p − h1(t, x).

(iv) g(t, x, u) is measurable in (t, x), and continuous in u. There exists a continuous nonde-

creasing function h : R −→ R with h(0) = 0 such that for all (t, x) ∈ Q, r ∈ R, and a

fixed constant C, we have

rg(t, x, r) ≥ 0; |g(t, x, r)| 6 |h(r)|.

(v) For the nonlinear intensity of the noise G, we assume that there exists a positive

constant C such that

G (·, u) : (0, T ) −→ (L2(D))
m

, measurable, a.e. t, G (t, ·) : L2(D) −→ (L2(D))
m

,

continuous, and G satisfies

‖G(t, x, u)‖(L2(D))m 6 C(1 + ‖u(t)‖L2(D)).

(vi) We assume that f ∈ Lp′(0, T ;Lp
′
(D)).

Our main result in this part is

Theorem 2. Under the conditions (i)-(vi), (P ) has a probabilistic weak solution which is

understood as a system (Ω,F , (Ft)06t6T ,P,W, u), where

(1) (Ω,F ,P) is a probability space, Ft is a filtration on it,

(2) W is a d-dimensional Ft- standard Wiener process,

(3) (t, ω)→ u(t, ω) is progressively measurable,
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(4) u ∈ L2(Ω,F ,P, L∞(0, T ;L2(D))) ∩ Lp(Ω,F ,P, Lp(0, T ;Wm,p
0 (D))),

(5) for all t ∈ [0, T ], u(t) satisfies the integral identity

(u(t), v) +

∫ t

0

〈As(u), v〉ds+

∫ t

0

∫
D

g(s, x, u)vdx ds (1.20)

=

∫ t

0

〈f(s), v〉ds+

(∫ t

0

G(s, u(s)) dW (s), v

)
,∀v ∈ Wm,p

0 (D), P− a.s.

The initial step of the proof of this theorem is a suitable regularization of problem (P) on

intermediary probability space
(
Ω̄, F̄ , P̄

)
with a prescribed Wiener process W̄ (t). Letting gk

be truncations of the function g at heights k ∈ N, our regularized problem reads as follows:

(Pk)


du+ [At(u) + gk(t, x, u)] dt = f(t)dt+G(t, x, u)dW̄ (t) in QT

u(x, 0) = 0, in D
∂ju

∂N j
= 0, on ∂(0, T )× D.

By the properties of truncations, we have that gk ∈ L∞(QT ), P-a.s. Moreover, from the

definition of gk and the assumption g(t, x, r)r ≥ 0, one can obviously check that gk(t, x, r)r ≥
0. Now, problem (Pk) is more regular than problem (P ) in the sense that the L∞-norm of

the nonlinear terms gk is under control; this is in sharp contrast with the unboundedness of

g.

(H1) (A, G)-Coercitivity condition: there exist c3 > 0, c4 ∈ R and there exists an (F̄t)-
adapted process h1 ∈ L1(Q× Ω̄) such that for all (t, x) ∈ Q, v ∈ Wm,p

0 (D)

2

∫
D
A(t, v)vdx+ ||G(t, v)||2(L2(D))m − h1(t) + c3||v(t)||p

Wm,p
0 (D)

6 c4||v(t)||2L2(D) on Ω̄.

Here (L2(D))m denotes the m copies of the space L2(D).

(H2) Hemicontinuity: for all t ∈ [0, T ], ω̄ ∈ Ω̄ and u, v, w ∈ Wm,p
0 (D) the map λ 7→ 〈A(t, u+

λv), w〉 is continuous on R. Here W−m,p′(D) is the dual of Wm,p
0 (D) and 〈·, ·〉 stands

for the duality pairing between Wm,p
0 (D) and W−m,p′(D).

Here Lp
′
(D) denotes the dual of Lp(D) and we need to make notation clear, instead of

using the map ω 7→ G(t, x, v, ω̄) we write G(t, v). This also applies to other functions

used throughout.

We know that any strictly monotone operator is monotone hence pseudomonotone.

Under assumptions (i)-(vi), (H1), (H2), problem (Pk) satisfies the conditions of existence

from [123]. Thus, for each fixed k ∈ N, the truncated problem (Pk) has a strong solution uk
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in the sense of Krylov and Rozovskii [123, pp: 1252-1253].

Our next task is to derive some key a priori estimates for the sequence (uk) satisfying

problem (Pk). These estimates are summarized in

Lemma 1. Under the conditions of Theorem 2, for each k ∈ N, uk satisfies

Ē sup
06t6T

‖uk(t)‖2
L2(D) + Ē

∫ T

0

‖uk(t)‖pWm,p
0 (D)

dt 6 C. (1.21)

Furthermore, for any q ≥ 2

Ē sup
t∈[0,T ]

‖uk(t)‖qL2(D) 6 C, (1.22)

and for sufficiently small δ > 0;

Ē sup
|θ|6δ

∫ T

0

‖uk(t+ θ)− uk(t)‖p
′

W−m,p′ (D)
dt 6 Cδ1/(p−1); (1.23)

the constant C is independent of k.

This lemma is a crucial stepping stone leading to probabilistic compactness results. For

that we introduce the product space S = C ([0, T ];Rm) × L2(0, T ;L2(D)) and B(S) the σ-

algebra of its Borel sets. For each k, we construct the probability measure Λk on S, the

push-forward of P̄ by the mapping ϕk : ω̄ 7→
(
W̄ (., ω̄), uk(., ω̄)

)
defined on

(
Ω̄, F̄ , P̄

)
and

taking values in (S,B(S)); that is Λk(A) = P̄(ϕ−1
k (A)) for all A ∈ B(S). We prove that

{Λk}∞k=1 is tight in (S,B(S)). Therefore Prokhorov’s compactness theorem (see [161]) comes

in force and enables us claim that {Λk}∞k=1 weakly converges (in the sense of measures) to a

probability measure Λ on S; we denote by {Λki}∞i=1 a corresponding subsequence converging

to Λ. Next another equally powerful compactness result due to Skorokhod (see [194]) implies

that there exist a probability space (Ω,F ,P) and pairs of random variables (Wki , uki) and

(W,u) on (Ω,F ,P) with values in S such that the probability law of (Wki , uki)(resp. (W,u))

is Λki(resp. Λ) and

(Wki(., ω), uki(., ω)) −→ (W (., ω), u(., ω)) in S, as i −→∞, P− a.s.,

Next, we introduce the filtration Ft by setting Ft = σ{(W (s) , u (s)) : 0 ≤ s ≤ t}. It turns

out according to similar reasoning used in [22], [168] and [185] that W is a d-dimensional

Ft-standard Wiener process. Following these references, one can also prove that

uki(t) +

∫ t

0

[As(uki(s)) + gki(s, uki)] ds =

∫ t

0

f(s)ds+

∫ t

0

G(s, uki)dWki(s), P− a.s., (1.24)

as an equality between random variables with values in W−m,p′(D).
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Owing to (1.24), (1.21), (1.22) can be applied to uki . Thus, there exists a new subsequence

of (uki) which we still denote by the same symbol (uki) such that

uki ⇀ u inLp (Ω,F ,P;Lp (0, T ;Wm,p
0 (D))) ∩ Lq

(
Ω,F ,P;Lr

(
0, T ;L2(D)

))
, (1.25)

with p, q as above and any r ∈ (1,∞).

Thus, there exists a random function $ ∈ Lp′
(
Ω,F ,P;Lp

′ (
0, T ;W−m,p′(D)

))
such that up

to extraction of a subsequence

At(uki(t)) ⇀ $(t) inLp
′
(

Ω,F ,P;Lp
′
(

0, T ;W−m,p′(D)
))

. (1.26)

Furthermore u satisfies the estimates (1.21) and (1.22). Thanks to the higher integrability

(1.22) and Vitali’s theorem, we obtain

uki −→ u inL2
(
Ω,F ,P;L2(0, T ;L2(D))

)
and almost everywhere in QT × Ω. (1.27)

Thus, there exists a new subsequence still denoted (uki) for simplicity of notation such that

for almost every (t, ω) we have

uki −→ u inL2(D) (with respect to the measure dP× dt). (1.28)

Thanks, to De La Vallee Poussin principles, we show that the sequence {gki(t, x, uki)}i∈N
is uniformly integrable in L1 (Ω,F ,P;L1(Qt)). Then, using the Dunford-Pettis theorem (see

next chapter for statement), the properties of truncation Tki , Vitali’s theorem, the conver-

gence (1.28), we deduce that

gki(uki) −→ g(u) inL1
(
Ω,F ,P;L1(QT )

)
; (1.29)

and g(u) ∈ L1 (Ω,F ,P;L1(QT )).

Following [22, 67, 168, 183, 184, 185, 186], we prove that∫ t

0

G(s, uki)dWki(s) ⇀

∫ t

0

G(s, u)dW (s) in L2
(
Ω,F ,P;L2(D)

)
. (1.30)

The remaining assertion $ = At(u) is established by carefully adapting the approach used

in [39, 34, 33] and based on pseudo monotonicity arguments. Then u satisfies the integral

identity (1.20) and Theorem 2 follows.

1.1.2.2 Strong solution

We establish the pathwise uniqueness of solutions of the problem (P ) and use Yamada-

Watanabe’s classical result to derive the existence of a strong probabilistic solution.

To do so, we imposed additional condition on g (t, x, r) that we borrowed from [34]. We

require that
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(iv)’ The function g(t, x, r) is non-decreasing in r and in addition, the sign condition on g is

preserved, i.e. rg(t, x, r) ≥ 0.

Next, we introduce a function Γ by setting Γ(t, x, r) =
∫ r

0
g(t, x, s)ds. It is obvious that

Γ is continuous and convex in r and non-negative for all (t, r). By construction we have that

Γ(t, x, 0) = 0 and Γ′(t, x, r) = g(t, x, r).

We also need an extra condition on G; the Lipschitz condition. Namely, there exists a

constant L > 0 such that

‖G(t, u1)−G(t, u2)‖(L2(D))m ≤ L‖u1(t)− u2(t)‖L2(D). (1.31)

Our pathwise uniqueness result is

Theorem 3. Under conditions of Theorem 2 and (H1), (H2), (g-nonlinINTRO) and (iv)’,

problem (P ) is pathwise unique.

We refer to [110, 152, 175, 211] for definition of pathwise uniqueness. The function Γ

defined above plays a central role in proving Theorem 3.

Sketch of the proof We denote the weak solution by the couple (W,u) in order to

simplify the notation. Let (W,u1) and (W,u2) be two weak solutions with u1 and u2 in

the space Lp (Ω,F ,P;Lp (0, T ;Wm,p
0 (D))) ∩ L2 (Ω,F ,P;L∞ (0, T ;L2(D))), p ≥ 2. For any

v ∈ Lp (Ω,F ,P;Lp (0, T ;Wm,p
0 (D)) ∩ L∞ (QT )), we substitute u by u1 and u2 in

d(u(t)− v(t)) = −
[
At (u(t)) + g(t, x, u)− f(t) +

∂v

∂t

]
dt+G(t, x, u)dW. (1.32)

and multiply the resulting relations by u1 − v and u2 − v, respectively. Arguing similarly as

in [33], we express v as the mean of u1 and u2 i.e., v = 1
2
(u1 + u2). Then thanks to Itô’s

formula applied to ‖u1(t)− u2(t)‖2
L2(D), we get

E sup
0≤t≤T

‖u1(t)− u2(t)‖2
L2(D) + 2E

∫ t

0

〈u1 − u2, As(u1)− As(u2)〉ds

≤ 4E
∫
Qt

(v − u1)g(s, x, u1)dxds+ 4E
∫
Qt

(v − u2)g(s, x, u2)dxds+

+ 2E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
D
(u1 − u2)[G(s, u1)−G(s, u2)]dWsdx

∣∣∣∣+ CE
∫ t

0

‖u1(s)− u2(s)‖2
L2(D)ds.

(1.33)

Since by definition, Γ′ (t, x, u) = g (t, x, u) , we use (iv) to obtain the following properties

which are straightforward consequences of the convexity of the function Γ:

g(t, x, uj)(v − uj) 6 Γ(t, x, v)− Γ(t, x, uj), j = 1, 2, (1.34)

Γ

(
t, x,

1

2
(u1 + u2)

)
≤ 1

2
{Γ(t, x, u1) + Γ(t, x, u2)} . (1.35)
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It follows from (1.31), (1.33), Burkholder-Davis-Gundy, Young’s inequalities, (H1), (1.34),

(1.35), the Lipschitz condition on G and condition (ii) that

E sup
0≤t≤T

‖u1(t)− u2(t)‖2
L2(D) ≤ CE

∫ T

0

‖u1(t)− u2(t)‖2
L2(D)dt.

Thanks to Gronwall’s Lemma, we conclude that for any t ∈ [0, T ], we have u1(t) = u2(t), P-

a.s.. 2

Our last main result is

Theorem 4. Let the assumptions in Theorem 3, (iv)’ and (1.31) be satisfied. Then problem

(P ) admits a unique strong solution u, in the sense that the system (Ω,F , (Ft)t∈[0,T ]P,W, u)

is a weak solution of (P ) and u is adapted to the filtration generated by the Wiener process

W .

The proof of this result follows from the celebrated theorem of Yamada-Watanabe orig-

inally proved in [211] (see also [110]), in the finite dimensional case. According to Yamada-

Watanabe’s theorem, weak probabilistic solution and pathwise uniqueness give rise to the

existence of unique probabilistic strong solution. The result has since been established in the

infinite-dimensional setting by many authors; we refer to Rockner, Schmuland and Zhang

[175] and Ondreját [152] for further details in this direction. It is the version obtained in

[175] that enables us to conclude the proof of the theorem. This theorem has been addressed

in the infinite dimensional framework of mild solution, by Ondreját [152].

Plan of the thesis

This thesis consists of four chapters.

In Chapter 2, we introduce preliminary materials that will be needed throughout the

thesis.

Chapter 3, contains the statement and proof of our first main result on the existence of weak

probabilistic solution of a quasilinear stochastic parabolic equation with nonstandard growth

and driven by cylindrical Wiener processes; see Theorem 31.

In Chapter 4, we state and prove our second main results on existence and uniqueness of

weak and strong probabilistic solutions to the stochastic counterpart of strongly nonlinear

parabolic PDE’s.



Chapter 2

Preliminaries

2.1 Function spaces

In this chapter we collect well known facts on functions spaces pertaining to standard

Lebesgue and Sobolev spaces, some notions from functional analysis, probability theory and

Itô’s stochastic calculus.

2.2 Standard Lebesgue and Sobolev spaces

First, by a domain in Rn we mean an open set in n-dimensional real Euclidean space Rn.

A typical point in Rn is denoted by x = (x1, . . . , xn).

Definition 1. Let E be a vector space. A subset D of E is called convex if

λx+ (1− λ)y ∈ D, whenever xy ∈ D.

Definition 2. Let D be a convex set in Rn. A function u : D→ R is convex provided

u(λx+ (1− λ)y) 6 λu(x) + (1− λ)u(y), for any x, y ∈ D and each λ ∈ [0, 1].

A special case of this Definition is when one takes λ = 1
2
. This yields what we call the

midpoint convexity:

u

(
1

2
x+

1

2
y

)
6

1

2
u(x) +

1

2
u(y), for any x, y ∈ D.

Let D be an open bounded subset of Rn. We denote by L1
loc(D) the set of all Lebesgue

measurable function u : D −→ R such that |u| is integrable on each compact subset of D. A

multi-index α is an n-tuple (α1, . . . , αn) of nonnegative integers components αi. We defined
15
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the order of a multi-index α by |α| =
∑n

i=1 αi. If we set Di = ∂
∂xi

for 1 6 i 6 n, then we

define the partial derivatives

Dαu = Dα1
1 . . . Dαn

n u =
∂|α|u

∂xα1
1 . . . ∂xαnn

where Dαi
i = ∂αi

∂xi
for 1 6 i 6 n. Dα is the differential operator of order α; so that D0,...,0u = u.

This notation leads us to the following concept of weak derivatives which extends the concept

of classical derivatives.

Definition 3. Let u ∈ L1
loc(D). A function vα ∈ L1

loc(D) is called the α-weak or distributional

partial derivative of u if∫
D
u(x)Dαφ(x)dx = (−1)α

∫
D
vα(x)φ(x)dx, for all φ ∈ C∞0 (D).

Remark 1. The α-weak derivative of a function u if it exists is unique, i.e. if Dαu = v and

Dαu = ṽ then v = ṽ.

Definition 4. Let p ∈ [1,∞), D be an open bounded subset of Rn. The space Lp(D) consists

of all measurable functions u : D −→ R, identified up to pointwise almost everywhere equality

such that ∫
D
|u(x)|pdx <∞.

We endow Lp(D) with the norm

||u||Lp(D) =

(∫
D
|u(x)|pdx

)1/p

, if p ∈ [1,∞).

A function u : D −→ R is p-power locally integrable i.e., u ∈ Lploc(D) if u ∈ Lp(V ) for each

V ⊂⊂ D.

When p =∞, the norm in L∞(D) is defined by the essential supremum. That is,

||u||L∞(D) = ess sup
x∈D
|u(x)|.

For p ∈ [1,∞], the space Lp(D) is a Banach space under the norm || · ||Lp(D).

Next, we introduce some important classical and elementary inequalities which are really

fundamental and needed in the sequel. To do so, we first define the Hölder conjugacy.

Definition 5. Let p ∈ [1,∞], Hölder the conjugate exponent denoted p
′

of an exponent

p ∈ [1,∞] is defined by

p
′
=


p

p− 1
if p ∈ (1,∞),

1 if p =∞,
∞ if p = 1.
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We note that one can check that (p
′
)
′
= p and 1/p+ 1/p

′
= 1. Here we used the notation

1
∞ = 0. Since we have defined the Hölder conjugate exponent p

′
, before stating Hölder’s

inequality, first we need to introduce a famous inequality known as Young’s inequality. For

all x, y > 0 and conjugate exponents p, p
′ ∈ [1,∞), we have

xy 6
xp

p
+
yp
′

p′
. (2.1)

We can now state Hölder’s inequality.

Lemma 2. Let p, p
′ ∈ (1,∞) be conjugate exponents of each other i.e. 1

p
+ 1

p′
= 1. If

u ∈ Lp(D) and v ∈ Lp
′
(D) then uv ∈ L1(D) and

||uv||L1(D) 6 ||u||Lp(D)||v||Lp′ (D)
.

For the duality in Lebesgue and Sobolev spaces we need the following abstract notions

from functional analysis.

Let U and V be two Banach spaces. We denote by L(U, V ) the space of bounded linear

operator J : U −→ V . We equip this space with the supremum norm

||J ||L(U,V ) = sup
u∈U−{0}

{
||Ju||V
||u||U

}
.

A linear functional on U is a bounded linear map form U to R. We denote by U∗ (sometime

we use the notation U ′) the dual space of U , the space of all linear functional on U . U∗

endowed with the norm

||J ||L(U,R) = sup
u∈U−{0}

{
|Ju|
||u||U

}
.

is a Banach space.

Remark 2. (i) If u ∈ U and J ∈ U∗, we write J(u) = 〈J, u〉 to denote the duality pairing

between U and U∗. By setting u(J) = J(u) i.e. we think of u as acting on the operator

J instead of J acting on u.

(ii) We define

||J ||U∗ := sup
u6=0
{〈J, u〉; ||u||U 6 1}

(iii) A Banach space U is reflexive if U = U∗∗ (this equality is understood in the sense of

isomorphism ). This means that U coincides with its bidual. More precisely, for each

u∗∗ ∈ U∗∗, there exists u ∈ U such that

〈u∗∗, u∗〉 = 〈u, u∗〉 for all u∗ ∈ U∗.
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(iv) By the Hahn-Banach theorem, one can identify u ∈ U with u∗∗ ∈ U∗∗ by setting

u(u∗∗) = u∗∗(u). The reflexivity of U is done under the identification i : U −→ U∗∗

where i(u)(J) = J(u) for every J ∈ U∗.

Theorem 5. Let D ⊂ Rn and p ∈ [1,∞). Then the map J : Lp
′
(D) −→ (Lp(D))∗ which

associates to a function v ∈ Lp
′
(D) the integral

J(u) : v 7→
∫
D
u(x)v(x)dx

if it exists, is an isometric isomorphism of Lp
′
(D) onto (Lp(D))∗, the dual space of the space

Lp(D) meaning that we have the isomorphism

(Lp(D))∗ u Lp
′

(D),

where p
′

is the Hölder conjugate of p.

Remark 3. The result of this theorem holds for p = 1 we have(
L1(D)

)∗
= L∞(D).

However, in general, (L∞(D))∗, the dual space of L∞(D) is much larger than L1(D).

Example 1. All Hilbert spaces are reflexive. In particular, for p = 2, the space L2(D)

coincides with its dual and it is endowed with the scalar product

(u, v) =

∫
D
u(x)v(x)dx.

The following result is a corollary of the duality result given in Theorem 5.

Corollary 1. The space Lp(D) is a Banach space for p ∈ [1,∞). Lp(D) is reflexive provided

that p ∈ (1,∞).

Remark 4. We notice from Remark 3 that the spaces L1(D) and L∞(D) are non-reflexive

Banach spaces.

Next we define what we mean by continuous and compact embedding.

Definition 6. Let U and V be two normed Banach spaces such that U ⊆ V . We say that U is

continuously embedded into V and we write U ↪→ V , if the inclusion map i : U → V : u 7→ u

is continuous i.e., there exists a constant C such that

||u||V 6 C||u||U ∀u ∈ U.
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Following similar ideas as in [169, p. 198], we have

Example 2. (a) The real line is naturally embedded into the plan, take U = R and

V = R2 with the respective norms ‖·‖U = | · |, the absolute value and || · ||V =
√
v2

1 + v2
2

for any v1, v2 ∈ R. Consider the projection of the plane into the real line, that is P :

R2 → R × {0} : (v1, v2) 7→ (v1, 0). We define the identity map (inclusion map) using P by

i : R→ R2 : v1 7→ (v1, 0). We have

||v1||U = |v1| = ||(v1, 0)||V .

Therefore, the best possible constant for the continuous embedding here is C = 1.

(b) Set D = [0, 1] and consider U = C(D) with the supremum norm and V = L1(D)

with the L1-norm. Let us show that the embedding of U in V is not continuous. We define

a function un by

un(x) =

{
−n2x+ n if x ∈ [0, 1

n
]

0 if x ∈ ( 1
n
, 1].

It is obvious that un is continuous on D since limx→( 1
n

)− un(x) = 0 and D is a closed interval

in R. Hence un attains its maximum. Thus by computing, we get

||un||U = sup{|un(x)| : x ∈ D} = n.

On the other hand

||un||V = ||un||L1(D) =

∫
D
|un(x)|dx =

∫ 1
n

0

[−n2x+ n]dx =
1

2
.

Hence there is no choice of a constant C for the above definition. In this case we say that

the embedding is not continuous.

Definition 7. We say that U is compactly embedded in V , if

1. U is continuously embedded into V , i.e., there exists a constant C such that ||u||V 6
C||u||U ;

2. the embedding operator(inclusion map) i : U ↪→ V is compact i.e., every bounded

sequence in U has a subequence that converges in V .

We have the continuous embedding: Lp2(D) ↪→ Lp1(D) whenever p1 6 p2. Moreover we

have the following density result as well: C∞0 (D) is dense in Lp(D). It worth mentioning that

this result fails for p = ∞ i.e., C∞0 (D) is not dense in L∞(D) since L∞-limit of continuous

functions is continuous.
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Definition 8. 1. Let U be a Banach space. A sequence (un)n∈N ⊂ U converges weakly

to u if f(un) converges to f(u) for every f ∈ U∗.

2. A sequence (fn)n∈N ⊂ U∗ converges weakly-* to f if fn(u) converges to f(u) for every

u ∈ U .

Remark 5. If U is a reflexive Banach space then weak and weak-∗ convergence are the same.

Definition 9. Let D ⊂ Rn be open, p ∈ [1,∞] and k ∈ N. The Sobolev space W k,p(D) is

defined to consist of classes of all real-valued functions u ∈ Lp(D) such that their α-weak

derivatives Dαu exist and belong to Lp(D), for any multi-index α of order |α| 6 k.

We define the norm in this space by

‖u‖Wk,p(D) =

∑
|α|6k

‖Dαu‖pLp(D)

 1
p

, 1 6 p <∞, (2.2)

‖u‖Wk,∞(D) = ess sup
06|α|6k

‖Dαu‖L∞(D), p =∞. (2.3)

These spaces were introduce by the Russian mathematician S. L. Sobolev in [195]. For a

broader exposition, we refer the reader to [5], [84] and [197].

We need to point out that W 0,2(D) = L2(D).

For p = 2, we denote by Hk(D) the Sobolev space W k,2(D) for any k ∈ N. We have the

following

Theorem 6. (Sobolev, Gagliardo, Nirenberg)

Assume that the domain D in Rn is sufficiently smooth. Then for any k and p, we have

W j+k,p(D) ↪→ W j,p(D), whenever p 6 q 6
np

n− kp
,

W j+k,p(D) ↪→↪→ W j,p(D), whenever n > kp and q ∈ [1,∞], ,

W j+k,p(D) ↪→↪→ Cj(D) whenever n < kp.

The above embedding results hold for W k,p
0 (D) since W k,p

0 (D) ⊂ W k,p(D), and we have

the following

Theorem 7. Let D be an arbitrary domain in Rn, k ∈ N and p ∈ [1,∞). Then

1. For kp < n we have

W k,p
0 (D) ↪→ Lq(D) ∀q ∈ [p, p∗], p∗ =

np

n− kp
.

2. In the case kp = n we have

W k,p
0 (D) ↪→ Lq(D) ∀q ∈ [p,∞).

We denote by W−k,p∗(D) the space dual of W k,p
0 (D).
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2.3 Some analytic and probabilistic theoretical facts

We now introduce some evolution spaces which play an important role in the work. Given

a Banach space B, for 1 6 q 6 ∞, we denote by Lq(0, T ;B) the set of functions defined on

[0, T ] and taking values in B. We endow Lq(0, T ;B) with the norm

‖u‖Lq(0,T ;B) =

(∫ T

0

‖u(t)‖qB dt
)1/q

if 1 6 q <∞.

When q =∞, the space L∞(0, T ;B) is the space of all essentially bounded functions on the

closed interval [0, T ] with values in B with the norm

‖u‖L∞(0,T ;B) = ess sup
[0, T ]

‖u‖B < ∞.

We have

Lemma 3. (cf [121, Theorem 3.3.2, page 132])

Consider U1, U2 two Banach spaces with U1 separable, reflexive and continuously embedded

in U2. Then, the space Lp (0, T ;U1) is continuously embedded in Lq (0, T ;U2) for any p, q ∈
[1,∞] with p 6 q. In addition, (Lp (0, T ;U1))∗ = Lq (0, T ;U∗1), where, q = p/(p − 1) with

p ∈ (1,∞).

We also have

Proposition 1. (cf. [121, Proposition 3.3.2, page 134])

Let U be a Banach space; if f ∈ Lp (0, T ;U), we have∫ T

0

〈g, f(t)〉U×U∗dt = 〈g,
∫ T

0

f(t)dt〉U×U∗ ∀g ∈ U∗. (2.4)

If g ∈ Lp (0, T ;U∗), we get∫ T

0

〈g(t), f〉U×U∗dt = 〈
∫ T

0

g(t)dt, f〉U×U∗ ∀f ∈ U. (2.5)

Having defined needed evolutionary spaces, we now introduce a compactness result due

to Lions [138, Chap. 1, Lemma 1.3]. The following result is of great importance for the rest

of the paper.

Lemma 4. Let (gk)k=1,2,... and g be some functions in Lq(0, T ;Lq(D)) with 1 6 q 6∞ such

that

‖gk‖Lq(0,T ;Lq(D)) 6 C, ∀k
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for some positive constant C independent of k and

gk −→ g for almost all (t, x) ∈ (0, T )×D as k −→∞.

Then,

gk −→ g weakly in Lq(0, T ;Lq(D)) as k →∞.

The next lemma, is a crucial analytic compactness result from [192, sect. 8, Theorem 5].

Lemma 5. Given some Banach spaces B, F and H with F a subset of H such that B is

compactly embedded into F . For any p, q ∈ [1,∞], let V be a bounded set in Lq(0, T ;B)

such that

lim
θ−→0+

∫ T−θ

0

‖v(t+ θ)− v(t)‖pH dt = 0, uniformly for all v ∈ V.

Then V is relatively compact in Lp(0, T, F ).

We now introduce some facts from probability theory. Key references are [31], [65], [79]

and [190].

Definition 10. Let (Ω,F) and (U,U) be two measurable spaces. A mapping X : Ω→ U is

measurable or random variable if

X−1(A) ∈ F for every A ∈ U .

Next, we intend to define filtration, stopping times and martingales. For that purpose,

we take our basic structure to be a measurable space (Ω,F).

Definition 11. A filtration is an increasing family of sub-σ-fields or sub-σ-algebras on a

measurable space. That is, given a measurable space (Ω,F), a filtration is a sequence of

σ-algebras {Ft}06t6T with Ft ⊆ F for each t ∈ [0, T ] and satisfying

Fs ⊆ Ft provided that s 6 t.

When T = ∞ we define F∞ as the σ-algebra generated by the infinite union of the Ft’s,
which is also contained in F :

F∞ = σ

 ⋃
t∈[0,T )

Ft

 ⊆ F .
As a convention we write F∞ =

∨
tFt.

We define Ft+ =
⋂
s>tFs and, for t > 0, we define Ft− =

∨
s<tFs.

The filtration is said to be right continuous if Ft = Ft+.



Preliminaries 23

Let (Ω,F ,P) be a probability space (Ω is an arbitrary set, F a σ-algebra of subsets of Ω

and P : F → [0, 1] a probability measure) and let (Ft)06t6T be a filtration of nondecreasing

and right continuous family of sub σ-algebra of F with F0 containing all the P-null sets.

A filtered probability space (known as a stochastic basis) is a probability space equipped

with a filtration.

For an F -measurable function u : Ω→ R, we define

E(u) :=

∫
Ω

u(ω)P(dω)

whenever

E(|u|) :=

∫
Ω

|u(ω)|P(dω) <∞.

The integral

E(u) :=

∫
Ω

u(ω)P(dω)

is called the expectation of the random variable X. Throughout we denote by E the mathe-

matical expectation with respect to the probability measure P.

We define the conditional expectations with respect to a σ-algebra G (sub-σ-algebra of F).

The concept of conditional expectation is of major importance in the definition of martingale.

Suppose again (Ω,F ,P) is a probability space and that G is a sub-σ-field of F .

Definition 12. We assume that X is an E-valued integrable random variable defined on

(Ω,F ,P). The conditional expectation of X with respect to the σ-field G (conditional expec-

tation of X given G) is the (a.s. unique) integrable random variable E[X|G] satisfying

(i) E[X|G] is G-measurable;

(ii) for every B ∈ G∫
H

X dP =

∫
H

E[X|G] dP, or E[XIB] = E[E[X|G]IB], for all H ∈ G. (2.6)

The existence and uniqueness of E[X|G] follows from the Radon-Nikodym theorem

Theorem 8. Let µ be the measure on G defined by

µ(H) =

∫
H

X dP; H ∈ G.

Then µ is absolutely continuous with respect to P|G, so there exists a P|G-unique G-measurable

random variable Y on Ω such that

µ(H) =

∫
H

Y dP for all H ∈ G.
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Thus the conditional expectation E[X|G] is a modification (see definition below) of Y .

The random variable Y =: E[X|G] is indeed unique a.s. with respect to the measure P|G.

The following result is known as Fatou’s lemma and it can be used for positive random

variables of finite or infinite type and not integrable as well.

Lemma 6. (Fatou’s lemma)

Let X,X1, X2, · be random variables. We have

(a) if Xn > X for all n ∈ N and E(X) > −∞, then

E
(

lim
n

inf Xn

)
6 lim

n
inf E(Xn);

(b) if Xn 6 X for all n ∈ N and E(X) <∞, then

lim
n

supE(Xn) 6 E
(

lim
n

supXn

)
;

(c) if |Xn| 6 X for all n ∈ N and E(X) <∞, then

E
(

lim
n

inf Xn

)
6 lim

n
inf E(Xn) 6 lim

n
supE(Xn) 6 E

(
lim
n

supXn

)
.

Theorem 9. (Lebesgue’s Dominated Convergence)

Let X, Y,X1, X2, . . . be random variables such that |Xn| 6 Y , E(Y ) <∞ and Xn → X (a.s.).

Then E(|X|) <∞,

E(Xn)→ E(X) as n→∞,

and

E|Xn −X| → 0, as n→∞.

We now introduce some needed probabilistic evolution spaces

Let B be a Banach space and let 1 6 p 6∞. The space

Lp (Ω,F ,P, Lq (0, T ;B))

consists of all random functions u : [0, T ]×D×Ω −→ Lq(0, T ;B) such that u is measurable

w.r.t. (t, ω) and for all t, u is measurable w.r.t. Ft. We furthermore endow this space with

the norm

‖u‖Lp(Ω,F ,P,Lq(0,T ;B)) =
(
E‖u‖pLq(0,T ;B)

)1/p

; (2.7)

when q =∞, then the norm in the space Lp(Ω,F ,P, L∞(0, T ;B)) is given by

‖u‖Lp(Ω,F ,P,L∞(0,T ;B)) =
(
E ‖u‖pL∞(0,T ;B)

)1/p

.
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Theorem 10. Lp(Ω,F ,P, Lq(0, T ;B)) with the norm defined in (2.7) is a Banach space.

We introduce the probabilistic version of Lemma 4 in

Remark 6. The powerful compactness result in lemma 4 remains valid whenever the space

Lq (Ω,F ,P;Lq(0, T ;Lq(D))) is used instead of Lq(0, T ;Lq(D)). That is, if the sequence (gk)

satisfies

E
∫ T

0

‖gk(t)‖qLq(D)dt 6 C, ∀k ∈ N.

and in addition if it holds that

gk −→ g for almost all (t, x, ω) ∈ (0, T )× D× Ω as k −→∞.

Then, we have

gk −→ g weakly in Lq (Ω,F ,P;Lq(0, T ;Lq(D))) .

Next, we define stopping times.

Definition 13. Suppose that we are given a measurable space (Ω,F) equipped with a fil-

tration F = {Ft}06t6T . A map τ : Ω −→ [0,∞] is called a stopping time with respect to

the filtration F (or an F -stopping time or simply a stopping time if there is no confusion)

provided that the event {ω : τ(ω) 6 t} ∈ Ft, for all t ∈ [0, T ].

We are going to define stochastic processes and introduce some properties. Let (Ω,F ,P)

be a probability space.

Definition 14. A stochastic process X defined on a measurable space (Ω,F) with values

in a measurable space (E,G) is a family of random variables (X(t))06t6T with values in E,

indexed by t ∈ [0, T ].

(1) For a fixed sample point ω ∈ Ω, the function t 7→ X(t, ω); 0 6 t 6 T is the sample

path of the process X associated with ω.

(2) X is continuous if its sample paths X(t, ω) are continuous functions of t, for almost all

(almost everywhere) ω ∈ Ω.

Definition 15. Suppose that (Ft)06t6T is a filtration of the measurable space (Ω,F), and

X is a stochastic process defined on (Ω,F) with values in (E,G). Then X is said to be

adapted to the filtration (Ft)06t6T (or Ft-adapted) if X(t) ∈ Ft that is Ft-measurable

random variable, for each t ∈ [0, T ].
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Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space and (E, E) a measurable space, where

E = B(E) is the borel σ-algebra of subsets of E.

Definition 16. A stochastic process X defined on (Ω,F ,P) is said to be progressively mea-

surable if the map [0, t]× Ω −→ E defined by (s, ω) 7→ X(s, ω) is B([0, t])⊗ Ft-measurable

for every t ∈ [0, T ].

Definition 17. X is {Ft : 0 6 t 6 T}-martingale if

(i) X is {Ft : t > 0}-adapted;

(ii) X is integrable w.r.t. P i.e., X ∈ L1(P) for all t ∈ [0, T ]; that is E(|X|) < +∞;

(iii) for all s, t ∈ [0, T ] we have E (Xt|Fs) = Xs

We introduce one of the main ingredient in the theory of integration which is the concept

of square integrable martingales.

Definition 18. A random variable X is said to be square integrable if it has a finite

second moment (or mean square), that is E[X2] <∞. A process X = {X(t)}t∈[0,T ] is square

integrable if supt∈[0,T ] E[X(t)2] <∞.

If the process X satisfies the following:

a) X is a martingale,

b) X is square integrable,

then X is called square integrable martingale.

Definition 19. An adapted process X = {X(t)}06t6T with values in E is said to be a local

martingale if there exists an increasing sequence of stopping times τn, such that

(i) τn −→∞ almost surely as n −→∞,

(ii) for each n the stopped processes X(t ∧ τn) is uniformly integrable ( the definition will

follow ) martingale in t.

Given a probability space (Ω,F ,P) and a real-valued random variable X defined on

(Ω,F ,P), the measure µ on F given by

A 7→ P
(
X−1(A)

)
;∀A ∈ F ,

is called the distribution of X, or the law of X.

We now introduce one of the most important theorems used in the construction of Brow-

nian motions. It is due to Kolmogorov’s extension theorem. For further proofs and more

information about these theorems and definitions we refer to [153].
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Theorem 11. For all t1, t2, . . . , tk ∈ [0, T ], k ∈ N let νt1 , . . . , νtk be probability measures on

Rnk such that

νtσ(1),...,...tσ(k)
(F1 × · · · × Fk) = νt1,...tk

(
Fσ−1(1) × · · · × Fσ−1(k)

)
(2.8)

for all permutations σ on {1, 2, . . . , k} and

νt1,...,...tk (F1 × · · · × Fk) = νt1,...tk,tk+1,...,tk+m
(F1 × · · · × Fk × Rn × · · · × Rn) (2.9)

for all m ∈ N, where the set on the right hand side has a total of m+ n factors.

Then there exists a probability space (Ω,F ,P) and a stochastic process X = {X(t)} on Ω,

X(t) : Ω −→ Rn, such that

νt1,...,...tk (F1 × · · · × Fk) = P [X(t1) ∈ F1, · · · , X(tk) ∈ Fk] ,

for all ti ∈ [0, T ], k ∈ N and all Borel sets Fi.

Definition 20. Two stochastic processes X = {X(t)} and Y = {Y (t)} defined on the same

probability space (Ω,F ,P) with values in (E,G) are said to be a modification of (or a

version of) each other if

P (ω : X(t, ω) = Y (t, ω)) = 1, ∀t ∈ [0, T ].

Note that if X(t) is a modification of Y (t), then X(t) and Y (t) have the same finite-

dimensional distributions.

Next, we introduce another famous theorem of Kolmogorov which can help to justify the

existence of a continuous version of Brownian motion:

Theorem 12 (Kolmogorov’s continuity theorem). Suppose that the process X = X(t)t∈[0,T ]

satisfies the following condition: for all T > 0 there exist positives constant α, β, C such that

E [|X(t+ h)−X(t)|α] 6 C|h|1+β; 0 6 t, h 6 T.

Then there exists a continuous version of X.

In order to construct Brownian motion we need the following.

Fix x ∈ Rn and define

p(t, x, y) = (2πt)−n/2 exp

(
−|x− y|R

n

2t

)
for y ∈ Rn, t > 0.

If 0 6 t1 6 t2 6 · · · 6 tk define a measure νt1,...,tk on Rn by

νt1,...,tk (F1 × · · · × Fk) =∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk) dx1 · · · dxk, (2.10)
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where dx = dx1 · · · dxk stands for the Lebesgue measure and p(0, x, y)dy = δx(y), is the unit

point mass at x. The extension of this definition rests on (2.8). It is clear that p(t, x, y)

satisfies
∫
Rn p(t, x, y) dy = 1 for all t ∈ [0, T ], hence property (2.9) is valid. Then we apply

Kolmogorov extension Theorem 11 to find a probability space (Ω,F ,Px) and a stochastic

process B = {B(t) : t ∈ [0, T ]} on Ω (the underlying sample space) such that the finite

dimensional distributions on B(t) are given by

Px (B(t1) ∈ F1, · · · , B(tk) ∈ Fk) =∫
F1×···×Fk

p(t1, x, x1)p(t2 − t1, x1, x2) · · · p(tk − tk−1, xk−1, xk) dx1 · · · dxk. (2.11)

Definition 21. A process B = {B(t) : t ∈ [0, T ]} satisfying properties (2.10) and (2.11)

above is called Brownian motion on a measurable space (Ω,F) with a family of probability

measures Px, i.e, Px(B(0) = x) = 1, and B is a Brownian motion starting at x under Px.

The process B defined above, can be characterized by the following properties:

(i) B(t) is a Gaussian process, i.e. for all 0 6 t1 6 · · · 6 tk the random variable B =

{B(t) : t ∈ [t1, tk]} has a normal distribution.

(ii) B(t) has independent increments, i.e.

B(t1), B(t2)−B(t1), · · ·B(tk)−B(tk−1)

are independent for all 0 6 t1 < t2 < · · · < tk.

(iii) B(t) has a continuous path almost everywhere.

A stochastic process W is said to be a Wiener process if the following properties are

satisfied:

(i) W (0) = 0,

(ii) W (t) is almost surely continuous,

(iii) W (t) has independent increments with distribution W (t) −W (s) ∼ N (0, t − s) (for

0 6 s 6 t). N (µ, σ2) denotes the normal distribution with expected value µ and

variance σ2.

It follows from this definition that the distribution of W (t)−W (s) coincides with the distri-

bution of W (t− s) and is normal with mean zero and variance t− s.
Condition (iii) means that if 0 6 s1 6 t1 6 s2 6 t2 then W (t1)−W (s1) and W (t2)−W (s2)

are independent random variables.
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To check whether or not a given proess W (t) is a Wiener process, we need the following

necessary and sufficient condition: for and arbitrary n, 0 = t0 < t1 < · · · < tn = T , and

z0, z1, . . . , zn

E exp

{
i

n∑
k=1

zk [W (tk)−W (tk−1)] + iz0W (t0)

}
= exp

{
−1

2

n∑
k=1

z2
k(tk − tk−1)

}
.

Next we introduce the definition of stochastic integrals of the form∫ T

0

X(t) dW (t) (2.12)

with respect to a standard one dimensional Wiener processW for the processX = (X(t))t∈[0,T ]

defined on [0, T ].

Let X be an Ft-measurable process for each t ∈ [0, T ], for which∫ T

0

X2(t) dt <∞, almost surely.

Then we can define the Itô integral (2.12) for the process X as follows:∫ T

0

X(t) dW (t) = lim
n−→∞

n−1∑
i=0

X(ti)
(
W (tni+1)−W (tni )

)
, (2.13)

as |δn| −→ 0 and n −→∞, where for each n, {tni }, is a partition of the interval [0, T ], and the

limit is taken over all partitions with δn = max16i6n−1(tni+1− tni ) is the mesh of the partition

tni = {tn0 < tn1 < · · · < tnn = T} of the interval [0, T ]; provided that the limit exists. The limit

is understood as a.s. in probability in L2(D)-sense.

Theorem 13. For a process X possessing the above properties, i.e., X is Ft-measurable for

each t ∈ [0, T ], for which

E
∫ T

0

X2(t)dt <∞;

the stochastic integrals ∫ t

0

X(s) dW (s)

are continuous martingales in t with zero mean, that is

E
∫ .

0

X(t) dW (t) = 0.

and Itô’s isometry holds

E
(∫ t

0

X(s)dW (s)

∫ t

0

X(r)dW (r)

)
=

∫ t

0

E[X2(s)]ds.
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In the following result we introduce the Itô’s formula for ϕ(X(t)). The Itô’s formula is

the stochastic equivalent of the classical chain rule of differentiation of functions in classical

calculus and for more details about the exposition of this topic we refer the reader to the

monographs [193], [194], [94] and [85]. In the following, we use the notation

|h(t,X(t))|2 = Tr(hh∗),

where h∗ denotes the adjoint of h.

Theorem 14. Let X have a stochastic differential for 0 6 t 6 T ,

dX(t) = b(t,X(t))dt+ h(t,X(t))dW (t),

where b(t,X(t)) is an R-valued progressively measurable process such that

E
(∫ T

0

|b(t,X(t))|dt
)
<∞

and h(t,X(t)) is progressively measurable process such that∫ T

0

|h(t,X(t))|2dt <∞ P− a.s.

Suppose that ϕ(x) is once continuously differentiable in t and twice continuously differ-

entiable in x. Then the process Y (t) = ϕ(X(t)) also possesses a stochastic differential and is

given by

dϕ(X(t)) = ϕ′(X(t)) dX(t) +
1

2
ϕ′′(X(t))(dX)2 dt

= ϕ′(X(t)) dX(t) +
1

2
ϕ′′(X(t))h2(t,X(t)) dt

=

[
ϕ′(X(t))b(t,X(t)) +

1

2
ϕ′′(X(t))h2(t,X(t))

]
dt+ ϕ′(X(t))h(t,X(t)) dW (t).

(2.14)

Equivalently

ϕ(X(t)) = ϕ(X(0)) +

∫ t

0

ϕ′(X(s)) dX(s) +
1

2

∫ t

0

ϕ′′(X(s))h2(s,X(s)) ds. (2.15)

Formula (2.15) is called Itô’s formula for ϕ(X(t)).

We shall introduce a useful result which is known as the Burkholder-Davis-Gundy inequality.

This gives bounds for the maximum of a martingale in terms of the quadratic variations.

The proof of the Burkholder-Davis-Gundy inequality can be found in [171].
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Theorem 15. Let τ > 0 be a stopping time and X = (Xt)t∈[0,T ] be a local martingale with

X0 = 0. Suppose that Y (t) =
∫ t

0
X(s) dW (s) is the Itô’s integral process such that

E
(∫ τ

0

X2(s) ds

)p/2
<∞.

Then, For any 1 6 p <∞, there exists a positive constant Cp, independent of τ such that

E sup
06t6τ

∣∣∣∣∫ t

0

X(s) dW (s)

∣∣∣∣p 6 CpE
[∫ τ

0

X2(s) ds

]p/2
. (2.16)

Furthermore, for continuous local martingales, this statement holds for all p ∈ (0,∞).

In what follows, we define and give a characterization of uniform integrability. For that

purpose, assume given a triplet (Ω,F ,P) .

Definition 22. A family of random variables (Xn)n>1 on (Ω,F ,P) is called uniformly inte-

grable if ∫
|Xn|>c

|Xn|dP→ 0 as c→∞

uniformly in n > 1.

We also have

Theorem 16. A family (Xn)n>1 is uniformly integrable if for any ε > 0 there exists δ > 0

and a measurable set A with P(A) < δ such that∫
A

|Xn|dP 6 ε

uniformly in n > 1.

We are going to introduce a general definition that we will need in the sequel.

Definition 23. A family (Xn)n∈N ⊂ Lp(0, T ;B) is p-uniformly integrable if ∀ε > 0, there

exists δ > 0: ∀I ⊂ (0, T ), |I| < δ implies that

sup
n

∫
I

||Xn(t)||pBdt < ε,

or equivalently

lim
|I|↓0

sup
n

∫
I

||Xn(t)||pBdt = 0;

where | · | stands for the Lebesgue measure.
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The following result is known as de la vallée Poussin theorem; see [73], where the theory

on uniform integrability is well written.

Theorem 17 (de la Vallée Poussin). A family (Xn)n>1 ⊆ L1(Ω,F ,P) is uniformly in-

tegrable if and only if there exist a convex even function Φ : R → R such that Φ(0) = 0,

limx→∞
Φ(x)
x

=∞ and

sup
n

E (Φ ◦ |Xn(ω))|) = sup
n

∫
Ω

Φ(Xn(ω))dP(ω) <∞.

Next, we are going to state another stunning fundamental criterion result on uniform

integrability known as the Dunford-Pettis theorem [73, Theorem 3, page 46] and [65, II

Theorem T23 p 20].

Theorem 18 (Dunford-Pettis). Let (Xn)n>1 ⊆ L1(Ω,F ,P). The following statements are

equivalent:

1. (Xn)n∈N is uniformly integrable;

2. (Xn)n∈N is relatively compact in L1(Ω,F ,P) in the weak topology σ(L1, L∞);

3. there exists a subsequence (Xnν )ν∈N ⊆ (Xn)n∈N that converges in the sense of the topology

σ(L1, L∞).

We remark from the Dunford-Pettis and de la Vallée Poussin theorems that (Xn)n∈N ⊂
L1(0, T ) is uniformly integrable if and only if there exists a convex and increasing function

Φ : [0,∞)→ [0,∞) such that limx→∞
Φ(x)
x

=∞ and

sup
n

∫ T

0

(Φ ◦ |Xn|)(t)dt <∞.

Let E to be a separable complete metric space and B(E) its Borel σ-field. We have the

following definitions of relative compactness and of tightness of probability measures.

Definition 24. A family of probability measures Πn on (E ,B(E)) is said to be relatively

compact if from every sequence of elements of Πn we can extract a subsequence Πnj such

that Πnj converges weakly to the measure Π. This can also be formulated as follows:

For any continuous and bounded function φ on E

lim
j−→∞

∫
E
φ(s) dΠnj −→

∫
E
φ(s) dΠ.

Definition 25. A family of probability measures Πn on (E ,B(E)) is tight if for any ε > 0,

we can find a compact subset Kε of E such that

P(Kε) > 1− ε for every P ∈ Πn.



Preliminaries 33

Next we state some key compactness results due to Prokhorov [161] and Skorohod [193].

A detailed proof of these results can be found in [64]. It is of paramount importance in the

weak probabilistic solvability of stochastic equations.

Theorem 19 (Prokhorov). The family of probability measures Πn is relatively compact if

and only if it is tight in (E ,B(E)).

The following theorem relates the weak convergence of probability measures and the

almost everywhere convergence of random variables.

Theorem 20 (Skorokhod). For any sequence of probability measures Πn on (E ,B(E)) which

converges weakly to a probability measure Π, there exists a probability space (Ω′,F ′,P′) and

random variables u, u1, . . . , un, . . . with values in E such that the probability law of un is Πn

and that of u is Π and

lim
n→∞

Πn = Π, P′ − a.s.



Chapter 3

A quasilinear stochastic parabolic

equation with non-standard growth:

Probabilistic weak solvability

3.1 Introduction

In the present chapter, we shall be concerned with the study of probabilistic weak solu-

tion of the initial boundary value problem for equations of evolution subjected to random

perturbations of cylindrical type.

In this chapter, we investigate the problem of existence of weak probabilistic solutions for

quasilinear parabolic SPDEs which generalize the equations of polytropic elastic filtration,

characterized by the presence of a nonlinear elliptic part admitting nonstandard growth. Let

D be an open bounded domain of the Euclidean space Rn, n ≥ 1 with C2 boundary ∂D. We

consider the cylindrical domain QT = (0, T ) × D with some given final time T > 0. The

SPDEs are driven by infinite dimensional Wiener processes of cylindrical type. Precisely

speaking, we consider the following initial boundary-value problem

du+ A(t, u)dt = f(t, u)dt+G(t, u)dW (t) in (0, T )× D, (3.1)

u(t, x) = 0, on (0, T )× ∂D, (3.2)

u(0, x) = u0(x), in D, (3.3)

where u = u(t, x) is unknown, the nonlinear terms f(t, u) and G(t, u) are known functions,

u0 is a given function in L2(D), W is a cylindrical Wiener process evolving on L2(D) which

enters the equation as an unknown and A is a nonlinear operator given by

A(t, u) = −
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p(·)−2

∂u

∂xi

)
.
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A is degenerate nonlinear differential operator which has an additional complicated structure,

non homogeneity. This distinguishes it from the well-known p−Laplacian ∆p corresponding

to the case when p(·) is a constant function, i.e., p(·) ≡ p > 1.

In view of the nature of the operator A, the functional space in which we expect the

solution of problem (3.1)-(3.3) to belong involves the space W̊ 1,p(x)(D). To see how these

spaces arise, we give a motivation through the following example of a transmission problem

for a nonlinear elliptic equation.

Let D ⊂ Rn be an open bounded domain with boundary ∂D, D1 be a proper subdomain

of D with the boundary Γ1, and D2 = D \ D1. Then D2 is bounded by Γ1 and Γ2. We

assume that Γ1 and Γ2 are sufficiently smooth. Let −→n 1 (resp. −→n2) be the field of unit normal

vectors to Γ1(resp. Γ2) oriented toward the interior of D2 as shown in the figure below, and

p1, p2 ∈ (1,∞) are constants,

We consider the operator

∆pkϕ = div

(∣∣∣∣∂ϕ∂x
∣∣∣∣pk−2

∇ϕ

)
, k = 1, 2,

where ∇ denotes the gradient. We consider the transmission problem

−∆pkuk = fk on Dk, k = 1, 2, (3.4)

u1(x) = u2(x) on Γ1 (3.5)

∂∆p2
u2

∂−→n 1

(x) =
∂∆p1

u1

∂−→n 1

(x) on Γ1 (3.6)

u2 = 0 on Γ2, (3.7)
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where,
∂∆pk

ϕ

∂−→n
=

∣∣∣∣∂ϕ∂x
∣∣∣∣pk−2

∇ϕ.n.

Integrating (3.4) by parts yields

2∑
k=1

∫
Dk
−∆pkukuk dx =

2∑
k=1

∫
Dk

∣∣∣∣∂uk∂x

∣∣∣∣pk−2

∇uk∇uk dx−
2∑

k=1

∫
Γk

∣∣∣∣∂uk∂x

∣∣∣∣pk−2

uk∇uknk dx.

By using the transmission conditions (3.5) and (3.6), we end up with

2∑
k=1

∫
Dk
−∆pkukukdx =

2∑
k=1

∫
Dk
|∇uk|pk dx. (3.8)

We note that the right hand side of (3.8) can be expressed as follows:

‖u‖W̊ 1,p(·)(D) =

∫
D
|∇u|p(·) dx,

where, p(·) = p1 on D1, p(·) = p2 on D2 ∪ Γ2 and we define the function u = u1 in D1 and u2

in D2. The relation (3.8) suggests that it may be reasonable to look for an appropriate weak

solution u of problem (3.4 )-(3.7) in the space W̊ 1,p(·)(D).

The work of Kovac̆ik and Rákosńik [120] is the first fundamental paper where key proper-

ties of the generalized Lebesgue space Lp(x)(D) and the corresponding Sobolev spaceW k,p(x)(D)

were studied with many examples and counter examples on the Sobolev embedding theorems.

The influence of their work on the study of nonlinear PDEs is huge. The recent monograph

[71] is an up to date account of the latest developments in this direction; we refer also to earlier

works by Edmunds and Rákosńik [81, 82], Fan et al. [88], Donaldson [74] and Krasnosel’skii

[122].

Our aim is to establish the existence of a probabilistic weak solution (also known as

martingale solution) for the problem (3.1)-(3.3) in a framework of probabilistic evolution

spaces involving the spaces W̊ 1,p(x)(D). Besides the non standard growth difficulty present in

the operator A, the intensity G (t, u) of the noise does not satisfy the Lipschitz condition with

respect to u. For the proof we use a Galerkin approximation scheme combined with some deep

analytic (Aubin-Simon’s type) and probabilistic compactness results due to Prokhorov and

Skorokhod. It should be noted that the non-standard growth of A introduces considerable

difficulties in the derivation of uniform a priori estimates for the solutions of the Galerkin

approximating equations which were absent in the standard growth case. The framework

used in this part of the thesis, in order to prove our first main result is inspired from the

work Brzezniak, Goldys and Jegaraj [48] which has proved successful also in [166]; several

ideas of the latter reference will be borrowed. It should be noted that the presence of
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the Hilbert-space valued cylindrical Wiener process W , requires skillful handling due to

additional difficulties absent in the finite dimensional case; in particular when proving the

tightness of the probability measures generated by the sequence of solution of the Galerkin

scheme. Closely related to our work are the previous papers [7], [8, 21, 67, 68, 167, 168]

[182]-[187] which considered various SPDEs driven by finite-dimensional Wiener processes.

In the deterministic case, i.e., when G(t, u) ≡ 0 in (3.1), Samokhin was the first to study

in detail the problem (3.1)-(3.3) for weak solvability in the sense of distributions, in [178]. In

the last decade, several authors have studied and obtained many important results on such

problems also referred to as problems with non-standard growth conditions. For more details,

we refer to [2]-[4], [70, 13, 83, 87], [83], [87] and [214]. The regularity and higher integrability

theory have been considered in [177, 137, 56, 9, 11, 30, 158], [101]-[104], [196, 210, 214].

The authors of [87] studied nonlinear parabolic initial boundary value problem with p(x)-

growth conditions with respect to u and ∇u by introducing a compactness method combined

with Galerkin’s approximation. For a localization property of weak solutions for parabolic

initial-boundary value problem with nonstandard growth conditions, we refer to [96]. Closely

related to this problem are nonlinear parabolic with anisotropy; the case of doubly degenerate

parabolic equations exhibiting such behavior was initially studied in [183]. We refer to

[72, 164, 177] for corresponding problems in the mathematical modeling of electrorheological

fluids.

In the case when p(x) = p is a constant function in (3.1), a huge amount of results

has been obtained in the deterministic case on the existence and regularity properties of

the solutions; the celebrated monograph by Lions [138] has been the key reference in that

direction since its publication. The corresponding research in the stochastic case started

with the pioneering works of Bensoussan and Temam [25], [23], followed by those of Pardoux

[155], Krylov and Rozovskii [123], Krylov and Gyongy [97], [98], [141], [206], and many other

authors. All these works use decisively the deterministic monotonicity and compactness

methods elaborated in [138].

The results proved in this chapter extend those of [178] and [87] to the stochastic case

and can also be seen as generalizations of some of Krylov and Rozovskii’s results [123] to

stochastic nonlinear parabolic equations with nonstandard growth. The foundation laid in

the present chapter should enable the study of the very challenging system of equations of

electrorheology; the deterministic theory was rigorously investigated in [72, 164, 177].

Stochastic quasilinear parabolic equations with non-standard growth, driven by infinite

dimensional Wiener processes, and with non Lipschitz forces have been investigated for the

first time in the paper [8] which originated from the research work of the first author [7]. The

current results extend those in [8] to the case of Hilbert-valued cylindrical Wiener processes.

Additional expositions of weak probabilistic (or martingale) solutions can be found in

[53, 64], [89]-[93], and [115, 116].
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This chapter is organized in the following manner.

In section 2.1, we introduce preliminary materials of function spaces providing necessary tools

that are relevant for further development in the rest of the paper. This section includes the

definitions of the variable exponents spaces Lp(·)(D) and W k,p(·)(D) and their corresponding

probabilistic evolution spaces in which our probabilistic weak solutions live; we state several

important properties of these spaces; we also define the cylindrical Wiener processes driving

our equation. In section 3, we provide the definition of probabilistic weak solution relevant

to problem (3.1)-(3.3) and state the main result on the existence of such a solution as a prob-

abilistic system (Ω,F ,F,P,W, u), where (Ω,F ,P,F) is a stochastic basis i.e., a probability

space (Ω,F ,P) equipped with a filtration F = (Ft)t∈[0,T ], u(t) is a process satisfying problem

(3.1)-(3.3) in the sense of distributions on (0, T ) × D, P-a.s., and W is a cylindrical Wiener

process evolving in L2(D). Section 4 is devoted to the proof of our main result. For that

purpose we introduce an appropriate Galerkin scheme on a fixed probability space (Ω̄, F̄ , P̄)

with a prescribed cylindrical Wiener process W̄ . We establish crucial a priori estimates for

the Galerkin solutions. Combining these estimates with analytic compactness results, we

obtain the tightness of probability measures generated by the sequence of Galerkin solutions

and the cylindrical Wiener process W̄ , following [48, 166]. Then Prokhorov and Skorokhod

compactness procedures become applicable. And finally, we conclude the proof by a delicate

passage to the limit involving arguments of monotonicity.

3.2 Preliminaries and notations

In this section, we shall introduce some useful tools that are needed in the sequel. We specify

some function spaces following in particular, ideas from [120, 71]. We collect several technical

tools and provide appropriate concepts of modular and norm convergences that are suitable

for these spaces and in particular the study of evolution equations.

3.2.1 Generalized Lebesgue and Sobolev spaces

Lebesgue and Sobolev spaces with variable exponent are a particular class of Orlicz spaces

which appeared for the first time in the work of Nakano [150]. Further development in

this direction is done through the contribution of Musielak [149], and Tsenov [200] and the

reference therein. These spaces are popular nowadays due to their generalization of the

classical Lebesgue and Sobolev spaces.

We begin this section by fixing some notations that will be used in the sequel. Throughout

the paper all sets and functions are supposed to be Lebesgue measurable. By |A| we denote

the Lebesgue measure of any subset A of D and IA its characteristic function. We denote by

P(D) the set of all measurable functions p : D −→ [1,∞] and by ‖f‖X the norm of f on a
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normed space X.

Let p ∈ P(D). Then we write Dp
1 = {x ∈ D : p(x) = 1}, Dp

∞ = {x ∈ D : p(x) = ∞},
Dp

0 = D \ (Dp
1 ∪ Dp

∞), and we set

p∗ = ess inf
Dp0
p(·), and p∗ = ess sup

Dp0
p(·) for |Dp

0| > 0, p∗ = p∗ = 1 for |Dp
0| = 0.

We define on E, the set of all extended real valued functions on D, the functional %p:

%p (u) =

∫
D
|u|p(·) dx

=

∫
D\Dp∞

|u|p(·) dx+ ess sup
x∈Dp∞

|u|. (3.9)

From this definition, it is clear that %p take values in R̄+ = [0,∞].

Arguing similarly as in [178] and [120], one can prove that the non-negative functional %p
(%p (u) > 0) satisfies:

(i) the null condition:

%p (u) = 0 if and only if u = 0;

(ii) the symmetric condition:

%p (−u) = %p (u) for every function u in E;

(iii) the triangular condition:

%p (α1u+ α2v) 6 α1%p (u) + α2%p (v) for every u, v ∈ E;

and for each αm > 0,m = 1, 2 with α1 + α2 = 1.

(iii) the monotonicity condition:

%p is monotone if

%p (u) 6 %p (v) for every u, v ∈ E with |u| 6 |v|;

and the strict monotonicity is defined similarly.
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Therefore %p generates a modular space:

X%p =

{
u ∈ E : lim

λ→0+
%p(λu) = 0

}
.

Conditions (i) - (iii) characterizes the functional %p as a convex modular on E in the sense

of [178, p. 1] and [148].

We say that %p is finite if and only if the characteristic or indicator function IA of a set

A ⊂ D belongs to the modular space X%p provided that A ∈ B(D) with the Lebesgue measure

of A being finite (|A| <∞).

Definition 26. The generalized Lebesgue space denoted by Lp(·), consists of classes of func-

tions u defined on D such that the modular %p(λ
−1u) is finite with λ(u(x)) > 0 (i.e., λ is a

function of u). That is,

Lp(x)(D) =
{
u ∈ X% : %p(λ

−1u) <∞, with λ(u(x)) > 0
}
. (3.10)

Lp(·)(D) is a Banach space when endowed with the Luxemburg norm

‖u‖Lp(·)(D) = inf
{
λ > 0 : %p

(
uλ−1

)
6 1
}
. (3.11)

Example 3. (a) As an example of modular function we take

%p(u) = |u|p, p ∈ [1,∞).

In this case the modular space associated with %p is the standard Lebesgue space Lp(D)

and moreover,

‖u‖Lp(·)(D) =

[∫
D
%p(u)

]1/p

= ‖u‖Lp(D)

(b) Assume that we are given a linear space X endowed with a norm ‖·‖X . Then, one can

define a convex modular in X by setting

%p(·) = ‖·‖X .

It follows from the definition of %p that the corresponding modular space X%p is the

normed linear space X itself. That is,

X%p = X .

In addition to that, we also have

‖u‖Lp(·)(D) = inf
{
λ > 0 : %p(λ

−1u) = ‖λ−1u‖X 6 1
}

= ‖u‖X = %p(u).
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By virtue of this example, we deduce that the notion of a convex modular generalizes the

notion of a norm. In a similar fashion, the concept of a modular space extends the notion

of normed linear space. Next, we state some important results involving the modular %p and

the induced norm defined in (3.11).

Lemma 7. (see [87, Theorem 1.3])

Consider u ∈ Lp(·)(D), then

(a) ‖u‖Lp(·)(D) 6 1(> 1) if and only if %p(u) 6 1(> 1),

(b) If ‖u‖Lp(·)(D) < 1, then ‖u‖p
∗

Lp(·)(D)
6 %p(u) 6 ‖u‖p∗

Lp(·)(D)
.

(c) If ‖u‖Lp(·)(D) > 1, then ‖u‖p∗
Lp(·)(D)

6 %p(u) 6 ‖u‖p
∗

Lp(·)(D)
.

We deduce from definitions of the modular, the Luxumberg norm and the results (b)−(c)

in Lemma 7 that for any u ∈ Lp(·)(D)

min
{
‖u‖p

∗

Lp(·)(D)
, ‖u‖p∗

Lp(·)(D)

}
6 %p(u) 6 max

{
‖u‖p

∗

Lp(·)(D)
, ‖u‖p∗

Lp(·)(D)

}
. (3.12)

The following result is the generalized Hölder’s inequality and it is due to [120] and [178].

Theorem 21. (see [120, Theorem 2.1] and [178, Theorem 1.1])

Let p ∈ P(D). For any u ∈ Lp(·)(D) and v ∈ Lq(·)(D),∣∣∣∣∫
D
u(x)v(x)dx

∣∣∣∣ 6 (Cp + 1/p∗ − 1/p∗) ‖u‖Lp(·)(D) ‖v‖Lq(·)(D),

where, Cp = ‖IDp0‖L∞(D)+‖IDp1‖L∞(D)+‖IDp∞‖L∞(D) and q(·) is the pointwise conjugate exponent

function defined by

q(·) =


∞ if p(·) = 1,

1 if p(·) =∞,
p(·)
p(·)−1

otherwise.

If p(x) 6= 1 and p(x) 6=∞ the above inequality becomes∣∣∣∣∫
D
u(x)v(x)dx

∣∣∣∣ 6 ( 1

p∗
+

1

q∗

)
‖u‖Lp(·)(D) ‖v‖Lq(·)(D),

Here we use the convention that
1

∞
= 0.

We characterize the dual
(
Lp(·)(D)

)′
of Lp(·)(D), the space of all continuous linear func-

tionals over Lp(·)(D) as follows:
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Theorem 22. (see [120, Theorem 2.3] and [178, Theorem 1.3])

p ∈ L∞(D) if and only if for any functional J ∈
(
Lp(·)(D)

)′
there exists a unique function

v ∈ Lq(·)(D) such that for any u ∈ Lp(·)(D)

J(v)(x) =

∫
D
u(x)v(x)dx, with C−1

p ‖v‖Lq(·)(D) 6 ‖J‖(Lp(·)(D))
′ 6 (Cp+1/p∗−1/p∗)‖v‖Lq(·)(D).

Theorem 23. (see [120, Theorem 2.5, 2.6, Corollary 2.7 and Theorem 2.8] and [178, The-

orem 1.1]) Let p ∈ P(D).

(i) The space Lp(·)(D) endowed with the Luxemburg norm (3.11) is a Banach space.

(ii)
(
Lp(·)(D)

)′ ∼= Lq(·)(D) iff p ∈ L∞(D); with 1
p(·) + 1

q(·) = 1.

(iii) The space Lp(·)(D) is reflexive iff 1 < r = ess infD p(·) 6 p(·) 6 s = ess supD p(·) <∞.

(iv) Lp1(·)(D) ↪→ Lp2(·)(D) for 0 < |D| <∞ and p1(·) 6 p2(·) a.e in D.

(v) Lp(·)(D) is separable for p ∈ P(D) ∩ L∞(D).

Let D ⊂ Rn, n > 1 be open and p ∈ P(D) with p(x) ∈ [1,∞] for any x ∈ D and k ∈ N0.

We set

W k,p(·)(D) =
{
u ∈ Lp(·)(D) : ∃Dαu ∈ Lp(·)(D),∀α ∈ (N ∪ {0})n , |α| 6 k

}
,

and we define the norm in this space by

‖u‖Wk,p(·)(D) =
∑
|α|6k

‖Dαu(x)‖Lp(·)(D), (3.13)

where Dα is the αth-weak derivative of u. W k,p(·)(D) is the generalized Sobolev space or

sometimes called Sobolev spaces with variable exponents. We set

W̊ k,p(·)(D) = C∞0 (D)
Wk,p(·)(D)

.

That is, the closure of C∞0 (D) (the space of infinitely differentiable functions compactly

supported in D) w.r.t. the norm (3.13). Obviously, W̊ k,p(·)(D) is a subspace of W k,p(·)(D).

For k = 1, the norm (3.13) becomes

‖u‖W 1,p(·)(D) = ‖u‖Lp(·)(D) +
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(·)(D)

. (3.14)

We endow the space W̊ 1,p(·)(D) with the norm

‖u‖W̊ 1,p(·)(D) =
n∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lp(·)(D)

. (3.15)
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Obviously, the norm (3.15) is equivalent to the norm (3.14).

The space W̊ k,p(·)(D) is a proper subspace of W k,p(·)(D), provided that D is a proper

subset of Rn. If k = 0, since D is open bounded domain of Rn, then the space W 0,p(·)(D)

coincides with Lp(·)(D).

Notice that the generalized Sobolev spaces, W k,p(·)(D) inherit many properties from the

corresponding Lebesgue spaces, Lp(·)(D). This can be seen in the following results which are

of great importance, we refer to [120] for their proofs.

Theorem 24. ([120, Theorem 2.11, 3.1] and [178, Theorem 1.4])

Let p be in P(D) and finite. Then

(i) C∞0 (D) is dense in Lp(·)(D) = W 0,p(·)(D);

(ii) W k,p(·)(D) and W̊ k,p(·)(D) are separable Banach spaces and for any u ∈ W̊ 1,p(·)(D), there

exists a positive constant depending only on D such that

‖u‖Lp(·)(D) 6 C ‖∇u‖Lp(·)(D) , i = 1, 2, . . . , n;

(iii) The spaces W k,p(·)(D) and W̊ k,p(·)(D) are reflexive if 1 < p∗ < p∗;

(iv) If p1(·) 6 p2(·) a.e. in D then W k,p2(·)(D) continuously embedded into W k,p1(·)(D).

Theorem 25. [178, Theorem 1.5]

Let D and p satisfy one of the following conditions:

(i) p is continuous on D̄;

(ii) there exist numbers pi and ri satisfying

p1 < p2 < r1 < p3 < r2 < · · · < pm−1 < rm−2 < n < pm < rm−1 < rm,

with p1 = 1, rm =∞, ri < npi/(n− pi), i = 1, 2, . . . ,m− 1.

There are also subsets Gi ⊂ D, i = 1, 2, . . . ,m, that contain finitely many components

with Lipschitzian boundaries such that |D \ ∪mi=1Gi| = 0, the interiors of Gi are mutually

disjoint, and pi 6 p(x) 6 ri for i = 1, 2, . . . ,m and for all x ∈ Gi. Then there is

a compact embedding:

W̊ 1,p(·)(D) ↪→↪→ Lp(·)(D).

Using the generalized Hölder inequality, we can characterize the dual
(
W k,p(·)(D)

)′
by the

following.
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Theorem 26. ( see [178, Theorem 1.6]) Let p ∈ L∞(D) ∩ P(D). Then for any functional

J ∈
(
W̊ k,p(·)(D)

)′
there exists a unique system of functions {vα ∈ Lq(·)(D) : |α| 6 k} such

that

J(u) =
∑
|α|6k

∫
D
Dαu(x)vα(x) dx, u ∈ W̊ k,p(·)(D).

Next, we introduce an intermediary space which is important for the construction of the

solution to our problem. Let p ∈ P(D). We introduce the functional

%p,Q(u) =

∫ T

0

∫
D
|u(t, x)|p(·)dxdt

=

∫ T

0

∫
D−D∞

|u(t, x)|p(·)dxdt+

∫ T

0

ess sup
x∈D∞

|u(t, x)|dt (3.16)

Definition 27. The space V̊ (Q) consists of all measurable vector-valued functions u :

[0, T ] −→ W̊ 1,p(·)(D) with finite norm

‖u‖V̊ (Q) =
n∑
i=1

∥∥∥∥∂u(t, x)

∂xi

∥∥∥∥
Lp(·)(Q)

=
n∑
i=1

inf

{
λi > 0 :

∫ T

0

%p

(
λ−1
i

∂u

∂xi

)
dt 6 1

}
(3.17)

where Q = [0, T ]× D.

We note that the spaces V̊ (Qt) are introduced similarly.

Also, the following counterpart of the conclusion of Lemma 7 i.e., (3.12) holds for %p,Q:

min
{
||u||p∗

V̊ (Q)
, ||u||p

∗

V̊ (Q)

}
6

n∑
i=1

%p,Q

(
∂u

∂xi

)
6 max

{
||u||p

∗

V̊ (Q)
, ||u||p

∗

V̊ (Q)

}
. (3.18)

Following [178] and [210], and using Theorem 24, we can derive the result below.

Theorem 27. Let p ∈ P(D) with p∗ <∞. Then, the space V̊ (Q) is

(i) a separable Banach space under the norm ‖·‖V̊ (Q);

(ii) reflexive if 1 < p∗ 6 p∗ <∞.

Alongside with the characterization of Lq(·)(D) and
(
W̊ 1,p(·)(D)

)′
we characterize as well(

V̊ (Q)
)′

the dual space of V̊ (Q). We equip
(
V̊ (Q)

)′
with the norm

‖u‖(V̊ (Q))
′ := sup

‖v‖V̊ (Q)61

|〈u, v〉| := inf
∑
|α|61

∫ T

0

‖uα(t)‖Lq(·)(D)dt,
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where the infimum is taken over all possible decompositions

u(t) =
∑
α

Dα
xuα(t), uα(t) ∈ Lq(·)(Q).

Following [210, Lemma 2.10 p.316], we have

Lemma 8. Let p ∈ P(D) such that p ∈ C(D̄) ∪ L∞(D), and moreover, let p(·) ≥ 2. Then

the space V̊ (Q) is continuously embedded into L2(0, T ; W̊ 1,p(·)(D)).

From the embedding of the generalized Lebesgue and Sobolev spaces in Theorem 23-

Theorem 20 and Lemma 8 we have

Ls(0, T ; W̊ 1,s(D)) ↪→ V̊ (Q) ↪→ Lr(0, T ; W̊ 1,r(D)),

where 2 6 r 6 p(x) 6 s <∞. Obviously the embedding of their dual follows:

Lr/(r−1)(0, T ;W−1,r/(r−1)(D)) ↪→
(
V̊ (Q)

)′
↪→ Ls/(s−1)(0, T ;W−1,s/(s−1)(D)).

We now define probabilistic evolution spaces. Let T > 0 and (Ω,F ,P) be a complete

probability space. We endow the probability space (Ω,F ,P) with an increasing filtration

F = (Ft)t∈[0,T ]. The filtered probability space (Ω,F ,F,P) satisfies the usual condition, that

is :

1. P is complete in (Ω,F),

2. F0 contains all null sets of (Ω,F ,P),

3. the filtration F is right-continuous.

We define the norm in the space Lp(·)(Ω,F ,P; (0, T )× D) by

‖u‖Lp(·)(Ω,F ,P;(0,T )×D) = inf

{
λ > 0 : E

∫ T

0

%p(λ
−1u)dt 6 1

}
.

We recall the following result known as Schauder’s theorem and its main source is [86].

For a Banach space X, we denote by X′, its dual.

Theorem 28. ([86, Theorem 15.3, Chapter 15 page 658])

Let X, Y be two Banach spaces with X′, Y′ their respective duals and T be a bounded linear

map. Then T is compact if and only if its adjoint T ∗ : X′ → Y′ is compact.

From this Theorem, we prove directly the following result.
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Lemma 9. Let X, Y be two Banach spaces such that the embedding X ⊂ Y is compact and

dense. Then the embedding Y′ ⊂ X′ is compact and dense, where X′ and Y′ stand for the

dual of X and Y respectively.

Proof. We only prove the compact embedding. For this aim, let J : X→ Y be the canonical

injection defined by J (x) = x, x ∈ X. It is easy to observe that J is linear and bounded.

Obviously, we have J ∗ = J . Thus J ∗ is also linear and bounded. For g ∈ Y′ , by definition

of the adjoint operator, we have that

J ∗(g)(x) = J (g(x)) = g(x), for all x ∈ X.

If ||x||X 6 1 then

|J ∗ (g) (x)| = |g(x)| = |g (J (x)) | 6 ||g||Y′ ||J ||L(X,Y) for g ∈ Y′ ,

where L(X,Y) denotes the space of bounded linear mappings from X to Y. Clearly J ∗ is

determined by the fixed element x from X. Since by assumption, J is compact, it follows

from Theorem 28 that its adjoint is J ∗ : Y′ → X′ is also compact. By the density assumption

J ∗ is also an injection. We can see by definition that J ∗ is the canonical injection of Y′ into

X′ . Hence the embedding Y′ ⊂ X′ is compact.

We state the following result.

Recall that L(X) stands for the space of bounded linear operator T : X −→ X. We recall

the following result known as the Riesz’s theorem and its main source is [86].

Lemma 10. ([86, Lemma 15.5, page 659]) Let X be a Banach space. Let T ∈ L(X), denote

S = IX − T and Y = S(X). If Y is a proper closed subspace of X, then for every ε > 0 there

is x0 ∈ BX such that dist(T (x0), T (Y)) > 1− ε.

3.2.2 Cylindrical Wiener Processes

In this subsection we state the definition of cylindrical Wiener processes and formulate some

of their properties, by reproducing almost verbatim the subsection 2.2 of [166]; for additional

information, we refer to [64], and [172].

Let U1 and U2 be two separable Hilbert spaces with complete orthonormal basis (ONB)

{ek} ⊂ U1 and {fj} ⊂ U2. An Hilbert-Schmidt operator T : U1 → U2 is a bounded linear

operator satisfying
∞∑
k=1

‖T ek‖2
U2
<∞.
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We denote by L2(U1,U2) the space of Hilbert-Schmidt operators from U1 to U2. We endow

L2(U1,U2) with the scalar product

〈T1, T2〉2 :=
∞∑
k=1

〈T1ek, T2ek〉U2 ;

and the induced norm

‖T ‖L2(U1,U2) =

(
∞∑
k=1

||T ek||2U2

)1/2

.

The definition of these operators and the norm || · ||L2(U1,U2) are independent of the choices

of the bases, {ek} and {fj}; it is enough to notice that

∞∑
k=1

||T ek||2U2
=
∞∑
k=1

∞∑
j=1

〈T ek, fj〉2U2

=
∞∑
j=1

|T ∗fj|2U2
,

and the sequence of operators {fj ⊗ ek}j,k∈N form a complete ONB in L2(U1,U2).

The following definition is borrowed from [50, Definition 4.1]

Definition 28. Let (Ω,F ,P,F) be a filtered probability space and K be a real separable

Hilbert space. An F-adapted cylindrical Wiener process on K is a family W = (W (t))t∈[0,T ]

of bounded linear operators from K into L2(Ω,F ,P) 1 such that

1. for all t ≥ 0, and k1, k2 ∈ K, E[W (t)k1W (t)k2] = 〈k1,k2〉K,

2. for each k ∈ K, t ≥ 0, W (t)k is a real valued F-adapted Wiener process.

Let U be a separable Banach space and Q : U′ → U a symmetric and nonnegative

operator, that is, Q satisfies

〈Qu∗, u∗〉 ≥ 0,

〈Qu∗, v∗〉 = 〈u∗,Qv∗〉,

for any u∗, v∗ ∈ U′ . Let HQ be the completion of Ran(Q) (the range of Q) with respect to

the scalar product [·, ·]Q defined by

[Qu∗,Qv∗]Q = 〈Qu∗, v∗〉,∀u∗, v∗ ∈ Ran(Q).

Now we introduce the definition of a Q-Wiener process with values in U.

1The space of real-valued square integrable random variables defined on (Ω,F ,P) is denoted by L2(Ω,F ,P)
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Definition 29. Let U be a separable Banach space and Q : U′ → U be a symmetric and

nonnegative operator as above. An F-adapted stochastic process W is a Q-Wiener process

taking values in U if

1. iQ : HQ → U is γ-Radonifying operator,

2. W (0) = 0,

3. W has continuous trajectories,

4. W has independent increments,

5. for any 0 ≤ s ≤ t the random variable Y = W (t) −W (s) is Gaussian with zero mean

and covariance (t− s)Q, that is, its characteristic function is of the form

ϕY(u∗) =E (exp[iYu∗]) ,

= exp

(
−1

2
[t− s]〈Qu∗, u∗〉

)
, u∗ ∈ U′.

For the setting of the above definition we followed closely [172] and [203]. We refer,

for instance, to [46], [151] and [202] and references therein for more information about γ-

Radonifying operators and their use in the context of stochastic calculus.

Remark 7. 1. Following [64, Proposition 4.11] (see also [50, Remark 4.2]) we can repre-

sent a cylindrical Wiener process on K as a formal series

W (t) =
∞∑
i=1

βi(t)ei(x), t ≥ 0 (3.19)

where (βi)i∈N is a family of independent standard 1-dimensional Wiener processes, and

(ei)i∈N is an orthonormal basis of K. The above series does not converge in the Hilbert

space K but it does in L2(Ω,F ,P;C([0, T ];U)) for any Hilbert space U such that the

embedding K ⊂ U is Hilbert-Schmidt. The series admits an U-valued continuous

modification P-almost surely.

2. Let U and K be such two real separable Hilbert spaces such that the canonical injection

J from K into U is Hilbert-Schmidt. Let us denote by J ∗ the adjoint of J . It is easy

to see that Q = JJ ∗ is a symmetric and nonnegative operator with tr Q <∞. Thanks

to [64, Proposition 4.11] we can view the cylindrical Wiener process W on K defined

by ( (3.19)) as a Q-Wiener process with values in U and

Q
1
2 (U) = K.
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Conversely, if {ζj; j ∈ N} is an orthonormal basis of U consisting of eigenfunctions of

JJ ∗; that is, there exists an increasing family {κj; j ∈ N} of positive numbers such

that JJ ∗ζj = κjζj. Then, it follows from [64, Theorem 4.3] that W can be written as

a formal series

W (t) =
∞∑
j=1

βj(t)
J ∗ζj(x)√

λj
,

where {βj(t) =
√
λj〈W (t), ζj〉U; j ∈ N} is a sequence of independent real-valued stan-

dard Wiener processes. Using the definition of {ζj; j ∈ N} we can easily check that

{ξj =
J ∗ej√
κj

: j ∈ N} forms an orthonormal basis of K. Therefore, W defines a cylindri-

cal Wiener process on K.

3.3 Setting of the problem and formulation of the main

result

We consider the operator family A(t, u) which acts from W̊ 1,p(·)(D) to W−1,q(·)(D) according

to

〈A(t, u), v〉 =
n∑
i=1

∫
D

∣∣∣∣∂u(t, x)

∂xi

∣∣∣∣p(·)−2
∂u(t, x)

∂xi

∂v

∂xi
dx,∀u, v ∈ W̊ 1,p(·) (D) ,∀t ∈ [0, T ] ,

where, 〈·, ·〉 stands for the duality pairing between the generalized Sobolev spaces W̊ 1,p(·)(D)

and their dual spaces W−1,q(·)(D).

Moreover, from the above definition of A we have

Remark 8. If u ∈ V̊ (QT ) then A(t, u) ∈
(
V̊ (QT )

)′
.

Here, we introduce some relevant hypotheses on the nonlinear functions f and G in (3.1).

Assumption 29. The function t 7→ f (t, u) : (0, T ) −→ W−1,q(·)(D) is measurable with

respect to t for any u ∈ L2 (D), the mapping u 7→ f(t, u) is continuous from L2(D) to

W−1,p(·)(D), a.e. t ∈ [0, T ] and there exist a positive constant C > 0 such that

‖f(t, u)‖W−1,q(·)(D) 6 C
(
1 + ‖u(t)‖L2(D)

)
. (3.20)

Assumption 30. The function t 7→ G (t, u) : (0, T ) −→ L2(K, L2(D)) is continuous with

respect to t, for any u ∈ L2 (D) and the mapping u 7→ G(t, u) is continuous from L2(D) to

L2(K, L2(D)), a.e. t ∈ [0, T ], and there is a constant C such that

‖G(t, u)‖L2(K,L2(D)) 6 C
(
1 + ‖u(t)‖L2(D)

)
. (3.21)
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Here, L2(K,U) stands for the space of Hilbert Schmidt operators defined from K to U,(
W̊ 1,p(·)(D)

)′
, the dual of the space W̊ 1,p(·)(D) and C is a generic constant.

Most importantly for the exponent function p(·), we assume that p(·) satisfies

1 6 r 6 p(·) 6 s <∞. (3.22)

Next, we define the concept of weak solution of the problem (3.1)-(3.3). Throughout the

chapter, (·, ·) denotes the inner product in L2(D), 〈·, ·〉 denotes the duality pairing between

the generalized Sobolev spaces W
1,p(·)
0 (D) and W−1,q(·)(D), with W−1,q(·)(D) being the dual of

W
1,p(·)
0 (D) and q(·) the conjugate exponent function of p(·) and C is a generic constant that

might change from line to line.

Definition 30. A weak probabilistic solution is a tuple (Ω,F ,F,P,W, u), where

(1) (Ω,F , (Ft)0≤t≤T ,P) is a stochastic basis satisfying the usual conditions,

(2) W is an Ft-adapted cylindrical Wiener process evolving on L2(D),

(3) the process u is progressively measurable and

u ∈ Lq(Ω,F ,P, Lr(0, T ; W̊ 1,p(·)(D))) ∩ Lr(Ω,F ,P; V̊ (QT ))

for any q ∈ [2,∞) and r = ess sup p(·) satisfying (3.22),

(4) u ∈ Lq (Ω,F ,P, C([0, T ];L2(D))),

and for all t ∈ [0, T ], P-almost surely

(u(t), v) +

∫ t

0

〈A(s, u), v〉ds = (u0, v) +

∫ t

0

〈f(s, u), v〉ds+

∫ t

0

(G(s, u), v) dW, (3.23)

for any v ∈ W̊ 1,p(·)(D).

Remark 9. One should notice that, in our weak probabilistic formulation (3.23), alongside

the process u, the filtered probability space (Ω,F ,P,F) and the cylindrical Wiener process

are part of the solution and therefore unknown as well. For notation purpose, the stochastic

integral is interpreted as∫ t

0

(G(s, u), v)dW =
∞∑
k=1

∫ t

0

(Gk(s, u), v)dβk ∀v ∈ W̊ 1,p(·)(D), t > 0;

where Gk(s, u) = G(s, u)ek. We are seeking to solve the equation

u(t) = u0 +

∫ t

0

A(s, u)ds+

∫ t

0

f(s, u)ds+
∞∑
k=1

∫ t

0

Gk(s, u)dβk;

where W =
∑∞

k=1 ekβk with {ek}k>1 an ONB of K and (βk)k>1 a family of independent one

dimensional Brownian motion. .
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We state our main result in the following theorem.

Theorem 31. Assume that (3.20)-(3.22) hold and u0 ∈ L2(D). Then, the problem (3.1)-(3.3)

admit a probabilistic weak solution in the sense of Definition 30.

This result is a generalization of those of [21] to stochastic quasilinear parabolic PDE’s

with nonstandard growth.

3.4 Proof of Theorem 31

Here, we prove the main theorem stated in the previous section. For this purpose, we use

Galerkin scheme to construct approximate solutions to (3.1)-(3.3). Next we derive a priori

estimates for the approximating solutions of the Galerkin system with assigned cylindrical

Wiener process on a prescribed probability space. We use these key estimates to establish

the tightness of Galerkin solutions which enable us to apply the Prokhorov-Skorokhod theo-

rem. For the remaining part of the proof, the Prokhorov-Skorokhod compactness method in

conjunction with the monotonicity of the operator A yields the desired result.

3.4.1 Galerkin approximating sequence

In this subsection we construct Galerkin approximating sequence related to the problem under

consideration. For this purpose, we state the following lemma (see, e.g., [188, Appendix,

Lemma A, pages 1852-1854]).

Lemma 11. For every bounded open set D of Rn, n > 1, there exists a complete orthonor-

mal system {ϕj}j>1 in L2(D) with {ϕj}j>1 ⊂ W 1,2
0 (D) ∩ W 1,p(·)

0 ∀j. Fix now a positive

integer m and let Hm := Span{ϕ1, ϕ2, . . . , ϕm}. For any process v(t) ∈ W
1,p(·)
0 (D), there

exists a sequence of processes (vm(t))m>1 ⊂ Hm such that vm converges to v strongly in

Lr(0, T ;W
1,p(·)
0 (D)).

We proceed with the proof of this result in two steps.

Proof. First step. We consider the case when 2 6 r = ess supD p(·) 6 p(·). In this case

if p(·) ≡ p, a constant function, then the proof is typically the same as [188]. By virtue of

Theorem 24, we have thatW
k,p(·)
0 (D) are separable reflexive Banach spaces. Hence there exists

a sequence {φj}j>1 ⊂ C∞0 (D) such that the closure of
⋃
j>1 Span{φ1, φ2, . . . , φm} contains

C∞0 (D) in C1(D). It follows from Theorem 24 that W
1,p(·)
0 (D) is continuously embedded in

W 1,r
0 (D) since 2 6 r 6 p(·) and it follows from Theorem 25 that W

1,p(·)
0 (D) and W 1,r

0 (D) are

compactly embedded in L2(D). We have the embedding

W 1,2
0 (D) ∩W 1,p(·)

0 (D) ⊂ W 1,2
0 (D) ∩ L2(D)
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which motivates us to introduce the space

V(D) =
{
u measurable : u ∈ W 1,p(·)

0 (D) ∩ L2(D)
}
.

with the norm

||u||V(D) = ||u||L2(D) + ||∇u||Lp(·)(D).

It follows from Theorem 24 that V(D) is a separable and reflexive Banach space and in

addition it is a closed subspace of W
1,p(·)
0 (D) ∩ L2(D). Hence there exists a countable set of

linearly independent functions {ϕj}j>1 ⊆ C∞0 (D) such that {ϕj}j>1 ⊆ V(D) ⊂ W
1,p(·)
0 (D) ∩

L2(D) and it consists of a complete system of V(D). Without loss of generality (W.l.o.g.), we

may take {ϕj}j>1 to be the Gram-Schmidt orthogonalization of {φj}j>1. We then have that

{ϕj}j>1 forms a complete orthonormal system in L2(D) and satisfying: ∀v(t) ∈ W 1,p(·)
0 (D), t ∈

[0, T ] each {φj}j>1 enjoys the representation

φj =

mj∑
k=1

cjkϕk

for some positive constant mj and cjk are constants; with φj ∈ W 1,p(·)
0 (D), j = 1, 2, . . . . For

each m ∈ N, we set

Hm := Span{ϕ1, ϕ2, . . . , ϕm}.

Arguing similarly as in [207], we assert that Hm is a closed, separable subset of W
1,p(·)
0 (D).

We define the norm in Hm by

||w||Hm := sup
x∈D
|w(x)|+ sup

x∈D

n∑
i=1

∣∣∣∣ ∂w∂xi
∣∣∣∣ for w ∈ Hm.

W.l.o.g., let us first assume that v ∈ ∪mHm. Since ∪mHm is dense in W
1,p(·)
0 (D) , it follows

that

||v||
W

1,p(·)
0 (D)

6 K1||v||Hm 6 K2

for some constants K1, K2 > 0 and for any ε = ε(j) > 0, a vanishing sequence i.e., ε(j)→ 0

as j →∞, there exists M > 0 such that ∀j > M we have

‖v − φj‖W 1,p(·)
0 (D)

< ε(j). (3.24)

Since φj ∈ W 1,p(·)
0 (D), there exist an increasing (strictly) sequence {jk}k>1, i.e., j1 < j2 < · <

jk →∞ and Mjk > 0 such that∥∥∥∥∥∥φj −
Mjk∑
k=1

cjkmϕjk

∥∥∥∥∥∥
W

1,p(·)
0 (D)

< ε(j). (3.25)
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Consequently, combining (3.24) and (3.25) we can deduce that for j sufficiently large∥∥∥∥∥∥v −
Mj∑
k=1

cjkmφk

∥∥∥∥∥∥
W

1,p(·)
0 (D)

< ε(j). (3.26)

In the case v ∈ W 1,p(·)
0 (D) \ ∪m>1Hm, similar arguments as in [188, Lemma A, page 1853]

can be adapted since ∪∞j=1{φj} is dense in W
1,p(·)
0 (D) (see e.g., [178, page 655]).

Since V̊ (QT ) is a reflexive and separable Banach space and by virtue of Theorem 24, we

can also have the continuous embedding Lp(·)(D) ⊂ L2(D). Then for any v ∈ V̊ (QT )∩L2(Q)

and fixed m > 1 there exists a sequence (vjm)j>1 ⊂ C1([0, T ], Hm) such that

vm(t, x) =
m∑
j=1

vjm(t)ϕj(x) −→ v in V̊ (QT ) ∩ L2(Q); (3.27)

||v(t)− vm(t)||r
W

1,p(·)
0 (D)

−→ 0, as m→∞ for every t ∈ [0, T ]. (3.28)

The proof of (3.27) follows from adapting similar ideas as in [91] and [188].

Second step. For the case 1 < p(·) < 2 we have the embedding W 1,2
0 (D) ⊂ W

1,p(·)
0 (D) and

therefore if p(·) ≡ p, a constant function, then similar procedures as in [91, 682] and [188,

page, 1854] can be used. Since p(·) ∈ (1, 2), then s = ess sup p(·) < 2 and we have that

W 1,2
0 (D) ⊂ W 1,r

0 (D) ⊂ W
1,p(·)
0 (D). Hence same procedure as in [91, Lemma 3.1, page 682]

can be employed to obtain {φj} and {ϕ} as above. Applying ideas from [90, page 319] and

[217, page 12], we can assert that there exists a sequence vm(t) ∈ C1([0, T ];Hm) such that

(3.27) holds true. Thus, this carries out the rest of the proof.

Let us assume that we are given a probabilistic system (Ω̄, F̄ ,
(
F̄t
)

06t6T
, P̄, W̄ ), where(

F̄t
)

06t6T
is the natural filtration generated by the cylindrical Wiener process W̄ .

We write

W̄ =
∞∑
j=1

wjβ̄j

where {β̄j}j∈N is a sequence of independent standard 1-dimensional Wiener processes. We

approximate W̄ by setting

W̄ (m) :=
m∑
j=1

wjβ̄j.

Following [23, Proposition 1.2, page 103] and [64, p. 99], we infer that for any m, W̄ (m)

is a stochastic process satisfying the conditions of Definitions 29. Moreover, W̄ (m) converges

strongly to W̄ in L2(Ω,F ,P,U). We need to point out the following: let Q = I be the
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identity operator. It follows from the conclusion of Remark 7 that 〈W̄ (t), wj〉 j = 1, 2, . . .

form real-valued mutually independent Brownian motions. We have that

E|W̄ (m)(t)|2 =
m∑
j=1

E|β̄j(t)|2 = mt.

Since the series (3.19) does not satisfy any notion of convergence in K, it is unexpected to

assert that W̄ (m) converges to a U-valued stochastic process. However, on the other hand if

we assume that W̄ is an U-valued Q(m) =
∑m

j=1 κjwj ⊗ wj-Wiener process; using HQ(m) , the

convenient extension of Ran(Q(m)) and arguing as in [54, Chap 6, page 243] and [64, p. 99];

we notice that, for an arbitrary ε > 0 and m,n > 1,

P̄
(

sup
s6t

∥∥W̄ (m+n)(t)− W̄ (m)(t)
∥∥
HQ(m)

> ε

)
= P̄

sup
s6t

∥∥∥∥∥
m+n∑
j=m

β̄j(t)κ
1
2
j wj

∥∥∥∥∥
(Q(m))

1
2 (U)

> ε


6 ε−2 sup

s6t
Ē

∥∥∥∥∥
m+n∑
j=m

β̄j(t)κ
1
2
j wj

∥∥∥∥∥
2

(Q(m))
1
2 (U)

6
t

ε2

m+n∑
j=m

κj; (3.29)

and recall that Q(m)wj = κjwj and
∑∞

j=1 κj < ∞. Fix n geqslant1 and passing to the

limit as m → ∞ in (3.29) and then afterward passage to the limit as n → ∞ can be

executed; we deduce that the left hand side of (3.29) converges to zero by the arbitrariness

of ε. We deduce from this that (see, e.g., [23, Proposition 1.2, page 103]) W̄ (m) converges

strongly to the cylindrical Wiener process W̄ in L2(Ω,F ,P;C([0, T ];U)) as m → ∞. We

used the fact that for arbitrary ϕ ∈ U, the sequence of linear operators wj ⊗wj is defined by

(wi ⊗ wj) · ϕ = wj〈wi, ϕ〉U to get Q(m), the corresponding symmetric nonnegative operator

defined on U = L2(D) by Q(m) =
∑m

i,j=1(Qwi, wj)(wi, ϕ)wj.

We seek approximating sequence of stochastic processes {um}∞j=1 solutions of the problem

(3.1)-(3.3) in the form

um(t, x, ω̄) =
m∑
j=1

Cjm(t, ω̄)wj(x). (3.30)

The functions C1m(t, ω̄), C2m(t, ω̄), . . . , Cmm(t, ω̄) are required to solve the system of stochas-

tic ordinary differential equations

(dum(t), wj) + 〈A(t, um), wj〉dt = 〈f(t, um), wj〉dt+

∫
D

m∑
l=1

G(t, um)wlwjdxdβ̄l (3.31)
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for j = 1, 2, . . . ,m and t ∈ [0, T ]. This system is supplemented with the initial condition

ujm(0) =

∫
D

u0(x)wj(x)dx, j = 1, 2, . . . ,m. (3.32)

We have the initial conditions: C1m(0, ω̄) = C1, . . . , Cmm(0, ω̄) = Cm and u0(x) =
∑∞

i=1Ciwi(x),

where {C1, C2, . . .} are constants defined by Ci = (u0, wi) for i ∈ N. We express explicitly

system (3.31) as follows:

m∑
k=1

dCkm(t, ω̄)(wk, wj) +
n∑
i=1

∫
D

∣∣∣∣∣
m∑
k=1

Ckm(t, ω̄)
∂wk
∂xi

∣∣∣∣∣
p(·)−2( m∑

k=1

Ckm(t, ω̄)
∂wk
∂xi

)
∂wj
∂xi

dx

= 〈f(t, um), wj〉dt+
m∑
l=1

∫ t

0

(G(s, um)wl, wj) dβ̄l, j = 1, . . . ,m. (3.33)

Since the coefficients of the present problem do not need to satisfy any Lipschitz conditions,

we rely on results due to [194], to claim existence of the stochastic processes Cjm. In order

to prove this claim we proceed as follows.

It is well known that the operator family A : W
1,p(·)
0 (D) → W−1,q(·)(D) satisfies the

conditions of Leray-Lions [138] i.e.,

(a) The operator family A is continuous from W
1,p(·)
0 (D) to W−1,q(·)(D),

(b) Claim: A is monotone, i.e., 〈A(t, u)− A(t, v), u(t)− v(t)〉 > 0.

Remark 10. It is easy to prove that A(t, u) is continuous with respect to u for almost every

(x, ω̄) ∈ D× Ω̄. The proof of (b) will be dealt with at the end of subsection 3.4.4.1.

In this part, we shall consider further results along the lines of [217, Lemma 3.5 page 13]

and apply the existence results in [194].

Lemma 12. Under assumptions of Theorem 3.6, for each positive integer m = 1, 2, . . ., there

exists a sequence of random functions {um}m>1 with um of the form (3.30) satisfying system

(3.31) and (3.32).

Proof. In order to prove the solvability of system (4.21) for Ckm, k = 1, 2, . . . ,m, we denote

by

C(t, ω̄) = {C1m(t, ω̄), C2m(t, ω̄), . . . , Cmm(t, ω̄)}

and we consider a vector valued mapping F (t, ω̄, C) : [0, T ]× Ω̄× Rm −→ Rm defined by

Rm 3 C(t, ω̄) 7→ F (t, ω̄, C(t, ω̄)) =
{
F 1(t, ω̄, C(t, ω̄)), . . . , Fm(t, ω̄, C(t))

}
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where the j-th component is given by

F j(t, ω̄, C(t, ω̄)) = 〈f(t, um), wj〉dt+
m∑
l=1

(G(s, um)wl, wj) dβ̄l−

−
n∑
i=1

∫
D

∣∣∣∣∣
m∑
k=1

Ckm(t, ω̄)
∂wk
∂xi

∣∣∣∣∣
p(·)−2( m∑

k=1

Ckm(t, ω̄)
∂wk
∂xi

)
∂wj
∂xi

dxdt, j = 1, . . . ,m.

For the initial condition we use the notation

um(0) = {u1m(0), u2m(0), . . . , umm(0)}.

Then we can study the system of stochastic ordinary differential equations which is a reduced

form of (4.21)

m∑
k=1

dCkm(t, ω̄)(wk, wj)− F (t, ω̄, C(t, ω̄)) = 0 (3.34)

with the initial condition

C(0, ω̄) = um(0).

We have(
F (t, ω̄, C(t, ω̄)), C(t, ω̄)

)
Rm = F (t, ω̄, C(t, ω̄))C(t, ω̄) =

=
m∑
j=1

[
〈f(t, um), wj〉dt+

m∑
l=1

(G(s, um)wl, wj) dβ̄l

]
Cjm(t, ω̄)−

−
m∑
j=1

n∑
i=1

∫
D

∣∣∣∣∣
m∑
k=1

Ckm(t, ω̄)
∂wk
∂xi

∣∣∣∣∣
p(·)−2( m∑

k=1

Ckm(t, ω̄)
∂wk
∂xi

)
∂wj
∂xi

dxCjm(t, ω̄).

Now let us fix m ∈ N and let τ ∈ (0, T ) be a sufficiently small parameter and denote the

corresponding horizon interval by G = [0, τ ]. In addition to that let us assume w.l.o.g. that

there exists a positive constant α > 0 sufficiently large such that the ball Bα(0) ⊂ Rm

contains the vector C(t, ω̄) and set for the moment H = Bα(0). We can easily observe by

assumptions 3.2 and 3.3 and claim b that the function F : G ×H × Ω̄ −→ Rm, (t, ω̄, C) 7→〈f(t, um), wj〉dt−
n∑
i=1

∫
D

∣∣∣∣∣
m∑
k=1

Ckm(t, ω̄)
∂wk
∂xi

∣∣∣∣∣
p(·)−2( m∑

k=1

Ckm(t, ω̄)
∂wk
∂xi

)
∂wj
∂xi

dx


j=1,2,...,m

+

+

(
m∑
l=1

(G(s, um)wl, wj) dβ̄l

)
j=1,2,...,m
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is a continuous function. Further, we can estimate each component F j on G ×H × Ω using

among others Hölder and Young inequalities as follows∣∣F j(t, ω̄, C)
∣∣

6 ||f(t, um)||W−1,q(·)(D)||wj||W 1,p(·)
0 (D)

+
m∑
l=1

(G(t, um)wl, wj)dβ̄l+

+
n∑
i=1

∫
D

∣∣∣∣∣∣
∣∣∣∣∣
m∑
k=1

Ckm(t, ω̄)
∂wk
∂xi

∣∣∣∣∣
p(·)−1

∣∣∣∣∣∣
r′

dx


1/r
′ [∫

D

∣∣∣∣∂wj∂xi

∣∣∣∣r dx]1/r

(3.35)

where r′ = r
r−1

is the conjugate of r = ess sup p(·).
Since wj ∈ W 1,p(·)

0 (D) ⊂ W 1,r
0 (D) and using the fact that the nonlinear terms f and G are

jointly continuous and satisfy the nonlinear growth (3.20) and (3.21), we can estimate the

right hand side of (3.35) in such a way that∣∣F j(t, ω̄, C)
∣∣ 6 K(α,m)M

uniformly on G ×H× Ω̄, where K(α,m) and M are positive constants with M independent

on i, j, k,m and α. Thus, under our conditions on f and G, one can apply the Skorohod

existence result on stochastic ordinary differential equations (see, for instance [194, page 59])

to system (34) supplemented with its corresponding initial condition to ensure the existence of

a distributional random continuous solution Cjm(t, ω̄) of system (34) on some closed interval

[0, tm] where tm is a positive number such that tm ≤ T . The uniform estimates for the

functions um obtained below will imply that the stochastic processes {um,m ∈ N} exist on

the entire interval [0, T ]. Thus, the function um(t, x, ω̄) =
∑m

j=1 Cjm(t, ω̄)wj(x) is the desired

Galerkin solution of system (3.31) and (3.32).

Using the a priori estimate obtained below for the local solution um constructed above,

we must show that tm = T for any m and hence this will imply that the stochastic processes

{um,m ∈ N} can be extended to the entire interval [0, T ].

3.4.2 A priori estimates for the approximate solutions

In this subsection we estimate the Galerkin approximate solutions um. To do that, we define

a sequence of stopping times τmk by

τmk =

{
inf{t ∈ [0, T ] : ‖um(t)‖L2(D) > k},

T if {t ∈ [0, T ] : ‖um(t)‖L2(D) > k} = ∅
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for any positive integer k.

Our first key estimate on the Galerkin approximate solutions um is

Lemma 13. There exists a positive constant C such that for all m

Ē sup
06t6T

‖um(t)‖2
L2(D) 6 C, (3.36)

Ē ‖um‖rV̊ (QT )
6 C, (3.37)

where r = ess infD p(·) and Ē denotes the mathematical expectation w.r.t. the probability

measure P̄.

Proof. Let σ ∈ [0, T ], we set σk = σ ∧ τmk where a ∧ b = min{a, b}. Thanks to Itô’s formula

applied to the function (um(σ), wj)
2, we deduce first from equation ( 3.31) by integrating it

over [0, σ] that for all j = 1, . . . ,m,

(um(σ), wj)
2 = −2

∫ σ

0

(um(τ), wj)〈A(τ, um), wj〉dτ + 2

∫ σ

0

(um(τ), wj)〈f(τ, um), wj〉dτ+

+ (um(0), wj)
2 +

m∑
l=1

∫ σ

0

(G(τ, um)wl, wj)
2 dτ+

+ 2
m∑
l=1

∫ σ

0

(um(τ), wj) (G(τ, um)wl, wj) dβ̄l(τ). (3.38)

Now it follows using (3.38) (by summing the corresponding equation, (3.38) from j = 1 to

j = m) that

||um(σ)||2L2(D) = −2

∫ σ

0

〈A(τ, um), um(τ)〉dτ + 2

∫ σ

0

〈f(τ, um), um(τ)〉dτ + ||um(0)||2L2(D)+

+
m∑
j=1

m∑
l=1

∫ σ

0

(G(τ, um)wl, wj)
2 dτ + 2

m∑
l=1

∫ σ

0

(G(τ, um)wl, um) dβ̄l(τ).

(3.39)

We observe from relation (3.39), Hölder’s inequality and the definition of the operator A that

‖um(σ)‖2
L2(D) + 2

∫ σ

0

n∑
i=1

∫
D

∣∣∣∣ ∂u∂xi
∣∣∣∣p(·) dxdτ 6

6 2‖um‖V̊ (Qσ)‖f(τ, um)‖(V̊ (Qσ))
′ +

m∑
j=1

m∑
l=1

∫ σ

0

(G(τ, um)wl, wj)
2 dτ+

+ 2
m∑
l=1

∫ σ

0

(G(τ, um)wl, um) dβ̄l + ‖um(0)‖2
L2(D). (3.40)
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We begin to estimate each member on the right hand side of (3.40). For that purpose, by

virtue of the definition of the Hilbert-Schmidt norm, we have

m∑
j,l=1

∫ σ

0

(G(τ, um)wl, wj)
2 dτ 6 C

∫ σ

0

m∑
j,l=1

|G(τ, um)wl|2|wj|2dτ

≤ C

∫ σ

0

‖G(τ, um)‖2
L2(K,L2(D))dτ (3.41)

Owing to Young’s inequality, we get for an arbitrary ε > 0

‖um‖V̊ (Qσ)‖f(τ, um)‖(V̊ (Qσ))
′ 6 εrC‖um‖rV̊ (Qσ)

+ Cε‖f(τ, um)‖
r
r−1

(V̊ (Qσ))′
(3.42)

where, r = ess infD p(·) > 2.

Next, we proceed to obtain an estimate for the integral in the left hand side of (3.40) contain-

ing the term

∣∣∣∣ ∂u∂xi
∣∣∣∣p(·), i = 1, . . . n. For this purpose, we use the definitions of the functional

%p and the norm ‖·‖V̊ (Qσ)

‖um‖V̊ (Qσ) =
n∑
i=1

inf

{
λi :

∫ σ

0

%p
(
λ−1
i ∇ium

)
dτ ≤ 1

}
,

where, ∇i =
∂

∂xi
with i = 1, . . .m and m ∈ N.

It follows from this and the conditions of Lemma 7 that

%p ((∇ium)/λi) ≤ 1 if and only if ‖(∇ium)/λi‖Lp(·)(D) ≤ 1.

This enables us to draw a consideration of two alternatives. For eachm ≥ 1 and σ ∈ [0, t∧τmk ],

either ‖um‖V̊ (Qσ) ≤ 1, or ‖um‖V̊ (Qσ) > 1.

For the first case i.e., ‖um‖V̊ (Qσ) ≤ 1 implies that ‖um‖rV̊ (Qσ)
6 1 which along with (3.42)

yields that

‖um(σ)‖2
L2(D) 6 2εrC‖um‖rV̊ (Qσ)

+ C

∫ σ

0

‖G(τ, um)‖2
L2(K,L2(D)) dτ

+ 2Cε‖f(τ, um)‖r/(r−1)

(V̊ (Qσ))
′ + 2

m∑
l=1

∫ σ

0

(G(τ, um)wl, um) dβ̄l. (3.43)

If ‖um‖V̊ (Qσ) > 1, then we set

δ =

∫ σ

0

∫
D

n∑
i=1

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dxdτ.
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This Definition in combination with the result in Lemma 7 enable us to deduce that δ >

1. The assumption on the growth p(x) provides us with 1
p(x)

6 1
r
< 1 which its turn in

combination with the fact that δ−1 < 1 yield δ−1/r 6 δ−1/p(x) < 1. We have

1 =

∑n
i=1

∫ σ
0
%p(∇iu)dτ∑n

i=1

∫ σ
0
%p(∇iu)dτ

=
n∑
i=1

∫ σ

0

%p(δ
−1/p(x)∇iu)dτ.

It follows from the fact that %p is monotone that∫ σ

0

n∑
i=1

%p(δ
−1/r∇iu)dτ 6

∫ σ

0

n∑
i=1

%p(δ
−1/p(x)∇iu)dτ = 1.

This inequality, together with the definition of the norm in the space V̊ (Qσ) enable us to

deduce that

‖um‖V̊ (Qσ) =
n∑
i=1

∥∥∥∥∂um∂xi

∥∥∥∥
Lp(·)(0,σ;D)

≤ δ1/r,

hence,

‖um‖rV̊ (Qσ)
6 δ.

This implies that

‖um(σ)‖2
L2(D) + 2‖um‖rV̊ (Qσ)

6 ‖um(σ)‖2
L2(D) + 2

∫ σ

0

∫
D

n∑
i=1

∣∣∣∣∂um∂xi

∣∣∣∣p(·) dxdτ.
This in conjunction with (3.40) enables us to deduce that

‖um(σ)‖2
L2(D) + 2‖um‖rV̊ (Qσ)

6 2εrC‖um‖rV̊ ((Qσ)
+ C

∫ σ

0

‖G(τ, um)‖2
L2(K,L2(D)) dτ+

+ 2Cε‖f(τ, um)‖r/(r−1)

(V̊ (Qσ))
′ + 2

m∑
l=1

∫ σ

0

(G(τ, um)wl, um) dβ̄l. (3.44)

It follows from the embedding result of Lemma 8 that V̊ (Qσ) ↪→ L2(0, σ; W̊ 1,p(·)(D)) which

implies that L2(0, σ;W−1,q(·)(D)) ↪→
(
V̊ (Qσ)

)′
. Therefore,

||f(τ, um)||(V̊ (Qσ))
′ 6 C||f(τ, um)||L2(0,σ;W−1,q(·)(D))

Since r > 2, its conjugate r
′
=

r

r − 1
6 2 and we can apply Young’s inequality to obtain

||f(τ, um)||r
′

(V̊ (Qσ))
′ 6 C

∫ σ

0

‖f(τ, um)‖r
′

W−1,q(·)(D)dτ 6 σεrC + CεC

∫ σ

0

‖f(τ, um)‖2
W−1,q(·)(D)dτ

6 σεrC + C

∫ σ

0

[
1 + ‖um(τ)‖L2(D)

]2
dτ.

(3.45)
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Next, to deal with the estimate for the stochastic integral appearing in the right-hand side

of (3.44) which requires the application of the Burkholder-Gundy-Davis inequality, we take

the supremum over the interval [0, σk] in both sides of (3.44), apply Ē and tackle the corre-

sponding inequality term by term. First, it follows from (3.21) that∫ σk

0

‖G(t, um(t))‖2
L2(K,L2(D)) dt 6 C

∫ σk

0

[
1 + ‖um(t)‖L2(D)

]2
dt. (3.46)

Using Burkholder-Gundy-Davis inequality, (3.46) and Young’s inequality, we get that for any

η > 0,

Ē sup
t∈[0,σk]

∣∣∣∣∣
∫ t

0

m∑
l=1

(G(τ, um)wl, um) dβ̄l(τ)

∣∣∣∣∣
6 CĒ

[∫ σk

0

m∑
l=1

(G(t, um)wl, um)2 dt

] 1
2

6 CĒ
[∫ σk

0

‖G(t, um)‖2
L2(K,L2(D))‖um(t)‖2

L2(D)dt

] 1
2

6 CĒ sup
t∈[0,σk]

‖um(t)‖L2(D)

(∫ σk

0

[1 + ‖um(t)‖L2(D)]
2dt

)1/2

6 ηĒ sup
t∈[0,σk]

‖um(t)‖2
L2(D) + CηĒ

∫ σk

0

[1 + ‖um(t)‖L2(D)]
2dt. (3.47)

By appropriate choices of ε and η; and invoking (3.43) and (3.47) we obtain the following

inequality

Ē sup
t∈[0,σk]

‖um(t)‖2
L2(D) + Ē‖um‖rV̊ (Qσk )

6 TC + CĒ
∫ σk

0

‖um(t)‖2
L2(D)dt.

Combining with Gronwall’s inequality, we deduce that for all t ∈ [0, σk] and for all m, k > 1

Ē sup
t∈[0,σk]

‖um(t)‖2
L2(D) + Ē‖um‖rV̊ (Qσk )

6 C, (3.48)

where C is a positive constant independent of m.

We argue as in [6, page 317-318] and [165, page 37-38] to prove that, as k −→∞, σk ↗ T ,

P̄-a.s. Passing to the limit in (3.48) as k −→∞, we deduce from the resulting relation, the

conclusion of the desired proof.

Thus, from inequalities (3.36) and (3.37) follows the existence of the Galerkin solutions

um over the entire interval [0, T ].

Now, we derive the crucial estimate on the high integrability which is important in its

own right.
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Lemma 14. Let q ∈ (2,∞). Then, there exists C > 0 such that for any m ∈ N

Ē sup
06t6T

‖um(t)‖qL2(D) 6 C.

Proof. We set X = ‖um(σ)‖2
L2(D) and consider the function Ψ(σ, x) = x

q
2 . We have that

Ψt(σ, x) = ∂Ψ(t,x)
∂t

= 0, Ψ
′
(σ, x) = q

2
x
q
2
−1, and Ψ

′′
(σ, x) = q

2
( q

2
− 1)x

q
2
−2. Here the notatiom Ψ

′

stands for the derivative w.r.t. x of the function Ψ, Ψx and Ψ
′′

the second derivative, Ψxx.

By Itô’s formula applied to the function Ψ(σ,X) = X
q
2 :

dΨ(σ,X) = Ψσ(σ,X)dσ + Ψ
′
(σ,X)dum +

1

2
Ψ
′′
(σ,X)(dum)2.

It follows from this and (3.38) that

‖um(σ)‖qL2(D) + C

∫ σ

0

‖um(τ)‖q−2
L2(D)

∫
D

n∑
i=1

∣∣∣∣∂um∂xi

∣∣∣∣p(x)

dxdτ

6 ‖um(0)‖qL2(D) + CĒ
∫ σ

0

‖um(τ)‖q−2
L2(D)‖f(τ, um)‖W−1,q(·)(D)‖um(τ)‖

W
1,p(·)
0 (D)

dτ

+ C

∫ σ

0

‖um(τ)‖q−2
L2(D)

m∑
l=1

(G(τ, um)wl, um) dβ̄l(τ) + C

∫ σ

0

‖um(τ)‖q−2
L2(D)‖G(τ, um)‖2

L2(K,L2(D))dτ

+ C

∫ σ

0

‖um(τ)‖q−4
L2(D) (G(τ, um(τ)), um(τ))2 dτ. (3.49)

By virtue of Lemma 8, we have the embedding V̊ (Qσ) ⊂ L2
(

0, σ;W
1,p(·)
0 (D)

)
which implies

that there is a constant C > 0 such that

‖um‖L2(0,σ;W
1,p(·)
0 (D))

6 C||um||V̊ (Qσ). (3.50)

Taking the square and mathematical expectation in both sides of (3.50) we get

Ē
∫ σ

0

||um(t)||2
W

1,p(·)
0 (D)

dσ = Ē‖um‖2

L2(0,σ;W
1,p(·)
0 (D))

6 CĒ||um||2V̊ (Qσ)
. (3.51)

Since (3.51) is a particular case of (3.37), we deduce that

Ē
∫ σ

0

‖um(τ)‖2
V dτ ≤ C. (3.52)

We are interested in estimating members of the right hand side of (3.49 ). We set V =

W̊ 1,p(·)(D) and V
′
the dual space of W̊ 1,p(·)(D). on account of Assumption 29, the inequalities
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(3.36), (3.37), (3.21), (3.52) and Young’s inequality, we have

Ē
∫ σ

0

‖um(τ)‖q−2
L2(D)‖f(τ, um)‖V ′‖um(τ)‖V dτ

6 Ē
∫ σ

0

‖um(τ)‖q−2
L2(D)

[
r − 1

r
ε−

r
r−1‖f(τ, um)‖

r
r−1

V ′
+

1

r
εr‖um(τ)‖rV

]
dτ

6
r − 1

rε
r
r−1

CĒ sup
τ∈[0,σ]

‖um(τ)‖q−2
L2(D)

∫ σ

0

‖f(τ, um)‖
r
r−1

V ′
dτ +

1

r
εrĒ

∫ σ

0

‖um(τ)‖q−2
L2(D)‖um(τ)‖rV dτ

6
r − 1

rε
r
r−1

CĒ sup
τ∈[0,σ]

‖um(τ)‖q−2
L2(D)

∫ σ

0

[1 + ‖um(τ)‖2
L2(D)]dτ +

1

r
εrĒ

∫ σ

0

‖um(τ)‖q−2
L2(D)‖um(τ)‖rV dτ

6 σC + CĒ sup
τ∈[0,σ]

‖um(τ)‖qL2(D) +
1

r
εrĒ

∫ σ

0

‖um(τ)‖q−2
L2(D)‖um(τ)‖rV dτ ; (3.53)

since

Ē
∫ σ

0

‖um(τ)‖q−2
L2(D)dτ 6 C(q, σ)Ē sup

τ∈[0,σ]

‖um(τ)‖q−2
L2(D) 6 C(T )Ē sup

τ∈[0,σ]

‖um(τ)‖qL2(D).

We set H = L2(D) for the simplicity of notation. It follows from (3.21) that

Ē
∫ σ

0

‖um(τ)‖q−4
H (G(τ, um), um)2 dτ 6 Ē

∫ σ

0

‖um(τ)‖q−2
H ‖G(τ, um)‖2

L2(K,L2(D))dτ

6 Ē
∫ σ

0

‖um(τ)‖q−2
H

[
1 + ‖um‖2

H

]
dτ

6 σCĒ sup
τ∈[0,σ]

‖um(τ)‖q−2
H + CĒ

∫ σ

0

‖um(τ)‖qHdτ

6 C(q, T )Ē sup
τ∈[0,σ]

‖um(τ)‖qH + CĒ
∫ σ

0

‖um(τ)‖qHdτ.

(3.54)

For the stochastic term, we use the Burkholder-Davis-Gundy inequality and (3.54) to get

Ē sup
σ∈[0,T ]

∣∣∣∣∣
∫ σ

0

‖um(τ)‖q−2
L2(D)

m∑
l=1

(G(τ, um)wl, um) dβ̄l(τ)

∣∣∣∣∣
6 CĒ

∫ T

0

‖um(τ)‖2(q−2)

L2(D)

[
m∑
l=1

(G(τ, um)wl, um)

]2

dτ

1/2

6 CĒ
[∫ T

0

‖um(τ)‖2(q−2)

L2(D) ‖G(τ, um)‖2
L2(K,L2(D))‖um(τ)‖2

L2(D)dτ

]1/2

6 CĒ
[∫ T

0

(
‖um(τ)‖2(q−1)

L2(D) + ‖um(τ)‖2q
L2(D)

)
dτ

]1/2

6 CT Ē sup
σ∈[0,T ]

‖um(σ)‖q−1
L2(D) + CT Ē sup

σ∈[0,T ]

‖um(σ)‖qL2(D). (3.55)
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Therefore, it follows by Young’s inequality that

Ē sup
σ∈[0,T ]

∫ σ

0

‖um(τ)‖q−2
L2(D)

m∑
l=1

(G(τ, um)wl, um) dβ̄l 6 C(q, T )Ē sup
σ∈[0,T ]

‖um(σ)‖qL2(D). (3.56)

Combining the previous estimates of Lemma 18 with (3.52)-(3.56), we deduce from (3.49)

that

Ē sup
τ∈[0,σ]

‖um(τ)‖qH + Ē
∫ σ

0

‖um(τ)‖q−2
H

n∑
i=1

%p(·)(∇ium)dτ

6 C
(
‖u0‖qL2(D), T

)
+ C(T )Ē sup

τ∈[0,σ]

‖um(τ)‖qL2(D) + CĒ
∫ σ

0

‖um(τ)‖qHdτ

+
1

r
εrĒ

∫ σ

0

‖um(τ)‖q−2
L2(D)‖um(τ)‖r

W̊ 1,p(·)(D)
dτ. (3.57)

Similarly as in the proof of the above Lemma, we have either ‖um(τ)‖W̊ 1,p(·)(D) 6 1 or

‖um(τ)‖W̊ 1,p(·)(D) > 1. If ‖um(τ)‖W̊ 1,p(·)(D) 6 1 then

‖um(τ)‖s
W̊ 1,p(·)(D)

6
n∑
i=1

%p(·)(∇ium(τ)) 6 ‖um(τ)‖r
W̊ 1,p(·)(D)

6 1.

Hence, it follows from this, (3.57) and Young’s inequality that

Ē sup
τ∈[0,σ]

‖um(τ)‖qH 6Ē sup
τ∈[0,σ]

‖um(τ)‖qH + Ē
∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖s

W̊ 1,p(·)(D)
dτ

6 C (‖u0‖qH , T ) + C(T )Ē sup
τ∈[0,σ]

‖um(τ)‖qH + CĒ
∫ σ

0

‖um(τ)‖qHdτ

+
1

r
εrĒ

∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,p(·)(D)
dτ. (3.58)

Otherwise ‖um(τ)‖W̊ 1,p(·)(D) > 1 then

1 < ‖um(τ)‖r
W̊ 1,p(·)(D)

6
n∑
i=1

%p(·)(∇ium(τ)) 6 ‖um(τ)‖s
W̊ 1,p(·)(D)

.

In this case we have

Ē sup
τ∈[0,σ]

‖um(τ)‖qH + Ē
∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,p(·)(D)
dτ

6 C (‖u0‖qH , T ) + C(T )Ē sup
τ∈[0,σ]

‖um(τ)‖qH + CĒ
∫ σ

0

‖um(τ)‖qHdτ

+
1

r
εrĒ

∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,p(·)(D)
dτ. (3.59)
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Using similar reasoning as in the proof of the previous lemma, we deduce that

min
{
||um||rW̊ 1,p(·)(D)

, ||um||sW̊ 1,p(·)(D)

}
6 max

{
||um||rW̊ 1,p(·)(D)

, ||um||sW̊ 1,p(·)(D)

}
(3.60)

where r = ess infD p(·) and s = ess supD p(·) with r, s satisfying condition (3.22).

Combining (3.58) with (3.59) and on account of (3.60) we obtain

2Ē sup
τ∈[0,σ]

‖um(τ)‖qH + k0Ē
∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,p(·)(D)
dτ

6 C + CĒ
∫ σ

0

‖um(τ)‖qHdτ +
1

r
εrCĒ

∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,p(·)(D)
dτ. (3.61)

We choose a constant ε > 0 in (3.61) so that Crε
r < k0 and hence

Ē sup
τ∈[0,σ]

‖um(τ)‖qH + Ē
∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,p(·)(D)
dτ

6 C + CĒ
∫ σ

0

‖um(τ)‖qHdτ. (3.62)

Since W̊ 1,p(·)(D) is embedded in W̊ 1,r(D), we also have

Ē sup
τ∈[0,σ]

‖um(τ)‖qH + Ē
∫ σ

0

‖um(τ)‖q−2
H ‖um(τ)‖r

W̊ 1,r(D)
dτ

6 C + CĒ
∫ σ

0

‖um(τ)‖qHdτ. (3.63)

Finally, an application of Gronwall’s inequality completes the proof of Lemma 14.

We state and prove an improvement of (3.52) in the following result.

Lemma 15. Assume that r satisfies (3.22). Then there exists a constant C > 0 such that

Ē
(∫ T

0

‖um(σ)‖2
W̊ 1,p(·)(D)

dσ

) r
2

6 C.

Proof. It follows from the embedding in Lemma 8 that∫ T

0

‖um(σ)‖2
W̊ 1,p(·)(D)

dσ 6 C‖um‖2
V̊ (Q)

.

Raising this inequality to the power r
2

for any r > 2 and taking mathematical expectation

leads to

Ē
(∫ T

0

‖um(σ)‖2
W̊ 1,p(·)(D)

dσ

) r
2

6 CĒ
(
‖um‖2

V̊ (Q)

) r
2

= CĒ‖um‖rV̊ (Q)
,
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where r = ess inf p(·) satisfies condition (3.22).

It follows from the previous estimates (3.37) and (3.52) that

Ē
(∫ T

0

‖um(σ)‖2
W̊ 1,p(·)(D)

dσ

) r
2

6 C.

This proves the desired result.

Lemma 16. For any δ ∈ [0, 1), we have

Ē sup
06|θ|6δ

∫ T

0

‖um(t+ θ)− um(t)‖2
V ′
dt 6 Cδ.

Proof. We go back to (3.31), and consider the fact that for any t ∈ (0, T ) we have wj,

um(t) ∈ Hm ⊂ W
1,p(·)
0 (D) ⊂ W−1,q(·)(D). Let θ > 0; we extend um by zero outside the

interval [0, T ]. The identity (3.31) can be expressed in integral form as an equality between

random variables with values in V
′
. Let Pm : W−1,q(·)(D) −→ Hm denotes the projection of

W−1,q(·)(D) onto Hm defined by

Pmv =
m∑
j=1

〈v, wj〉wj ∀v ∈ W−1,q(·)(D).

Moreover, we deduce that

um(t+ θ)− um(t) = −
∫ t+θ

t

PmA(σ, um)dσ +

∫ t+θ

t

Pmf(σ, um)dσ +

∫ t+θ

t

πmG(σ, um)dW̄ ,

where the integrands are understood to be zeros for t + θ > T and πmG(t, um)dW̄ =∑m
l=1

(
G(t, um)dβ̄l, wj

)
wl.

We proceed by first setting

yt(θ) = ‖um(t+ θ)− um(t)‖V ′ .

We have

yt(θ) 6

∥∥∥∥∫ t+θ

t

PmA(σ, um)dσ

∥∥∥∥
V ′

+

∥∥∥∥Pm ∫ t+θ

t

f(σ, um)dσ

∥∥∥∥
V ′

+

∥∥∥∥∫ t+θ

t

πm(G(σ, um)dW̄

∥∥∥∥
V ′
.

(3.64)

Since A is bounded from W̊ 1,p(·)(D) to W−1,q(·)(D), we have by Fubini’s theorem and Hö lder’s
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inequality∥∥∥∥∫ t+θ

t

PmA(σ, um)dσ

∥∥∥∥
V ′

= sup
ϕ∈V :‖ϕ‖V =1

∫
D

(∫ t+θ

t

PmA(σ, um)ϕ(x)dσ

)
dx

6
∫ t+θ

t

‖PmA(σ, um)‖W−1,q(·)(D)dσ

6C
∫ t+θ

t

‖um(σ)‖W̊ 1,p(·)(D)dσ

6Cθ1/2

(∫ t+θ

t

‖um(σ)‖2
W̊ 1,p(·)(D)

)1/2

. (3.65)

We have by Hölder’s inequality∥∥∥∥Pm ∫ t+θ

t

f(σ, um)dσ

∥∥∥∥
W−1,q(·)(D)

6
∫ t+θ

t

‖f(σ, um)‖W−1,q(·)(D)dσ

6 Cθ1/2

(∫ t+θ

t

‖f(σ, um)‖2
W−1,q(·)(D)dσ

)1/2

. (3.66)

By taking the square to both sides of relation (3.64) using the elementary inequality (a+ b+

c)2 6 3(a2 + b2 + c2) for any a > 0, b > 0, c > 0 we deduce now using the inequalities (3.65)

and (3.66) that

y2
t (θ) 6 Cθ

∫ t+θ

t

‖um(σ)‖2
V dσ + Cθ

∫ t+θ

t

‖f(σ, um)‖2
V ′
dσ +

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄

∥∥∥∥2

V ′
.

We fix δ < 1 and take the supremum over the interval θ 6 δ to obtain

sup
θ6δ

[yt(θ)]
2 6 CTδ

∫ t+θ

t

‖um(σ)‖2
W̊ 1,p(·)(D)

dσ + Cδ sup
θ6δ

∫ t+δ

t

‖f(σ, um)‖2
V ′
dσ

+ sup
θ6δ

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄ (σ)

∥∥∥∥2

V ′
. (3.67)

Integrating this inequality over the interval [0, T ] (with u(t + θ) = 0 for t + θ /∈ [0, T ]) and

taking mathematical expectation we get

Ē sup
θ6δ

∫ T

0

‖um(t+ θ)− um(t)‖2
V ′
dt

6 CδĒ
∫ T

0

(
sup
θ6δ

∫ t+δ

t

‖f(σ, um)‖2
V ′dσ

)
dt

+ CTδĒ
∫ T

0

∫ t+θ

t

‖um(σ)‖2
V dσ + Ē

∫ T

0

sup
θ6δ

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄

∥∥∥∥2

V ′
. (3.68)
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We estimate the first term in the right-hand side of (3.68). We have

Ē
∫ T

0

(∫ t+δ

t

‖f(σ, um)‖2
V ′
dσ

)
dt 6 CT + CĒ

∫ T

0

‖um(t)‖2
L2(D)dt. (3.69)

Thanks to (3.52), we have

Ē
∫ T

0

(∫ t+δ

t

‖um(σ)‖2

W
1,p(·)
0 (D)

dσ

)
dt 6 CĒ

∫ T

0

‖um(t)‖2

W
1,p(·)
0 (D)

dt 6 C.

Next, the crucial part is to control the stochastic integral appearing in the last term on the

right-hand side of (3.68). To this end, we use martingale’s inequality. We have by (3.21) and

Fubini’s Theorem

Ē
∫ T

0

sup
θ6δ

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄

∥∥∥∥2

V ′
dt 6

∫ T

0

Ē
∫ t+δ

t

‖G(σ, um)‖2
L2(K,L2(D)) dσdt.

Owing to (3.21), we obtain

Ē
∫ T

0

sup
θ6δ

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄

∥∥∥∥2

V ′
dt 6 C

∫ T

0

Ē
∫ t+δ

t

[
1 + ‖um(σ)‖L2(D)

]2

dσdt

6 TδC + C

∫ T

0

Ē
∫ t+δ

t

‖um(σ)‖2
L2(D)dσdt

6 TδC + CTδĒ sup
σ∈[0,t]

‖um(σ)‖2
L2(D).

Taking into account the estimate (3.36), we deduce that

Ē
∫ T

0

sup
θ6δ

∥∥∥∥∫ t+θ

t

G(σ, um(σ))dW̄ (σ)

∥∥∥∥2

W−1,q(·)(D)

dt 6 Cδ.

We gain by combining all the above estimate and using (3.67) that

Ē
∫ T

0

[yt(θ)]
2dt 6 C(T )δ + C(T )δĒ sup

t∈[0,T ]

||um(t)||2L2(D) (3.70)

from which we deduce by taking into account the estimate (3.36), and combining all the

above inequalities that

Ē sup
θ6δ

∫ T

0

‖um(t+ θ)− um(t)‖2
W−1,q(·)(D)dt 6 Cδ.

Finally, collecting all the estimates and making a similar reasoning with θ < 0, we thus

deduce that

Ē sup
|θ|6δ

∫ T

0

‖um(t+ θ)− um(t)‖2
W−1,q(·)(D)dt 6 Cδ.

Thus the proof of the Lemma is complete.



Weak solution for generalized polytropic filtration 69

As a result of the proof of Lemma 16, we state and prove the

Remark 11. It holds that

E sup
|θ|6δ
‖um(t+ θ)− um(t)‖V ′ < Cδ ∀t ∈ [0, T ].

Proof. Since the space L2(0, T ;W−1,q(·)(D)) is continuously embedded in L1(0, T ;W−1,q(·)(D)).

On one hand, we have by Cauchy-Schwarz’s inequality and Lemma 4.7∫ T

0

||um(t+ θ)− um(t)||W−1,q(·)(D)dt 6
√
T ||τθum − um||L2(0,T ;W−1,q(·)(D)) 6 C

√
T
√
δ.

where τθum stands for the translation function of um with um(t + θ) = 0 for t + θ /∈ [0, T ]

and θ > 0. On the other hand Young’s inequality implies

sup
θ6δ
||τθum(t)− um(t)||W−1,q(·)(D) 6

ε2

2
+ Cε sup

θ6δ
||τθum(t)− um(t)||2W−1,q(·)(D).

Now, making use of (3.67) gives

sup
θ6δ
||τθum(t)− um(t)||W−1,q(·)(D) 6 CTδ

∫ t+θ

t

‖um(σ)‖2
V dσ + Cδ sup

θ6δ

∫ t+θ

t

‖f(σ, um)‖2
V ′
dσ

+ sup
θ6δ

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄ (σ)

∥∥∥∥2

V ′
(3.71)

since u is extended by zero outside [0, T ].

It follows using (3.20) that

sup
θ6δ

∫ t+θ

t

||f(σ, um)||2W−1,q(·)(D)dσ 6 C sup
θ6δ

∫ t+θ

t

(1 + ||um(σ)||L2(D))
2dσ

6 TCδ + Cδ sup
06t6T

||um(σ)||2L2(D). (3.72)

First, we take mathematical expectation in both sides of (3.71) and we estimate the corre-

sponding terms in the right hand side of (3.71). Thus, using the result of Lemma 15, we

obtain in particular

Ē
∫ t+θ

t

‖um(σ)‖2
V dσ 6 Ē

∫ T

0

‖um(σ)‖2
V dσ 6 C. (3.73)
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Using (3.21), we deduce according to Burkholder-Davis-Gundy’s inequality that

Ē sup
θ6δ

∥∥∥∥∫ t+θ

t

πmG(σ, um)dW̄

∥∥∥∥2

V ′
6 Ē

∫ T

0

‖G(σ, um)‖2
L2(K,L2(D)) dσ

6 CĒ
∫ T

0

[
1 + ‖um(σ)‖L2(D)

]2

dσ

6 TδC + CĒ
∫ T

0

‖um(σ)‖2
L2(D)dσ

6 TδC + CTδĒ sup
σ∈[0,t]

‖um(σ)‖2
L2(D). (3.74)

Finally, combining estimates (3.72), (3.73) and (3.74), we deduce from (3.71) that

Ē sup
θ6δ
||τθum(t)− um(t)||W−1,q(·)(D) 6 TδC + CTδĒ sup

σ∈[0,t]

‖um(σ)‖2
L2(D) (3.75)

from which we deduce using (3.36) that

Ē sup
θ6δ
||τθum(t)− um(t)||W−1,q(·)(D) 6 C(T )δ.

We argue similarly for the case θ < 0 and thus we obtain

Ē sup
|θ|6δ
||τθum(t)− um(t)||W−1,q(·)(D) 6 C(T )δ.

Hence follows the proof of Remark 11.

3.4.3 Compactness results and tightness criterion

Following Bensoussan [21], we have

Proposition 2. Let µn and νn be both sequences of positive real numbers such that µn, νn → 0

as n→∞. Then

Wµn,νn =

z ∈
L2
(

0, T ; W̊ 1,p(·)(D)
)
∩ L∞ (0, T ;L2(D))

supn
1

νn
sup|θ|6µn

[∫ T
0
‖z(t+ θ)− z(t)‖2

W−1,q(·)(D) dt
]1/2

<∞


is compactly embedded in L2(0, T ;L2(D)).

Proof. Since the embedding W̊ 1,p(·)(D) ⊂ L2(D) is compact, the above proposition is a corol-

lary of [21, Proposition 3.1].
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Let Zµn,νn be the set of adapted stochastic processes z such that

E
[∫ T

0

‖z(t)‖2
W̊ 1,p(·)(D)

dt

]1/2

<∞,
[
E sup

06t6T
‖z(t)‖qL2(D)

]1/q

<∞;

E sup
n

1

νn
sup
|θ|6µn

[∫ T

0

‖z(t+ θ)− z(t)‖2
W−1,q(·)(D) dt

]1/2

<∞.

We extend the process z by zero outside [0, T ].

The space Zµn,νn is a Banach space under the norm

‖z(t)‖Zµn,νn = E
[∫ T

0

‖z(t)‖2
W̊ 1,p(·)(D)

dt

]1/2

+

[
E sup

06t6T
‖z‖qL2(D)

]1/q

+

+ E sup
n

1

νn
sup
|θ|6µn

[∫ T

0

‖z(t+ θ)− z(t)‖2
W−1,q(·)(D) dt

]1/2

.

The à priori estimates established in the previous Lemmata allow us to assert that for any

q ∈ [2,∞), and for µn, νn such that the series
∑∞

n=1

√
µn

νn
converges, the Galerkin solutions

{um : m ∈ N} remain in a bounded subset of Zµn,νn , thanks to the embedding V̊ (Q) ↪→
L2(0, T ; W̊ 1,p(·)(D)).

Next, we state the tightness property of Πm generated by the Galerkin solutions um and

the Wiener process W̄ . In order to do so, we set

S = C([0, T ];K)× L2(0, T ;L2(D)) ∩ C([0, T ];V
′
),

We define the mapping

φ̄m : Ω̄ −→ S : ω̄ 7→
(
W̄ (., ω̄), um(., ω̄)

)
.

For each m > 1, we set

Πm(A) = P̄(φ−1
m (A)),∀A ∈ B(S).

Having constructed the needed probability measure Πm; we now discuss the main result of

this subsection concerning the tightness of the family Πm. This is achieved thanks to similar

arguments in [166]. Thus, we state and prove the tightness in the

Theorem 32. The set of laws {Πm,m > 1} on the space S is tight in (S,B(S)).

In order to prove this theorem, we first need to prove that the family of laws of (um)m>1

is tight in L2(0, T ;L2(D)) ∩ C([0, T ];V
′
). For this purpose, we define the mappings Ψ̄m :

Ω̄ −→ S1 : ω̄ 7→ um(·, ω̄). By similar reasoning as above, for each m ∈ N, we set

Π1,m(A1) = L(um)(A1) = P̄
(
Ψ̄−1
m (A1)

)
,∀A1 ∈ B(S1).

As an auxiliary step in the proof of Theorem 32, we prove the following tightness property.
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Lemma 17. The family Π1,m,m ∈ N is tight in (S1,B(S1)).

Proof. A crucial role is played by the high integrability in Lemma 14 . The Galerkin solution

is a subset of Zµn,νn for an appropriate choice of µn and νn such that the series
∑∞

n=1

√
µn

νn
converges. For instance, we can conveniently choose the sequences µn and νn by

µn =
1

np
, νn =

1

n
with p > 4;

clearly we note that if p
2
− 1 > 1, we have∑

n∈N

√
µn

νn
=
∑
n∈N

1

n
p
2
−1

<∞.

Let ε > 0, we set

Ω̃ε =
{
ω̄ : um(ω̄) ∈ BWµn,νn

(Lε)
}

where Lε is a constant to be chosen later and BWµn,νn
(Lε) is the ball in the space Wµn,νn of

radius Lε and centered at the origin. By Chebychev’s inequality, we infer that for any m ∈ N

P̄(ω̄ /∈ Ω̃ε) 6
1

L2
ε

Ē‖um‖2
Wµn,νn

6
C

L2
ε

.

Let us choose Lε =
√

C
ε

so that

P̄(ω̄ /∈ Ω̃ε) 6 ε.

Since the ball BWµn,νn
(Lε) is a compact set of L2(0, T ;L2(D)), we thus deduce the tightness

in L2(0, T ;L2(D)). We must now prove the tightness in C([0, T ];V
′
), where V

′
stands for

W−1,q(·)(D), the dual of W̊ 1,p(·)(D).

Since the embedding L2(D) ⊂ W−1,q(·)(D) is continuous, it follows from

P̄(ω̄ : sup
06t6T

‖um(t, ω̄)‖L2(D) > R) 6 E sup
06t6T

‖um(t, ω̄)‖L2(D) > R) <
C

R2

that {um(t) : m ∈ N} is bounded in W−1,q(·)(D). We thus easily prove that {um(t) : m ∈ N}
is relatively compact in W−1,q(·)(D). Moreover, by the conclusion of [192, Theorem 1, page

71] the time criterion results of Lemma 19 and its Remark 11 are the same as the uniform

equicontinuity of Arzela-Ascoli. Using the Arzela-Ascoli characterization of compact sets in

C(0, T,W−1,q(·)(D)) (see e.g.,[192, Lemma 1, page 71]), it is therefore equivalent to say that

{ um : m ∈ N} is relatively compact in C(0, T,W−1,q(·)(D)) . Hence we claim that Π1,m is

tight on C([0, T ];W−1,q(·)(D)). Thus, we conclude that the laws of the family {um,m ∈ N}
is tight on S1. This proves Lemma 17.

We now proceed with the proof of Theorem 32.
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Proof. Following similar ideas as in [166], we note that there exists a negligible (null) subset

Ω̄
′

of Ω̄ such that W̄ (·, ω̄) ∈ S2, where S2 = C([0, T ];K) for any ω̄ ∈ Ω̄
′c. Let L(W̄ ) denotes

the law of the process W̄ on S2. We introduce the sequence of probability laws on S2 as

follows:

Π2,m = L(W̄ ),∀m > 1.

Hence, by definition, we assert that the constructed sequence (Π2,m)m∈N belongs to S2, where

S2 denotes the collection of all probability measures on (S2,B(S2)) with B(S2) being the

Borel σ-field of S2. We equip the space S2 with the induced metric

Θ(u, v) = sup
t∈[0,T ]

‖u(t)− v(t)‖K,∀u, v ∈ K. (3.76)

One can check that a sequence in S2 is convergent if and only if it converges uniformly. The

space S2 is a complete separable metric space i.e. a Polish space.

The weak convergence of measures generates a metric d∞ defined by

d∞(µ, ν) = inf{δ > 0 : µ(B) 6 ν(Nδ) + δ, ∀B ∈ B(S2)},

where Nδ := {u ∈ S2 : ∃v ∈ B, d(u, v) < δ} for any subset B of S2. The definition of

the function d∞ can be found for e.g. in the monographs [29], [78] and [157]. It is easy

to prove that d∞ is a metric( see [29, p. 72] for the proof). The function d∞ is called the

Prokhorov metric on S2 induced by d. Since S2 is separable, then convergence measured in

the Prokhorov metric d∞ is the same as weak convergence of measures in (S2,B(S2)). In

addition, we deduce that (S2, d∞) is separable. See for instance [161], [29, p. 72-73], [78] and

[157]. (S2, d∞) is complete (see for example [161, Lemma 1.4, p. 169]).

Arguing similarly as in [166], we use the result in [157, Chap. II, Theorem 3.2] to deduce

that the family of laws {Π2,m : m = 1, 2, . . .} is tight on S2. Thus, combining this with the

tightness result of Lemma 17, we deduce that the family of laws {Πm : m = 1, 2, . . .} form

a tight sequence of probability measures in (S,B(S)). This enables us to conclude the proof

of Theorem 32.

The tightness result proved in Theorem 32 in combination with the powerful compactness

result of Prokhorov enable us to extract a subsequence (Πmν ) that weakly converges to Π on

S. Next, Skorokhod compactness result enables us to assert that there exists a probability

space (Ω,F ,P) and pairs of S-valued random variables (Wmν , umν ) and (W,u) defined on
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(Ω,F ,P) such that

Πmν = L(Wmν , umν ) (3.77)

Wmν −→ W in C([0, T ];K), as ν →∞ P− a.s., (3.78)

umν −→ u in L2(0, T ;L2(D)), as ν →∞ P− a.s., (3.79)

umν −→ u in C([0, T ];W−1,q(·)(D)), as ν →∞ P− a.s., (3.80)

Π = L(W,u) (3.81)

and that Πmν = L(umν , W̄ ).

In order to construct our driving cylindrical Wiener process, we need to show that the

process W is a Q-Wiener process with values in K and adapted to the natural filtration(
F̃t
)

06t6T
generated by the pair (W,u), i.e.,

F̃t = σ ((W (τ), u(τ)); 0 6 τ 6 t) .

We set

Ft = σ
(
N ∪ F̃τ ; 0 6 τ 6 t

)
,

where N is the set of null sets of F . Indeed, this filtration satisfies the usual conditions.

Now, let Q = JJ ∗ with the injection J : L2(D) −→ K being a Hilbert-Schmidt operator.

Following for instance [166](where [191, Lemma 139, p. 105] was crucially used), we can

easily check that for each ν the sequences of stochastic processes (Wmν (t); t ∈ [0, T ])m∈N
forms K-valued Q-Wiener processes defined on the probability space (Ω,F ;P) and that for

each τ ∈ [0, t) with t 6 T , the increment Wmν (t)−Wmν (τ) are independent of the σ-algebra

Fmντ = σ ((Wmν (l), umν (l)) : l ∈ [0, τ ]); and the pair (Wmν , umν ) satisfies the integral form of

equation (3.31). Namely,

umν (t) +

∫ t

0

Pmν (A(τ, umν )) dτ = umν (0) +

∫ t

0

Pmν (f(τ, umν )) dτ+

+

∫ t

0

Pmν
(
G(τ, umν ) ◦ J −1

)
dWmν (τ), (3.82)

where Wmν is written in an informal manner as the following series:

Wmν (t) =
∞∑
k=1

βkmν (t)J ek, t > 0; (3.83)

Pmν (dWmν (t)) =
mν∑
k=1

J ekdβkmν (t), t > 0; (3.84)

with (βkmν (t))k∈N being a family of mutually independent standard 1-dimensional Wiener

processes given by

βkmν (t) =
1
√
κk
〈Wmν (t), wk〉
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and (ek)k∈N is the ONB of K given by

ek =
J ∗wk√
κk

.

Note from (3.83) and (3.84) that∫ t

0

PmG(τ, umν )dW̄ =

∫ t

0

PmνG(τ, umν ) ◦ J −1dWmν =
mν∑
k=1

∫ t

0

G(τ, umν )ekdβ
k
mν (τ)

=
mν∑
k=1

∫ t

0

G(τ, umν )wkdβ̄k(τ),

where G(t, umν ) ◦ J −1 ∈ L2(K, L2(D)) with

||G(t, umν )||L2(K,L2(D)) = ||G(t, umν ) ◦ J −1||L2(K,L2(D)).

To check that the limiting process W is a Q-Wiener process with values in K defined on

(Ω,F ,P), we proceed by considering characterization of Wiener process via their characteris-

tic functions. It is sufficient to show that W has the right finite dimensional Gaussian distri-

butions to be a Q-Wiener process in K defined on (Ω,F ,P). Let τ0 = 0 < τ1 < · · · < τl = T

be a partition of [0, T ]. We will show that W (τi+1) − W (τi) is independent of Fτi where

Ft = σ ((W (s), u(s)); s ∈ [0, t]) , t ∈ [0, T ]. We will also show that the finite dimensional

distribution of W is Gaussian. To this end we will compute the characteristic function of

W (τi+1)−W (τi). For each u ∈ K and (γ1, . . . , γl) ∈ Rl we have

E exp

{
i

l∑
j=1

γj〈W j
mν −W

j−1
mν , u〉K

}
= exp

{
−1

2

l∑
j=1

γ2
j (τj − τj−1)〈Qu, u〉K

}
, (3.85)

where W j
mν = Wmν (τj) and i =

√
−1 is the imaginary unit.

Using the convergence (3.78), we can pass to the limit in (3.85) and thanks to Lebesgue

dominated convergence theorem, we obtain

E exp

{
i

l∑
j=1

γj〈W (τj)−W (τj−1), u〉K

}
= exp

{
−1

2

l∑
j=1

γ2
j (τj − τj−1)〈Qu, u〉K

}
. (3.86)

Let (ϕj)j=1,...,l and (φj)j=1,...,l and φ be continuous and bounded real functions with ϕj :

V
′ −→ R and φ, φj : K −→ R. We know that EXY = EXEY if X and Y are independent.

We can see that for each ν ∈ N

E

[
l∏

j=1

ϕj(umν (hj))
l∏

j=1

φj(Wmν (hj))φ(Wmν (t)−Wmν (τ))

]
=

E

[
l∏

j=1

ϕj(umν (hj))
l∏

j=1

φj(Wmν (hj))

]
E [φ(Wmν (t)−Wmν (τ))] .
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Using convergence (3.78), the fact that ϕj, φj and φ are continuous and bounded, the

Lebesgue dominated convergence theorem can be applied; hence we get

E

[
N∏
j=1

ϕj(u(hj))
N∏
j=1

φj(W (hj))φ(W (t)−W (τ))

]
=

E

[
N∏
j=1

ϕj(u(hj))
N∏
j=1

φj(W (hj))

]
E [φ(W (t)−W (τ))] .

Indeed, we can deduce from (3.85) and (3.86) that for each v ∈ N

W (t) =
∞∑
k=1

βk(t)wk, t > 0; (3.87)

where (βk)k∈N is a family of independent real valued standard Wiener processes defined on

(Ω,F ,P).

3.4.4 Existence of probabilistic weak solution

In this subsection, we establish some convergence properties of the subsequence (umν ) ob-

tained in the previous section. Following similar reasoning as in [48, Remark 4.4, page 19] we

may assume that the subsequence obtained from the previous subsection (umν ) is a family of

Hm-valued processes. Therefore,

Πmν = L(Wm, um) on C([0, T ];Hm)

since the Borel subsets of C([0, T ];Hm) are considered as well Borel subsets of L2(0, T ;L2(D))∩
C([0, T ];W−1,q(·)(D)). Thus, we infer from this reasoning and the estimates obtained in the

previous sections, Lemma 12 - Lemma 16, that by equality of laws on C([0, T ];Hm) we have

the subsequence (umν ) satisfies the same estimates as the original sequence (um):

E sup
t∈[0,T ]

‖umν (t)‖
q
L2(D) 6 C, q > 2; (3.88)

E‖umν‖rV̊ (Q)
6 C, for any 2 6 r 6 p(·) 6 s <∞; (3.89)

E
(∫ T

0

‖umν (t)‖2
W̊ 1,p(·)(D)

dt

) r
2

6 C; (3.90)

(3.91)

It follows from the cited estimates that the full sequence of approximate solution of problem

(3.1)-(3.3) contains a subsequence {umν : ν = 1, 2, . . .} denoted in the same way as the
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previous subsequence such that

umν −→ u weakly in Lq(Ω,F ,P;La(0, T ;L2(D))), ∀a ∈ [2,∞); (3.92)

umν −→ u weakly in Lr
(

Ω,F ,P; V̊ (Q)
)

for any 2 6 r 6 p(·) 6 s <∞; (3.93)

A(t, umν (ω)) −→ χ(ω) weakly in
(
V̊ (Q)

)′
for a.e. ω ∈ Ω (3.94)

umν (T ) −→ ג weakly in L2(Ω,F ,P;L2(D)). (3.95)

It follows from the embedding in lemma 8 and (3.93) that

umν −→ u weakly in L2(Ω,F ,P;L2(0, T ; W̊ 1,p(·)(D))). (3.96)

Using the properties of the operator A and the previous a priori estimates in combination

with the results in Remark 8, we also have

E‖A(t, umν )‖(V̊ (Q))
′ 6 C;

consequently, using this inequality and the embedding result in Lemma 8, we deduce that

E‖A(t, umν )‖L2(0,T ;W−1,q(·)(D)) 6 C.

Furthermore,

umν (ω) −→ u (ω) weakly − ∗ in L∞(0, T ;L2(D)) a.e. ω. (3.97)

Moreover, it is straightforward to show that estimates (3.88), (3.89) and (??) for the sequence

umν lead to corresponding estimates for the process u. That is,

E‖u‖qLa(0,T ;L2(D)) 6 C, q ∈ [2,∞), a ∈ [2,∞),(
E‖u‖r

V̊ (Q)

)1/r

6 C, for any 2 6 r 6 p(·) 6 s <∞,

E
(∫ T

0

‖u(t)‖2
W̊ 1,p(·)(D)

dt

) r
2

6 C,

We can use (3.88) to prove that the sequence
(∫ T

0
||um(t)||2L2(D)dt

)
ν∈N

is bounded P-a.s..

For that purpose, we consider the increasing function ψ : R → R+ defined by ψ(umν ) =

||umν ||
q
L2(0,T ;L2(D)) for any q > 4. We have

ψ(umν )

||umν ||L2(0,T ;L2(D))

=∞, as ||umν ||L2(0,T ;L2(D)) →∞.
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It follows from

E||umν ||L1(0,T ;L2(D)) = E
∫ T

0

||umν (t)||L2(D)dt 6 CE sup
06t6T

||umν (t)||L2(D) 6 C,

that the sequence (||umν ||L2(0,T ;L2(D)))ν∈N is a bounded subset of L1(Ω,F ,P). It follows from

the high integrability in Lemma 14 that

sup
ν

∫
Ω

ψ(umν )dP = sup
ν

E
(
||umν ||L2(0,T ;L2(D))

)q
= sup

ν
E
(∫ T

0

||umν (t)||2L2(D)dt

)q/2
6 C sup

ν
E sup

06t6T
||umν (t)||

q
L2(D) <∞.

Therefore, the sufficient condition for uniform integrability [190, Lemma 3, page 188] enables

us to deduce that,
∫ T

0
‖umν (t)‖2

L2(D)dt is uniformly integrable w.r.t. P. This enable us to

deduce from the Vitali convergence theorem that

umν −→ u strongly in L2(Ω,F ,P;L2(0, T ;L2(D))). (3.98)

Hence, there exists a subsequence still denoted umν in order to simplify notation such that

umν −→ u in L2(D) for almost all (t, ω) w.r.t. P× dt. (3.99)

Thanks to (3.23) and (3.88), we derive from (3.99) and Vitali’s theorem that

f(·, umν (·)) −→ f( ·, u(·)) in L2
(
Ω,F ,P;L2

(
0, T ;W−1,q(·)(D)

))
.

In particular, for fixed j, since wj ∈ W̊ 1,p(·)(D), we get that

〈f(·, umν (·)), wj〉 −→ 〈f(·, u(·)), wj〉 in L2(Ω,F ,P;L2(0, T )), (3.100)

Similarly, using the condition on G, (3.21), we prove that

PmνG(t, umν ) −→ G(t, u) in L2
(
Ω,F ,P;L2(0, T ;L2(K, L2(D)))

)
. (3.101)

Finally, we must prove that∫ t

0

PmνG(s, umν ) ◦ J −1dWmν −→
∫ t

0

G(s, u)dW weakly in L2
(
Ω,F ,P;L2(D)

)
(3.102)

which can be deduced from the following convergence∫ t

0

G(s, umν ) ◦ J −1dWmν −→
∫ t

0

G(s, u)dW weakly in L2
(
Ω,F ,P;L2(D)

)
(3.103)
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for any t ∈ [0, T ].

For that purpose, we intend to use integration by parts in order to prove the convergence of

the stochastic integral ∫ t

0

G(t, umν ) ◦ J −1dWmν (t).

In order to do that, we need to use the notion of regularization techniques from harmonic

analysis. First, we need to emphasis that the integral on the left does not depend on the

injection J . But since the integrand is not smooth with respect to t, we deal with it by

introducing a suitable regularization (or mollification), Gε. Here we simply extend G as zero

on R \ [0, T ] and denote the extension also by G in order to define Gε on all of [0, T ]. That

is, we restrict the range of integration to the interval [0, T ]. Let % be a standard mollifier.

For any ε > 0 we define the mollification of G by

Gε(t, u) =
1

ε

∫ T

0

%

(
τ − t
ε

)
G(τ, u)dτ ∀τ ∈ [0, T ] and 0 < ε < dist(τ, ∂([0, T ])).

Note that Gε exists (as a Bochner integral see [18, Page 9] for the definition) and defines

(and it coincides a.e. with) a continuous function %ε∗G : [0,∞)→ L2(D). Moreover, one can

merely check that Gε is smooth in t and continuous in u. We refer to the monograph of Arendt

and co-authors [18] for detailed information regarding Fourier multipliers and convolution

(see, e.g., [18, Section 1.3, page 21 and page 486]) and mollification (see [18, Page 23]) of

Banach spaces-valued functions (see, e.g., [18, page 489]). Among other things, we can easily

prove from (3.21) that the intensity of the noise G(t, um(t)) remains in a bounded subset of

the space L2(Ω,F , P ;L2(0, T ;L2(K, L2(D))) and we have the uniform estimate for Gε

E
∫ T

0

‖Gε(t, u)‖2
L2(K,L2(D))dt 6 E

∫ T

0

‖G(t, u)‖2
L2(K,L2(D))dt. (3.104)

Moreover, it follows from the definition of Gε that

Gε(., u) −→ G(., u) inL2
(
Ω,F ,P;L2

(
0, T ;L2(K, L2(D))

))
, as ε→ 0; (3.105)

and that

E
∫ T

0

||Gε(t, umν )−Gε(t, u)||2L2(K,L2(D))dt 6 CE
∫ T

0

||G(t, umν )−G(t, u)||2L2(K,L2(D))dt.

Arguing similarly as in [7, 8, 22, 23, 68, 168, 182, 183, 184, 185, 186, 199], we must prove

that ∫ T

0

G(s, umν ) ◦ J −1dWmν →
∫ T

0

G(s, u)dW weakly in L2
(
Ω,F ,P;L2(D)

)
(3.106)
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from which (3.103) follows.

Next we use integration by parts to get

mν∑
k=1

∫ T

0

Gε(t, umν )ekdβ
k
mν =

mν∑
k=1

Gε(T, umν )ekβ
k
mν (T )−

mν∑
k=1

∫ T

0

(Gε)
′
(t, umν )ekβ

k
mν (t)dt.

(3.107)

Owing to (3.21) and (3.99), we have that

Gε(·, umν ) −→ Gε(·, u), almost everywhere in (0, T )× Ω as ν →∞. (3.108)

It follows from (3.108) and (3.78) that

mν∑
k=1

Gε(·, umν )ekβkmν (·) −→
∞∑
k=1

Gε(·, u)wkβk(·) = Gε(·, u)W (·), (3.109)

for almost all ω ∈ Ω.

From the definition of Gε, it can straightforward be seen that the mapping u 7→ (Gε)
′
(t, u)

is continuous from L2(D) to L2 (K, L2(D)), a.e. t ∈ [0, T ]. Hence, using (3.78), (3.107) and

(3.109), we are able to deduce from (3.107) after passing to the limit as ν →∞ that∫ T

0

Gε(t, umν ) ◦ J −1dWmν (t) −→ (Gε(T, u)W (T )−
∫ T

0

(Gε)
′
(t, u)W (t)dt, (3.110)

for almost all ω ∈ Ω, thanks to the fact that the function (Gε)
′
(t, ·) is still continuous w.r.t.

to the second variable. The right hand sight of (3.110) is equal to
∫ T

0
Gε(t, u)dW (t). By

Fubini’s theorem, Burkholder-Davis-Gundy’s inequality and (3.21), we have

E
∥∥∥∥∫ T

0

Gε(t, umν ) ◦ J −1dWmν (t)

∥∥∥∥2

L2(D)

6 E
[∫ T

0

‖Gε(t, umν )‖2
L2(K,L2(D))dt

]
6 C (3.111)

since ||Gε(t, umν ◦ J −1||L2(K,U) = ||Gε(t, umν ||L2(K,L2(D)).

Similarly as in (3.111), by Burkholder-Davis-Gundy inequality, we have the estimates

E
∥∥∥∥∫ T

0

G(t, umν ) ◦ J −1dW k
mν (t)

∥∥∥∥2

L2(D)

6 E
[∫ T

0

‖G(t, umν )‖2
L2(K,L2(D))dt

]
6 C. (3.112)

We define a function ψ(x) = x2, for any x ∈ R+. Then limx→∞
ψ(x)
x

= ∞. It follows from

(3.112) and the results of Lemma 18 that the sequence (Mν)ν∈N is uniformly integrable, where

Mν =

∫ T

0

Gε(t, umν )dWmν (t).
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Since the sequence (Mν)ν∈N is bounded in L2(Ω,F ,P;L2(D)), it follows from this uniform

integrability, (3.110) and relying on Vitali’s theorem, we can assert that for any a ∈ (1, 2],

we have the convergence

Mν −→
∫ T

0

Gε(t, u)dW (t) weakly in La
(
Ω,F ,P;L2(D)

)
, as ν →∞. (3.113)

It follows from (3.111), convergence (3.108) and the result of Lemma 12, that for a fixed ε

and letting ν →∞∫ T

0

Gε(t, umν )dWmν (t) −→
∫ T

0

Gε(t, u)dW (t), weakly in L2
(
Ω,F ,P;L2(D)

)
. (3.114)

That is, for all Ξ ∈ L2 (Ω,F ,P, L2(D))

E
mν∑
k=1

∫ T

0

(Ξ, Gε(t, umν )ek)dβ
k
mν (t) −→ E

∫ T

0

(Ξ, Gε(t, u))dW (t) (3.115)

Thus, we can find κ ∈ L∞ (Ω,F ,P) such that for all Ξ ∈ L2 (Ω,F ,P;L2(D))

E
∫ T

0

(Ξ, Gε(t, umν ))dWmν (t) −→ E(Ξ, κ). (3.116)

Besides (3.102), (3.103) and (3.106), it remains to show that

κ = E
∫ T

0

Gε(t, u)dW (t). (3.117)

Therefore, for fixed ε we let ν tends to ∞ to have, for any Ξ ∈ L2 (Ω,F ,P;L2(D))

E
∫ T

0

(
Ξ, Gε(t, umν ) ◦ J −1)

)
dWmν (t) −→ E

∫ T

0

(Ξ, Gε(t, u)dW (t)) . (3.118)

We have

E
(

Ξ,

∫ T

0

G(t, umν ) ◦ J −1dWmν (t)

)
− E

(
Ξ,

∫ T

0

G(t, u)W (t)

)
= I1 + I2 + I3, (3.119)

where Ξ is an arbitrary element of L2 (Ω,F ,P;L2(D)) and we consider Ii, i = 1, 2, 3, the three

integrals separately

I1 = E
(

Ξ,

∫ T

0

[G(t, umν )−Gε(t, umν )] ◦ J −1dWmν (t)

)
,

I2 = E
(

Ξ,

∫ T

0

[Gε(t, u)−G(t, u)]dW (t)

)
,

I3 = E
(

Ξ,

∫ T

0

Gε(τ, umν ) ◦ J −1dWmν (t)

)
− E

(
Ξ,

∫ T

0

Gε(t, u)dW (t)

)
.
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In order to find the limiting candidate of the stochastic integral, we must prove that Ii, i =

1, 2, 3 converge to zero as ε → 0 and ν → ∞. For I1, we apply Cauchy-Schwarz and

Burkholder-Davis-Gundy inequalities to get

I1 6 E

[
‖Ξ‖L2(D)

∥∥∥∥∫ T

0

[G(t, umν )−Gε(t, umν )] ◦ J −1dWmν (t)

∥∥∥∥
L2(D)

]

6 CE
[∫ T

0

‖G(t, umν )−Gε(t, umν )‖
2
L2(K,L2(D)) dt

] 1
2

.

Similar reasoning can be used to estimate I2. Namely,

I2 6 E

[
‖Ξ‖L2(D)

∥∥∥∥∫ T

0

[G(t, u)−Gε(t, u)]dW (t)

∥∥∥∥
L2(D)

]

6 CE
[∫ T

0

‖G(t, u)−Gε(t, u)‖2
L2(K,L2(D)) dt

] 1
2

.

Letting ε tend to zero in the above inequalities and making use of convergence (3.105), (3.101)

yields first I1 converges to zero as ν → ∞ and by (3.118) I2 converge to zero as required.

Additionally we must show that I3 converges to zero as ε goes to zero and ν →∞. In order

to do so, we use (3.118) to get

lim
ε→0

[
E lim
ν→∞

(
Ξ,

∫ T

0

Gε(t, umν ) ◦ J −1dWmν (t)

)
− E

(
Ξ,

∫ T

0

Gε(t, u)dW (t)

)]
= 0.

Hence, I3 = 0 as ε→ 0 and ν →∞. Hence letting ε→ 0 and ν →∞ in (3.119), we deduce

that that the left hand side of (3.119) converges to zero. From this we achieve (3.117) which

proves 3.106. In its turn, 3.106 enables us to prove (3.103). Thus, (3.102) is thereby proved.

Next, after integrating by parts in the first term of (3.37), we get

−
∫ T

0

(umν , wj)
dϕ

dt
dt+

∫ T

0

〈A(t, umν ), wj〉ϕdt

=

∫ T

0

〈f(t, umν ), wj〉ϕdt+
mν∑
k=1

∫ T

0

(G(t, umν )ek, wj)ϕdβ
k
mν (t)

+(umν (0), wj)ϕ (0)− (umν (T ), wj)ϕ (T ) ,

for any ϕ ∈ C1 ([0, T ]). This holds, if we replace wj by any of their linear combinations for

all j = 1, 2, . . .. Since Hm is dense in W̊ 1,p(·)(D), passing to the limit in the resulting relation

as ν →∞, and making use of all the above convergence results, we obtain ∀v ∈ W̊ 1,p(·)(D)

−
∫ T

0

(u, v)
dϕ

dt
dt+

∫ T

0

〈χ, v〉ϕdt

=

∫ T

0

〈f(t, u), v〉ϕdt+
∞∑
k=1

∫ T

0

(G(t, u)wk, v)ϕdβk(t) + (u0, v)ϕ(0)− ,ג) v)ϕ(T ).
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It follows from this that

du+ χ(t)dt = f(t, u)dt+G(t, u)dW (t), (3.120)

in the sense of distribution in Lr/(r−1)
(
0, T ;W−1,r/(r−1)(D)

)
, therefore in V̊

′
(Q). A natural

integral representation of (3.120) can be expressed as:

u(t) +

∫ t

0

χ(s)ds = u0 +

∫ t

0

f(s, u)ds+

∫ t

0

G(s, u)dW (s).

(3.120) should be understood as an abbreviation of the above integral form.

Using the weak formulation of (3.120) by testing it over (0, T )×D by the product v (x)ϕ (t)

with v ∈ W̊ 1,p(·) and ϕ ∈ C1 ([0, T ]) and replacing wj by v in (3.37) duly multiplied by ϕ (t)

and integrated over (0, T )× D, we get that∫ T

0

(d(umν − u), v)ϕ(t)dt+

∫ T

0

〈A(t, umν )− χ, v〉ϕdt

=

∫ T

0

〈f(t, umν )− f(t, u), v〉ϕdt+
mν∑
k=1

∫ T

0

(G(t, umν )ek, v)ϕdβkmν (t)

−
∞∑
k=1

∫ T

0

(G(t, u)wk, v)ϕdβk(t).

Hence, using integration by parts we get

−
∫ T

0

(umν (t)− u(t), v)
dϕ(t)

dt
dt+

∫ T

0

〈A(t, umν )− χ, v〉ϕdt (3.121)

=

∫ T

0

〈f(t, umν )− f(t, u), v〉ϕdt+
mν∑
k=1

∫ T

0

(G(t, umν )ek, v)ϕdβkmν (t)−

∞∑
k=1

∫ T

0

(G(t, u)wk, v)ϕdβk(t) + (umν (0)− u0, v)ϕ(0)− (umν (T )− u(T ), v)ϕ(T ).

Noting that (u(t), v) ∈ C([0, T ]) for a. e. ω ∈ Ω, and passing to the limit in this relation as

ν −→∞ using the convergence (3.94), (3.98)-(3.99), we obtain that

(u(0)− u0, v)ϕ(0)− −ג) u(T ), v)ϕ(T ) = 0, P− a.s.

Since u(0) = u0 and v is arbitrary, we can choose ϕ so that ϕ(T ) = 1 and ϕ(0) = 0 to obtain

u(T ) = .ג
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3.4.4.1 Monotonicity Method

Here, we would like to show that in (3.94), χ(t, ω) = A(t, u(ω)), which requires arguments

of monotone operators that are well developed in [123], [155] in order to solve stochastic

evolutionary equations and [178] for their deterministic counterparts.

Recall that, (3.42) remains valid if we replace the full sequence um by the newly obtained

subsequence umν . That is,

1

2
E‖umν (τ)‖2

L2(D) + E
∫ t

0

〈A(τ, umν ), umν 〉dτ

= E
∫ t

0

〈f(τ, umν ), umν 〉dτ +
1

2
E

mν∑
j=1

mν∑
k=1

∫ t

0

(G(τ, umν )wk, wj)
2 dτ

+ E
mν∑
k=1

∫ t

0

(G(τ, umν )ek, umν ) dβ
k
mν +

1

2
‖umν (0)‖2

L2(D). (3.122)

For an arbitrary function v in V̊ (Q), it follows from (3.122) that

1

2
E‖umν (t)− v(t)‖2

L2(D) + E
∫ t

0

〈A(τ, umν )− A(τ, v), umν (τ)− v(τ)〉dτ

= E
∫ t

0

〈f(τ, umν ), umν 〉dτ +
1

2
E

mν∑
j=1

mν∑
k=1

∫ t

0

(G(τ, umν )wk, wj)
2 dτ +

1

2
‖umν (0)‖2

L2(D)

+ E
mν∑
k=1

∫ t

0

(G(τ, umν )ek, umν ) dβ
k
mν − E

∫ t

0

〈A(τ, umν ), v(τ)〉dτ − E (umν (t), v(t))

− E
∫ t

0

〈A(τ, v), umν (τ)〉dτ + E
∫ t

0

〈A(τ, v), v(τ)〉dτ +
1

2
E‖v(t)‖2

L2(D). (3.123)

To this end, for an arbitrary function v in V̊ (QT ), we set

Xν = E
∫ t

0

〈A(τ, umν )− A(τ, v), umν (τ)− v(τ)〉dτ +
1

2
E‖umν (t)− v(t)‖2

L2(D). (3.124)

Similarly as the above reasoning, writing (3.120) in integral form as an equality between

random variables with values in W−1,q(·)(D), and applying Itö’s formula to the corresponding

relation yields

1

2
E‖u(t)‖2

L2(D) + E
∫ t

0

〈χ(τ), u(τ)〉dτ

= E
∫ t

0

〈f(τ, u), u〉dτ +
1

2
E
∞∑
j=1

∞∑
k=1

∫ t

0

(G(τ, u)wk, wj)
2 dτ

+ E
∞∑
k=1

∫ t

0

(G(τ, u)wk, u) dβk +
1

2
‖u0‖2

L2(D). (3.125)
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Let v ∈ V̊ (Q) be an arbitrary function, similarly as above, we use (3.125) to get

1

2
E‖u(t)− v(t)‖2

L2(D) + E
∫ t

0

〈χ(τ)− A(τ, v), u(τ)− v(τ)〉dτ

= E
∫ t

0

〈f(τ, u), u〉dτ +
1

2
E
∫ t

0

‖G(τ, u)‖2
L2(K,L2(D))dτ +

1

2
‖u0‖2

L2(D)

+ E
∞∑
k=1

∫ t

0

(G(τ, u)wk, u) dβk − E
∫ t

0

〈χ(τ), v(τ)〉dτ − E (u(t), v(t))

− E
∫ t

0

〈A(τ, v), u(τ)〉dτ + E
∫ t

0

〈A(τ, v), v(τ)〉dτ +
1

2
E‖v(t)‖2

L2(D). (3.126)

To this end, let v ∈ V̊ (Q) and set

X∞ =
1

2
E‖u(t)− v(t)‖2

L2(D) + E
∫ t

0

〈χ(τ)− A(τ, v), u(τ)− v(τ)〉dτ.

It is easy to check using the definition of the operator A that

2〈A(t, umν )− A(t, v), umν − v)

>
n∑
i=1

∫ t

0

∫
D

[∣∣∣∣∂umν∂xi

∣∣∣∣p(·)−2

−
∣∣∣∣ ∂v∂xi

∣∣∣∣p(·)−2
][(

∂umν
∂xi

)2

−
(
∂v

∂xi

)2
]
dxdτ > 0;

which implies that the operator A(t, .) is monotone. This monotonicity enables us to deduce

that Xν > 0, since E‖umν (t)− v(t)‖2
L2(D) > 0.

Passing to the limit as ν −→∞ in (3.122) and using (3.124), gives

lim sup
ν

Xν > lim sup
ν
〈A(t, umν )− A(t, v), umν − v)

>
1

2
lim sup

ν

n∑
i=1

∫ t

0

∫
D

[∣∣∣∣∂umν∂xi

∣∣∣∣p(x)−2

−
∣∣∣∣ ∂v∂xi

∣∣∣∣p(·)−2
][(

∂umν
∂xi

)2

−
(
∂v

∂xi

)2
]
dxdτ

=
1

2

n∑
i=1

∫ t

0

∫
D

[∣∣∣∣ ∂u∂xi
∣∣∣∣p(·)−2

−
∣∣∣∣ ∂v∂xi

∣∣∣∣p(·)−2
][(

∂u

∂xi

)2

−
(
∂v

∂xi

)2
]
dxdτ > 0;

(3.127)

since ∂umν
∂xi

converges weakly to ∂u
∂xi

in Lp(·)((0, T )× D) for each i = 1, . . . , n with n ∈ N.

From this, we deduce on one hand that

lim sup
ν

Xν > 0. (3.128)

Owing to the condition (3.21) on G, the estimates of Lemma 18, the almost everywhere

convergence of umν to u on [0, T ] × D × Ω, we see that (G(t, umν )) is uniformly integrable
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in L2 (Ω,F ,P;L2(0, T ;L2(K, L2(D)))) and G(t, umν ) converges to G (t, u) almost everywhere

on [0, T ]× D× Ω. Therefore, relying on Vitali’s theorem, we get that

G(t, umν ) −→ G (t, u) strongly in L2
(
Ω,F ,P;L2(0, T ;L2(K, L2(D)))

)
. (3.129)

On the other hand, combining (3.129) and (3.128) with (3.126), we get

0 6 lim sup
ν

Xν 6 E
∫ t

0

〈f(τ, u), u〉dτ +
1

2
E
∫ t

0

‖G(τ, u)‖2
L2(K,L2(D))dτ +

1

2
‖u0‖2

L2(D)

+ E
∞∑
k=1

∫ t

0

(G(τ, u)wk, u) dβk − E
∫ t

0

〈χ(τ), v(τ)〉dτ − E (u(t), v(t))

− E
∫ t

0

〈A(τ, v), u(τ)〉dτ + E
∫ t

0

〈A(τ, v), v(τ)〉dτ +
1

2
E‖v(t)‖2

L2(D)

= X∞. (3.130)

Hence

0 6 X∞ =
1

2
E‖u(t)− v(t)‖2

L2(D) + E
∫ t

0

〈χ(τ)− A(τ, v), u(τ)− v(τ)〉dτ. (3.131)

The fact that the expression of χ in (3.131) is still unknown to us, forces us to use (3.130).

For this purpose, let us consider the functions u, v, w ∈ V̊ (Q) such that v = u − αw, where

α > 0 is a constant. First, we get that

‖v‖V̊ (Q) = ‖u− αw‖V̊ (Q) 6 ‖u‖V̊ (Q) + ‖w‖V̊ (Q),

provided that |α| 6 1. By Remark 8, since u− αw ∈ V̊ (Q), we also have

‖A(t, u− αw)‖(V̊ (Q))
′ 6 C.

Here, our main focus is to show that the operator A defined from W̊ 1,p(·)(D) to (W̊ 1,p(·)(D))
′

is semicontinuous; that is, for any u(t), v(t), w(t) ∈ W̊ 1,p(·)(D) the mapping T : R −→ R
defined by α 7→ T (α) = 〈A(t, u−αv), w〉 is continuous. In fact, with this specific purpose in

mind, we concentrate on the second term on the right hand side of (3.131); hence we have

lim
α→0

E
∫ t

0

〈A(τ, v), v(τ)− u(τ)〉dτ = lim
α−→0

E
∫ t

0

〈A(τ, u(τ)− αw(τ)),−αw(τ)〉dτ

= − lim
α−→0

αE
∫ t

0

n∑
i=1

∫
D

∣∣∣∣ ∂∂xi (u− αw)

∣∣∣∣p(·)−2
∂v

∂xi

∂w

∂xi
dxdτ

= 0.
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This ensures that the operator A is semicontinuous. With v ∈ V̊ (Q) as expressed above, it

follows from (3.131) that

0 6 X∞ =
1

2
E‖−αw(t)‖2

L2(D) + E
∫ t

0

〈χ(τ)− A(τ, u− αw), αw〉dτ.

Dividing both sides of this inequality by α results in

0 6 X∞ =
α

2
E‖w(t)‖2

L2(D) + E
∫ t

0

〈χ(τ)− A(τ, u− αw), w〉dτ. (3.132)

Using the property of semicontinuity of A and then passing to the limit as α→ 0 in (3.132)

we obtain

0 6 lim
α→0

X∞ = lim
α→0

{
α

2
E‖w(t)‖2

L2(D) + E
∫ t

0

〈χ(τ)− A(τ, u− αw), w〉dτ
}

= E
∫ t

0

〈χ(τ)− A(τ, u), w〉dτ

Hence, we deduce that

E
∫ t

0

〈χ(τ)− A(τ, u), w〉dτ > 0;

as ν → 0, with w being an arbitrary function belonging to V̊ (Q).

Then by the Lebesgue’s theorem, we get

E
∫ t

0

〈χ(τ)− A(τ, u), w〉dτ = 0; for τ ∈ (0, t) a.e..

We conclude from this that χ(t) = A(t, u) and hence the integral identity (3.36) is valid.

That is by passing to the limit in (3.82) and substituting χ(t) = A(t, u) in (3.110) one gets

that

du+ A(t, u)dt = f(t, u)dt+G(t, u)dW in L2(0, T ;L2(D)).

Thus u is a solution of the problem (3.1)-(3.3) in the sense of Definition 30.



Chapter 4

Weak and strong probabilistic

solutions for a class of strongly

nonlinear stochastic parabolic

problems

4.1 Introductory background

An important class of SPDEs which has so far not been studied by experts in the field is

the stochastic counterpart of nonlinear parabolic equations which originated in the work of

Brezis-Browder [34, 33] under the name of strongly nonlinear equations. The main feature

of these equations is characterized by the presence of nonlinear terms which are unbounded

perturbations of zero-th order, making it impossible to treat the resulting problem by means

such as those used in works cited in the previous paragraphs. Brezis and Browder intro-

duced a suitable regularization through appropriate truncations and thanks to compactness

arguments, they derived the needed existence result. Further advances in the study of these

equations are due to Landes and Mustonen; see [129], [130], [131] and [133].

The goal of the present paper is to initiate the study of strongly nonlinear parabolic

equations in the sense of Brezis-Browder, in the stochastic framework.

Namely, we consider on (0, T )×D with D ⊂ Rm, m > 1 being an open bounded subset with

sufficiently regular boundary ∂D the higher-order stochastic quasilinear parabolic problem

(P )


du+ [At(u) + g(t, x, u)] dt = f(t)dt+G(t, u)dW (t) in QT

u(x, 0) = 0 in D
∂ju

∂N j
= 0 on (0, T )× ∂D,

where, QT is the cylinder (0, T )× D, D ⊂ Rm an open bounded set with sufficiently regular
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boundary ∂D, u = u(t, x) is the unknown function, the linear term f , the nonlinear term

G and the perturbation g are given, W is a m-dimensional Wiener process;
∂ju

∂N j
= 0 is the

Dirichlet boundary condition where
∂ju

∂N j
is the jth normal derivative of u with 0 6 j 6 m−1

and At is an elliptic operator of order 2m in the generalized divergence form. That is,

At(u) =
∑
|β|6m

(−1)|β|DβAβ(t, x, u,Du, . . . , Dmu),

for each t ∈ [0, T ] with the coefficient functions Aβ of the leading operator At satisfying the

Carathéodory conditions, that is each Aβ(t, x, η, ζ) is measurable in (t, x) and continuous

in η and ζ. Here ξ is an element of the vector space Rm of m-jets on Rm which assumes

the representation ξ = {ξβ : |β| 6 m}. To each ξ, there corresponds a couple (η, ζ), with

η = {ηβ : |β| 6 m− 1} and ζ = {ζβ : |β| = m}.

Our main results are the construction of a probabilistic weak solution under rather gen-

eral conditions on the nonlinear intensity G (t, u) of the noise followed by the existence of

a probabilistic strong solution for the problem (P ) under monotonicity condition on At and

Lipschitz condition on G (t, u); here, the perturbation g(t, x, u) is unbounded and of zero-th

order. Thus a direct approach through Galerkin approximation is hopeless. In fact even

Itô’s formula is prohibited in that case. We therefore introduce a regularization through

truncations which reduces the problem (P ) to a sequence of problems (called (Pk) in the

sequel) which fits the class of SPDEs studied by Krylov and Rozovskii [123]. Unfortunately,

the estimates from [123] will not be enough for our purpose, since they depend on k, when

applied to the sequence (uk) of solutions of (Pk). Therefore we establish appropriate uniform

a priori estimates of (uk). Once this is achieved, we are then able to appeal to some analytic

and probabilistic compactness results to extract converging subsequences from (uk). Large

part of the work is devoted to the passage to the limit in (Pk) which turns out to be very

delicate. A combination of stopping time technics, with measure theoretical arguments and a

result on pseudo monotone operators due to Browder [39] enable us to show that a sequence

of solutions of (Pk) converges in suitable topologies to the requested weak solution for our

original problem. Under some additional assumptions we establish the pathwise uniqueness

of weak probabilistic solutions and appeal to an infinite-dimensional version of the famous

Yamada-Watanabe’s result [211] due to Röckner [175] and Ondrejat [152] to derive the ex-

istence of a unique strong probabilistic solution. To the best of our knowledge, the results

obtained in the present paper are novel. Beside the novelty of the results, several difficulties

which are due to the stochastic nature of the problem and therefore absent in [33, 34], had

to be overcome.

This chapter is organized as follows. In section 2, we introduce needed function spaces,

some probabilistic compactness results, we state our first main result on the existence of
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probabilistic weak solutions. In view of the importance of the pioneering results in [123], we

summarized them in the same section; we also introduce the regularization of (P ). Section

3 is devoted to the proof of the existence of probabilistic weak solutions of problem (P ).

We subdivide it into subsections in which we derive some a priori estimates, compactness

results on spaces of probability measures, tightness properties and application of Prokhorov

and skorokhod results. In the same section, we deal with the delicate passage to the limit

using among other ideas, the pseudo-monotonicity method. In the last section 4, we prove

the existence of strong probabilistic solutions to our problem via the pathwise uniqueness of

probabilistic weak solutions and Yamada-Watanabe’s famous theorem.

4.2 The weak probabilistic solution

4.2.1 Preliminaries

We start this subsection by introducing needed function spaces.

We denote by ‖f‖X the norm of a function f(x) in a space X. Let V be a reflexive Banach

space and H a separable Hilbert space that can be identified with its dual H∗ by mean of

the Riesz representation Theorem. We assume that V is continuously and densely embedded

into H. We denote by V ∗ the dual space of V and write the symbol 〈·, ·〉 for the duality

pairing between V and its dual space V ∗. Let (·, ·) be the inner product in the Hilbert space

H. Then we have

V ⊂ H ≡ H∗ ⊂ V ∗.

Here each space is dense in the following one. In addition to the above Gelfand triple, we

also have

〈u , v〉 = (u , v)H , for any u ∈ H, v ∈ V.

We shall introduce some function spaces.

Throughout Wm,p
0 (D) and W−m,p′(D) will denote the usual Sobolev space and its dual.

4.2.2 Assumptions and formulation of main result

We obtain the the above Gelfand triplet by the following specification: We set V = Wm,p
0 (D),

H = L2(D) and V
′

= W−m,p′ (D) with p
′
, the conjugate of p and p > 1. By Rellich-

Kondrachov embedding theorm, V is compactly embedded inH which in its turn continuously

embedded in V
′
.



Weak and Strong probabilistic solution for strongly nonlinear parabolic problems 91

We consider the operator family At : Wm,p
0 (D) −→ W−m,p′(D), defined by

〈At(u), v〉 =
∑
|β|6m

∫
D
Aβ (t, x, u,Du, . . . , Dmu)Dβvdx,

for any u, v ∈ Wm,p
0 (D), and for any t ∈ [0, T ] .

We now formulate the structure conditions on Aβ. Let Q = [0, T ]×D For 2 6 p <∞ we

have

(i) There exists a constant c0 > 0 and a measurable function h0 ∈ Lp
′
(Q) such that

|Aβ(t, x, ξ)| 6 c0{|ξβ|p−1 + h0(t, x)},

for all |β| 6 m, ∀(t, x, ξ) ∈ Q× Rm with ξβ = {Dβu, |β| 6 m− 1}

(ii) For all (t, x) ∈ Q, all lower-order jets η ∈ Rn1 , and higher-order jets ζ 6= ζ# in Rn2

with n1 + n2 = m,∑
|β|=m

[
Aβ(t, x, (η, ζ))− Aβ(t, x, (η, ζ#))

] (
ζβ − ζ#

β

)
> 0,

where ζ = (η, ζ) with η = {Dβu : |β| = m and ζ is of the form ξβ as in (i), that is

ζ = {Dβu, |β| 6 m− 1}.

(iii) There exists c1 > 0 and a measurable function h1 ∈ L1(Q) such that for all (t, x) ∈ Q
and all ξ ∈ Rm, we have ∑

|β|6m

Aβ(t, x, ξ)ξβ ≥ c1|ξ|p − h1(t, x).

We require on the strongly nonlinear perturbation term g(t, x, u) the following conditions.

(iv) (1) The function g(t, x, u) is measurable in (t, x), and continuous in u.

rg(t, x, r) ≥ 0;

(2) There exists a continuous nondecreasing function h : R −→ R with h(0) = 0 such

that for all (t, x) ∈ Q, r ∈ R, and a fixed constant c2,

|g(t, x, r)| 6 |h(r)| 6 c2{|g(·, x, r)|+ |r|p−1 + 1} (4.1)
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(v) The nonlinear intensity of the noise G satisfies the conditions:

G (·, u) : (0, T ) −→ Hm, measurable,

a.e. t, G (t, ·) H −→ Hm, continuous,

‖G(t, u)‖Hm 6 C(1 + ‖u(t)‖H), (4.2)

where C is a positive constant.

(vi) We assume that f is measurable in (t, x) and belongs to the evolution space Lp
′
(0, T ;Lp

′
(D)).

there exists a positive constant C such that∫ T

0

‖f(t)‖p
′

Lp′ (D)
dt ≤ C, P− a.s. (4.3)

Next, we define the concept of probabilistic weak solution for the problem (P ).

Definition 31. A probabilistic weak solution of the problem (P ) is a system

(Ω,F , (Ft)06t6T ,P,W, u) ,

where

(1) (Ω,F ,P) is a probability space, Ft is a filtration on it,

(2) W is a m-dimensional Ft- standard Wiener process,

(3) (ω, t)→ u(ω, t) is progressively measurable,

(4)

u ∈ L2(Ω,F ,P;L∞(0, T ;H)) ∩ Lp(Ω,F ,P;Lp(0, T ;V )), ∀p ∈ [2,∞)

(5) for all t ∈ [0, T ], u(t) satisfies the integral identity

(u(t), v) +

∫ t

0

〈As(u), v〉ds+

∫ t

0

∫
D
g(s, u)v(s, x) dxds

=

∫ t

0

〈f(s), v〉ds+

(∫ t

0

G(s, u(s)) dW (s), v

)
,∀v ∈ V, P− a.s. (4.4)

Our first main result is

Theorem 33. Assume that the conditions (i)-(vi) are satisfied. Then problem (P) has a

weak solution in the sense of the above definition.

By the definition 31, the probability space (Ω,F ,P) and the Wiener process W are un-

known alongside the process u.
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4.2.3 Regularization of problem (P ) and Krylov-Rozovskii’s result

As explained earlier, the standard methods of monotonicity and compactness used in order

to solve nonlinear parabolic equations in the fundamental works of Minty [145], Browder [38]

, Vishik [207], Lions [138] are not directly applicable to the deterministic version of problem

(P); Brezis and Browder [34] had to rely on a regularization argument and other tools in

their study of that problem. In the case at hand here, we shall also rely on a regularization

which will reduce our problem to sequence of problems which fall in the class studied by

Krylov and Rozovskii [123] (called (Pk) in the sequel). Our required weak solution will be

constructed as a limit (in appropriate sense) of solutions of the regularized problem.

In order to introduce the regularization we introduce an intermediary probability space(
Ω̄, F̄ , P̄

)
with a prescribed Wiener process W̄ (t).

We define the truncated perturbation functions gk of g by setting

gk(u) =: Tk (g (u)) =


g(u) if |g(u)| < k,

k if g(u) ≥ k

−k if g(u) 6 −k.

A useful fact is that Tk (·) is Lipschitz with respect to (·). Our regularized problem reads as

follows:

(Pk)


du+ [At(u) + gk(t, x, u)] dt = f(t)dt+G(t, u)dW̄ (t) in QT

u(x, 0) = 0, in D
∂ju

∂N j
= 0, on ∂D× (0, T ).

By the properties of truncations, we have that gk ∈ L∞(QT ) , P̄-a.s. Moreover, from the

definition of gk and the assumption g(t, x, r)r ≥ 0, one can obviously check that gk(t, x, r)r ≥
0. Now, problem (Pk) is more regular than problem (P ) in the sense that the L∞-norm of

the nonlinear term gk is under control; this is in sharp contrast with the unboundedness of

g.

We now summarize the results from the celebrated work of Krylov and Rozovskii [123]

which are of interest to us.

Let (Ω,F ,P) be a complete probability space, (Ft)t∈[0,T ] a filtration (T > 0), D a bounded

domain in Rn with sufficiently regular boundary ∂D. Let z(t) be a square-integrable martin-

gale with values in H = L2(D) such that z is continuous in t, W (t) a Wiener process with

values in some separable Hilbert space E. Consider in [0, T ]× D the following problem

du = −(−1)|α1|+|α2|+...+|αm|Dα1 · . . . ·DαmAα1...αm

(
Dβ1 · . . . ·Dβmu

)
+ (4.5)

+B(Dβ1 · . . . ·Dβmu)dW (t, ω) + dz(t, x, ω)

u(0, x, ω) = u0(x, ω), x ∈ D, (4.6)

Dβ0 · . . . ·Dβm−1u|S = 0, for all β0, . . . , βm−1; (4.7)
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such that |β0|+ · · · |βm−1| 6 m− 1.

It is well-known [123] that the operator At given by

At(u) = −(−1)|α1|+|α2|+...+|αm|Dα1 · . . . ·DαmAα1...αm

(
Dβ1 · . . . Dβmu

)
and the function B satisfy the following conditions:

A1) For all v, v1, v2 ∈ V = Wm,p
0 (D), (t, ω) ∈ [0, T ]× Ω, the function λ 7→ vAt(v1 + λv2, t, x)

is continuous on R.

A2)

2〈v1 − v2, At(v1)− At(v2)〉+ ‖B(v1)−B(v2)‖2
Q 6 K‖v1 − v2‖pH .

A3) For a non-negative function Ψ ∈ L1(D), we have the coercivity condition

2〈v, At(v)〉+ ‖B(v)‖2
Q +K‖v‖pV 6 Ψ +K‖v‖2

H ,

where ‖·‖Q stands for the norm in LQ(E,H), the space of all linear operators Φ : Q1/2(E)→
H.

In [123], an existence result of strong solution of problem (4.5)-(4.7) was obtained under

the additional assumptions:

A4)

|Aα1...αm(ξ, t, x, ω)| 6 Ψ
1
q (t, x, ω) +K

∑
β1,...,βm

|ξβ1,...,βm |p−1.

A5)

|B(ξ, t, x, ω)|2E 6 Ψ(t, x, ω) +K
∑

β1,...,βm

|ξβ1,...,βm |p +K|ξ0,...,0|2.

(A6) The mapping (x, ω)→ u0 (x, ω) is B (D)×F0;

||u0 (ω)||L2(D) <∞, for a.e. ω. ‖Ψ (t, ω)‖L1(D) <∞, for all t, a.e. ω.

Definition 32. A strong solution of problem(4.5)-(4.7) is a process u(ω, t) with values in

L2(D) defined on Ω× [0, T ], strongly continuous in H with respect to t (up to identification

with a continuous modification), progressively measurable and satisfying

1) u ∈ Wm,p
0 (D) for a.e. (ω, t) ∈ Ω× [0, T ],

E
∫ T

0

(
‖u(t)‖p

Wm,p
0 (D)

+ ‖u(t)‖2
L2(D)

)
dt <∞,

and
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2)

u(t, ω) = u0 +

∫ t

0

A(u(s), s, ω)ds+

∫ t

0

B(u(s, ω), s, ω)dW (s, ω) + z(t, ω)

in W−m,p′(D), ∀t ∈ [0, T ], and P-a.s.

Theorem 34. Under the above assumptions (A1)-(A6), a strong solution of problem (4.5)-

(4.7) exists in the sense of Definition 32.

The initial step of the proof of this theorem is a suitable regularization of problem (P) on in-

termediary probability space
(
Ω̄, F̄ , P̄

)
with a prescribed Wiener process W̄ (t) and we denote

by F̄t the filtration generated by the Wiener process W̄ . The strongly nonlinear perturbing

term g does not induce any mapping from Wm,p
0 (D) to it is dual, W−m,p′(D) since no a priori

particular growth restriction is imposed. For this purpose, we truncate this perturbation:

Letting gk(t, u) := Tk(g(t, u)) be the truncation of the function g at levels k ∈ N, then for

all u, v ∈ Wm,p
0 (D), define the mapping v 7→ Rk(t, u, v) by setting

Rk(t, u, v) =

∫ t

0

∫
D
gk(s, u)v(s, x)dxds.

Next, we set A(t, v) = At(v) + gk(t, v) and as usual, we simply use A(t, v) to mean the map

ω̄ 7→ A(t, v, ω̄).

Since gk is the truncation of g, by (iv), it is straightforward

rgk(·, x, r) ≥ 0 and |gk(·, x, r)| 6 |g(·, x, r)| 6 |h(r)| on [0, T ]× Ω̄. (4.8)

For any R > 0, we have

|gk(t, u)| = |gk(t, u)|I(t,x):u6R + |gk(t, u)|I(t,x):u>R. (4.9)

This implies that

|gk(t, u)| 6 sup
|r6|R

gk(t, u) 6 h(R) ∀R ∈ [0,∞). (4.10)

By virtue of assumption (4.1) and Hölder’s inequality, we derive the following estimate:

|Rk(t, u, v)| 6
∫ t

0

∫
D

[
kI{(s,x): meas(s,x)6k} + |g(u)|

]
|v(s, x)|dxds

6 k

∫ t

0

∫
D
|v(s, x)|dxds+

∫ t

0

∫
D
|h(u)||v(s, x)|dxds

6 k(meas(Qt))
1/p′
[∫ t

0

∫
D
|v(s, x)|pdxds

]1/p

+ h(R)k(meas(Qt))
1/p′
[∫ t

0

∫
D
|v(s, x)|pdxds

]1/p

. (4.11)
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Therefore

|Rk(t, u, v)| 6 C(k)||v(s, x)||Lp(D).

Thus for any t ∈ (0, T ), the mapping v 7→ Rk(t, u, v) defines an element of the dual space

W−m,p′(D). For the sake of simplicity, let us denote it by Mk. As a result of this, it is easy

to show following similar arguments as in [33, Proposition 2, page 593], [39] and [208, page

127] that the operator A +M− gk is pseudomonotone. We refer to Browder [39] for the

notion of pseudomonotonicity. We can easily prove using the parabolicity condition (ii) that

the operator At is monotone i.e.,

〈At(u)− At(v), u− v〉 > 0 for any u, v ∈ Wm,p
0 (D). (4.12)

It thus far follows from the monotonicity of At that A is pseudomonotone as well.

On the other hand, we have

|gk(t, x, u(t, x))| 6 sup
|r|6R
|gk(t, x, u)|+R−1ugk(t, x, u(t, x)), (4.13)

where I{(t,x):|u(t,x)|6R} is the indicator function. It follows from condition (iv), that

|gk(t, x, u)| 6 |g(t, x, u)| 6 |h(u)| 6 C{h(R) + |h(−R)|} (4.14)

on the set {(t, x) : u(t, x) 6 R}.
Our regularized problem reads as follows:

Theorem 34 is a particular case of a more general result obtained in [123] for a stochastic

evolution equation involving abstract operators in the framework of Sobolev spaces. Assume

that (4.12) holds, then it is easy to check that problem (Pk) is a particular case of problem

(4.5)-(4.7), with A(t, u, ω̄) = At + gk, B = G and z = 0. In our case we only need the

following assumptions:

(H1) (A, G)-Coercitivity condition: there exist c3 > 0, c4 ∈ R and there exists an (F̄t)-
adapted process h1 ∈ L1(Q× Ω̄) such that for all (t, x) ∈ Q, v ∈ Wm,p

0 (D)

2

∫
D
A(t, v)vdx+ ||G(t, v)||2(L2(D))m − h1(t) + c3||v(t)||p

Wm,p
0 (D)

6 c4||v(t)||2L2(D) on Ω̄.

(H2) Hemicontinuity: for all t ∈ [0, T ], ω̄ ∈ Ω̄ and u, v, w ∈ Wm,p
0 (D) the map λ 7→

〈A(t, u+ λv), w〉 is continuous on R.
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(H3) We assume that f is an (F̄t)-adapted process and there exists c5 > 0 such that∫ T

0

||f(t, ω̄)||p
′

Lp′ (D)
dt 6 c5 P̄− a.s.

here (L2(D))m denotes the m copies of the space L2(D), W−m,p′(D) is the dual of

Wm,p
0 (D) and 〈·, ·〉 stands for the duality pairing between Wm,p

0 (D) and W−m,p′(D)

and Lp
′
(D) denotes the dual of Lp(D) and we need to make notation clear, instead of

using the map ω 7→ G(t, x, v, ω̄) we write G(t, v). Analogously, this applies also to the

functions g(t, x, v, ω̄), gk(t, x, v, ω̄), f(t, x, ω̄), A(t, x, v, ω̄) and so on.

Let us show that the operator A satisfies a boundedness condition. In order to do so, we are

interested only in the term

〈At(u), u〉+

∫
D
ugk(t, u)dx

for now. For this purpose, we multiply the first equation in (Pk) by u then integrate over

[0, t] modulo a stopping time arguments. Then, we remark from (iii), (4.1) (4.8), (4.9), (4.14)

and the compact embedding Wm,p
0 (D) ⊂⊂ Lp(D) that

∫ t

0

〈A(s, (u), u〉ds

=

∫ t

0

〈As(u), u〉ds+

∫ t

0

∫
D
u(s)gk(s, u)dxds

6 c0

∫ t

0

||u(s)||p−1
Wm,p

0 (D)
ds+ c0

∫ t

0

∫
D
h0(s, x)dxds+

∫ t

0

∫
D
|u(s)||g(s, u)|ds

6 c0

∫ t

0

||u(s)||p−1
Wm,p

0 (D)
ds+ c0||h0||L1(Qt) +K(R)

∫ t

0

∫
D
{|g(s, u(s))|+ |u(s, x)|p−1 + 1}ds

6 c0

∫ t

0

||u(s)||p−1
Wm,p

0 (D)
ds+ c0||h0||L1(Qt) +K(R)

[
h(R)meas(Qt) +

∫ t

0

||u(s)||p−1
Lp(D)ds+meas(Qt)

]
6 c6

∫ t

0

||u(s)||p−1
Wm,p

0 (D)
ds+ c0||h0||L1(Qt).

Thus, there exists a constant c7 > 0 and an (F̄t)-adapted function h3 ∈ Lp
′
(Q) such that for

any v ∈ Wm,p
0 (D)

||A(t, v)||W−m,p′ (D) 6 c7||v(t)||p−1
Wm,p

0 (D)
+ h3(t) on Ω̄. (4.15)

We remark from (H1) and (4.15) that for all v ∈ Wm,p
0 (D) and t ∈ [0, T ]

||G(t, v)||2(L2(D))m 6 c4||v(t)||2L2(D) + h1(t) + 2h3(t)||v(t)||Wm,p
0 (D) + (2c7 − c3)||v(t)||p

Wm,p
0 (D)

on Ω̄

(4.16)
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In order to be inline with the assumptions in [123], we set

Ψ = f + h1 + h3.

It is easily seen that Ψ is F̄t-adapted. Using the embedding Lp
′
(D) ⊂ L1(D) is continuous,

it is straightforward that there exists a constant c9 > 0 such that

||Ψ(t, ω̄||L1(D) 6 c9 on Ω̄.

A strong solution of problem (Pk) is defined as follows.

Definition 33. By a strong solution of problem (Pk), we mean a process u : Ω̄×[0, T ] −→ H,

strongly continuous in H with respect to t (up to identification with a continuous modifica-

tion), progressively measurable and satisfying

(1) u ∈ V and for almost every (ω, t) we have

Ē
∫ T

0

(
‖u(t)‖pV + ‖u(t)‖2

L2(D)

)
dt <∞.

(2) for every t ∈ [0, T ], for all v ∈ Wm,p
0 (D), u(t) satisfies the weak formulation of the

problem (Pk)

(u(t), v) +

∫ t

0

〈As(u(s)), v〉ds
∫
Qt

gk(s, u(s))vds =

∫ t

0

〈f(s, u(s)), v〉ds+

+

∫
Qt

G(s, u(s))vdxdW̄ (s).

It is easy to see that under our assumptions (i)-(vi), problem (Pk) satisfies the above

conditions of Krylov and Rozovskii. Thus Theorem 34 implies

Theorem 35. Under the hypotheses (i)-(vi), (H1)-(H3) and if in addition (4.12) holds for

each fixed k ∈ N, the truncated problem (Pk) has a strong solution uk in the sense of Definition

33.

This result will be an important building block for the proof of the existence of weak

probabilistic solutions for problem (P ).
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4.3 Proof of Theorem 33

4.3.1 Uniform A Priori Estimates

We start with the proof of key uniform a priori estimates. Throughout uk is assumed to

satisfy problem (Pk). Therefore the conditions made on (Pk) will be assumed to hold. Also

all generic constants independently will be denoted by C and they may change from line to

line. We have

Lemma 18. There exists a constant C (independent of k) such that the following estimates

hold for uk

Ē sup
06t6T

‖uk(t)‖2
L2(D) 6 C, (4.17)

Ē
∫ T

0

‖uk(t)‖pWm,p
0 (D)

dt 6 C. (4.18)

Proof. For a fixed k ∈ N, we define the F̄t-stopping times

τNk =

{
inf{t > 0 : ‖uk(t)‖L2(D) ≥ N} if {ω ∈ Ω : ‖uk(t)‖L2(D) ≥ N} 6= ∅

T otherwise.

By applying Itô’s formula to the function ‖uk(t)‖2
L2(D), we have

‖uk(t)‖2
L2(D) + 2

∑
|β|6m

∫
Qt

Aβ (s, x, uk(s), Duk(s), . . . , D
muk(s))D

βuk(s)dxds+ (4.19)

+ 2

∫ t

0

∫
D
gk(s, uk(s))uk(s)dxds

= 2

∫ t

0

〈f(s), uk(s)〉ds+

∫ t

0

||G(s, uk(s))||2Hm ds+ 2

∫ t

0

(G(s, uk(s)), uk(s)) dW̄ (s).

Hence, using assumption (iii) on At, we get

‖uk(t)‖2
L2(D) + 2c1

∫ t

0

‖uk(s)‖pV ds− 2c1

∫
Qt

h1(s, x)dxds+ 2

∫
Qt

gk(uk)uk(s)dxds (4.20)

6 2C

∫ t

0

‖f(s)‖V ′‖uk(s)‖V ds+

∫ t

0

‖G(s, uk(s))‖2
Hmds+ 2

∫ t

0

(G(s, uk(s)), uk(s)) dW̄ (s).

Taking the supremum over [0, t ∧ τNk ], it follows from (4.19), (4.20), Young’s inequality and
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assumption (v) that

sup
06s6t∧τNk

‖uk(s)‖2
L2(D) + 2c1

∫ t∧τNk

0

‖uk(s)‖pV ds+ 2

∫ t∧τNk

0

∫
D
gk(uk)uk(s)dxds (4.21)

6 2CεC

∫ t∧τNk

0

‖f(s)‖p
′

V ′ds+ εp
∫ t∧τNk

0

‖uk(s)‖pV ds+ C

∫ t∧τNk

0

[
1 + ‖uk(s)‖2

L2(D)

]
ds

+ 2c1‖h1‖L1(Q
t∧τN

k
) + 2 sup

s∈[0,t∧τNk ]

∫
Qs

G(r, uk(x, r))uk(x, r)dxdW̄ (r),

where a ∧ b = min{a, b}, and ε is an arbitrary positive number.

For the stochastic integral appearing on the right side of (4.21) we proceed first by tak-

ing mathematical expectation in both sides of (4.21) then, in view of assumption (v), and

applying the Burkholder-Davis-Gundy, Cauchy-Schwarz and Young’s inequalities, we have

2Ē sup
s∈[0,t∧τNk ]

∣∣∣∣∫ s

0

(G(r, uk(r)), uk(r)) dW̄ (r)

∣∣∣∣
6 2Ē

[∫ s

0

(G(r, uk(r)), uk(r))
2 dr

] 1
2

6 2Ē

[∫ t∧τNk

0

‖G(s, uk(s))‖2
(L2(D))m‖uk(s)‖2

L2(D)ds

] 1
2

6 Ē2 sup
t∧τNk ∈[0,t∧τNk ]

‖uk(s)‖L2(D)

[∫ t∧τNk

0

‖G(s, uk(s))‖2
(L2(D))mds

] 1
2

6 ηĒ sup
s∈[0,t∧τNk ]

‖uk(s)‖2
L2(D) + CηĒ

∫ t∧τNk

0

‖G(s, uk(s))‖2
(L2(D))mds

6 ηĒ sup
s∈[0,t∧τNk ]

‖uk(s)‖2
L2(D) + CηĒ

∫ t∧τNk

0

[
1 + ‖uk(s)‖2

L2(D)

]
ds

= ηĒ sup
s∈[0,t∧τNk ]

‖uk(s)‖2
L2(D) + Cη

(
t ∧ τNk

)
+ CηĒ

∫ t∧τNk

0

‖uk(s)‖2
L2(D)ds.

Combining all these estimates, we obtain

Ē sup
06s6t∧τN

‖uk(s)‖2
L2(D) + 2c3Ē

∫ t∧τN

0

‖uk(s)‖pWm,p
0 (D)

ds

6 2εpĒ
∫ t∧τN

0

‖uk(s)‖pWm,p
0 (D)

ds+ 2CεCĒ
∫ t∧τN

0

‖f(s)‖p
′

W−m,p′ (D)
ds+ C4Ē

∫ t∧τN

0

‖uk(s)‖2
L2(D)ds

+ 2c8Ē‖h1(s)‖L1(Qt∧τN ) + ηCĒ sup
s∈t∧τN

‖uk(s)‖2
L2(D) + 2Ē

∫ t∧τN

0

||h3(s)||Lp′ (D)||v||Wm,p
0 (D)ds.

(4.22)
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Noting that by Young’s inequality

Ē
∫ t∧τN

0

||h3(s)||Lp′ (D)||v||Wm,p
0 (D)ds 6 CεĒ

∫
Qt∧τN

||h3(s)||p
′

Lp′ (D)
ds+ εpĒ

∫ t∧τN

0

||v(s)||p
Wm,p

0 (D)
ds.

(4.23)

Combining assumption (H4) with the estimates (4.22), (4.23) and in view of (vi), (4.2) and the

fact that gk(s, x, uk(s))uk(s) ≥ 0 we deduce from the corresponding relation by appropriate

choices of ε and η that

Ē sup
06s6t∧τNk

‖uk(s)‖2
L2(D) + 2c1Ē

∫ t∧τNk

0

‖uk(s)‖pV ds 6 C(T ) + CĒ
∫ t∧τNk

0

‖uk(s)‖2
L2(D)ds.

Then Gronwall’s inequality implies that for all s ∈ [0, t ∧ τNk ] and each k ∈ N

Ē sup
06s6t∧τNk

‖uk(s)‖2
L2(D) + Ē

∫ t∧τNk

0

‖uk(s)‖pV ds 6 C. (4.24)

Hence, passing to the limit in (4.24), as N →∞ and using the fact that t∧ τNk → t, P− a.s.
we get (4.17) and (4.18). Thus, the lemma is proved.

The next result provides us with some higher-integrability estimates.

Lemma 19. uk satisfies the estimates

Ē sup
t∈[0,T ]

‖uk(t)‖qL2(D) 6 C, (4.25)

Ē
∫ t

0

‖uk(s)‖q−2
L2(D)‖uk(s)‖

p
Wm,p

0 (D)
ds 6 C; (4.26)

for any q ≥ 2; C is a constant independent of k.

Proof. We apply Itô’s formula to the function
(
‖uk(t)‖2

L2(D)

) q
2
. In view of (4.19), we get

d
(
‖uk(t)‖2

L2(D)

) q
2

= (4.27)

= q
(
‖uk(t)‖2

L2(D)

) q
2
−1
[
−〈At(uk), uk〉 −

∫
D
uk(t)gk(t, uk(t))dx

]
dt+

+ q
(
‖uk(t)‖2

L2(D)

) q
2
−1
[
〈f(t), uk(t)〉dt+

∫
D
uk(t)G(t, uk(t))dxdW̄ (t)

]
+

+ q
q − 2

2

(
‖uk(t)‖2

L2(D)

) q
2
−2

(G(t, uk(t)), uk(t))
2 dt

+
q

2

(
‖uk(t)‖2

L2(D)

) q
2
−1

‖G(t, uk(t))‖2
(L2(D))mdt.
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Moreover, integrating (4.27) over (0, t) yields

‖uk(t)‖qL2(D) + q

∫ t

0

‖uk(s)‖q−2
L2(D)

[
〈As(uk), uk〉+

∫
D
uk(s)gk(s, uk(s))dx

]
ds

6 q

∫ t

0

‖uk(s)‖q−2
L2(D)

[
〈f(s), uk(s)〉ds+

∫
D
uk(s)G(s, uk(s))dxdW̄ (s)

]
+ q

q − 2

2

∫ t

0

‖uk(s)‖q−4
L2(D)‖G(s, uk(s))‖2

(L2(D))m‖uk(s)‖2
L2(D)ds

+
q

2

∫ t

0

‖uk(s)‖q−2
L2(D)‖G(s, uk(s))‖2

(L2(D))mds. (4.28)

Using the coercivity condition of At, taking the supremum over s ∈ [0, t] and mathematical

expectation on both sides of (4.28) leads to

Ē sup
06s6t
‖uk(s)‖qL2(D) + qĒ

∫ t

0

‖uk(s)‖q−2
L2(D)

[
c1‖uk(s)‖pWm,p

0 (D)
+

∫
D
ukgk(s, uk)dx

]
ds (4.29)

6 qĒ
∫ t

0

‖uk(s)‖q−2
L2(D)

[
〈f, uk〉+

1

2
‖G(uk)‖2

(L2(D))m

]
ds+ qĒ

∫ t

0

‖uk(s)‖q−2
L2(D)

∫
D
h1(s, x)dxds

+ q
(q − 2)

4
Ē
∫ t

0

‖uk(s)‖q−2
L2(D)‖G(uk)‖2

(L2(D))mds+ qĒ sup
06s6t

∫ s

0

‖uk(r)‖q−2
L2(D) (G(uk), uk) dW̄ .

We tackle the terms of (4.28) one by one. By Young’s inequality with an arbitrary ε > 0

Ē
∫ t

0

‖uk(s)‖q−2
L2(D)〈f(s), uk(s)〉ds (4.30)

6 Ē
∫ t

0

‖uk(s)‖q−2
L2(D)‖f(s)‖W−m,p′ (D)‖uk(s)‖Wm,p

0 (D)ds

6 Ē
∫ t

0

‖uk(s)‖q−2
L2(D)

[
C(ε)‖f(s)‖p

′

W−m,p′ (D)
+ ε‖uk(s)‖pWm,p

0 (D)

]
ds

6 Ē
∫ t

0

‖uk(s)‖q−2
L2(D)C(ε)‖f(s)‖p

′

W−m,p′ (D)
ds+ εĒ

∫ t

0

‖uk(s)‖q−2
L2(D)‖uk(s)‖

p
Wm,p

0 (D)
ds

6 CC(ε)Ē
[

sup
06s6t
‖uk(s)‖q−2

L2(D)

∫ t

0

‖f(s)‖p
′

W−m,p′ (D)
ds

]
+ εĒ

∫ t

0

‖uk(s)‖q−2
L2(D)‖uk(s)‖

p
Wm,p

0 (D)
ds.

For the first term on the right hand side of (4.30), we first use the assumption (vi) and then

apply Young’s inequality to get

Ē
[

sup
06s6t
‖uk(s)‖q−2

L2(D)

∫ t

0

‖f(s)‖p
′

W−m,p′ (D)
ds

]
6 CĒ sup

06s6t
‖uk(s)‖q−2

L2(D)

6 Cε + εĒ sup
06s6t
‖uk(s)‖qL2(D),
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with any ε > 0. As in the above case, by (4.2) and Young’s inequality, we have

Ē
∫ t

0

‖uk(s)‖q−2
L2(D)‖G(uk)‖2

(L2(D))mds 6 Ē
∫ t

0

‖uk(s)‖q−2
L2(D)

[
1 + ‖uk(s)‖L2(D)

]2
ds

6 2Ē
∫ t

0

[
‖uk(s)‖q−2

L2(D) + ‖uk(s)‖qL2(D)

]
ds

6 CT + CĒ
∫ t

0

‖uk(s)‖qL2(D)ds. (4.31)

For the stochastic term we use Burkholder-Davis-Gundy, Young’s and Hölder’s inequalities.

We have, for any ε > 0,

Ē sup
06s6t

∣∣∣∣∫ s

0

‖uk(r)‖q−2
L2(D)

∫
D
G(r, uk)ukdxdW̄ (r)

∣∣∣∣ (4.32)

6 CĒ
[∫ t

0

‖uk(s)‖2q−2
L2(D)‖G(s, uk(s))‖2

(L2(D))mds

] 1
2

≤ CĒ sup
0≤s≤t

‖uk(s)‖q−1
L2(D)

[∫ t

0

(
1 + ‖uk(s)‖2

L2(D)

)
ds

] 1
2

6 εĒ sup
0≤s≤t

‖uk(s)‖qL2(D) + CεĒ
[∫ t

0

(
1 + ‖uk(s)‖2

L2(D)

)
ds

] q
2

6 εĒ sup
0≤s≤t

‖uk(s)‖qL2(D) + CεT
q−2

2 Ē
[∫ t

0

(
1 + ‖uk(s)‖2

L2(D)

) q
2
ds

]
6 εĒ sup

0≤s≤t
‖uk(s)‖qL2(D) + CεT

q−2
q

[
T + Ē

∫ t

0

‖uk(s)‖qL2(D)ds

]
.

In view of condition (iii) and application of Young’s inequality, we obtain with any ε > 0

Ē
∫ t

0

‖uk(s)‖q−2
L2(D)

∫
D
h1(x, s)dxds 6 εĒ sup

06s6t
‖uk(s)‖qL2(D) + Cε. (4.33)

Collecting the results of estimates (4.30)-(4.33), it then follows from (4.29) that for sufficiently

small ε > 0

Ē sup
06s6t
‖uk(s)‖qL2(D) + Ē

∫ t

0

‖uk(s)‖q−2
L2(D)‖uk(s)‖

p
Wm,p

0 (D)
ds 6 C (T ) + CĒ

∫ t

0

‖uk(s)‖qL2(D)ds.

Thus using Gronwall’s inequality we deduce that

Ē sup
06s6t
‖uk(s)‖qL2(D) 6 C, (4.34)

Ē
∫ t

0

‖uk(s)‖q−2
L2(D)‖uk(s)‖

p
Wm,p

0 (D)
ds 6 C. (4.35)

The proof of the lemma is thereby complete.
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We now prove one of the most important ingredient which essentially central in proving

the tightness property of the Galerkin approximating sequence.

Lemma 20. For all k ≥ 1, we have

Ē sup
|θ|6δ

∫ T

0

‖uk(t+ θ)− uk(t)‖p
′

W−m,p′ (D)
dt 6 Cδ1/(p−1),

for any sufficiently small δ > 0; C is a positive constant independent of k.

Proof. Suppose that θ > 0 so that t + θ ∈ [0, T ] for t ∈ [0, T ] and uk(t + θ) is well defined.

uk is extended by zero outside (0, T ). A similar reasoning can be done whenever θ < 0.

We have

uk(t+ θ)− uk(t) = −
∫ t+θ

t

[As(uk) + gk(uk)] ds+

∫ t+θ

t

f(s)ds+

∫ t+θ

t

G(uk)dW̄ (s),

thanks to problem (Pk). We set V = Wm,p
0 (D) and V ∗ = W−m,p′(D). By definition

‖uk(t+ θ)− uk(t)‖W−m,p′ (D) = sup
ϕ∈Wm,p

0 (D):‖ϕ‖
W
m,p
0 (D)

=1

∫
D

[uk(t+ θ)− uk(t)]ϕ(x) dx.

It then follows from Fubini’s theorem (or Jensen’s inequality) that

‖uk(t+ θ)− uk(t)‖V ′ 6
∫ t+θ

t

‖As(uk)‖V ′ ds+

∫ t+θ

t

‖gk(s, uk)‖V ′ ds+

+

∫ t+θ

t

‖f(s)‖V ′ ds+

∥∥∥∥∫ t+θ

t

G(s, uk)dW̄ (s)

∥∥∥∥
V ′
. (4.36)

Firstly, by assumption (i) and Hölder’s inequality∫ t+θ

t

‖As(uk)‖V ′ ds 6
∫ t+θ

t

c0

{
‖uk(s)‖p−1

V ′ +

∫
D
h0(s, x)dx

}
ds (4.37)

6 c0

∫ t+θ

t

‖uk(s)‖p−1
V ds+ c0

∫ t+θ

t

∫
D
h0(s, x)dxds

6 c0θ
1
p

[∫ t+θ

t

‖uk(s)‖pV ds
] 1
p′

+ c0θ
1
p

[∫ t+θ

t

∫
D
hp
′

0 (s, x)dxds

] 1
p′

.

Similarly, we have ∫ t+θ

t

‖f(s)‖V ′ds 6 θ
1
p

[∫ t+θ

t

‖f(s)‖p
′

V ′ds

] 1
p′

. (4.38)
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By the Sobolev embedding, we have∥∥∥∥∫ t+θ

t

gk(s, uk)ds

∥∥∥∥
V ′

6
∫ t+θ

t

‖gk(s, uk)‖V ′ ds 6 θ
1
p

[∫ t+θ

t

‖gk(s, uk)‖p
′

V ′ds

] 1
p′

6 θ
1
p

[∫ t+θ

t

‖gk(s, uk)‖p
′

Lp′ (D)
ds

] 1
p′

6 θ
1
p

[∫ t+θ

t

‖gk(s, uk)‖p
′

L∞(D)ds

] 1
p′

. (4.39)

Combining (4.36)-(4.39) and taking the supremum over δ ∈ [0, 1) and the mathematical

expectation, we get

Ē sup
0≤θ6δ

‖uk(t+ θ)− uk(t)‖p
′

V ′ (4.40)

6 c0δ
p′
p Ē
∫ t+δ

t

‖uk(s)‖pV ds+ c0δ
p′
p Ē
∫ t+δ

t

‖h0(s)‖p
′

Lp′ (D)
ds

+ δ
p′
p Ē
∫ t+δ

t

‖gk(s, uk)‖p
′

L∞(D)ds+ Cδ
p′
p Ē
∫ t+δ

t

‖f(s)‖p
′

V ′ds+ Ē sup
0≤θ6δ

∥∥∥∥∫ t+θ

t

G(s, uk)dW̄ (s)

∥∥∥∥p
′

V ′
.

For the last term on the right hand side of (4.40), we use the definition of the norm in

W−m,p′(D), Fubini’s theorem and Burkholder-Davis-Gundy’s and Cauchy-Schwarz’s inequal-

ities. We have

Ē sup
0≤θ6δ

∥∥∥∥∫ t+θ

t

G(s, uk)dW̄ (s)

∥∥∥∥p
′

W−m,p′ (D)

≤ Ē sup
0≤θ6δ

(∫ t+θ

t

(∫
D
G(s, uk)ϕdx

)
dW̄ (s)

)p′

≤ sup
ϕ∈Wm,p

0 (D):||ϕ||
W
m,p
0 (D)

=1

Ē

(∫ t+δ

t

(∫
D
G(s, uk)ϕdx

)2

ds

)p′/2

≤ sup
ϕ∈Wm,p

0 (D):||ϕ||
W
m,p
0 (D)

=1

Ē
(∫ t+δ

t

||ϕ||2L2(D) ||G(s, uk)||2(L2(D))m ds

)p′/2

6 CĒ
(∫ t+δ

t

||G(s, uk)||2(L2(D))m ds

)p′/2

6 CĒ
[
δ +

∫ t+δ

t

‖uk(s)‖2
L2(D) ds

] p′
2

6 C

[
δ
p′
2 + δ

p′
2 Ē
(

sup
t≤s≤t+δ

‖uk(s)‖p
′

L2(D)

)]
≤ Cδ

p′
2 , (4.41)
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where we have used the estimate (4.25). Now, integrating (4.40) over [0, T − δ] and using

(4.41), we get∫ T

0

Ē sup
θ6δ
‖uk(t+ θ)− uk(t)‖p

′

V ′dt

≤ Cδ
1
p−1

∫ T

0

Ē
∫ t+δ

t

‖uk(s)‖pV dsdt+ Cδ
1
p−1

∫ T

0

Ē
∫ t+δ

t

‖h0(s)‖p
′

Lp′ (D)
dsdt

+Cδ
1
p−1

∫ T

0

Ē
∫ t+δ

t

‖gk(s, uk)‖p
′

L∞(D)dsdt+ Cδ
1
p−1

∫ T

0

Ē
∫ t+δ

t

‖f(s)‖p
′

V ′dsdt+ Cδ
p′
2 .

At this stage we choose δ such that δ < (1/k)p
′
, so that we have a uniform control with

respect to k on the term involving ‖gk(s, uk)‖L∞(D).

In view of Lemma 19, the conditions on the data and the fact that
1

p− 1
6
p′

2
for p ≥ 2,

we get that ∫ T

0

Ē sup
θ6δ
‖uk(t+ θ)− uk(t)‖p

′

W−m,p′ (D)
dt ≤ Cδ

1
p−1 .

This completes the proof of the lemma.

4.3.2 Compactness Results

We start this subsection by introducing some auxiliary spaces which will be needed for the

compactness of probability measures generated by the pair
(
W̄ , uk

)
.

Following [22], for any sequences µn, νn such that µn, νn ≥ 0 and µn, νn −→ 0 as n −→∞,

we define the set Uµn, νn of functions

ϕ ∈ Lp (0, T ;Wm,p
0 (D)) ∩ L∞

(
0, T ;L2(D)

)
such that

sup
n

1

νn
sup
|θ|6µn

(∫ T

0

‖ϕ(t+ θ)− ϕ(t)‖p
′

W−m,p′ (D)
dt

) 1
p′

<∞,

where p ∈ [1,∞) and p′ its Hölder’s conjugate. We endow Uµn,µn with the norm

‖ϕ‖Uµn, νn = sup
06t6T

‖ϕ(t)‖L2(D) +

(∫ T

0

‖ϕ(t)‖p
Wm,p

0 (D)
dt

) 1
p

+

+ sup
n

1

νn

(
sup
|θ|6µn

∫ T

0

‖ϕ(t+ θ)− ϕ(t)‖p
′

W−m,p′ (D)
dt

) 1
p′

.

Uµn, νn is then a Banach space.

We have the following compactness result from [21] which is interesting in its own right.
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Lemma 21. The set Uµn, νn just defined above is a compact subset of L2 (0, T ;L2(D)).

Let 1 6 p <∞. The space Up,µn, νn consists of random variables ϕ on
(
Ω̄, F̄ , P̄

)
such that

Ē sup
06t6T

‖ϕ(t)‖2
L2(D) <∞,

Ē
∫ T

0

‖ϕ(t)‖p
Wm,p

0 (D)
dt <∞,

Ē sup
n

1

νn

(
sup
|θ|6µn

∫ T

0

‖ϕ(t+ θ)− ϕ(t)‖p
′

W−m,p′ (D)
dt

) 1
p′

<∞.

Up,µn, νn is a Banach space under the norm

‖ϕ‖Up,µn, νn =

(
Ē sup

06t6T
‖ϕ(t)‖2

L2(D)

) 1
2

+

(
Ē
∫ T

0

‖ϕ(t)‖p
Wm,p

0 (D)
dt

) 1
p

+

+ Ē sup
n

1

νn

(
sup
|θ|6µn

∫ T

0

‖ϕ(t+ θ)− ϕ(t)‖p
′

W−m,p′ (D)
dt

) 1
p′

.

Here ϕ is extended by zero outside the interval [0, T ].

The a priori estimates established in the previous Lemmas allow us to assert that for any

p ≥ 2, and for µn, νn such that the series
∑∞

n=1

(µn)p
′/p

νn
converges, the sequence {uk : k ∈ N}

remain in a bounded subset of Up,µn, νn . We extend ϕ by zero outside [0, T ].

Next, we shall prove the tightness property thanks to the finite difference estimate in the

dual space W−m,p′(D) proved in Lemma 20. For more information about similar version of

this proof, we refer for instance to [7, 22, 21, 67, 68, 168, 186, 182, 185].

4.3.3 Tightness result

Now, let S = C ([0, T ];Rm)× L2(0, T ;L2(D)) and B(S) the σ-algebra of the Borel sets of S.

For each k, we construct the probability measure Λk on (S,B(S)) as follows.

Consider the mapping

ϕ : ω̄ 7→
(
W̄ (., ω̄), uk(., ω̄)

)
defined on

(
Ω̄, F̄ , P̄

)
and taking values in (S,B(S)). Then

Λk(A) = P̄(ϕ−1(A)) for all A ∈ B(S).

We now formulate the following key tightness result for our work.
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Lemma 22. The family of probability measures {Λk}∞k=1 is tight on (S,B(S)). That is, for

any ε > 0, there exist some compact subsets Σε ⊂ C ([0, T ];Rm) and Zε ⊂ L2 (0, T ;L2(D))

such that

Λk (Σε × Zε) ≥ 1− ε, ∀k ∈ N.

Proof. We shall find for a given ε > 0 a compact subset Kε ⊂ S such that

Λk

(
(W̄ , uk) /∈ Kε

)
< ε. (4.42)

It is enough to show that there exists two subsets Σε ⊂ C(0, T ;Rm) and Zε ⊂ L2(0, T ;L2(D))

such that

P̄
(
ω̄ : W̄ (·, ω̄) ∈ Σε;uk(·, ω̄) ∈ Zε

)
> 1− ε. (4.43)

It is sufficient to prove that

P̄(ω̄ : W̄ /∈ Σε) 6
ε

2
; (4.44)

P̄(ω̄ : uk /∈ Zε) 6
ε

2
. (4.45)

In order to prove (4.44), we define Θk
δ (W̄ ), the modulus of continuity of W̄ by

Θk
δ (W̄ ) := sup

{
|W̄ (t)− W̄ (s)| : |t− s| 6 δ; s, t ∈ [0, T ]

}
, (4.46)

and the set

Σε =

{
W̄ : sup

t∈[0,T ]

|W̄ (t)| 6Mε,Θ
k
δN

(W̄ ) 6
Lε
N

with δ < δN ,∀N

}

where δN =
T

N6
is the length of

{
j

N6

}
, the subdivision of the interval [0, T ] and Lε,Mε are

positive constants to be chosen later. Indeed, the set Σε is compact thanks to Arzela-Ascoli’s

result.

We have

P̄(ω̄ : W̄ /∈ Σε) = P̄
(
ω̄ :

{
sup

06t6T
|W (t, ω̄)| > Mε

}⋃{
Θk
δN

(W̄ (ω̄)) >
Lε
N

})
= P̄

(
ω̄ :

{
sup

06t6T
|W (t, ω̄)| > Mε

})
+ P̄

(⋃
N∈N

{
Θk
δN

(W̄ (ω̄)) >
Lε
N

})

6
C

Mε

Ē sup
06t6T

|W̄ (t)|+
∑
n∈N

P̄
(
ω̄ :

{
W̄ (·) : Θk

δN
(W̄ ) >

Lε
N

})
.
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Let I = [s, t] ⊂ [0, T ]. We take the subdivision of of [0, T ] with length T
N6 . Let Ij be the jth

subsets of [0, T ]. Using this subdivision, we obtain

P̄
(
ω̄ : W̄ (t, ω̄) /∈ Σε

)
6

C

Mε

Ē sup
06t6T

|W̄ (t)|+
∑
N∈N

P̄

[TN6]⋃
j=1

(
W̄ (t, ω̄) : sup

s,t∈Ij
|W̄ (t)− W̄ (s)| > LεN

−1

)
6

C

Mε

Ē sup
06t6T

|W̄ (t)|+
∑
N∈N

[TN6]∑
j=1

P̄

(
W̄ (t, ω̄) : sup

s,t∈Ij
|W̄ (t)− W̄ (s)| > LεN

−1

) .

We recall the following classical result

Ē
(
|W̄ (t)− W̄ (s)|2n

)
6 (2n− 1)!(t− s)n, ∀n ∈ N, s, t ∈ Ij. (4.47)

Using this result and Markov’s inequality, we have

P̄
(
ω̄ : W̄ (t, ω̄) /∈ Σε

)
6

C

Mε

√
T +

∑
N∈N

[TN6]∑
j=1

(
N

Lε

)4

Ē sup
s,t∈Ij

|W̄ (t)− W̄ (s)|4

6
C

Mε

√
T + 9T 2L−4

ε

∑
N∈N

[TN6]∑
j=1

N−12N4

6
C

Mε

√
T + T 2CL−4

ε

∑
N∈N

N−2.

We choose

Mε >
4C
√
T

ε
and L4

ε >
4CT
ε

∑
N∈N

1

N2
,

to deduce the prove of (4.44).

For (4.45), we choose Zε ⊂ UµN ,νN to be the set of the form: Zε is the set of elements

z ∈ UµN ,νN satisfying

sup
06t6T

||z(t)||2L2(D) 6 Pε,

∫ T

0

||z(t)||p
Wm,p

0 (D)
dt 6 qε,

sup
|θ|6µN

∫ T−µN

0

||z(t+ θ)− z(t)||p
′

W−m,p′ (D)
dt 6 rενN .
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where Pε, qε, rε are positive constant to be chosen later on and µN and νN can be chosen so

that µn, νN → 0 as N →∞ and satisfying

∑
N∈N

µ
1
p−1

N

νN
<∞.

For instance, we take

νN =
1

N
,µN =

1

Nκ
for κ > 2(p− 1).

Thus Zε is a compact subset of L2(0, T ;L2(D)) by Lemma 21.

P̄ (ω̄ : uk(t, ω̄) /∈ Zε)

6 P̄
(

sup
06t6T

||uk(t, ω̄)||2L2(D) > Pε

)
+ P̄

(∫ T

0

||uk(t, ω̄)||p
Wm,p

0 (D)
dt > qε

)
+

+ P̄

(⋃
N∈N

sup
|θ|6µN

∫ T−µN

0

||uk(t+ θ, ω̄)− uk(t, ω̄)||p
′

W−m,p′ (D)
> rενN

)

Once more using Markov’s inequality, we have

P̄ (ω̄ : uk(t, ω̄) /∈ Zε)

6
1

Pε
Ē sup

06t6T
||uk(t, ω̄)||2L2(D) +

1

qε
Ē
∫ T

0

||uk(t, ω̄)||p
Wm,p

0 (D)
dt+

+
∞∑
N=1

1

rενN
Ē sup
|θ|6µN

∫ T

0

||uk(t+ θ)− uk(t)||p
′

W−m,p′ (D)
dt

since ∫ T−µN

0

||uk(t+ θ)− uk(t)||p
′

W−m,p′ (D)
dt 6

∫ T

0

||uk(t+ θ)− uk(t)||p
′

W−m,p′ (D)
dt.

By virtue of Lemma 18, 19, 20, we deduce that

P̄ (ω̄ : uk(t, ω̄) /∈ Zε) 6 C

(
1

Pε
+

1

qε
+

1

rε

)
.

We choose Pε, qε, rε so that

Pε, qε, rε >
6C

ε

yields the proof of (4.45); hence (4.43) which thus proves (4.42) by taking Kε = Σε × Zε.

From this, the proof of Lemma 22 is concluded.
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4.3.4 Application of Prokhorov and Skorokhod theorems

The tightness of the family of probability measures Λk proved in the previous subsection

and Prokhorov’s theorem imply that {Λk}∞k=1 is relatively compact in the set of probability

measures in (S,B(S)), equipped with the weak convergence topology. Therefore, we can

extract a subsequence {Λki}∞i=1which weakly converges to a probability measure Λ. That is,

Λki → Λ weakly

i.e., for any continuous and bounded function ϕ : S → R we have∫
S
ϕ(W̄ (t), z(t))dΛki →

∫
S
ϕ(W̄ (t), z(t))dΛ.

Hence by Skorokhod’s theorem, there exists a probability space (Ω,F ,P) and pairs of random

variables (Wki , uki) and (W,u) on (Ω,F ,P) with values in S such that

the probability law of (Wki , uki) is Λki , (4.48)

Wki(., ω) −→ W (., ω) in C([0, T ];Rm), as i −→∞, P− a.s., (4.49)

uki(., ω) −→ u(., ω) in L2
(
0, T ;L2(D)

)
, as i −→∞, P− a.s., (4.50)

the probability law of (W,u) is Λ. (4.51)

Next, we choose for the filtration (Ft) by setting

Ft = σ{(W (s) , u (s)) : 0 ≤ s ≤ t}.

It turns out, according to similar reasoning used in [7, 22, 21, 67, 68, 168, 185, 182, 185]; one

can prove that W is a m-dimensional Ft-standard Wiener.

Following these references, one can also prove that the pair (Wki , uki) satisfies the the following

equation (the so-called weak formulation)

(uki(t), v) +

∫ t

0

〈As(uki(s)), v〉ds+

∫ t

0

(gki(s, uki), v)ds

=

∫ t

0

〈f(s), v〉ds+

∫ t

0

(G(s, uki), v)dWki(s), ∀v ∈ W
m,p
0 (D) P− a.s., (4.52)

Unlike the corresponding case in Chapter 3, we cannot directly use Lemma 7 (Chapter 2)

since we are not in an infinite dimensional situation. Therefore, the approach in the just

cited papers become necessary.

4.3.5 Existence of weak probabilistic solution

We split this subsection into steps.
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Step1. This step is devoted to some weak convergence results. Owing to (4.52), Lemmas

18, 19 and 20 can be applied to uki . That is, for any p, q ∈ [2,∞), we have

E
∫ T

0

‖uki(t)‖
p
Wm,p

0 (D)
dt 6 C, (4.53)

E sup
t∈[0,T ]

‖uki(t)‖
q
L2(D) 6 C, (4.54)

E sup
|θ|6δ

∫ T

0

‖uki(t+ θ)− uki(t)‖
p′

W−m,p′ (D)
dt 6 Cδ1/(p−1). (4.55)

Thus, there exists a new subsequence of uki which we still denote by the same symbol uki
such that

uki ⇀ u weakly inLp (Ω,F ,P;Lp (0, T ;Wm,p
0 (D))) , (4.56)

uki ⇀ uweakly inLq
(
Ω,F ,P;Lr

(
0, T ;L2(D)

))
∀r ∈ [2,∞), (4.57)

uki (ω) ⇀ u (ω) weakly star inL∞
(
0, T ;L2(D)

)
.

Furthermore u satisfies

E
∫ T

0

‖u(t)‖p
Wm,p

0 (D)
dt 6 C,

E
(∫ T

0

‖u(t)‖rL2(D)dt

)q/r
6 C ∀r ∈ [2,∞),

||u (ω)||L∞(0,T ;L2(D)) <∞, P− a.s.

From Lemma 18 and the conditions on the operator At, we have

E
∫ T

0

‖At(uki(t))‖
p′

W−m,p′ (D)
dt 6 C.

Hence there exists a random function $ ∈ Lp′
(
Ω,F ,P;Lp

′ (
0, T ;W−m,p′(D)

))
such that up

to extraction of a subsequence

At(uki(t)) ⇀ $(t) weakly inLp
′
(

Ω,F ,P;Lp
′
(

0, T ;W−m,p′(D)
))

. (4.58)

Following standard arguments as in Chapter 3, one shows that

uki(T ) −→ u(T ) weakly in L2(Ω,F ,P;L2(D)). (4.59)

Thanks to the higher integrability (4.54) and Vitali’s theorem, we obtain

uki −→ u strongly inL2
(
Ω,F ,P;L2(0, T ;L2(D))

)
(4.60)

and almost everywhere in Ω×QT .
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Thus, there exists a new subsequence still denoted uki for simplicity of notation such that

for almost every (t, ω) we have

uki −→ u strongly inL2(D) (with respect to the measure dP× dt). (4.61)

Step 2. In the next lines we prove that the sequence {gki(uki)} is uniformly integrable

in L1 (Ω,F ,P;L1(Qt)) for any t ∈ [0, T ].

By applying Ito’s formula to ‖uki(t)‖2
L2(D) and using the equation (4.52), we get

2

∫
Qt

gki(uki)ukidxds = −2
∑
|β|6m

∫
Qt

Aβ (uki , Duki , . . . , D
muki)D

βukidxds+

2

∫ t

0

〈f(s), uki〉ds+

∫ t

0

‖G(s, uki)‖2
(L2(D))m + 2

∫
Qt

G(s, uki)ukidxdWki(s)− ‖uki(t)‖2
L2(D).

(4.62)

Owing to Lemma 18 and the conditions on At, it follows from this relation and Burkholder-

Gundy-Davis’s inequality that

E
∫
Qt

gki(uki)uki dx ds ≤ C for all i ∈ N. (4.63)

Hence {gki(uki)uki} is bounded in L1 (Ω,F ,P;L1(Qt)).

A crucial role will be played by condition (iv). Indeed, for any R > 0, we have

|gki(t, x, uki(t, x))| = |gki(t, x, uki(t, x))|I{(t,x):uki<R} + |gki(t, x, uki(t, x))|I{(t,x):uki>R}.

This in conjunction with the sign condition ukigki(uki) > 0 implies that

|gki(t, x, uki(t, x))| 6 sup
|s|6R
|gki(t, x, s)|+R−1ukigki(t, x, uki(t, x)); (4.64)

where I{(t,x):|u(t,x)|<R} is the indicator function. For all i ∈ N, we know from condition (iv),

that

|gki(r)| 6 |g(r)| 6 |h(r)| 6 C{h(R) + |h(−R)|} (4.65)

provided that r 6 R. Hence for any subset Σ of Qt

E
∫

Σ

|gki(uki)| dxds 6 K(R) meas(Σ) +R−1C, (4.66)

thanks to (iv), (4.64) and (4.65). Thus {gki (ukk)} is bounded in L1 (Ω,F ,P;L1(Σ)). Hence

∀ε > 0, ∃δ > 0 and a set Σε ⊂ QT with meas(Σε) <∞ such that for all i ∈ N

E
∫

Σ

|gki(uki)| dxds 6 ε;
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and

E
∫

Σcε

|gki(uki)| dxds 6 ε.

Hence {gki(uki)} is equi-integrable in L1 (Ω,F ,P;L1(Qt)). This notion of equi-integrability

is of fundamental significance. Thus, by virtue of De La Vallee Poussin principles, the

sequence {gki(t, x, uki)}i∈N is uniformly integrable in L1 (Ω,F ,P;L1(Qt)). Now we rely on

a deep subject in functional analysis known as the Dunford-Pettis theorem; which enables

us to deduce that {gki(t, x, uki)}i∈N is relatively sequentially compact for the weak topology

σ(L1, L∞). The following is a consequence of (4.60) and (4.61):

uki(ω) −→ u(ω) a.e. in Ω×Qt. (4.67)

Moreover, in view of the Lipschitzity of Tki(gki), we have

|gki (uki)− gki (u)| ≤ C |g (uki)− g (u)| , (4.68)

pointwise; C is independent of i. Since g (u) is continuous with respect to u, it follows from

(4.67) that

g(uki) −→ g(u) a.e. in Ω×Qt.

This together with (4.68) imply that

gki (uki)− gki (u)→ 0, a.e. in Ω×Qt.

But

gki(u) −→ g(u) a.e. in Ω×Qt. (4.69)

Hence, we get

gki(uki) −→ g(u) a.e. in Ω×Qt. (4.70)

By the Vitali convergence theorem, however the equi-uniform integrability of the sequence

{gki(uki)} in conjunction with the a.e. convergence (4.70) yields the following strong conver-

gence:

gki(uki) −→ g(u) inL1
(
Ω,F ,P;L1(Qt)

)
.

Thus, it follows that

gki(uki) −→ g(u) strongly inL1
(
Ω,F ,P;L1(QT )

)
. (4.71)

Hence g(u) ∈ L1 (Ω,F ,P;L1(QT )).

Step 3. We prove in this section the convergence of the stochastic integral∫ t

0

G(s, uki)dWki(s).
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We intend to use integration by parts. But since the integrand is not smooth with respect to

t, we introduce a suitable regularization in order to overcome that obstacle. For that purpose,

let % be a standard mollifier, we define

Gε(t, u) =
1

ε

∫ T

0

%

(
s− t
ε

)
G(s, u)ds;

Gε is smooth in t and continuous in u and we have the uniform estimate:

E
∫ T

0

‖Gε(t, u)‖2
(L2(D))mdt 6 E

∫ T

0

‖G(t, u)‖2
(L2(D))mdt (4.72)

and

Gε(., u) −→ G(., u) inL2
(
Ω,F ,P;L2

(
0, T ;

(
L2(D)

)m))
, (4.73)

as ε→ 0.

Integrating by parts, we get∫ t

0

Gε(s, uki)dWki(s) = Gε(t, uki)Wki(t)−
∫ t

0

Gε′(s, uki)Wki(s)ds, (4.74)

By Fubini’s theorem, Burkholder-Davis-Gundy’s inequality and (4.72), we have

E
∣∣∣∣∣∣∣∣∫ t

0

Gε(s, uki)dWki(s)

∣∣∣∣∣∣∣∣2
L2(D)

6 E
∫ t

0

‖Gε(s, uki)‖2
(L2(D))mds 6 C. (4.75)

Similarly, ∫ t

0

Gε(s, u)dW (s) = Gε(t, u)W (t)−
∫ t

0

Gε′(s, u)W (s)ds. (4.76)

Owing to (4.61), we have that

Gε(t, uki) −→ Gε(t, u), almost everywhere in Ω× (0, T ). (4.77)

It then follows from the definition of Gε (Gε′ (t, u) is still continuous in u), (4.74) and (4.49)

that

lim
i−→∞

∫ t

0

Gε(s, uki)dWki(s) = Gε(t, u)W (t)−
∫ t

0

Gε′(s, u)W (s)ds, (4.78)

pointwise in x for almost allω. Hence, by (4.76) and (4.78), we get

lim
i−→∞

∫ t

0

Gε(s, uki)dWki(s)→
∫ t

0

Gε(s, u)dW (s) , (4.79)

pointwise in x for almost allω.

By (4.75), the sequence of stochastic integrals
(∫ t

0
Gε(s, uki)dWki(s)

)
i∈N

is uniformly

bounded in L2 (Ω,F ,P;L2(D)) for any t ∈ [0, T ] , then it is uniformly integrable in the
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space Lr (Ω,F ,P;L2(D)) for any 1 ≤ r < 2. Combining this with (4.79), we are able to use

Vitali’s theorem in order to obtain that∫ t

0

Gε(s, uki)dWki(s)→
∫ t

0

Gε(s, u)dW (s) strongly in Lr
(
Ω,F ,P;L2(D)

)
. (4.80)

On the other hand, we also have that∫ t

0

Gε(s, uki)dWki(s) ⇀ ψ (t) weakly in L2
(
Ω,F ,P;L2(D)

)
.

Therefore ∫ t

0

Gε(s, uki)dWki(s) ⇀ ψ (t) weakly in Lr
(
Ω,F ,P;L2(D)

)
.

Since the convergence (4.80) holds also weakly in Lr (Ω,F ,P;L2(D)), hence we have that

ψ (t) =

∫ t

0

Gε(s, u)dW (s),

by uniqueness of weak limits. Thus∫ t

0

Gε(s, uki)dWki(s) ⇀

∫ t

0

Gε(s, u)dW (s) weakly in L2
(
Ω,F ,P;L2(D)

)
.

This can be expressed as: for fixed ε we let i tends to∞ to have, for any κ ∈ L2 (Ω,F ,P;L2(D))

E
(
κ,

∫ t

0

Gε(s, uki)dWki(s)

)
−→ E

(
κ,

∫ t

0

Gε(s, u)dW (s)

)
. (4.81)

We obviously have that the sequence
(∫ t

0
G(s, uki)dWki(s)

)
i∈N

is uniformly bounded in

L2 (Ω,F ,P;L2(D)). Thus, there exists η ∈ L2 (Ω,F ,P;L2(D)) such that for any κ ∈ L2 (Ω,F ,P;L2(D))

E
(
κ,

∫ t

0

G(s, uki)dWki(s)

)
−→ E (κ, η) as i −→∞.

Lastly we need to prove that
∫ t

0
G(s, u)dW (s) = η. For that purpose we write (4.81) as

follows:

E
(
κ,

∫ t

0

G(s, uki)dWki(s)−
∫ t

0

G(s, u)dW (s)

)
= I1 + I2 + I3,

where κ is an arbitrary element of L2 (Ω,F ,P;L2(D)) and

I1 = E
(
κ,

∫ t

0

[G(s, uki)−Gε(s, uki)]dWki(s)

)
, I2 = E

(
κ,

∫ t

0

[Gε(s, u)−G(s, u)]dW (s)

)
,

I3 = E
(
κ,

∫ t

0

Gε(s, uki)dWki(s)−
∫ t

0

Gε(s, u)dW (s)

)
.
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By Burkholder-Davis-Gundy’s inequality

I1 6 E‖κ‖L2(D)

∥∥∥∥∫ t

0

G(s, uki)−Gε(s, uki)dWki(s)

∥∥∥∥
L2(D)

6 CE
[∫ t

0

‖G(s, uki)−Gε(s, uki)‖
2
(L2(D))m ds

] 1
2

;

and

I2 6 E‖κ‖L2(D)

∥∥∥∥∫ t

0

G(s, u)−Gε(s, u)dW (s)

∥∥∥∥
L2(D)

6 CE
[∫ t

0

‖G(s, u)−Gε(s, u)‖2
(L2(D))m ds

] 1
2

.

Passing to the limit as ε −→ 0 in the above inequalities and using (4.73), we get that

limε−→0 (I1 + I2) = 0. By (4.81), we have

I3 = E
(
κ,

∫ t

0

Gε(s, uki)dWki(s)−
∫ t

0

Gε(s, u)dW (s)

)
→ 0,

Thus, it follows from (4.3.5) that∫ t

0

G(s, uki)dWki(s) ⇀

∫ t

0

G(s, u)dW (s) weakly in L2
(
Ω,F ,P;L2(D)

)
. (4.82)

Step 4. We start by introducing the notion of pseudo monotone operator which is needed

in order to replace the ordinary monotonicity condition. Let X be a Banach space and X′ its

dual. Let us denote by 〈· , ·〉X×X′ the duality pairing between X and X′ .

Definition 34. Let T be a mapping from a reflexive Banach space X to its dual space X′ ,
which is continuous from finite dimensional subspaces of X to X′ endowed with the weak

topology. T said to be pseudo-monotone, if for any sequence {uj}j∈N ⊂ X with uj ⇀ u in X
and

lim〈T (uj), uj − u〉X×X′ 6 0,

then

T (uj) −→ T (u) weakly in X′

while

〈T (uj), uj − u〉X×X′ −→ 0 i.e. 〈T (uj), uj〉X×X′ −→ 〈T (u), u〉X×X′ .

The theory of pseudo monotone operators is well established since the 1960’s; details

could be found for instance in [32] and [39].
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We intend to use it in order to prove that $(t) = At(u), following [39], [34] and [33]. A

crucial step toward that goal is to prove that

lim sup
ki−→∞

E
∫ t

0

〈As(uki), uki(s)− u(s)〉ds 6 0.

We recall the equation (4.52)

duki + At(uki)dt+ gki(t, uki)dt = f(t)dt+G(t, uki)dwki .

Let

v ∈ Lp (Ω,F ,P, Lp(0, T ;Wm,p
0 (D)) ∩ L∞(QT ) ∩ C1(0, T, L2(D)))

be any function such that v(0) = 0. Since dv =
∂v

∂t
dt, then

d(uki − v) = −
[
At(uki) + gki(t, uki)− f(t) +

∂v

∂t

]
dt+G(t, uki)dWki ;

and by Ito’s formula applied to the function ‖uki(t)− v(t)‖2
L2(D), we have

d‖uki(t)− v(t)‖2
L2(D) = 2

∫
D
(uki(t)− v(t)) [−At(uki)dt− gki(t, uki)dt+ f(t)dt+G(t, uki)dWki ] dx

− 2

∫
D
(uki(t)− v(t))

∂v

∂t
dt+ ‖G(t, uki)‖2

(L2(D))mdt,

for all (t, ω) ∈ [0, T ]× Ω.

Integrating this relation over (0, t) for t ∈ [0, T ] yields

E‖uki(t)− v(t)‖2
L2(D) + 2E

∫ t

0

〈As(uki), uki(s)− v(s)〉ds+ 2E
∫
Qt

gki(uki)[uki(s)− v(s)]dxds

(4.83)

= 2E
∫ t

0

〈f(s), uki(s)− v(s)〉ds+ 2E
∫
Qt

G(s, uki) [uki(s)− v(s)] dWki(s)dx+

+ E
∫ t

0

‖G(s, uki)‖2
(L2(D))mds− 2E

∫ t

0

(
∂v

∂t
, uki(s)− v(s)

)
ds.

Passing to the limit in (4.52) using (4.49), (4.58), (4.56), (4.57), (4.61), (4.70), (4.67) and

(4.71) we have

du(t) +$(t)dt+ g(s, u)dt = f(t)dt+G(t, u)dWt in the sense of distributions onQT .

Therefore with v as above, we have

d(u(t)− v(t)) = −
[
$(t) + g(t, u)− f(t) +

∂v

∂t

]
dt+G(t, u)dW.
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By Ito’s formula applied to the function ‖u(t)− v(t)‖2
L2(D), we have that

E‖u(t)− v(t)‖2
L2(D) + 2E

∫ t

0

〈$(s), u(s)− v(s)〉ds+ 2E
∫
Qt

g(s, u)[u(s)− v(s)]dxds (4.84)

= 2E
∫ t

0

〈f(s), u(s)− v(s)〉ds+ 2E
∫ t

0

(G(s, u), u(s)− v(s)) dW

− 2E
∫ t

0

(
∂v

∂t
, u(s)− v(s)

)
ds+ E

∫ t

0

‖G(s, u)‖2
(L2(D))mds;

it should be noted that the integral∫
Qt

g(s, u)[u(s)− v(s)]dxds

is meaningful thanks to the fact that u(s) − v(s) ∈ L∞ (QT ) and g (s, u) ∈ L1 (QT ) , P-a.s.

We know that∫ t

0

〈As(uki), uki(s)− v(s)〉ds =

∫ t

0

〈As(uki), uki(s)− u(s)〉ds+

∫ t

0

〈As(uki), u(s)− v(s)〉ds.

This combined with (4.83) and taking mathematical expectation implies that

E
∫ t

0

〈As(uki), uki(s)− u(s)〉ds+ E
∫
Qt

{ukigki (uki)− ug (u)} dxds (4.85)

=− 1

2
E‖uki(t)− v(t)‖2

L2(D) + E
∫
Qt

{gki(uki)v − g (u)u)} dxds+

+ E
∫ t

0

〈f(s), uki(s)− v(s)〉ds− E
∫ t

0

(
∂v

∂t
, uki(s)− v(s)

)
ds+

+ E
∫
Qt

[uki(s)− v(s)]G(s, uki)dWkidx+
1

2
E
∫ t

0

‖G(s, uki)‖2
(L2(D))mds

− E
∫ t

0

〈As(uki), u(s)− v(s)〉ds.

Owing to the condition (v) on G, the estimates (4.54), the almost everywhere conver-

gence of uki to u on Ω × [0, T ] × D, we see that (G(s, uki)) is uniformly integrable in

L2 (Ω,F ,P;L2(QT )) and G(s, uki) converges to G (s, u) almost everywhere on Ω× [0, T ]×D.

Therefore Vitali’s theorem implies that

G(s, uki)→ G (s, u) strongly in L2
(
Ω,F ,P;L2(D)

)
. (4.86)
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In view of (4.49)-(4.61), (4.58), (4.82) and (4.86), we deduce from (4.85) that

lim sup
i−→∞

{
E
∫ t

0

〈As(uki), uki(s)− u(s)〉ds+ E
∫
Qt

{ukigki (uki)− ug (u)} dxds
}

6− 1

2
E‖u(t)− v(t)‖2

L2(D) − E
∫
Qt

[u(s)− v(s)]g (s, u) dxds+

+ E
∫ t

0

〈f(s), u(s)− v(s)〉ds− E
∫ t

0

(
∂v

∂t
, u(s)− v(s)

)
ds+

+ E
∫
Qt

[u(s)− v(s)]G(s, u)dWsdx+
1

2
E
∫ t

0

‖G(s, u)‖2
(L2(D))mds

− E
∫ t

0

〈$(s), u(s)− v(s)〉ds. (4.87)

Now thanks to (4.84), the right hand side in the above relation vanishes. Hence we get that

lim sup
i−→∞

{
E
∫ t

0

〈As(uki), uki(s)− u(s)〉ds+ E
∫
Qt

{ukigki (uki)− ug(u)} dxds
}

6 0. (4.88)

By (4.60) and (4.71), we have that ukigki(uki) converges to ug (u) almost everywhere. Thus

it follows by Fatou’s lemma that

E
∫
Qt

ug(u)dxds ≤ lim inf
i

E
∫
Qt

ukigki(uki)dxds.

This and (4.63) imply that ug(u) ∈ L1 (Ω,F ,P;L1(QT )) and

0 ≤ lim inf
i−→∞

E
∫
Qt

{ukigki(uki)− ug(u)}dxds ≤ lim sup
i−→∞

E
∫
Qt

{ukigki(uki)− ug(u)}dxds.

Therefore, it follows from (4.88) that

lim sup
i−→∞

E
∫ t

0

〈As(uki), uki(s)− u(s)〉ds ≤ 0. (4.89)

According to Theorem 1 from [39] under the conditions (i), (ii) and (iii), the operator At is

pseudo-monotone thus the relation (4.89) implies that $(t) = At(u). This completes the

proof that (Ω,F ,P,W, u) is a weak probabilistic solution of problem (P ) in the definition 31.

Furthermore we have the following energy estimate

1

2
E‖u(t)‖2

L2(D) + E
∫ t

0

〈As(u), u(s)〉ds+ E
∫
Qt

u(s)g(s, u)dxds

= E
∫ t

0

〈f(s), u〉ds+ E
∫
Qt

u(s)G(s, u)dxdW (s) +
1

2
E
∫
Qt

‖G(s, u)‖2
(L2(D))mds,

for all t ∈ [0, T ]. This implies that u ∈ L2 (Ω,F ,P;L∞ (0, T, L2 (D))) and the limiting process

u belong to the space Lq (Ω,F ,P;L∞(0, T ;L2(D))) for any q > 2.
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4.4 Strong solution

In this section we establish the pathwise uniqueness of solutions of the problem (P ) and

using arguments from Yamada-Watanabe’s classical result to derive the existence of a strong

probabilistic solution for our problem. This will be possible thanks to the existence of a

weak probabilistic solution (proved in the previous section) and the pathwise uniqueness to

be proved shortly. For relevant information in the finite dimensional case, we refer to [110]

and [211]. The papers by Röckner, Schmuland and Zhang [175] and Ondrejat [152] deals

with the Banach space version in great generality. We shall make use of the result in [175].

Before we state the result on pathwise uniqueness we introduce the following

Definition 35. We say that pathwise uniqueness holds for problem (P ), if whenever the sys-

tems (Ω,F , (Ft, )P,W, u1) and (Ω,F ,Ft,P,W, u2) are two weak solutions of the said problem

on the same filtered probability space (Ω,F , {Ft} ,P) with the same initial condition, then

u2 (t) = u1 (t) , t ∈ [0, T ], P− a.s..

That is, there exists a set

N ∈ σ

 ⋃
t∈[0,T ]

Ft


with P(N) = 0 such that the set {ω : u2 (ω, t) = u1 (ω, t)} ⊂ N for all t ∈ [0, T ].

We shall need an additional condition on the perturbation term g (t, r) in (P ) that we

borrow from [34]. Namely, we require that

(ii)” The operator family At is monotone, i.e.,

〈At(u)− At(v), u− v〉 > 0 for all u, v ∈ Wm,p
0 (D).

(iv)’ The function g(t, x, r) is non-decreasing in r, progressively measurable and in addition,

the sign condition on g is preserved. That is,

rg(t, x, r) ≥ 0 on Ω

.

Next, we introduce a function Γ by setting

Γ(t, x, r) =

∫ r

0

g(t, x, s)ds on Ω.

Γ is continuous and convex in r and non-negative for all (t, r). By construction we have that

Γ(t, x, 0) = 0. Using the fundamental theorem of Calculus, we assert that the function Γ is
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differentiable with Γ′(t, x, r) = g(t, x, r). From now on, we use the notation g(t, r) instead of

g(t, x, r) and similarly in order to keep the notation simple, we sometimes omit the x variable

in general in most of the function of r.

We also need an extra condition on G; the Lipschitz condition. Namely, there exists a

constant L > 0 such that

‖G(t, u1)−G(t, u2)‖(L2(D))m ≤ L‖u1(t)− u2(t)‖L2(D). (4.90)

Our pathwise uniqueness is stated in the following

Theorem 36. Under assumptions Theorem 33, hypotheses (H1)-(H3), (ii)”, (4.90) and (iv)’.

then the pathwise uniqueness in the sense of definition 35 holds.

The function Γ defined above plays a central role in proving the theorem.

Proof. For notational purpose, we simply write (W,u) for short instead of using the system

(Ω,F ,P;W,u). Let (W,u1) and (W,u2) be two weak solutions with

u1, u2 ∈ Lp (Ω,F ,P;Lp (0, T ;Wm,p
0 (D))) ∩ Lq

(
Ω,F ,P;L∞

(
0, T ;L2(D)

))
,

for any q ∈ [2,∞), p ≥ 2. For any

v ∈ Lp (Ω,F ,P;Lp (0, T ;Wm,p
0 (D)) ∩ L∞ (QT )) ,

it holds that

d(u− v) = − [At(u) + g(t, u)− f(t)] dt− dv +G(t, u(t))dWt. (4.91)

We substitute u by u1 and u2 in (4.91) and multiply the corresponding relations by u1 − v
and u2 − v to get

(u1 − v)d(u1 − v) + (u1 − v)[At(u1)− f(t)]dt =

= (v − u1)g(u1)dt+ (u1 − v)G(t, u1(t))dW − (u1 − v)dv, (4.92)

(u2 − v)d(u2 − v) + (u2 − v)[At(u2)− f(t)]dt =

= (v − u2)g(u2)dt+ (u2 − v)G(t, u2(t))dW − (u2 − v)dv. (4.93)

Arguing similarly as in [33], we express v as the mean of u1 and u2 i.e., v = 1
2
(u1 + u2). We

then have u1 − v = 1
2
(u1 − u2) and u2 − v = −1

2
(u1 − u2). Substituting the expressions of

u1 − v and u2 − v back into (4.92) and (4.93), respectively, we get

(u1 − u2)d(u1 − u2) + 2(u1 − u2)[At(u1)− f(t)]dt

= 4(v − u1)g(u1)dt+ 2(u1 − u2)G(t, u1)dW − 4(u1 − v)dv,

(u1 − u2)d(u1 − u2) + 2(u1 − u2)[−At(u2) + f(t)]dt

= 4(v − u2)g(u2)dt− 2(u1 − u2)G(t, u2)dW − 4(u2 − v)dv.
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Adding these two equalities and applying Ito’s formula to the function ‖u1(t) − u2(t)‖2
L2(D)

we get

d‖u1(t)− u2(t)‖2
L2(D) + 2〈(u1 − u2), [At(u1)− At(u2)]〉dt

= 4

∫
D
(v − u1)g(u1)dxdt+ 4

∫
D
(v − u2)g(u2)dxdt+ 2

∫
D
(u1 − u2)[G(t, u1)−G(t, u2)]dWdx+

+ ‖G(t, u1)−G(t, u2)‖2
(L2(D))mdt.

Integrating this relation over [0, t], taking the supremum over the interval [0, T ] and using

(H1) leads to

E sup
0≤t≤T

‖u1(t)− u2(t)‖2
L2(D) + 2E

∫ t

0

〈(u1 − u2), As(u1)− As(u2)〉ds

≤ 4E
∫
Qt

(v − u1)g(u1)dxds+ 4E
∫
Qt

(v − u2)g(u2)dxds+

+ 2E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
D
(u1 − u2)[G(s, u1)−G(s, u2)]dWsdx

∣∣∣∣+ CE
∫ t

0

‖u1(s)− u2(s)‖2
L2(D)ds.

(4.94)

Since by definition, Γ′ (t, u) = g (t, u) , we use (iv)′ to obtain the following properties which

are straightforward consequences of the convexity of the function Γ:

g(t, u1)(v − u1) 6 Γ(t, v)− Γ(t, u1), (4.95)

g(t, u2)(v − u2) 6 Γ(t, v)− Γ(t, u2), (4.96)

Γ

(
t,

1

2
(u1 + u2)

)
≤ 1

2
{Γ(t, u1) + Γ(t, u2)} . (4.97)

It follows from (4.90), (4.94), Burkholder-Davis-Gundy, Young’s inequalities and (4.95)-(4.97)

that

E sup
0≤t≤T

‖u1(t)− u2(t)‖2
L2(D) + 2E

∫ t

0

〈(u1 − u2), As(u1)− As(u2)〉ds

≤ 8E
∫
Qt

[
Γ(s, x, v)−

{
1

2
Γ(s, x, u1) +

1

2
Γ(s, x, u2)

}]
dxds+ 2εE sup

0≤t≤T
‖u1(t)− u2(t)‖2

L2(D)+

+ CεE
∫ T

0

‖G(t, u1)−G(t, u2)‖2
(L2(D))mdt+ CE

∫ T

0

‖u1(t)− u2(t)‖2
L2(D)dt. (4.98)

Using the Lipschitz condition on G, (4.90) we assert that there exists a positive constant L
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such that

E sup
0≤t≤T

‖u1(t)− u2(t)‖2
L2(D) + 2E

∫ t

0

〈(u1 − u2), As(u1)− As(u2)〉ds

≤ 8E
∫
Qt

[
Γ(s, v)−

{
1

2
Γ(s, u1) +

1

2
Γ(s, u2)

}]
dxds+ 2εE sup

0≤t≤T
‖u1(t)− u2(t)‖2

L2(D)+

+ CεLE
∫ T

0

‖u1(t)− u2(t)‖2
(L2(D))mdt+ CE

∫ T

0

‖u1(t)− u2(t)‖2
L2(D)dt. (4.99)

From (4.97), we obviously have

E
∫
Qt

[
Γ(s, v)−

{
1

2
Γ(s, u1) +

1

2
Γ(s, u2)

}]
dxds ≤ 0.

The assumption (ii) on the strict monotonicity of At gives

E
∫ t

0

〈(u1 − u2), As(u1)− As(u2)〉ds > 0.

Combining the last two inequalities with an appropriate choice of ε yields

E sup
0≤t≤T

‖u1(t)− u2(t)‖2
L2(D) ≤ CE

∫ T

0

‖u1(t)− u2(t)‖2
L2(D)dt.

Thanks to Gronwall’s Lemma, we conclude that for any t ∈ [0, T ], we have u1(t) = u2(t), P-

a.s..

This leads to the desired conclusion.

Our main result of this section is stated in the following

Theorem 37. Let the assumptions in Theorem 33 and Theorem 36. Then problem (P)

admits a unique strong solution u, in the sense that the system (Ω,F ,P,W, u) is a weak

solution of (P) and u is adapted to the filtration generated by the Wiener process W .

The proof of this result follows from the celebrated theorem of Yamada-Watanabe orig-

inally proved in [211] (see also [110]), in the finite dimensional case. According to Yamada-

Watanabe’s theorem, weak probabilistic solution and pathwise uniqueness give rise to the

existence of unique probabilistic strong solution. The result has since been established in the

infinite-dimensional setting by many authors; we refer to Röckner, Schmuland and Zhang

[175] for further details in this direction. A Banach space version of the Yamada-Watanabe

Theorem in the infinite dimensional framework of mild solutions we refer for instance to

Ondreját [152] for more information. It is the version obtained in [175] that enables us to

conclude the proof of the theorem.



Conclusion and Future Perspectives

In this thesis, we studied firstly the existence of weak probabilistic solution to various classes

of stochastic quasilinear parabolic problems driven by infinite-dimensional Wiener processes

of cylindrical type. Secondly, we proved the existence and uniqueness of weak and strong

probabilistic solutions to strongly nonlinear stochastic problems of Brézis-Browder type, char-

acterized by the presence of a nonlinear unbounded perturbation of zero-th order.

We established in the first part, the existence of a probabilistic weak solution (also known

as martingale solution) for a certain class of stochastic quasilinear parabolic equations (3.1)

in a framework of probabilistic evolution spaces involving the spaces W̊ 1,p(x)(D). The main

feature of those equations is characterized by the presence of a nonlinear elliptic part admit-

ting nonstandard growth. Our SPDE is subjected to infinite dimensional Wiener processes

of cylindrical type and the nonlinear forcing terms do not satisfy Lipschitzity conditions.

Our framework is based on a construction of an approximating sequence to the weak

probabilistic solution of the problem under consideration using Galerkin method. In the

proof, we combined the Galerkin method with some deep analytic (Aubin-Simon’s type) and

probabilistic compactness results (Prokhorov-Skorohod). Using results from Skorohod, we

firstly proved that the Galerkin problems admit solutions. Secondly, we derived appropriate

uniform a priori estimates for the approximating solutions (um)m∈N. The just mentioned

compactness results were obtained thanks to the derivation of these crucial uniform a priori

bounds on (um). We experienced many difficulties when proving the tightness of the proba-

bility measures generated by the Galerkin approximate solutions. This is achieved thanks to

results from [166, 192, 157, 191]. Thirdly we pass to the limit in the Galerkin equations by

extracting a subsequence of the original sequence that converges weakly. Finally, we adapt

arguments of monotone operators to show that the limiting process u is a solution of the

problem (3.1)-(3.3).

For the investigations of SPDE’s governed by finite dimensional Wiener processes, we refer

to the works [7] and [19]. Bauzet [19] obtained existence and uniqueness for SPDE’s sub-

jected to one dimensional Wiener processes in the functional setting of Lebesgue-Sobolev’s
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type spaces with variable exponents p(t, x). The dissertation [7] dealt with the case of d-

dimensional multiplicative white noise. The paper [8] established both the weak and strong

probabilistic solutions.

In the second part of the thesis, we investigated an important class of SPDEs which has

so far not been studied by experts in the field is the stochastic counterpart of nonlinear

parabolic equations which originated in the work of Brézis-Browder [34, 33] under the name

of strongly nonlinear equations. The main feature of those equations is characterized by the

presence of nonlinear terms which are unbounded perturbation of zeroth order (having no

growth restrictions), making it impossible to study the resulting problem by directly using

means such as Galerkin’s approximation, the monotonicity method, for instance. We adapted

to the stochastic case, a regularization process through truncations which reduced problem

(P ) to a sequence of more regular problems, (Pk). Thanks to results from [123], we proved

that (Pk) admit solutions uk. We established needed uniform a priori estimates of (uk)k>1

solutions to (Pk) which enabled us to appeal to some profound analytic and probabilistic

compactness results. Thanks to a subsequent passage to the limit involving a result on

pseudomonotone operators due to Browder [39], we showed that a sequence of solutions of

(Pk) converges in suitable topologies to the requested probabilistic weak solution for our

original problem. Under some additional assumptions of Lipschitizity on A and the intensity

of the noise, we establish the pathwise uniqueness of weak probabilistic solutions and appeal

to an infinite-dimensional version of the famous Yamada-Watanabe’s result [211] due to

Röckner, Schmuland and Zhang [175] and Ondreját [152] to derive the existence of a unique

strong probabilistic solution.

To the best of our knowledge, there have not been any attempts so far for the study of the

present problems. Thus, this is the first thesis dealing with the actual situations.

Future work

1) Consider the problems dealt with in the thesis in the framework of jump noises.

2) A thorough investigation of stochastic electrorheological fluids by extending the impor-

tant works of Růz̀ic̀ka [177], Rajagopal [164] and Lars Diening [72]. Both continuous

and jump noises will be explored.

3) The issues of regularity in the context of these SPDEs might also be investigated.

4) The numerical analysis of these models by applying a splitting-up method for stochastic

PDEs, see for instance [26, 22, 27], [28], [69], [100] and [183].
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[61] J. DIAZ and F. Thélin, On a nonlinear parabolic problem arising in some models related

to turbulent flows, SIAM J. Math. Anal., 25, pp. 1085–1111, 1994.
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[82] D.E. Edmunds and J. Rákosńik, Sobolev embedding with variable exponent, II. Math.

Nachr., 246-247, 53-67, 2002.

[83] A. Elmahi and D. Meskine, Parabolic equations in Orlicz spaces, J. London Math. soc.

(2) 72, 410-446, 2005.

[84] L. C. Evans, Partial Differential equations, AMS, Providence, RI 1998.

[85] L. C. Evans, An Introduction to Stochastic Differential Equations, AMS, ISBN

9781470410544, 2012.

[86] M. Fabian, P. Habala, P. H. Vicente Montesinos and V. Zizler, Banach Space Theory.

The Basic for linear and Nonlinear Analysis. CMS Books in Mathematics. Canadian
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[156] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,

Stochastics 3, 127-167 (1979).

[157] K. R. Parthasarathy, Probability measures on metric spaces, Volume 3 of Probability

and Mathematical Statistics, Academic Press, Inc., New-York London, 1967.

[158] S.E. Pastukhova and V.V. Zhikov, On a property of higher integrability for parabolic

systems of variable order on nonlinearity. Mat. Zametki, 87(2), 179–200, 2010.

[159] S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Levy Noise.

An evolution equation approach, Encyclopedia of Mathematics and its Applications 113,

Cambridge University Press, 2007.
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