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I. Introduction 

Predicting turning points in the business cycle proves a most difficult task. Policy makers would 

value methods that can provide an early warning of impending turns in the business cycle (e.g., 

the end of expansions or beginning of recessions) with a reasonable prediction of the timing of 

the turning point. The most recent financial crisis and Great Recession provides a case study with 

which to examine this issue. Moreover, it proved atypical of post-WWII recessions. That is, 

financial-crisis-induced recessions exhibit more depth and length than typical recessions 

(Reinhart and Rogoff, 2009). 1 

This paper analyzes whether researchers could have predicted the recent downturn of the 

US real GDP, using a small set of variables and a rich set of models. We estimate a wide range 

of econometric models that include atheoretical linear models (classical and Bayesian vector 

autoregressive models), atheoretical nonlinear models (time-varying parameter, Markov-

switching, smooth transition vector autoregressive, and artificial neural network models), 

nonparametric and semi-parametric atheoretical models, and linear and nonlinear micro-founded 

theoretical models [Dynamic Stochastic General Equilibrium (DSGE) models based on Kalman 

and particle filters]. Our restricted data set includes real GDP, the rate of inflation of the GDP 

implicit deflator, and the three-month Treasury-bill rate. 

Although researchers widely use these alternative models to predict key macroeconomic 

variables,2 this paper brings these models together to compare their forecasting ability 

                                                 

1 The decrease in real GDP covered 2007:Q4 through 2009:Q2. A number of analysts warned about the excesses in 
the financial markets (e.g., Shiller 2005), but the timing of the turning point eluded most. 
2 See, for example, Stock and Watson (1996), Clements and Smith (1997), Clements and Krolzig (1998), Clements, 
et al. (2003), van Dijk and Franses (2003), Smets and Wouters (2003, 2007), Camacho (2004), Korobilis (2006), 
Altavilla and Ciccarelli (2010), Del Negro, et al. (2007), Marcellino (2007), Pichler (2008), D’ Agostino, et al. 
(2011), Arora, et al. (2013), Gupta et al. (2011), Korobilis (2011), Bekiros and Paccagnini (2013), Del Negro and 
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simultaneously and, hence, covers the entire spectrum of currently popular forecasting methods 

ranging from linear and nonlinear (with known and unknown functional forms) theoretical and 

atheoretical models.3 In addition, the studies cited in footnote 2 and others, except for the 

analyses that focus on time-varying vector autoregressive (VAR) models and Camacho’s (2004) 

paper that considers the role of leading indicators in forecasting US GDP growth using 

multivariate parametric nonlinear models, use univariate versions of the nonlinear parametric, 

nonparametric, and semi-parametric models.4 More importantly, few studies (e.g., Del Negro 

and Schorfheide 2013) focus on predicting downturn(s) in the economy with real-time data ex 

ante for the recent financial crisis and Great Recession.5 

Traditional forecasting models bifurcate into two different classes – dynamic simultaneous 

equations structural models and multivariate “atheoretical” time-series models. The Cowles 

Commission for Research in Economics pioneered the methods for constructing structural models 

(see Christ 1994). These structural models suffer from the Lucas critic and are poorly suited for 

forecasting, since the forecast process requires projected future values of exogenous variables. 

Time-series (e.g., VAR) models offer an alternative approach that prove particularly useful for 

                                                                                                                                                             

Schorfheide (2013), Koop and Korobilis (2013), Wieland et al. (2012), Balcilar et al. (2013), and the references 
cited in these papers. 
3 This paper excludes one line of forecasting models that involves large data sets, where the estimation uses factors 
or Bayesian shrinkage with either constant or time-varying parameters. We omit such models because we want to 
ensure that all our models use the same information set on the three variables. For a detailed discussion of such 
models, see Barnett, et al. (2012). Another related area of research involves incorporating information from large 
data sets into Dynamic Stochastic General Equilibrium (DSGE) by adding dynamic factors in DSGE-Dynamic 
Factor Models (DSGE-DFM). See, for example, Consolo, et al. (2009); Paccagnini (2011), and the references cited 
therein for further details. We also ignore these models to do our analysis over a common three-variable data set. 
4 Another notable exception is Balcilar et al., (2013), where the authors use both multivariate parametric nonlinear 
and multivariate nonparametric models to forecast out of sample as well as to predict ex ante the gross gaming 
revenue and taxable sales for the state of Nevada. 
5 Del Negro and Schorfheide (2013) perform a post-mortem of DSGE model forecasts of the Great Recession, 
showing that forecasts from a version of the Smets and Wouters (2003) model augmented by financial frictions and 
with interest rate spreads as an observable compare favorably to the Blue Chip forecasts in predicting the GDP 
growth rate.  
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forecasting purposes. Although time-series models are “atheoretical" in design, the structural 

models still experience difficulty in outperforming the time-series models in forecasting horseraces. 

Zellner (1979) and Zellner and Palm (1974) argue that this difficulty arises because VAR models 

can approximate the reduced form outcomes of a dynamic structural system of simultaneous 

equations.  

More recent micro-founded structural models such as dynamic stochastic general 

equilibrium (DSGE) models avoid the Lucas critique. Although originally formulated to address 

policy questions, forecasting horseraces of macroeconomic variables now more likely include 

DSGE alternatives. Smets and Wouters (2003, 2007) provided initial work that opened the door for 

analyzing the forecasting performance of DSGE models against various types of time-series 

forecasting models. In our analysis, we adopt the limited economic structure consider in Pichler's 

(2008) model, essentially a relatively small new-Keynesian monetary economy featuring 

monopolistic competition, capital accumulation, and price and capital adjustment costs 

characterizing the rigidities in the economy. This limited structure creates a bias against the 

DSGE model outperforming our “atheoretical” time-series models, since Pichler’s (2008) linear 

and nonlinear models come with misspecifications. 

Our analysis unfolds through the following steps. First, we estimate the wide range of 

econometric models noted previously over the 1979:Q3 to 1999:Q2 period, using data on the 

detrended logged real GDP, quarter-on-quarter inflation based on the GDP implicit deflator, and 

the three-month Treasury-bill rate. Second, we forecast one- to eight quarters-ahead of detrended 

logged real GDP over an out-of-sample forecast horizon from 1999:Q3 to 2006:Q4, estimating 

each of these models recursively over this horizon. Third, we choose the model within each 

category (linear and nonlinear versions of atheoretical, semi-parametric or nonparametric 
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versions of atheoretical, and theoretical models) that produces the minimum average root mean 

square errors (RMSEs) relative to the benchmark random walk model as the “best” model for a 

specific category. Fourth, we use the best model within each category to forecast the level of 

logged real GDP ex ante (without updating the parameter estimates of the optimal models) over 

2007:Q1 to 2012:Q2, adding the estimate of the trend for the logged real GDP at 2006:Q4 to the 

forecasts of the detrended GDP in logs over this period. 

To make our analysis realistic, we carry out the out-of-sample forecasting exercise based 

on the vintage of these variables available on October 27, 2006, which corresponds to the first 

release of GDP estimates for 2006:Q3. The trend estimate of logged real GDP that we use to 

detrend the data over the in-sample comes from the vintage of January 31, 2007. Once we 

forecast the detrended logged real GDP from the different “best” models, we add back this 

estimate of the trend for the period of 1979:Q3 to 2006:Q4 to obtain a forecast for the logged real 

GDP in log-levels, and compare this with the actual values of the logged real GDP available on 

July 27, 2012, which corresponds to the first release of GDP estimates for 2012:Q2. Since the 

data for the GDP implicit deflator depends on nominal and real GDP estimates, we follow a 

similar approach with the nominal GDP data over the period of 1979:Q3 to 2006:Q4. Since the 

three-month Treasury bill rate is available at a weekly frequency, we take the averages of the 

weekly values over each quarter to generate our quarterly series. Also, the estimate for the 

quarterly Treasury bill rates for 2006:Q3 and 2006:Q4 use the vintages for October 2, 2006 and 

January 3, 2007, respectively. Finally, we compute the RMSEs, using the vintage dates 

mentioned above that corresponds to the first release of the three variables for 2006:Q4. 

The rest of the paper is organized as follows: Section 2 outlines the basics of the different 

models used for the forecasting exercise. Section 3 discusses the data and presents the 



5 

forecasting results and the ex-ante out-of-sample prediction of the real US GDP. Finally, Section 

4 concludes. 

II. Model Descriptions: 

This section describes the atheoretical linear models, atheoretical nonlinear models, 

nonparametric and semi-parametric atheoretical models, and linear and nonlinear micro-founded 

theoretical models. 

Atheoretical linear models: 

The VAR model, though ‘atheoretical,’ is particularly useful for forecasting purposes.6 VAR 

models suffer from an important drawback, since they require the estimation of many potentially 

insignificant parameters. This problem of over-parameterization, resulting in multicollinearity 

and loss of degrees of freedom, leads to inefficient estimates and large out-of-sample forecasting 

errors. One solution, often adopted, simply excludes the insignificant lags based on statistical 

tests. Another approach uses near VAR models, which specify unequal number of lags for the 

different equations. 

An alternative approach to overcoming over-parameterization, as described in Litterman 

(1981), Doan et al. (1984), Todd (1984), Litterman (1986), and Spencer (1993), uses a Bayesian 

VAR (BVAR) model. Instead of eliminating longer lags, the Bayesian method imposes 

restrictions on the model’s coefficients by assuming that these coefficients more likely approach 

zero than the coefficients on shorter lags. If strong effects from less important variables exist, the 

data can override this assumption. The researcher imposes restrictions by specifying normal prior 

distributions with zero means and small standard deviations for all coefficients with the standard 

deviations decreasing as the lag length increases. The researcher sets the coefficient on the first 

                                                 

6 Refer to Korobilis (2011) for further details. 
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own lag of a variable equal to unity, unless the variable is mean reverting or stationary. 

Generally, following Litterman (1981), the constant exhibits a diffuse prior. This specification of 

the BVAR prior is popularly called the ‘Minnesota prior’ due to its development at the 

University of Minnesota and the Federal Reserve Bank at Minneapolis. 

In addition to the shrinkage approach of the Minnesota-type BVAR models, numerous 

other efficient methods exist to prevent the proliferation of parameters and eliminate parameter 

or model uncertainty [e.g., variable selection priors (George et al. 2008), steady state priors 

(Villani, 2009), Bayesian model averaging (Andersson and Karlsson, 2008), and factor models 

(Stock and Watson, 2005)]. Following Korobilis (2011), we compare the forecasting 

performances of the classical and the Minnesota-type BVAR models with those of linear (fixed-

parameter) and nonlinear (time-varying parameter [TVP]) VARs involving a stochastic search 

algorithm for variable selection, estimated using Markov Chain Monte Carlo (MCMC) methods. 

The “stochastic search” approach means that when the model space is too large to assess in a 

deterministic manner, the algorithm looks for only the most probable models. Two main benefits 

occur from using this approach over shrinkage methods. First, variable selection occurs 

automatically. That is, along with the parameter estimates, we also see the associated 

probabilities of inclusion of each parameter in the “best” model. This allows one to select among 

all possible VAR models without estimating each and every one of these models. Second, this 

Bayesian variable selection procedure does not depend on the prior assumptions about the 

parameters. The decision to use the stochastic search variable selection algorithm proposed by 

Korobilis (2011) over other available ones, such as those developed by George et al. (2008) or 

Korobilis (2008), reflects our ability to apply the current algorithm to variable selection non-

linear (time-varying) VAR models.  
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Vector autoregressive models. We can represent a reduced form VAR using following linear 

regression specification:  

  1 1t t tBx ε+ +Υ = +        (1) 

where 1+Υt  denotes an (m × 1) vector of dependent variables (i.e., in our case, detrended natural 

logarithm of real GDP, the GDP deflator inflation rate, and the Treasury bill rate) from time t = 

1, …, T; tx  denotes a (k × 1) vector, which may include lags of the dependent variables, 

intercepts, dummies, trends, and exogenous regressors; B denotes an (m × k) vector of VAR 

coefficients; and εt~N(0,Σ), where Σ denotes a (m × m) covariance matrix. 

We can rewrite equation (1) as a system of seemingly unrelated regressions (SURs) as 

follows, where different equations in the VAR can include different explanatory variables: 

  1 1t t tz β ε+ +Υ = +        (2) 

where 1+Υt  and tε  are defined in equation (1); tmt xIz ′⊗=  is a (m × n) matrix; and )(Bvec=β  

is an (nx1) vectorization of the matrix B, where n = m⋅k. When no parameter restrictions exist, 

equation (2) is an unrestricted VAR model.  

Bayesian vector autoregressive models. We embed Bayesian variable selection, therefore, in 

equation (2) by indicator variables: ),...,( 1 nγγγ =  such that 0=iβ , if 0=iγ , and 0≠iβ , if 

1=iγ . We treat the indicator variables as random variables by assigning a prior on them and 

allowing the data likelihood to determine their posterior values. We explicitly insert these 

indicator variables multiplicatively into the VAR model using the form: 

  1t t tzθ ε+Υ = +         (3) 

where βθ Γ= ; Γ  denotes an (n х n) diagonal matrix with jjj γ=Γ  (j=1,2....,n) elements on its 

main diagonal; and for 0=Γjj , 0=Γ= jjjj βθ , where jθ  is restricted while for 1=Γjj , 
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jjjjj ββθ =Γ=  so that we can explore all possible 2n specifications and variable selection is 

equivalent to model selection in this case. We use Gibbs sampling to estimate these parameters 

by conditioning on the data and Γ . Adopting the independent Normal-Wishart prior produces 

standard-form densities of β  and Σ . 

The restriction indices γ  add one more block to the Gibbs sampler of the unrestricted 

VAR model. If needed for the restriction indicators, we sample the n element in the column 

vector 1( ,..., )nγ γ γ ′=  and we recover the diagonal matrix { }1 ,..., ndiag γ γΓ = . Simplified 

derivations emerge, however, if the indicators jγ  do not depend on each other. We can define 

the priors as follows: 

  ),(~ 00 VbNnβ ;       (4) 

  ),1(~| 0\ jjj Bernoulli πγγ − ; and     (5) 

  1 1~ Wishart( , )a− −Σ W ,      (6) 

where b0 is (n × 1) vector, V0 is (n × n) matrix, ),.....,( 0010 nπππ ′′= is (n × 1) vector, Ω is (m × m) 

matrix, and α is a scalar. 

We argue that this form of variable selection may apply to many non-linear extensions of 

the VAR as compared to stochastic variable selection algorithms for VAR models. Adopting 

variable selection in a TVP-VAR model, therefore, simply extends the VAR model with constant 

parameters, where we replace equation (7) below with equation (3), which identifies and defines 

the variables, while equations (4) through (6) identify the priors, except now ),(~ 000 VbNnβ . 

Specifically, we use the following priors for the restricted VAR with variable selection 

(VAR-VS): j \- jγ /γ : Bernouilli(1,0.5)  for all j =1, ...,n,  and 

2
jβ N(0,10 ) , if jβ  is an intercept, 
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and 

3
jβ N(0,3 ) , otherwise. For the benchmark VAR, we adopt the same priors as the VAR-

VS, except that we restrict jγ =1  for all j. For the BVAR based on the Minnesota prior (VAR-

MIN), the means and variances of the Minnesota prior for β  take the form 

min minβ N(b ,V )  

where min 2
i,l 1V = g /p  and 2

3 ig × s , respectively, for the parameters on own the lags and the 

intercepts, while min 2 2 2
i,l 2 i lV = (g ×s )/(s × p )  for parameters j on variable ≠l i; l, i =1, ...,m.  We 

identify 2
is  as the residual variance from the p-lag univariate autoregression for variable i. After 

experimenting to produce the best possible forecast, we set the hyperparameters to the following 

values: 1g = 0.01,  2g = 0.0025,  and 3g =100.  Since we transform the variable used in the 

forecasting exercise to induce stationarity, we set the prior mean vector minb  equal to zero for 

parameters on the lags of all variables, including the first own lag (Banbura et al. 2010). The 

forecasts from the VAR models with and without variable selection, as well as the Minnesota 

prior run 30,000 draws from the posterior, discarding the first 2,000 draws. Also, we set the lags 

in these models to 2, determined by the Bayesian information criterion (BIC). 

Atheoretical nonlinear models: 

Macroeconomic time series contain structural breaks due to major political and economic 

changes. That is, changes in the economic policy, financial and economic crises, and business 

cycle shocks create breaks in the observed series. The structural breaks contribute significantly to 

the forecasting failures of macroeconomic time series. No consensus exists, however, among 

macroeconomists about the significance and relevance of structural breaks and whether 

forecasters need to go beyond traditional models and construct models that include structural 

breaks or regime switches. See, for example, Cogley and Sargent (2001) and Sims (2001).  

Neftci (1984) notes that dynamic properties of major economic time series differ over 
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time, particularly across the different phases of the business cycles. Neftci reports that recessions 

generate much sharper declines than increases during expansions, implying asymmetric 

adjustment.7 Hamilton (1989) also argues that the US gross national product (GNP) exhibits 

different dynamics during episodes of slower growth and faster growth. He emphasizes that the 

traditional linear models fail to capture such shifts in the dynamic behavior of the series and 

forecasters need nonlinear models to capture departures from linearity. Neftci (1984) and 

Hamilton (1989) argue that regime switches occur systematically enough to enter the 

probabilistic structure of a model. That is, Neftci (1984) states that the systematic switches occur 

frequently enough such that the data can endogenously capture the dynamic behavior across the 

regimes, which different markedly in their responses. 

Clements and Hendry (1999) develop a theory of forecasting in the presence of 

deterministic structural breaks. For recurrent, systematic breaks that affect not only the mean 

growth rate but also the dynamics of the underlying series, however, a model that incorporates 

such time-varying dynamics and models with endogenous switches may produce superior 

forecasts to linear models with a fixed dynamic process (i.e., regime-switching models). Regime-

switching models that can generate sharp drops during recessions and slow gradual growth 

during expansions will naturally fit the data better around turning points (Neftci 1984). We 

consider four classes of nonlinear multivariate models that successfully model regime-switching 

time series -- Markov-switching (Neftci 1984; Hamilton, 1989; Krolzig, 1997), smooth-transition 

(Granger and Terasvirta 1993; Terasvirta 1998; Potter, 1999), artificial-neural-network 

(McCulloch and Pitts 1943; Minsky and Papert 1969; White 1988, 1989), and time-varying 
                                                 

7 Sichel (1989) reverses Neftci’s findings by correcting a probable error in Neftci’s program. Rothman (1991) 
substitutes a first-order Markov process for the second-order process used by Neftci and re-establishes Neftci’s 
asymmetry findings. More recently, Rothman (1998) revisits this issue with more recent data and concludes that the 
asymmetric findings now become mixed. 
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parameter vector autoregressive models (D’Agostino et al. 2011; Korobilis, 2011; Koop and 

Korobilis, 2013). 

Lucas (1977) emphasizes the co-movement of macroeconomic variables such as the 

output, inflation rate, unemployment rate, interest rates, consumption, investment, and so on. 

Diebold and Rudebusch (1996) identify two important features of business cycle models: (1) co-

movement of economic variables and (2) persistence of the states. In the following section, we 

consider only dynamic nonlinear models that involve both features. A univariate model can 

possess persistence of states with or without dynamic structures, but not co-movement of 

economic variables. To permit further dynamic adjustment through autocorrelations, we consider 

dynamic multivariate nonlinear models for forecasting US real GDP. Empirically, one expects 

switches between a normal regime (expansion) and a recession regime will lead to different 

(asymmetric) dynamic links between the macroeconomic variables that co-move, which 

nonlinear models can capture more accurately. 

Markov-switching vector autoregressive model. Markov-switching (MS) models prove a most 

popular nonlinear model for the analysis of regime-switching time series such as the business 

cycle. Structural change models admit only occasional, exogenous changes and, thus, structural 

breaks or regime shifts are deterministic. MS models, on the other hand, include an endogenous 

mechanism, where an unobservable state variable controls the switches through a first-order 

Markov chain. By allowing switches between the states with different parameter sets, which may 

involve parameters on variable lags, MS models can capture complex dynamic structures. 

A number of studies successfully use Markov-switching models to analyze aggregate 

output and business cycles (e.g., Hamilton 1989; Lam 1990; Goodwin 1993; Diebold, et al. 

1994; Durland and McCurdy 1994; Filardo 1994, Ghysels 1994; Kim and Yoo 1995; Filardo and 
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Gordon 1998; and Kim and Nelson 1998). Following Hamilton (1989), these studies employ 

various forms of univariate MS autoregressive (MS-AR) models. Krolzig (1997) further 

generalizes the MS-AR model to a MS-VAR time-series models, a most extensively used 

nonlinear multivariate model dynamic. Krolzig (1997) generalizes the linear VAR models of 

Hamilton (1989) by allowing parameters of the VAR model to switch across regimes in response 

to a hidden first-order Markov chain.  

Recognizing how nonlinearity and asymmetry importantly affect the VAR forecasting 

model, we employ a MS-VAR model to address the nonlinearity in an explicit and formal way. 

The MS-VAR models fit the data better than their linear counterpart VAR models. The superior 

in-sample fit does not usually generalize to superior forecasting performance, as noted by 

Clements and Krolzig (1998), Dacco and Satchell (1999), and Krolzig (2000). We examine 

whether the superior fit generalizes to superior forecasting performance and if it does not, then 

where does the MS-VAR model fail. 

The real GDP series that we forecast frequently switches between contractions and 

expansions. The other two series, the inflation and Treasury bill rates, also co-move with the real 

GDP series. MS-VAR models, which are nonlinear with regime dependent parameters, can 

naturally study whether such regime switching better represents the data generating process 

(DGP). The MS-VAR model that we use not only allows regime shifts in the detrended logged 

real GDP but also fully allows all parameters of the VAR model and its variance matrix to 

depend on the regime. 

Let  denote real detrended logged GDP,  denote the Treasury bill rate, and  denote 

the inflation rate. Define the time-series vector  up to and including period t as 

π= [ , , ]'t t t tX y r  and let τ τℑ = = − −{ , 1, ...,1 )t X τ τ p , where p is a nonnegative integer. For the 
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vector valued time series  of random variables, assume that a density (probability) function 

 exists for each t ∈ {1, 2,…,T}. The parameters and the parameter space are 

denoted by θ and Θ, respectively. The true value of θ is denoted by θ0 ∈ Θ. Let the stochastic 

variable ∈{1, 2, ..., }tS q  follow a Markov chain with q states. Then, we can write the MS-VAR 

model that allows all parameters to depend on the St regime as follows: 

  µ ε−
=

= + Φ +∑ ( )

1
t t

p
k

t S S t k t
k

X X ,      (7) 

where p is the order of the MS-VAR model, [ε W (0, )
tt t SS N ], and W

tS  is positive definite. 

The random state or regime variable , conditional on , is unobserved, independent of past 

Xs, and assumed to follow a q-state Markov process. In other words, 

− − −= = = ℑ =1 2 2 1Pr[ , , , ]τ τ τ τ ijS j S i S k p , for all t and lk , regimes i, j = 1, 2, ..., q, and l ≥ 2. More 

precisely  follows a q-state Markov process with transition matrix given by 

  
=

 
 = = 
  

∑  

11 12 1

1
1 2

...
, 1

...

q q

ij
j

q q qq

p p p
P p

p p p
.    (8) 

Thus, pij is the probability of being in regime j at time t, given that the economy was in 

regime i at time (t-1), where i and j take possible values in {1, 2,…, q}. We estimate the 

parameters of Markov-switching model via the expectation maximization (EM) algorithm 

(Lindgren 1978; Hamilton 1990, 1994) assuming that the conditional distribution of Xt given 

θ− ′ℑ 1 0{ , , , ..., ; }t t tS S S  is normal. We numerically approximate the likelihood function using the 

EM algorithm and we find the ML estimates using the Broyden–Fletcher–Goldfarb–Shano 

(BFGS) optimization algorithm. We compute the asymptotic standard errors of estimates from 

the inverse of the empirical Hessian. The order of the MS-VAR model for each case is 2 
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according to the BIC.  

The empirical procedure for building suitable MS-VAR models starts with identifying a 

possible set of models to consider. We determine the order p of the MS-VAR model using the 

BIC in a linear VAR(p) model. The models differ in terms of regime numbers (q) and the 

variance matrix specification. We consider both regime-independent variance models, MS(q)-

VAR(p), and regime-dependent variance (heteroskedastic) models, MSH(q)-VAR(p). Once a 

specific MS model is estimated, we next test for the presence of nonlinearities in the data. When 

testing the MS model against the static (linear) alternative, or a q regime model against a (q-1) 

regime model, we follow Ang and Bekaert (2002) and use the likelihood-ratio statistic (LR), 

which is approximately χ2(q) distributed, where q equals the number of restrictions plus the 

nuisance parameters (i.e., free transition probabilities) that are not identified under the null. We 

use p-values based on the conventional χ2 distribution with q degrees of freedom and also for the 

approximate upper bound for the significance level of the LR statistic as derived by Davies 

(1987). Once we establish nonlinearity, we choose the number of regimes and the type of the MS 

model based on both the likelihood-ratio statistic and the Akaike information Criterion (AIC).8 

The procedure selects a heteroskedastic model with all parameters in the VAR being regime 

dependent based on both the Davies (1987) test and the AIC. We maintain the MSH(2)-VAR(2) 

afterwards. 

Computing multi-step forecasts from MS-VAR models as well as all nonlinear time-

series models proves complicated because no ordinary method of computing the future path of 

the process exists. Good forecasts require that we know the future path of the process, since the 

                                                 

8 Krolzig (1997) and Psaradakis and Spagnolo (2003) suggest selecting the number of regimes and the MS model 
using AIC, and using Monte Carlo experiment Psaradakis and Spagnolo (2003) show that AIC generally yields 
better results in selecting the correct model. 
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forecasts depends on the regime. Using Monte Carlo simulations, Clements and Smith (1999) 

and Pesaran and Potter (1997) show that the forecasting performance of the regime-switching 

models does depend on the regime at the time of the forecast. We cannot resolve the dependence 

of the forecasts on the future path of the process by simply substituting the expected values of 

the future shock into the conditional mean function of the model. The problem is usually solved 

by Monte Carlo or Bootstrap simulation techniques. Although MS-VAR models are nonlinear, a 

number of authors (Krolzig, 2000; Clements and Smith, 1999; Pesaran and Potter, 1997) note 

that analytical formula for forecasting from these models exists, at least in simple cases. In this 

paper, we use the method proposed in Krolzig (2000) to obtain the multi-step forecasts from the 

MS-VAR model.  

Smooth transition autoregressive model identification. Recent empirical studies show that 

smooth–transition-autoregressive (STAR) models can successfully model economic time series 

that move smoothly between two or more regimes (e.g., recession to expansion). When 

considering the joint dynamic properties of the real detrended logged GDP, the inflation rate, and 

the interest rate, it is natural to consider vector STAR (VSTAR) models. Van Dijk, et al. (2002), 

among many others, discuss VSTAR models. Montgomery, et al. (1998) and Marcellino (2002) 

report favorable forecasting performance for LSTAR forecasts, while Stock and Watson (1999) 

show that linear models generally dominate nonlinear models in terms of forecasting 

performance. Despite specification difficulties, such as the appropriate transition variable, the 

number of regimes, the type of transition function, and so on, STAR models prove useful for 

state-dependent multivariate relationships. Recent applications (e.g., Rothman, et al. 2001; 

Psaradakis, et al. 2005; Tsay 1998; De Gooijer and Vidiella-i-Anguera 2004) find that VSTAR 

models successfully model nonlinear economic time-series data. 
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Define 1 , 2( ,..., )t t t ntX x x x ′=  as a ( 1)k ×  time-series vector (e.g., in our case, 

). We specify the k-dimensional VSTAR model as follows: 

  1,0 1, 2,0 2,
1 1

( ) ( ) ( ; , ) ,
p p

t j t j j t j t t
j j

X X X G s cγ ε− −
= =

= Θ + Θ + Θ + Θ +∑ ∑  (9) 

where ,0iΘ , , are  vectors, ,i jΘ , , 1, 2,...,j p= , are  matrices, and 

1 2( , ,..., )t t t ktε ε ε ε=  is a k-dimensional vector of white noise processes with zero mean and 

nonsingular covariance matrix ,  is the transition function that controls smooth moves 

between the two regimes, and ts is the transition variable.  

The VSTAR model in equation (9) defines for two regimes, one associated with 

 and another associated with . The transition from one regime to the 

other occurs smoothly, depending on the shape of the  function. In this paper, we consider a 

logistic transition function 

  γ γ
γ σ

= >
+ − −

1
( ; , ) , 0,

ˆ1 exp{ ( ) }t
τ s

G s c
s c

   (10) 

where  is the estimate of the standard deviation of transition variable ts . The threshold 

parameter c  determines the midpoint between two regimes at . The parameter γ  

determines the speed of transition between the regimes with higher values corresponding to 

faster transition. 

To specify the VSTAR model, we follow the procedure presented in Terasvirta (1998) 

(see, also, Van Dijk, et al. 2002; Lundbergh and Terasvirta 2002). First, we specify the lag order 

of p =2.  

Second, we test linearity against the VSTAR alternative. Since the VSTAR model 

contains parameters not identified under the alternative, we follow the approach of Luukkonen et 
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al. (1988) and replace the transition function  with a suitable Taylor approximation to 

overcome the nuisance parameter problem. The testing procedure selects a logistic VSTAR 

model with a single threshold, which we maintain for the univariate case as well.  

Third, we select the transition variable . To identify the appropriate transition variable, 

we run the linearity tests for several candidates, 1 2, , ...,t t mts s s , and select the one that gives the 

smallest p-value for the test statistic. Here, we consider lagged values of all variables for lags 1 

to 2 as the candidate transition variable. Let , where x  equals any of the three variables 

. We test linearity with these variables for delays . We obtain the smallest p-value 

with  and . Explicit analytical point formula for obtaining forecasts do not exist for 

non-linear (V)AR models even with a Gaussian disturbance term when ≥ 2,h  as 

≠[ ( )] [ ( )]E f x f E x , where h is the number of steps-ahead for the forecasts.9 That is, a nonlinear 

function involving a stochastic variable will arise for ≥ 2h  and the expected value of the forecast 

function will depend on the unknown stochastic term, since ≠[ ( )] [ ( )]E f x f E x . 

Artificial-neural-network models. Artificial–neural-network (ANN) models (McCulloch and 

Pitts, 1943; Minsky and Papert, 1969) perform well in forecasting nonlinear and chaotic time 

series (Lachtermacher and Fuller 1995). As we do for the STAR models, we consider only 

multivariate autoregressive ANN (MAR-ANN) models. Lisi and Schiavo (1999) use ANN 

models for predicting European exchange rates, finding that they perform as well as the best 

model, a chaos model. Using statistical tests, Lisi and Schiavo (1999) discover no significant 

                                                 

9 Details of the bootstrapping procedure are available upon request from the authors. We implement all 
computations of the STAR models with the RSTAR package (Version 0.1-1) in R developed by the one of the 
authors of this paper. 
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difference between the ANN and chaos models. Stern (1996) applies ANN models to several 

simulated data from autoregressive models of order 2, AR(2), with various signal-to-noise ratios. 

The results show that ANN models do not generate good predictions with a small signal-to-noise 

ratio. Thus, ANN models seem most suitable for forecasting time series with high signal-to-noise 

ratios, given sufficient data and appropriate data transformations. Success of ANN models in 

forecasting nonlinear time series reflects their universal function approximation capability 

(White 1988, 1989). This includes any linear or nonlinear function (Cybenko 1989; Funahashi 

1989; Hornik, et al. 1989; and Wasserman 1989). Because of this approximation capacity, 

neural-network models offer several potential advantages over alternative methods for 

nonnormal and non-linear data (Hansen, et al. 1999). 

Researchers use a variety of neural-network architectures for time-series prediction. The 

most widely used architecture is the multilayer perceptron (MLP) (also known as a feed-forward 

neural network) (Sarle 2002). The MLP can resolve a wide variety of problems (Bishop 1995; 

Kaastra and Boyd 1996). In this paper, we also prefer the MLP network for VAR-ANN based 

forecasting. In an MLP network, we partition units into layers. Usually, the MLP network 

contains an input and an output layer, and one or more hidden layers of neurons between the 

input and output layers. In the MLP architecture, data always transmit from the input layer to the 

output layer. The MLP network links each unit in the k-th layer directly and only to units in the 

(k + 1)-st layer. In VAR-ANN models, the lags of variables enter as inputs to the first layer, and 

outputs from the network appear in the last layer. A weight (“connection strength”) associate 

with each link, and a network is trained (“learned”) by modifying these weights, thereby 

modifying the network function that maps inputs to outputs. We use the VAR-ANN model with 

q-hidden layers, which we write as follows: 
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  β ε−
= =

′= Θ + Θ +∑ ∑,0 ,
1 1

( ) ,
q p

τ i i i j τ j τ
i j

X G X      (11) 

where  is as before, iβ , = 1, 2, ...,i q , are parameters called weights or connection strengths, 

,0iΘ , = 1, 2, ...,i q , are  vectors, ,i jΘ , = 1, 2, ...,i q , = 1, 2, ...,j p , are  matrices,  

is the “squashing (activation) function” called the “hidden unit”, and ε ε ε ε= 1 2( , , ..., )t t t kt  is a k-

dimensional vector of white-noise processes with zero mean and nonsingular covariance matrix 

.  

When using ANNs for forecasting time series, researchers usually subdivide the sample 

into three sets -- training, validation, and test sets (Bishop 1995; Ripley 1996). The training set 

constructs the network, the validation set obtains forecast performance measures, and the test set 

checks for generalization capacity of the network. This method can usefully construct networks 

with good generalization capability that performs well with new cases. During the network’s 

training stage, the weights iteratively adjust, using an algorithm such as the back propagation of 

Rumelhart et al. (1986), on the basis of the training set’s values to minimize the error between 

the network’s predicted output and the actual (desired) output. We use sum-of-squared errors 

(SSE) as a criterion to determine the optimal weights based on the training set. Nevertheless, 

training the ANN model using the training set may lead to overfitting. To avoid overfitting, the 

validation set controls the learning process. We evaluate an ANN model’s performance by 

changing the number of hidden layers and type of activation function at hidden and output layers, 

using the mean squared error (MSE) obtained from the trained ANN forecasts in the validation 

set. Finally, the test set, which does not depend on the data set, provides an unbiased estimate of 

the generalization error or forecasting performance.  

No optimal rules exist to select the size of each data set, although by general agreement, 
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the training set is the largest. In this paper, we use data from 1979:Q3 to 1994:Q2 as the training 

set (60 observations, 55%), data from 1994:Q3 to 1999:Q2 as the validation set (20 observations, 

18%), and data from 1999:Q3 to 2006:Q4 as the test set (30 observations, 37%). We evaluate a 

network’s performance based on the 1-to-8 step-ahead forecasts in the validation period and we 

select the best performing network based on the minimum MSE. Then, we use the validation set 

to select the network used to forecast the 1-to-8 step-ahead forecasts in the test period, which we 

compare to the ex post out-of-sample forecasts of the other models.10 The ex-ante out-of-sample 

forecasts over the 2007:Q1 to 2012:Q2 maintains the same ANN architecture, but extends the in-

sample period to 2006:Q4. 

Creating an MLP network involves five sets of parameters: the learning rule, network 

architecture, learning-rate and momentum factor, activation function of the hidden and output 

layers, and number of iterations. Over the years, researchers develop many methods to train an 

ANN model (see Fine 1999). MacKay (1992) proposes a Bayesian framework, called the 

Bayesian regularization, to overcome the problems in interpolation of noisy data. Bayesian 

regularization facilitates the selection of parsimonious models as well as maximum likelihood 

estimation. It also advantageously expands the cost function to search not only for the minimal 

error, but also for the minimal error using the minimal weights. In the Bayesian regularization 

approach, one determines a set of smaller models nested within a larger model and the algorithm 

chooses one of these smaller models, providing a method to select parsimonious models. The 

procedure first assigns prior probabilities to each of the smaller models and then determines the 

model that posts the highest posterior probability. Following the recommendation in Foresee and 

Hagan (1997), we fit the models using the Levenberg–Marquardt algorithm.  

                                                 

10 See Section 5 for further details. 
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The MLP architecture uses three lags of each variable as inputs for the VAR-ANN 

model. An MLP network’s capacity to learn depends on the number of hidden neurons. Despite 

its significant role, no statistical criteria exist to select the optimum number of hidden neurons. 

We select the best ANN with Bayesian regularization, bearing in mind the overfitting issue, 

based on its MSE in the validation set, using the least possible number of hidden neurons 

(Masters 1993; Smith 1993; Rzempoluck 1998). We try ANN models with maximum q  set to 9. 

We obtain the best performing VAR-ANN model with . 

In our study, the input-layer neurons use a linear activation function, while the hidden- 

and output-layer neurons use a sigmoid activation function, . Two sigmoid functions widely 

used in MLP are the logistic (providing continuous values between 0 and 1) and hyperbolic 

tangent sigmoid, called tansig, functions (providing continuous values between -1 and 1). In this 

study, we use the tansig function in the hidden and output layers of the MLP networks, since it 

allows much faster learning in comparison to the logistic function (Fahlman 1988; Fausett 1994). 

We scale our data onto -1 and 1, which is the range covered by the tansig function. 

The learning-rate parameter plays a crucial role in the training process of MLP networks. 

The learning rate controls the change in the weights in each step of the iteration of training. To 

obtain optimum weights, researchers should avoid changing the weights both too little or too 

much. We use a learning rate of 0.25, which provides good results in most practical cases 

(Rumelhart, et al. 1986). We can increase the speed of learning by filtering, based on the past 

changes, the oscillations caused by the learning rate. The momentum factor parameter controls 

the effect of past changes, which should be a number close to 1. In this study, we use a 
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momentum factor equal to 0.85.11 

Time-varying parameter, vector autoregressive model. Modern macroeconomic applications 

increasingly involve the use of VARs with time-varying mean regression coefficients and 

covariance matrices, which implies a nonlinear VAR model. A time-varying parameter VAR 

with constant variance (Homoscedastic VAR) takes the following form: 

  1 1t t t tz β ε+ +Υ = +        (12) 

  t t tβ β η= +         (13) 

where Yt+1, zt, xt, Σ, and εt are defined as before in equations (1) and (2), 𝛽t is an (n x 1) vector of 

t=1,...,T parameters, and ),0(~ QNtη  with Q as a (n x n) covariance matrix. The implied priors 

for 𝛽1 to 𝛽t are of the form [𝛽t|𝛽t-1, Q~N(𝛽t-1, Q)]. Since the covariance matrix Q is unknown, we 

postulate its prior as ),(~ 11 −− RWishartQ ξ , where R is (n × m) matrix, and ξ is a scalar. To avoid 

explosive behavior (which might affect forecasting negatively) of the random-walk assumption 

on the evolution of 𝛽t, we must restrict its covariance Q. As such, we subjectively choose the 

hyper-parameters for the initial condition 𝛽0 and the covariance matrix Q to form a tight prior. 

The hyper-parameters influence the performance of variable selection, which affects the mean 

and variance of the mean coefficients β . For the VAR case, when 0=jγ  and jβ  is restricted, 

we take a draw from each prior, implying that the prior variance V0 cannot go to ∞, since that 

implies the selection of no predictors. The hyper-parameter of the Bernoulli prior of jγ  also 

affects variable selection. 

For time-varying parameters model with variable selection (TVP-VAR VS), a prior on 

                                                 

11 We implement all computations of the VAR-ANN models with the Neural Network Toolbox (Version 6.0) in 
MATLAB. 
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the initial condition is of the form 2 min
0 ~ (0,4 )N Vβ , with [ \| ~  (1,0.5)j j Bernoulliγ γ − ]. The 

time-varying VAR without variable selection (TVP-VAR) uses a prior as in the TVP-VAR VS 

with the restriction 1=jγ  for all j = 1,..., n imposed. The covariance Q  of the time-varying 

coefficients in the TVP-VAR VS uses the prior 1 ~ ( , )Q Wishart Rξ− , where 1+= nξ ,   

1 min0.0001( 1)R n V− = + , and Vmin is the matrix defined with the Minnesota-prior specification of 

the variance of the parameters as discussed above following equation (6). The forecasts from the 

TVP-VAR models with and without variable selection use a run of 30,000 draws from the 

posterior, discarding the first 2,000 draws, with lags equal to 2. 

Nonparametric and Semi-Parametric Atheoretical Models: 

Nonparametric and semi-parametric models. We now consider nonparametric and semi-

parametric regression approaches for forecasting detrended logged real GDP. We consider two 

competing multivariate models, and examine their forecasting abilities. These specifications are 

as follows: 

Model 1: Nonparametric regression model (NP model) 

  π π ε− − − − − −= +1 2 1 2 1 2( , , , , , )t t t t t t t yty f y y r r ;     (14) 

  π π ε− − − − − −= +1 2 1 2 1 2( , , , , , )τ τ τ τ τ τ τ rτr f y y r r ; and     (15) 

  ππ π π ε− − − − − −= +1 2 1 2 1 2( , , , , , )t t t t t t t tf y y r r .     (16) 

Model 2: Semi-parametric regression model (SP model) 

  a a a π π ε− − − − − −= + + + +0 1 1 2 2 1 2 1 2( , , , )t y y t y t t t t t yty y y g r r ;   (17) 

  a a a π π ε− − − − − −= + + + +0 1 1 2 2 1 2 1 2( , , , )τ r r τ r τ τ τ τ τ rτr r r g y y ; and   (18) 

  π π π ππ a a π a π ε− − − − − −= + + + +0 1 1 2 2 1 2 1 2( , , , )t t t t t t t tg y y r r .   (19) 

Here, f(.) and g(.) denote unknown functions that the data estimate. The εik, i=y, r, π, are 
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mean-zero errors with unchanged variance over the entire data set. The parameters a0i, a1i, and 

a2i, i=y, r, π, are constants estimated from the data. Therefore, we can also describe the semi-

parametric model as a partially linear nonparametric model.12 

In the time-series context, nonparametric regressions can lead to issues with correlated 

errors (e.g., Opsomer, et al. 2001). For instance, the data-driven band-width selection techniques 

in the kernel-smoothing methodology can break down in this context. In such cases, we could 

use a correlation-corrected method called CDPI to yield stable results. In our case, for Models 1 

and 2, two lags guarantee the absence of autocorrelation. As a result, the responses in equations 

(14) to (16) and (17) to (19) exhibit uncorrelated errors. Also, stationarity checks ensure constant 

variances in each model. Finally, we compare such models based on their prediction errors or 

forecast performances. 

We check the goodness of fit using Bootstrap testing and find p-values close to 1 for the 

models used. When estimating the unknown functions f(⋅) and g(⋅) in the case of the 

nonparametric models, we use a local linear regression, using AICc bandwidth selection criterion. 

In this case, we also examine all options for the choice of kernels and find that the Gaussian 

kernel of order 2 works the best yielding the highest R-squared values and the smallest MSE. We 

use the optimum bandwidth chosen by the software. In the case of the semi-parametric modeling, 

we first compute data-driven bandwidths of the kernels to use in the f(⋅) and g(⋅) parts of the 

model, since bandwidth selection for lower levels of tolerance takes an extremely long time. We 

use a local-linear, and not local-constant, regression type, as the local-linear type yields smaller 

                                                 

12 We use the np package in R to carry out the regressions outlined above. 
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R-squared values.13 Again, for the f(⋅) and g(⋅) parts of the model, we use Gaussian kernels of 

order 2, because they yield the highest R-squared values and the lowest MSE. We generate the 

forecasts from the NP and SP models using a recursive algorithm. That is, the forecast from 

origin n is generated for period n+1, and forecast values for period n+1 is inserted for 

unobserved values when forecasting for period n+2, and so forth.  

Linear and nonlinear micro-founded theoretical models: 

Linear and nonlinear dynamic stochastic general equilibrium models. Dynamic stochastic 

general equilibrium (DSGE) models not only carry out business cycle analysis, but also forecast 

macroeconomic variables. Since DSGE economies generally lack an analytical solution, 

economists work with numerical approximations to their theoretical models. Researchers 

linearize most models around a non-stochastic steady state to compute such approximations. This 

approach is appealing from an econometric perspective, since it allows the use of Kalman 

filtering techniques to build the likelihood function implied by the approximate model, and to 

construct out-of-sample forecasts. Linearization, however, may prove problematic, especially 

when nonlinearities are important or when significant shocks move the economy far from the 

steady state – as in during the recent downturn. Moreover, recent work by Fernandez-Villaverde 

and Rubio-Ramirez (2005) and Fernandez-Villaverde et al. (2006) points out that estimating 

DSGE models using linearized solutions will generally lead to biased parameter estimates. 

Hence, Fernandez-Villaverde et al. (2006) suggest moving to second-order approximations when 

taking DSGE models to the data. This approach, however, comes with computational costs, since 

it requires the use of Monte Carlo methods for constructing the likelihood function. 

                                                 

13 The decision to use the local linear regression method instead of the kernel-smoother methods adopted by Arora et 
al. (2013) in forecasting US real GDP based on nonparametric method, emanates from the fact that the former does 
not suffer from the problem of biased boundary points. 
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We use the framework developed by Pichler (2008), essentially a relatively small new-

Keynesian monetary economy featuring monopolistic competition, capital accumulation, and 

price and capital adjustment costs characterizing the rigidities in the economy. The economy 

includes a representative household, a representative finished-goods-producing firm, a 

continuum of intermediate-goods-producing firms, and a central bank following the basic Taylor 

rule, which smooths the interest rate over time and reacts to deviations of output and inflation 

from their target values, in setting the interest rate. Households face adjustment costs to convert 

final goods to productive capital, while Rotemberg (1982)-type price adjustment costs confront 

intermediate goods producers. In this model, technology shocks, preference shocks, and 

monetary shocks drive macroeconomic fluctuations. A system of 13 non-linear equations 

characterizes the model’s symmetric equilibrium, which, in turn, can be summarized as follows: 

  t t+1 t t+1 t t+1E R(f , f ,s ,s ,ε ;Θ)= 0,       (20) 

where R is a nonlinear operator, the vectors ts  and tf  include the model’s state and control 

variables, respectively, t+1ε  summarizes the exogenous disturbances, and Θ  collects the 

structural parameters.  

The model’s solution, in turn, is given by decision rules t t+1Ψ(s ,ε )  and tΦ(s )  that satisfy 

the following condition: 

  t t t+1 t t t+1 t t+1E R(Φ(Ψ(s ,ε )),Φ(s ),Ψ(s ,ε ),s ,ε ;Θ)= 0     (21) 

for all  t t+1s , ε , and t . Collecting state and decision variables in a vector ' ' '
t t tX = (s , f ) ,  we can 

write this solution compactly as t+1 t t+1X = H(X ,ε ;Θ),  where H  is a nonlinear function 

depending on Φ  and Ψ,  respectively. For the economy under consideration, we cannot compute 

the functions Φ  and Ψ  (and, therefore, H ) analytically, but must approximate them by 
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numerical methods. 

Assume that we observe YN  macroeconomic time series of length T , collected in 

T T
t t=1y = {y } . Together, with the data, our DSGE model forms the following nonlinear state-space 

system: 

  t+1 t t+1X = H(X ,ε ;Θ),  and      (22) 

  t t ty = GX +v .         (23) 

The vector tν  denotes a normally distributed and uncorrelated measurement errors [i.e., 

t N(0,Σ )νν   with a diagonal Σν ]. We assume that the model’s variables relate to the 

observable data series in a linear way, as represented by the (m × m) matrix G.  

From the state-space system in equations (22) and (23), we denote the likelihood of the 

sample data Ty  conditional on our model H  with parameters Ω = {Θ,Σ }ν  as ˆTL(y /H,Ω) . 

Unfortunately, since we cannot compute the model solution H  analytically, we cannot evaluate 

ˆTL(y /H,Ω)  exactly. Filtering techniques, however, allow us to approximate the likelihood based 

on the approximate decision rules Ĥ.  In this paper, we compute the likelihood based on linear 

and nonlinear approximations to the model’s decision rules, denoted by H  and H.  As in Pichler 

(2008), we derive these approximations using first and second-order perturbation methods as 

described by Klein (2000) and Schmitt-Grohe and Uribe (2004), respectively.  

Based on a first-order approximation of the model, we can construct the likelihood 

function in a straightforward way. Since H  is linear and the innovations t+1ε  are Gaussian, the 

densities in ˆTL(y /H,Ω)  are normal, such that we can use the Kalman filter to analytically build 

function TL(y /H,Ω) . For estimating the model based on its quadratic approximation H,  
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however, the Kaman filter is no longer available. In particular, since H  is nonlinear, we cannot 

evaluate the densities in closed form. To estimate parameters based on the quadratic model, we, 

thus, resort to Monte Carlo methods, precisely the basic particle filter suggested by Fernandez-

Villaverde and Rubio-Ramirez (2007).  

Having constructed the likelihood function from either the linearized or the quadratic 

model, we can compute maximum likelihood estimates numerically as follows: 

T
MLΩ = argmax L(y /H,Ω)W  and T

MLΩ = argmax L(y /H,Ω)W
  , respectively. Deriving these 

estimates, however, proves a non-trivial exercise, as several complications arise. First, as usually 

encountered in estimating DSGE models and as Prichler (2008) notes, the likelihood function is 

almost flat with respect to some parameters. This is a common issue and not specific to our 

model. Hence, we calibrate these parameters rather than estimate them via maximum likelihood. 

Specifically, we set the elasticity of output with respect to capital at 0.36, the depreciation rate at 

0.025, and the capital adjustment costs parameter at 10. For similar reasons, we calibrate the 

mark-up parameter at 6. Furthermore, we choose the parameters corresponding to leisure and 

real money balances in the utility function (equal to 2.4) such that the household spends 30 

percent of its time working in the steady state, and to match the steady state ratio between real 

balances and quarterly output, respectively. Also as in Pichler (2008), we calibrate the 

measurement error variances to 10 percent of the variance of the respective data series. The 

DSGE model possesses a parameter space consisting of 19 parameters. Thus, using 2 lags, based 

on the BIC, in the different other competing models, keeps the size of the parameter space 

amongst all the models comparable. Second, the likelihood function features many local maxima 

and minima. Finally, when we use the particle filter to construct the likelihood based on the 

nonlinear solution, the resulting likelihood function is not continuous with respect to parameter 
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vector Ω . To address the latter two problems, we employ a simulated annealing approach 

instead of gradient-based methods for maximizing the likelihood function (Pichler, 2008).  

III. Data and Results: 

Our US data set includes quarterly time series on output, the inflation rate, and the nominal 

interest rate. The series come from the ALFRED (ArchivaL Federal Reserve Economic Data) 

database maintained by the Federal Reserve Bank of St. Louis. Output corresponds to seasonally 

adjusted at an annual rate quarterly gross domestic product (GDP) in billions of chained 2005 

dollars (specifically, the GDPC1 series at ALFRED), whereby we remove a linear trend from the 

(logged) GDP series. We calculate the inflation rate as the relative change in the GDP deflator 

(GDPDEF in ALFRED) with a base year of 2005 and the nominal interest rates as the average 

weekly 3-Month Treasury bill rates (WTB3MS in ALFRED). We select the time period 1979Q3 

through 2012:Q2. This gives a total sample of 132 observations on each series with the first 80 

(1979:Q3 through 1999:Q2) used for in-sample analysis, the next 30 (1999:Q3 through 2006:Q4) 

used for the ex-post out-of-sample forecasting, and the remaining 22 (2007:Q1 through 2012:Q2) 

used for the ex-ante out-of-sample prediction of the real logged GDP.  

The choice of the in-sample and out-of-sample periods emanate from the following 

considerations. First, the in-sample period includes the Great Moderation with its more stable 

monetary and financial structure and a lower volatility of the macroeconomic variables. Thus, we 

exclude the pre Volcker-Greenspan-Bernanke era from our in-sample period. Bekiros and 

Paccagnini (2013) adopt a similar in-sample period for their forecasting exercise with DSGE and 

time-varying models. Second, the endpoint of the in-sample period gives us 80 observations, 

which An and Schorfheide (2007) regard as a realistic in-sample size. Third, since we adopt 

Pichler’s (2008) linear and nonlinear DSGE models, we also adopt his in-sample period and 
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choices and transformations of the variables in the models. Fourth, the end point of the ex-post 

out-of-sample period occurs one year in advance of the starting date of the downturn. Thus, our 

ex-ante out-of-sample forecasts begin one year before the beginning of the Great Recession and 

extend beyond the end of the recession through 2012:Q2, which was the last observation 

available when we constructed our data set. The decision to stop a year before the great recession 

was primarily to allow us a reasonable size (in this case 30 quarters) for the ex-post out-of-

sample period. 14  

To make our analysis realistic, we carry out the out-of-sample forecasting exercise based 

on the vintage of these variables available on October 27, 2006, which corresponds to the first 

release of GDP estimates for 2006:Q3. The trend estimate of logged real GDP that we use to 

detrend the data over the in-sample comes from the vintage of January 31, 2007. Once we 

forecast the detrended logged real GDP from the different “best” models, we add back this 

estimate of the trend for the period of 1979:Q3 to 2006:Q4 to obtain a forecast for the logged real 

GDP in log-levels, and compare this with the actual values of the logged real GDP available on 

July 27, 2012, which corresponds to the first release of GDP estimates for 2012:Q2. Since the 

data for the GDP implicit deflator depends on nominal and real GDP estimates, we follow a 

similar approach with the nominal GDP data over the period of 1979:Q3 to 2006:Q4. Since the 

three-month Treasury bill rate is available at a weekly frequency, we take the averages of the 

weekly values over each quarter to generate our quarterly series. Also, the estimate for the 

quarterly Treasury bill rates for 2006:Q3 and 2006:Q4 use the vintages for October 2, 2006 and 

January 3, 2007, respectively. Finally, we compute the RMSEs, using the vintage dates 

                                                 

14 Ex-post forecasts use actual values of the variables used in the forecasting equation to generate the forecasts 
whereas the ex-ante forecasts use forecasted values. 



31 

mentioned above that corresponds to the first release of the three variables for 2006:Q4. 

Except for the DSGE models, we took first differences of the variables to ensure 

stationarity, since we could not reject the null hypothesis of a unit-root in all variables, using 

standard unit-root tests.15 After generating the forecasts of the first-differences, we recover the 

forecasts of the levels by using the actual data of the previous periods.16 Thus, we estimate the 

models in first-differences with one lag, since the BIC suggests 2 lags for a VAR estimated in 

levels. 17 

Ex-post out-of-sample forecasting: 1999:Q3-2006:Q4 

This subsection discusses the findings from the forecasting performance of the 12 best models in 

each category of specifications -- the VAR, BVAR1, BVAR2, ANN, VSTAR, MS-VAR, TVP-

VAR1, TVP-VAR2, NP, SP, DSGE-Linear, and DSGE-Nonlinear models -- compared to the 

RW benchmark model. We first examine the raw root mean squared errors (RMSEs) of each 

specification (i.e., the RW model and the 12 best models in each category). Then we consider the 

RMSEs of the best 12 models to the RMSE of the RW model. Finally, we report whether the 

                                                 

15 These results are available upon request from the authors.  
16 Allowing one lag in the first-differenced atheoretical models implies that our in-sample estimation starts from 
1980:Q1 – the same starting point recently used by Bekiros and Paccagnini (2013) when estimating DSGE and 
TVP-VAR models. Ireland (2004) indicates that significant changes occurred in US monetary and fiscal policy in 
1980 and, thus, they constitute a major breakpoint. Further, 1980:Q1 roughly coincides with the end of the Volcker 
stabilization and disinflation era. Hence, the in-sample exhibits a more stable monetary and financial structure and a 
lower volatility of the macroeconomic variables. Also, Justiniano and Primiceri (2008) point out that researchers 
find structural breaks in mean and volatility by comparing the pre- and post-80 periods, while one cannot reject the 
null hypothesis of parameter stability in the post-80 period. Furthermore, Benati and Surico (2008) claim that if the 
US economy experienced an indeterminate equilibrium before 1980, then estimating models before and after the 
1980s will mix two different regimes, thus obtaining biased estimates of the structural parameters. Finally, Herbst 
and Schorfheide (2012) argue that as strong empirical evidence exists that monetary policy as well as the volatility 
of macroeconomic shocks changed in the early 1980s. Given that, the information set in estimating the models 
should provide relevant information to the exercise of contemporary policy making, thus a sample after the 1980s 
ensures better forecasting performance. 
17 The trace and maximum-eigenvalue tests of cointegration, which are available upon request from the authors, do 
not detect any evidence of cointegration amongst the three key variables. Hence, no explicit need exists to model the 
error-correction term, and we simply use the VAR versions of the different linear and nonlinear models. 
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ratios of the 12 RMSEs to the RMSE of the RW model differ significantly from the ratios for the 

other specifications. 

When forecasting into the future, we anticipate, other things constant, that the RMSE will 

increase with the number of periods into the future that the model forecasts. The RW model 

follows this expectation. Examining the raw RSMEs across the 12 other best models, we see that 

the specifications divide into three categories, First, seven specifications -- the best ANN, 

VSTAR, MS-VAR, NP, SP, DSGE-Linear, and DSGE-Nonlinear models -- all exhibit 

monotonically rising RMSEs with the forecast horizon. Second, three specifications -- the best 

BVAR2, TVP-VAR1, and TVP-VAR2 models -- exhibit a falling RMSE across the forecast 

horizon, except for the horizon at seven quarters where the RMSE rises. Finally, the best VAR 

and BVAR1 models exhibit rising RMSEs over the initial horizons and then falls for horizons 6 

and 7, and 5 to 8, respectively.  

Table 1 reports the relative RMSEs of the 12 best specifications to the RMSE of the RW 

model across the eight forecasting horizons. Once again, the models divide into three categories 

of outcomes. Five specifications -- the best BVAR2, TVP-VAR1, TVP-VAR2, DSGE-Linear, 

and DSGE-Nonlinear models -- each exhibit monotonically decreasing RMSEs across the 

forecast horizons. The latter two models experience declining relative RMSEs compared to the 

RMSE of the RW model, even though they experience rising RMSEs over the forecast horizons, 

because their rising RMSEs do so more slowly than that of the RW model. Four specifications -- 

the best ANN, MS-VAR, NP, and SP models -- experience rising relative RMSEs over the initial 

four forecast horizons, experiencing some decreases in the relative RMSEs over the last four 

forecast horizons. Finally, the remaining three specifications -- the best VAR, BVAR1, and 

VSTAR models -- generally experience a fall in their relative RMSEs, except for some increases 
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at the second and third forecast horizons. 

When we average the relative RMSEs across the eight forecast horizons, the DSGE-

Nonlinear model performs the best followed closely by the DSGE-Linear model.18 By the end of 

the forecast horizon, the best BVAR2, TVP-VAR1, and TVP-VAR2 models enjoy the lowest 

relative RMSEs. They do not outperform the DSGE models averaged over all forecasting 

horizons because of their poor forecasting performance at the initial horizons. In sum, the two 

DSGE models perform well on the average across all forecast horizons because they do a 

reasonably good job of forecasting relative to the RW model at every horizon. On the other hand, 

the BVAR2, TVP-VAR1, and TVP-VAR2 models perform the worst at horizon one and then 

improve their forecasting performance across all eight horizons. 

Table 2 reports the significance of differences between the RMSEs of various 

specifications relative to the RW model using the McCraken (2007) MSE-F statistic, which is a 

one-sided test designed for nested models, and tests whether the forecast errors from the 

alternative (unrestricted) models are significantly better than those from the RW (restricted) 

model. Table 2 also reports the McCraken (2007) test on the forecast errors of the DSGE-

Nonlinear (unrestricted) model to those of the DSGE-Linear (restricted) model. We also test, 

whether the nonlinear DSGE model performs significantly better or worse relative to the 

alternative unrestricted models, using the test of equal forecast accuracy designed by Harvey et 

al., (1997).  

Several observations emerge. First, all models outperform the RW model at longer 

forecast horizons (i.e., 6- to 8-quarter-ahead forecasts). The VAR and BVAR1 models 

                                                 

18 For the individual horizons, the MS-VAR model performs the best at the 1st- and 2nd-quarter horizons, the DSGE-
Nonlinear model, at the 3rd- and 4th-quarter horizons, and the BVAR2 model, at the 5th-, 6th-, 7th-, and 8th-quarter 
horizons. 
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significantly outperform the RW model from 5- to 8-quarter-ahead forecast horizons. The 

BVAR2 and TVP-VAR 1 and 2 models, from 4- to 8-quarter-ahead forecast horizons. The 

DSGE-Linear model, from 3- to 8-quarter-ahead forecast horizons. And, the DSGE-Nonlinear, 

from 2- to 8-quarter-ahead forecast horizons. The MS-VAR model significantly outperforms the 

RW model at forecast horizons 1-, 2-, 6-, 7-, and 8-quarters ahead. 

Second, the DSGE-Nonlinear model significantly outperforms the DSGE-Linear model at 

all horizons except 1-quarter ahead. The DSGE-Nonlinear model significantly outperforms the 

BVAR1 and 2 and the TVP-VAR1 and 2 models at shorter forecast horizons, but significantly 

underperforms these models at longer horizons. More specifically, for the BVAR2 and the TVP-

VAR 1 and 2 models, the DSGE-Nonlinear model outperforms at forecast horizons 1-, 2-, and 3-

quarter ahead, but underperforms at horizons 6-, 7-, and 8-quarter ahead. The DSGE-Nonlinear 

model significantly outperforms the VAR model at forecast horizons 3-, 4-, and 5-quarter ahead 

and significantly outperforms the MS-VAR model at forecast horizons 2- through 7-quarter 

ahead and only significantly underperforms the MS-VAR model at forecast horizon 1-quarter 

ahead. 

In sum, across the 1- to 8-quarter-ahead forecast horizons, the DSGE models significantly 

outperform the RW model at all horizons except the first quarter. The DSGE-Nonlinear model 

also significantly outperforms the DSGE-Linear model at all seven horizons. At the same time, 

three models – the BVAR1 and TFP-VAR 1 and 2 – perform poorly at the shorter horizons, but 

dramatically improve their forecast performance over longer horizons and significantly 

outperform the DSGE-Nonlinear model at forecast horizons six, seven, and eight. Averaged over 

the eight forecast horizons, the DSGE-Nonlinear model still outperforms all other models under 

consideration. 
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Ex-ante out-of-sample prediction of the real logged GDP: 2007:Q1-2012:Q2 

Our final test examines the ability of the various models to predict the Great Recession, using ex 

ante out-of-sample forecasts. We compare the predictions of the best performing model within 

each of the four groups of models -- atheoretical linear, atheoretical nonlinear, nonparametric 

and semi-parametric, and the micro-founded theoretical models -- based on the average RMSEs 

reported in Table 1. Thus, we include, in addition to the actual observations, the ex-ante out-of-

sample forecasts for the RW, VAR, MS-VAR, NP, and DSGE-Nonlinear models. Figure 1 plots 

the forecast and actual values for real GDP.19 

The actual series shows a peak in 2007Q4 followed by a trough in 2009:Q2, the time 

identified by the Business Cycle Dating Committee of the NBER. Only the DSGE-Nonlinear 

model captures the turning point into a recession. The DSGE-Nonlinear model forecasts a 

recession with a peak in 2009:Q1 and a trough in 2009:Q3. Each of the other non-DSGE models 

do not forecast a recession or steep drop, but rather continue to forecast rising real GDP. 

Moreover, all these other series follow a path not too different from the forecast of the RW 

model.20 

                                                 

19 We also conducted 1- to 8-step-ahead forecasts instead of the ex-ante out-of-sample forecasts for the optimal 
nonlinear DSGE model. By updating the data in the forecast exercise, the forecast and actual values mirror each 
other more closely, although the more steps into the future that the forecast goes, the increased delay in calling the 
turn in the real GDP series. Results are available from the authors on request. 
20 As is standard in the business cycle literature, we detrended the real GDP with the Hodrick–Prescott (HP) filter as 
an alternative to our linear trend decomposition. A problem emerges in using a filter to detrend series. To wit, the 
filter approach actually must use the ex ante sample from 2007:Q1 to 2012:Q2 to detrend the data. As a result, we 
lose the ex ante nature of the forecast exercise. When we actually perform the analysis with HP filter detrended data, 
we find that now the DSGE nonlinear model no longer emerges as the best model based on average RMSEs, but 
follows the TVP-VAR2 model, the BVAR2, and the NP and SP models. The DSGE-nonlinear model still beats the 
linear DSGE model. In sum, when comparing the DSGE-Nonlinear with the other models, four cases occur for 
which the other models significantly outperform the DSGE-Nonlinear, while the DSGE-Linear never significantly 
outperforms the DSGE-Nonlinear. This outcome occurs, we believe, primarily because the filtered series becomes 
much smoother in the ex ante period than the linearly detrended case, since the HP filter actually uses data in the ex 
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In sum, the micro-founded nonlinear DSGE model proved the only model capable of 

picking up the turning point in the Great Recession, although the forecast downturn lagged the 

actual downturn by four quarters. The other models forecast continued upward movement in real 

GDP. This observation suggests that developing forward-looking, microfounded, nonlinear, 

dynamic-stochastic-general-equilibrium models of the economy, may prove crucial in 

forecasting turning points. 

IV. Conclusion 

This paper uses small set of variables and a rich set of models to consider whether we could have 

predicted the recent downturn of the US real Gross Domestic Product (GDP). The rich set of 

models includes atheoretical and theoretical, linear and nonlinear, as well as classical and 

Bayesian models. Our restricted data set includes real GDP, the rate of inflation of the GDP 

implicit deflator, and the three-month Treasury-bill rate. 

Our analysis considers the most recent financial crisis and Great Recession, as financial-

crisis-induced recessions exhibit more depth and length than typical recessions (Reinhart and 

Rogoff, 2009). First, we estimate the wide range of econometric models noted previously over 

the in-sample period from 1979:Q3 to 1999:Q2. Second, we forecast one- to eight quarters-ahead 

of detrended logged real GDP over an ex-post out-of-sample forecast horizon from 1999:Q3 to 

2006:Q4. Third, we choose the model within each category that produces the minimum average 

root mean square errors (RMSEs) relative to the benchmark random walk model as the “best” 

model for a specific category. Fourth, we use the best model within each category to generate ex-

                                                                                                                                                             

ante sample to detrend the actual series. Hence, to predict the cycles ex ante for the more volatile series is difficult 
for the pure time-series models. In this case, using fundamentals becomes more important to track the data when the 
series is more volatile, as was observed when trying to predict the downturn of the GDP over 2007:Q1-2012:Q2, 
with the Nonlinear-DSGE still being the sole model showing a slight hint of slowdown. 
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ante out-of-sample predictions of real GDP (without updating the parameter estimates of the 

optimal models) over 2007:Q1 to 2012:Q2. 

Comparing the performance by RMSEs of the models to the benchmark RW model, the 

two DSGE models perform well, on average, across all forecast horizons because they do a 

reasonably good job of forecasting relative to the RW model at every horizon. More specifically, 

the two DSGE models significantly outperform the RW model in forecasting at every horizon 

except the first quarter. On the other hand, the BVAR2, TVP-VAR1, and TVP-VAR2 models 

perform the worst at horizons one, two and three and then improve their forecasting performance 

across future horizons and actually significantly outperform the DSGE-Nonlinear model at 

horizons six, seven, and eight. The DSGE-Nonlinear model does by far the best job of 

forecasting the Great Recession in the ex-ante out-of-sample forecasts. It provides the only 

model that predicts a downturn in the real GDP path, albeit with a lag of four quarters after the 

actual downturn. In sum, some atheoretical and theoretical models perform the best in the ex-post 

out-of-sample forecast exercise at longer forecast horizons. The theoretical model, however, 

dominates in our ex-ante out-of-sample forecast comparison, when trying to forecast the Great 

Recession.  

These findings support those in Gupta et al. (2011). They too find the superiority (relative 

to small and large-scale atheoretical linear models) of a DSGE model that explicitly incorporates 

the housing sector in predicting ex ante the downturn in real US house prices. They suggest, and 

we corroborate, that to forecast the downturn in a specific variable may require forward-looking, 

microfounded, DSGE models in the fundamental variables. Further, the fact that the DSGE-

Nonlinear ex-ante out-of-sample forecasts prove closer to the actual observations also highlights 

the importance of second-order approximation of the model economy around the steady-state to 
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account for nonlinearities when significant shocks move the economy far from the steady state, 

as occurred during the Great Recession. 

In sum, the nonlinear DSGE model performs the best overall in the ex-post out-of-sample 

RMSE averaged across all horizons as well as in tracking the turning point in the Great 

Recession, using ex-ante out-of-sample predictions. This occurs despite the limited economic 

structure considered in Pichler's (2008) model, which introduces misspecifications. A slightly 

more comprehensive model that more closely mimics the structure of the macroeconomy should 

provide even better out-of-sample forecast accuracy and more accurately track economic turning 

points. In other words, although our DSGE model entered the forecasting horserace at a 

disadvantage, it outperformed the “atheoretical” time-series models. 
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Table 1: Relative RMSEs: Ex-Post Out-of-Sample Forecasting Performance to Random Walk Model, 1999:Q3-2006:Q4 
 
  Forecast Horizon 

Model 1 2 3 4 5 6 7 8 Average 

RW 0.5314 0.7572 0.9804 1.1422 1.2725 1.4063 1.5474 1.692 1.1662 
VAR 1.0412 0.9896 1.0165 0.9948 0.9225 0.8159 0.7187 0.6746 0.8967 
BVAR1 1.1026 1.1325 1.0731 1.0311 0.9032 0.7684 0.6191 0.5508 0.8976 
BVAR2 2.042 1.3828 1.0446 0.89 0.7316 0.647 0.6001 0.4924 0.9788 
ANN 1.242 1.3998 1.4484 1.4971 1.556 1.5715 1.5639 1.5721 1.4814 
VSTAR 1.2928 1.3166 1.3739 1.3614 1.299 1.2644 1.2065 1.1708 1.2857 
MS-VAR 0.8237 0.9623 1.0057 1.0232 0.9893 0.9158 0.8384 0.7686 0.9159 
TVP-VAR1 2.0445 1.3845 1.0479 0.8906 0.7341 0.649 0.6016 0.4947 0.9809 
TVP-VAR2 2.0428 1.397 1.044 0.8933 0.7344 0.649 0.6011 0.4931 0.9818 
NP 0.9248 1.1922 1.2297 1.3803 1.3304 1.2972 1.2319 1.2289 1.2269 
SP 1.0424 1.4793 1.558 1.7361 1.8221 1.9035 1.8713 1.8542 1.6584 
DSGE-Linear 1.0139 1.0071 0.926 0.8945 0.8439 0.8141 0.782 0.7672 0.8811 
DSGE-Nonlinear 1.0197 0.9827 0.8763 0.8395 0.7738 0.7447 0.7084 0.6923 0.8297 

Notes:  RW: Random-Walk Model; VAR: Classical Vector Autoregressive Model; BVAR1 (BVAR2): Bayesian Vector Autoregressive Model based on the 
Minnesota-prior (Bayesian Vector Autoregressive Model based on Variable-Selection); ANN: Artificial Neural Network Model; VSTAR: Vector 
Smooth Transition Autoregressive Model; MS-VAR: Markov-Switching Vector Autoregressive Model; TVP-VAR1 (TVP-VAR2): Time-Varying 
Parameter Vector Autoregressive Model without Variable Selection (Time-Varying Parameter Vector Autoregressive Model with Variable Selection); 
NP: Nonparametric Regression; SP: Semi-Parametric Regression; DSGE-Linear (DSGE-Nonlinear): Dynamic Stochastic General Equilibrium Model 
Estimated with Kalman Filter (Dynamic Stochastic General Equilibrium Model Estimated with Particle Filter). The entries for the RW model 
correspond to the absolute RMSE from the model in percentages. The entries for the other models report the RMSE of the particular model relative to 
the RMSE of the RW model for a specific forecast horizon. The bolded entries identify the minimum relative RMSE for each horizon and the average 
across all horizons across the 12 models, excluding the RW model. 
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Table 2: Significance of Differences in Ex-Post Out-of-Sample Forecasting Performance, 1999:Q3-2006:Q4 
 

  Forecast Horizons 

Models 1 2 3 4 5 6 7 8 

VAR versus RW 4.1225 -1.0376 1.6476 -0.5219 -7.7467** -18.4079* -28.1291* -32.5378* 
BVAR1 versus RW 10.2631 13.2470 7.3086 3.1135 -9.6806* -23.1632* -38.0883* -44.9183* 
BVAR2 versus RW 104.1983 38.2849 4.4562 -11.0020* -26.8373* -35.3050* -39.9940* -50.7551* 
MS-VAR versus RW -17.6329* -3.7704** 0.5725 2.3192 -1.0731 -8.4249** -16.1570* -23.1354* 
TVP-VAR1 versus RW 104.4525 38.4482 4.7936 -10.9358* -26.5883* -35.0967* -39.8374* -50.5303* 
TVP-VAR2 versus RW 104.2771 39.7008 4.4049 -10.6658* -26.5643* -35.0988* -39.8902* -50.6880* 
DSGE-Linear versus RW 1.3924 0.7138 -7.4031** -10.5477* -15.6098* -18.5853* -21.7975* -23.2838* 
DSGE-Nonlinear versus RW 1.9674 -1.7296† -12.3668* -16.0474* -22.6222* -25.5321* -29.1604* -30.7707* 
DSGE-Nonlinear versus DSGE-Linear 0.5720 -2.4228** -5.3672* -6.1487* -8.3067* -8.5248* -9.4118* -.9.7628* 
DSGE-Nonlinear versus VAR -2.0698 -0.6992 -13.7873† -15.6070† -16.1246** -8.7315 -1.4349 2.6193 
DSGE-Nonlinear versus BVAR1 -7.5235 -13.2247† -18.3354** -18.5823** -14.3287† -3.0830 14.4204† 25.6847** 
DSGE-Nonlinear versus BVAR2 -50.0645* -28.9363** -16.1053** -5.6691 5.7612 15.1061† 18.0543** 40.5815* 
DSGE-Nonlinear versus MS-VAR 23.7951** 2.1199 -12.8667† -17.9535** -21.7831** -18.6831** -15.5057† -9.9271 
DSGE-Nonlinear versus TVP-VAR1 -50.1266* -29.0201** -16.3754** -5.7392 5.4026 14.7368† 17.7470** 39.9428* 
DSGE-Nonlinear versus TVP-VAR2 -50.0838* -29.6565** -16.0641** -6.0242 5.3681 14.7405† 17.8504** 40.3903* 

Note:  See notes to Table 1. Negative (positive) entries indicate the gain (loss) in RMSEs from using the best model of a specific category relative to the RW 
model or the gain or loss from using the DSGE-Nonlinear model relative to the VAR, BVARs 1 and 2, MS-VAR, TVP-VARs 1 and 2, and DSGE-
Linear models.  

†, **, *  indicate that the forecast error of the best model within a specific category is significantly better than the RW as well as the DSGE-Nonlinear is 
significantly better than the DSGE-Linear model at 10%, 5% and 1% levels of significance respectively, based on the one-sided MSE-F statistics 
proposed by McCracken (2007). Also, †, **, * in the comparison between the DSGE-Nonlinear with the VAR, BVARs 1 and 2, MS-VAR, and TVP-
VARs 1 and 2 models indicate significance at 10%, 5% and 1% levels respectively, based on the Harvey et al. (1997) statistic of equal forecast 
accuracy. 
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Figure 1: Ex-ante Out-of-Sample Forecasts: 2007:Q1-2012:Q2 
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