STUDIES ON HAEMONCHUS CONTORTUS. IV. THE EFFECT OF TRICHOSTRONGYLUS AXEI AND OSTERTAGIA CIRCUMCINCTA ON CHALLENGE WITH H. CONTORTUS

R. K. REINECKE, CHRISTEL BRUCKNER(${ }^{1}$) and I. L. DE VILLIERS, Faculty of Veterinary Science, P.O. Box 12580, Onderstepoort 0110

Abstract

REINECKE, R. K., BRUCKNER, CHRISTEL \& DE VILLIERS, I. L., 1981. Studies on Haemonchus contortus. IV. The effect of Trichostrongylus axei and Ostertagia circumcincta on challenge with H. contortus. Onderstepoort Journal of Veterinary Research, 48, 229-234 (1981)

Worm-free Merino yearlings were dosed with either a mixture of infective larvae of Trichostrongylus axei and Ostertagia circumcincta or with O. circumcincta only, and challenged 90-93 days later with infective larvae of Haemonchus contortus. Neither of these methods protected sheep against challenge and slight protection was afforded sheep predosed with T. axei and O. circumcincta and challenged with a trickle dose of H. contortus.

Résumé

ETUDES SUR HAEMONCHUS CONTORTUS. IV. L'EFFET DE TRICHOSTRONGYLUS AXEI ET DE OSTERTAGIA CIRCUMCINCTA SUR DES MOUTONS SOUMIS A UNE EPREUVE
Des Merino d'un an indemnes d'infestation aux helminthes ont été traites avec soit, un mélange de larves infectieuses de Trichostrongylus axei et d'Ostertagia circumcincta ou seulement avec 0 . circumcincta; ils ont été éprouves $90-93$ jours plus tard avec des larves infectieuses d'Haemonchus contortus. Aucune de ces deux méthode ne procura une protection aux moutons contre cette épreuve et une légère protection fut acquise avec des moutons infestés auparavant avec T . axei et O . circumcincta et sounis à une épreuve avec une faible dose de H . contortus.

Introduction

It has been shown that, if dosed with infective larvae of Trichostrongylus axei, weaned Merinos were protected against subsequent (h illenge with Haemonchus contortus (Reinecke, Bruckner \& De Villiers, 1980). Infective larvae of Ostertagia circumcincta, dosed to yearling Dorper ewes, however, failed to protect them against challenge with H. contortus (Reinecke, Snyman \& Seaman, 1979).

This paper describes 2 experiments in which Merinos were dosed with either infective larvae of O. circumcincta or with a combination of O. circumcincta and T. axei and subsequently or simultaneously with infective larvae of H. contortus. The object of the experiments was, firstly, to test the protective effect of O. circumcincta alone or in combination with T. axei against challenge with H. contortus; secondly, to ascertain the effect of challenge with H. contortus administered as a trickle dose over a period of 5 months.

Experiment 1.--Trichostrongylus axei and Ostertagia circumcincta as a possible vaccine against H. contortus

Materials and Methods

The experimental design is summarized in Table 1. Thirty-six 10 -month-old Merinos were treated with anthelmintics, housed in worm-free pens, each labelled with an ear tag and divided into 3 equal groups of 12 sheep each. They were dosed and challenged with infective larvae and slaughtered, as summarized in Table 1.

At necropsy the ingesta of the abomasum and duodenum were washed on a sieve ($38 \mu \mathrm{~m}$ apertures) and the residue on the surface of the sieve placed in a wide-mouthed 1ℓ jar. Formalin was added as a preservative. The muscularis and mucosal layers of the abomasum and duodenum were digested in pepsin $/ \mathrm{HCl}$, sieved and preserved, as described by Reinecke (1973).

TABLE 1 Experiment 1.-Experimental design showing the days on which infective larvae were dosed to each sheep and the day of slaughter

[^0]
STUDIES ON HAEMONCHUS CONTORTUS. IV.

TABLE 2 Experiment 1 .-Worms recovered at necropsy from Group A (controls)

Sheep No.	H. contortus Stage of development			Total
	L_{4}	5	Adult	
Group A.-Controls:				
313.......	2400	20	1	2421
317.	1371	76	1965	3412
329.	920	480	4971	6371
330.	3700	349	7433	11482
332.	2431	20	301 1572	2752
337.	1531	1242	1572	4345
356.	1303	0	20	1323
378.	2118	630	4524	7272
408.	1866	65	2361	4292
423.	1274	0	4967	6241
426.	1539	322	4317	6178
460.	1958	720	1350	4028

TABLE 2 (Continued). Worms recovered at necropsy from Group B (T. axei $+O$. circumcincta)

Sheep No.	H. contortus				T. axei				O. circumcincta			
	Stage of development			Total	Stage of development			Total	Stage of development			Total
	L_{4}	5	Adult		L_{4}	5	Adult		L_{4}	5	Adult	
Group B.-Day 0: 10000 T. axei+ 10000 O. circumcincta; Day +14 : 10000 T. axei +10000 O. circumcincta:												
300.	760	0	630	1390	0	0	13710	13710	4390	0	240	4630
311.	620	240	6630	7490	0	0	17156	17156	6230	20	897	7147
349.	1840	80	8550	10470	0	0	16470	16470	7420	0	820	8240
355.	800	0	4390	5190	0	0	12510	12510	4550	0	1940	6490
359.	820	0	40	860	0	0	14630	14630	2640	0	20	2660
363.	1440	50	5610	7100	0	0	12810	12810	3360	0	1560	4920
365.	1170	0	120	1290	0	0	15090	15090	6950	0	220	7170
398.	1040	0	1010	2050	0	0	12570	12570	4260	0	140	4400
406.	930	40	3350	4320	0	0	14210	14210	6780	0	1560	8340
418.	1140	0	1120	2260	0	0	13560	13560	4770	0	580	5350
434.	1440	0	1750	3190	0	0	14780	14780	5440	0	320	5 760
472.	80	0	20	100	0	0	14700	14700	970	0	260	1230

TABLE 2 (Continued). Worms recovered from Group C (O. circumcincta)

Sheep No.	H. contortus				O. circumcincta			
	Stage of development			Total	Stage of development			Total
	L_{4}	5	Adult		L_{4}	5	Adult	
Group C.-Day 0: 20000 ; Day +14 : 20000 O. circumcincta								
306.	1731	468	1572	3771	10714	120	1446	12280
350.	4880	4	3731	8615	11540	160	1186	12886
352.	1526	0	181	1707	12310	0	10	12320
360.	1240	220	860	2320	7919	80	-2970	10969
362.	340	0	3	343	2971	1	25	2997
368.	1720	390	6340	8450	10900	0	2950	13850
371.	2100	0	42	2142	14765	0	322	15087
400.	20	0	1	21	3463	0	2	3465
412.	240	20	3034	3294	4931	20	4117	9068
431.	540	120	2360	3020	7604	0	4340	11944
444.	5120	0	180	5300	14785	0	342	15127
471.	3320	40	281	3641	11673	0	181	11854

TABLE 3 Experiment 1.-Ranked worm burdens of H. contortus. Only fourth stage larvae (L_{4}) of H. contortus in Group $\mathrm{B}(T$. axei + O. circumcincta) were significantly less ($P<0,001$) than the controls by the Mann-Whitney U test

Group A			Group B			Group C		
$\mathrm{L}_{4}{ }^{1}$)	$5+\mathrm{A}\left({ }^{2}\right)$	Total	L_{4}	$5+\mathrm{A}$	Total	L_{4}	5+A	Total
920	20	1323	80	20	100	20	1	21
1274	21	2421	620	40	860	240	3	343
1303	321	2752	760	120	1290	340	42	1707
1371	2041	3412	800	630	1390	540	180	2142
1531	2070	4028	820	1010	2050	1240	181	2320
1539	2426	4292	930	1120	2260	1526	321	3020
1866	2814	4325	1040	1750	3190	1720	1080	3294
1958	4639	6178	1140	3390	4320	1731	2040	3641
2118	4967	6241	1170	4390	5190	2100	2480	3771
2400	5154	6371	1440	5660	7100	3320	3054	5300
2431	5451	7272	1440	6870	7490	4880	3735	8450
3700	7782	11482	P $\begin{array}{r}1840 \\ 0,001\end{array}$	8630	10470	5120	6730	8615

(1) $\mathrm{L}_{4}=4$ th stage larvae
${ }^{(2)} 5+\mathrm{A}=5$ th stage and adult worms

Results

Worms recovered are set down in Table 2 and ranked and analysed by the Mann-Whitney U test in Table 3. With the exception of 4th stage larvae $\left(\mathrm{L}_{4}\right)$ of H. contortus in Group B , which were significantly fewer than those in Group A ($\mathrm{P}<0,001$), the other results showed no significant difference. O. circumcincta alone (Group C) was completely unsuccessful as a possible vaccine.

Experiment 2. - T. axei and O. ostertagia as a possible vaccine challenged with trickle doses of infective larvae of H. contortus
This trial differed from previous experiments in that challenge with infective larvae of H. contortus to both groups of sheep was administered at irregular intervals from Day 0 for a period of 5 months.

Materials and Methods

The experimental design is summarized in Table 4. This trial ran parallel with Experiment 1 and a further 24 Merinos were divided into 2 groups (D \& E) of 12 sheep each. Group D served as controls and
each sheep in Group E was dosed on Day 0 with 10000 infective larvae of T. axei plus 10000 infective larvae of O. circumcincta. This was repeated on Day +14 . All the sheep in both groups were challenged with infective larvae of H. contortus from Day 0 to Day +154 . Larvae were dosed on different days of the week varying from 1-3 times a week. From Day 0 to Day +91 the total number of larvae that were dosed in any week did not exceed 4000 , until each sheep had received 50000 larvae. Thereafter the total number dosed per week rose to 6000 per week until a further 50000 larvae were dosed, i.e. from Day+95-Day+154.

Faecal samples were collected every 7 days from Day +21 and differential egg counts based on the identification of 1st stage larvae (L_{1}) were carried out (Whitlock, 1959). Blood samples for haematocrit (Ht) were collected from Day +28 onwards. All sheep were killed on Day +175 .

Results

Fluctuations in worm egg counts and Ht are presented graphically in Fig. 1 and 2.

TABLE 4 Experiment 2.-Experimental design showing the days on which infective larvae were dosed to each sheep and the day of slaughter

Days	No. of infective larvae dosed to each sheep	
	Group D	Group E
$\begin{array}{r} 0 \\ +14 . \end{array}$	二	T. axei + O. circumcincta T. axei + O. circumcincta
Total..........................	-	$20000+20000$
0 to $+91 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	H. contortus	H. contortus
Total..................	50000	50000
+95 to $+154 \ldots$	H. contortus	H. contortus
Total............................	50000	50000
+175......................	Slaughter	Slaughter

FIG. 1 Variation in faecal worm egg counts of H. contortus in Groups \mathbf{D} and E. The first 3 egg counts in Group E were undifferentiated and thercfore are not joined together with a line. Arrows indicate periods when infective larvae of H. contortus were dosed to both groups (see Materials and Methods).

Group D (Controls). Worm egg counts rose steadily from the 3 rd week to reach a peak at 8 weeks, fluctuated to another peak at 12 weeks and then fell steadily to the end of the experiment at 24 weeks. The Ht, however, fell from the 4th week and rose after the 12th week.

Group E ($T_{\text {. axei }+O \text {. circumcincta). Worm egg }}$ counts reached a peak at 10 weeks and minor peaks at 12 and 14 weeks respectively. Thereafter, as in Group D, they fell to low levels (Fig. 1). From the 4th to the 13th week Ht fell and thereafter rose to normal levels (Fig. 2). Again as worm egg counts rose Ht fell.

Worm recoveries and analysis by the MannWhitney U test are summarized in Tables 5 and 6 respectively.
Group D (Controls). Worm burdens of H. contortus ranged more widely than those in the controls of the previous trial (Experiment 1 Group A). Moreover there was no significant difference between Group D in the present trial and Group A (Experiment 1), although each sheep had received 100000 infective larvae in the present experiment as compared with
half the number (50000 larvae) dosed to sheep in Group A.

Group E (T. axei and O. circumcincta). The total worm burdens of H. contortus by the Mann-Whitney U test showed a result of 44 , only 2 more than 42 for this sized group at the confidence level $\mathbf{P}<0,05$ (Table 6). H. T. Groeneveld (1976, personal communication) stated this was probably significant at $\mathbf{P}<0,1$ which is not included in the tables in the reference of Siegel (1956).

FIG. 2 Fluctuations in haematocrit in Groups D and E. Arrows indicate periods when infective larvae of H. contortus were dosed to both groups (see Materials and Methods)

Discussion

In a previous trial we showed that 2 doses of 10000 infective larvae of T. axei dosed at an interval of 14 days was $>60 \%$ effective in reducing the challenge by H. contortus in $>60 \%$ of the sheep (Reinecke et al., 1980).

TABLE 5 Experiment 2.-Worms recovered at necropsy from the controls (Group D)

Sheep No.	H. contortus			
	Stage of development			Total
	L_{4}	5	Adult	
Group D: Controls				
301.......	432	0	964	1396
379.	1478	1	61	1540
381.	750 10680	140 0	700 40	1590 10720
383.	${ }^{3} 643$	140	3501	$\begin{array}{r}107284 \\ \hline\end{array}$
385	2910	100	2730	5740
392.	359	0	890	1249
405.	2110	40	5580	7730
427.	218	0	349	567
440.	283 289	140	447 1510	870 1769
454.	259 85	0 40	1510 160	$\begin{array}{r}1769 \\ \hline 285\end{array}$

TABLE 5 (Continued). Worms recovered from Group E (T. axei $+O$. circumcincta)

Sheep No.	H. contortus				T. axei				O. circumcincta			
	Stage of development			Total	Stage of development			Total	Stage of development			Total
	L_{4}	5	Adult		L_{4}	5	Adult		L_{4}	5	Adult	
Group E.-Day 0: 10000 T. axei + 10000 O. circumcincta; Day +14 : 10000 T. axei +10000 O. circumcincta:												
307.	615	0	280	895	0	0	15850	15850	9995	0	250	10245
319.	2794	0	9220	12014	0	0	14980	14980	8726	0	920	9646
328.	120	0	260	380	0	0	5210	5210	200	0	60	260
347.	258	0	160	418	0	0	11760	11760	3862	0	340	4202
353.	478	0	280	758	0	0	16690	16690	2742	0	1140	3882
377.	0	0	400	400	0	0	13400	13400	6160	0	190	6350
404.	2765	0	2370	5135	0	0	14180	14180	6305	0	320	6625
410.	52	0	40	92	0	0	10630	10630	2218	0	120	2338
417.	1682	0	2660	4342	0	0	15390	15390	8028	0	370	8398
419.	40	0	80	120	0	0	1010	1010	0	0	80	80
421.	1306	0	890	2196	0	0	8040	8040	1104	0	60	1164
435.	23	0	20	43	0	0	12440	12440	427	0	20	447

TABLE 6 Experiment 2.-The Mann-Whitney U test applied to H. contortus recovered from controls compared with the vaccinated group (Group E)

Group D	Group E	Group D	Group E	Group D	Group E
L_{4}	L_{4}	$5+$ A	$5+\mathrm{A}$	Total	Total
5	1	2,5	1	4	1
7	2	4	2,5	8	2
9	3	7	5	10	3
10	4	11	6	12	5
11	6	13	8	13	6
12	8	14	9	14	7
15	13	15,5	10	15	9
17	14	17	12	16	11
19	16	18	15,5	20	17
22	18	21	19	21	18
23	20	22	20	22	19
24		23	24	23	24
174-78	126-78	168-78	132-78	178-78	122-78
$=96$	$=48$	$=90$	$=54$	$=100$	$=44$

This analysis by the modified NPM (Reinecke, 1973) is more sensitive than the Mann-Whitney test, but in Experiment 1, if the sheep are predosed twice with 10000 T. axei plus 10000 O. circumcincta at 14 day intervals, there is a reduction in $\mathrm{L}_{4}(\mathrm{P}<0,001)$ only, and none in total worm burdens of H. contortus. Moreover, 2 doses of 20000 O. circumcincta alone had no effect on subsequent challenge with H. contortus. Thus in Group B (T. axe $i+O$. circumcincta) we were unable to confirm the results of Turner, Kates \& Wilson (1962) that these 2 species had a deleterious effect on the establishment of H. contortus. In addition, Turner et al. (1962) and Reinecke (1966) stated that simultaneous infestation with O. circumcincta and H. contortus blocked particularly the establishment of H. contortus and, to a lesser extent, that of O. circumcincta. We were unable to confirm the deleterious effect of O. circumcincta on H. contortus in Experiment 1 if sheep were predosed with O. circumcincta before challenge with H. contortus.

In Experiment 2 the mixture of T. axei and O. circumcincta was possibly able to reduce the challenge of H. contortus ($\mathrm{P}<0,05$) (Groeneveld, 1976, personal
communication) with a trickle challenge, but tended to give the same result that a challenge with H. contortus did after a period of 90-93 days in Experiment 1.

It is reasonable to assume that a mixture of T. axei and O. circumcincta has less protective effect against challenge with H. contortus than T. axei alone, as was shown in previous experiments by Reinecke et al. (1980). Mixing the species is not cumulative as the experiments of Turner et al. (1962) show. In these experiments lowest worm burdens of H. contortus resulted if T. axei, O. circumcincta and H. contortus were dosed simultaneously; a better result than when either T. axei and H. contortus or O. circumcincta and H. contortus were dosed simultaneously. The reasons for these conflicting results in the present trials are not known.

Acknowledgements

We wish to thank the Department of Agriculture and Fisheries for the financial assistance to enable us to carry out these experiments and the Director, Veterinary Research Institute, for the facilities to do the work.

References

REINECKE, R. K., 1966. The value of uniform worm burdens in the larval anthelmintic test. Journal of the South African Veterinary Medical Association, 37, 133-142.
REINECKE, R. K., 1973. The larval anthelmintic test in ruminants. Department of Agricultural Technical Services, Republic of South Africa Technical Communication No. 106. REINECKE, R. K., BRUCKNER, CHRISTEL \& DE VILI IERS, I. L., 1980 Studies on Haemonchus contortus. III. Titration of Trichostrongylus axei and expulsion of H. contortus. Onderstepoort Journal of Veterinary Research, 47, 35-44.
REINECKE, R. K., SNYMAN, MARIE H. \& SEAMAN, HELGA, 1979. Studies on Haemonchus contortus. II. The
effect of abomasal nematodes on subsequent challenge with H. contortus. Onderstepoort Journal of Veterinary Research, 46, 199-205.
SIEGEL, S., 1956. Non-parametric statistics for the behavioural sciences. New York: McGraw Hill Book Co. Inc.
TURNER, J. H., KATES, K. C. \& WILSON, G. I., 1962. The interaction of concurrent infections of the abomasal nematodes Haemonchus contortus, Ostertagia circumcinta and Trichostrongylus axei (Trichostrongylidae) in lambs. Proceedings of the Helminthological Society of Washington, 29, 210-216.
WHITLOCK, H. V., 1959. The recovery and identification of the first stage larvae of sheep nematodes. Australian Veterinary Journal, 35, 310-316.

[^0]: ${ }^{1}{ }^{1}$ Department of Health, Private Bag X63, Pretoria 0001
 Received 29 September 1981-Editor

