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Abstract—The invasive plant known as bugweed (Solanum
mauritianum) is a notorious invader of forestry plantations in the
eastern parts of South Africa. Not only is bugweed considered to
be one of five most widespread invasive alien plant (IAP) species in
the summer rainfall regions of South Africa but it is also one of the
worst invasive alien plants in Africa. It forms dense infestations
that not only impacts upon commercial forestry activities but also
causes significant ecological and environment damage within nat-
ural areas. Effective weed management efforts therefore require
robust approaches to accurately detect; map and monitor weed
distribution in order to mitigate the impact on forestry operations.
The main objective of this research was to determine the utility
of support vector machines (SVMs) with a 272-waveband AISA
Eagle image to detect and map the presence of co-occurring
bugweed within mature Pinus patula compartments in KwaZulu
Natal. The SVM when utilized with a recursive feature elimination
(SVM-RFE) approach required only 17 optimal wavebands from
the original image to produce a classification accuracy of 93%
and True Skills Statistic of 0.83. Results from this study indicate
that (1) there is definite potential for using SVMs for the accurate
detection and mapping of bugweed in commercial plantations
and (2) it is not necessary to use the entire 272-waveband dataset
because the SVM-RFE approach identified an optimal subset
of wavebands for weed detection thus enabling improved data
processing and analysis.

Index Terms—AISA eagle, recursive feature elimination, sup-
port vector machines, weed detection.

1. Introduction

N recent years there has been a rapid decline in the number
of newly afforested areas in South Africa with the forestry
industry largely limited to a fixed production area [1]. This is
largely due to a decrease in the number of suitable sites for af-
forestation coupled with greater reluctance by the Department
of Agriculture, Forestry and Fisheries (DAFF) in granting new
water permit licences for afforestation [2].
It has therefore become increasingly important, not only from
an environmental but also economically sustainable perspec-
tive, for forestry managers to ensure that forest productivity
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within existing planted areas is maximised. Thus any agents
which present a significant threat to commercial forest sustain-
ability and could lead to a decline in timber productivity need
to be identified and mitigated [3]. One such threat is the oc-
currence of non-native plants, or weeds, within the plantations
which can negatively impact upon the growth and productivity
of the commercial species [4]. One species of weed that war-
rants concern, particularly in the province of KwaZulu-Natal
(KZN) is Solanum mauritianum (bugweed). According to the
National Environmental Management: Biodiversity Act of
2003, (NEMBA) bugweed is a declared category 1b invader
weed [5]. As such, one of the directives of NEMBA regarding
the regulation of category 1b invader weeds is that, due to
their high invasive potential, these plants require compulsory
control as part of an invasive species control programme.
NEMBA thus imposes a legal obligation upon all landowners
to actively locate and regulate the predominance and limit the
spreading of category 1b species such as bugweed occurring
on their land. The hardiness and resilience of this species has
already established it as a major declared weed [5] of natural
ecosystems, forestry plantations, riverine habitats and conser-
vation areas and the weed can become quite ubiquitous if not
controlled [6]. Bugweed is also extremely resilient and oppor-
tunistic and competes fiercely for resources, often suppressing
the growth or even displacing the surrounding vegetation [7].
This is particularly evident in commercial forest plantations
where it has been reported to stunt the growth of certain Pinus
species [8]. From a fire management perspective, the presence
of bugweed provides undesirable under canopy fuel loads
within commercial forestry stands during extreme uncontrolled
fire events. This can consequently lead to increased costs of
fire protection and suppression and greater overall severity of
wild fire damage as a result of additional fuel load material
[9]. Forestry managers therefore require accurate as well as
timely spatial information on bugweed occurrence in order to
ascertain the severity of invasion and contain small infestations
before they get too large and expensive to eradicate. Conse-
quently, the ability to develop accurate and spatially explicit
techniques for early weed detection, mapping and monitoring
at all stages of occurrence is regarded as of high priority
for commercial forestry management [10]. In light of these
challenges the use of digitally analysed, remotely-sensed data
for the recognition and quantification of IAPs could not only
result in a more time-efficient approach to classification, and
thus weed detection, but the technology could also potentially
reduce weed management costs [11]. Optical remote sensing
technologies, more specifically hyperspectral sensors [12],



[13], have the capacity to rapidly and synoptically exploit the
unique spectral, phenological and structural characteristics of
plants such as bugweed [14]. Due to their excellent spectral
resolution, hyperspectral sensors are extremely well suited to
map the abundance of weed species over large spatial extents
[15]. Consequently, there has been an increase in the number of
studies that have applied hyperspectral image analysis to detect
weed species including Brazilian pepper [13], leafy spurge
[16], spotted knapweed [17] and tamarisk [18]. More recently,
[19] have shown that in diverse environments where areas
are particularly susceptible to weed invasion, hyperspectral
imagery is essential for weed detection and mapping. The study
found that sensors that are less sensitive to varying spectral and
environmental conditions will not be able to properly detect
infestations resulting in classifications that may confound
species variability and detectability.

Unlike broadband multispectral remote sensing platforms,
the continuous nature of the spectra extracted from the hy-
perspectral imagery allows for discrimination of more subtle
differences between individual species [20]. This ultimately
enables classification to occur at both an in-depth biochemical
and structural level which would otherwise not be possible with
the coarse bandwidths acquired by multispectral sensors [13].
[21] points out that the inability of multispectral sensors to
adequately detect canopy level occurrence in complex, layered
forested environments renders them especially ineffective in
providing a biophysically-based approach for mapping occur-
rence. Indeed, [21] endorses this assertion by showing that
the generally high classification errors associated with the use
of multispectral sensors for damage discrimination impose
operational limitations on their use by forestry companies.
Interestingly, studies of direct weed detection using hyperspec-
tral sensors have often been limited to scenarios that do not
necessarily require the spectral precision or fully utilise the
capabilities offered by hyperspectral sensors [20]. For example,
[22] noted that weed locality and physiology within particular
homogeneous landscapes would enable fairly accurate detec-
tion, discrimination and classification, even at a multispectral
level. However, even though multispectral data may be more
cost effective and more accessible than hyperspectral data,
both classification and spatial resolution may be inadequate
for regional or site-specific weed management activities [23].
However, detecting bugweed within a commercial forestry en-
vironment presents a unique set of challenges. Bugweed can be
identified as shrubs or small trees ranging in height from 2—12
m having rounded canopies of distinctive well-developed pale
to dark green foliage [8]. The high degree of tree uniformity as
well as dense canopy closure in commercial forests often results
in the inability to distinguish small to medium bugweed plants,
which occur amongst other tree species. Consequently, hyper-
spectral sensors provide the necessary detail to identify the
unique spectral signatures of this species relative to a backdrop
of P. patula trees [18]. More specifically, this study focussed
on separating bugweed for P. patula. However the study did
not look at further separating the spectral characteristics of
bugweed from other understory species. In terms of understory
vegetation within the plantation, bugweed was considered to
be the most dominant weed species with detection therefore

directly dependent on how well the sensor was able to capture
the reflected radiation from the canopy of the dominant weed.

One of the fundamental processes of deriving land cover in-
formation from remotely sensed imagery is image classification
[24], the outcome of which is a thematic map of the original
image depicting the pixels assigned to a particular class [25].
Recently, a new generation learning algorithm, namely support
vector machines (SVM) [26], has increasingly been used for
the classification of hyperspectral imagery [27]. SVMs used for
classification are based on finding the optimal separation sur-
face, [erred to as a hyperplane, between classes by identifying
the most representative training samples, or support vectors, on
either side of the hyper plane [28]. Studies have shown that
SVMs are capable of producing higher classification accuracies
than more widely used pattern recognition models such as max-
imum likelihood and neural network classifiers [29] and [30].
Another attractive feature of SVMs is that they have proven
to be particularly expedient when used in studies dealing with
homogenous classes with a limited number of training samples
available [29]. Additionally, SVMs seem to be robust to the ef-
fects of the Hughes phenomenon [31] or curse of dimensionality
that is with a limited number of training samples the classifi-
cation rate decrease as the data dimensionality increases [32].
A difficult task even for techniques dedicated to processing hy-
perspectral data such as Spectral Angle Mapping or spectral un-
mixing [28].

However, although SVMs are effective at classifying data,
they do not directly provide the user with an indication of feature
importance [29]. Feature selection (FS) is a dimension reduction
approach and while SVMs are known to be robust to dimension-
ality the application of FS with SVMs improves classification
accuracy [30] and expedites subsequent data processing [15].
FS does not alter the original representation of the variables but
merely enables a model, such as SVMs, to selectively focus on
relevant variables whilst ignoring the contribution of irrelevant
or redundant (noisy) variables [31]. Advantages of FS include
reduced data storage requirements, improved model prediction
performance, reducing the costs of future measurements and im-
proving data or model understanding [32]. FS is therefore con-
sidered to be an integral component in bridging the gap between
research and operational remote sensing applications [37]. For
a review of FS see [38] and [31].

The aim of this research was to evaluate support vector ma-
chines (SVM) could be used to detect the presence of co-occur-
ring bugweed trees within mature P. patula plantations using
hyperspectral imagery. With regards to this study, the SVM
algorithm and FS methods were used to produce the smallest
subset of AISA Eagle wavelengths that would allow for the ac-
curate classification of bugweed reflectance spectra. The overall
objective of the study was to demonstrate, for the first time, the
practicality and utility of using SVMs to identify the presence
of bugweed in commercial P. patula plantations.

2. Materials and methods

A. Study Site Description

The study area is located in the Sappi Hodgsons plantation
(Centroid: 30° 29'56E and 29° 13'42”S), and is situated ap-
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Figure 1 : Location of study area with the shaded areas representing the Pinus patula compartments and the dots indicating where bugweed samples were collected.

proximately 50 km north of Pietermaritzburg in the KwaZulu-
Natal midlands (Fig. 1). The topography of the region ranges
from gently sloping to moderately undulating with slopes be-
tween 1000—1400 m above sea level [39]. The climates is cool
with mean annual temperatures in the region of 15.9°C north of
Pietermaritzburg in the KwaZu and mean annual precipitation in
the region of 1015 mm. Areas that are not occupied by commer-
cial timber species are characterized by vegetation types such
as the Ngongoni veld of the Natal mist-belt and Southern tall
grassveld [39]. The majority of compartments within the site
consist of P. patula trees which range in age from 1 to 22 years
and form part of a pulpwood management regime. The preva-
lence of non-native plants has become a serious problem in the
plantation where weed species such as bugweed have become
increasingly prolific. Infestations are particularly evident along
riparian zones, previously disturbed areas such as grasslands
and indigenous forest areas which border commercial compart-
ment stands [40].

B. Image Acquisition

The hyperspectral imagery was acquired using the Airborne
Imaging Spectrometer for Applications (AISA). The AISA
Eagle sensor is a pushbroom sensor consisting of a hyperspec-
tral sensor head, data logger, GPS unit and irradiance sensor.
The sensor operates in the visible (400 nm—700 nm) as well as

the near-IR portion (701 nm-2000 nm) of the spectrum [44].
The AISA Eagle sensor samples wavelengths 400-900 nm
using 272 bands at a spectral resolution (bandwidth) of 2—4 nm
and spatial resolution of 2.4 m [42]. The imagery was acquired
on 11 March 2009 under cloudless conditions at 11:45 a.m. A
fixed wing, light aircraft was used to collect the imagery at a
mean GPS flight altitude of 2728.42 m. The 272 band image
dataset, with an initial spectral range of 393.23 nm-994.09 nm,
was spectrally resampled to 4.9 nm in line with the spectral
binning options identified from the technical specifications for
the AISA Eagle sensor [42]. Spectral binning [43], [44] was
employed as a resampling method to eliminate redundant and
damaged variables in the dataset and spectrally resampling
the imagery allowed (a) for rapid image analysis by reducing
data redundancy and (b) removed bands which contained a
high degree of noise. After binning, the resulting dataset had
been reduced to 110 bands with a spectral range of 400.00
nm—901.40 nm eliminating bands greater than 905 nm due to
excessive noise.

The AISA imagery was geometrically registered (RMSE <
1.0 pixels with 3rd order polynomial approximation) using
20 ground control points (GCPs) [19]. The GCPs were se-
lected from high resolution colour (RGB) aerial photographs
of the same region collected in April 2009 [30]. The aerial
photographs, having an estimated ground accuracy of 10 cm



Figure 2 : 10 cm resolution aerial imagery (a) and 2.4-m AISA Eagle imagery (b). The photographs show examples of the bugweed that were sampled between

(c) and within compartments (d).

(RMSE < 1.0 pixels with 1st order polynomial approxi-
mation) were geometrically registered using topographical
features such as roads, streams and cadastral boundaries [45]
provided by Sappi Forests and were referenced to the Universal
Transverse Mercator projection (WGS 84 datum, UTM Zone
36S) using the Environment for Visualization software [46].
The AISA imagery was converted to reflectance using the
empirical line method [47], [48] within ENVI 4.7 [46]. The
empirical line method matches the image radiance data to
field reflectance spectra of two materials of contrasting colour
(usually black and white). The image radiance spectra were
then regressed with field reflectance spectra to determine a
linear transformation from radiance to reflectance. The gain
and offset curves for the image spectra are then used to derive
the average ground reflectance for the entire image [49]. This
then allows for the accurate retrieval and interpretation of the
hemispherical-conical reflectance factor [50].

C. Bugweed Reference Data

A purposive sampling approach [51] was used for the iden-
tification of bugweed within the pine compartments using the
high resolution colour (RGB) imagery. Bugweed occurrence
was based on photographic interpretation of the high resolution
airborne imagery [18], [52] and, [25] and subsequent field ver-
ification was carried out using a GPS. More specifically, a 20
m X 20 m digital grid was super-imposed onto the high resolu-
tion aerial imagery [53] and bugweed occurring within mature
P. patula stands, having a canopy greater than 5.7 m» (1 pixel)
and ranging in age from 7 to 20 years, were then visually se-
lected [52]. Fig. 2 illustrates how successful bugweed samples
were identified within the P. patula compartments and located at

least 20 m from other bugweed samples [54]. Juvenile P. patula
trees, or trees younger than seven years, were excluded from
the sampling procedure because the bugweed occurrence within
these young compartments was both limited and infrequent i.e.
there were not enough bugweed samples to statistically repre-
sent the juvenile age group. Another reason for the low occur-
rence of bugweed within the juvenile pine compartments is that
the weeds are easily detected by the foresters and are subse-
quently removed.

Two sample point features per grid cell were recorded with
the first point representing the bugweed and the second point
representing the pine trees. Subsequently, a total of 240 tree
samples were collected (120 bugweed samples and 120 P.
patula samples). The spectral reflectance signatures for the
240 sample points were then extracted in a GIS using ArcMap
[55] with the resampled imagery then input into the R Project
for Statistical Computing [56] and used in the classification
process. Field visits were also conducted between June 2009
and July 2009 to confirm that bugweed from the imagery was
present within the study site. In order to develop the model,
the data were partitioned into an equal number of bugweed and
P. patula samples in the test and training datasets to provide
training (n = 60) and testing (n = 60) datasets.

D. Support Vector Machines

The support vector machine (SVM) algorithm uses a super-
vised machine learning technique that is based on statistical
learning theory [57] and Vapnik’s Structural Risk Minimization
principle [26]. SVMs used for image classification are based on
finding the optimal separation surface, [erred to as a hyperplane,
between classes (i.e. bugweed and P. patula) by identifying the



most representative training samples, or support vectors, on ei-
ther side of the hyperplane [28].

The optimal hyperplane is therefore the one that separates
the classes with the maximum distance between the separating
margin and the data points (support vectors) on the plane with
the least generalization error and is known as the optimum sep-
arating hyperplane [24]. In a two-class linearly separable clas-
sification problem SVM employs an optimization technique to
select the optimal separating boundary (hyperplane) from the in-
finite number of linear decision hyperplanes. In cases where the
training data are not linearly separable a “kernel trick™ is used to
project the data into a hyper dimension, or feature space, where
the kernel can then simulate the optimal separation of the classes
[25].

There are a large number of standard and customised ker-
nels available and two most commonly cited kernels in remote
sensing literature are the radial basis function (RBF) and poly-
nomial kernels, [25] However, for this study the linear kernel
function was employed to classify the occurrence of bugweed
from P. patula trees. The decision was based on results obtained
from a preliminary run of the SVM model using the polynomial,
RBF and linear kernel functions [57] and after comparing the
computational time of each model as well as the classification
accuracies it was observed that the linear model produced the
highest overall accuracy in the fastest computational time. For
areview of suitable kernel selection and parameter optimization
of SVMs, see [59] and [60].

The process of training the SVM model for this study was
adapted from the procedure outlined by [61]. For training the
SVM classifier using the linear kernel only the regularization
parameter C' (a penalty parameter) requires optimization.
Changing the kernel parameter is equivalent to selecting a par-
ticular feature space whereas tuning the C variablecorresponds
to weighting the slack or penalty variables for the SVM [62].
Hence the C' parameter is selected by the user to balance
out the competing criteria of margin maximization and error
minimization [25]. The higher the value of ', the higher the
penalty associated with misclassified samples [58]. In order to
determine which C values will produce the best classification
result an optimum parameter search must be performed on
the training dataset [61]. Common approaches of determining
the optimal value(s) of C' is to implement a search utilising
k-fold cross validation [63]. The method exhaustively searches
for the optimal C' parameters over a defined parameter range
and reports the k-fold cross validation classification error for
each parameter [62]. The parameter combination that produces
the best cross validation accuracy is then selected as the most
optimum for the classification problem. Consequently, each
instance of the entire training subset is predicted at least once
so that cross validation accuracy is the percentage of data
correctly classified [61]. Naturally the C' parameter with the
lowest cross validated error is then selected.

E. Feature Selection and Variable Ranking

The AISA Eagle hyperspectral sensor is capable of simul-
taneously acquiring data from more than a hundred narrow
spectral bands (data channels) ranging from the visible to
infrared portions of the electromagnetic spectrum [64]. More

spectral bands include more information. However, as [65]
point out, dealing with such a large number of narrow band
channels presents problems in the acquisition phase (noise),
storage and transmission phases (data size) and processing
phase (complexity). Consequently, this limits robust statistical
estimations and often results in overfitting of the training data
leading to poor generalization capabilities of the classifier [31].
Approaches that are able to circumvent these challenges by
processing a subset of relevant bands which best characterize a
particular feature while limiting the effects of dimensionality,
are essential to remote sensing. One such approach is FS.
For this study an adaptation of the SVM Recursive Feature
Extraction (RFE) algorithm proposed by [66] was utilized to
select the most important subset of bands that provided the best
classification accuracy.

The SVM-RFE utilizes all the hyperspectral bands and then
successfully eliminates bands from the dataset based on their
influence on the SVM algorithm. As the SVM is trained using
the linear kernel, each iteration of the model eliminates bands
with the smallest ranking criterion. The ranking criterion cor-
responds to the vector weights of the decision hyperplane as-
signed by the SVM algorithm (see [32] for a detailed discussion
on SVM-RFE). However, the SVM-RFE approach outlined in
this study uses forward feature selection (FFS) instead of back-
ward feature elimination (BFE) proposed by [32] as a search
strategy. FFS begins with an empty subset of variables and pro-
gressively adds relevant variables into larger and larger sub-
sets. BFE starts with the set of all variables and progressively
eliminates the least relevant variables [31]. Since BFE starts by
evaluating all bands in the dataset, it is computational more de-
manding than FFS. Consequently, using FFS to building clas-
sifiers, when there are a large number of features (for example
hyperspectral bands) in the dataset, is much faster [38]. Addi-
tionally, the SVM-RFE algorithm was modified so that at each
stage of the FFS process, the  parameter of the SVM linear
kernel is optimized as well. The optimal subset of band’s are
then selected based on the prediction error as calculated by a
10-fold cross validation (CV). Once the bands with the highest
accuracy are identified using the modified SVM-RFE procedure
they are utilized in the library 1017 Library within the R sta-
tistical software to implement the SVM algorithm.

F. Accuracy Assessment

The most widely accepted, and perhaps most effective, way to
represent classification accuracy is by means of a presence/ab-
sence model. The performance of the model is usually summa-
rized in an error matrix that cross tabulates the observed and
predicted presence/absence patterns [67] (Table I). With refer-
ence to this study the performance of the optimal subset of bands
was evaluated both numerically (overall accuracy) as well as
statistically (true skills statistic, specificity and sensitivity). The
overall accuracy is interpreted as the total number of correctly
classified pixels divided by the total number of sample pixels an-
alyzed within the error matrix. In a similar way, the accuracies
of individual categories can also be represented. The sensitivity
(sens) represents the probability that a sample pixel will be cor-
rectly classified to a particular category and includes the error of



TableI : Error matric showing derived measures of
classification accuracy

validation dataset

presence absence row total
model|_Presence True Positive (TP)  False Positive (FP) TP+FP
absence  False Negative (FM)  True Negative (TN) FN+ TN

column total TP + FN FP+ TN Total

omission which occurs when a pixel is not included into a cat-
egory it does belong to i.e. false negative [68]. The sensitivity
can be defined as:

TP
Sens = m (1)

The specificity (spec) is a measure of how reliable the classi-
fied map actually is and represents the probability that a sample
pixel classified on the image represents the same category on
the ground and includes the error of commission which occurs
when a pixel is classified to a category that it does not belong to
(false positive) [69]. The specificity may be represented as:

FP

Spec = TP TN

2)

Additionally, the True Skill Statistic (TSS) [68] was used as a
measure to evaluate the model’s agreement with the reference
data and can be defined as:

TSS = (sens + spec) — 1 3)

The TSS is very similar to Cohen’s kappa statistic but has the
advantage of correcting for dependency on prevalence whilst
still maintaining all the advantages of kappa. Consequently, the
TSS is able to account for errors of commission and omission in
one statistic, and just like kappa, the TSS values also range from
—1to +1. The TSS provides a good indication of the extent to
which the percentage of correctly classified pixels in the error
matrix is as a result of true agreement or chance agreement,
with TSS values approaching one indicating true agreement and
values approaching zero, chance agreements [68].

3. Results

A. Band Selection and Ranking

The modified SVM-RFE method was able to identify the op-
timal subset of variables with the lowest cross-validated error
for bugweed detection as shown is Fig. 3. Results showed that
best accuracy (CV accuracy = 97%) was achieved by using
a subset of 17 bands from the original 110 bands resulting in a
85% decrease in the number of bands required for analyses. As
shown in Fig. 3, model accuracy subsequently decreased and re-
mained constant from 17 bands onwards. By evaluating the CV
error for each band combination in Fig. 3, it is evident that using
all the bands does not improve the model’s predictive accuracy.
Rather there is an optimal subset of bands that produce the best
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Figure 3 : Results of the backward FS method for selecting the optimal
number of bands from the 110 band dataset. The arrow indicates the lowest
error of 3%obtained using a linear SVM model with cost parameter of 10.
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Figure 4 : Distribution of 17 optimal AISA Eagle bands in the VIS and NIR
por-tions of the spectrum selected using the SVM-RFE.

accuracy. In fact, the use of more than 17 bands would subse-
quently result in an ensuing decrease in predictive accuracy up
until 69 bands where the accuracy would again improve to 97%.

Ranked variable importance also showed that of the 17 bands
selected by the model, wavelengths that had the potential to dis-
criminate bugweed were located in the visible and near-infrared
(NIR) regions of the electromagnetic spectrum (Fig. 4). One
band (bs: 419.6 nm) occurred within the blue range (350-450
nm), eight bands (ba1: 498.0.1 nm, b22: 502.9 nm, bs1: 547.0
nm, by5: 615.6 nm, bgy: 659.7 nm, bs5: 664.6 nm, bsg: 669.5
nm, bs7: 674.4 nm) occurred within the chlorophyll absorption
regions (450675 nm) and one band (h35: 566.8 nm) was located
within the yellow edge (550-582 nm). Five bands (bsg: 679.3
nm, bsg: 684.2 nm, bgs: 703.8 nm, bgy: 708.7 nm, bry: 757.7
nm) were in the red-edge portion of the spectrum (670-753 nm)
with the remaining two NIR bands occurring at hg7: 821.4 nm
and b1gs: 924.3 respectively.



Table II : Error matrices showing overall and class accuracies using independent test samples
for(A)110Band (B) 1 7B and datasets

I (a) Error matrix of bugweed occurrence (Presence or absence) |

REFERENCE DATA
Bugweed Pine Row Total

CLASSIFIED DATA | Bugweed 54 5 59

Pine 6 55 61
Column Total 60 60 120
Overall Accuracy (%) 90.83
TSS (%) 82.00
Sensititvity (%) S0.00
Specilicity (%) 92.00

| (b) Error matrix of bugweed occurrence (Presence or absence) I

REFERENCE DATA
Bugweed Pine Row Total

CLASSIFIED DATA | Bugweed 57 5 62

Pine 3 35 58
Column Total a0 6 120
Overall Accuracy (%) 93.33
TSS (%) 37.00
Sensititvity (%) 95.00
Specificity (%) 92.00

The shaded areas in Fig. 4 show the wavelengths of the 17
bands that are significant for the classification of bugweed as de-
termined by the modified SVM-RFE method. Based on the anal-
ysis, it is clear that there is a dominance of optimal of bands oc-
curring in the red edge region of the electromagnetic spectrum.

B. Classification Accuracy

Table II shows the results of the linear SVM model using the
110 and 17 band models. The regularization parameters for the
110 and 17 band datasets which yielded the best results were
10 and 100 respectively. The sensitivity of both datasets were
high ranging from 90% for the 110 band model and 95% for the
17 band model. This indicates that the proportion of correctly
classified reference bugweed trees in relation to all the classified
trees in the test data set was very high.

The specificity for both models was also very high at 92%
signifying low errors of commission for both the 17 and 110
models and indicating a high probability that a classified pixel
in the image was actually represented on the ground. The
high values obtained for the TSS statistics (0.82—0.87) in both
datasets approach one 1 and are an indication of good model
performance showing strong agreement between the actual
and predicted values for bugweed, particularly for the 17 band
model. Overall accuracy for the 17 band model was slightly
higher (93.3%) than the 110 band model (90.8%) indicating
an increase in classification accuracy with a smaller subset of
bands compared with the original 110 bands.

C. Mapping Bugweed Occurrence

After testing the performance of the SVM classifier utilizing
the SVM-RFE reduced band dataset the 17 identified bands
were then used to create thematic maps of bugweed occurrence.

Visual interpretation of the image classification indicated some
important observations. Firstly, the results showed that there
was a predominance of bugweed to the north and south of the
study area. Towards the north, there were fairly uniform dense
bugweed present between certain compartments separated by
an open or natural area as well as smaller pockets along roads
between certain compartments in the south. The results of the
image classification for one compartment located in the south
of the study area are presented in Fig. 5. The model was able
to detect the distinctive light-green canopies of well-developed
bugweed clusters. In some instances the model was even able
to isolate individual bugweed trees with canopies equal in size
to that of the pixel resolution of the AISA Eagle imagery. What
is interesting is that in this compartment the model was able to
accurately detect 152 instances of bugweed and of the 152 cases
detected, 55 instances were of bugweed having a canopy smaller
than 5.7 m? (1 pixel). This result is quite significant consid-
ering that it has been suggested that weed eradication programs
should also target small satellite infestations [70] in view that
no early detection system can truly be operational unless it is
able to detect small as well as large infestations [19].

IV. Discussion

A. Modeling Bugweed Occurrence Using SVMs

The SVM algorithm applied in this study proved to be a
powerful classifier and thus seems promising for hyperspectral
image classification within homogenous forestry plantations.
The method allowed for the detection, classification and suc-
cessful mapping of bugweed using the AISA Eagle image data.
SVMs were theoretically developed for binary classification
scenarios [29] and therefore their application in remote sensing,
where a large majority of the land cover classifications involve
more than one class (multiclass), are usually limited [63].
However, the binary classification used in the study produced
excellent classification results. Other studied have also shown
that SVMs can perform better when the number of classifiers,
and therefore complexity of the classification problem is re-
duced [71].

Accuracy assessments show that the SVM algorithm is a
robust and accurate method for bugweed image classification
using hyperspectral imagery. Overall classification accuracies
ranged from 91 to 93% whilst the TSS, an indication of model
performance, ranged from 0.82 to 0.87 for all datasets tested
theoretically confirming the model’s applicability within an op-
erational environment. Previous works using SVMs have also
shown successful classification performance for hyperspectral
data [24], [29], [31], [58], [71]-[75]. Moreover, the overall
accuracies from this study seem to be superior in relation to
other weed classification studies applying different classifica-
tion methodologies. Among these, studies which used Gaussian
Maximum Likelihood and linear discriminant analysis [76],
Mixture Tuned Match Filtering [16], RandomForest [17] as
well as Minimum Noise Fraction, continuum removal and
band ratio indices [77] all yielded lower overall classification
accuracies than the current study. The potential to use a spa-
tially explicit model for bugweed detection, as well as other
nuisance species, is further strengthened if one considers the
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Figure 5 : Map showing classified bugweed within compartments after applying the SVM-RFE algorithm to the 17 band AISA Eagle dataset.

relatively high specificity and sensitivity accuracies obtained.
The sensitivity and specificity accuracies obtained for the 110
and 17 band datasets are a good indication that the SVM model
is not only capable of producing an accurate map of more
than one vegetation class, but that the model is also suited for
differentiating one particular species with distinctive sets of
features, such as bugweed, from other unique species such as
pine. However, particular attention was placed on the speci-
ficity, which reflects errors of commission, as this illustrates
how well the model was able to detect bugweed in the study
site. The low specificity consequently confirms the SVMs
potential for use as a decision support tool within a vegetation
management programme since the extent of bugweed would be
adequately detected and mapped. However, caution is advised,
as [78] points out that SVM training as well as generalisation
performance is highly dependent on the type of kernel function
and associated hyper-parameters used for classification. Since
the accuracy of the SVM depends on the proper setting of
the hyper-parameters, the main challenge for researchers is
determining how best to optimize the hyper-parameters for a
given application [59].

B. Optimal Waveband Selection for Bugweed Detection

An interesting result from this study was that the SVM-RFE
methods selected 17 optimal bands that yielded better classi-

fication accuracies than the original 110 band dataset. The re-
sults are in contrast to both [58] and [ 79] who reported improved
SVM importance with increased number of bands. The reason
for the better performance of the 17 band dataset is that the fewer
bands resulted in less noise, enabling the model to limit the use
of redundant bands thus improving overall classification accu-
racy [29]. The results from Fig. 3 also show that the cross vali-
dated accuracy obtained at 17 bands were the same as 69 bands
(97%). One of the possible reasons for this is that the 69th band
occurs at 536 nm (red-green region) which is characterized by
high green and red reflectance. When plants are stressed or their
leaves appear yellow, as in the case of bugweed, carotenes and
xanthophylls are known to be the dominant chemicals respon-
sible for this yellow appearance as both carotenes and xantho-
phylls absorb blue light and reflect green and red light. [80]. The
combination of the green and red light is what then gives the
leaves their yellow color. The cross-validated accuracy there-
fore improved from 95 (66th band) to 97% when the 69th band
was included in the iteration as it necessary for detecting bug-
weed especially if the plant is stressed or is flowering and the
leaves are yellow.

More importantly, the study has shown that the 17 band
dataset consists of an optimal subset of hyperspectral bands
at defined wavelengths within specific regions of the electro-
magnetic spectrum. However, further in-depth studies would



need to be conducted to determine the potential of for using
other hyperspectral or multispectral sensors that have spectral
ranges that cover those necessary for bugweed detection. This
is one of the reasons why it was necessary to use the entire
AISA Eagle dataset covering the visible and NIR regions.
There are several operationally viable platforms that could be
tested to determine their potential for weed mapping within
a commercial forestry plantation and these include the World
View, Rapid Eye and QuickBird sensors. Consequently, vari-
able importance also showed that of the 17 bands selected
from the model, thirteen bands occurred in the visible region
(400-700 nm) and four bands were in located the near-infrared
portion (NIR) (700-2500 nm) of the electromagnetic spectrum.
[81] points out these regions of the spectrum are defined by (i)
vegetation pigment content and by (ii) plant internal structure
and the importance of reflectance and shape of individual plant
spectral signatures within these regions is in keeping with our
understanding of the basis of spectral uniqueness between
plant species [19]. Indeed, [82] comment that a large majority
of agricultural studies (which include weed management) use
spectral measurements in these regions to detect both physi-
ological and biological differences between plant species and
other surface features.

These spectral characteristics are of more importance in the
red-edge region as this region represents absorption spectra of
the visible and reflectance spectra of the NIR portions [76] and
subtle differences between species in crown characteristics can
show up as large differences in infrared reflectance [83]. The
red-edge refers to the point of maximum slope between the red
chlorophyll absorption region (680 nm) and the region of high
near-infrared reflectance (750 nm) [83]. The red-edge is of sig-
nificance to researchers as its exact wavelength and strength
varies depending on the species considered and as such bands
in this region are pivotal to plant species separation and there-
fore potentially essential for weed identification. Moreover, the
spectral reflectance of at least two wavelength bands, usually
on either side of the red-edge, enables a variety of vegetation
indices to be calculated. Future studies could therefore utilise
the normalized differential vegetation index [84], the red ratio
vegetation index [85], the green ratio vegetation index [86] or
the chlorophyll vegetation index [87] to investigate additional
weed spectral and physical characteristics. These indices could
be used to determine canopy characteristics and even specific
weed properties [82] within a forest compartment. Reducing
the dimensionality of the AISA Eagle imagery and isolating a
subset of optimal bands may offer an affordable and robust al-
ternative to multispectral systems for both airborne and satellite
applications of forestry assessment. Identifying these optimal
spectral bands could help forestry managers exploit other op-
tical remote sensing platforms, such as digital multispectral im-
agers (DMSI), or other commercially accessible hyperspectral
sensors, which operate in the desired spectral range for bugweed
discrimination.

C. Forestry Management Implications

Mapping any understory invasive species is a challenging ex-
ercise. So the occurrence of understory bugweed makes detec-
tion with direct optical remote sensing techniques very difficult

especially in areas with closed canopies [20]. However, in open
canopies that have bugweed growing in the understory, the re-
sults from this study have demonstrated that where bugweed
dominates the spectral signature, detection is possible. One of
the most likely uses for regional bugweed thematic maps from a
weed management approach would be to locate and track bug-
weed infestations and distribution within plantations. Further-
more, the methods described in this study could be used to sup-
plement existing weeding programs or be used as a decision sup-
port tool for long term integrated weed control programs [45],
[88]. More specifically, the most immediate benefit of applying
the methods from this study would be to formulate a frame-
work that prioritizes weeding activities at both the pre-plant and
noxious weeding phases. [40] States that pre-plant weeding oc-
curs before tree establishment and if carried out effectively, will
not only save costs on future weeding operations but will also
promote the sustainable protection of future timber plantations.
Conversely, noxious weeding is necessary to mitigate IAPs that
have already become established within mature plantations after
post-plant weeding and require regular targeted eradication.

The synoptic identification and classification of plantation
bugweed could undoubtedly be used to prioritize areas of high
infestation on which to focus management and monitoring ef-
forts. This could be done by firstly identifying the bugweed by
pinpointing their locality in the plantation, establishing their ex-
tent and abundance (single trees or clusters) and then deciding
on their potential impact to not only forestry resources but also
forestry operations and surrounding ecotones, such as riparian
areas [40]. From an ecological stand point, riparian ecosystems
(the border of streams and rivers) are extremely vital for ful-
filling a variety of ecosystem functions within the plantation yet
they are particularly susceptible to weed invasion due to their
low-lying position in the landscape and because rivers act as
conduits for the dispersal of seeds [89], [90]. These areas act as
focal points for further encroachment and potential spreading
within the timber plantations and therefore need to be managed
just as proactively as the plantation weeding regimes. Whether
or not the results of this study prompts a more concerted effort to
consider remote sensing technologies as operationally viable for
weed management depends on the capacity and will of forestry
institutions and resource managers to exploit the availability as
well as access to the technology and employ the knowledge for
effective use of the tools [91].

D. Challenges to Mapping the Occurrence of Bugweed in
Forest Plantations

Results from this study indicate that bugweed within forest
stands can be accurately mapped with hyperspectral images
acquired at both a high spatial and spectral resolution. How-
ever, this comes at the expense of increased computational time
and increased classification complexity due to augmented data
hyper-dimensionality [76]. Currently, data availability and data
cost combined with technical and specialized methodological
approaches are the major limitations that persist with regards
to operational hyperspectral applications in South Africa [21].
The result is that very few local studies have actually explored
the potential of using hyperspectral imagery for classification
[92], [94]. These factors have played a crucial role in limiting



the success of developing an operational framework for weed
detection in a commercial forestry environment. As [14], points
out for remote sensing technologies to be widely accepted by
forest companies and the tools to be operationally feasible,
methods must allow for the efficient and cost effective map-
ping of infestations. It should be noted however, the question
is not whether one data source is superior to another (e.g.
hyperspectral vs multispectral or airborne vs spaceborne) but
rather under what conditions a particular sensor can provide the
desired information to meet the mapping objective. Evaluating
the suitability of remote sensing data for a specific mapping
task should include an evaluation of geometric integrity, spatial
resolution, spectral resolution, area coverage and image acqui-
sition costs. Furthermore, each of these considerations needs to
be evaluated relative to the mapping task at hand [94]. Indeed,
[21] was able to show that the generally high classification
errors associated with damage discrimination of pine species
by Sirex noctilio (Eurasian woodwasp) imposes operational
limitations on the use of broad band multispectral sensors by
forestry companies. For that reason, even though hyperspectral
image acquisition may be costly, in certain circumstances, the
potential economic benefits gained from having a reliable and
repeatable data source to accurately detect non-native weed
species are more important than the image and processing costs
[16].

V. Conclusion

The primary goal of this study was to demonstrate the utility
of SVM methods to analyze high resolution hyperspectral im-
agery for detecting bugweed, one of the most problematic non-
native, invasive species within commercial plantations. Overall,
the results of the study showed that the modified SVM-RFE ap-
proach is an efficient as well as accurate method for (i) optimal
band selection and (ii) detecting the presence of bugweed within
mature P. patula compartments.

The SVM-RFE approach was able to produce high overall
and class accuracies in excess of 90% by using only 17 of the
original 272 AISA Eagle spectral bands. A large majority of
these bands were situated within the visible and red-edge por-
tion of the electromagnetic spectrum signifying the importance
of these regions in detecting the occurrence of bugweed within
commercial forestry compartments using hyperspectral im-
agery. The results from the study have reiterated why SVMs are
particularly appealing in classifying remote sensing data. That
is, they provide a timely and repeatable product for developing
a framework for effective weed management in commercial
forestry focusing on weed monitoring, prioritization and erad-
ication. Considering the high overall and class classification
accuracies obtained from the study the use of high spatial
resolution image data for the classification of nuisance plant
species as part of an integrated weed management program
should be further pursued by commercial forestry institutions.
There are definite management and financial benefits of high
resolution weed mapping and monitoring in support of forestry
management activities. Yet very few, if any, real-world methods
exist to quantify weed abundance at high spatial resolution in
regional commercial forest plantations. Lower image acquisi-
tion costs combined with some hyperspectral image platforms
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becoming more commercially accessible should hopefully rein-
force hyperspectral sensors as a viable long term management
tool for a variety of forestry applications.
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