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Highlights 

• Syndepositional, normal faults created two sag ponds in the Wahweap Formation. 

• Sag ponds record different histories of extension. 

•Differences in sag pond fauna reflect different fill chronologies. 

•Ancient sag pond deposits are useful for unraveling fault histories. 
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Graphical abstract 

 

 

ABSTRACT 

Eolian ergs, and associated environs are sensitive to short- and long-term climate 

changes. In one of the oldest, erg deposits, the ~2.0 Ga Makgabeng Formation, facies 

association changes reflect one of the earliest recordings of short-term climatic shifts in a 

continental setting.  

The Makgabeng Formation is separated into lower and upper erg deposits by a 

playa or saline pan deposit. The lower erg deposit consists of dune sets with thin lenses of 

dry and deflationary interdunes that transitions vertically to thicker damp to wet 

interdunes. A laterally persistent playa deposit in the middle of the section consists of 

mudstone with deep and shallow penetrating mud cracks and subordinate siltstone and 

sandstone interbeds. Above this lower mudstone interval, the playa strata are sandy. 

Overlying the playa deposit, the upper erg deposit consists of thick eolian sets with thin 

lenses of dry interdune deposits. Grain size change near the top of the upper erg deposit 

corresponds to the appearance of fluvial, sheet flood, eolian cross-beds sculpted by mass 

flows, and thin playa deposits.  

The vertical facies association demonstrates shifts in precipitation and fluctuating 

water tables. Fluvial and playa deposits record high water tables whereas low-water 

http://www.sciencedirect.com/science/article/pii/S0031018214002491
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tables are reflected in the core erg. The transition from a lower to higher water table is 

recorded by wet interdune interspersed within the dune strata towards the top of this 

interval. Rapid climatic amelioration occurred near the termination of the Makgabeng erg 

resulting in impingement of ephemeral river systems, development of playas, and 

generation of massive sand flows. This 2.0 Ga erg demonstrates the impact of climate 

change on erg development, resulting from shifts in the monsoonal impingement through 

time.  

 

KEY WORDS: Eolian, Paleoproterozoic, Playa, Ephemeral river, Makgabeng Formation 

 

Introduction 

Eolian dune fields, ergs, and associated environs are extremely sensitive to and 

impacted by short- and long-term climate changes commonly reflected in variations in 

precipitation (Parrish and Peterson, 1988; Peterson, 1988; Kocurek, 1991; Lancaster, 

1997, Chan and Archer, 1999, 2000; Kocurek and Lancaster, 1999; Loope et al., 2001, 

2004; Marín et al., 2005; Stone et al., 2010). 

With the possible exception of inferred biocrust development, continental 

platforms probably were not characterized by the development of extensive terrestrial 

ecosystems during the Precambrian (Dott, 2003; Eriksson et al., 2013).  Therefore, wind 

and water were more efficient in mobilizing sediment on the early continental Earth 

compared to modern continental settings. Supporting this assertion is the predominance 

in the Precambrian to Early Cambrian sedimentary record of braided-stream deposits. 

Because of the absence of significant root stabilization, sediment was easily eroded 
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during precipitation events causing bedload transport to predominate (Cotter, 1978; 

Davies and Gibling, 2010a, 2010b; Long, 2011; Eriksson et al., 2013).  

 

  

The oldest identified eolian dune field is reported from the 3.2 Ga Moodies Group 

of the Barberton Greenstone Belt, southeastern South Africa, a probable coastal-marine 

setting (Simpson et al., 2012). The Paleoproterozoic Makabeng Formation is considered 

to be one of the oldest substantial erg deposits (Eriksson and Cheney, 1992; Eriksson and 

Simpson, 1998; Simpson et al., 2004; Eriksson et al., 2013). Only broad descriptions 

exist concerning the Makabeng Formation erg (Callaghan et al., 1991; Eriksson and 

Cheney, 1992; Bumby 2000) and only specific facies associations have been described 

such as massive sand flows (Simpson et al., 2002), playa or saline pan deposits (Simpson 

et al., 2004), and continental microbial mats (Eriksson et al., 2000, 2007; Porada and 

Eriksson, 2009; Simpson et al., 2013).  

This paper describes and interprets the various facies associations in the 

Paleoproterozoic Makgabeng Formation, reports on the vertical and horizontal 

distribution of facies associations,  discusses the paleoclimatic implications of the vertical 

facies association stacking patterns, and documents one of the oldest examples in Earth’s 

history of climatic change impact on erg evolution in a pre-Silurian dry land system.  

 

1. Geological Setting 

The Makabeng Formation is one of eleven formations comprising the Waterberg 

Group in the main Waterberg Basin and is preserved in a series of structural basins in 

South Africa (Figs. 1B and 2; SACS, 1980; Jansen, 1982; Walraven and Hattingh, 1993  
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Fig. 1. A) Location of the study area in South Africa. Bold square highlights position of B. B) Location of 

Waterberg and Middelburg basins. Note the bounding structural features: Thabazimbi-Murchison 

Lineament and the Palala shear zone of the Limpopo Belt. C) Google Earth image of the Makgabeng 

Plateau and cliff face. Note the cross cutting lineations that represent dolerite dikes. Box marks the position 

of D. D) Photomosaic of the cliff face. Note the subdivision of the lower and upper dune field facies and 

the location of the playa facies. Height of the cliff face is approximately 35 m.  

 

Bumby 2000; Bumby et al., 2001, 2004; Eglington and Armstrong, 2004; Hanson et al., 

2004, Eriksson et al., 2006). The Main Waterberg Basin is bounded to the north by the 

Palala Shear Zone, which separates the Central Zone of the Limpopo Belt from the 

northern edge of the Kaapvaal Craton (Southern Marginal Zone of the Limpopo Belt) and 

to the south by the Thabazimbi-Murchison lineament (Fig. 1B; Light, 1982; Roering et 

al., 1992; Kröner et al., 1999). The Limpopo Belt had a protracted, complex tectonic 

history with numerous orogenic periods characterized by fault reactivation that acted as a 

northern source for sediment pulses entering and filling the Waterberg Basin (Fig. 1B; 
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Bumby, 2000; Bumby et al., 2001, 2004; Barton et al., 2006; Corcoran et al., 2013). 

Regional paleocurrent analysis supports a persistent source of detritus from the Limpopo 

Belt for the geological time span of the upper Waterberg Group fluvial systems 

(Callaghan et al., 1991; Bumby, 2000; Bumby et al., 2001, 2004; Eriksson et al., 2006, 

2008). Recently, Corcoran et al. (2013) examined the petrology, major and trace element 

geochemistry, and U-Pb detrital zircon geochronology of the Waterberg Group and 

identified specifically the central Limpopo Belt as the source for the bulk of the sediment.  

 

 

Fig. 2. Correlation chart of stratigraphic units of the Main Waterberg Basin and the Middelburg Basin. 

(Modified from Eriksson et al., 2008). Stratigraphy of the study are is in the NNE-Center column. 
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Fig. 3. Field photographs of the disconformable contact between the Makgabeng Formation and 

Mogalakwena Formation. A) Disconformable contact between eolian dune strata of the Makgabeng 

Formation and fluvial strata of the Mogalakwena Formation. Note the presence of thick conglomerates 

above the basal contact.  B) Enlargement of the contact. Note the clast of Makgabeng Formation included 

in the Mogalakwena Formation. Coin is 20 mm in diameter. C) Erosive base of sandstone of the lowermost 

Mogalakwena Formation. Note backpack for scale.  

 

In the northern part of the Main Waterberg Basin, sublithic sandstones of the 

Makgabeng Formation conformably overlie the Setlaole Formation and are, in turn, 

unconformably overlain by the Mogalakwena Formation (Figs. 2 and 3; SACS, 1980; 

Jansen, 1982; Bumby 2000; Corcoran et al., 2013). The Setlaole Formation consists of 

feldspathic sandstones and conglomerates that record southward-draining, braided-fluvial 

systems shed off the reactivated Limpopo Belt (Fig. 2; Callaghan et al., 1991; Bumby,  
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Fig. 4. Field photographs. A) Soft-sediment deformed Makgabeng Formation adjacent to a dolerite dike.  

Makgabeng Formation adjacent to the dike is more bleached of iron and heavily cemented with SiO2. B) 

Sand or grain flows. Note that strata taper to the right. Grain flows are separated by grain fall stratification. 

C) Preserved wind-ripple bedforms on a cross bed foreset. Wind ripple bedform crests are orientated 

parallel to the dip direction of the foresets. Note the straight crest orientation and the even spacing of the 

wind ripples. Black bar on the photo scale is 5 cm. D) Field photograph of lower erg facies association. Cut 

is near parallel to the wind direction. Playa facies are located approximately at the overhang. Note 

backpack for scale, yellow circle.  

 

2000; Bumby et al., 2001; Corcoran et al., 2013). The contact between the Setlaole and 

the Makgabeng Formation is not well exposed in the study area and possibly is 

gradational. Polymicitic conglomerates and subfeldspathic to sublithic sandstones 
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characterize the younger Mogalakwena Formation and record the presence of significant 

braided stream systems with unusually high stream gradients and an absence of preserved 

overbank deposits (Eriksson et al., 2006; 2008). Again, the reactivated Limpopo Belt 

acted as a source (Eriksson et al., 2006, 2008; Corcoran et al., 2013).  

The age of the Waterberg is constrained by U–Pb zircon ages of 2054±4 Ma and 

2051±8 Ma from lavas in lower Swaershoek and Rust de Winter formations, located at 

the base of the Waterberg Group and potentially correlative with the Blouberg Formation 

(Fig. 2; Dorland et al., 2006), and U-Pb ages of ~1.92 - ~1.87 Ga from dolerite dikes that 

cross-cut the Mogalakwena Formation (Hanson et al., 2004) (Fig. 1C). The strata of the 

Makgabeng Formation adjacent to the dolerite dikes display soft-sediment folding and 

more significant diagenesis than the remainder of the Makgabeng Formation (Fig. 4A). 

 

2. Description of Facies Associations 

The Makgabeng Formation examined in this study is exposed along a cliff face, 

on the dip-slope plateau, and in additional erosional outliers (Figs. 1C and D). Multiple 

stratigraphic sections were measured and described along the Makgabeng cliff face (Fig. 

1D). Grain size distribution, lithology, vertical and horizontal distribution of sedimentary 

structures and paleocurrent directions were recorded in the field for: 1) erg, 2) interdune, 

3) playa, 4) ephemeral river and 5) mass flows (Figs. 5 and 6).  
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Fig. 5 – Generalized stratigraphic section showing the vertical distribution of facies associations.  
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Fig. 6. Paleocurrent rose diagrams for the upper and lower erg. Note the overall trend is to the general 

southwest.  

  

2.1 Erg Facies Association 

2.1.1 Description  

This facies association is best exposed on the cliff face and the plateau dip slope 

(Fig. 1). The erg facies association is developed in lower and upper units separated by the 

heterolithic playa facies association. The lower unit of erg facies association is 
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approximately 40 meters thick; the lower contact is obscured in the study area. The upper 

unit of the erg facies association is approximately 80 m thick or more. 

Strata in this facies association consist of hematite-stained, medium-grained 

sandstone containing inversely graded strata, grain flows, and grain falls (Figs. 4B and 

4C), although recognition of grain fall strata is problematic. Cross beds are composed 

predominantly of wind-ripple strata with lesser proportions of grain flows (Fig. 4B). 

Grain flows pinch down the cross strata and are lens-shaped in bedding plane view (Fig 

4B). Some inversely graded foresets possess low-relief asymmetrical bedforms with crest 

long axes oriented parallel to the maximum foreset dip (Fig. 4C).  

 

Fig. 7. Field photographs of the upper erg. A) Large foresets separated by a 2
nd

-order surface. Upper set has 

a 3
rd

-order surface overlain by downlapping foresets. Figure is 1.78 m tall. B) Apparent bidirectional 

foresets separated by a 2
nd

-order surface. Figure is 1.70 m tall. C) 2
nd

-order surface with a low angle 3
rd

-

order surface. Figure is 1.78 m tall.  
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Fig. 8.  Photomosaics of the upper erg on the Makgabeng Plateau. Both photos are near the contact with the 

Mogalakwena Formation. Massive sandstones are present within the top of A. White dashed lines are 3
rd

-

order surfaces. Yellow dashed lines are 2
nd

-order surfaces.  

 

Cross bed sets are up to 6 m in thickness (Fig. 7) and are tabular or lenticular to 

wedge-shaped in cross-section. Limited paleocurrent measurements of foresets along the 

cliff face in the lower erg are directed towards the south-southwest (Fig 6A). Paleocurrent 

vector measurements on the plateau from the upper erg indicate a mainly south-southwest 

direction (Fig. 6B). Within the cross beds, a hierarchy of bounding surfaces is developed. 

Rare 3
rd

-order surfaces truncate and are downlapped by the various stratification types. 

Second-order surfaces truncate 3
rd

-order surfaces. Third-order surfaces are present and 

better developed in the upper than the lower erg facies association (Figs. 7, and 8). Near 
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the contact with the Mogalakwena Formation, wedge-shaped massive sandstones are 

developed at the bases of cross bed sets and onlap some 3
rd

-order surfaces. Second-order 

surfaces lower in the section are planar and continuous whereas near the top of the 

section trough- and wedge-shaped surfaces predominate.  

 

2.1.2 Interpretation 

The predominance of wind-ripple strata characterized by inverse grading, coupled 

with the presence of grain flows and grain fall in the erg facies association are consistent 

with stratification types and processes described from modern eolian dunes in the seminal 

work of Hunter (1977, 1981) and Kocurek and Dott (1981). Third-order surfaces develop 

from fluctuating wind directions and velocities that rework the dune lee face (Brookfield, 

1977; Kocurek, 1981, 1991). The paucity of 3
rd

-order surfaces in the lower erg facies 

association implies a consistent wind direction (Kocurek, 1981). Erosion generated from 

flow reattachment on the stoss side of the preceding climbing dunes generated the 2
nd

-

order bounding surfaces. The bounding surface geometry was controlled by the original 

dune morphology and potentially by a variety of other factors such as sediment supply, 

climate, water table position, and basin subsidence (Wilson, 1972; Brookfield, 1977; 

Kocurek, 1981, 1991; Rubin and Hunter, 1982; Clemmensen and Blakely, 1989; 

Mountney et al., 1999; Rubin and Carter, 2006). Geometry of the foresets and bounding 

surfaces within the Makgabeng Formation is consistent with barchan and barchanoid to 

transverse dune types (Meinster and Tickell, 1975; Callaghan et al., 1991; Bumby, 2000; 

Eriksson et al., 2000) 



   15 

Measured paleocurrent data (Fig. 6) are consistent with previous reports of strong, 

southerly directed paleowinds for the Makgabeng Formation (Callaghan et al., 1991; 

Bumby, 2000).  

 

2.2 Interdune Facies Association 

2.2.1 Description  

The interdune facies association is best developed in the upper 25 meters of the 

lower erg and near the top of the upper erg. Interdune strata are lenticular in shape and 

 

 

Fig. 9.  Interdune facies. A) Geometry and internal stratigraphy of interdune deposit. Paleocurrent rose 

diagrams demonstrate variability in the orientation of the paleocurrents in the interdune area. B) Outcrop of 

interdune deposit through the vertical extent of the outcrop face. Lateral extent of the interdune deposit in 

the photograph is approximately 30 m. C) Bedding plane view of interdune edge showing beveled cross 

beds overlain by interdune deposit. Black bar on scale is 5 cm. 



   16 

are traceable laterally for up to 75 m (Fig. 9). Maximum measured thicknesses are ~85 

cm. The contact with underlying dune strata along the edge of the lens is sharp and 

beveled (Fig. 9C) whereas the overlying low-angle dune strata are in sharp to slightly 

undulatory contact with the interdune strata (Fig. 9A).  

 

Sedimentary structures developed within the interdune facies association are 

ripple bedforms including symmetrical and slightly asymmetrical to asymmetrical forms 

with vertically accreting symmetrical ripples and form-concordant drapes in cross section 

(Fig. 10). Asymmetrical ripple bedforms are lunate to cuspate in plan view. On bedding 

plane exposures, bedforms vary laterally from slightly to strongly asymmetrical (Figs. 

10A and 10C). Symmetrical ripple stratification styles dominate the upper portions of the 

interdune deposit (Fig. 10B). Numerous beds that are capped by ripple bedforms display 

complex desiccation patterns and isolated spindle-crack features (Fig. 10F; Eriksson et 

al., 2000, 2007; Porada and Eriksson, 2009; Simpson et al., 2013). Additional features 

present within the interdune facies association include muddy roll-up structures, gas-

escape structures, graded beds, tufted mats, adhesion warts, raindrop impressions, 

desiccated mudstones, mud chips, and various morphologies of sand cracks (Fig. 10E; 

Simpson et al., 2013).    
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Fig. 10.  Field photographs of ripple stratification in the interdune facies association. A) Symmetrical 

ripples. B) Cross section view of vertically accreting symmetrical ripples and form-concordant drapes. C) 

Slightly asymmetrical ripples. D) Cross section of erosively based, small-scale trough laminations 

overlying dune stratification. E) Longitudinal profile of muddy roll-up feature. Scale is in cm, F) Bedding 

plane view of desiccated sandstone. Black scale bar is 5 cm.  
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2.2.2 Interpretation 

All reported features and bed geometries developed in this facies association have 

been reported previously from interdune deposits (e.g. Kocurek, 1981; Fryberger et al., 

1983). Two end member conditions are interpreted to be represented by the Makgabeng 

Formation interdune deposits, dry or deflationary and damp/wet (Kocurek, 1981; 

Fryberger et al., 1983). Deflationary processes in interdune areas generate erosive 2
nd

-

order surfaces as a result of sand transport across the interdune area (Brookfield, 1977; 

Kocurek, 1981, 1991). Low-angle to horizontal wind-ripple deposits resting on 2
nd

-order 

surfaces reflect dry interdune conditions characterized by wind-induced sediment 

transport and net sand aggradation within the interdune area (Kocurek, 1981; Fryberger et 

al., 1983). Deflationary and aggradational conditions, wind-ripple deposits, vary spatially 

across a single interdune area (Kocurek, 1981; Fryberger et al., 1983).  

Water significantly impacts the generation of sedimentary structures 

characterizing wet interdune deposits (Gradziński et al., 1979; Kocurek, 1981; Fryberger 

et al., 1983; Pulvertaft, 1985; Lancaster and Teller, 1988; Gradziński and Uchman, 1994; 

Mountney and Jagger, 2004). Water movement in the Makgabeng interdune areas 

generated wave-, combined flow- and current-ripples recorded in symmetrical to strongly 

asymmetrical ripple bedforms and linked cross-sectional sedimentary structures such as 

vertically accreting symmetrical ripples and form-concordant drapes (cf. Harms el al., 

1982; Allen, 1984). Muddy roll-up structures, gas-escape features, tufted mats, desiccated 

mudstones, mud chips, and various morphologies of sand cracks record thriving 

microbial mat communities that inhabited the damp and wet interdune areas (Eriksson et 

al., 2000, 2007; Porada ad Eriksson, 2009; Simpson et al., 2013).  Additional sedimentary 
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structures indicative of damp to wet conditions include graded beds, adhesion warts, 

raindrop impressions. 

Wet interdune deposits are linked to the presence of a high water table and 

interdune ponds are sustained by consistently high water tables (Lancaster, 1997; 

Mountney and Jagger, 2004). The transition from a low to a higher water table in the 

Makgabeng Formation is recorded in the transition from thinner dry and deflationary to 

thicker damp and wet interdune deposits. In the Permian Cedar Mesa Formation damp 

and wet interdune deposits occur at the erg margin with dry and deflationary interdunes 

in the main dune core (Mountney and Jagger, 2004). In addition, within a single 

interdune deposit, Mountney and Jagger (2004) recognized that damp interdune deposits 

pinch out both parallel and perpendicular to the sand transport direction while wet 

interdune deposits were confined to trough bases and had limited lateral and vertical 

extent. In the Makgabeng setting, we infer that wet interdune deposits were generated by 

flooding of the interdune areas producing interdune ponds.  

 

2.3 Playa/Saline Pan Facies Association 

2.3.1 Description  

Since the original interpretation in Bumby (2000) and Simpson et al. (2004), a collapse of 

the Makgabeng cliff outcrop has freshly exposed the playa facies association. The clean 

vertical face allows direct field observation enabling a more detailed interpretation of 

macroscopic structures as relied on by Simpson et al. (2004). The playa facies association 

is found in two different stratigraphic locations.  The lower example of the playa facies 
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association separates the upper and lower erg deposits and the upper example occurs 

below the contact with the overlying Mogalakwena Formation. 

 

 

Fig. 11. Stratigraphic column of the lower playa deposit that separates the lower and upper erg deposits. 

Field photographs A-C. A) Interbedded sandstone and mudstone facies. B) Low–angle eolian stratification 

channelized and filled with massive sandstone. C) Sandstone dominated facies with reduction zones.  
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Fig. 12. Field photographs of the playa facies. A) Low-angle wind-ripple foresets. B) Scoured base overlain 

by a graded bed with intraclasts (See arrow). Note preserved ripple morphologies near the top of the 

photograph. C) Solution collapse feature at center and draped mounds near the top of the photograph. D) 

Preserved wave-ripple bedforms. Note the presence of small secondary wave ripples in the troughs. E) 

Large sand-filled desiccation cracks at the base of the playa (See arrow). F) Preserved current-ripple 

bedforms with superimposed sand cracks reflecting the former presence of microbial mats. 
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The lower playa deposit has a maximum thickness of 3.2 m (Fig. 11), whereas the 

upper playa deposit is 2.0 m. The lower playa deposit is traceable for over 1 km (Bumby, 

2000). Within the playa facies association, three facies are recognized: mudstone, 

sandstone and an interbedded mudstone-sandstone facies (Fig. 11). The lower playa 

deposit contains all facies whereas the upper playa deposit is dominated by the sandstone 

facies (Figs. 11 and 12). Two thin mudstone layers delineate the boundary between the 

lower playa deposit and the upper erg deposit each less that 2 mm thick (Fig. 11).   

At the transition from the lower erg to the lower playa deposit, patches of 

biological soil crust features are preserved (see Simpson et al., 2013). Mudstone facies 

that overlies the biological soil crust contains two to three 15-20 cm thick well-cemented 

sandstone interbeds alternating with graded siltstone and mudstone. In the eastern part of 

the playa exposure, the mudstones are crosscut by large desiccation cracks filled with 

sand from the overlying layer (Fig. 12E). Faint cross laminations are present at the base 

of the graded siltstone to mudstone facies. The well-cemented sandstones display 

desiccation cracks on their upper surfaces.  

Above this lower mudstone facies, the playa deposit transitions abruptly into a 

more sand-dominated interval.  Sandstone-dominated facies are distinguished from 

mudstone-sandstone facies based on the presence of thicker mudstone laminations (Fig. 

12). Both facies have various proportions of wave-, combined flow, and current-ripples, 

horizontal to low-angle eolian wind-ripple stratification, scours at the base of the beds, 

graded beds, horizontally laminated beds and massive beds. In bedding plane view, 

double-crested wave-ripples, with lesser amplitude crests in the troughs (Fig. 12D), wave 

ripples, combined flow (Fig. 12D), and current ripples (Fig 12F) are identifiable.  
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Wind-ripple cross bed sets are present at 1.6 m from the base of the lower playa 

deposit (Fig. 11). This interval is recognizable throughout the extent of the playa along 

the cliff face. An erosively based, graded sandstone bed truncates the wind ripple cross 

strata (Figs. 11 and 12A). Foreset dip increases up the wind ripple set (Figs. 11D and 

12A). 

In addition to the above sedimentary structures, evaporitic crust features and 

evaporite dissolution structures are abundant.  Collapse grabens were documented in 

Simpson et al. (2004). In fresh exposure, collapse features disturb strata up to 50 cm in 

thickness on a larger scale than previously recognized (Fig. 12B and 12C). At a smaller-

scale, bump-like features are present in which fine-grained red mud layers create wavy 

structures in the heavily hematite-stained sandstone (Figs. 12B and 12C).  

The upper playa is encased within the upper erg approximately 8 m below the 

contact with the Mogalakwena Formation. Within this sandstone facies, current to wave 

ripple bedforms are observed along with modified bump-like features capped by red mud 

layers (Fig. 13). In addition, low angle erosion surfaces are present with massive 

sandstone fills (Fig 13A).  
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Fig. 13.  Field photomosaics of the upper playa. A) Sandstone facies in upper playa. Note the low-angle 

scours. B) Sandstone facies in the upper playa. Note the presence of climbing asymmetrical ripple 

bedforms in the upper-right quadrant. Black bar on scale is 5 cm. 

 

2.3.2 Interpretation 

The suite of sedimentary structures developed in this facies association is 

comparable to previously described playa or saline pan facies (Smoot and Castens-

Seidell, 1994; Gierlowski-Kordesch and Rust, 1994; Turner and Smith, 1997; Benison 

and Goldstein, 2000; Bumby, 2000; Reinhardt and Ricken, 2000; Simpson et al., 2004). 

Biological soil crusts and microbial mat features in the lower playa deposit were recently 

described and interpreted in Simpson et al. (2013). 
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The mudstone facies represents the deepest-water phase and potentially the 

greatest lateral extent of the playa. The deepest part of the playa was impacted by 

sediment pulses recorded in the graded siltstone beds.  

The various sedimentary structures in the sandstone and mudstone-sandstone 

facies are interpreted to have formed by evaporation, desiccation, flooding and wind 

action on surrounding playa flats (see Benison and Goldstein, 2000). Distinctive 

sedimentary structures in the Makgabeng playa deposit that mark the former presence of 

efflorescent salt crusts include surface deformation features, such as deformed ripples and 

solution collapse structures represented by solution loading and growth faulting (cf. 

Smoot and Castens-Seidell, 1994). Langston and McKenna Neuman (2005) demonstrated 

that evaporitic crusts weaken when subjected to mass transport events and eventually fail 

during transport. Evaporitic crusts along with biological soil crusts in the Makgabeng 

Formation are considered to have aided in the stabilization of the playa surface. 

Smoot and Castens-Seidell (1994) observed that wind-blown dust hydroscopically 

adheres to the efflorescent crusts. Thinner crusts are found near the margins of the playas 

or saline pans and develop where the phreatic brine is deeper below the surface (Smoot 

and Castens-Seidell, 1994). Thin crusts are subject to rapid dissolution when flooded 

because they are in disequilibrium with both subsurface brines and rainwater (Smoot and 

Castens-Seidell, 1994). The amount of mud adhering to the crusts varies depending upon 

rainfall (Smoot and Castens-Seidell, 1994).  Crusts that have experienced recent 

precipitation in areas subject to frequent flooding, and crusts that are buried rapidly have 

less mud trapped (Smoot and Castens-Seidell, 1994). This phenomenon is recorded in the 

Makgabeng playa deposit as variations in the thickness of mudstone draping bedforms. 
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Vertical stacking of the various playa facies reflects fluctuations in precipitation. 

Over longer time frames, flooding followed by desiccation is recorded in the lower playa 

mudstone (cf. Lowenstein and Hardie, 1985; Last, 1989). In contrast, efflorescent crust 

features are consistent with shorter period (months or years) flooding, followed by 

desiccation cycles (cf. Last, 2002; Simpson et al., 2004), and may reflect variations in 

seasonal precipitation as noted elsewhere by Turner and Smith (1997). Mudstone-rich 

accumulations on playa stratification may develop through the moisture trapping and 

aggradation of eolian dust (Holliday et al., 2008). Playa sediments can be reworked 

around the playa margins into barchans dunes (Handford, 1982). Sedimentary structures 

in the upper playa are consistent with a playa sand-flat setting (Handford, 1982) and may 

record a shorter interval of higher water table levels than in the lower playa deposit. 

The laterally continuous layer with dune stratification in the middle of the lower 

playa represents either the development of an arid interval, or the initial encroachment of 

the younger erg. In the former case, this laterally extensive eolian interval would 

represent the development and limited preservation of small dunes before the 

encroachment of core erg (cf. Loope and Simpson, 1992). 

 

2.4 Ephemeral River Facies Association 

2.4.1 Description  

Coarse-grained to pebbly sandstone occurs near the upper contact of the 

Makgabeng Formation with the overlying Mogolakwena Formation (Fig. 14). According 

to Bumby (2000), this facies association is up to 30 m thick. Modern-day erosional 

topography on the plateau limits observations of this facies association and thus the 
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understanding of its lateral extent within the upper deposit.  Vertical successions include 

horizontal stratification with parting lineation overlain by large- or medium-scale trough 

cross beds, followed by medium-scale trough cross beds (Fig. 14). Within the upper erg 

facies association, intervals of horizontal stratification overlain by medium-scale trough 

cross bedded sandstones are up to 3 m thick and are in erosional contact with underlying 

dune cross-strata (Fig. 19C). Clasts are 2 to 7 cm in diameter and consist of quartz and 

quartzite (Bumby, 2000). Channel forms range from 5 to 11 m wide and are scoured to 

depths of 0.5 to 0.7 m (Bumby, 2000). Paleocurrents measurements trend southward 

(Bumby, 2000). 

 

Fig. 14. Field photographs of ephemeral river facies association. A) Parting lineation in horizontal 

stratification. Coin is 1.5 cm in diameter. B) Bedding plane view of large-scale cross-bedded pebbly 

sandstone facies. C) Vertical succession of horizontal stratification overlain by trough cross bedding 

overlain by horizontal stratification. Figure is 1.7 m tall.  

 

2.4.2 Interpretation 

The vertical succession of sedimentary structures in this facies association is 

consistent with deposition in bedload-dominated ephemeral braided stream systems (cf. 

Williams, 1971; Frostick and Reid, 1977; Allen, 1983; Bhattacharyya and Morad, 1993; 

Tooth, 2000; Bridge, 2003; Billi, 2007). These ephemeral systems drained from the 
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Limpopo Belt to the north and clast types, notably quartzite, can be related to lithologies 

in the Limpopo Belt (Bumby, 2000).  

Ephemeral fluvial systems commonly introduce extrabasinal clasts into the erg 

(Svendsen et al., 2003) and fluvial incursion into eolian dunes fields has been 

documented by various workers (e.g. Langford, 1989; Langford and Chan, 1989; Terwin, 

1993; Loope et al., 1995; Svendsen et al., 2003). The role of dune damming to induce 

local dune flooding and formation of lakes has been recognized (Loope et al., 1995; 

Svendsen et al., 2003).  Water-saturated sands released from dam breaching are subject to 

bulking of normal type flow by eroding sand from the surrounding dunes thus modifying 

the hydrodynamics to those more akin to hyperconcentrated flows (Svendsen et al., 2003 

and Simpson et al., 2002). 

 

2.5 Mass Flow Facies Association 

2.5.1 Description  

Massive sandstones are restricted to the top of the upper erg deposit (Fig. 15; 

Simpson et al., 2002). Bases of massive sandstone bodies are channelized to planar with 

very low-angle to near vertical channel margins (Figs 15 B and 15C). Planar-based 

massive bodies are present above horizontal to low-angle dune toesets whereas 

channelized bodies are erosional into tops of cross bed sets (Fig. 8; Simpson et al., 2002). 

Massive sandstone bodies range in shape from tabular to lobate. Lobate bodies are to 6 m 

thick and from 3 m to possibly over 50 m in lateral extent (Simpson et al., 2002). Some 

massive sandstone bodies onlap 3
rd

-order surfaces within dune deposits and up to four 

have been recognized in succession within a single cross bed set. Other sedimentary  
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Fig. 15. Field photographs of the massive sandstone facies association. A) Erosively based massive 

sandstone facies with vague near horizontal stratification. Card is 5 cm. B) Near vertical-walled massive 

sandstone channel deposit capped by inclined stratification. Card is 5 cm. C) Vertical-walled massive 

sandstone channel deposit with included block of wind ripple stratification. Card is 5 cm. D) Channelized 

massive sandstone cut into underlying dune stratification. Dune stratification caps the massive sandstone. 

Figure 1.70 m in height. 
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structures associated with the massive sandstones are horizontal stratification, ripped-up 

fragments of wind-ripple strata (Fig. 15), rare dewatering features, parting lineations and 

capping adhesion warts (Simpson et al., 2002). 

 

2.5.2 Interpretation 

Massive sandstone in dune strata are triggered by intense precipitation events and 

are deposited from bulking by sediment sediment erosion. The resulting 

hyperconcentrated flows move down the dune lee face, sculpting the dune as a turbulent 

flow (Wizevich, 1997; Loope et al., 1998, 1999; Sweeny and Loope, 2001; Simpson et 

al., 2002). As the bulked hyperconcentrated flows migrate onto the dune plinth, rapid 

deposition produces lobate-shaped, massive sandstone deposits comparable to those 

described above, with some flows maintaining turbulence onto the dune plinth to produce 

the planar-based bodies in the Makgabeng Formation. Massive sandstone bodies draping 

3
rd

-order  reactivation surfaces are interpreted as the result of partial lee-face collapse 

(Bumby, 2000; Simpson et al., 2002). The lateral repetition of the mass flow sandstone 

bodies along sets may reflect modification and recovery of the dune lee face from 

successive precipitation events (cf. Hunter and Richmond, 1988; Chan and Archer, 1999, 

2000; Loope et al., 2001, 2004; Scherer and Goldberg, 2010).  

 

3. Vertical Stacking of Facies Associations 

The upper Makgabeng Formation is composed mainly of eolian stratification. 

Laterally extensive playa deposits separate the eolian strata of the lower and upper erg 

(Fig. 16). Subdivision of the Makgabeng Formation erg can be compared with the 
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scheme of Porter (1986, 1987) who introduced the terms fore-erg, central-erg, and back-

erg. Initial eolian sedimentation in the Makgabeng Formation is interpreted to record the 

fore-erg field characterized by zibars, small dune complexes, and sand-sheets. Wet 

interdune deposits are associated with the leading edge of the erg. Thick, large-scale 

eolian sets in the middle of the lower erg deposit represent the central-erg. Back-erg 

deposits are typically thin to absent in modern ergs depending on the conditions that led 

to termination of erg sedimentation.  The transition from dry/deflationary interdune 

deposits to damp and wet interdune deposits at the top of the lower erg reflects a 

transition from the central-erg to the back-erg. The lower erg deposits are separated from 

the overlying playa deposits by an irregular erosional surface capped and stabilized by 

biological soil crusts. This surface represents a super-bounding surface and reflects 

interruption in dune sedimentation; dune deposits are preserved only on paleotopographic 

highs. Playa facies capping this surface record the maximum expanse and depth of the 

playa. The transition from the playa to the upper erg, the fore-erg is not preserved and 

may be recorded in the upper part of the playa facies association by the presence of the 

extensive eolian interval. The base of the upper erg overlies the lower playa deposit and 

signifies the recurrence of the central-erg. Near the top of the upper erg, the presence of 

smaller sand-dominated playa deposits, massive sandstones sculpting dune stratification, 

and ephemeral river deposits records the back-erg setting.  
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Fig. 16. Vertical section of the uppermost Makgabeng Formation. Note the development of damp and wet 

interdune facies association at the top of the lower erg and ephemeral-river, mass flow sandstone, and playa 

facies associations near the top of the upper erg. These intervals correspond to the overprint of periods of 

higher precipitation on the erg. Cartoon is not to scale, and wetness scale is a relative scale.  

 

5. Discussion 

The recognition of climatic impacts on sedimentation in the Precambrian has been 

limited to paleosols, specifically the composition of the paleoatmosphere (e.g. Ohmoto, 

1996; Holland 1997, 2002; Rye and Holland, 1988; Prasad and Roscoe, 1996; Gutzmer 

and Beukes, 1998; Sheldon, 2006; Mossman et al., 2008; Driese et al., 2011; Crowe et 

al., 2013) and glaciogenic deposits (Williams and Schmidt, 1997; Young et al., 1998; 
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2001; Crowell, 1999; Martin, 1999; Schmidt and Williams, 1999; Ojakangas et al., 2001; 

Bindemand et al., 2010). The vertical succession of facies associations in the Makgabeng 

Formation indicates two periods of climatic amelioration during the history of the erg  

(Figs. 16 and 17).  

 

Fig. 17. Cartoon of possible sources of moisture and changes in moisture content across the termination of 

the Makgabeng erg.  

 

The reduced availability of sand and higher water table induced by increasing 

precipitation mark the transition from dry to wet interdune deposits within the central- to 

back-erg facies of the Makgabeng Formation. Temporal changes in depositional 

environments have similarly been attributed to water table rises (e.g. Fryberger, 1990; 

Kocurek and Havholm, 1993; Uličný, 2004). The transition from the lower erg to the 

playa is marked by the presence of biological soil crust and is best interpreted as a super 

bounding surface related to stabilization of the land surface (see Kocurek, 1988). The 

biological soil crust represents the preservation of the upper part of an incipient soil 

horizon (Malenda et al., 2012; Simpson et al., 2013). Increases in water table levels 

permitted flooding on the super surface, preserved the biological soil crusts on the 

topographic highs, and developed the playa facies association. Variations in playa facies 

record seasonal and possibly longer-term decadal climatic changes. The end of playa 
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sedimentation and the initiation of the upper erg indicates a shift back to less precipitation 

and restoration of the central erg system over the fore-erg. A caveat to this interpretation 

is that increased rainfall in the catchment area can allow progradation of dunes across a 

playa without necessarily occurring in the erg (Stone et al., 2010). The prevalence of 3
rd

 -

order surfaces indicates that a significant shift in wind direction occurred within the 

upper erg. That these shifting winds were coupled with increased precipitation is 

indicated by the appearance of mass flow sandstones that sculpted the dunes, ephemeral 

river deposits that impinged on the erg, and a high water table that permitted 

development of more localized playa deposits.  

A test of climatic models via paleocurrent direction anaylsis of dune deposits has 

become important in understanding the validity of models (e.g. Parrish and Peterson, 

1988; Loope and Rowe, 2003; Loope et al., 2004; Scherer and Goldberg, 2010). Loope 

and Rowe (2003) and Loope et al. (2004) recognized that increased amounts of rainfall 

on the Jurassic Navajo erg resulted in water table recharge and sustained fluvial flows 

into the interdune areas. These recognized transitions from arid to pluvial episodes are 

interpreted to record encroachment of the intertropical convergence zone into the core of 

the Navajo erg (Loope et al., 2004). 

Paleomagnetic studies of the lower Waterberg formations indicate an approximate 

pole position of 39° north or south (Maré et al., 2006). This paleopole position is 

congruent with, if present, an intertropical convergence zone similar to the Navajo 

Sandstone. If this is the case, then the consistent wind direction followed by an eventual 

seasonal shift to a subordinate direction at 2.0 Gareflects the intertropical convergence 
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zone and the development of a monsoonal wind shift coupled with an increase in 

precipitation.  

 

5. Summary  

 The Makgabeng Formation contains one of the oldest demonstrable records in 

Earth’s history of the impact of climate changes on erg development in a 

continental dryland setting.  

 The Makgabeng Formation consists of erg, interdune, playa or saline pan, mass-

flow and ephemeral-river deposits.  The lower and upper ergs were punctuated by 

development of a playa during a flooding phase. Interdune deposits display end-

member damp and wet deposits. 

 The vertical stacking of facies associations demonstrates a significant shift in 

amounts of precipitation that is reflected in changing water table levels as 

documented by bedding changes in interdune deposits and the appearance of 

ephemeral river and mass flow deposits late in the history of the erg.  

 Changes in amounts of precipitation radically altered the Makgabeng Formation 

landscape through time.  
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