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Abstract

The multivariate elliptical model is considered, such as to derive subjective Bayesian
estimators of the location vector and some functions of the characteristic matrix with
the normal-inverse Wishart and the normal-Wishart as prior respectively. The latter was
considered by Bekker and Roux (1995) as prior for the normal model. Fang and Li (1999)
considered the elliptical model for Bayesian analysis but with an objective prior structure.
In addition, the newly developed results is applied to the multivariate normal distribution
and the multivariate t-distribution. For the univariate case, a performance study is done
to evaluate the normal-gamma and normal-inverse gamma distributions as suitable priors.
A practical application for the posterior distributions of the multivariate t-distribution is
included by means of Gibbs sampling and a Metropolis-Hastings algorithm.
Keywords: Bayesian, characteristic matrix, elliptically contoured, location vector, normal-
inverse Wishart, normal-Wishart.
AMS 2000 subject classification: 62H10; 62E15

1 Introduction

The multivariate normal distribution is a well-known and widely discussed distribution
for which a large amount of literature exists. It is however necessary to extend the
results that does exist for a more general case such as the elliptical contoured model since
there are a lot of natural phenomena, especially in the finance and risk sectors, where
the normal model is inadequate as a modelling distribution. The elliptically contoured
distribution (Fang and Zhang, 1990) can be viewed as an extension of the multivariate
normal distribution and hence possesses some of the same properties such as symmetry.
An elliptically contoured distribution is a distribution whose contours of equal density have
the same elliptical shape as that of the normal distribution but it can also be long-tailed
or short-tailed. This type of model is therefore more flexible than the normal model and
hence its increase in popularity. Some examples of an elliptically contoured distribution is
the Pearson type VII distributions of which the multivariate t-distribution forms part and
the generalized Laplace and Bessel distributions to name but a few. Elliptically contoured
distributions has been investigated from as early as 1860 by Maxwell amongst others and
have since then received a large amount of interest from modern researchers such as Fang
and Zhang (1990) and Gupta and Varga (1993). The contributions made by Díaz-García
and Vera (2011), Gómez et al (2003) and Cheung et al (2007) should be acknowledged.

The objective of this paper is to derive Bayesian estimators for the parameters of the ellip-
tically contoured distribution by using subjective Bayesian analysis. Fang and Li (1999)
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considered the elliptical model for Bayesian analysis but with an objective prior struc-
ture. This study focuses on the univariate and multivariate elliptical model, respectively,
as the underlying model. The joint and marginal posterior distributions are derived in
this study as well as the Bayesian estimators of the location vector and some functions of
the characteristic matrix assuming subjective priors.

Subjective analysis generally produces more admissible results since added information is
used than in the case of objective analysis. None the less, very few results and estimators
for subjective Bayesian analysis exist and this study attempts to contribute to the liter-
ature in terms of more general subjective Bayesian estimation. The Bayesian analysis of
the multivariate normal model has been discussed by for example Press (1982) with the
assumption of a diffuse prior and also a conjugate prior in the form of the normal model
for the location parameter and the inverse Wishart distribution for the covariance ma-
trix of the underlying model. The normal-inverse Wishart prior is known as the natural
conjugate prior for the multivariate normal distribution as a special case, Arashi et. al.
(2013) developed a conjugate prior structure for the matrix-variate elliptical model. A
prior distribution that maximally reflects the prior information is preferred and it is for
this reason that a normal-Wishart prior, as discussed by Bekker and Roux (1995), will
also be considered in this study to optimally consume the prior information.

For the purpose of this paper we give the definition of a multivariate elliptically contoured
distribution as follows:

Definition 1 (Fang & Zhang,1990). A random vector X ∈ Rp has a multivariate ellip-
tically contoured distribution (ECD) with parameters µ,Σ and g if its density function
is

f(x|µ,Σ) = dp|Σ|−
1
2 g[
1

2
(x− µ)′Σ−1(x− µ)],µ ∈ Rp,Σ > 0 (1)

where dp =
Γ( 1

2π
)

( 1
2π
)
p
2
(
∫
Rp
yp−1g(y2)dy)−1 with Γ(·) the gamma function. The function g :

R
+ → R

+ is called the density generator and it is a function of the quadratic form
1
2
(x− µ)′Σ−1(x − µ). It is denoted as X ∼ ECD(µ,Σ, g) with µ as the location vector

and Σ as the characteristic matrix.

(The multivariate elliptically contoured distribution will be referred to as the elliptically
contoured distribution hereafter.) Note that the density function (1) can also be written
as (Chu, 1973):

f(x|µ,Σ) =
∫ ∞

0

w(z)fN
µ,z−1Σ

(x|µ,Σ)dz

for a scalar function w(z) and with fN
µ,z−1Σ

(·) as the multivariate normal density function

with the same expected value asX and a covariance matrix z−1Σ. Note that
∫∞
0
w(z)dz =

1 and the difference from the class of scale mixtures of the normal distribution. If a scale
mixture of the normal distribution is considered then the weighting function is actually
a density function where 0 ≤ w(z) ≤ 1 for all values of z. However, in the case of
equation the elliptical model, the weighting function does not have the same restriction
but −1 ≤ w(z) ≤ 1 for all values of z.
The rest of the paper is organized as follows: In section 2, we derive the posterior distri-
butions, as well as Bayesian estimators of the location vector µ and characteristic matrix
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Σ of the elliptically contoured model for the normal-inverse Wishart prior. The normal-
Wishart prior forms the base of section 3. Subsequently, the newly developed results of
sections 2 and 3 will be applied to the multivariate normal distribution and the multi-
variate t-distribution as special cases of the elliptically contoured distribution in section
4. In section 5 a real dataset as well as simulation is used to illustrate the methodology
developed in this paper.

2 Normal-Inverse Wishart prior

Suppose an observed sample (X1, ...,Xn) is available from (1) and one wishes to draw
inferences about the mean µ and the characteristic matrix Σ for the subjective prior,
the normal-inverse Wishart prior for which known results for this model has not yet been
derived, but will be derived in this section. The likelihood function is

L(µ,Σ|x,V) =

∫ ∞

0

w(z)(2π)−
p

2 |z−1Σ|−n
2 exp[−1

2

n∑

i=1

(xi − µ)′zΣ−1(xi − µ)]dz

∝

∫ ∞

0

w(z)z
np

2 |Σ|−n
2 etr[−1

2
zΣ−1(V + n(x− µ)(x− µ)′)]dz (2)

where

V =
n∑

i=1

(xi − x)(xi − x)′ (3)

Now let Ψ = z−1Σ, then the Jacobian is z−
p(p+1)

2 . It is assumed that there is prior
knowledge on the parameter space (µ,Ψ) summarized in the following normal-inverse
Wishart density functions (see Press (1982)), say

µ|Ψ ∼ N(θ,
1

a
Ψ)

i.e.

π(µ|Ψ) = (2π)− p

2 |1
a
Ψ|− 1

2 exp[−a
2
(µ− θ)′Ψ−1(µ− θ)]

and
Ψ ∼W−1(Φ, p,m)

such that

π(Ψ) = [2
p(m−p−1)

2 π
p(p−1)

4

p∏

j=1

Γ(
m− p− j

2
)]−1|Φ| 12 (m−p−1)|Ψ|− 1

2
metr[−1

2
Ψ
−1
Φ]

The rich parameter structure provided by a,m, θ and Φ grant the Bayesian statistician
a flexible choice of these parameters so that the assumed prior conforms to the past
knowledge available to the experimenter. From the above, the joint prior density function
is obtained as follows:

π(µ,Ψ|z) = c|Ψ|− 1
2
(m+1) exp[−a

2
(µ− θ)′Ψ−1(µ− θ)]etr[−1

2
Ψ
−1
Φ]
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where c = (2π)−
p
2 a

p
2

2
p(m−p−1)

2 π
p(p−1)

4

p∏

j=1

Γ(m−p−j
2

)

|Φ| 12 (m−p−1).

The joint prior density function for (µ,Σ) is now defined as follows:

π(µ,Σ) ∝

∫ ∞

0

z−
p(p+1)

2 z
p(m+1)

2 |Σ|−m+1
2 etr[−1

2
zΣ−1(a(µ− θ)(µ− θ)′ +Φ)]dz (4)

From equations (2) and (4) the joint posterior distribution is obtained as follows:

q(µ,Σ|x,V) ∝
∫ ∞

0

w(z)z−
p(p−n−m)

2 |Σ|−n+m+1
2 etr[−1

2
zΣ−1(D+(n+a)(µ−b)(µ−b)′)]dz

(5)
where

b =
nx+ aθ

n+ a
(6)

and
D = V+

an

n+ a
(x−θ)(x−θ)′+Φ (7)

which is independent of µ, Σ and z and with V as defined in equation (3).

2.1 Bayesian analysis of µ

The marginal posterior distribution for the location parameter, µ, is derived from the
joint posterior distribution (see equation (5)):

q(µ|x,V) =

∫

Σ>0

q(µ,Σ|x,V)dΣ

∝

∫ ∞

0

w(z)z−
p(p−n−m)

2

∫

Σ>0

|Σ|−n+m+1
2

×etr[−1
2
zΣ−1(D+ (n+ a)(µ− b)(µ− b)′)]dΣdz (8)

Note that the integral with respect to Σ is the integral of the kernel of an inverse Wishart
distribution (see Gupta and Nagar (2000) definition 3.4.1.) with parameters z(D+ (n+
a)(µ− b)(µ− b)′), p and n+m+ 1, hence

q(µ|x,V) ∝

∫ ∞

0

w(z)|D+ (n+ a)(µ− b)(µ− b)′|−n+m−p
2 dz

= c|D+ (n+ a)(µ− b)(µ− b)′|−n+m−p
2 (9)

with c−1 = (n+m− 2p) p(n+m−p+1)2 |D|−n+m−p−1
2 (n+ a)

p

2 . Therefore the marginal posterior
distribution of the location parameter is a multivariate t-distribution with parameters b
and 1

(n+a)(n+m−2p)
D and degrees of freedom (n +m − 2p), where b and D as defined in

equations (6) and (7) respectively.
The Bayesian estimator of µ under quadratic loss is given by the expected value of µ
with respect to the posterior distribution. Hence,

µ̂B = Eµ|x,V[µ|x,V] = b =
nx+ aθ

n+ a
(10)

It is thus a weighted linear combination of the sample mean and the mean parameter of
the prior distribution of µ.
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2.2 Bayesian analysis of Σ

From equation (5) the marginal posterior distribution of Σ can be derived as follows,

q(Σ|x,V) =

∫

µ∈Rp
q(µ,Σ|x,V)dµ

= c

∫ ∞

0

w(z)z−
p(p−n−m+1)

2 |Σ|−n+m
2 etr[−1

2
zΣ−1D]dz (11)

with c−1 = 2
p(n+m−p−1)

2 π
p(p−1)

4

p∏

j=1

Γ(n+m−p−j
2

)|D|−n+m−1−p
2 and D as defined in equation

(7). Note that
∫
µ∈Rp

etr[−1
2
(µ− b)′( 1

z(n+a)
Σ)−1(µ− b))]dµ = | 1

z(n+n0)
Σ| 12 (2π) p2 .

The Bayesian estimator of |Σ| can be calculated as the expected value of |Σ| with regard
to the posterior distribution of Σ. Hence from equation (11), we have that the Bayesian
estimator of |Σ| is:

|Σ̂|B = EΣ|x,V[|Σ||x,V]

=
1

2
p(n+m−1−p)

2 π
p(p−1)

4

p∏

j=1

Γ(n+m−p−j
2

)

|D|n+m−1−p2

×
∫ ∞

0

w(z)z−
p(p−n−m+1)

2

∫

Σ>0

|Σ|−n+m−2
2 etr[−1

2
zΣ−1D]dΣdz

=

∫ ∞

0

zw(z)dz

p∏

j=1

Γ(n+m−2−p−j
2

)

2p
p∏

j=1

Γ(n+m−p−j
2

)

|D| (12)

where D is defined in equation (7).

3 Normal-Wishart prior

In this section the prior distribution for the location vector is the normal model and the
prior distribution for the characteristic matrix is the Wishart distribution. As in section
2, µ|Ψ ∼ N(θ, 1

a
Ψ), but assume that Ψ ∼W (Φ−1, p,m) such that

π(Ψ) = [2
mp

2 π
p(p−1)

4

p∏

j=1

Γ(
m+ 1− j

2
)]−1|Φ| 12m|Ψ| 12 (m−p−1)etr[−1

2
ΨΦ]

With the joint prior density function for µ and Ψ:

π(µ,Ψ|z) = (2π)−
p

2 |1
a
Ψ|−1

2 exp[−a
2
(µ− θ)′Ψ−1(µ− θ)]

×[2mp2 π p(p−1)
4

p∏

j=1

Γ(
m+ 1− j

2
)]−1|Φ|m2 |Ψ|m−p−12 etr[−1

2
ΨΦ]
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Define now the joint prior density function for the elliptical contoured model as:

π(µ,Σ) ∝

∫ ∞

0

z−
p(p+1)

2 z−
p(m−1)

2 |Σ|m−p−22 etr[−1
2
zΣ−1a(µ−θ)(µ−θ)′− 1

2
z−1ΣΦ)]dz (13)

From equations (2) and (13) the joint posterior distribution is obtained as,

q(µ,Σ|x,V) ∝

∫ ∞

0

w(z)z
p(n−m+1)

2 |Σ|−n+m−p−22 etr[−1
2
z−1ΣΦ]

×etr[−1
2
zΣ−1(V + (n+ a)(µ− b)(µ− b)′

+
an

n+ a
(x− θ)(x− θ)′)dz (14)

with b as defined in equation (6).

3.1 Bayesian analysis for µ

The marginal posterior distribution of µ can be obtained from equation (14) as,

q(µ|x,V) ∝

∫ ∞

0

w(z)z
p(n−m+1)

2

∫

Σ>0

|Σ|−n+m−p−22 etr[−1
2
z−1ΣΦ]

×etr[−1
2
zΣ−1F]dΣdz

with F = V + (n + a)(µ − b)(µ− b)′ + an
n+a
(x − θ)(x − θ)′, which is independent of Σ

and z. Using Gupta and Nagar (2000, definition 1.6.5.) it follows that

q(µ|x,V) = cBn+m−2p−3
2

(
1

4
ΦF) (15)

where c−1 = (2π)−
p

2 (n + a)
1
2 |1
2
Φ| 12Bn+m−2p−2

2
(1
4
Φ(V + an

n+a
(x − θ)(x − θ)′)) and Bν(·) is

the Bessel function of the second kind with matrix argument (see Herz (1995)).
Under quadratic loss the Bayesian estimator of µ is µ̂B = Eµ|x,V[µ|x,V]. Hence,

µ̂B = Eµ|x,V[µ] = b =
nx+ aθ

n+ a
(16)

as before for the normal-inverse Wishart prior (see equation (10)).
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Remark 1 The Bayesian estimator of µ (see (16) and (10) for p = 1 lifts the value if
the sample mean is too small and decreases the value if the sample mean is too large. This
is illustrated in Figure 1 for which the true value of the location parameter, µ, is 5 and
a = 5 (left) and a = 15 (right). This lifting and decreasing effect is greatest for small
sample sizes, for which Bayesian analysis is most beneficial.

Figure 1. Performance evaluation of the Bayesian estimator of µ

Remark 2 The tail probabilities of the posterior distribution of µ is of interest especially
in risk and finance analysis. Equations (9) and (15) are used to calculate the posterior
tail probability P (µ > µα) =

∫∞
µα
q(µ|x, V )dµ as given in Figure 2. Note that for these

calculations, α0 = 1, β0 = 0.5,m0 = 16, a = 2, n = 10, d = 20 and a Bayesian estimate of
b = 0 without loss of generality.

Figure 2. Posterior tail probabilities

The tail probabilities for the gamma prior is higher than for the inverse-gamma prior and
the gamma prior is hence preferred in the case of heavy-tailed data.
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For different sample sizes:

Figure 3. Posterior tail probabilities for different sample sizes

Similar to Figure 2, it is clear from Figure 3 that the gamma prior is again preferred.

3.2 Bayesian analysis for Σ

The marginal posterior distribution of Σ can be obtained from equation (14) as is done
in this section,

q(Σ|x,V) ∝

∫ ∞

0

w(z)z
p(n−m+1)

2 |Σ|−n+m−p−22 etr[−1
2
z−1ΣΦ]

×
∫

µ∈Rp
etr[−1

2
zΣ−1(V + (n+ a)(µ− b)(µ− b)′

+
na

n+ a
(x− θ)(x− θ)′)dµdz

where
∫
µ∈Rp

etr[−1
2
zΣ−1(n + a)(µ − b)(µ − b)′]dµ ∝ z−

p

2 |Σ| 12 . Then from Gupta and

Nagar (2000, definition 1.6.5.) follows that

q(Σ|x,V) = c|Σ|−n+m−p−12

∫ ∞

0

w(z)z
p(n−m)

2 etr[−1
2
z−1ΣΦ]

×etr[−1
2
zΣ−1W]dz (17)

with c−1 = 2−
p(n−m)

2 |Φ|n−m2 Bn−m
2
(1
4
ΦW) with

W =
na

n+ a
(x− θ)(x− θ)′ +V (18)
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From equation (17) and using Gupta and Nagar (2000, definition 1.6.5.) we have that the
Bayesian estimator of |Σ| is:

|Σ̂|B = EΣ|x,V[|Σ||x,V]

= 2p|Φ|−1
Bn−m−2

2
(1
4
ΦW)

Bn−m
2
(1
4
ΦW)

∫ ∞

0

w(z)zpdz (19)

Remark 3 The marginal posterior density function and the Bayesian estimator of Σ
reduces to the univariate elliptical model for p = 1.

4 Special cases

In this section the newly developed results of section 2 and 3 will be applied to the
multivariate normal distribution and the multivariate t-distribution.

Remark 4 The marginal posterior distribution of µ for all elliptically contoured distribu-
tions and a normal-inverse Wishart prior is from equation (9) a multivariate t-distribution
with parameters b and 1

(n+a)(n+m−2p)
D and degrees of freedom (n + m − 2p) and with a

normal-Wishart prior from equation (15)

q(µ|x,V) = cBn+m−2p−3
2

(
1

4
ΦF)

with c−1 = (2π)−
p

2 (n + a)
1
2 |1
2
Φ| 12Bn+m−2p−2

2
(1
4
ΦW). The Bayes estimator of µ is from

equation (10) and (16)

µ̂B =
nx+ aθ

n+ a

4.1 Multivariate normal distribution

Let Xi follow a multivariate normal distribution with parameters µ and Σ. Then from
Chu (1973) the associated weight function is:

w(z) = δ(z − 1)

= lim
d→0

1

d
√
π
exp(−(z − 1)

2

d2
) (20)

with δ(·)the Dirac delta function.

4.1.1 Normal-Inverse Wishart prior

The marginal posterior distribution of Σ is obtained by using equations (20) and (11),

q(Σ|x,V) = 1

2
p(n+m−1−p)

2 π
p(p−1)

4

p∏

j=1

Γ(n+m−p−j
2

)

|D|n+m−1−p2 |Σ|−n+m
2 etr[−1

2
Σ
−1
D] (21)
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with D as defined in equation (7). The Bayesian estimator of |Σ| is obtained from
equations (12) and (20)

|Σ̂|B =

∫ ∞

0

zw(z)dz

p∏

j=1

Γ(n+m−2−p−j
2

)

2
p

2

p∏

j=1

Γ(n+m−p−j
2

)

|D|

=

p∏

j=1

Γ(n+m−2−p−j
2

)

2p
p∏

j=1

Γ(n+m−p−j
2

)

|D| (22)

with D as defined in equation (7).

Remark 5 The results obtained for the normal model in section 4.1.1. has been obtained
by Press (1982).

4.1.2 Normal-Wishart prior

From equations (17) and (20) the marginal posterior density function of Σ is

q(Σ|x,V) = 2
p(n−m)

2

Bn−m
2
(1
4
ΦW)

|Φ|−n−m
2 |Σ|−n+m−p−12 etr[−1

2
ΣΦ]etr[−1

2
Σ
−1
W] (23)

and the Bayesian estimator of |Σ| is

|Σ̂|B = 2p|Φ|−1
Bn−m−2

2
(1
4
ΦW)

Bn−m
2
(1
4
ΦW)

(24)

with V as defined in equation (3).

Remark 6 These results obtained for the normal model in section 4.1.2. has been ob-
tained by Bekker and Roux (1995) by using the relation given by Herz (1995) as B−ν(D) =
Bν(D)|D|ν.

4.2 Multivariate t-distribution

Let Xi follow a t-distribution with ν0 degrees of freedom. Then from Chu (1973) the
associated weight function is:

w(z) =
(ν0
2
)
ν0
2 z

ν0
2
−1 exp(−ν0z)
Γ(ν0

2
)

(25)
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4.2.1 Normal-Inverse Wishart prior

The marginal posterior distribution of Σ is from equations (11) and (25):

q(Σ|x,V) =
1

2
p(n+m−1−p)

2 π
p(p−1)

4

p∏

j=1

Γ(n+m−p−j
2

)

|D|n+m−1−p2 |Σ|−n+m
2

×
∫ ∞

0

(ν0
2
)
ν0
2

Γ(ν0
2
)
z
ν0
2
−
p(p−n−m+1)

2
−1 exp(−ν0z −

1

2
ztr(Σ−1D))dz

=
1

2
p(n+m−1−p)

2 π
p(p−1)

4

p∏

j=1

Γ(n+m−p−j
2

)

|D|n+m−1−p2 |Σ|−n+m
2

×(
ν0
2
)
ν0
2

Γ(ν0
2
)
(

Γ(ν0
2
− p(p−n−m+1)

2
)

(ν0 +
1
2
tr(Σ−1D)])

ν0
2
−
p(p−n−m+1)

2

)

with D as defined in equation (7). From equations (12) and (25) the Bayesian estimator
of |Σ| is

|Σ̂|B =
∫ ∞

0

zw(z)dz

p∏

j=1

Γ(n+m−2−p−j
2

)

2p
p∏

j=1

Γ(n+m−p−j
2

)

|D|

with

∫ ∞

0

zw(z)dz =

∫ ∞

0

z
(ν0
2
)
ν0
2 z

ν0
2
−1 exp(−ν0z)
Γ(ν0

2
)

dz

=
Γ(ν0

2
+ 1)

Γ(ν0
2
)

ν02
−
ν0
2

Hence,

|Σ̂|B =
ν02

−
ν0
2
−pΓ(ν0

2
+ 1)

p∏

j=1

Γ(n+m−2−p−j
2

)

Γ(ν0
2
)

p∏

j=1

Γ(n+m−p−j
2

)

|D|
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4.2.2 Normal-Wishart prior

From equations (17), (25) and Gupta and Nagar (2000, definition 1.6.5.) the marginal
posterior density function of Σ is

q(Σ|x,V) =
2
p(n−m)

2 |Φ|−n−m
2

Bn−m
2
(1
4
ΦW)

|Σ|−n+m−p−12

∫ ∞

0

w(z)z
p(n−m)

2

×etr[−1
2
z−1ΣΦ]etr[−1

2
zΣ−1W]dz

=
(ν0
2
)
ν0
2 2

p(n−m)
2 |Φ|−n−m

2

Γ(ν0
2
)Bn−m

2
(1
4
WΦ)

|Σ|−n+m−p−12 |ν0 +
1

2
tr(Σ−1W)|

ν0+p(−m+n+1)
2

×B ν0+p(−m+n+1)
2

(
1

2
ΣΦ(ν0 +

1

2
tr(Σ−1W))

withW = na
n+a
(x− θ)(x− θ)′ +V. The Bayesian estimator of |Σ| is

|Σ̂|B = 2p|Φ|−1
Bn−m−2

2
(1
4
ΦW)

Bn−m
2
(1
4
ΦW)

∫ ∞

0

(ν0
2
)
ν0
2 z

ν0
2
−1 exp(−ν0z)
Γ(ν0

2
)

zpdz

= 2p|Φ|−1
Γ(p+ ν0

2
)Bn−m−2

2
(1
4
ΦW)

2
ν0
2 ν

p
0Γ(

ν0
2
)Bn−m

2
(1
4
ΦW)

from equations (19) and (25), with V as defined in equation (3).

5 Application

5.1 Posterior odds ratio

The posterior odds ratio for Σ for the normal distribution is

POR =
q(ΣIW |x,V)
q(ΣW |x,V)

=

1

2
p(n+m−1−p)

2 π
p(p−1)

4

p∏

j=1

Γ(n+m−p−j
2

)

|D|n+m−1−p2 |Σ|−n+m
2 etr[−1

2
Σ
−1
D]

2
p(n−m)

2

Bn−m
2
( 1
4
ΦW)

|Φ|−n−m
2 |Σ|−n+m−p−12 etr[−1

2
ΣΦ]etr[−1

2
Σ−1W]

=
Bn−m

2
(1
4
ΦW)|D|n+m−1−p2 |Σ|−2mp+12 |Φ|n−m2 etr

[
−1
2
Σ
−1
D
]

Γp(
n+m
2
)2

p(n−m)
2 etr[−1

2
ΣΦ]etr[1

2
Σ−1W]

(26)

Although the estimators based on different prior structures are different, note that we are
comparing the behaviour of the two posterior density functions (21) and (23). It is not
possible to compare the two estimators (22) and (24) by using the posterior odds ratio.
For p = 1 in (26) with Φ = 2β0 and m = 2(α0 + 1) (see van Niekerk, 2012),

POR =
Kα0−

n
2

(√
2(n+n0)m0

β0

)
(n+ n0)

α0
2
−n
4 dα0+

n
2 21−(

3α0
2
+n
4
)(σ2)−α0−

n+2
2 exp

[
− d
2σ2

]

Γ(α0 +
n
2
)(m0β0)

−
α0
2
+n
4 exp

[
−σ2

β0
− (n+n0)m0

2σ2

]
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A graphical presentation of the posterior odds ratio for σ2 = 5 is given below in Figure 4
and 5 with β0 = 0.5,m0 = 16, n0 = 2, n = 10, d = 20,

Figure 4. Posterior odds ratio for the univariate normal model

Note that when the posterior odds ratio is lower than 1 then the gamma prior is more
appropriate than the inverse gamma prior. In the case for β0 = 0.5, the gamma prior
provides a better fit that the inverse gamma prior for α0 > 1. We thus suggest to use the
normal-gamma prior.

5.2 Real data

5.2.1 Linear regression

In this section the dataset presented inMiller (1980) is used which consists of simultaneous
pairs of measurements of serum kanamycin level in blood samples drawn from twenty
babies. One of the measurements were obtained by a heelstick method (X) and the other
by using an umbilical catheter (Y). A simple linear regression model is fit to the data to
test whether there is a systematic difference in the two methods. Hence

Yi = β0 + β1Xi + εi

with the assumption εi ∼ t(0, σ2ε, νε). The prior distributions for β0 and β1 are taken
to be standard normal distributions (similar to Bolfarine and Arellano-Valle, 2011) and
from the distribution on the error it follows that Yi ∼ t(β0 + β1Xi, σ

2
ε, νε). The prior

distribution for the error variance is then either an inverse gamma or gamma distribution
and these results are then compared. Firstly the inverse-gamma prior, σ2ε ∼ IG(α1, β1)
and secondly the gamma prior, σ2ε ∼ G(α2, β2). The hyperparameters are chosen as α1 = 4
and β1 = 3 (Bolfarine and Arellano-Valle, 2011) and accordingly α2 = 4 and β2 = 0.333.
The error degrees of freedom is assumed to be 7. A Gibbs algorithm was used and the
convergence was verified graphically (see Gelman and Rubin, 1992), the posterior results
are summarized in Tables 1 and 2 below.
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Parameter Mean MC error 95% HPD Length
β0 0.7059 0.004239 (-1.237,2.641) 3.878
β1 1.761 0.0006637 (1.488,2.04) 0.552
σ2ε 22.67 0.03401 (10.47,43.1) 32.63

Table 1. Results for σ2ε ∼ IG(4, 3)
Parameter Mean MC error 95% HPD Length
β0 0.701 0.003878 (-1.232,2.628) 3.86
β1 1.762 0.0006222 (1.487,2.04) 0.553
σ2ε 23.03 0.03581 (10.74,43.7) 32.96

Table 2. Results for σ2ε ∼ G(4, 1
3
)

The length of the intervals are very close for both priors. The interval for β0 is shorter
for the gamma prior than the inverse gamma prior. It is shown in this example that the
inverse gamma prior is not superior to the gamma prior and in future a gamma prior
might be considered in applications.

5.2.2 Simulation

A univariate Students’ t dataset was simulated with location parameter, µ = 10, scale
parameter, γ2 = 5 and degrees of freedom, ν = 5. The prior for the degrees of freedomwere
taken to be a uniform(1,10) distribution. The two priors, normal-inverse gamma (µ|γ ∼
N(12, γ

2
) and γ2 ∼ IG(4, 3)) and normal-gamma (µ|γ ∼ N(12, γ

2
) and γ2 ∼ G(4, 1

3
)) were

then applied in a Gibbs sampler that converged graphically and the posterior results are
as follows:

Parameter Mean MC error 95% HPD Length
µ 11.13 0.001766 (10.14,12.11) 1.97
γ2 5.718 0.00791 (2.758,11.21) 8.452
ν 5.003 0.01964 (1.355,9.717) 8.362

Table 3. Results for γ2 ∼ IG(4, 3)
Parameter Mean MC error 95% HPD Length
µ 11.12 0.001734 (10.22,12.02) 1.8
γ2 5.029 0.00402 (2.84,8.824) 5.984
ν 5.428 0.01108 (3.094,9.685) 6.591

Table 4. Results for γ2 ∼ G(4, 1
3
)

Notice the similar performance as with the real dataset between the two priors where the
confidence intervals for the gamma prior is shorter than for the inverse-gamma prior.

6 Conclusion

This paper focused on subjective aspects regarding the Bayesian paradigm with the ellip-
tical contoured model as the underlying distribution. The normal-inverse Wishart joint
prior distribution and normal-Wishart joint prior distribution were assumed respectively,
for the location vector and characteristic matrix of the underlying model. The joint pos-
terior density functions, marginal posterior density functions and Bayesian estimators of
the parameters were derived. The multivariate normal distribution and the multivariate
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t-distribution were considered as special cases in section 4. The Bayesian estimator of the
location parameter is robust in the sense that it is independent of the prior distribution
of the characteristic matrix and the form of the density function of the specific elliptical
model in consideration. This is a very good result since this estimator can then be easily
applied to all elliptical models.
In the univariate case it was demonstrated that the normal-gamma prior is a suitable
competitor to the normal-inverse gamma prior.
This paper makes a substantial contribution to the field of modern multivariate analysis
with the implementation of the elliptically contoured models form a subjective prior view.
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