THE LONGEVITY OF ADULT *PARAFILARIA BOVICOLA* AND THE PERSISTENCE OF THEIR ASSOCIATED CARCASS LESIONS IN CATTLE IN SOUTH AFRICA

E. M. NEVILL\(^1\) and J. H. VILJOEN\(^2\)

ABSTRACT

The slaughter of naturally-infected heifers and oxen at regular intervals after the first *P. bovicola* ovipositional blood spots appeared revealed that no female worms could be found after 259 days, no live worms after 372 days, and no carcass lesions after 519 days. In one bull, however, blood spots and carcass lesions persisted throughout 2 seasons. With the possible exception of bulls, therefore, annual reinfection of cattle appears to be necessary for the continuation of the transmission cycle of *P. bovicola*.

INTRODUCTION

The minimum prepatent period of *Parafilaria bovicola* in 2 artificially-infected cattle was 242 days (Nevill, 1979). In a herd of 353 naturally-infected cattle, the shortest period from birth to 1st blood spot ranged from 191 to 279 days for 81.8% of the oxen and 47.1% of the heifers (Nevill, 1984). It remained to be determined how long females can continue to lay eggs, how long they can survive after egg laying has stopped, and the period which must elapse before the carcass lesions which they create have disappeared. A study of blood spot incidence can then be used to determine how long an infected animal will act as a source of infective material and the time required for infected cattle which are introduced to uninfected areas, to lose their infection and carcass lesions.

Nelson (1964) stated that most filarial worms continue to produce microfilariae for long periods. He cited the work of Nelson & Grounds (1958), who found that more than 50% of the people at Kodera in Kenya were still bleeding with *Onchocerca volvulus* 11 years after the vector *Simulium neavei* had been eliminated.

Horses infected with *Parafilaria multipapillosa* have frequently been sold to countries free of this parasite, and workers in these countries have subsequently noted the period over which bleeding took place. Thus Railliet & Moussu (1892) in France stated that bleeding in horses from Hungary lasted for 3 or 4 years. Anderson, Jalkanen & Nummio (1976) in Finland observed bleeding in horses imported from near Rostov and possibly Stavropol in south-eastern Russia. All the horses bled during the first 2 summers and 1 possibly during the third summer, but most bleeding occurred during the first summer. Gibson, Pepin & Piment (1964) recorded bleeding caused by *P. multipapillosa* infection in a 5-year-old mare imported into Britain from Russia. It was found to be bleeding on arrival and it bled again the following year.

In experimental transmission of *P. multipapillosa*, Osipov (1962) found that horses infected in July 1960 bled from April–September 1961 and again during April 1962, which is in agreement with observations on natural infections with this species of *Parafilaria*.

There is no reference in the literature as to how long *P. bovicola* survives other than the observation by Webster & Wilkins (1970) in Canada that Charolais cattle imported from France showed *P. bovicola* bleedin lesions either during the 6-month quarantine period or within the first year after importation.

To investigate this aspect of the life-cycle of *P. bovicola* in South Africa, the recurrence of blood spots in some naturally-infected cattle was recorded regularly for up to 3 consecutive summers before slaughter, while other infected animals were kept for various periods in insect-free stables prior to slaughter and carcass appraisal for lesions and worms.

MATERIALS AND METHODS

Preliminary observations on blood spot recurrence

In preliminary experiments, which started in 1972, the blood spots seen on each of 3 approximately 8-year old culled Hereford Bulls, sent from Mara Research Station near Louis Trichardt, for slaughter at Onderstepoort, were recorded daily on individual outline diagrams over periods of 15–27 months. The blood spots on an ox and a heifer (both 15 months old) from ‘Mara’ were likewise recorded at Onderstepoort over 27 months. One of the bulls and the ox spent most of this period in an insect-free stable, while the remaining animals remained outside for the full period.

At the end of these periods the cattle were slaughtered and their carcasses examined for lesions and worms.

Comparison of *P. bovicola* survival and carcass lesion persistence in heifers, oxen and old bulls

The Research Stations of ‘Zoutpan’ and ‘Towoomba’ 30 km NNW and 90 km NNE of Onderstepoort respectively, were visited weekly between 8 June 1977 and 29 July 1977, and recently weaned heifers and oxen, approximately 8 months old, were examined for blood spots containing embryonated *P. bovicola* eggs produced by females ovipositing for the first time. Twelve infected heifers and 12 infected oxen were selected and transferred to insect-free stables at Onderstepoort, 10 of the oxen on 11 July 1977, and 2 oxen and 12 heifers on 9 August 1977.

Five culled bulls, all older than 5 years, were obtained from ‘Mara’ on 22 July 1977 and kept in an open paddock at Onderstepoort until blood spots containing embryonated eggs were seen. The bulls were then transferred to an insect-free stable. Although 12 old bulls were required for this experiment, it was not possible to obtain so many.

To serve as a control, so that the results obtained from similar groups slaughtered at progressively longer intervals thereafter could be compared, 2 heifers and 2 oxen of the ‘Zoutpan’/‘Towoomba’ group were slaughtered at Onderstepoort 2–3 months after arrival during the period that *P. bovicola* females were actively laying eggs (October 1977). Similar numbers of the remaining animals were slaughtered at intervals of approximately 4 months until no worms and few lesions could be detected. Thereafter, the intervals between slaughter were reduced to a few weeks until all had been slaughtered.
Because the number of bulls available was limited, the initial slaughter date in October 1977 and the winter slaughter date in June 1978 were omitted, and usually only 1 bull was slaughtered at a time.

At slaughter, the size, shape and appearance of Parafilaria lesions and the position of both dead and living worms were indicated on an outline diagram of an ox. Where doubt existed as to the nature of a lesion, as was often the case during the second summer, smears were made, stained with Giemsa in the usual manner and checked for the presence of unusually high numbers of eosinophils. If these were present, the lesion was assumed to have been caused by P. bovicol.

To facilitate the comparison of lesions in animals slaughtered at different times, the lesion area as indicated on the outline diagram of an ox was roughly calculated and expressed as a percentage of the total body area.

The 3 lesion categories, namely acute, sub-acute and chronic as defined by Nevill (1979), were again used in all the experiments.

The worms collected off the carcasses were sexed and examined for embryonated eggs by dissection in 0.85% saline.

RESULTS

Preliminary observations on blood spot recurrence

These observations are summarized in Table 1. Four of the 5 cattle used in the preliminary experiments bled only during the summer of 1971/72, soon after their arrival at Understepoort. However, even though no blood spots were seen on these animals in the summer of 1972/73, at the end of this summer the 2 bulls that were slaughtered had many lesions and 1 of them a live female worm. The heifer was negative. The ox, which was slaughtered a year later, had a few small acute lesions.

The remaining bull (No. 8967) bled for 3 consecutive summers, the first 2 of which it spent outside. At slaughter much discoloured slimy connective tissue covered its carcass surface but no worms were present.

Comparison of P. bovicol survival and carcass lesion persistence in heifers, oxen and old bulls

The lesion areas, lesion type and worms recovered are summarized in Table 2.

Heifers. Sixty-six to 96 days after the 1st blood spot was seen, carcass lesions covered a mean of 31.5% of the body surface. After 205–238 days the lesion area was slightly greater (37.3%) but it had started to decrease (15.3%) before the slaughteings that took place after 321–351 days. After 468 days only very small lesions (1.9%) remained, and all had disappeared by 483 days after the appearance of the 1st blood spot.

Live female worms containing embryonated eggs were recovered from carcasses up to 96 days after the 1st blood spots were seen, and live females without embryonated eggs up to 351 days later, but no living or dead worms were found at slaughter after 460 days.

Oxen. The size of carcass lesions was marginally larger and the rate at which they disappeared slightly slower than those seen in heifers, all lesions having disappeared within 519 days of the 1st blood spot being seen.

Live female worms containing embryonated eggs were recovered 259 days after the 1st blood spots were seen and live females without embryonated eggs up to 372 days later, but no worms at all were found at slaughter after 504 days.

Old bulls. Two of the 3 old bulls slaughtered 480 days after their arrival at Understepoort, still showed sub-acute and chronic lesions and a live male worm was recovered from 1 of these 2 bulls.

DISCUSSION

The heifers and oxen used in these studies were born about October 1976. Nevill (1980) showed that most infective vector flies are to be found from August to March each year. For the purpose of understanding the results of the present trials it is assumed that the 1st blood spots seen in calves in 1977 were the result of infections immediately after birth in about October 1976. Thereafter these calves could have been reinfected at any time up to the end of March 1977, a period of approximately 150 days. In the discussion which follows, all periods observed in the trials have been adjusted to allow for this variation in the time of possible natural infection.

Contrary to some of the findings of various workers on P. multipapillosa (Railliet & Mousa, 1892; Andersson et al., 1976; Gibson et al., 1964, and Osipov, 1962), the present observations suggest that survival of a P. bovicol infection in a naturally-infected heifer or ox, is limited to approximately 201–372 days from the appearance of the first blood spots. The egg-laying period of female worms is at least 100 days shorter.

In heifers and oxen, the lesion area decreased from 37% or more to between 15% and 18% about 350 days after the 1st blood spot was seen, but it took 483 days to disappear completely in heifers and 519 days in oxen. This long period possibly included the 150-day developmental period mentioned earlier. The remaining 333–369 days would then include the egg-laying period, the post egg-laying period until death of the worm, and a
TABLE 2 The survival of *Parafilaria bovicola* and the persistence of carcass lesions in naturally infected heifers, oxen and old bulls kept in an insect-free stable

<table>
<thead>
<tr>
<th>Date slaughtered</th>
<th>Days from 1st blood spot to slaughter</th>
<th>Identity No.</th>
<th>Live worms from carcasses</th>
<th>No. of dead encapsulated worms</th>
<th>Type of carcass lesion</th>
<th>Presence of eosinophils **</th>
<th>% body area covered by lesion</th>
<th>Mean % lesion area per group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heifers</td>
<td></td>
<td></td>
<td>♂♀</td>
<td>Embryonated eggs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Oct 1977</td>
<td>66</td>
<td>2211</td>
<td>3</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>43.4</td>
<td>31.5</td>
</tr>
<tr>
<td>3 Oct 1977</td>
<td>96</td>
<td>2218</td>
<td>2</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>19.6</td>
<td>37.3</td>
</tr>
<tr>
<td>22 Feb 1978</td>
<td>206</td>
<td>2206</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>54.4</td>
<td>15.3</td>
</tr>
<tr>
<td>15 Jun 1978</td>
<td>321</td>
<td>2212</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>1 Nov 1978</td>
<td>460</td>
<td>2215</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>1 Nov 1978</td>
<td>468</td>
<td>2207</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>22 Mar 1978</td>
<td>490</td>
<td>2216</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>2.6</td>
<td>1.9</td>
</tr>
<tr>
<td>1 Nov 1978</td>
<td>511</td>
<td>2208</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oxen</td>
<td></td>
<td></td>
<td>♂♀</td>
<td>Embryonated eggs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Oct 1977</td>
<td>74</td>
<td>2205</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>71.7</td>
<td>51.0</td>
</tr>
<tr>
<td>3 Oct 1977</td>
<td>75</td>
<td>2220</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>30.2</td>
<td></td>
</tr>
<tr>
<td>22 Feb 1978</td>
<td>238</td>
<td>2083</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>16.4</td>
<td>36.8</td>
</tr>
<tr>
<td>15 Jun 1978</td>
<td>372</td>
<td>2081</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>57.2</td>
<td></td>
</tr>
<tr>
<td>11 Nov 1978</td>
<td>502</td>
<td>2082</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>36.1</td>
<td></td>
</tr>
<tr>
<td>22 Nov 1978</td>
<td>511</td>
<td>2088</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>30 Nov 1978</td>
<td>519</td>
<td>2085</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>6.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Old bulls</td>
<td></td>
<td></td>
<td>♂♀</td>
<td>Embryonated eggs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Feb 1978</td>
<td>210*</td>
<td>1880</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>20.0</td>
<td>10.5</td>
</tr>
<tr>
<td>1 Nov 1978</td>
<td>450*</td>
<td>2193</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>22 Nov 1978</td>
<td>480*</td>
<td>2189</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>28.0</td>
<td>14.0</td>
</tr>
<tr>
<td>30 Nov 1978</td>
<td>480*</td>
<td>2192</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Days from arrival to slaughter

** No smears were made if worms were recovered

+ Positive

- Negative
LONGEVITY OF ADULT PARAFILARIA BOVICOLA AND THE PERSISTENCE OF THEIR CARCASS LESIONS IN CATTLE

ACKNOWLEDGEMENTS

We wish to thank Dr G. Marincowitz for making calves from Towoomba and Zoetpan Research Stations available for this study, Dr F. Ludemann for experimental cattle from Mara Research Station, Miss I. H. A. Schatz for technical help and Prof. I. G. Horak for his helpful criticism of the manuscript.

REFERENCES

The evidence accumulated to date on worm survival in old bulls is more difficult to evaluate. Four of the 6 bulls slaughtered 450–480 days (15–16 months) after arrival at Onderstepoort showed lesions and/or the presence of live worms, while 2 had no lesions. Although lesions in heifers and oxen were present up to 468 days and 511 days respectively after removal to an uninfected area, no worms survived beyond 372 days.

The preliminary observations on the recurrence of blood spots in old bulls, however, showed that in 1 of the 3 (No. 8967), bleeding persisted for 3 seasons. It is likely that this bull was reinjected at 'Mara' in the summer of 1971/72 before being sent to Onderstepoort in February 1972, and that the blood spots observed in the summer of 1972/73 were a result of this infection. The blood spots seen in the summer of 1973/74 were then caused either by renewed egg-laying by worms which survived from the previous summer or by reinfection at Onderstepoort. The latter explanation is possible, but unlikely, since only 2 cases of natural transmission have been recorded so far at the Veterinary Institute, Pretoria, both in the summer of 1980/81 (Verster, 1981 personal communication). The survival and egg-laying activity of adult female P. bovicola for 2 consecutive summers in bulls raust therefore be regarded as a possibility.

The foregoing studies made use of naturally-infected culled bulls from 'Mara'. However, in a survey at 'Mara' (Nevill, 1984), bulls of all ages were shown to have more blood spots than any other cattle and breeding cows the fewest. This difference and the greater longevity of P. bovicola in bulls, are thought to be linked with the levels of the sex hormones.

The results of this study suggest that, except perhaps in bulls, annual reinfection in spring to summer is necessary for the continuation of the transmission cycle of P. bovicola. Reinfection may only be necessary every 2nd year in bulls.