
A blended learning approach for teaching computer
programming: design for large classes in Sub-Saharan Africa

Tesfaye Bayu Batia*, Helene Gelderblomb and Judy van Biljonc

a School of Informatics, Hawassa University, Hawassa, Ethiopia; bDepartment of
Informatics, University of Pretoria, Pretoria, South Africa; cSchool of Computing,
UNISA, Pretoria, South Africa

The challenge of teaching programming in higher education is
complicated by problems associated with large class teaching, a prevalent
situation in many developing countries. This paper reports on an investiga-
tion into the use of a blended learning approach to teaching and learning
of programming in a class of more than 200 students. A course and learn-
ing environment was designed by integrating constructivist learning mod-
els of Constructive Alignment, Conversational Framework and the Three-
Stage Learning Model. Design science research is used for the course
redesign and development of the learning environment, and action
research is integrated to undertake participatory evaluation of the interven-
tion. The action research involved the Students’ Approach to Learning sur-
vey, a comparative analysis of students’ performance, and qualitative data
analysis of data gathered from various sources. The paper makes a theoret-
ical contribution in presenting a design of a blended learning solution for
large class teaching of programming grounded in constructivist learning
theory and use of free and open source technologies.

Keywords: programming; large class teaching; blended learning;
constructivist learning

1. Introduction

The challenges of teaching and learning (T&L) programming are widely
recognised, the consequences of which include high failure and dropout
rates in introductory programming courses (Mendes, Paquete, Cardoso, &
Gomes, 2012). Large class teaching of programming can exacerbate these
challenges (Apple & Nelson, 2002). Students in large classes may feel
isolated and anonymous, leading them to disengage and dissociate from
attendance (Kerr, 2011).

Higher education continues to apply large class teaching to address the
growing demand for access and to manage the rising financial constraints

*Corresponding author. Email: tesfayebayu@hu.edu.et

1

mailto:tesfayebayu@hu.edu.et

(Kerr, 2011). The stake is particularly high in Sub-Saharan Africa where
there is a steady growth in tertiary education enrolment without having
equivalent expansion of institutional capacities (UNESCO, 2010; Yizengaw,
2008).

Design science research (DSR) is integrated with action research to
design and empirically evaluate a course and blended learning environment,
which is referred to as an intervention hereafter. Blended learning combines
face-to-face and information technology (IT) supported instructional activi-
ties (Hoic-Bozic, Mornar, & Boticki, 2009). The study was conducted in an
Ethiopian university with a class of 216 students. The main research ques-
tion was:

How can a blended learning approach be used to improve large class teaching
of programming?

The rest of the article is organised as follows. A review of literature is pre-
sented in Section 2. Sections 3 and 4 describe the intervention design and
its implementation. The research design, the findings, discussion on the find-
ings and the concluding reflection are presented consecutively from Section 5
through 8.

2. Related work and motivation

Our study concerns novice programming and draws on innovations from
pedagogy, information technologies and large class teaching. Section 2.1 dis-
cusses novice programming while Sections 2.2–2.4 summarise pedagogical
and technical strategies for improved T&L of programming.

2.1. Novice programming

Experience in the last 40 years shows that learning to program remained
hard, and introductory programming courses endured high failure and drop-
out rates (Mendes et al., 2012; Robins, Rountree, & Rountree, 2003). Recent
large-scale projects of the McCracken group, the Leeds group, and the
BRACE and BRACElet projects (Clear et al., 2011; Fincher et al., 2005)
have examined novice programmers to understand their problems and expe-
rience in learning to program. This paper focuses on two main areas:

Knowledge and skills required for programming: novice students are
found less successful at the programming task than their teachers’ expecta-
tion (McCracken et al., 2001). Studies under the BRACElet project (Clear
et al., 2011) investigated the underpinning skills and knowledge required for
code writing. The result shows a positive correlation between mastery of
code tracing and students’ ability to reason about the code, and concluded
that a combination of code tracing and code explanation skills is a strong
predictor of performance on code writing.

2

The psychology of programming: programming as a cognitive activity
demands different kinds of mental models – of a problem to be solved, its
algorithmic representation, syntax of their code and their semantic equivalent
(Robins et al., 2003). Further mental models necessary are that of the
mechanics of debugging, editing, compiling and the internal behaviour of
executing code. Sorva (2012) showed that novices encounter challenges in
learning to program due to underdevelopment of those multi-faceted mental
models. Robins et al. further noticed that students cannot frame the content
knowledge they gained into a “chunk” of related knowledge (called a
schema), which is essential for problem-solving and code writing.

2.2. Constructivism and learner-centred assessment

Ben-Ari (2001) and Sorva (2012) promote constructivist learning theory for
effective T&L of programming. Constructivists conceive learning as con-
struction of knowledge through active engagement of the learners in solving
authentic problems (Ramsden, 2003). This active engagement, i.e. student-
centric instruction, can benefit students in developing mental models
(Ben-Ari, 2001; Wulf, 2005).

Examples of constructivist pedagogical models are Mayes and Fowler’s
(1999) Three-Stage Learning Model, Laurillard’s (2002) Conversational
Framework and Biggs’ (2003) Constructive Alignment. The former explains
learning as a three-stage process: conceptualisation (creating initial exposure
to a new concept), construction (applying new concept) and dialogue (con-
versing, reflecting and extending the new concept). The conversational
framework takes learning as a dialogue in discursive (presentation of new
concept), interactive (with tasks and resources), adaptive (putting ideas into
practice) and reflective forms (reflecting on theories and practices). Con-
structive alignment is a tool for instructional design and involves defining
and communicating intended learning outcomes (ILOs), planning T&L tasks
that enable students to achieve ILOs and assessments that ensure achieve-
ment of preset ILOs. ILO specification and evaluation can be improved by
applying learning taxonomies, such as Bloom’s (Fuller et al., 2007) and
SOLO (Biggs & Tang, 2007).

Thota and Whitfield (2010) integrated constructive alignment and SOLO
for programming course design and assessment. They used the conversa-
tional framework to determine the roles and interactions in a T&L process.
The three-stage model is to characterise information technologies and learn-
ing resources suitable for achieving student learning at each stage of the
learning cycle (e.g. Hadjerrouit, 2005, 2008; Roberts, 2003).

Learner-centred formative assessment is an integral part of constructive
alignment, and is intended to foster students’ learning through frequent and
prompt feedback (Webber & Tschepikow, 2013). Formative assessment has
two functions: feedback (evidence about student learning) and evaluation

3

(judgement on learning) (Taras, 2005). Balanced achievement of these func-
tions demands transformation from written examination dominance, which is
common in Ethiopia (Bass, 2009) to more authentic, interactive and continu-
ous assessments (Black & Wiliam, 1998).

2.3. Information technologies for teaching and learning of programming

Kerr (2011) and Cuseo (2007) argue that large class teaching causes decline
of active student engagement and the quality of instructors’ interaction with
their students. The impact of these problems can be minimised by using
learning management systems (Francis, 2012). Hoic-Bozic et al. (2009) and
Azemi and D’Imperio (2011) demonstrated the use of e-learning communi-
cation (email and chat) and student support (discussion forum, grade notifi-
cation and provision of interactive self-practice materials) to support
engagement.

Various programming tools have also been designed to address the prob-
lem of mental model development described in Section 2.2. Program visual-
isation and simulation tools can be used to demonstrate execution steps and
runtime behaviour of the program code (Rajala, Laakso, Kaila, & Salakoski,
2008). There are many program visualisation tools, including UUhistle for
Python, Jeliot3 and JIVE for Java, and Teaching Machine for C++. Empiri-
cal studies on integration of such tools illustrate a positive outcome in
improving students’ experience in introductory programming courses (Rajala
et al., 2008; Sorva, 2012).

2.4. Strategies for large introductory programming courses

Computer science education literature does not sufficiently cover the nature
and problems of large class T&L of programming (Apple & Nelson, 2002;
Sheth, Bell, & Kaiser, 2013). The following instructional strategies are rele-
vant to large class teaching of programming:

Engaging students for deep learning (Marton, Hounsell, & Entwistle,
1997): by infusing short active learning activities in the form of code walk-
throughs, group code writing and code debugging that engage students dur-
ing lecture and promote student-level collaborations (Wulf, 2005), and
applying teaching methods that necessitate student energy, problem-solving
and cooperative learning (Ramsden, 2003). Examples of engaging activities
in programming are in-lecture live coding (Pears, 2010), collaborative learn-
ing, mainly in the form of pair programming (Hwang, Shadiev, Wang, &
Huang, 2012), and use of reflective journals (Lee-Partridge, 2006).

Using support mechanism for improved class management: Ives (2000)
recommends in-class activities with a lot of exam-directed problems to
improve students’ attendance. Student support can be facilitated through
team teaching (Hanusch, Obijiofor, & Volcic, 2009), and the use of
undergraduate students as assistants (Decker, Ventura, & Egert, 2006).

4

Aligning assessment activities: Barros (2010) tested alignment between
assignments (connecting consecutive assignments in a way that the latter
contains the whole or part of its predecessor) and incremental grade
improvement (allowing students to improve their poor grades by achieving a
threshold higher grade in the next assignment). Thompson (2007) applied
holistic assessment criteria for assignments to engage students in self-moni-
toring and to enforce balanced programming skills development.

Creating closer relationships and a sense of community among students:
by increasing student support services, introducing instructors who fulfil the
role of communicators, enthusiastic engagement and a team spirit amongst
tutors and instructors (Bryson & Hand, 2007).

3. Course and learning environment design

The case course was an introductory programming course taught through
imperative first approach (Curricula, 2001). The course was redesigned by
applying constructive alignment and Fuller et al.’s (2007) two-dimensional
adoption of Bloom’s taxonomy. The course’s ILOs (Table 1) were drawn
from the ACM/IEEE CS 2001 curriculum and the 2008 interim update
(Curricula, 2001; McCauley & Mcgettrick, 2008). Corresponding aligned
assessment activities are shown in the second column of Table 1.

The assessment activities were developed with an emphasis on learner-
centred formative assessment, namely assignments, projects and journals.
Additional assessment-related good practices such as alignment between
assignments, incremental grade improvement (Barros, 2010) and online and
face-to-face senior student support (referred to as student mentors) were
incorporated. The formative assessment activities were evaluated using
SOLO-based holistic assessment criteria adopted from Thompson (2007).

Table 1. Course ILOs and aligned assessment tasks.

No. Intended learning outcomes Assessment tasks

1. Explain fundamental program constructs and
programming concepts

Final exam; non-graded
reading assignment

2. Apply the techniques of structured (functional)
decomposition for problem-solving and algorithm
redevelopment

Graded and non-graded
pair-based assignments

3. Design and test algorithms for solving elementary
problems

Group-based project

4. Write, debug, trace and explain simple programs that
implement designed algorithms, applying fundamental
programming constructs and data objects

Individual and pair reflective
journal

5. Use teamwork techniques in problem-solving and
program development

Final examination

5

Learning resource development follows the three-stage learning model of
Mayes and Fowler (1999). Activity sequences among and within lecture,
laboratory and independent and group work activities are planned and
implemented based on the conception of learning in Laurillard’s conversa-
tional framework. As depicted in Table 2, the learning process begins by
presenting a new concept with narrative materials. In-class interactive exer-
cises and live coding follow to help students apply the new concepts on
authentic problem-solving (the construction phase), leading them to pair-pro-
gramming laboratory activities where they apply IT tools. Assignments,
including reflective journals, infuse dialogue among students and the
teaching team. The blended learning environment of the course is shown in
Figure 1.

The environment combined large class lectures, Moodle-based e-learning
(Dougiamas & Taylor, 2002) and small-group laboratory and assessment
activities. The three components were interrelated (shown with the bold
arrows) with the Moodle system serving a central role for resource presenta-
tion, communication, collaboration and student support.

4. Context and path of implementation

Similarly to many institutions in Sub-Saharan Africa, Ethiopian universities
face major challenges including a shortage of qualified faculty, poor infra-
structure and facilities, and the consequent inability to meet increasing
demands for access while maintaining quality (Yizengaw, 2008). Computer-
based instruction is often affected by poor Internet connectivity and frequent
disruption of electric power supply.

The educational culture in the country has inadvertently tended to pro-
mote shallow learning (Bass, 2009). Ashcroft and Rayner (2012) affirm an
overwhelming focus on lectures followed by terminal examinations, and a
trend to see teaching largely in terms of a transfer of knowledge from tea-
cher to students. There are some arguments relating these trends to the prev-
alence of large class sizes (Tessema, 2009).

The case course defined in Section 3 is part of the Computer Science,
Information Systems and Information Technology curricula of Hawassa
University. English is the medium of instruction as is customary in
Ethiopian secondary and higher education institutions.

There were 216 students (159 males and 56 females) who were regis-
tered for the course for the first time. The students had a similar academic
background as they were all admitted directly from secondary schools based
on a nationally administered entrance examination, and followed a nationally
standardised preparatory school curriculum. However, there were variations
in ICT skills and English language fluency, and a difference in the level of
active participation in interactive sessions.

6

Table 2. Constructivist course design.

Four forms of learning as dialogue that involves discussion, adaption, interaction and reflection
(Laurillard, 2002)

Discursive: presentation of new
concept

Interactive: interacting
with teacher-constructed
tasks

Adaptive: putting
ideas into practice,
modifying one’s ideas
and adapting ones
actions.

Reflective: reflect
of the learner’s
performance by
both teacher and
learner

Phases of
Blending
(Mayes
&
Fowler,
1999)

Conceptualisation
(programming
concepts)

Learners’ experience: attending and
apprehending

Learners’ experience:
discussing, coding,
tracing and explaining

Media form: narrative: slide
presentation, code presentation,
lecture note, web resources and
library materials; productive: live
coding with IDE

Media form: interactive
and communicative:
in-class small-group
collaboration with case
problems
Pair, group and self-
practice with web-based
questions (quizzes)

Construction
(programming
activities)

Learners’ experience: designing and testing
algorithm, experimenting programming concepts,
structures, styles and standards; and, practicing
program writing, debugging, testing and
documenting
Media form: interactive, communicative, adaptive
and productive
Pair and group problem-solving, coding and
discussing web-based questions
Pair and self-experimenting and practising with
visualisation and tutorial tools (Uuhistle, Python
interactive tutorial)

7

Four forms of learning as dialogue that involves discussion, adaption, interaction and reflection
(Laurillard, 2002)

Discursive: presentation of new
concept

Interactive: interacting
with teacher-constructed
tasks

Adaptive: putting
ideas into practice,
modifying one’s ideas
and adapting ones
actions.

Reflective: reflect
of the learner’s
performance by
both teacher and
learner

Pair and group graded and non-graded projects
using adaptive medias (IDLE/PyScripter, PyGame,
Python Turtle, Tk/Tkinter and additional web
resources)
Student support: facilitation and feedback by
instructors; synchronous and asynchronous
support by mentors

Dialogue
(interaction,
collaboration and
discussion)

Learners’ experience: presenting solutions,
analysing and recognising higher order
concepts and relationships, reciting learning
experience
Media form: productive, communicative
and interactive structured reflective journal,
verbal presentation on solutions and the
development process;
Web-based feedback and grade notification
for submitted assignments;
Online discussion forum for inquiries,
grievance and feedback;
Student mentors led ambiguity resolution
(both in-person and online)

8

Figure 2 depicts the implementation path. It was started with an expert
panel review. The role and composition of the expert panel is discussed in
Section 5. Student mentors (14 in total) were trained on techniques of pro-
viding student support by a pedagogical expert. Students were introduced to
the course’s proposed T&L and assessment mechanisms, the expected role
and responsibilities of students and instructors, and the embedded research
and ethical issues.

The principal component of the intervention is the weekly educational
and research activities that ran for 12 consecutive weeks. The constructivist
course design (Table 2) was enacted within the context of the course T&L
environment (Figure 1). There were some changes and refinement made dur-
ing the course of the enactment based on student feedback, continuous eval-
uation of the process by the teaching team (in weekly meetings) and
feedback from student mentors (after evaluation of every assignment). The
enacted educational activities are discussed below.

Large Class
Lecture

Small-group
Lab and

Assessment

E-learning-
based Activities

and Support

Pair
programming

Adaptive and
productive media
(Uuhistle, Python

tools) Active
learning

Team teaching and
student mentor

support

Live coding

Narrative and
Interactive

(Lecture note, quiz
& learning

External links

Collaborative
(forum, e-mail,

chat)

Goal setting, class-
level feedback on
 assignment

Figure 1. Integrated blended learning environment.

9

4.1. Interactive large class teaching with a team-teaching strategy

Two instructors (one with a second degree and 10 years of teaching experi-
ence and a junior with a first degree and one-year experience) offered inter-
active group lectures that lasted 1.6 h. The instructors shared the
responsibility of lecturing and class management. The lecture included con-
cept presentation, demonstration of worked-out solutions with screen projec-
tion, live coding with students participating in joint code development and
in-class, small-group problem-solving activities. Instructors watched students
and provided individualised and team-based help during the problem-solving
sessions. The activities served as bridge between the lecture, laboratory and
self-practice activities by transiting from discursive form of communication
during the lecture into interactive and adaptive forms (see conversational
framework in Table 2).

4.2. Pair programming with web-based problems, visualisation and
production tools

Student pairs were formed randomly by instructors. Female students were
paired separately to encourage engagement. Laboratory sessions involved
pair programming using questions from the e-learning portal, i.e. students
alternated between passenger and navigator roles. The Python visualisation
tool UUhistle, Internet-based interactive tools and Python production tools
like PyGame, Turtle and Tk/Tkinter were incorporated into the laboratory
problems. The role of the teaching team (the instructors plus a technical
assistant) was provision of whole-class, personalised and ad hoc support.

Figure 2. Implementation activity flow diagram.

10

There were six laboratory sessions per week (2.5 h each) for six different
student groups.

4.3. Independent and group-based student activities with interactive
resources and student support

Online quizzes and reading directions were regularly posted on the e-learn-
ing portal for independent and group learning. To minimise the anonymity
problem of large class education, different schemes of student support were
concurrently facilitated. The main schemes were student mentors’ casual
support and tutorials; online forums with active engagement of instructors
and student mentors; and female student support by senior female students.
Required but non-graded end-of-chapter assignments were also used for for-
mative assessment and feedback by student mentors.

4.4. Constructively aligned assignments with e-learning support

Three sets of learner-centred assessment activities (pair projects) that coin-
cided with three core portions of the course (sequence, selection and repeti-
tion with user-defined data structures) were planned to foster students’
learning through frequent and prompt feedback. The pair projects were fol-
lowed by the graded reflective journal assignments (Section 2.4). The reflec-
tive journal was based on a template and guidelines from Curtin University
of Technology (Curtin University, n.d.). One assignment and linked reflec-
tive journals were skipped due to time pressure from other courses. Progres-
sive engagement of students was motivated through application of alignment
between assignments and incremental grade improvement as recommended
by Barros (2010) and discussed in Section 2.4. The evaluation was based on
holistic assessment criteria adopted from Thompson (2007).

4.5. Summative assessment – comprehensive group projects and written
examination

The summative assessment contributed 62% of the total mark – 10% for
code comprehension (reading), 17% for code generation (writing) projects
and 35% for the final written examination. The comprehension project
exposed students to game programming with PyGame from an open source
eBook (Sweigart, 2009). Students were required to understand the program
logic and organisation of the code by reading the documentation and execut-
ing the code. The code generation project prompted students to develop their
own Python program of corresponding scope and apply basic software engi-
neering principles. The two projects were group-based, combining male and
female students (six to eight students), and were evaluated through oral
presentation and question-answering (facilitated by at least two instructors).

11

The BRACElet project approach (Section 2.1) was adopted for the final
examination by taking established questions and assessment procedures from
published sources (Lopez, Whalley, Robbins, & Lister, 2008; Shuhidan,
Hamilton, & D’Souza, 2009). The aim was to facilitate comparative analysis
of students’ performance. Our students were familiarised with the nature and
composition of the final examination through model questions. Examination
papers were evaluated by independent evaluators that excluded the course
instructors.

Figure 3 summarises the instructional and assessment sequence of activi-
ties embedded in the educational activities outlined above. Both the inter-
vention and its implementation were focused on addressing the main
problems of large class teaching: student anonymity, reduced engagement
and instructors’ assessment load. The solutions enacted were (1) synchronis-
ing lectures, laboratory classes and assignments by applying the principle of
constructive alignment, (2) applying diverse student support (online and
face-to-face by instructors and students mentors) and (3) maintaining an
assessment strategy that is timely and relevant but not excessively time con-
suming (through applying holistic assessment criteria, building division of
labour in assessment evaluation and using e-learning for feedback and col-
laboration).

Figure 3. Instruction and assessment cycle (based on Bledsoe, 2011).

12

5. Research design

Our study is guided by the research question: how can a blended learning
approach be used to improve large class teaching of programming? Theo-
retically, the study aimed at establishing a course and learning environment
design and enactment guidelines for large class teaching of programming.
The practical goal was to examine the impact of blended learning on stu-
dents’ learning of programming.

Laurillard (2012) argues that design science enables instructors to draw
upon existing theory to drive new knowledge about T&L practices. DSR, a
research method in design science, targets generation of design knowledge
relevant for practitioners (Hevner, March, Park, & Ram, 2004), and there-
fore DSR was selected to develop, implement and evaluate the intervention.

DSR is a research method with three interwoven cycles (Hevner et al.,
2004). It begins with a relevance cycle of literature review and context anal-
ysis to develop conceptual framework for the research. The second cycle,
design and development, is an iterative design, development and formative
evaluation of an artefact or intervention. Artefact evaluation can be done in
an artificial (laboratory) or naturalistic context (Venable, 2006). The design
and development cycle is followed by a rigour/theory-building cycle that
targets generation of design principles. The cyclic procedure, however, is
not always linear, and overlapping as well as going backward and forward
between the cycles is not uncommon.

This article covers the first two DSR cycles. A literature review (Sections
1 and 2) was used to select and integrate technology and pedagogy for the
intervention design (Sections 3 and 4). Action research was integrated with
DSR for evaluation. Scholars promote cross-fertilisation of DSR with action
research for evaluating artefacts in an organisational context (Sein,
Henfridsson, Purao, Rossi, & Lindgren, 2011) and to improve theoretical
abstraction and knowledge generation from DSR. Beck, Weber, and Gregory
(2013) suggest that the latter goal is achieved through the critical reflection
and learning steps of action research.

We adopted the definition of action research given by Melrose (2001).
Citing Kemmis and McTagger, Melrose (p. 161) defined action research as
a form of collective, self-reflective enquiry undertaken by participants in
social situations. Newton and Burgess (2008) and Melrose suggest that there
are three distinct approaches to action research with corresponding different
goals and purposes of the inquiry. The three action research types are techni-
cal (for knowledge generation), practical (for improvement of practice) and
emancipatory (influencing change or providing conditions for emancipation).
We applied the technical mode because of the intended aim of generating
knowledge on the design of blended learning and finding theoretical expla-
nation of its application to large class teaching of programming.

13

The action research was conducted with a mixed-methods sequential
explanatory design (Ivankova, Creswell, & Stick, 2006). That is, by under-
taking two cycles of action research whereby the first cycle evaluates the
effectiveness of the intervention with a predominantly quantitative data col-
lection and analysis. The second cycle explores theoretical explanations
through more qualitative means.

We report here on the first cycle action research conducted between
October 2011 and February 2012 with the design specified in Section 3.
The core research group of the study were the three authors, faculty mem-
bers and officials from the hosting institution. As a PhD study by the first
author, he took the lead responsibility under the direction of the supervisors
(second and third authors). Selected senior Computer Science and Education
faculties and a representative from the academic quality assurance unit of
the host university served as members of the expert panel (Figure 2). The
panel had the authority to enforce educational quality, and to monitor and
affirm progress made with their pre- and post-implementation evaluation.

The intervention design (Section 4) requires participation of many addi-
tional stakeholders whose roles fall under mini-project research groups, i.e.
the members might not persistently engage in the process (Melrose & Reid,
2000). The group members include course instructor(s) who are assigned to
handle a course for a semester and student mentors recruited to provide stu-
dent support. The groups provided formative evaluation from the perspec-
tives of their engagements: instructors and technical assistants by continuous
observation, note-taking and making ongoing evaluative meetings (weekly);
student mentors by informal observation of students’ engagement and
attitude.

Evaluation of the success and impact of blended learning intervention is
often contentious, partly due to the diverse drivers that encourage integration
of IT into education and students’ experience (Ginns & Ellis, 2007). Ginns
and Ellis identified quality T&L, flexibility, skill development and access as
some of the main motivations for adoption of ICT. With a focus on learning
quality, we have used learning effectiveness and student satisfaction from
the Sloan Consortium’s five pillars of quality of online education (Lorenzo
& Moore, 2002) as two means to evaluate the success of our blended learn-
ing intervention. The first round action research evaluated the effectiveness
of the intervention by analysing the holistic nature of the learning experience
through students approach to learning survey (Biggs, Kember, & Leung,
2001) and conducting comparative achievement tests. Sub-Sections 5.1
through 5.3 present the data collection and analysis in the first cycle.

5.1. Approach to learning survey

The theory underlying the students’ approach to learning (SAL) survey sug-
gests that students take different approaches to their learning. The two broad

14

approaches are deep learning (necessary for higher order learning) and sur-
face learning (a kind of rote learning for scoring marks) (Marton & Säljö,
1976). The choice of one of the approach depends upon interplay of many
factors explainable with Biggs’ 3P Model (Biggs & Tang, 2007). Biggs and
Tang developed a revised two factor study process questionnaire (R-SPQ-
2F) for SAL survey. The instrument has 20 five-point Likert scale items.

We conducted R-SPQ-2F survey to determine the level of influence of
our intervention on SAL to program. It was administrated online twice early
in the semester (before) and again at the end (after), which is referred to as
a contextual approach. The response rate for the first round was 178 (77%)
and 122 (53%) during the second. The second survey was affected by fre-
quent power interruptions during the survey week. Cronbach’s α values for
scale reliability in this study were at an acceptable level of .79 for the before
and .85 for the after surveys. Data analysis included 66% of the first and
51% of the second round responses after data cleaning.

The analysis was done according to a procedure proposed by Biggs et al.
(2001) for contextual approach administration. The class-level mean score of
the students’ responses was computed separately for the before and after
surveys. The difference between the after and before mean scores is used to
determine the success rate of the intervention. There is no clear guidance on
how to interpret R-SPQ-2F mean scores. Hamm and Robertson (2010)
adopted simple criteria of the greater the difference, the greater the strength
of the preference; and conversely the smaller the difference, the weaker he
preference for either learning approach.

5.2. Comparative performance test

Assessment is one of the main challenges of large class teaching (Ward &
Jenkins, 1992). Ward and Jenkins, for example, raised the workload and the
reliability and validity issues when assessment procedures are diversified in
response to the demands of large class teaching. Our assessment design
involved usage of student mentors and holistic criteria for faster evaluation.

Two different analyses were done on assessment activities. First, perfor-
mance of our students was described with descriptive statistics, and the
interrelation between different assessments was determined with correlation
analysis. The correlation was established with an open source package called
PSPP (PSPP, n.d.). The correlation helps to examine the evaluative role of
formative assessments (vis-à-vis examinations), besides their feedback role.
As in Rajalingam and Oo (2011), the correlation can also be used to mea-
sure the academic progress of students. Important for the Ethiopian context,
where terminal examinations are emphasised (Bass, 2009), positive correla-
tion with written examination helps open discussion on learner-centred
assessments.

15

Second, the performance of our students was compared with students
from other institutions using examination questions drawn from multina-
tional and multi-institutional computer science education research projects
(Lopez et al., 2008; Shuhidan et al., 2009). The evaluation criteria and data
presentation format used in the source literature are adopted for the compari-
son purpose. The aim was to get an indicator of our students’ comparative
performance within limits of the time, context and possibly procedural dif-
ferences.

5.3. Qualitative data

Qualitative text analysis method was used to analyse descriptive data from
students’ reflective journals (from two rounds of submissions), researchers’
memos and transcriptions of expert panel, and instructors’ and students’
meetings.

We merged action research with analysis techniques from grounded the-
ory as proposed by Baskerville and Pries-Heje (1999) for data analysis. Data
from students’ reflective journals were analysed through coding procedures
from grounded theory: concepts in the data were identified and named, and
then grouped at a more abstract level into categories applying the constant
comparison methods from Glaser and Strauss (1967). We supplemented the
emerging result with content analysis of textual data from the researcher’s
memos and transcriptions of the expert panel and participant meetings, as
recommended by Elo and Kyngäs (2008) and Srivastava and Hopwood
(2009). Through memoing during coding, the process eventually developed
in abstraction to find relationships between the categories identified, and
finally a story (or core category) was developed as a generalised relation-
ship. Coding was done with a qualitative data analysis (RQDA) library of
the open source statistical package, R (Huang, 2012).

6. Findings

We first present the results of the R-SPQ-2F questionnaire survey, along
with the correlation analysis made in Section 6.1. The inter-assessment anal-
ysis is presented in Section 6.2 and the comparative performance analyses
in Section 6.2. The results of the qualitative analysis are summarised in Sec-
tion 6.3.

6.1. R-SPQ-2F questionnaire

Table 3 presents the results of the R-SPQ-2F survey. The class-level mean
score for the first round administration (before) for the deep approach (DA)
was 39.27 and 40.9 in the second round (after). The DA’s mean score differ-
ence was 1.58. The surface approach’s (SA) mean score was 27.26 before

16

and 27.08 after with a marginal mean score difference of −.18. This result
suggests some positive change towards a deep approach and a modest
decrease in the SA at class level.

A correlation analysis made between the R-SPQ-2F and students’ final
examination result is presented in Table 4. The analysis was performed on
the results of 34 students who had completed both the before and after R-
SPQ-2F surveys. The DA and SA values for the correlation were calculated
by subtracting the before score from the after score of each student.

There was a fair correlation between the DA and students’ examination
result (r(32) = .359, p = .019). This suggests that students who adopted a DA
performed relatively better. In contrast, the negative correlation between SA
and the examination (r(32) = −.026, p > .5) established no substantial rela-
tionship.

6.2. Inter-assessment analysis

Table 5 presents the descriptive statistics of the students (N = 214) in the dif-
ferent assessment activities – two coding assignments (Proj1; Proj2), two
reflective journals (RJ1; RJ2), summative code reading and writing projects
(Proj3-R and Proj3-W), and a final examination. Table 5 shows that the
mean score of the students in every assessment activity is above the passing
cut-point of 50% of the weight allocated.

Figure 4 shows the performance trend across all the assessment activities.
The box plots (the marks in the inter-quartile ranges) for the learner-centred
assessments were smaller and have shorter whiskers than the final examina-
tion – showing a concentration of marks around the median. The final exam-
ination has a larger box plot with longer whisker indicating a large
performance divergence in the examination, with larger standard deviation.

Table 3. Result of the SAL survey.

Mean score N DA SA

Before 119 39.27 27.26
After 62 40.9 27.08
Diff. (after – before) 1.58 −.18

Table 4. Correlation between SAL and performance in examination.

DA SA Final exam

DA 1
SA .022 1
Final exam .359* −.026 1

*A fair positive linear relationship.

17

Correlation among the assessment activities (Table 6) overall was posi-
tive but weak. A moderate positive correlation was found between the
examination (weight = 35%) and total marks (r(214) = .726, p < .001), indi-
cating the discriminatory role of the examination. Fair correlation is found
between the code-writing project (P3-W) and the final examination (r(214)
= .326, p < .001), which can be explained in terms of the focused and inter-
active evaluation and feedback described in Section 4.

6.3. Comparative performance

The performance of our students was compared with that of students from
two tertiary institutions as a measure of the impact of the intervention. The

Table 5. Descriptive statistics on students course results.

Assessments Proj1 RJ1 Proj2 RJ2 Prog3-R Proj3-W Exam

Weight 12% 6% 12% 8% 10% 17% 35%
Mean 10.93 5.40 10.35 7.15 8.70 14.46 18.29
Stand. deviation .98 .43 .80 .62 .64 1.35 6.83

0

4

8

12

16

20

Proj1 RJ1 Proj2 RJ2 Proj3-R Proj3-W Final

Figure 4. Students’ result in assessment activities with a scaled-down final result (to 20%).

Table 6. Correlation analysis among assessment activities.

Assessment
activity Proj1 RJ1 Proj2 RJ2 P3-R P3-W Final

Proj1 1
RJ1 .014 1
Proj2 .228 .159 1
RJ2 .108 .460 .215 1
P3-R .100 .107 .153 .197 1
P3-W .164 .096 .171 .172 .350 1
Final .182 .227* .166 .210* .138 .326* 1

*Fair or moderately strong correlation.

18

two institutions are located in developed countries and are believed to have
better institutional capacity than Hawassa University (HU). We chose the
two universities because of the availability of the question papers and stu-
dents’ results in the literature with sufficient description of the evaluation
procedure (Lopez et al., 2008; Shuhidan et al., 2009). The comparison was
made between multiple choice, tracing and explain in plain English ques-
tions.

6.3.1. Comparison with multiple-choice questions

Eleven multiple-choice questions from Shuhidan et al. (2009) were used for
the comparison. The result in the source document was presented in terms
of Lord’s level of difficulty scale (Lord, 1952). Lord’s scale considers a
question as easy if 85% or more students selected the correct response. A
question has medium difficulty if 51–84% of the students picked the correct
response and hard if 50% or less answered correctly. Table 7 displays the
result from the two institutions (N = 220 for the other institution).

The results reflect similar student response levels for five of the eleven
questions (45.45%). HU results were one level of difficulty lower than the
other university in the remaining six questions, with a relatively low per-
centage of correct responses for four questions: 8, 15, 18 and 19.

6.3.2. Comparison with tracing and “explain in plain English” questions

Lopez et al. (2008) was consulted for the comparison of the tracing and
explain in plain English questions. Lopez et al. presented their students’ per-
formance as mean score for each question category.

The aggregated mean score for two tracing questions (a while and for
loop with nested conditional) was 2.40 out of five in Lopez et al. (N = 38)
and 2.08 (N = 216) for HU. As one of the three “explain in plain English”
questions was not included in Lopez et al., we compared their aggregated
mean score for the three questions (which is 3.20 out of eight) with a
scaled-up mean score for two questions of HU (3.12 out of eight). The mean
score difference was .32 for tracing and .08 for the “explain in English”
questions in favour of the other university.

Table 7. Comparison performance.

Other university (N = 220) Q. no. 2 3 4 7 8 11 15 17 18 19 20
Difficulty* M M M E E H M E M M M

Hawassa university
(N = 216)

Correct (%) 74 68 82 59 59 49 43 73 43 27 55
Difficulty M M M M M H H M H H M

*E = Easy, M =medium, H = hard.

19

6.4. Qualitative indicators

Students’ reflections in two rounds of reflective journal submissions were
analysed applying the coding mechanism typically associated with the
grounded theory method. The first round (N = 216) was an individual assign-
ment while the second was pair-based (N = 108) and submitted three weeks
after the first. The grounded theory analysis led to emergence of the follow-
ing provisional relationships, which shall be further developed with a pre-
dominantly qualitative research in the next cycle of action research.

6.4.1. First-time programmers begin with a plenitude of challenges

Challenges that emerged are misconception and misinformation, insufficien-
cies in academic background, novelty of programming concepts and prac-
tices, and the problems of learning context and culture. Students were led to
think of programming as difficult due to misconceptions (e.g. not distin-
guishing programming skills from basic ICT skills) and misinformation by
senior students about its difficulty. Lack of basic exposure to ICT and pro-
gramming concepts in secondary school was a typical shortcoming. Stu-
dents’ perception of programming as “conceptual” and reading as a main
learning strategy put students at risk during the coding project. This is
aggravated by lack of practicing problem-solving on paper and poor habit of
laboratory use. Psychologically, students were strained by stringent program
errors and a feeling of dependency syndrome – believing that they are not
capable of programming, and hence to depend on others to complete their
assessments.

6.4.2. Integrated approach to programming leads to improved student
engagement

Integrated support by instructors and student mentors helped students to
develop persistence in engagement. The progressive improvement was sup-
ported by pair programming (mainly for quick debugging), mentor support
(to boost morale and casual tutoring) and reasonably timely evaluation and
feedback. The second round reflective journals demonstrated clear progres-
sion in students’ engagement. There were positive developments in indepen-
dent and group programming culture (e.g. practising during off-class time,
building teamwork practice and using diversified information sources) and
in the level of confidence in their ability to program. For example, one stu-
dent group reported: “after accomplishing the second assignment, we [have]
develop[ed] our skills, confidence, [and] positive attitudes”.

The challenges and progressive improvement in students’ engagement
emerged from the content analysis of textual data from instructors’ memos
and transcriptions of meetings of instructors and student mentors. The
summative group-based project (code reading and writing), which was

20

conducted two weeks before the end of the semester, demonstrated the pro-
gress achieved at the time of course completion. Four instructors involved
in the evaluation reported strong familiarity of students with basic software
engineering principles, presentation and ICT skills, understanding of com-
plex programs and improved group-level engagement.

The visualisation tool (UUhistle) was not mentioned in the reflective
journals. Course instructors also observed gaps in supporting less-engaged
students, and in the timeliness and quality of assignment evaluation. There
was also no strong evidence on the benefit of female-only pairing strategy
in improving their engagement. Female students reported that their pair prac-
tice was affected by lack of access to computer and unsuitable computer lab-
oratories (e.g. other students taking their reserved computers and feeling
unsecure in overcrowded laboratories). Shortcomings observed in the sum-
mative project were existence of dependency problem (plagiarism both from
Internet sources as well as from their classmates) and unbalanced team-level
participation, though both were at a reduced scale compared to previous
assignments.

7. Discussion

The first cycle action research evaluated the effectiveness of the blended
course and learning environment designed through a DSR process. The
design integrated constructivist learning theories and instructional models,
information technologies and large class teaching strategies. The action
research examined the transformative role of blended learning in the context
of the challenges facing large class teaching of programming.

Table 8 summarises the research and its findings that show mixed results
on the impact of the intervention. We discuss the contrasting findings with a
focus on two related areas: (1) determining the effectiveness of the interven-
tion and (2) identifying practice improvement and design refinements neces-
sary for the next cycle of action research.

7.1. Intervention effectiveness

Learning effectiveness is one of the core criteria for measuring the success
of blended learning intervention (Lorenzo & Moore, 2002).

The findings from the achievement tests (descriptive statistics, inter-
assessment correlation and comparative performance analysis) produced
mixed results. The class-level mean score of the course is above the pass
mark of 50% and the weak but positive correlation among assessment activi-
ties suggest that the intervention had a positive impact on learning. The
R-SPQ-2F survey results, namely a slight move towards deep learning and a
minor decline in students’ SA to learning, provide further quantitative evi-
dence for the positive impact on learning effectiveness. The performance of

21

Table 8. Summary of the research findings.

Research problem Intervention and implementation Embedded research Findings

T&L of programming in large
classes addressing difficulty in
novice programming, and concerns
in large class teaching: student
anonymity, low student–instructor
interactions, class management and
decline in assessment quality

Pedagogically underpinned blended
learning that integrate large class
and programming teaching best
practices:

� Constructively aligned
course design

� Learning environment design
that integrates technologies
(e-learning and program
visualization), and large
class strategies (team
teaching, students mentoring,
holistic assessment and
collaboration) using
conversational framework
and the three-stage learning
model as integration
framework

Measuring intervention
effectiveness through:

� SAL survey with R-SPQ-2F
� achievement test

(correlation analysis of
students’ in assessment
results; comparing
performance based on
selected common
examination questions)

� grounded theory analysis of
qualitative data

� Positive but small move
towards deep learning and
slim decline in surface
learning in a before/after
R-SPQ-2F survey

� Satisfactory achievement in
assessment results (mean
score above passing cut-
points of 50% of allocated
weight). Marks in learner-
centred activities were more
right-skewed and
concentrated with small
inter-quartile ranges. Higher
deviation in examination
results (bigger inter-quartile
range, longer whiskers in
Figure 3 and larger standard
deviation)

� Positive but weak
correlation among
assessments, mainly
amongst the learner-centred
assignments and projects

� Fair correlation between
deep learning and
examination marks

22

Research problem Intervention and implementation Embedded research Findings

� Modestly comparable
performance between our
students and students from
other universities with the
limitations described in
Section 5.2. As in the other
university, our students’
mark in tracing and explain
in plain English question
was very low

� Improving persistence of
students’ engagement in
programming with declining
but observable large class
and programming challenges
– disengagement of some
students, low-level use of
visualisation tool, problem
in quality and timeliness of
evaluation and feedback

23

our students compared to that of students from other international institu-
tions is promising when taking the context into account.

The qualitative data analysis revealed progressive improvement in
engagement and level of confidence of our students in their programming
ability, and integration of software engineering principles. The impact of the
integrated approach to learn programming, i.e. combination of interactive
lecture, use of technology, student mentors, pair-programming and instructor
support, was evident from the students’ reflective journals.

The positive quantitative and qualitative findings of this study offer a
response to the research question by confirming that this design can be used
to improve large class T&L of programming.

Design and implementation shortcomings are evident in the low correla-
tion between the students’ scores of the different assessments, and in their
poor performance in the tracing and explain in plain English questions. The
evaluative role of the learner-centred assessments was also comparatively
poor, when compared to the higher discriminatory role of the final examina-
tion. These shortcomings inform design refinement as discussed in the next
section.

7.2. Design refinement guidelines

The findings have motivated changes to the intervention design. The major
changes necessary are:

(1) Enhancing technology integration: the impact of visualisation tools
in the course was not significant. Further improvement is needed to
better integrate visualisation and programming tools with assessment
activities.

(2) Improving learner-centred assessments: immediate feedback on
assessment promotes learning (Taras, 2005). The second action
research needs to reduce delays in feedback time and to improve
quality of assessment, which demands more facilitation and assess-
ment role of instructors.

(3) Engaging disengaged and less-engaged students: providing persona-
lised student support (Klem & Connell, 2004) and increase the evalu-
ation of individual contributions in team-based assignments and
projects (Hayes, Lethbridge, & Port, 2003).

8. Conclusion and future work

In this article, we have presented a course and learning environment design
that addresses the problems of large class teaching, which is a common
practice in many higher education institutions in Sub-Saharan Africa. Our
study describes a technology-enhanced, large class education solution for

24

the widely recognised problems of lack of skilled instructors, and resource
constraints associated with higher education in the region. The course and
blended learning environment design was informed by theories and practices
from education, blended learning and computer science education. The focus
was on the problematic area of large class teaching of programming.

The course and learning environment design and the action research eval-
uation in a semester-long implementation has produced the following posi-
tive results: some changes in SAL towards deep learning, modestly
comparative student scores with students from foreign universities, and
good-quality group projects as judged by instructors and confirmatory reflec-
tion of the students.

The contribution was to develop and evaluate a contextualised lesson on
the design of a blended learning solution for large class teaching of pro-
gramming grounded in constructivist learning theory and use of free and
open source technologies. We have extended the experience of Marsh, McF-
adden, and Price (2003) and Francis (2012) in application of blended learn-
ing for large class teaching by empirically testing them in programming
education. The experience of Thota and Whitfield (2010), Hadjerrouit (2005,
2008) and Brabrand (2008) was also expanded by incorporating components
to make them applicable to large class teaching. The lesson includes applica-
tion of educational models (constructive alignment, three-stage learning
model and conversational framework) that integrate best practices in large
class and programming teaching such as pair programming and holistic and
aligned assessments.

The first cycle of action research raised some issues to be addressed in
the next cycle and future research. The fair correlation between the final
code-writing project (done with oral presentation and question answering)
and the examination points to an alternative strategy for improved quality of
assignment evaluation. Shortcomings to be addressed in future work include
support for unengaged students, poor integration of visualisation tools and
low correlation among assignment results. Hence, design improvement
required in the next round include better alignment of technologies with
T&L and assessment activities, diversification of evaluation strategy for
immediate feedback and enhancement of support for struggling students.

Lorenzo and Moore (2002) proposed learning effectiveness, student satis-
faction, faculty satisfaction, cost-effectiveness and access as five criteria for
impact assessment of blended learning. Our study in the first cycle consid-
ered learning effectiveness only. The next cycle will focus on student satis-
faction and analysis of the learning effectiveness from students’ perspective.
Future research in the area can replicate the design and the design guidelines
generated from our study applying one or more of the Lorenzo and Moore’s
measures.

25

Acknowledgement
This work was partially supported by the NORAD project of Hawassa University from the
third phase of a Norwegian Government-supported project.

References
Apple, D. K., & Nelson, D. (2002). Identification of non-success factors in a large

introductory computer science course and constructive interventions for increasing
student success. In 32nd Annual Frontiers in Education, 2002. FIE 2002. (Vol. 1,
pp. T1G-1). Boston, MA: IEEE.

Ashcroft, K., & Rayner, P. (2012). The purposes and practices of quality assurance in ethio-
pian higher education: Journey, adaptation and integration. International Journal of Busi-
ness Anthropology, 3, 19–35.

Azemi, A., & D’Imperio, N. (2011). New approach to teaching an introductory computer
science course. In Frontiers in Education Conference (FIE), 2011 (pp. S2G-1). Rapid
City, SD: IEEE.

Barros, J. P. (2010). Assessment and grading for CS1: Towards a complete toolbox of crite-
ria and techniques. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research (pp. 106–111). Koli: ACM.

Baskerville, R., & Pries-Heje, J. (1999). Grounded action research: A method for
understanding IT in practice. Accounting, Management and Information Technologies,
9(1), 1–23.

Bass, J. M. (2009). Empathetic consultancy: A reflective approach to ICTD. In Proceedings
of the 10th International Conference on Social Implications of Computers in Developing
Countries. Dubai: Dubai School of Government.

Beck, R., Weber, S., & Gregory, R. W. (2013). Theory-generating design science research.
Information Systems Frontiers, 15, 637–651.

Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in
Mathematics and Science, 20, 45–73.

Biggs, J. (2003). Aligning teaching for constructing learning. Higher Education Academy.
Retrieved from http://www.heacademy.ac.uk/resources/detail/resource_database/id477_
aligning_teaching_for_constructing_learning

Biggs, J., Kember, D., & Leung, D. Y. (2001). The revised two-factor study process ques-
tionnaire: R-SPQ-2F. British Journal of Educational Psychology, 71, 133–149.

Biggs, J., & Tang, C. (2007). Teaching for quality learning at university: What the students
does (3rd ed.). Maidenhead: Open University Press.

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Educa-
tion: Principles, Policy & Practice, 5, 7–74.

Bledsoe, K. E. (2011). Managing problem-based learning in large lecture sections. Biosci-
ence Education, 18. doi:10.3108/beej.18.1

Brabrand, C. (2008). Constructive alignment for teaching model-based design for concur-
rency. In Transactions on petri nets and other models of concurrency I (pp. 1–18).
Heidelberg: Springer Berlin.

Bryson, C., & Hand, L. (2007). The role of engagement in inspiring teaching and learning.
Innovations in Education and Teaching International, 44, 349–362.

Clear, T., Whalley, J., Robbins, P., Philpott, A., Eckerdal, A., & Laakso, M. (2011). Report
on the final BRACElet workshop. Journal of Applied Computing and Information Tech-
nology, 15(1). Retrieved March 9, 2014, from http://www.citrenz.ac.nz/jacit/JACIT1501/
2011Clear_BRACElet.html

Curricula, C. (2001). Computer science. Final Report. The joint task force on computing
curricula. IEEE Computer Society and Association for Computing Machinery.

Curtin University. (n.d.). Structured reflection. Retrieved September 30, 2011, from http://
learningcentre.curtin.edu.au/skills/structured_reflection.cfm

Cuseo, J. (2007). The empirical case against large class size: Adverse effects on the teach-
ing, learning, and retention of first-year students. The Journal of Faculty Development,
21, 5–21.

26

http://www.heacademy.ac.uk/resources/detail/resource_database/id477_aligning_teaching_for_constructing_learning
http://www.heacademy.ac.uk/resources/detail/resource_database/id477_aligning_teaching_for_constructing_learning
http://dx.doi.org/10.3108/beej.18.1
http://www.citrenz.ac.nz/jacit/JACIT1501/2011Clear_BRACElet.html
http://www.citrenz.ac.nz/jacit/JACIT1501/2011Clear_BRACElet.html
http://learningcentre.curtin.edu.au/skills/structured_reflection.cfm
http://learningcentre.curtin.edu.au/skills/structured_reflection.cfm

Decker, A., Ventura, P., & Egert, C. (2006). Through the looking glass: Reflections on using
undergraduate teaching assistants in CS1. ACM SIGCSE Bulletin, 38, 46–50.

Dougiamas, M., & Taylor, P. C. (2002). Interpretive analysis of an internet-based course
constructed using a new courseware tool called Moodle. Paper presented at the 2002
International Conference of the Higher Education Research and Development Society of
Australasia (HERDSA). Perth: HERDSA.

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced
Nursing, 62, 107–115.

Fincher, S., Lister, R., Clear, T., Robins, A., Tenenberg, J., & Petre, M. (2005). Multi-institu-
tional, multi-national studies in CSEd research: Some design considerations and trade-
offs. In Proceedings of the First International Workshop on Computing Education
Research (pp. 111–121). Seattle, WA: ACM.

Francis, R. W. F. (2012). Engaged: Making large classes feel small through blended learning
instructional strategies that promote increased student performance. Journal of College
Teaching & Learning (TLC), 9, 147–152.

Fuller, U., Riedesel, C. G., Thompson, E., Johnson, C. G., Ahoniemi, T., Cukierman, D., …
Hernán-Losada, I. (2007). Developing a computer science-specific learning taxonomy.
ACM SIGCSE Bulletin, 39, 152–170.

Ginns, P., & Ellis, R. (2007). Quality in blended learning: Exploring the relationships
between on-line and face-to-face teaching and learning. The Internet and Higher Educa-
tion, 10, 53–64.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for
qualitative research. New Brunswick: Aldine Transaction.

Hadjerrouit, S. (2005). Learner-centered web-based instruction in software engineering. IEEE
Transactions on Education, 48, 99–104.

Hadjerrouit, H. (2008). Towards a blended learning model for teaching and learning com-
puter programming: A case study. Informatics in Education, 7, 181–210.

Hamm, S., & Robertson, I. (2010). Preferences for deep-surface learning: A vocational edu-
cation case study using a multimedia assessment activity. Australasian Journal of Educa-
tional Technology, 26, 951–965.

Hanusch, F., Obijiofor, L., & Volcic, Z. (2009). Theoretical and practical issues in team-
teaching a large undergraduate class. International Journal of Teaching and Learning in
Higher Education, 21, 66–74.

Hayes, J. H., Lethbridge, T. C., & Port, D. (2003). Evaluating individual contribution toward
group software engineering projects. In Proceedings 25th International Conference on
Software Engineering (pp. 622–627). Portland, OR: IEEE.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information sys-
tems research. MIS Quarterly, 28, 75–105.

Hoic-Bozic, N., Mornar, V., & Boticki, I. (2009). A blended learning approach to course
design and implementation. IEEE Transactions on Education, 52, 19–30.

Huang, R. (2012). RQDA: R-based qualitative data analysis. R package version 0.2-3.
Retrieved from http://rqda.r-forge.r-project.org/

Hwang, W. Y., Shadiev, R., Wang, C. Y., & Huang, Z. H. (2012). A pilot study of coopera-
tive programming learning behaviour and its relationship with students’ learning perfor-
mance. Computers & Education, 58, 1267–1281.

Ivankova, N. V., Creswell, J. W., & Stick, S. L. (2006). Using mixed-methods sequential
explanatory design: From theory to practice. Field Methods, 18, 3–20.

Ives, S. M. (2000). A survival handbook for teaching large classes. University of North Car-
olina. Retrieved from http://teaching.uncc.edu/learning-resources/articles-books/best-prac-
tice/large-classes/large-class-handbook

Kerr, A. (2011). Teaching and learning in large class at Ontario Universities: An explor-
atory study. Toronto: Higher Education Quality Council of Ontario.

Klem, A. M., & Connell, J. P. (2004). Relationships matter: Linking teacher support to stu-
dent engagement and achievement. Journal of School Health, 74, 262–273.

Laurillard, D. (2002). Rethinking university teaching (2nd ed.). London: Routledge.
Laurillard, D. (2012). Teaching as a design science: Building pedagogical patterns for learn-

ing and technology. New York, NY: Routledge, Taylor & Francis Group.

27

http://rqda.r-forge.r-project.org/
http://teaching.uncc.edu/learning-resources/articles-books/best-practice/large-classes/large-class-handbook
http://teaching.uncc.edu/learning-resources/articles-books/best-practice/large-classes/large-class-handbook

Lee-Partridge, J. (2006). Using reflective learning in an introductory programming. In
Emerging trends and challenges in information technology management: 2006 Informa-
tion Resources Management Association International Conference (Vol. 1), Washington,
DC, USA, May 21–24, IGI Global.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading,
tracing and writing skills in introductory programming. In Proceedings of the Fourth
International Workshop on Computing Education Research (pp. 101–112). New York,
NY: ACM.

Lord, F. M. (1952). The relation of the reliability of multiple-choice tests to the distribution
of item difficulties. Psychometrika, 17, 181–194.

Lorenzo, G., & Moore, J. (2002). Five pillars of quality online education: The sloan consor-
tium report to the nation. Retrieved from http://sloanconsortium.org/publications/books/
pillarreport1.pdf

Marsh, G. E., McFadden, A. C., & Price, B. J. (2003). Blended instruction: Adapting con-
ventional instruction for large classes. Online Journal of Distance Learning Administra-
tion, 6(4). Retrieved from http://www.westga.edu/~distance/ojdla/winter64/marsh64.htm

Marton, F., Hounsell, D., & Entwistle, N. (1997). The experience of learning. Edinburgh:
Scottish Academic Press.

Marton, F., & Säljö, R. (1976). On qualitative differences in learning: I-outcome and pro-
cess. British Journal of Educational Psychology, 46, 4–11.

Mayes, J. T., & Fowler, C. J. (1999). Learning technology and usability: A framework for
understanding courseware. Interacting with Computers, 11, 485–497.

McCauley, R., & Mcgettrick, A. (2008). Computer science curriculum 2008: An interim
revision of the CS 2001, a report from the interim review task force. ACM.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., … Kolikant,
Y. B.-D. (2001). A multi-national, multi-institutional study of assessment of program-
ming skills of first-year CS students. ACM SIGCSE Bulletin, 33, 125–180.

Melrose, M. J. (2001). Maximizing the rigor of action research: Why would you want to?
How could you? Field Methods, 13, 160–180.

Melrose, M., & Reid, M. (2000). The daisy model for collaborative action research: Applica-
tion to educational practice. Educational Action Research, 8, 151–165.

Mendes, A. J., Paquete, L., Cardoso, A., & Gomes, A. (2012). Increasing student commit-
ment in introductory programming learning. In 2012 Frontiers in Education Conference
Proceedings (pp. 1–6), October 3–6. Seattle, WA: IEEE.

Newton, P., & Burgess, D. (2008). Exploring type of education action research: Implications
for research validity. International Journal of Qualitative Methods, 7, 18–30.

Pears, A. N. (2010). Enhancing student engagement in an introductory programming course.
In Frontiers in Education Conference (FIE) 2010 IEEE (pp. F1E-1). Washington, DC:
IEEE.

PSPP. (n.d.). PSPP statistical package. Retrieved from http://www.gnu.org/software/pspp/
Rajala, T., Laakso, M. J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program visual-

isation: A case study with the ViLLE tool. Journal of Information Technology Educa-
tion, 7, 15–32.

Rajalingam, S., & Oo, Z. (2011). Finding the correlation between formative and summative
assessments by Spearman’s correlation coefficient: A case study. Retrieved from http://
espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-era02&object_
id=174728

Ramsden, P. (2003). Learning to teach in higher education (2nd ed.). London: Routledge
Falmer.

Roberts, G. (2003). Teaching using the web: Conceptions and approaches from a phenome-
nographic perspective. Instructional Science, 31, 127–150.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13, 137–172.

Sein, M., Henfridsson, O., Purao, S., Rossi, M., & Lindgren, R. (2011). Action design
research. MIS Quarterly, 13, 37–56.

28

http://sloanconsortium.org/publications/books/pillarreport1.pdf
http://sloanconsortium.org/publications/books/pillarreport1.pdf
http://www.westga.edu/~distance/ojdla/winter64/marsh64.htm
http://www.gnu.org/software/pspp/
http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-era02&object_id=174728
http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-era02&object_id=174728
http://espace.library.curtin.edu.au/R?func=dbin-jump-full&local_base=gen01-era02&object_id=174728

Sheth, S., Bell, J., & Kaiser, G. (2013). A competitive-collaborative approach for introducing
software engineering in a CS2 class. In 2013 IEEE 26th Conference on Software Engi-
neering Education and Training (CSEE&T) (pp. 41–50). San Francisco, CA: IEEE.

Shuhidan, S., Hamilton, M., & D’Souza, D. (2009). A taxonomic study of novice program-
ming summative assessment. In Proceedings of the Eleventh Australasian Conference on
Computing Education-Volume 95 (pp. 147–156). Darlinghurst: Australian Computer
Society.

Sorva, J. (2012). Visual program simulation in introductory programming education (Doctoral
dissertation 61/2012). Aalto University. Retrieved from http://urn.fi/URN:ISBN:978-952-
60-4626-6

Srivastava, P., & Hopwood, N. (2009). A practical iterative framework for qualitative data
analysis. International Journal of Qualitative Methods, 8, 78–84.

Sweigart, A. (2009). Invent your own computer games with python. CreateSpace. Retrieved
from http://inventwithpython.com/

Taras, M. (2005). Assessment – Summative and formative – Some theoretical reflections.
British Journal of Educational Studies, 53, 466–478.

Tessema, K. A. (2009). The unfolding trends and consequences of expanding higher educa-
tion in Ethiopia: Massive universities, massive challenges. Higher Education Quarterly,
63, 29–45.

Thompson, E. (2007). Holistic assessment criteria: Applying SOLO to programming pro-
jects. In Proceedings of the Ninth Australasian Conference on Computing Education-Vol-
ume 66 (pp. 155–162). Darlinghurst: Australian Computer Society.

Thota, N., & Whitfield. (2010). Holistic approach to learning and teaching introductory
object-oriented programming. Computer Science Education, 20, 103–127.

UNESCO. (2010). Trends in tertiary education: Sub-Saharan Africa. UIS Fact Sheet,
December 2010, No. 10. Retrieved from http://www.uis.unesco.org/FactSheets/Docu-
ments/fs10-2010-en.pdf

Venable, J. (2006). A framework for design science research activities. In Emerging trends
and challenges in information technology management: 2006 Information Resources
Management Association International Conference, Information Resources Management
Association, IGI Global, Washington, DC, USA, May 21–24, 2006 (Vols. 1 and 2, pp.
184–187).

Ward, A., & Jenkins, A. (1992). The problems of learning and teaching in large classes. In
G. Gibbs & A. Jenkins (Eds.), Teaching large classes in higher education: How to main-
tain quality with reduced resources. London: Psychology Press.

Webber, K. L., & Tschepikow, K. (2013). The role of learner-centred assessment in postsec-
ondary organisational change. Assessment in Education: Principles, Policy & Practice,
20, 187–204.

Wulf, T. (2005). Constructivist approaches for teaching computer programming. In Proceed-
ings of the 6th Conference on Information Technology Education (pp. 245–248). New
York, NY: ACM.

Yizengaw, T. (2008). Challenges of higher education in Africa and lessons of experience for
the Africa-US higher education collaboration initiative: A synthesis report for the
Africa‐U.S. higher education initiative. Retrieved July 21, 2013, from http://www.aplu.
org/NetCommunity/Document.Doc?id=1183

29

http://urn.fi/URN:ISBN:978-952-60-4626-6
http://urn.fi/URN:ISBN:978-952-60-4626-6
http://inventwithpython.com/
http://www.uis.unesco.org/FactSheets/Documents/fs10-2010-en.pdf
http://www.uis.unesco.org/FactSheets/Documents/fs10-2010-en.pdf
http://www.aplu.org/NetCommunity/Document.Doc?id=1183
http://www.aplu.org/NetCommunity/Document.Doc?id=1183

	Abstract
	1. Introduction
	2. Related work and motivation
	2.1. Novice programming
	2.2. Constructivism and learner-centred assessment
	2.3. Information technologies for teaching and learning of programming
	2.4. Strategies for large introductory programming courses

	3. Course and learning environment design
	4. Context and path of implementation
	4.1. Interactive large class teaching with a team-teaching strategy
	4.2. Pair programming with web-based problems, visualisation and production tools
	4.3. Independent and group-based student activities with interactive resources and student support
	4.4. Constructively aligned assignments with e-learning support
	4.5. Summative assessment - comprehensive group projects and written examination

	5. Research design
	5.1. Approach to learning survey
	5.2. Comparative performance test
	5.3. Qualitative data

	6. Findings
	6.1. R-SPQ-2F questionnaire
	6.2. Inter-assessment analysis
	6.3. Comparative performance
	6.3.1. Comparison with multiple-choice questions
	6.3.2. Comparison with tracing and ``explain in plain English'' questions

	6.4. Qualitative indicators
	6.4.1. First-time programmers begin with a plenitude of challenges
	6.4.2. Integrated approach to programming leads to improved student engagement

	7. Discussion
	7.1. Intervention effectiveness
	7.2. Design refinement guidelines

	8. Conclusion and future work
	Acknowledgement
	References

