Members of the genus *Geobacillus* are Gram-positive, thermophilic, spore-forming, aerobic bacteria (1). They have an extensive capacity to degrade plant cell wall hemicellulosic polymers into their component pentose sugars, a capacity that has been linked to a single chromosomal locus (2, 3). Coupled with this is their production of thermostable hydrolytic enzymes, resulting in considerable interest in the use of *Geobacillus* in a range of biotechnological applications (4). *Geobacillus* sp. strains CAMR5420 and CAMR12739 were acquired from the CAMR (Porton Down, United Kingdom) thermophile culture collection, which is now held by the Centre for Extremophile Research, Department of Biology and Biochemistry, at the University of Bath, United Kingdom. CAMR5420 was added to the collection in 1989, CAMR12739 was collected in Skaltholt, Iceland, and deposited in the collection in 1987.

Genome sequencing was performed using the 454 GS-FLX (CAMR12739) and Illumina GAIIx (CAMR5420) platforms, yielding 2,553,592 reads (average read length of 138 nucleotides [nt]) for CAMR5420 and 119,419 reads (average read length of 365 nt) for CAMR12739. Assembly was performed using a combination of the CLC Genomics Workbench v6, DNAStar Ngen and Velvet v1.1 (5) assemblers. Finally, reference assembly was undertaken using the complete genomes of related *Geobacillus* spp. using Mauve (6). The genome of CAMR5420 was assembled into 96 contigs, yielding a total genome size of 3.50 megabases, with a mean G+C content of 51.89%. The genome of CAMR12739 was assembled into 74 contigs, with a total genome size of 3.41 Mb and a mean G+C content of 52.21%. Further *in silico* assembly was hampered by the presence of highly conserved transposase genes. The genomes were annotated using the Rapid Annotations using Subsystems Technology (RAST) server (7). The genomes of CAMR5420 and CAMR12739 were assigned accession numbers JHU00000000 (CAMR5420) and JHU00000000 (CAMR12739). The versions described in this paper are the first versions, JHU00100000 (CAMR5420) and JHU00100000 (CAMR12739).

ACKNOWLEDGMENTS

We gratefully acknowledge financial and technical support from the Genomics Research Institute, University of Pretoria, and TMO Renewables Ltd., United Kingdom, and sequencing support from the University of the Western Cape sequencing facility.

REFERENCES

9. Pieter De Maayer, a Carolyn E. Williamson, b Christopher T. Vennard, b Michael J. Danson, b Don A. Cowan a

Centre for Microbial Ecology and Genomics, Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria, South Africa a; Centre for Extremophile Research, Department of Biology and Biochemistry, University of Pretoria, Pretoria, South Africa b

Thermophilic *Geobacillus* spp. can efficiently hydrolyze hemicellulose polymers and are therefore of interest in biotechnological applications. Here we report the genome sequences of two hemicellulolytic strains, *Geobacillus* sp. CAMR12739 and CAMR5420.

Draft Genome Sequences of Geobacillus sp. Strains CAMR5420 and CAMR12739

Pieter De Maayer, a Carolyn E. Williamson, b Christopher T. Vennard, b Michael J. Danson, b Don A. Cowan a

Centre for Microbial Ecology and Genomics, Genomics Research Institute, Department of Genetics, University of Pretoria, Pretoria, South Africa a; Centre for Extremophile Research, Department of Biology and Biochemistry, University of Pretoria, Pretoria, South Africa b

Thermophilic *Geobacillus* spp. can efficiently hydrolyze hemicellulose polymers and are therefore of interest in biotechnological applications. Here we report the genome sequences of two hemicellulolytic strains, *Geobacillus* sp. CAMR12739 and CAMR5420.