Sustainable Asset Life Cycle Management:

Optimising Maintenance Strategies in the Process Industry to Maximise the environmental performance of Assets

Amèlia Botha & Alan C Brent (presented by Corro van Waveren)

- Chair: Life Cycle Engineering
- Department of Engineering and Technology Management
- University of Pretoria
- > Tel: +27 12 420 3929
- > Fax:+27 12 362 5307
- > E-mail: alan.brent@up.ac.za

Content of the presentation

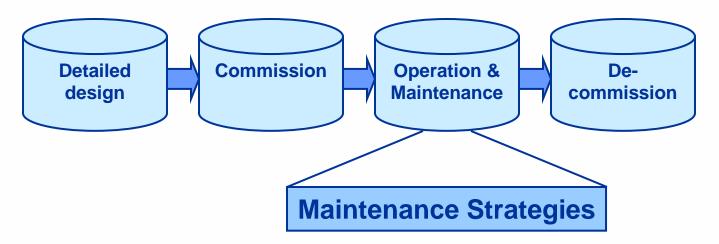
- Problem Statement
- Objective
- Prior work in this field
- > Research approach
- Maintenance Strategies
- Life Cycle Management
- New Asset Life Cycle and Maintenance Strategy Model
- Case Studies in the South African process industry
- Optimized Maintenance Strategies
- Conclusion

Problem Statement

- ➤ Environmental implications were not taken into account prior to the 1980s in the process industry
 - Especially in developing countries
- Maintenance strategies focussed on:
 - Maintainability
 - Reliability
 - Cost

Short term focus

Total life cycle cost and environmental liabilities were consequently not taken into account



Long term focus

Objective

> Total life cycle of assets

Must accommodate environmental impacts of assets

- > Importance of Objective
 - To ensures a company's environmental credibility is acceptable to all its stakeholders

Prior work in this field

- Literature review
 - Maintenance strategies do not make provision for environmental impacts of assets during maintenance cycles
 - Absence of environmental considerations in design of the life cycles of assets
- Limitations and key assumptions of this research
 - Do not want to change Maintenance Strategies or redefine them
 - Do not change the life cycle phases of assets

➤ Integrate LCM into Maintenance Strategies and Asset Life Cycles to optimize the environmental performance of assets

Research approach

- Case Study approach in the Process Industry of South Africa
- ➤ Maintenance Management environment and evaluate the current state of strategies towards environmental impacts of assets
- Recommendations and best practices will be proposed to be implemented in process industries

Maintenance Strategies

- Run-to-failure
 - Run asset to failure and then repair it
- Preventive Maintenance
 - Fixed interval (repair, overhaul, replace) regardless its condition at that time
- Predictive Maintenance
 - Measure condition to assess when it will fail and take action to avoid the consequences of failure
- Proactive Maintenance
 - Monitor and correction of root causes to asset failures

Life Cycle Management of Assets

- Classic definition of Life Cycle Management (LCM)
 - Considers the product life in a holistic way with the aim of achieving maximum product performance

- > Therefore, with respect to assets
 - Considers the asset life in a holistic way with the aim of achieving maximum asset performance
- > From the perspectives
 - Optimal cost
 - Maximised environmental performance
 - Social beneficiation

New integrated Asset Life Cycle Management model

	University of Pre
Future Requirements	(Holistic Optimisation)
Efficiency	(Cost)
Safety	(Products, Consumers and Industrial Safety)
Environmental Soundness	(Raw materials, Fuels, Emissions, Waste)
Detailed Design	Construction Operations /Maintenance De-commissioning Asset Life Cycle
Maintenance Strategies	LCC; LCA; LCE LCM Tools
Run-to-failure Preventative Maintenance Predictive Maintenance Pro-active Maintenance	
Pre- Manufacturing	Operations /Maintenance Product Usage Product Disposal Product Cycle

Case study 1: Surface Bed Cracking

Major Problems:

- No maintenance strategy was followed
- LCM tools were not incorporated into the design phase of the life cycle of the asset
 - Reconstruction of slabs where expansion joints should have been

> Safety:

- All cracks resulted in tripping hazards in the area
- > Efficiency:
 - No maintenance resulted that slabs could not be repaired and had to be demolished

Case study 1: Surface Bed Cracking

= R272367

EXISTING SLAB: (6m x 6m)

Construction Cost: R3600 x $36m^2 = R129 600.00$ Construction Joints: R133/m x 24m = R3 192.00Crack Sealing: R100/m x 12m = R1 200.00

R129 600

R3 192 R3 192 R3 192 R1 200 R1 200 R1 200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

REHAB SLAB: (3m x 3m)

Construction Cost : $R5 600 \times 36m^2 = R201 600.00$ Construction Joints: $R133/m \times 48m = R6 384.00$

R207 984 R6 384 = R214 368

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

.: R214 368 = 21%

Costs are shown in present South African Rands: 1 AUD = 4.7 ZAR

Case study 2: Relining of an evaporation pond

Major Problems:

 Maintenance strategy was runto-failure

• The sludge in the pond could

not be removed without damaging the liner

- The old design had a herringbone system underneath the liner
 - Constructed in the soil

Case study 2: Relining of an evaporation pond

- > Safety:
 - Vacuum of sludge out of pond
 - Dangerous working environment
- > Efficiency:
 - No maintenance could be done on the liner
 - Due to sludge built up
 - Could not remove sludge without damaging the liner
 - Leaks in the liner could only be traced when entering the herringbone

Case study 2: Relining of an evaporation pond

OLD DESIGN:

Construction Cost : R6.5mil Rehabilitation Cost: R3.0mil

Rehabilitation = R3.0mil

R6.5mil R6.5mil = R16mil

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NEW DESIGN:

Construction Cost: R8.0mil

Clean-out cost for basin: R200 000.00

R8.0mil R200 000.00 R200 000.00 R200 000.00 = R8.6mil

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

... R8.6mil = 46%
R16mil

Costs are shown in present South African Rands: 1 AUD = 4.7 ZAR

Optimized Maintenance Strategies

Proactive Maintenance

- Focus on the most cost-effective way to manage the failure mode of an asset
- Be more proactive in terms of environmental risks
- Design cost will initially be higher but the LCC for the total life cycle of the asset will be lower.

Predictive Maintenance

- Focus on the most cost-effective way to manage the failure mode of an asset
- Predict environmental risks
- Design cost will initially be higher but the LCC for the total life cycle of the asset will be lower
- Predictive measures will be designed into the asset from the beginning of the asset life cycle

Conclusions

- Maintenance Managers and environmental experts have input into design
 - Cost may initially be higher but life cycle cost will be lower over total life cycle
- More strict legislation
 - "green products"
- > The model ensures
 - Maintenance Strategies + LCM tools = Long term sustainability of assets & Lower total life cycle cost
- > Therefore
 - Give a holistic view of assets' environmental performances, safety and efficiency from design phase to disposal phase
 - Cradle-to-grave principle

South African on-going LCM activities

Closure and (limited) questions

